Office de la Proprieté Canadian CA 2800640 C 2017/12/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 800 640
Findustrie Canada Industry Canada 12 BREVET CANADIEN
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 2010/11/08 (51) CLInt./Int.Cl. GO6F 9/455(2018.01),
(87) Date publication PCT/PCT Publication Date: 2011/12/29 GO6F 9/50(2018.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2017/12/12 GREINER. DAN. US:
(85) Entree phase nationale/National Entry: 2012/11/23 OSISEK, DAMIAN LEO, US;
(86) N° demande PCT/PCT Application No.: EP 2010/067045 SLEGEL, TIMOTHY, US;
o o HELLER, LISA, US
(87) N publication PCT/PCT Publication No.: 2011/160723 o
e (73) Proprietaire/Owner:

CORPORATION, US
(74) Agent: WANG, PETER

(54) Titre : FONCTIONNALITE DE VIRTUALISATION DE FONCTION POUR UNE FONCTION DINSTRUCTION DE
BLOCAGE D'UNE INSTRUCTION MULTIFONCTION D'UN PROCESSEUR VIRTUEL

(54) Title: FUNCTION VIRTUALIZATION FACILITY FOR BLOCKING INSTRUCTION FUNCTION OF A MULTI-
FUNCTION INSTRUCTION OF A VIRTUAL PROCESSOR

Set ar Instruction
Bleccking Va_ue Zor
Blcecking cxccution
of an instruction
specifying a
blockec Function

1251

Set azn Instructilion
Elccking vValue for
Blccking execution
cf ar instruc-ion

1252 l 1257

Fetch an Instruction to
be Executed naving anr
Opcode

Instruction
1253 I __— [OpCode [/i |
Compoare Blocking l 1258
Value with fetched
Iastructicn Selected Function

iIdentitied by a Function
Code 1959

1254
) Yes
B_ock

Executio:

1256

Causing a
creoram
exception
event

12565

Execute tae
Instruction

(57) Abréegée/Abstract:

In a processor supporting execution of a plurality of functions of an instruction, an instruction blocking value Is set for blocking one
or more of the plurality of functions, such that an attempt to execute one of the blocked functions, will result in a program exception
and the instruction will not execute, however the same instruction will be able to execute any of the functions that are not blocked
functions.

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

w0 20117160723 A1 |{]0FIRA | A0 10 O R

CA 02800640 2012-11-23

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
29 December 2011 (29.12.2011)

(10) International Publication Number

WO 2011/160723 Al

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(71)

(72)
(73)

International Patent Classification:
GO6F 9/455 (2006.01) GO6F 9/30 (2006.01)

International Application Number:
PCT/EP2010/067045

International Filing Date:
8 November 2010 (08.11.2010)

Filing Language: English
Publication Language: English
Priority Data:

12/822,368 24 June 2010 (24.06.2010) US

Applicant (for all designated States except US). INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New Y ork
10504 (US).

Applicant (for MG ornly): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

Inventors; and
Inventors/Applicants (for US ornly): GREINER, Dan

[US/US]; Ibm Corporation, Mail Drop Svl/090/1374, 555
Bailey Avenue, Santa Teresa Lab, San Jose, California

(74)

(81)

95141-1003 (US). OSISEK, Damian, Leo [US/US]; Ibm
Corporation, Mail Drop G28g/250-2, 1701 North Street,
Endicott, New York 13760-5553 (US). SLEGEL, Timo-
thy [US/US]; Ibm Corporation, Mail Drop Ms-p310,
2455 South Road, Poughkeepsie, New York 12601-5400
(US). HELLER, Lisa [US/US]; Ibm Corporation, Mail
Drop A85/p310, 2455 South Road, Poughkeepsie, New
York 12601-5400 (US).

Agent: LITHERLAND, David, Peter; IBM United
Kingdom Limited, Intellectual Property Law, Hursley
Park, Winchester Hampshire SO21 2JN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: FUNCTION VIRTUALIZATION FACILITY FOR BLOCKING INSTRUCTION FUNCTION OF A MULTI-FUNC-
TION INSTRUCTION OF A VIRTUAL PROCESSOR

1251

(57) Abstract: In a processor supporting execution of a plurality of func-

Set an Instruction
Blockine Value for

Set an Instructicn
Blockinag Value Zor
Blocklinc executilion
of an i1astracticn

BElcckinc execution
cf an i1instruction
specifyinc =
b_cckec. Faaction

1252 l / 1257
Fetch an Instruction tc
be Executed zeving an
| Jpcode
l Instruction
. __—[OpCode | 777l |
Corpare B_ocking l 1958
Value with fetchec

Instruct:on Selected Function

1254

1255

identified by a Function
Code 1959

_ Yes
B_ock

Executis
“

1256
y

Causing a
program
exception

Sxecute the
Instruction

event

FIG. 12

tions of an instruction, an mstruction blocking value 1s set for blocking
one or more of the plurality of functions, such that an attempt to execute
one of the blocked functions, will result in a program exception and the -
struction will not execute, however the same mstruction will be able to ex-
ecute any of the functions that are not blocked functions.

CA 02800640 2012-11-23

WO 2011/160723 A1 M0N0 O O

(84) Designated States (unless otherwise indicated, for every SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
kind of regional protection available). ARIPO (BW, GH, GW, ML, MR, NE, SN, TD, TQG).
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, Published:
7ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, — PHsaed.
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, — with international search report (Art. 21(3))
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

FUNCTION VIRTUALIZATION FACILITY FOK BLOUKING
ENSTRUCTION FURUCTION OF A MULTERFURUTION
IMRTRUCTIOM OF A VIKTUAL PROCESSOR

FIELD OF THE INVENTION

The prosent myvention s related to computer sysioms and more particularly 16 computer

system processor mstruction tunctionahty,

BACKOROUNES

Tradomarks: IBM® 18 a registered trademark of Internations! Business Machines

Corporation, Armonk, New York, LS. AL 8/398, 2900, 2990 and 210 and other product

names may be registered trademarks or product names of Intornational Busmoess Machunes

{orporation or other companies.

FEM has created through the work of many highly talented engimecrs begimnnming with

machmes known as the IBM® System 368 m the 190605 o the present, a8 special architecture
which, because of s essenlial nature (0 a computing system, became koown 4s “the
matinirame’ whose principies of operanon siate the architecture of the maching by describing

-

the mstructions witch may be executed upon the "mambrame” ynplementation of the

mstructons which had been mvented by IBM mventors and adopted, because of thew
significant coniribution to mproving the staie of the computing machme represented by “the

matnirame”, as significant contribulions by melusion w IBM s Principies of Operation as

stated over the vears. The Eighth Edition of the IBM® z/ Architecture® Principles of

Operation which was published February, 2009 has become the standard pubhished reference

as BSALZL-TRI2-07 and 15 incorporated m IBM s zHI® maintrame servers.

Referrimg to FiG, 1A, representative components of a prior art Host Computer svstem 30 are
porfrayed. Other arrangements of cComponents may also be employed m g Computer syston,
which are well known i the art, The representative Host Computer SU comprises one o

more CPUs 1 in conmyrunicaiion with mam store {Computer Memory 23 as weil as VO

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

mtertaces to storage devices 11 and networks 10 for coromumeating with other computers or
s ANs and the ke, The CPU 1 s comphiant with an architecture having an architected
mstruction sef and architected funchounality, The CPU 1 voay have Dyname Address

Fransiation {B3AT)Y 3 for trapsfornming program addresses {virtual addresses) mto real address

of memory, A DAT typically includes g Transiation Lookaside Butter {TEB) 7 for caching
travslations sg that later accesses to the block of computer memory 2 do not require the
delay of address translation. Typically a cache ¥ 1 enploved between Computer Momory 2
and the Processor 1, The cache 9 may be hucrarchical having a large cache available to more
thhan one {PU) and smaller, faster (lower icvel) caches between the large cache and cach
CPU. o sovoe mmplomentations the lower level caches are spit (o provide separate low level
caches for mstruction fetching and data accesses, fn an embodunent, an mstruciion 18 fetched
from memory 2 by an mstruction fetch unit 4 via g cache 9. The mstruction 1s decoded 11 an
imnstruction decode untt 6 and dispatched (with other mstructions 1o some embodiments) (o
mstruction execution unis &, Tvpically several execution uruts § gre omployed, for exaraple
an arithmelic execution unt, a tleating point execulion wnt and a branch mstruction
cxeouton unit. The mstruction 18 ¢xecuied by the gxecution unil, accessmg operands rom
mstruction speciiicd registers or memory as necded. H an operand 5 1o be accessed {loade
ar storod) from memory J, a load store ungt 3 typically handles the access wnder control of
the mstruction bomg executed. nstruchions may be executed s hardware circuts or

internal vucrocode {(firmware) or by a combimation of both,

in FiG, 1B, an example of a prior art emudated Host Computer system 21 18 provided that
crnuiates a Host computor svstom 34 of g Host archiiecture. Inthe cmulated Host Computer
svatery 21, the Host processor (CPLY 118 an emutlated Host processor (or virtual Host
PrOCeSSOT) and compriscs an emuldation processor 27 having a different native msiruction sct
architecture than that of the processor | ot the Host Covaputer 50, The emulated Host
Computer system 21 has memory 22 accessible to the emulation processor 27, In the
cxarapie embodiment, the Mergory 27 18 partitioned wmio 4 Host Computer Memory 2 portion
and an Emilation Rooties 23 portion. The Host Computer Memory 2 18 avatlable {0
programs of the cmulated Host Computer 21 gccording to Host Computor Archutecture. The
cmplation Processor 27 execules nattve mstructions of an architected mstruction set of an

.

srchitecture othor than that of the emulated processor 1, the native mstructions oitamed from

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

Frdation Routines memory 23, and voay access a Host mstruction for execution rorn a
rrogram i Host Computer Memeoery 2 by emploving one or more mstruction{s} obtaimned 1 a
Sequence & Access/Decode routine which may decode the Host mstrachionds} accessed 1o
determine a native mstruction execution routing for emulating the function of the Host
mmsirnction accessed. Other facalifies that gare dotfined for the Host Computer Systeom 20
architecture may be emulated by Archiected Facihities Routines, mnciuding such facililies as
Ceneral Poarpose Registers, Control Regsters, Dynarmie Address Transiation and O
Subsystern support and processor cache tor example. The Eroulation Routines may also take
advantage of function availabic i the ermulation Processor 27 {such as goncral registers and
dynamug transiation of virtual addresses) o mmprove performance of the Emulation Routmes.
spocial Hardware and Off-Load Enpines may aiso be provided to assist the processor 27 i

cmiuigting the function of the Haost Computer 30,

in a mamframe, architected machine msiructions are used by progranumers, usually today
7 programmers eften by way of a compier application. These mstructions stoved i the
storage medium may be exceuted natively i a z/Architecture IBM Server, or alternatively in
machmes excculing other architectures, They can be ermulaied w the existimg and m future
IBM mamirame scrvers and on other machines of IBM {(¢.g. phengs® Servers and xberies®
Sserversy, They can be executed 1o machines runrang Lanux on a wide vanetly of machimes
usig hardware manutaciured by IBM®, fotel®, AMD™, San Microsysters and others,
Besides execution on that hardware ynder a Z/Architecture®, Linux can be used as well as
machimes which use emulation as deascribed at hitp://www turbohercules.com,
http://www.hercules-390.org and htip:/www tunsoti.cora. In emulation mode, crouiation
sottware i3 executed by 8 native processor to emulate the architecture of an emulated

DEOCOSSOT.

Fhe native processor 27 typically executes emuiation software 23 comprising cither
firrroware oF a native operabing system o perform emulation of the enulated processor. The
crmiation soltware 23 1S responsible for fetching and executing mstructions ot the emulated
processor arehitecture, The emulation software 23 mamtams an cmulated prograrn counter o

koep track of wstruction boundanes, The conudation sotbware 23 may teich ong or more

emuiated machine mstructions at g tune and convert the one or more emuiated maching

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

smstractions to a corresponding group of native roachme msiructions for exccution by the
native processor 27, These converted mstructons may be cached such that a faster
conversion ¢an be accoraphished, Not withstanding, the emulation sottware must mamtam
the archiecture rules of the emulated processor architecture 580 as (o assurg operating
systeras and apphications written for the emulated processor operate correctly. Furthermore
the emilation software must provide vesources wientihied by the emulated processor |
architecture mehudime, bat not lmied o control registers, gencral purpose registers, fogting
point registers, dyvoamic address transiation funchion meludmng segment tables and page
tables tor example, interrupt mochanisms, context switch mochanisms, Time of Day {TOD)
clocks and archutected mteriaces fo VU subsystoms such that an operating system or an
apphication program designed t0 run on the crmuiated processer, can be run on the native

processor having the eraulation software.

A specific mstruction being cmuiated 15 decoded, and a subroutme called o porform the
function ot the mdividual mstruction. An emulation software function 23 emuilating a
function of an cmulated processor |is maplemented, for example, 1 a "7 subroutine or
driver, or some other roethod of providing a drver for the specilic hardware as will be within
the skili of those i the art after understanding the description of the preferred embodiment.
Yanous sofbware and hardware crouiabion patents ciuding, but not bonted to UN 53531013
for a “Multiprocessor for bardware emudation” of Beausoietl ¢t al,, and US6G0926 1
Preprocessing of stored target routines or emuiating meompatibio mstructions on g targct
proceasor” of Scalzi et al; and USSS574873: Decoding guest mstruction 1o directly agcess
crmulation roufimnes that enwlate the cuest mstructions, of Davidian of al; USH3GK2353.
svmetrical mubtiprocessing bus and chipset used lor coprocessor support allowing non-
native Code 1o run m a system, of Gorishek of al; and USG4635KYS: Dynamic oplimiizing
obiect code transiator for architecture cronlation and dynamuc oplivmzing object code
fransiation method of Lethmn ¢t al;) and UIRST700K23: Mcethod for emulating guest mstructions
on a host computer through dyvoamic recompilation of host mstructions of Evic Traut, These
references dlustrate a variety of known ways to achieve cmulation of an mstruction forimat
architected for a diffcront machine for a target machme avaiable to those skilled m the art,

as well as those commercial software tochmiques used by those referenced above.

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

In US Publication No. US 2009/0222814 A1, published September 3, 2009, Astrand,
“Selective Exposure to USB Device Functionality for a Virtual Machine,” a virtual machine
(VM) application may run a guest operating system (OS) and allow the guest OS to connect
to USB devices connected to a computer. The VM application may filter the functions
assoclated with the USB device so that only some of the functions of the USB device are

exposed to the guest OS.

SUMMARY

In an embodiment speciic mstruchons are blocked trom bemg executed by a processor. An
mstruction blocking vahue 15 st An mstruction 18 fetched to be executed by the procossor,
the mstruchion compwising an oponde, the msiruction supporicd by the proCosser; rsponsive
to the mstruction blocking vaiue pormitiing execution of the mstruction, exeguting the
fetched msiraction by the processor; and responsive 1o the mstruction blocking value not
permithing execution of the mstruction, blocking exccution of the teiched mstruction and

CAUKING a program exocoplion ovent {program exception for exampie).

in an embodiment, the processor 15 @ logical procossor of g virtual machine, wherein the
fetching 1s pertormed by the logical processor. A delerromnation of the mstruction blocking
value of the virtual machine 16 made, wherein the tnstruction blocking value 18 set 1o the
Ipgical processer having one or more physical processors, wherein the msiruction 1s
supported by the one or more physical processors, wheretn responsive (o the justruchon
blocking value pormutting execution of the mstruction, the exccution 18 performed by the

ogical processor.

in an embodiment, the processor 18 one oF more physical processors of a logcal processor of
a virtual machine, wheren the instruction blocking value 1s set in the one or more physical

processors, wherein the feichung 18 performed by the one or more physical Processors.

In an embodiment, the mstruction blocking value s defined for the virtual machine for
Glocking execution of the 1nstruction, the setting the mstruction biocking vahue respousive o

the engbhing the virtual machine {o use the physical processor; another mstruction blockang

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

value 13 s¢t, the another mstruction blockang value defimed for another virtual machime
naving ancther ogical procossor, the seting the another mstruciion biocking valug
responsive to the enabling the another virtual machine (0 use the physical processor; and
responsive 1o the another wstruction blocking value pormithiing oxecution of the mstruction,
permatiing execution of the instruction by the ancther fogical processor; and responsive 1o
the another mstruction blocking value not permitiing execution of the mstruchion, not

permitting execution of the mstruction by the another lopeal processor,

in an embodiment, the mstruction blocking vahue 13 detined for the virtual machine for
blocking excecution of the mstruction, the sctimg the mstruction blocking value reaponsive 1o
the enabling the virtual maching to use the physical processor, another instruction blocking
valug 18 set, the another mstruction biocking value beng defined tor another virtual machine
having another logical processor, the setting the another mstrachion blocking value
responsive 1o the enabling the another virtual machine {o use the physical processor; and
responsive (o the another instruction blocking vahue permutiing execution ot the mstnuction,
permtiing execution of the mstruciion by the physical processor while the another virtual
machime 13 enabled 1o use the physical processor; and responsive to the another mstruction
blocking valug not pornutiing cxecution of the msiruction, not permitiing execution of the
mmstruaction by the physical processor while the another virtual maching s enabled {0 use the

physical processoer,

in an embodiment, the mstruction s the permitted mstraction responsive (o the mstruchion
crapiovimg g permatiied funchion code, wherem the mstruction 18 the not permutied msiruction

responsive o the wstruction employing a not permitted function code.

in an embodiment, a determypation 18 made as o whether the wstruction 1s the permatied

instruction by associating the opcode of the mstruction with the instruction biocking value,

In an embodiment, the wstruchion iCtched spectties @ tunchion to be performed, the opoode
of the nstruction 1s used o mdex o 2 fable to locate the mstruchion blocking value, the
mstruction blocking value comprising a permission ficld, the permussion field i3 used g

detcrmine permittod funchions, Kesponsive to the tunction beng g pormatted funciion,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

permuiting the execution of the mstruction and responsive to the funcltion bang a not

perritted funchion, not permitting the execution of the nstruchion.

the above as well as additwenal objectives, foatures, and advaptages will become apparent in

the tollowing writen deseription.

BEIEF DESCRIPTION OF THE DEAWINGDS

Embodunents of the wnvention will now be described, by way of exampie only, with

reference to the accompanying drawmgs m which:

FiG. 1A 18 a diagrarg depicting an exampic Host compuior systeny

FIG. 18 15 a diagram depicting an example emulation Host computer system;
FIG, 10 15 a diggrarn depicting an oxample compuier sysiom;

Fids, 2 18 a diagrany depicting an example computer network;

Fi{s. 3 15 2 diagram depicting example elements of a compuler system;

FIG. 4A 18 a diagram depicting an example execution gyt
—)

FI(3. 4B 15 a diagram depicting an example branch umt;

FIG, 40 15 a diagravo depicting an example Load/Sore unmit;

Fids, 3 18 a diagram depicting an example logical portiomng;

FIG. 618 ¢ diagram depicting example logical partilioning cleraents;
FIG. 7 1s a dagram depicting example logical partitioning elemenis;
FI(8 1s a flow depicting an example Opeode Table;

Fis, 918 a Hlow depicting an exampie blocking technigue,

Fids. 1015 a How depicting an example biocking technique;

FIG, 11 a tlow depicting an example blocking techmaue; and

Fis 12-15 depict flows of instruction biocking techmgues.

DETAILED BENCRIPTION

An embodiment way be practiced by soltware {(semetimes referred to Licensed Internal

{ade, Frrmaware, Micro-code, Maili-code, Pico-code and the hke, any of which woald be

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

consistent with the teaching herem). Relfervmg to FIG, 1A, 4 sofbware prograro code
cmbodimont s typically accessed by the processor alse known as a CPU {Central

drive, tape drive or hard donive. The software program code may be embodied on any ot a
varicty of known media for use with a data processing sysiern, such as g diskette, hard drive,
or C-ROM. The code may be distributed on such media, or may be distrtbuled to users
from the compuior raomaory 2 or storage of one compuier systom over g network 14 1o other

computer systems {or use by users of such other systerns.

Alernatively, the prograro code may be embodicd m the meroory 2, and accessed by the
processot 1 ousing the processer bus. Such program code meludes an operating svsten winch
controis the function and wieraction of the varnous coraputor cormponents and one oF more
application programs. Program code s normally paged from dense stovage media 11 o
high-spoed meranry 2 where it 1s availabie for processing by the processer 1. The
techmgues and methods for embodying software program code i memory, on physicat
media, and/or distributing sofiware code via networks are well known and will not be further
discussed hervemn, Program code, when created and siored on a tangible woediom (nclading
but not niled to electronic memory modules { KAM}, flash memory, Compact Discs (s},
D2V13s, Magoetic Tape and the ke s often relorred {0 a5 a "compuler program product”. The
computer program product medium s typically readable by a processmg circutt preferably

a COmpUter systern for excoution by the processimg cweu,

FiCG, 1O iilustrates g representative workstation or server hardware Systom i which
cmbodimenis may be practiced. The system 100 of Fi€s, 10 comprises a representative
computer system 181, such as a personal comypuicr, 8 workstation or 8 server, mcluding
ontional penpheral devices. The workstation 1801 mchudes one or more processors Hio and a
bus emploved to connect and cnabie comnmnication between the processor(s) 106 and the
other components of the systera 101 m accordance with known techrogues. The bus connects

the processor H3O to memory 105 and long-term storage 107 winch can mclude a hard drive

{mcluding any of magnetic racdia, C0, DV and Flash Momory for cxampic) or g tape drive
tor example. The system 101 mught aiso mnchide a usey mterface adapter, winch connects the

FaCroprocessor 186 via the bus to one or more mitertace devices, such gs a keyboard 104,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

mouse 103, a Printer/scanoer 110 and/or other mtertace doviees, whach can be any user
mtertace device, such as g touch sensittve seregn, digilized entry pad, otc. The bus alsg
connects a display device 102, such as an LUDY screcn or monutor, to the mucroprocessor 186

vig a display adapier,

The system 101 may communicate with other computers or networks of computers by way
of a network adapter capable of conpnurucating [08 with a network 104, Exarople network
adapiers are convnunications channels, token ning, BEthernet or modems. Aliernatively, the
workstation 11 may comnmunicate using a8 wirgiess nterface, such as 8 CDPD {(ceolblar
digital packet data} card. The workstation 101 roay be associated with such other coraputers
it a Local Arca Network (LAN) or a Wide Arca Network {WAN), or the workstation 131
can be g client i a chient/server grrangement with another computcer, cte. Al of these

contiguralions, as well as the appropriate comrumcations bardware and sottware, arg

known m the art.

Fids. 2 tHustrates a data processing network 208 in wiinch an embodiment may be practice
the data processing netwaork 200 may melude g pluvality of mdividual networks, such as a
wireless network and a wired network, cach of which may include g phirality of individual
workstations 101 201 202 203 204, Addwionaily, as those skalled m the art wall appreciate,
one or more LANs may be inchuded, where a LAN wmay comprise a plurality of mtelligent

workstations coupled 1o a host processor.

Stk referring to FIG. 2, the notworks may glso melude mamirame Computors or servers,
such as a gateway compuler (chient server 200) or application server (remote server 20K
which mayv access a data repository and mayv also be accessed directiy from a workstation
2053 A gatewsay computer 206 serves as a pomt of enfry mio cach network 207, A gateoway
1s necded when connecting one networking protocoel o another. The gateway 206 may be
preferably coupled to another network (the Interonct 267 for example) by means of a
comrmnications hink, The gateway 206 may also be directly coupled to one or more
workstations 101 201 202 203 204 using a conunumications link, The gateway computer

may be mplemented utthizing an {BM eScrver™ zheries® z9® server avarlable from 1BM

{orp.

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

10

Software programnming code 1s typically accessed by the processor 106 ot the systera 1
from iong-tern storage media 107, such as g CD-ROM drive or hard drive. The software
programrmng code mav be embodicd on any of a varicty of known media for use with a data
processing system, such as a disketie, hard drive, or CD-ROM. The code may be distributed
on such media, or may be distributed o users 210 211 from the memory or storage of one
computer system over a network (o other computer systems for use by users of such other

SYSTOMS,

Alternatively, the programming code 11 may be embodied in the memory 105, and
sccessed by the processor 106 using the processor bus, Such programromg code meludes an
operating system which controls the function and interaction of the various computer
coOmMponents and one or more appication programs 112, Program code 18 normaily paged
from dense slorage media 137 to hugh-speed memory 103 where i 18 avadabie {or processing
by the processer 106, The techmigues and mcthods for embodying software programnung
code wm memory, on physical media, and/or distributing software code via networks are well
known and will not be further discussed herein. Program code, when created and stored on a
tangible mediurg {mcluding but not invuted to clecirome memory roodules (B AM), Hash
memory, Compact Disces (Uis), BV s, Magnetic Tape and the HKe 18 often referred 19 as a
"computer program product”. The computer program product mediurn 1s typically readable
by a processing circuit preferably m a computer system for exccution by the processing

cireust,

The cache that 18 roost readily available to the processor {normally faster and smaller than
other caches of the processor 8 the owest (LT or {evel one} cache and main store (mamn
memerys 1s the highest lovel cache (L3 i there are 3 fevelsy. The lowest level cache 15 otien
divided wto an nstruction cache (I-Cache) holding machme mstructions 10 be executed and

a data cache {D-{Cachel holding data operands.

Referrmg to FHG. 3, an exemplary processor embodiment 15 depicted for processor 106,
Tyvpiweally one or more lovels of Cache 303 arc employed to bufifor memory blocks m order

o sprove processor periormance. The cache 3803 18 a bigh speed bufter holdimg cache lines

of memory data that are Lkely to be used. Typical cache hnes are 64, 128 or 256 bytes of

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

11

meroory data. Separate Caches are oftcn emploved for caching mstructions than tor caching
data. Cache coherence {synchronization of copies of hines it Memory and the Caches) is
often provided by vanous "Sooop” algorithms well known m the art, Mam stovage 103 ol a
processor system 18 often referred {o as a cache. In a processor system having 4 lovels of
cache 303 mam storage 165 18 sometanes referred 1o gs the kovel 5 (L3} cache since i 18
typically faster and only holds a portion of the non-volatie storage (BASD, Tape ctc) that 18
avatlable to g compuior system. Mam storage 105 "caches” pages of data paged m and out of

the roam storage 105 by the Uperating system.

A program counter (mstruction countery 311 keeps track of the address of the current
mstruction 10 be executed. A program counier in a 2/ Architecture processor 18 64 bifs and
can be truncated 1o 31 or 24 bits to support prior addressing Lirais. A program countor 18
tyvically embodied m a PSW {program status word) of a computer such that # persists
during context swiching. Thus, a prograrg i progress, having 4 program countor value, may
be mterrapied by, for example, the operating systerm {context switch from the program
cavironment to the Operating system environment). The PNW of the program mamiams the
program counter value while the prograro 18 not achive, and the prograve counter {n the
PLWy of the operating svstont 18 used whitde the oporating sysicm is executing. Typically the
Progravo counter s merernenied by an arnount equal 1o the number of byies of the current
sstruction. RISC (Reduced Instruction Set Compuling} wnstructions are typrcally fixed
ength while CISO {(Complex Instruction et Computing} msiructions are typicaily vanabic
fongth, Instructions of the IBM z/Archiecture are SO wmstructions having a iength ot 2, -
ar & bytes. The Program counter 311 18 modified by erther a context switch operafidn or g
Branch taken gperation of a Branch mstruction for example. In a context switch operation,
the current program counter value is saved m a Program Status Word (PSW) along with
other state miormaton about the program being exccuted (such as condition codes}, and a
new program counter value s loaded ponting 10 an wstruction of a noew program module to
be executed. A branch taken operation 18 pertorrocd m order 0 pervot the program o make
decisions o loop within the program by leading the vesult of the Braoch Instruction 1nto the

Program Counter 311

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

12

Typically an mstruction Fetch Unit 345 8 employed 1o fetch matruchions on behalt ot the
processor 106, The fetch unit oither fetches "next secquential mstructions”, target mstructions
of Branch Taken mstructions, or twst mstruchions of g program oliowing a context swiich.
Modern Instruction feich unis ofien employ prefetch techmgues to speculatively prefeteh
mstructions based on the fikelhihood that the prefciched mstructions nugiht be used. For
cxarapie, a fetch unit may feteh 16 bytes ol instruction that moludes the next sequential

mstruction and addiional bvies of further segueniial mstructions.

Fhe tetched mstructions are then oxecuied by the processor 106, In an embodiment, the
fetched mstraction{s) are passed 1o a dispaich unnt 306 of the fotch urut, The dispatch unit
decodes the mstruction{s} and forwards miormation aboul the decoded mstruction{s) o
approvriate urats 307 308 318 An execution urut 307 will tvpically recove miormation
about decoded arithmetic mstructions from the ustruction foteh unit 305 and will perform
arithmetic operations on operands according to the opeode of the mstruction. Operands arc
provided to the execution unyt 307 preterably ether from memory 105, archulectad registers
3% or from an imumcdiate ficld of the mstruction bemmyg executed. Results of the exgcution,
when stored, are stored either o mersory 105, regisiers 309 or 1 other machime hardware

{such as control registers, PSW registers and the hike),

cferrimg to FHG. 3, an example Virtual Machine (VM) environment is shown. A Hypervisor
prograrn {witich may wscH be an Operating System {08} such as zVM from IBM), may be
running on multi-processor “Hardware” computer svsten comprising a phurality of physical
processers, a physical mam memory and physical adaptors for communicatimyg with PO
peripheral devices meluding stovage, networks, displays and the bke. FThe Hypervisor
croaics VM umages (VMIE, YMZ andV M3 for exampic) such that software including an (05
and Appheation Programs can run withan the virtual machime stthzmg virtual resources, The
software running 1w a YM 18 unaware that it s running i a VM, and operates using the
virtual resources as 1t they were physical resources. The zVM operating systern from [BM
can create “{rnest” umages, each guest tmage 18 eftectively a virtual machine. Furthermore,
any zV M gucst may isclf run a 2VM O creating “sceond lovel Guests”, Thus, a virtual
maching {guest tmage} could be nested w a hicrarchy of virtual machines, ¢ach zVM playing

& hypervisor roic for its Guest images. Un the other hand, g moubtt-processor platiorm may be

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

13

“physically partitioned”, cach physical partition may be assigned resources {processors,
memary, 143}, Each physical partition 18 a VM since the sottware runmng in the partition, 18
not aware of resources of the machme not assigned to the partition. Thus the resources ot the

machine are “virtualized” . In another embodiment, ingical partitions are VYV Ms,

The terms Cuests, Virtual Machmes (VMs) and Logical partitions may be use
wterchangeably herem gs there are many methods known i the art for virtuahizing a

computer system image.

YVirtuahization s depicted for oxample i a white paper from Viware® fitied “Virtualizabion
Orverview” and “VMware VMotion and UPU Compatibiiny” V Mware® Infrastructurg 3
fromn Vdwarc®, Furthermore UUS Pateont Application Publication No, Z008/0470760
"VIRTUAL MACHINE (VM) MEGRATION BETWEREN PROCESSOR
ARCHITECUTURES” by Khatri ¢t al. filed Septomber 6, 2047 discusses cmulating certain

feature set to enable a VM mnigration amongst simiar pools of machines by masking selected

bits of a CPLID repisier.

Reterring o FIG. 6, cach VM may have a different O and differont applications, For
cxarople, UN1 may be /O from IBM and ONZ may be zLnux from IBM, or all OU5s may

be the same O8s such as z/{0Ns.

Fhe Hypervisor creates Logical Features, resources and capabndities for cach VM based on
physical features, resources and capabilities. In an exampie systom, Physical Moemory
poriions may be atlotted to cach VM by way of Dyoamic Address Transiation, physical
Processors may be time-shared amongst YMs as may be /O capability,

Retorring to FIG. 7, cach lopical procossor may have access o physical feature registors by
way of a Hypervisor roanaged Logical Feature Mask, Thus, sofbtware runrung oo logical
PrOCesSoTs can give the appearance of operating on a comunen processor Architecture ievel,
cven if the actual processors are at different Architecture levels, In an example, the Physiwcal
Feature register mught be an Inlel CPUHD regster that wndicates the architecture fevel of the

intel processor as well as specitic features that are available to the programiner. The Logical

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

14

feature mask s prograromed o provide ail or a subset of the physical processors CRUID to
the sottware in a Virtual Machine (VM) when the VM queries the UPUID of the

corrcsponding Logical processor.

Fhe x86 processor archioecture from Intel ®, “Intel® Hanium® Architeciure Softwarg
Developer's Manual, Vohiue 2, Revision 2.2 fanuary 20067 provides CPUILD registers o
wioniity features supported by a processor, The CPUID regisicrs are unprivileged and
aceessed using the mdirect move {{ror) mstruction. All regsters beyond register CPUTD
number are reserved and raise a Resgrved Register/Fiekd fault it they are accessed. Writes
are not perrortted and no wstruction exasts 1or such an operation. Vendor mdormaton 1s

tocated wn CPUID registers § and 1 and specity a vendor name, m AN, for the processor

mmpicmentation. All byvtes after the end of the string up to the 16th byvie are zero, Earlior
ANCH characters are placed i lower mumber registers and tower numbered byte positions,
CPUID register 4 provides general application-lovel information about processor features. B
contains a set of Hag bits used to mndicate if a given featuyre 18 supported 1 the processor
model. When a bit 15 ong the feature 18 supported: when U the feature 15 not supported. AS
now teatures are added {or removed) from tuture processor models the presence {or removal)
ot noew features will be indicated by new feature biis, CPUID reguster 4 18 logically split inio
two halves, both of which contarn general feature and capabihity information but which have
different usage models and access capabilities; this miormation retiects the status of any
cnabled or disabled features. Both the upper and lower halves of CPUID register 4 are
acceasibie through the move mdirect register mstruction; depending on the unplomentation,
the latency for this access can be long and this access method i3 not appropriate for low-
latency code versioning using self-seiection. fn addition, the vpper half of CPUID regisier 4
18 also accossibie using the fest feature mstruction: the lafencey for this access 1S comparabic
to that of the fost bit mstruchion and thus access method enables low-latency code versioning

using seit sglection.

The »/Architectare Principles of Operation provides a Sove Faciliry Last Extended (NTEFLE)
mstruction that ke the Indel CPUID registor provides the sottware with the knowledge of
the teatures {or archiecture levels) of the underlving Central Processing Units (CPLs) or

processors, The STFLE mstruction has the format shown in Table | below.

10

15

20

25

30

CA 02800640 2012-11-23

WO 2011/160723 PCT/EP2010/067045
15
STFLE DJ(B.) Q]
B2RG], D,
¥ w20 31

The STHFLE mstruction {TABLE 1) comprises an Upcode hield bus (0-13), a register hield B2
{16-19} and a displacoment (immediate) figld B2 {(26-313. The execoution of the NTHFLE
mstruction by a machine, stores a hist of buts providing mformation about facihitiesw g
program memory location determined by adding the contents of the register specified by the
B2 ficld of the mstruction to the 12 bit D2 iromediate ficld, the memaory location beginming
at the doubleword (8 bytes, a word 1s 4 byies) specitied by the second operand address
{({B2rD32} The address of the program momory location in the zArchitecture 1s subject {o

Prynamuc Address Transiation (DAT)

Reserved bits are bils that are not currently assigoed o represent a facihity, For the leltmost
doublewords i which facility bits are assigned, the rescrved bits are stored as 7erss.
Broublowords to the night of the doubleword m which the highest-rumbered facility bit1s
assigned for @ model may or may not be stored. Access exceptions and PER events are not
recognized for doublowords that are not stored. The size of the seeond oporand, n
doullewords, 1S one more than the value specified 1 bits 56-03 of general register . The
rematning bits of gencral register {§ are unassigned and should contam zeres, otherwise, the

program may not operate compatibly 1o the future.

When the size of the second operand s large enough (o contam all of the facihty bits
assigned for a model, then the complete facility iist 1s stored 1n the scoond operand location,
bits 56-63 of general register § are updated to contain one oss than the number of

doublewords needed to contain all of the faciity bits assigned for the model, and condition

code 18 set.

Wihen the size of the second operand 1s not large cnough to contain all of the faciiity bits
assigned for a roodet, then only the rarnber of doublewords specified by the second-operand

s1zo arg stored, bits 56~ 63 of gonoral register § are updated to contam ong loss than the

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

16

number of doublowords needed to contamn all of the facidity bits assigned for the voodel, and

condiian code 3 18 set.

Execution of the mstruction results w sething of a Condition Code value, the Condition Code

value i3 saved durimge context switching n the Prograra Status Word {(PSW).

apecial Conditions:
The second operand must be designated on a doubleword boundary,; otherwise, a

spoctiication CxCapion 18 rocogmzed.

esutting Condition Code:

O Complete facility list stored
1.

™

g

3 Incompicte faciity hist stored

Program Exceplions:
» Access {store, sccond oporand}
» Operation (o the store-taciity-hst-extended faciity 15 not mnstalicd)

« Npecification

Programming Notes:

The portormance of STORE FACILITY LIST EXTENDED may be significantly siower

than that of sumply testing a byte n sterage. Programs that need 1o trequently {est for the
presence of a facity — for example, dual-path code in which the facility 15 used i one path
but not another — should execuie the STORE FACILITY LIST EXTENDED mstructhion
once during mitialization. Subsequently, the program may iest for the presence of the facility

by examming the stored result, usmg an mstruction such as TEST UNDER MASE,

When condition code § 15 set, bits 36-63 of genoral regster £ are undated 1o madicate the

number of doublewords stored. i the program chooses (o 1gnore the resulls in general

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

17

register O, then it should ensure that the entire second operand 1 siorage s sel {0 2ero prior

to executing STORE FACILITY LIST EXTENDED.

TABLE Z shows prior art #/Architecture assigned STHLE bus and therr meaning. A bt 1s sl
to one regardless of the current grehutectural mode 1 s meanmyg 18 frue. A meaning apphics

to the current architectural mode unless it 1S sawd to apply to a specilic architectural mode.

Enassigned bils ave reserved formdication of new faciiinies; these bits voay be stored as ones

iy the future,

Yhe prior art 7/ Architecture facisty list 18 defined as shown in Table 2 below:
TABLEZ

Meanin

Pt W hen~Bi-is-One:

The mstructions marked “N37 in the msiruction summary figures m Chapters 7 and 180 of
z/ Archuiecture are mstalled.

i The #/Architecture architectural mode 15 instailed,

2 The «/Arvchiecture architectural voode 18 active, Wher this by 18 zero, the ENA/380
architectural mode 18 active.

3 The DAT-enhanceraent facility 1s mstalied wn the z/Architecture architectural mode,

Fhe DAY enhancement facility mchudes the INVALIDATE DAT TABLE ENTRY (QDTEH)
and COMPARE AND SWAP AND PURGE (C5PG) mnstructions.

4 INVALIDATE DAT TABLE ENTRY (IXTE) performs the invalidation-and-~clearing

operation by seiectively clearing combined region-and-segmont table entrics when a
segrocnt-table enfry or entrics are wvalidated, 1DTE also performs the cleanng-by- ANCE
aperation. Linless bit 4 15 ong, IDTE simply purges all TLBs, Bit 3 13 one if bit 4 15 ong,

5 INVALIDATE DAT TABLE ENTRY (1DTE) pertorros the iovabidahon-and-clearing
operation by selecltively clearing combined region-and-segrent table eniries when a region-
table entry or eniries are mvalidated. Bits 3 and 4 are ones if b1t 5 15 one.

{

6 The ASN-and-LX reuse factiity 18 mstalled i the #/Architechure architechiral mode.

ari

7 The store-facibity-hist-exiended faciliy 15 installed.

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

18

R The cobavced-DAT facibity 18 matatied wm the 2/ Architecture architectural mode,

% The sense-running-status facility 15 installed in the =/ Architecture architectural mode.

i The condional-S5EE faciity s mstalled m the o/ Architecture archutectural mode.

i1 The conhiguration-topology factity 13 matalled w the 2/ Architecture archiectural mode.
i The extended-translation facility 2 18 mstalied.

17 'The message-security assist 1s mstalied.

i

oy

The long-displacement facility 15 nstalled m the z/Architecture architectural mode.

19 The long~-isplacement facility has high performance, Bt 1X s one 1t but 19 15 one.

28 The HEFP-multply-and-add/subtract facility 1s instalied.

21 The extended~immediaie faciiity 18 installed i the 2/ Archiecture archuectural mode.
22 'Phe extended-transiation faciiity 3 15 mmstalled in the #/Architecture architectural mode.
23 The HFP-unnormahzed-oxicnsion facility 1s mstalled mn the #/Architecture architectural

mode.

4 The ETFZ-enhancernent facihity 1s mstalied.

A

23 Fhe store-clock-tast facthity 16 mnstalied m the z/Archiecture archiiectural mode.

26 The parsing-cnhancemeont facuity 1s mstalied mn the 7/ Architecture architectural mode.
27 The move-with-optional-specifications faciity 13 mstalied wn the 2/ Architecture
architectural mode.

28 The TOD-clock-steering facility 15 mstalied n the #/Arvchitecture architectural voode.
38 The E'TH3-cnhancement facility 18 wnstalied i the #/Archilecture architectural mode.
31 The exiract-CPU-time tacihity 18 mnstalicd m the z/Architecture architectural mode.

32 tThe comparc-and-swap-and-store tacihity 18 wstalled n the 2/ Archiiecture archniectural
mgde.

33 The compare-and-swap~and-~store facility 2 18 mstatied w the #/Architechire
architectural mode.

34 The general-instructions-extension facihity 18 nstalled m the z/ Archiiecture
architectural mode.

353 The execuic-extensions facility 13 mstalied wn the #/Arvchiecture architectural yoode.
39 Assigned to IBM milernal use.

41 The Hoshmp-pomt-support-cnhancement facilihies {(FPR-GRAranstor, FPS-sign-

{

handing, and DFP rounding’ are wstalled m the #/Architecture architectural mode,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

19

472 The DFP (decimal-floatimg-pomnt) facility s wmstalled n the @/ Archiecture architectural
modae.

43 The DFP (decnpal-Hoating-pomt) faciiity bas hagh performance. Bit 42 1s one of bt 43
1S Que.

44 The PFPO instruction 18 instalicd m the z/Architecture architectursl mode.

An msiruction may porform 4 single function i an grofufecture o, M s0me Cascs, any of a
pinrality of selectable functions, The selectable funchions defined for an mstruction may be
different from machine o machme. For cxample, a multi-function mstruction, when
stroduced for the frst time 1o an architecied mstruction set, may have only 8 fow selectable
functions. A lator architected mstruction sof may introduce more selgctable functions to the
previously miroduced multi-funchion mstruction. In an embodiment, & VM can be assigned a
subset of the physical processor’s seiectable function whereby an msiruction, rummng on a
logical processor of the VM may query a hist of gvailable tunciions of the logical processor
and gnly the tunctons assigned to the VM are returned, even though the physical processor
can periorm more selectable functions. In one embodiment, this 18 accomplished through a
Function-Indicating-Instruction Interception Facility (FIIIF) that enables a hypervisor to
trap, or intercept, execution of this query function by a guest (virtual machine), in order to
present the reduced list of available functions. In another embodiment, the hypervisor
specifies, for example through a bit mask, the set of functions to be reported to the guest, and
the query function of the multi-function mstruction reports this list. Furthermore, i an
cmbodumnent an wstruction, executing on the logreal processor, will experience a program

cxception if i attcmpts 1o perform g seiected sclectable function.

An cxample of an msiruction having selectable functions, 1s CIPHER MESSAGE mstruction

ot the 72/ Architecture.

The CIPHER MESSAGE (KM} instruction can perform any of a plurality of cipher message
functions. OUne of the funchions provided by CIPHER MENSAGE 5 {0 query the processor

for a bit significant i1st of ¢ciphor messape functions supported by the processor.

10

15

20

25

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

20

The format of the CIPHER MESSAGE mstruction {TABLE 3) 15 as tollows, where K

designates g first General Register, and RZ designate a second General Register.,

A iRy (RRE]

i ' ‘N \ ::::"f:::'.'.::::f::::5::::(::::(::::;::::":::: . .
292k ST R R,

TABLE 3

The excention of the CIPHER MESSAGE mstruction { TABLE 33 1s as followss

A function spectfied by the function code 1o mmphed general register 18 performed.
Bits 16-23 of the mstruchion are ignored.

Bit positions 37-63 of general register § contain the function code.

The currently assigned funchion codes for CIPHER MESSAGE and CIPHER MESSNAGE
WHTH CHAINING, respectively (03 and 18-20) are shown m the TABLE 4. All other
function codes are unassigned. For cipher functions, bit 56 1s the modificr bit which specifics
whether an encryption or a decryption operation 13 1o be pertormed. The modifier bit is

ipnored o7 ail other functions. Al other bits of general register §§ are ignored.

imiplicd general register | contains the lopical address of the letimost byie of the parameter
block m storage. In the 24-bit addressing voode, the contents of bif positions 40-63 of general
register 1 constitite the address, and the contents of bit positions (-39 are ignored. In the 31-
bt addressing mode, the contends of bit posifions 33-63 of gencral register 1 constituio the
address, and the contents of bit positions (-32 are 1gnored. In the 04-Int addressing mode, the

cortdents of bit posifions 0-03 of gonersl regisier | constitute the address.

Yhe query function provides the means of mdicating the avauability of the other functions.,
The contents of general registers speciticd by hiclds of the msiraction (R1, R2), and R2Z + |

are tgnored for the query funcion,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

21

For all other functions, the sccond operand (specitied by B2} s eiphered as specified by the
function code using a cryptographic kev in the parameter biock, and the result 1s placed in

the first-operand location,

For CIPHER MESSAGE WITH CHAINING, aphering alse uses an nufigl chanung value n
the parameter block, and the chammg value 18 updated as part of the operation. Register use

for 24 bit addressing 18 shown in TABLE 5,

Fhe K hicld designates a general register and must designate an even-numberad regisier;

otherwise, a specification exeephion is recogrized.

The RZ ficld designates an even-odd pawr of gencral rogsters and must designate an oven-

mimbered register; otherwise, a specification exeephion 18 recopmized.

The location of the lettimost byvie of the frst and second operands s specilied by the conients
of the R1 and RZ gencral regisiers, respectively. The number of bytes i the sceond-operand
tocation s specified m gencral regster R2 + 1. The trst operand s the saroe length as the

second aporand.

As part ot the operation, the addresses i general registers R and B2 are wcremented by the
nuinber of bvies processed, and the length in ceneral register K2 + 118 decremented by the
same number, The formation and updating of the addresses and iength 18 dependent on the

sddrossing mode.

in the 24-bit addressing mode, the contents of bit positions 43-63 of general regisiers K1 and
B2 constitute the addresses of the first and second operands, respectively, and the contents of
bt positions 8-39 are 1ignored; bits 40-03 of the updated addresses replace the corrgsponding
bifs 1o general registers BRI and RZ, carnes out of bit posihion 40 of the updated address are
sgnored, and the contents of bit posttions 32-39 ¢t general registers R1 and B2 are set {o
zeros. In the 31-bi addressing mode, the condents of it positions 33-63 of general regisiers
B1 and K2 constitute the addresses of the first and second operands, respectively, and the

contents of bit positions U-32 are 1gnored; bits 33-03 of the updated addresses replace the

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

22

corresponding bils 1 goneral registers K and B2, carnies out of bt posibion 33 of the
updated address are 1gnored, and the content of bl position 32 of general registers R and
R s set to zero. In the 64-bi addressing roode, the condents of bit positions -63 of general
registers R1 and R2 constiiute the addresses of the first and second operands, reapectively,
bits U-03 of the updated addresses replace the contends of goneral rogisters Ri and B, and

carries out of bl posttion § are ignored,

in both the 24-bit and the 31-bit addressing modes, the contonts of bit positions 32-63 of

general register K2 + 1 form a 32-bit unsigned binary infeger which specifies the number of
byies 1o the first and second operands, and the contents of bif posttions U-31 are wgnored,; bits
32-63 of the updated value replace the corresponding bits in general register R + | In the
O4-bit addressing mode, the contents of bit posiions 8-63 of general register RZ + 1 form g

6d-bit unsigned binary wteger which specifies the number of byvtes i the first and second

aperands; and the updated value replaces the conteonds of peneral register B2 + 1.

in the 24-bat or 31-bit addressing mode, the contents of bt positions -3 1 of general rogisters

Bi, K2, and RZ + 1,

A

abways rernatn unchanged. Tabic 5 depets the contents of the genceral

registers just described.

I the access-register mode, access remsters T, R, and B2 specity the address spages
& : K : 3

contanung the parameter biock, first, and sccond operands, respectively,

The result 1s obtained as if processing starts at the left end of both the {irst and second
operands and proceads to the vight, block by block. The operation 18 ended when the number
of bytes in the second operand as specificd i general repister RZ + 1 have been processed
and placed at the brst-operand location {called norroal completion) or when a CPU-
determined number of biocks that is fess than the length of the second operand have been
processed (calicd partial complenion). The CPU-~deterrmned vaumber of blocks depends on
the maodel, and may be a ditterent number each time the mstruction s executed. The (PU-
determuned number of biocks 18 usually nonzere. In certam unusual situations, this number
may be zere, and condition ¢ode 3 may be set with no progress. However, the CPU prolects

ascainst endiess reoccurrence of this nO-progross case.

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

23

The results i the hivst-operand location and the chammng-vatue ficld are unpredictable i any
of the following situafions gocur!

the cryptographic-key hicid overlaps any portion of the st operand,

Fhe chammg-value field overlaps any portion of the first operand or the second operand.
The first and second operands overiap destructively. Operands are said 0 overlap
destructively when the rst-operand location would be used as a source after data would
have been moved into i, assuming processing to be performed from ieft to night and one

byte at a tiroe,

When the operation ends due to normal completion, condilion code 01 set and the resulting
vaiue m RZ + 113 zero. When the operation ends due to partial completion, condilion code 3

18 set and the resulting value i B2 + 1 15 nonzero,

When a storage-glteration PER event 18 recognized, fower than 4K additionsl bytes are

stored 1nto the first-operand locations before the event 1s reported.

When the sceond-operand length s mutially 2evp, the parameter block, fivst, and second
aperands are not accessed, general registers R, BRZ, and RZ + 1 are not changed, and

condition code § 18 set

When the contends of the B and RZ ficlds are the same, the condents of the designated
registers are meremented only by the number of byvies processed, not by twice the number of

bytes processed.

As observed by other CPUs and chianned programs, reicrences o the parameter biock and
storage operands may be multiple-access reterences, accesses o these storage locanons are
not necessartly block-concurrent, and the sequence of hese accossas or refergnees is

andelmed.

in cortain unusual situations, msiruchon execution may compiete by setting condifion code 3
without apdating the registers and chatmng value to retlect the {ast wat of the fivst and

second operands processed. The size of the unit processed m tius case depends on the

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

24

sttuation and the model, but s himited such that the portion of the first and second operands
which have been processed and not reported do not overiap n storage. In ali cases, change
bais are set and PER storage-alicration cvents are reported, when applicable, tor all first-

operand ocations processed.

ACCess exceptions may be reported for a larger poriion of an operand than 15 processed 1o a
single execution of the mstrucion; Rowever, access exceptions are not recognized for
tocations beyond the longth of an operand nor for locations roore than 4K bytes beyond the
current location boing processad.

The unchon ogdes oy GIPHER MESSAGE are as
foliows.

Parm. | Data
Block | Block
Size | Sizg
Code | Functioh ibytex) | (Dytas}
¢ | KM-luery 18 -
1 rA-UkA &
2 |KRM-TOEA-1EZ8 16
3 |KM-TDEA-18Z 24
18 |KM-AES-128 16
18 |KM-AES-182 24
20 [KM-AERS-258 32

R

O

GO

=

o

o
S}

Expianation:

e Mot applicaide

TABLE 4

- —,\\!:_ e
e T
e ER R} R
0 NN YN
wy . "Q* . n
iRl NN TON AN Y N I T o E (e e
kY F RSN AR RGRERE
\‘i;-
b\‘Q'
- I o T o ko o e N e e
e n e Gl
1"7:.: R IP TR R S S RN SN TGN
AN
:.:\-.‘
™ RICRII S SRR R R R S D L R R e A R T R R R IR SR SRR S R - -
B NN At L R R - N 5 a O o AN R I B TR B R T A .ﬂ&m“'\‘t
t-' et K K R \:' ‘.‘v.:':.\. '''' _*\.:::'_ o “: 'L‘» et B .‘ Kt 5:':':‘:':':'. ‘ R S }..:':.?f:':.:j»':.:.’f “: Jb\v\\}b"h‘;h\‘} M W
N VN
oL o pREnn R T ST I S AT S e e I TRy ;.' > & P ; S
. s P A, I . MO >) o 2, A “ oS Sl) LA i “Q"\"{E.’ "‘.3“\
Mo, ol SN Lk o o "Q" L o e e, e o, e o, e M el P M e, e ~a&am“.\.\t‘tﬁ 5€\xvu\\
“ WY \.’\:-
— P

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

25

Usmg the CIPHER MEXNSAGE mstruction as an example, an cxample machine may
mmpiement CIPHER MESSAGE functions. In the exampls imiplementation, Host processors
may woapleoment all of the funchouns shown {funchion code §-3 and 18-28). A host Operating

System {(£35%) {or hypervisory may create one or more virtual machmnes for Guest O8s. One

Yirtual machine mught be defined for a previcus fevel architecture, not having CIPHER

::7--

MESNAGE instructions.

According to an embodument, if an lustruchion Blockimg Facility were mstalled and CIPHER
MENSAGE mstruchions were designated as Blocked mstructions for a VM, the Virtual
machine would not permit CIPHER MESSAGE msiruction execution by programs running

1 the Virtual machine, even though the underlying Host machine supported CIPHER

MESSAGE mstructions. An aticropt 1o execute g CIPHER MESSAGE mstruchion mnthe VM

would result i a program check {(program gxception),

According to another embodument, 1t a Function blocking faciity were nstatied and ondy a

subsct of the CIPHER MESSAGE functions (Function Codes (-3 for example} were
pormiticd moa VM, the Virtual machine would pormut CIPHER MESSAGE execuiion but

wouid not permit CIPHER MESSAGE mstruction execulion of CIPHER MESSAGE
mmsiractions having a funchion code other than §-2 by programs running 1o the Virtual
machine, even though the underiying Host wachine supporied CIPHER MENSAGE
mstructions supporiing the function codes (-3 and 16-20) An attempt to execute a CIPHER
MESSAGE mstruction having function codes other than -3 such as any of FR-Z8) would

result in @ program check {program exception),

in another embodiment, if a Function test/quary facility were mstalied and only a subset of
the CIPHER MESNSAGE tunchions (Function Codes §-3 for example) were permitted m g
YM, execution of o CIPHER MESSAGE guery of the CIPHER MESSAGE functions would

return ondy funciion codes §-3, even though the undertying Host machioe supported function

codes -3 and 18-248.

NS TRUCTION BLOCKING FACILITY,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

26

Refermng to FIG. ¥, the tunction of a Virtual Archatecture Level (VAL) hostruction Blockmg

factlity in g VM is shown. Each instruction to be cxecuted in the YM {as shown in the
fustruchions i Storage column}, wnciudes an opeode. In some woplomentations, the opeode s
a single ficld i the wstruction 901 902 903 904, In other umplomentations, opcodes may be

OpCode) 946

{OpCodel|UpCode). Preterably, circusts, mucrocode o a combination thercot, would

distribuied in more than one ficld of the mstruction 903 (OnCode

determune, based on the opcode, whether the mstruction 1o be execuiod was supported or not
by the current Virtual machine. it was not supported, a program ioterruption, for example,

3 program exception would be mdicated and the mstruchion suppressed.

in an mmplementation, the opceode of the mstruciion to be executed would be used to index
1t an opeode fable 07 to locate an entry associated with the opeode. The entry iocated,
would wcinde a code mdicating the machine lovel (ML) supported by the opeode. In another
inpicmentation, cach Virtual roaching would have an opeode table and the enfry m the table

wondld imdicate whether the opcode was supporied by the Virtual machine.

Retornng to FEG, 9 the code (machime fevel (ML) 1002 obtamed from the tabic 907 would
be compared 1008 against a state description entry (1IBC) 1003 of a state description tabic
1004 of the Virtual machne, and if the ywoachme level code 1002 was greater than the IBC
state description entry 180X, the mstruction would execute normally 1007, otherwise, the
attempt to execute would resull 1n a program exception 1006, In gnothor ombodiment, ficlds
ot the mstruction 1 addition to, or other than the OpCode ficld may be used to mdex mito the
apcade table 907, For exaropie, an opeade may have reserved ficlds (to be 8 or iznoredy mn a
prior machine architecture, that are employed m newer architeciure levels to provide new
function. An cmbodiment would mciude these bits with the OpCode o index mto the opeode
table 9407, Inanother embodiment the opcode table 907 may have helds m addition to the
ME field used o indicate the permitted use of resorved bits in the asseciated instruction. For
cxarapie, if the mstruchion has 4 veserve bils, the ML table may contam 00001 ail the bits
must be 4, or 178w selected buds where a 1 indicates that corresponding previouslty reserved
bits of the ficld can be § or | {permutiing the newly mtroduced funchion of the instruciion for

the Vi3

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

27

INSTRUCTION TEST/QUERY FACILITY:

ifa FUNCTION BLOCKING FACILITY of the Instruchion Test/{duecry facility 1s mstalicd
{F1G. 183, the Opcode table entry 1081 may, i an evabodiroent, additionaliy mwelude a
ftunction code ficld (FCx) 1803 {or a pomter (o a function code table 1108} The function
code ficld 1003 (or the function code table 1108 entry F107) 18 compared 11043 with the
function code to be executed 1102, I the function code compares, the mstruction is
perrattted 1103 to use the function code, if the function code docsn 't compare 1143, the
mstruchion cxecuiion causes a program micrruplion, such 8s 4 progran exeephion or

spectiication excepdion {program check)y |1{4.

Referming to FiG, 11, if a FUNCTION TEST/QUERY BLOCKING FACILITY of the
instruction Test/Query facility is mstalied, if any guory mstruction 1201 15 executed 1o
determune the instalied function of the mstruction, only the function codes permutied by the
Yirtual machine gre returned 1205, In an embodimend, a bit segmificant tabie 1108 18
provided for the Virtual machine that 15 used by the Virtual wachine o respond (o such
queries, In another cmbodiment, g mask 1s provided {not shown) to the Yirtual machine o be
AMBed with the mstalied function codes of the Host waching io creale a result of permaticd

function codes 11HE7 of the instruction 1 the VL

Referrimg to FHG. &, example 2/ Archifecture instruction formats are shown, Format 941
depicts a 2 byie format wherem the OpCode {(Op occupies the high order bvie, and general
register fields R1 and R2 occupy respactive 4 bits of the remaimung byte, Format 942 depcts
g 2 byvie OpCode only mnstruction format. Format 903 depicts a 4 byte {word) mstruction
having a } 'byte OpCode {(Up) tollowed by 3 register fields, (R1, X2 and B2} and then an
mmcdiate field calied the Displacoment field (132}, Format 904 depicts a 4 bvie mmstruction
baving a 4 byte OpCade {Op), followed by g 4 bt regster ficld (B2 and then a 172 bt
inmmediate field (12}, Format 803 depicts a 4 byie instruction having a 1 bvte Opllode {{Up}
followed by a 4 bitvoask M, foliowed by a 4 bit OpCode extension (Op) and a reserved 4
bit field, followed by 8 12 bt Inmymediate figld (32}, Format 906 depicis a 6 byie nstruction
having a | byte OpCode {Op) fnliowed by 3 regster ficlds, (R, X2 and B2} and then an
unimediaie field calied the Dheplacement ficld (212} followed by a ¥ bit smmediate figld

{DHZ} and an 3 bit UpCode exiension {Up).

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

28

Referrmg to FIGe 8 and 9, m an evobodiraent, when an mstruchion s fetched for exccution
by a logical processor of a virtual maching, an Opcode Table 947 15 searched, using the
OpCodeds) of the mstruction as a search argument, I an entry 1s found 1001 for the
mstruction, the entry mciudes mformation 12 1843 tor determining msiruction permission
mformation. Inoa preforred embodunent, an endry mekhudes a field 1002 that specifies a code
(ML} mdicating the machine tevel of the architecture supporting the 1nstruction. A state
csertption F04 18 provided for each VM., The state desoriphion moeludes a ficld (IBCY 1003
that represents the machime level of the archnlecture that the VM 18 to sumulate, I 1003, the
maching lovel of the archiiecture supporting the mstruction { ML) 15 greater than the machine
level of the architecture that the VM s o simaudate (1BC), 4 program Exception {Prograrg
{heck} 1s signaled, and 1n an embodiment, the execution of the msiruction may be
suppressed. On the other hand, if the machine lovel of the grehutecture supporiing the

mstruction { ML) 18 not greater than the machine {ovel of the archutechure that the VM 15 to

stmulate (1B}, the mstruction 1s permiited 1o cxocuio.

in some envirenments mstructions are provided that are able to cxecute any of a plurality of
functions {such as the CIPHER MESSAGE mstruction described supra). The selechion of the
function by an mstruction may be by way of specifying a function code {FC) reprosenting
the function, The Funchion Code may be wmdwrectly specified by the mstruction or explicitly
specified by bits or ficlds of the wstruction for example. In some cases, certam hunction
codes may be mutighly smplemented (0-3 for exaropic} i a machine architecture lovel, and
additional function codes may be added at ater maching archilecture levels, The VM can be
providged with the capability to only pernut funchion codes 1o cxecuie of an older architecture

feved, and block {prevent) execution of hunctions of a newer archutechure level,

Retornng to FIG, 14, thus woay be accomphshed by having a funchion code ficld (FOx) 1003
i the Opcode Table Entry 1801, When an instruction 18 about (o be executed, the F{x field
1003 specifies the allowed funchion code hst to be returned rather than the actual function
codes supported by the Host processor, In an embodiment, the FO 18403 hield of the Opceode
Table entry i3 concatenated with the IBC ficld 1005 to mndex 1606 mto an FUx Table 1108
focate an entry thal compnses permittted funcbon codes (FCs) 1187, The pernutied F(s 1187

are compared with the FO speaified by the mstruction 1102 (in the Cipher Message

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

29

smstruaction, bits 1102 of general regisier § 1101 contain the speaitied FC 1102 1103 the
FL value 1s permaticd 1183, normal execution of the function represented by the FL bis s
pormuted. i 1103 the FU value 18 not pernutted 1104, a program exception, such as a

speciiicanoen exception {(program check) event 15 pertormed. Sumutariy, when executing a

Function Query/iest operation 1201 {such as the CIPHER MESSAGE mstruction (Juery
operation), the FUX bits of the Opcode Table BEotry 1003 are concatenated 1106 with the
IR brts 1005 1o mdex o the FUX table 110X o locate the pernutted FUs 17 for the
mstruction whose UpCode locates the Opcode Table Botry 1001, The permutied FCs are then

refurned P03 to the location specificd by the Function (Query/ Test operation.

in an cmbodiment, when the FOX bits are {4, no FOx Tabie 1108 access 18 performed and any

Function Code mndicated by the corresponding msiruction 1s used without transiation.

in an embodiment, other architecture moditications o mstruchions can use the same
mechanis as desceribed for Function codes. fn this case for example, mstruction 945 at an
architectural level has the bits between the Upllode extension ficld and the {2 ficld, rescrved
(U000}, Preterably, the reserved bits are tested for {75 10 roake sure the mstruchon wild
portorm properly 10 an environment whare non-zors BHs support not yet supported funciion.
A newer archiiecture woploments a new funclion using one oF more of the reserved bits to
sdentily the now function, In an example, these 4 rescrved s (Res) may mdex into the FOR
Tabie ¥ m order to determine if they are supported as shown tor FO bus 1102 1 FIG 14

in this case, the concatenation would be GIBC

FOx for Fanction codes, and HIBO P x for
the new funciion permuassion tost 1103, Instead of the FC 1182 being compared with the
permatied FUs 1107, the Res figld of the wstruction 90 would be chocked agamst the
permitted FOS bits 117 1o determine 163 11 the function 15 pernittad.

in another emboduncnt, the Res ficld of the imstruction 905 couid be concatenated as it it
were a thard UpCode extension of 903 GpClades to mdex wnto the Upcode Table 907 {o

etermine i the functon wilreduced with the field 18 pormitted,

As a part ¢f, or subseguent to, the fetching of an mstruction, a CPL may detenmime certamn

sttributes of the mstruction, for cxample, number of operands, tvpe of operands {(storage or

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

30

registery, operand alignment reguirermcents, and authonzaton reguireraents. In an erouiation
cavironment, this determuinalion may be the rosult of a simple fable look-up using the
operation code 45 an mdex; w a high-performance CPU hardware wroplementation, the
determuination may be bl wnte the mstruction-decode circuttry of the processor. Thus, as an
mmsiraction 1s being decoded, the machine lovel for that mstruction may be comparcd with a
programmable value that mdicates the machine tevel permitted. An nstruction being

cended having a hlugher machine level than the pernutted valuce would be blocked from
cither bomng dispatched, executed or completed dependent on implementation and the

maching dependent exception for invalid opcode may be generated.

Yhe virtuab-architecture-level facility may intreduce an additional attnibute associated with
cach mstruction: the machine leovel gt whuch the mstruction was first infroduced to the
architectore. This machine tevel may be an enceded numeric point on a continuum {(for
cxarapie, 10.2, meanmg the 1h-generation maching at the second firmware levely, or it may
suaply be a value relative to the most-recent machine level (for example, 2 {or -2}, meaning

that the mstruction was introduced two machine generatinns prioy o the current maching b,

Reterring to FHG. 12, m an embodiment, specific mstruchions 123¥ are biocked from being
cxecuted by a processor. An mstruction blocking value 1s set 1231, An mstruchion i fetched
1257 10 be executed by the processor, the msiraction comprising an opcode, the 1nstruchion
supported by the proecessor. When the mstruction 18 10 be execuled, a comparnison of the
imstruction blocking value with the mstruction {or the opcode of the mstruction} 1s made o
detcrmine if the execution s perratticd. Responsive 1254 1o the mstruchion blocking value
permthing execution of the mstruchion, executing 1235 the teiched mstruction by the
processor; and responsivel 254 to the mstruction blocking vahug not peroutting cxecution
1256 of the wstruction, blocking execution of the fetched mstruction and causing 4 prograrn

exception event.

Referrmg to FHG. 13, 10 an embodunent, the processor s a logical processor of a virtual
maciune, wherein the fetching 1s performed by the logical processor. A determunation 1254
ot the mstruction blocking vahie of the virtual machine 18 made, wheretn the mstruction

blocking value 18 set in the logical processer having one or more physical processors,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

31

wherein the mstruchon i3 supported by the one or more physical processors, wherem
responsive 10 the mstruction blocking value permitting execution of the mstruction, the
crecubion 18 performed 1352 by the logcal processor, Hthe mstruction s blocked 1256 a

program exeeption event is reported.

clerring to Fi(s, 14, 1 an ombodument, the processor 1s one or more physical processors of
a logical processor of 2 virtual machine, wherein the msiruction blocking vaiue 18 set 1451 in
the one or more physical processors, wheremn the {eiching is performed by the one or more
physical processors. The Physical procossor compares 1457 the mstruction blocking value
with the mstruchion (o be executed to deterrmne 1f fhe mstruchion s {0 be blocked, and the
physical processor ither performs the mstruction 1454 or causes a progran oxeeption ovent

i455.

Reforrng to FHG. 13, m an ombodiment, the mstruction bilocking value 1s defined for the
virtual machine tor blocking execution of the wstruction, the setting 1531 the mstruction
blocking value responsive to the enabiing the virtual maching o use the physical processor
1553; another wstruction blocking value 18 set 1552, the another yustruchion blocking value
defined tor another virtual machine having another logical processor, the setting the another
mmstruaction blocking value responsive 1o the enabling the another virtual machioe 1o use the
physical processer 13330 and responsive to the another mstruction blocking vahie permiutting
1254 cxecution of the mstruction, pornutting excention 1255 of the mstruction by the
another logical processor: and responsive (0 the another mstruction blocking value not
pormutiing 1254 cxecution of the instruction, not pormitiing oxecution 1236 of the mstruction

by the another logical processor.

in an embodiment, the mstruction blockmg vaiue 18 dehined for the virtual machine for
blocking execution of the nstruction, the sctting the mstruction blocking vahiue responsive o
the enabling the virtual machine {o use the physical processor, another nstruchion biocking
value 13 s¢t, the another mstruction blocking value beng detined for another virtual machine
having another logical processor, the setiing the another mstruction blocking value

responsive 1o the enabling the another virtual machine to use the physical processor: and

responsive 1o the ancther mstruction biocking value pormutting cxecution of the mstruction,

10

15

20

25

30

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

32

periratimg execution of the mstruction by the physical processor while the another virtual
macinne 15 enabled o use the physical processer: and responsive 13 the anothor struction
blocking value not permuthng execution of the msiraction, not permitting execution of the
imstruction by the physical processor while the another virtual maching s enabled {0 use the

physical processor,

Feterring to FIG. 12, mm an erabodiment, the mstruction 125% 18 the perrottted mnstruction

responstve 1o the mstruction 1238 employing a perroited fuonction code assoaated with a
selected function 1259 of a plurahity of selcctable functions, wherein the mstruction s the

not permitted msirnchion responsive to the mstruction cmploving a not perrmitted funchion

code, wheremn function codes are spocified by the msiruction.

in an embodiment, a determination 18 made as o whether the wnstruction 18 the peromited

mmsiraction by associating the opcode of the mstraction with the mstruction blocking value,

in an embodiment, the instruction {ctehed spocifies & function 0 be performed, the opeods
ot the instruction 18 used to mdex wmio a table to locate the wstruction blocking value, the
mstruction blocking value comprising a permission ficld, the permission ficld 13 used 1o
detcrmme permitted functions. Rosponsive to the tunction berng a permitied funchion,
cxecution of the mstruction 18 pormitted and responsive o the function boing a not

permitied function, execution of the mstruction 18 not pormutied.

The forepomy may be useiul i understandmy the tormumology and structure of one
computer system embodiment. Emboduments may be not hmtted o the o/ Architecture or to
the description provided thereot, Embodiments can be advantageously applicd io other

compuier archiectures of other compuier roanutacturers with the teaching herem

While preferred embodiunents bave been diustrated and described herewn, 1 roay be to be
understood that embodiments may be not himited to the precise construction herein
disclnsed, and the right may be reserved to gll changes and modifications comung within the

scope of the myvention as delimed w the appended claims.

10

15

20

25

30

CA 02800640 2016-12-15

WO 2011/160723 PCT/EP2010/067045
33
CLAIMS
1. A computer implemented method for blocking specific instructions from

being executed by a logical processor executing in a virtual machine, the logical
processor configured to run on a physical processor, the method comprising:

setting an instruction blocking value in the logical processor, the instruction
blocking value blocking execution of instructions having certain function codes
identified by the blocking value, the instruction blocking value permitting execution
of an instruction having a permitted function code and blocking execution of an
instruction having a not permitted function code;

fetching, by the logical processor, an instruction to be executed by the logical
processor, the instruction comprising an opcode and specifying a function code of a
plurality of function codes specifiable by the instruction, each function code
speciftying a function-to-be-performed, wherein the plurality of function codes and
the corresponding ﬁmctions-to-be-performed being supported by the physical
processor on which the logical processor is running;

based on the instruction blocking value and the function code of the fetched
instruction, determining whether the function-to-be-performed is a permitted
function-to-be-performed, wherein the function-to-be-perfqrmed is determined to
be a permitted function-to-be-performed based upon the instruction having a
permitted function code and is determined not to be a permitted function-to-be-
performed based upon the instruction having a not permitted function code; and

blocking execution of the fetched instruction based on the determining that
the function-to-be-performed is not a permitted function'-to-be-performed, wherein

the blocking execution comprising causing a program exception event.

2. The method according to Claim 1, wherein the instruction blocking value is
set in the one or more physical processors, and wherein the fetching is performed

by the physical processor of the one or more physical processors.

10

15

20

25

30

CA 02800640 2016-12-15

WO 2011/160723 PCT/EP2010/067045
34

3. The method according to Claim 1, wherein the instruction blocking value is
defined for the virtual machine and wherein the setting of the instruction blocking
value is based on enabling the virtual machine to use the physical processor, the
method further comprising:

based on enabling another virtual machine having another logical processor
to use the physical processor, setting another instruction blocking value defined for
the other virtual machine;

fetching by the other logical processor, another instruction to be executed by
the other logical processor, the other instruction comprising another opcode and
specifying another function code of the plurality of function codes specifiable by the
other instruction, each function code specifying a function-to-be-performed, the
plurality of function codes and the corresponding functions-to-be-performed being
supported by the physical processor;

based on the other instruction blocking value, determining whether an
another function-to-be-performed is an another permitted function-to-be-
performed; and

blocking execution of the other fetched instruction based on the determining
that the other function-to-be-performed is not a permitted function-to-be-

performed, the blocking execution comprising causing another program exception

event.

4. The method according to Claim 2, wherein the instruction blocking value is
defined for the virtual machine and wherein the setting of the instruction blocking
value is based on enabling the virtual machine to use the physical processor, the
method further comprising:

based on enabling another virtual machine having another logical processor
to use the physical processor, setting another instruction blocking value defined for

the other virtual machine;
fetching by the other logical processor, another instruction to be executed by
the other logical processor, the other instruction comprising another opcode and

specifying another function code of the plurality of function codes specifiable by the

10

15

20

25

30

CA 02800640 2016-12-15

WO 2011/160723 PCT/EP2010/067045
35

other instruction, each function code specifying a function-to-be-performed, the
plurality of function codes and the corresponding functions-to-be-performed being
supported by the physical processor;

based on the other instruction blocking value, determining whether an
another function-to-be-performed is an another permitted function-to-be-
performed; and

blocking execution of the other fetched instruction based on the determining
that the other function-to-be-performed is not a permitted function-to-be-
performed, the blocking execution comprising causing another program exception

event.

5. The method according to Claim 1, wherein the instruction is executed based
on the instruction employing a permitted function code, and wherein the instruction

is blocked based on the instruction employing a not permitted function code.

6. The method according to Claim 1, further comprising:
determining whether the instruction is a permitted instruction by associating

the opcode of the instruction with the instruction blocking value.

7. The method according to Claim 1, wherein the instruction fetched speéiﬁes a
function to be performed, further comprising:

using the opcode to index into a table to locate the instruction blocking value
the instruction blocking value comprising a permission field;

using the permission field to determine permitted functions;

based on the function being a permitted function, determining that execution

of the instruction is permitted; and
based on the function being a not-permitted function, determining that

execution of the instruction is not permitted.

8. The method according to Claim 1, wherein the physical processor is capable

of performing all functions-to-be-performed of the plurality of function codes,

10

15

20

25

30

CA 02800640 2016-12-15

WO 2011/160723 PCT/EP2010/067045
36

wherein the instruction blocking value prevents the logical processor, executing on
the physical processor, from executing at least one of the functions-to-be-performed

of the plurality of function codes.

9. The method according to Claim 8, wherein only a subset of the function codes
supported by the physical processor are made available to the logical processor, the
method further comprising, based on the function-to-be-performed being a query-
function for requesting identification supported function codes, execution of the
instruction further comprising:

returning only identification function codes corresponding to functions-to-
be-performed supported by the physical processor that do not correspond to to-
blocked functions-to-be-performed;

not-returning identification of function codes corresponding to to-be-blocked
functions-to-be-performed; '

returning only identification function codes corresponding to functions-to-
be-performed supported by the physical processor that correspond to said
permitted functions-to-be-performed; and

not-returning identification of function codes not-corresponding to

permitted functions-to-be-performed.

10. The method according to Claim 4, wherein the instruction blocking value

indicates execution of a specific function-to-be-performed is to be blocked and the

other instruction blocking value does not indicate the specific function-to-be-

performed is to be blocked.

11. The method according to Claim 1, further comprising:

interrogating an opcode table to determine if the function-to-be-performed is
to be blocked, the interrogating comprising:

locating an entry in the opcode table having a first field indicating an opcode
of the instruction to be executed; and

extracting the instruction blocking value from the entry.

10

15

CA 02800640 2016-12-15

WO 2011/160723 PCT/EP2010/067045
37

12. The method according to Claim 11, further comprising:

comparing a second field of the entry of the extracted instruction blocking
value with a state description of the logical processor, the second field indicating an
instruction machine level associated with the instruction, wherein the instruction
was defined for the instruction machine level, the state description indicating a
processor machine leve] of the logical processor; and

based on the processor machine level of the logical processor being less than

the instruction machine level associated with the instruction, blocking execution of

-the fetched instruction, having predefined function codes by the physical processor

and causing a program exception event.

13. The method according to Claim 12, further comprising:

extracting function code blocking information from a third field of the entry;

and

only blocking execution of the fetched instruction having a function code

corresponding to the extracted function code.

CA 02800640 2012-11-23
WO 2011/160723 1/19 PCT/EP2010/067045

Host Computer

1

Processor (CPU)
3

address

LOAD/
STORE UNIT

4

INSTRUCTION

FETCH UNIT COMPUTER
MEMORY

INSTRUCTION

DECODE UNIT

INSTRUCTION
EXECUTION
UNIT

(MAIN
STORE)

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

2/19

21

z

Emulated (Virtual)
Host Computer Memory 22

Computer
Memory

(Host)

1

.IIIIIII!IIIIIIIIIII-I-I-I-I-I-I-IIIIIIIIIIII

EEmuIated (Virtual)
*Processor (CPU)

2/

Emulation
Routines

Processor
Native Instructio

Set Architecture
lBl

FIG. 1B

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

3/19

. 112
Operating System

Application 1

Application 2
Application 3

111

102 Base Computerf 101

)5 &

I

I

Mouse C > Storage Media

103

Keyboard Printer/Scanner |
104

110 108

Display

FIG. 1C

CA 02800640 2012-11-23

WO 2011/160723 PCT/EP2010/067045
4/19

Remote
erver

L R R L R R R R N N N L L A O AL A

DRI IR IR IR I R P DR R DR D DR DR D DR DR R DR R R R R
LR TR R I B R DR R DR R DR DR DR DR D D DR DR DR D D DR D D IR
AR DR DR IR DR DR DR DR DR DR D DR DR DR DR DR D DR DR DR DR DR R
L R AR RN

0

\\\

Q 0 ‘ Q 0 - Q - ‘ Q - ‘ Q - ‘ Q - ‘ Q - ‘ LR DR R IR

LR PR DR L D R DR DR R R R 0.0 4 4
B A 4 4 4 4 4 44 444
LR PR DL DL D DL DR . 4
‘ LR DR DR DR D DR DR DR DR DR DR DR R DR D IR)
LR R DR DR DL R .« 4 4
Q Q - Q Q - Q Q . 4 Q‘C LR R R LR

- 4 -
N

*

L O 0‘0

*
- >
*
- >
*
- >

*

*
*
*
*
*
*

L D B B I O I O O D O O O O O O O O O N
> > L O 2 *

*
*

L N 2
“

*
*
> >
*

*
*
*
.

.....
*
*
. .

N

C.Q.Q‘C DR DL D UL B D L D D D D B Q‘C
AR DR DR DR D R DR DR DR D R DR D DR R D R

LR DR DR DR DR R DR DR DR DR DR DR R DR D IR
LR DR DR DR DR DR D DR DR DR U DR DR DR R DR R I
-
-

L N 3
L O B 3
L N N 2

‘.Q AR DR DR DR DE DR DR DR DR DR DR DR O C‘C
AR AR RN

.

L N 2
L O 2
.

L D B
.

L I I I I I I I O O O O O O N
L D B I I I I O I O O O

L D I I I O O O O O e
L I B I I B I O I O O I O O O O

L I I I O
L I O 0 L N

>
L D B I I I I B O I O O O 0.‘ 0.0 *

- >
L B B U I I O O I I O O O D O O O O O 2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

|

M e OE e e E R e EE e EEEEEEEEEEEEEEEEEEEEEEEEE e e =

206

R REREEREEREEEEEEEEEEEEEE™
-~ m E e EEE e eSS EESSEeeEEee ... - EEEEEEEE E E E EE E E E E E E Y
. LR R EREEEREEEEEEEE R
R EEEEEEEEEE R E R EEE E EE E T Y . D) .« 44
R EEEEEEEEEEEEEEE E . . - - .
DR EEEEEEEEEEEEEEEEEEEEE e . DR .4
. - . - -
B A 4 4 4 4 4 4444444444444 444440 e .
. \. (IR) .« 4
- -
. 1 IR . 4
- -
. 1 |.o 4.1
.] s.c c‘a
. DR .4
- -
.] |.o 4.1
. D) .4
- -
. N \ D ‘1
. \ \ IR .4
- -
n% ra e .
. DR .4
- - -
[DR .4
- -
D) .4
.. R R -
DR IO E I IO I IR I DL O 4
c«ca«cc«cc«cc«cc«c -
osqosqosqosqosqosq ECICIC L I 2

n.cc«cc \\\\\\\

S, .\\\\\\\\\\\\\\\\\\ “os,

LR L N DR D D D R R
- 4 49
- “« 4 49
- .« 4 4
LR VR DR DL DL D DL DR IR
LR D DR DR DR DR IR C\\\
e rarararar)
LR DR DR DR DR R D DR DR DR R DR D DR DR D DR DL D DR DR DR D R
..4..4..4..4..4..4..4..4..
AR R R DR R D DR DR DR DR DR DR R DR D D D R R D DR R
- 0 0 - 0 0
.. L C Q
-
-
-
..
-
-
1]
. .
. 4 - -
LR R B I I I I I I I I I I D I R R I DR R DR DR DR D DR DR D DR R

'{\Lii\’&{\iii{i{\’&i\&{\‘&i{ii\‘&i\l\\\ X

Client 5

“ e w
UQQCQQQ
.
5006006\
“ e
n«cc«cc
.-
UQQCQQQ
.
Vs
R
R
SRR
IR
R
R
SRR
R

LR R DR DL R)
LR DR R DR IR R DR R DR R R DR DR D DR DR D D DR DR L L D D R

e s de s s s s de de s s de de s s e e .
-

L B I O N

user o

ARG

204

§ >

R R ARRERERRERER .
A R R R OO
R EEEEEEEEEEE S .
- .4
.. .
- “
.. . R . O
“ + R . R EEE E
) . R EEEER - R EEEEEE E EEE R oY
- “ R EEEEEEEEEEX .- R EEEEEEEEEE E E S
.. .) “ R R R R
- “) .- -)
.. .) “ .. -
“ + .. .- + .
) .) - .. -
- “ .. .- “ .
.. .) “ .+ “
- “) .- - .
.. .) “ .+ -
“ + .. .- + .
) .) - .. -
- “ .. .- “ .
.. .) “ .+ “
- “) .- - .
.. .) “ .+ -
“ + .. .- + .
) .) - .. -
- “ .. .- “ .
.. .) “ .+ “
- “) .- - .
.. .) “ .+ -
“ + .. .- + .
) .) - .. -
.4 . 4 .. .- “ .
R EEEEEEERE E .) “ .+ “
R EEEEEEEEEEE “) .- - .
R EEEEEERERE E S .) “ .+ -
R \ao + .. .- R .
St ats A ™ o .
\ . . . q\ +
.occoccoqaoqaocaocaoocoq) .
. R .
. ‘0 R EEEEEE EE E E E
\ + DO OO ON .
a«cc “aTaTa s . P)
XX . qosqo .
L
Sttt
SOOI IR
R
ap ittt .cc«\ SRR -
R EEEREX “ e “hha ssqo\
SRR . . “ 4.
R EEEEX
SRR REEREX
R EEREX R
RREEREEEREX) SRR RO
N ERREEEEREEEX - SRR . R
OOOOOOOOOOOUOOOUOOOOOOC) 4 hee + R
DU PR AR Pt e atatatatte

4 4 4 LR PR PR DR R D DR R R L R D D DR R DR DR DR DR DR DR D DR DR R

Q.QC.Q‘ 4 4 4 4 4444 LR N

l L DR DR DR B 0 ‘ LR DR DR R ‘ LR DR DR D DR DR DR DR DR IR
a aa.aa a

..‘\q\.g\q\\g'\ 4000000‘60060 U ‘\\\ ..‘.."\ i \\ ‘..‘..‘..‘..
R R RRRTIRRIINNINN 3 Q&\ AR (I I e n 't 3 0 &\\.\ NN

L
0

0 - 0 0 6

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

Q Q - Q Q - Q Q - Q Q - Q 4 Q Q - Q Q - Q Q - Q 4

E R R R AN *

Client 1 Client 2 Client 4
201

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

5/19

J

105

Processor Caches 03

Program Counter] 305 1
311 Instruction Fetch

306
Decode/Dispatc Load/Store Unit

310
Execution Branch
IUnlt

Unlt
307

1Q6

Reglsters

204 /0O Units

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

6/19

3Q/

Execution Unit

408

o]

404 A \405
\aLy A
-

4006

407

Other
401 306

Decode/Dispatch
Registers

310

Load/Store
.

FIG. 4A

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

7119

Branch Unit 308

431

Other
425 306

Decode/Dispatch
| 309
Registers

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

8/19

Load/Store Unit 310

463
460 CTL

N6
EANDA
_atu Ase

—
v462
457
A . .

Other

455
306

Decode/Dispatch

303

Cache/Memory
Interface

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

9/19

VM1 VM2

HYPERVISOR

Hardware Processors
Memory
/O

FIG. 5

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

10/19
VM VM2
Apps Apps
OS1 OS2 0S3
and Capabilit

HYPERVISOR

naraware Processors Physical Features
Memory and Capability

/0

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

11/19

Logical
Processors

Logical
Processors

e . -
Logical Feature \, Logical Featurg Logical Feature
Mask VM1 Mask VM2 Mask VM3

Physical Feature
Reg

FIG. 7

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

12/19

Example
z/Architecture
Instruction
Format

R1| x2 903
_ 904

op _ |mil op 08

Opcode Table 907 FIG. 8

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

13/19
_ state
Opcode Table CL
bescription
Entry
1004

1001 1002 1003

1005

Normal

Execution

1007

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

14/19

Opcode Table
Entry

L

5 Function Code

Iiiiiiiiiil
Cs _ .
(GRO for Cipher
Message Instruction)
- - - FC

FCx Table | 1108 1101

1102

1103
NoO
1104

Yes

1105

FIG. 10

FCx

WO 2011/160723

Table

1108

CA 02800640 2012-11-23

1105

15/19

FIG. 11

Function

PCT/EP2010/067045

Quervy/Test

Operation

1201

WO 2011/160723

12951
Set

tch an

CA 02800640 2012-11-23

an Instruction
Blocking Value for
Blocking execution

cruction

n 1ns

Opcode

compare

1255

lue with

Ins

Block

Executio

Blocking

cruction

Yes

Execute the
Instruction

16/19

PCT/EP2010/067045

Set an Instruction
lue for

Blocking Va

Blocking execution

O n 1nstruction

speclifying

blocked Func

Instruction to
Executed having

A ll

fetched

Code

FIG. 12

——

-

-10on

1257

Instruction

__—[OpCode | /11l

1 1258

Selected Function
identified by a Function

1259

1256

CA 02800640 2012-11-23

WO 2011/160723

Instruc

Instruction to

17/19

c10n

be

Compare Blocking

Instruction

Block

Executio

forming the
instruction by the
Logical Processor

Blocking

for a designated
1 Machine 1n

——

-

1 processor having
one or more physical
Processors Suppor:

c1ng the
Blocked

Value with fetched

FIG. 13

PCT/EP2010/067045

CA 02800640 2012-11-23
WO 2011/160723 PCT/EP2010/067045

13/19

Instruction Blocking

for a designated
1 Machine i1in one or
more physical processors O:

a Logical processor of a
Virtual Machine

physical processor Compa
the Blocking Value with
fetched Instruction

Block

Executio

Physica
forming the ProCcessor
instruction by the Causing a
physical Processor program

exception

FIG. 14

WO 2011/160723

1591

Setting the

responsive
1 machine

virtus

1593

CA 02800640 2012-11-23

19/19

1552

Setti
Value

the virtual me

1255

a

o

Blockling Va
to ensc

ng a
ass

Physical Processor enabled

bling -

PCT/EP2010/067045

nother Blocking
ocliated with

another virtual machine
responsive to enabling
another virtual machine

chine or the

ther wvirtus

1 mesa

Yes

Cchine

Instruction
FIG. 15

1256

Causing a
program
exception

1251

Set an Instruction
Blocking Value for

Set an Instruction
Blocking Value for
Blocking execution
of an 1nstructicn

Blocking execution
of an instruction
specifying a
blocked Function

1252 l

1257

be Executed having an
Opcode

Fetch an Instruction to

1253

Compare Blocking
Value with fetched
Instruction

1254

Yes
Rlock

Executic

1255

Execute the
Instruction

Instruction

/ OpCode | /i/ii]

1 1258

Selected Function
identified by a Function
Code 1959

1256
—

Causing a
program
exception
event

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - abstract drawing

