(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
25 November 2004 (25.11.2004)

PCT

A O

(10) International Publication Number

WO 2004/102325 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:

PCT/US2004/014151
(22) International Filing Date: 6 May 2004 (06.05.2004)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/468,491 6 May 2003 (06.05.2003) US

(71) Applicant (for all designated States except US): APTARE,
INC. [US/US]; 1901 South Bascome Ave., Suite 200,
Campbell, California 95008 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CLARK, Richard
J. [NZ/US]; 627 Peachtree Court, Campbell, Califor-
nia 95008 (US). CHANDRASEKSARAN, Satish K.
[IN/US]; 5060 Haven Place, Suite 210, Dublin, California
94568 (US). COLLINS, Joshua D. [US/US]; 822 Walker
Ave., Oakland, California 94610 (US).

(74) Agents: ROBERTS, Raymond E. et al.; 1901 South Bas-
com Ave., Suite 660, Campbell, CA 95008 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP,KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:
of inventorship (Rule 4.17(iv)) for US only

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM TO CAPTURE, TRANSMIT AND PERSIST BACKUP AND RECOVERY META DATA

004/102325 A2 | 000 0 0O A

20, /’ 10
20a Z Client
22,22a
Server J— g 12
No. 1 HTTP(S) REousgérs f
20, HTTP(S) REQUESTS
Backup
20b Mamt
Client Sorver HTTP(S) REQUESTS
Server No. 1
No. 2 le—1
I 16 =
22,22b Enterprise 16
2, L Firewall(s)
200 Client and / or Internet
Server Backup |——> Network and / or Storage-
No. 3 Mgmt. Device(s) Enterprise Console™
) Server |je— Intranet System
No. 2 (Optional)
20,
20d Z
Client
Server
No. 4 [/
User or
20, System HTTP(S) RESPONSES
20e Client Admin. HTTP(S) RESPONSES
Server Computer
No. 5 HTTP(S) RESPONSES

o (57) Abstract: A system to capture, transmit and persist backup and recovery meta data over a network (16). An agent (48) captures
the meta data at a computerized backup management system (22). The agent transmits the meta data from the backup management
system to a storage console portal system (30). And the computerized console portal system includes a database (54) to store the
meta data, thereby capturing, transmitting and persisting the meta data.

WO 2004/102325 A2 [} N0 A080A0 T 00000 U0 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/102325 PCT/US2004/014151
1

SYSTEM TO CAPTURE, TRANSMIT AND PERSIST
BACKUP AND RECOVERY META DATA

TECHNICAL FIELD

The invention relates generally to systems and methods for maintaining enterprise
data object integrity across distributed storage networks by the use of backup and restoration
process, and more particularly to managing such processes and providing meta data about

such data objects and processes.

BACKGROUND ART

Modern enterprises, including corporations, public agencies, and other entities, use
sophisticated networks of computers and other digital devices. Some of these function as
servers to other devices on the network. Such servers typically store data, programs,
documents, media content, and other information, which are collectively termed herein
“data”.

Data stored on servers is at risk of being damaged or destroyed by a wide range of
hardware problems, software problems, user errors, or malicious activities. Thus, most
enterprises make frequent backup copies of the data stored on servers.

When managing a backup system that maintains backup copies of the data stored
within an enterprise, there is a need to present the current status of the backup system in a
clear and concise manner to those individuals, such as system administrators, who are
responsible for the system. Such presentation of status information is often complicated by
the fact that medium or large enterprises often have multiple backup servers, also known as
backup management servers (BMSs). Each BMS backs up the data on the servers within the
enterprise that are client servers of that backup server.

Another need when managing a backup system is to store information about the data
that is backed up, that is, to store meta data, in a manner that does not consume excessive
storage space. The meta data typically includes data about backup operations or events that
have occurred. The meta data stored may include individual file by file meta data or file
details, including the meta data for each backup copy of each file that is stored in each
backup management system.

There is also a need to store the meta data in a manner that allows efficient retrieval of

WO 2004/102325 PCT/US2004/014151

2
every backup and restore event for a particular file, or set of files, that occurred during a
particular time period.

Yet another need when managing a backup system is to transfer the meta data across a
network to a meta-data server. This transfer should be done in a manner that does not
consume excessive network bandwidth. Further, this transfer should be done in a manner that
does not compromise the security of the backup servers, which are extremely sensitive
because they store all or most of the data that the enterprise stores electronically. Further, this
transfer should be done in a manner that does not compromise the security of the meta data
that is being transferred, which is also extremely sensitive because it describes the data that
the enterprise stores electronically.

There is also a need to reduce the footprint that the process of gathering and storing
the meta data has on the resources of the backup management servers, that is, to reduce the
impact on the resources of the backup management servers that are consumed in the process
of gathering and storing the meta data. These resources include, among others, processor
bandwidth, memory allocation, memory bandwidth, storage allocation and storage
bandwidth.

Another need when managing a backup system is to recover automatically from
problems or exceptions. Exceptions occur when the process of gathering and storing the meta
data does not function in a normal or expected manner. Typical causes of exceptions in
backup management systems include, but are not limited to: an unstable or unreliable
network connection between components of a BMS; a network proxy server that is down or
not functioning properly; a network that is saturated by excessive traffic, such as may be
caused by malicious activity or viruses, or by reallocating network traffic that is usually
handled by a network component that is currently inoperable or down; a network portal
server that is down or not functioning properly; or a meta data server that is down.

There is also a need to automatically add and set up or provision a client server after it
has been newly added to the enterprise’s network. A large enterprise may have 10,000 or
more client servers. In such an enterprise, adding new client servers and restructuring or

reallocating existing ones may occur on an almost daily basis.

DISCLOSURE OF INVENTION

Accordingly, it is an object of the present invention to provide a system to capture,

transmit and persist backup and recovery meta data.

WO 2004/102325 PCT/US2004/014151

3

Briefly, one preferred embodiment of the present invention is a system to capture,
transmit and persist backup and recovery meta data over a network. An agent captures the
meta data at a computerized backup management system. The agent then transmits the meta
data from the backup management system to a computerized storage console portal system.
And the console portal system includes a database to store the meta data, thereby capturing,
transmitting and persisting the meta data.

The other objects and advantages of the present invention will become clear to those
skilled in the art in view of the description of the best presently known mode of carrying out
the invention and the industrial applicability of the preferred embodiment as described herein

and as illustrated in the several figures of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate technologies related to the invention, show example
embodiments of the invention, and give examples of using the invention. The objects,
features and advantages of the invention will become more apparent from the following
detailed description when read in conjunction with the following drawings:

FIG. 1 is a functional block diagram of an exemplary embodiment of the in\jrention,
emphasizing aspects within an enterprise network that capture and transmit meta data.

FIG. 2 is a functional block diagram of an exemplary embodiment of the invention,
emphasizing aspects within a StorageConsole (TM) system that persist and manage the
backup and recovery meta data of the enterprise. |

FIG. 3 is a functional block diagram of another exemplary embodiment of the
invention, particularly showing the communication paths used between client servers and a
backup management server, as well as those used between the backup management server
and a SC portal server.

FIG. 4 is a functional block diagram of yet another exemplary embodiment of the
invention, particularly showing the communication paths and methods used between the
StorageConsole system and the users of an enterprise’s computers, servers and networks.

FIG. 5 is a data structure diagram or database schema suitable for storing meta data,
including the file details, according to an embodiment of the invention.

FIG. 6 is an exemplary status summary or mission control report according to an

embodiment of the invention.

WO 2004/102325 PCT/US2004/014151

4

FIG. 7 is a flow chart of a process to capture and transmit backup and recovery meta
data according to an embodiment of the invention.

FIG. 8 is a flow chart of a process to manage and store capture and received meta data
according to an embodiment of the invention.

FIG. 9 is a flow chart of a process for handling exceptions according to an
embodiment of the invention.

FIG. 10 is a flow chart of a process to add a new client server according to an
embodiment of the invention.

FIG. 11 is a block diagram showing an architectural overview of the infrastructure of
an exemplary embodiment of the invention.

FIG. 12 is a block diagram showing another architectural overview of an exemplary
embodiment of the invention.

FIG. 13A-D are a flow chart depicting an example backup process using NetBackup
as exemplary backup server software.

FIG. 14A-B are a flow chart depicting an example restore process, again using
NetBackup as backup server software.

FIG. 15A-C are a flow chart depicting a suitable flow process for the data receiver
agent of the invention.

In the various figures of the drawings, like references are used to denote like or

similar elements or steps.

BEST MODE FOR CARRYING OUT THE INVENTION

The descriptions and discussions herein illustrate technologies related to the
invention, show examples of the invention and give examples of using the invention. Known
methods, procedures, systems, circuits, or elements may be described without giving details
$0 as to avoid obscuring the principles of the invention. On the other hand, details of specific
embodiments of the invention are described, even though such details may not apply to other
embodiments of the invention.

Some descriptions and discussions herein use abstract or general terms including but
not limited to agent, demon, symbol, number, byte, communicate, object, procedure, and
block. Those skilled in the art use such terms as a convenient nomenclature for components,
data or operations within a computer, digital device or electromechanical system. Such

components, data and operations are represented by physical properties of actual objects

WO 2004/102325 PCT/US2004/014151

5
including but not limited to electronic voltage, magnetic field and optical reflectivity.
Similarly, perceptive or mental terms including but not limited to detect, sense, recall,
present, test, compare, control, process, manipulate, analyze, and determine may also refer to
such components, data or operations or to manipulations of such physical properties.

One preferred embodiment of the present invention is a system to capture, transmit
and persist backup and recovery meta data. To simplify the following discussion we generally
show the invention in the context of a global backup system (GBS). As illustrated in the
various drawings herein, and particularly in the view of FIG. 1, the GBS 10 is depicted by the
general reference character 10.

FIG. 1-2 are functional block diagrams of an exemplary GBS 10 in accord with the
present invention. FIG. 1 emphasizes aspects within an enterprise network 12 that are of
particular importance to the ability of the GBS 10 to capture and transmit meta data for a
typical enterprise. FIG. 2 emphasizes aspects within a StorageConsoleTM system (SCS 14)
that are of particular importance to the ability of the GBS 10 to persist and manage the
backup and recovery meta data of the enterprise. The an enterprise network 12 and the SCS
14 communicate via the Internet and/or an enterprise intranet (generically, an I-net 16).

Turning now to FIG. 1, it shows how client servers 20, backup management servers
(BMS 22), an administrator system 24, and optional additional network devices 26
communicate via the I-net 16. For reference, the respective client servers 20 are client servers
20a-e and the BMS 22 are BMS 22a-b. Some examples of common additional network
devices 26 include routers, bridges, and firewalls.

There may by thousands of client servers 20 and BMSs 22 present in a typical
enterprise using the GBS 10, and the necessarily simplified embodiments shown in the
figures herein should not be interpreted restrictively. For example, two enterprises that use
present commercial embodiments of the GBS 10 for their complex network-backup needs are
the United States Patent and Trademark Office (USPTO) and Bank of America Corporation
(BOA). The USPTO is relatively concentrated geographically, whereas, BOA offices are
widely distributed all over the world. ,

Backup copies of data at the client servers 20a-b is backed up by BMS 22a and
backup copies of data at the client servers 20c-e are backed up by BMS 22b. Typically, such
backups are done on a regular schedule, such as 2 full copy of all files being made starting at
midnight of each working day. Another common schedule is for a full copy of all files to be
made weekly or monthly, with incremental daily backups. In an incremental backup, copies

are made of only those files that have changed since the last backup — sometimes since the

WO 2004/102325 PCT/US2004/014151

6
last full backup, sometimes since the last incremental backup.

The BMSs 22 communicate meta data and other backup information to the SCS 14, or
to other servers that store this information, in sessions conducted according to the well-
known hypet-text transport protocol (HTTP) or the much more secure HTTPS protocol.
Generally, all such sessions will be initiated by the respective BMSs 22. This isnot a
necessary requirement of the GBS 10, however, but rather a matter of prudent network
management for security purposes.

Some form of a network connection is typically used to convey information between
the BMSs 22 and the SCS 14. In some cases, the SCS 14 is located within an enterprise itself
and this communication can occur exclusively over the enterprise’s intranet. In other cases,
the SCS 14 is located elsewhere and communication occurs over the public Internet. The I-
net 16 generically represents these network connections.

Turning now to FIG. 2, the SCS 14 includes more optional network devices 26,
StorageConsole web servers (SC portal servers 30), optional internal firewalls 32, and
StorageConsole database servers (SC database servers 34). For reference, the respective SC
portal servers 30 are SC portal servers 30a-b and the SC database servers 34 are SC database
servers 34a-c.

In some embodiments of the invention, any BMS 22 may access any of the SC portal
servers 30; any SC portal server 30 may access any of the SC database servers 34; and the
meta data and other backup information associated with a particular BMS 22 may be stored
on any one of the SC database servers 34 or such information may be replicated on more than
one of the SC database servers 34a-c¢ so that there is a fallback to help ensure reliability of the
GBS 10.

Typically the SC portal servers 30 are coupled to the I-net 16 via one or more
instances of the optional network devices 26 (e.g., routers, switches, or firewalls), however,
this is optional. The SC portal servers 30 may be coupled via conventional network
equipment to the SC database servers 34, or via the optional internal firewalls 32 for added
security. Here as well, multiple instances of similar or identical equipment may be used to
have a fallback device available in case of problems, or may be used for balancing network
traffic. The optional network devices 26 and internal firewalls 32 and the use of the HTTPS
protocol may be less important for communication over a small, private and trusted intranet
than for communication that uses the vast, public and interception-prone Internet.

A SC portal server 30 may run on a machine that is separate from the SC database

server 34 or both may run on the same machine. If two different machines are used, then one

WO 2004/102325 PCT/US2004/014151

7
or more of the optional internal firewalls 32 may be used between the machines to increase
security. Firewalls are known in the art that can be configured to allow proper database
access commands and responses to pass through, but block other messages.

In some embodiments, all communication between the software used and the SC
portal server 30 occur via the Java data base connectivity protocol (JDBC). In such
embodiments, the internal firewalls 32 can monitor this traffic to ensure that all messages are
legal JDBC commands and responses.

With reference briefly also to FIG. 1, users access the GBS 10 via a user or system
administrator computer (an administrator system 24) that is coupled to the I-net 16. In FIG. 1-
2 the administrator system 24 shown is within the enterprise network 12, but this is not a
requirement, and one or more administrator systems 24 can be within the enterprise network
12, within the SCS 14, or otherwise coupled to the I-net 16. A user may be an ordinary or
individual uéer, who accesses the GBS 10 to request that one of his or her files be restored
from backup storage. Such a user may also be a system administrator who is responsible for
managing backup system in one or more enterprise networks 12 or for managing all or part of
the GBS 10.

FIG. 3 is a functional block diagram of another exemplary embodiment of a GBS 10,
particularly showing the communication paths used between two client servers 20a-b and a
BMS 22, as well as those used between the BMS 22 and a SC portal server 30.

Backup events occur periodically. In a backup event, client backup software 40
running on a particular client server 20a-b sends data and meta data to backup server
software 42 that runs on an associated BMS 22. Restore events occur on an occasional or as
needed basis. In a restore event, data is sent from the backup server software 42 of aBMS 22
back to the client backup software 40 of one of the client servers 20a-b served by that BMS
22. As cannot be overstressed, in a typical large enterprise there may be thousands of client
servers 20 and BMSs 22 present. The backup scenario just described can take place
thousands of times per day and the restore scenario just described can take place tens or
hundreds of times per day.

Various embodiments of the invention may be used in conjunction with various client
backup software 40 and backup server software 42. Such software includes but is not limited
to: the NetBackup products from VERITAS Software Corporation of Mountain View,
California; the LEGATO NetWorker products from LEGATO Systems, Inc. of Mountain
View, California; and the Tivoli Storage Manager products from IBM Corporation.

Typically the data transfer between the client backup software 40 and backup server

WO 2004/102325 PCT/US2004/014151
8

software 42 occurs via an enterprise intranet such as a local area network (LAN), but wide
area networks (WANS), storage area networks (SANSs), or other communication channels
may also be used.

The backup server software 42 on each BMS 22 receives the backup data and the
backup meta data and sends the restore data. Typically, the meta data for each backup and
restore event is stored in a catalog that is held on a disk drive 44 within the BMS 22.
Typically, the backup data is stored on one or more storage units 46, which may include but
are not limited to disk drives, tape drives, or “juke boxes”. A juke box holds a library of tapes
or other digital media and allows each to be individually selected, automatically positioned to
be active, and then read, written or both.

The backup server software 42 interacts with the GBS 10 by providing backup
statistics and meta data to a StorageConsole agent (SC agent 48) and by receiving restore
requests from the SC agent 48. The SC agent 48 is the software component of the GBS 10
that runs on the BMS. As discussed in detail presently, the SC agent 48 in the inventors*
presently preferred embodiment is implemented as three software components that run
largely independently.

The backup statistics that are communicated to and stored by the SC database server
34 may include, but are not limited to one or more of: the current inventory of media (tapes .
or other) held within a BMS 22; the current inventory of storage units 46 (tape drives, disk
drives, jukeboxes, or other) that are part of a BMS 22 ; the current utilization of the media
held within a BMS 22; or current utilization of the storage units 46 within a BMS 22.

The SC agents 48 communicate with the SC portal server 30 via initiating HTTP or
HTTPS sessions with a StorageConsole web portal (SC web portal 50). These sessions occur
over the I-net 16.

Because the communications occur via sessions that use the well-known and
commonly used HTTP or HTTPS protocols, no changes are required in routers, bridges,
firewalls, etc. (e.g., the optional network devices 26 shown in FIG. 1-2) or in other security
policies when the SC agents 48 are installed on BMSs 22. This substantially simplifies
installation, both the technical process of installing the SC agents 48 and the managerial or
information technology department of obtaining approval for installation of the GBS 10.

Further because communications occur via sessions that use the stateless HTTP or
HTTPS protocols, embodiments of the invention employing these protocols can have no
communication socket or channel open during or after communication. An open socket that

has already been authenticated, verified and allowed access is a major point of vulnerability

WO 2004/102325 PCT/US2004/014151

in the security of a network.

Tn the inter-process communication scheme depicted in FIG. 3, the BMS 22 becomes
a client of the SC portal server 30 by initiating a communication session. But preferably
never visa versa. That is, as a strong security practice, the SC portal server 30 need never
initiate any communication with a BMS 22. Because the BMS 22 need never responds to a
communication session that an external device is attempting to initiate, there is no way that a
curious person, a deliberate hacker or any kind of impostor can use such a communication
path to compromise the security of the BMS 22. This security feature is very advantageous
for enterprises that use the public Internet to communicate their meta data to SC portal server
30.

Nevertheless, this security feature is also advantageous for enterprises that use a
private intranet for such communication, in that the feature prevents a user with authorized
access to a portion of the enterprise’s servers or networks from using the meta-data
communication-path to illegitimately access other portions of the enterprise’s data. Few users,
if any, have access to all of the data on all servers of an enterprise.

The SC agents 48 send meta data for each backup event, meta data for each restore
event, and backup statistics to the SC web portal 50. Also, the SC agents 48 periodically poll
the SC web portal 50 to see if any restore operations have been requested for the BMS 22. If
so, they receive the details of what file or files are to be restored from what backup event.

The SC agents 48 may be software that is written in the Java (TM) programming
language. Such SC agents 48 are then more gasily ported to BMSs 22 using different
operating systems and different processors than SC agents 48 that are written in the C or the
C++ programming languages.

In some embodiments of the invention, the Java cryptography extension (JCE), the
Java authentication and authorization service (JAAS) or both may be used to implement some
of the security, authentication and encryption features of the GBS 10.

In some embodiments of the GBS 10, the Java code that is used in the SC agents 48 is
transformed by a process that obfuscates the code, that optimizes the code, or both. Such
processes include, but are not limited to those of: the DashO products from Preemptive
Solutions, Inc. of Cleveland, Ohio; or the J shrink product from Eastridge Technology of
Princeton, New Jersey.

The SC web portal 50 is the access point by means of which the SC agents 48 that run
on a BMS 22 access the SCS 14. The SC web portal 50 is also an access point by means of

which system administrators, ordinary users, or both may access the SC portal server 30.

WO 2004/102325 PCT/US2004/014151

10

In embodiments of the invention in which the HTTPS protocol 1s used, unauthornzed
access to the SC web portal 50 is prevented, or at least made very improbable, by the security
of HTTPS. HTTPS is based on the use of a secure sockets layer (SSL) and on public-key
encryption. Some embodiments of this protocol use 128-bit encryption, which makes
decrypting of an intercepted message unlikely using any presently known technique.

Some embodiments of the GBS 10 obtain the public key used for this encryption from
a digital certificate that authenticates the recipient of a message. A digital certificate is issued,
encrypted and signed by a trusted third party. Digital certificates make it highly unlikely that
an unauthorized imposture can appear cither to the SCS 14 or to one of the BMSs 22 to be the
other party in their communication channel.

In addition to or instead of using the HTTPS protocol or server certificates, some
embodiments of the GBS 10 use a “magic key” to authenticate the identity of each BMS 22
prior to granting any access to the SCS 14. The magic key is an encoded form of one or more
information tokens. At least one of the information tokens used has a unique value for each
BMS 22.

Information tokens used to form the magic key may include, but are not limited to: the
name of the BMS 22; the network or internet protocol (IP) address of the BMS 22; the name
of a server group that includes the BMS 22; a password that is manually entered into both the
SC agent 48 and the SC portal server 30 when a BMS 22 is first provisioned; or system
identification codes such as serial numbers or device identifiers that-are embedded in the
hardware or the low-level software of the BMS 22 (e.g.,a MAC address).

Various other embodiments of the GBS 10 use other security precautions and
procedures. These may include not allowing a user to access the SC web portal 50 until after
successful completion of a password protected login procedure. As another example, the SC
portal server 30 may include software “trip wires” to detect attempts at unauthorized access.

In the SC database server 34, StorageConsole software (SC software 52) maintains a
SC database 54 of the backup and restore meta data, the backup statistics and other relevant
backup information. In various embodiments of the GBS 10, this SC database 54 may be:
Java data structures; a relational database; a database implemented using the DB2 Universal
Database from IBM Corporation; a database implemented using the Oracle9i Database from
Oracle Corporation of Redwood City, California; or a database implemented using the SQL
Server from Microsoft Corporation.

FIG. 4 is a functional block diagram of yet another exemplary embodiment of a GBS

10, this figure particularly showing the communication paths and methods used between the

WO 2004/102325 PCT/US2004/014151
11

SCS 14 and the users of an enterprise’s computers, servers and networks. The user 60, who
may be a system administrator or who may simply be interested in requesting the restoration
of some of his or her own files, uses a computerized device 62 including a web browser 64 to
interact with the SC software 52 via the SC web portal 50. No special software is required on
the computerized device 62 employed by the user 60.
When the HTTPS protocol is used, the web browser 64 initiates or handles the
authentication, digital certificate and public key encryption involved, typically with little or
no involvement of the user 60.
The user 60 may initiate a status request and in response receive the appropriate
backup meta data from the SCS 14. The request may be for backup events that include a
specific file, files included in a specific backup event, or summary status information
including but not limited to a report such as is described with respect to FIG. 6, presently.
The user 60 may also initiate a restore request that a specific file or files be restored to a
client server 20 from a copy made during a specific backup event.
FIG. 5 is a data structure diagram or database schema (schema 70) suitable for storing
meta data, including the file details, according to an embodiment of the GBS 10. The schema
70 includes a file array or table (file table 72), a backup array or table (backup table 74), and
a link array or table (link table 76). . : '
The file table 72 contains one row for each file that is backed up within an enterprise.
The information or data fields within each row may differ in various embodiments of the
GBS 10. However, a typical set of fields for the file table 72 includes:
(1) A file ID of the file that is represented by this row, which is the key of the file
table 72. That is, this is the means by which a particular row can be uniquely
identified within and retrieved from the file table 72.

(2) A file type, which is one of “File”, “Directory”, or “Link to file or directory”.

(3) An owner of the file, which is information that can be used to provide accounting
information as to which owners are consuming how much of the resources of a
client server 20 or of a BMS 22.

(4) A server ID of the client server 20 on which the file is stored.

And (5), A file ID of the file table row for the parent directory that contains this file.

The backup table 74 contains one row for each backup event that is stored within the
enterprise’s BMSs 22. The information or data fields within each row may differ in various

embodiments of the GBS 10. However, a typical set of fields for the backup table 74

WO 2004/102325 PCT/US2004/014151
12

mcludes:

(1) A backup ID of the backup event represented by this row, which is the key of the
backup table 74. .

(2) A date and time at which the backup event started.

(3) A date and time at which the backup event ended.

(4) A count of the number of files that were backed up in this backup event.

(5) The number of bytes that were backed up in this backup event.

(6) A status for this backup event, including but not limited to “Successful,”
“Warning”, or “Failed”

And (7), A server ID of the client server 20 on which the files backed up are stored.

The link table 76 contains one row for each time that a particular file has been b—acked
up. The information or data fields within each row may differ in various embodiments of the
GBS 10. However, a typical set of fields for the link table includes:

(1) A file ID of the file that was backed up.

(2) a backup ID of the backup event during which this file was backed up. Taken

together, the file ID and the backup ID constitute the key of the link table 76.

(3) A size of the version of this file backed. up in this backup-event.

And (4), A data and time at which the version of this file backed up in this backup

event was last modified.

The ability to use the schema 70, or a suitable equivalent, is a particularly
advantageous feature of the present invention. In a typical enterprise the amount of meta data
may be simply staggering. Consider Bank of America Corporation, for instance. It has
currently has, roughly, fifteen thousand (15,000) BMSs 22 that perform backup jobs at least
monthly or weekly, and more typically daily and even more frequently. The quantity of meta
data produced each day alone easily amounts to terabytes, and it needs to be persisted day
after day, for months and possibly longer. Providing a database able to store such voluminous
data is not a trivial task, and getting any practical utility out of it would be near impossible.
Even backing up the backup/restore meta data in such a hypothetical case would be difficult.

What the inventors have appreciated, however, is that vast amounts of the meta not
change frequently, if ever. First, files are rarely added or deleted (even considering renaming
and deleting files as forms of this). Their “owners” (in operating system access control lists) -

and identifying characteristics for their client servers 20 and responsible BMSs 22 also rarely

WO 2004/102325 PCT/US2004/014151
13

change. As one simple other example of redundancy, consider at a listing 0t names with paths
for files in a deeply nested folder structure. All the path information is redundant, yet has to
be persisted in some manner. Accordingly, selectively collecting the meta data at the file
details level, vetting it, and then storing it in the tables in the schema 70 can facilitate matters
considerably.

The GP;S 10 permits selectively collecting file details by setting a flag, described in
detail elsewhere herein. In many cases administrators and other users will not want file
details, as contrasted with success/fail information, backup infrastructure change information
(e.g., additions and deletion of client server 20 or storage device 46 changes), and backup
policy changes.

It might on initial consideration seem that stripping our redundancy and otherwise
manipulating the meta data can be performed at the enterprise network 12, but that often
merits deeper consideration. Burdening the SMSs 22 is usually undesirable, and might even
interfere with backup and restore operations. And while.conserving communication
bandwidth is usually a good practice, many enterprises have excess high-speed bandwidth
available, particularly at off hours. The GBS 10 can therefore be implemented to stream
minimally manipulated meta data to the SCS 14, thus off loading much of the meta data
burden from the enterprise network 12. The SCS 14 can manipulated meta data as desired,
and can particularly be optimized for this.

The schema 70 then reduces the overall storage burden at the SCS 14. The file table
72 has entries for each file; the backup table 74 has entries for each backup, and the link table
76 has linking these. Thus, as a very simple and simplified example, a file table 72 might
have entries for 100 files with the backup table 74 having entries for 90 daily backups of
these files. The link table 76 would then have 9,000 entries. The inventors have found that the
schema 70 often permits storing the meta data in 10% or less storage that would otherwise be
required.

FIG. 6 is an exemplary status summary or mission control report (MCR 80) according
to an embodiment of the GBS 10. The first row of the MCR 80 shows the aggregate backup
status of a server 1 (i.e., a BMS 22). The second row shows the aggregate backup status of
servers 2-5 within a domain A, which in this example happens to be a hierarchical domain.
Domain A directly includes servers 2 and 5. Domain A also includes domain B, which
includes servers 3 and 4. Thus via the domain hierarchy, domain A also includes servers
number 3 and 4.

The next to last row of the MCR 80 here shows the aggregate backup status of a

WO 2004/102325 PCT/US2004/014151
14

server number N. And the last row shows an aggregate backup status of all the servers and
domains included in this MCR 80.

The first column of the MCR 80 shows the aggregate backup status during a custom
time interval. The custom time interval may be configured to be, as one example among
many, the time interval that started four weeks ago and ended two weeks ago. The second
column shows the aggregate backup status during the time interval from two weeks ago to
one week ago. The next seven columns show the aggregate backup status during the time
intervals that correspond to the last seven days. And the last column shows the aggregate
backup status of all time intervals included in this MCR 80.

Within each row and column the appropriate aggregate backup status is shown. The
status categories used, as well as the icons used to represent the status categories differ
among various embodiments of the invention. However, a typical set of aggregate status
icons includes:

(1) A smiley face — representing that all backup and restore-events for the
cotresponding server (or the corresponding domain) scheduled during the
corresponding time period were successful.

(2) A neutral face — representing that at least one backup or restore event for the
corresponding server (or domain) scheduled during the corresponding time
period generated at least one warning.

(3) A frowning face — representing that at least one backup or restore event for the
corresponding server (or domain) scheduled during the corresponding time
period failed.

(4) A running man — representing that the server currently has a backup or restore
event that is currently in process or running .

And (5), An empty circle — representing that no backup or restore events for the
corresponding server (or domain) occurred during the corresponding time

period.

FIG. 7 is a flow chart of a process 100 to capture and transmit backup and recovery
meta data according to an embodiment of the GBS 10. In this process 100, summary meta
data describing a backup or restore event, or backup statistics, are transferred from the
backup server software 42 on the BMS 22 to the SC software 52 at the SCS 14. This transfer
occurs via a SC agent 48 that runs on the BMS 22 and an HTTP or HTTPS session over a
network such as the I-net 16.

WO 2
004/102325 s PCT/US2004/014151

In a step 102, the process 100 starts.

In a step 104, the SC agent 48 obtains, from the data stream generated by the backup
server software 42, the summary meta data for backup or restore event, or the backup
statistics that are to be sent to and held in the SC database 54.

In a step 106, this data stream is then parsed into fields of meta data or backup
statistics.

In a step 108, the fields that are relevant to the GBS 10 are entered into one or more
data structures, which may be but are not limited to Java objects.

In a step 110, authentication information, such as a magic key and the objects or data
structures representing the relevant fields are serialized and compressed. This compressed
serial stream is then sent over the I-net 16 using the HTTP or HTTPS protocol to the SC web
portal 50 that is running at the SCS 14. This transfer process is complete as soon as a
message from the SC software 52 is received by the SC agent 48 that the information was
successfully received.

And in a step 112 the process 100 is done.

FIG. 8 is a flow chart of a process 200 to manage and store capture and received
according to an embodiment of the GBS 10. Tn this process 200, file details of backup or
restore meta data is transferred from the backup server software 42 on the BMS 22 to the SC
software 52 at the SCS 14.-This transfer occurs via a SC agent 48 that runs on the BMS 22
and an HTTP or HTTPS session over a network such as the I-net 16.

In a step 202, the process 200 starts.

In a step 204, the SC agent 48 obtains from a data stream generated by the backup
server software 42 the meta data for a batch of files that were involved in the backup or
restore event. The number of files processed in a batch, that is the number processed at one
time, is configurable, but several thousand files per batch may be a typical value. Upon
successful receipt of each batch of meta data, the SC software 52 sends back to the SC agent
48 an acknowledgement message. Thus, the size selected for the batches of files may impact
the process of automatically recovering from an exception.

In a step 206, this data stream is then parsed into fields of meta data.

In a step 208, the fields that are relevant to the GBS 10 are entered into one or more
data structures, including but not limited to Java objects. Each file may be represented as one
instance of the Java object or data structure.

In a step 210, the magic key and the objects or data structures representing the

relevant meta data for the batch of files are then serialized and compressed. The compressed,

WO 2004/102325 PCT/US2004/014151

16
serial stream is sent via the HTTP or HTTPS protocol to the SC web portal 50 that at the SCS
14.

In a step 212, a determination is made if there are more files in the backup or restore
event. This process 200 is complete as soon as a message from the SC software 52 is received
by the SC agent 48 that the information was successfully received, and in a step 214 the
process 200 is done. Otherwise, the process 200 continues at step 204 by looping back to get
the meta data for another batch of files as soon as such an acknowledgement is received.

The SC agents 48 may be implemented to be “light weight” or to have a small
“footprint” so that they do not consume much of the resources of the BMS 22 on which they
run.

The portion of the SC agents 48 handling file details can consume substantial
resources of the BMS 22 on which it runs, depending on the number of files for which details
must be gathered and transferred to the SCS 14. However, the impact of this is substantially
reduced in the GBS 10 by having this portion of the SC agent 48 only execute when a backup
or restore event terminates, and not when a polling or request message is received from the
SC portal server 30. Such a SC portal server 30 initiated or server pull communication
scheme could interrupt the BMS 22 while a backup or restore event is running, at which time
the resources of the BMS 22 are heavily utilized and the backup or restore meta data of
interest may be incomplete or unavailable.

Preferably, none of the SC agents 48 store data on the BMS 22 on which they run. Of
course, the SC agent 48 must itself be stored and information must be maintained while an
invocation of it is active, up until an acknowledgement is received of successful
communication with the SCS 14. Having the SC agent 48 store any data on the BMS 22
could result in the BMS 22 running out of storage capacity, which could cause performance
problems or even cause the BMS 22 to malfunction or crash.

There is a substantial contrast between the footprint of the SC agents 48 on the BMSs
22 on which they run and the footprint of the client backup software 40 on the client server
20 on which it runs. Backup events are typically scheduled when users are at home or not
working because much of the disk access bandwidth available on a client server 20 is
consumed by a backup event.

FIG. 9 is a flow chart of a process 300 for handling exceptions according to an
embodiment of the GBS 10. This process 300 occurs when a SC agent 48 running on a BMS
22 encounters exception conditions when sending data to the SC software 52 running at the
SCS 14.

WO 2004/102325 PCT/US2004/014151
17

As discussed above, the normal communication channel between the SC agent 48 and
the SCS 14 is for the SC agent 48 to initiate an HTTP or HTTPS session with the SC portal
server 30. The SC agent 48 sends to the SC portal server 30 the appropriate meta data or
other information, or sends the file details meta data for a batch of the files that are involved
in a backup or restore event. Then, the communication stays active within the SC agent 48
until it receives back from the SC portal server 30 a normal acknowledgement message, or an
ACK. Typically, the acknowledgement message received is an ACK, indicating that the data
has been successfully received and interpreted.

However, various other acknowledgement messages may also be sent from the SCS
14, depending on the information that was sent and on whether it was completely and
correctly received. An acknowledgement message may request that the information be resent
because it was only partly received or contained errors. An acknowledgement message may
request that additional information be sent, as is the case when a newly installed client server
20 is backed up. for the first time. It is also possible that no acknowledgement message is
received, perhaps because the information sent was not received or was received sufficiently
garbled form that the SCS 14 could not correctly identify the sender of the information.

When an ACK is not received or when a resend acknowledgement message is
received, the operation of sending the information is then repeated, according to a retry
interval and maximum count or according to a sc;hedule of when the communication is to be
retried. For example, a retry schedule may call for the first retry to be immediate, and then
each subsequent retry to occur after a time interval has elapsed that is longer than the
previous time interval. If an ACK is received in response to a retry, then the communication
is successful and the process 300 terminates.

When an ACK is not received within the retry limit or maximum retry count, then the
SC agent 48 escalates the exception and attempts to send the information via a secondary
fallback communication channel. If an ACK is received in response, then the communication
is successful and the process 300 terminates.

When an ACK is not received within the retry limit set for this channel, then the GBS
10 may escalate the situation to using a third-level, or even higher-level, communication
channel. If an ACK is received in response, then the communication is successful and the
process 300 terminates.

Various fallback communication channels are used in various embodiments of the
GBS 10, including but not limited to: using an alternative uniform resource locator (URL) or

IP address for the SC portal server 30; addressing a fallback SC portal server 30; or sending

WO 2004/102325 PCT/US2004/014151

18
the information using a protocol that is not HTTP or HT'TPS but is equally secure, non-
intrusive and light weight, such as the simple mail transfer protocol (SMTP).

When an ACK is not received within the retry limit or maximum count of the highest-
level communication channel, the SC agent 48 then again escalates the exception. The SC
agent 48 sends an e-mail message describing the exception to one or more designated
individual or generic e-mail addresses, such as “sys-admin,” “customer-exception-
report@StorageConsole.com,” or “packup-system-sustainment@my-enterprise.com.”

FIG. 10 is a flow chart of a process 400 to add a new client server 20 according to an
embodiment of the GBS 10. This process occurs when the SC software 52 running at the SCS
14 automatically provisions a client server 20 that has been newly added.

The SC software 52 detects that a client server 20 has been newly added when a SC
agent 48 sends backup or restore meta data pertaining to files stored on that BMS 22. When
meta data is received, the client server 20 involved is used as a lookup key in the meta data
database. Typically, the client server 20 is found in the database, in which case the newly
received meta data is added to the SC database 54.

When the client server 20 is not found in the database, then the SC software 52 sends
back to the SC agent 48 a request for basic information about the client server 20. This
request is sent along with, and is part of, the acknowledgement message sent in response to
receiving the meta data.

In various embodiments of the GBS 10, the basic information may include, but is not
limited to, one or more of the following: the name of the new client server 20; the IP address
of the new client server 20; the make of the new client server 20, e.g. Sun Microsystems, Dell
Computer Corporation, or the like; and the model of the new client server 20, e.g. Sun Fire
V1280, PowerVault 725N, or the like. None of this information need be manually entered
into the GBS 10.

When the basic information about the newly added client server 20 is received by the
SC software 52 from the SC agent 48, then the client server 20 is added to the SC database
54.

The GBS 10 uses a number of configuration settings that can be altered on a system
by system basis at the client server 20. T hese include, but are not limited to: whether or not
file details are entered into the SC database 54 for each backup and restore event; what
individuals can log into the SC web portal 50 and access the meta data or other information
about the new client server 20; and whether or not accounting of backup resource

consumption is performed by file ownership. The initial values used for the new client server

WO 2004/102325 PCT/US2004/014151

19
20 for these configuration settings are taken from the settings that are established for a default
server group within the enterprise.

After the basic information and initial setting values are stored into the SC database
54, the meta data received about the backup or restore event that occurred on the newly added
client server 20 is then entered into the meta data database. The SC agent 48 normally does
not need to resend this meta data, but the SC agent 48 may not receive an ACK for the meta
data transmission until the GBS 10 has provisioned the newly added client server 20 and
successfully stored the meta data received.

FIG. 11 is a block diagram showing an architectural overview of the infrastructure of
an exemplary GBS 10. There are two main infrastructure components: the backup
infrastructure 500 and the StorageConsole infrastructure (SC infrastructure 502). These two
components can reside within a single enterprise or they can be decoupled, with the SC
infrastructure 502 residing within one server enterprise and the backup infrastructure 500
residing in one or more number of client enterprises.

As noted above, in the inventors’ presently preferred embodiment the enterprise
networks 12 (i.e., in the backup infrastructure 500) each include a SC agent 48 that is actually
three major agents: an event agent 504, a restore event trigger 506, and a cron agent 508. A
data receiver agent 520 is used within the SCS 14 (i.e., in the SC infrastructure 502).
Collectively, these agents aid in the data collection, data consolidation and data mining of
information from BMSs 22 running various backup server software 42, which includes but is
not limited to Veritas NetBackup which is used for the sake of example here. The SC agent
48 interfaces and with the backup server software 42, to obtain the data utilized by the SC
web portal 50 (see e.g., FIG. 3).

In the backup infrastructure 500 of the GBS 10 the event agent 504, the restore event
trigger 506, and the cron agent S08 (comprising the SC agent 48) reside on the BMS 22 to
gather data based on activities performed by the backup server software 42.

The event agent 504 is implemented as a standalone Java daemon process which waits
for backups to be completed by the backup server software 42. As needed, the backup server
software 42 is configured to write backup event parameters to a log file at the end of a backup
event completion. This log file is monitored by the event agent 504. As soon as a iew entry is
made in the log file the event agent 504 starts to collect all of the information pertaining to
the backup job by calling the relevant NetBackup command line interfaces. For access
authentication purposes, a magic key is added to the information collected. The information

and key are then packaged into Java Objects, serialized, compressed and transported to the

WO 2004/102325 PCT/US2004/014151
20

data receiver agent 520 over HTTP/HTTPS. The data receiver agent 520 thus receives the
information pertaining to the backup job just performed by the backup server software 42.

When a restore job being is undertaken, the backup server software 42 is configured
to call the restore event trigger 506, which collects information pertaining to the restore job
and sends it to the data receiver agent 520.

The restore event trigger 506 as a process is event driven, in the sense that instances
of it are transient processes. They startup, perform the required operation, and terminate, thus
imposing minimum load on the BMS 22.

The cron agent 508 is implemented as a standalone Java daemon process that spawns
threads based on the jobs declared in a crontab file the GBS 10 maintains. The cron agent 508
currently spawns five threads, one each for five jobs or child agents (child agents 510),
discussed presently.

The SC software 52 includes Java servlets residing on the SC Portal server 30. These
respond to requests from event triggers from the event agent 504 and the restore event trigger
506 and the child agents 510 of the cron agent 508 that reside on the BMS 22 as parts of the
SC agent 48.

The data receiver agent 520 is one such Java servlet. It is configured to listen for
requests from the event triggers 504, 506 and child agents 510 on the BMSs 22. On receiving
a request, the data receiver agent 520 decodes the informatibn and determines what type of
request it has. Once the type of the message has been deciphered, the data in it is
authenticated, decompressed, de-serialized and persisted into the SC database 54.

A job queue agent 522 is the other major Java servlet residing on the SC Portal server
30. The job queue agent 522 gets polled by other agents, such as the restore scheduler child
agent 510 to initiate new restore jobs, which the initiating agents then process and perform.
The job queue agent 522 is configured to return restore jobs that are pending for execution on
the BMS 22. The restore jobs are packaged into an XML document, and transferred to the
restore scheduler child agent 510 in the cron agent 508. The restore scheduler child agent 510
in turn processes the restore jobs one at a time, and sends back the job status to the job queue
agent 522, which then are persisted into the SC data‘base 54.

The GBS 10 employs an architecture that provides a unique way of handling backup
server software 42 from different backup software vendors. Each major backup software
vendor today uses a non-standard interface to its application. Further, even these applications
are not entirely consistent from version to version. These factors pose a huge obstacle for

enterprises that have different backup software to contend with. And they pose an even

WO 2004/102325 PCT/US2004/014151
21

greater problem to a system like the GBS 10, since it has to contend with this variety of
backup server software 42 and do so seamlessly from a user’s perspective.

One approach would be to write code to make the SCS 14 interact independently with
each type of backup server software 42. However, this would increase development cycle
time, and also propagate increase in design, testing, and maintenance cycles. Instead, the
inventors have crafted an adaptor architecture to reside in the enterprise network 12 and
provide the SCS 14 with a single interface to the various backup server software 42.

FIG. 12 is a block diagram showing another architectural overview of an exemplary
GBS 10. A single interface show here as a backup adaptor interface 530 exposes methods to a
wide range of objects and operations, which are standard components of the backup server
software 42, such as standard Backup Event, Restore Event, Backup Policy, Drives, Tapes,
etc. components.

Because the backup adaptor interface 530 is well defined, sub-adaptors 532 for each
of the various backup software applications can easily be.developed. These sub-adaptor 532 - -
objects implement methods defined by the backup adaptor interface 530, and interact with a
respective backup product (backup server software 42 instance) by calling the product’s
command line interface (CLI). A sub-adaptor 532 object decodes the data returned by calls to

-the CLI and populates this data into fields defined by the backup adaptor interface 530. .

. This architecture minimizes changes to the SCS 14, in the event that an underlying
backup product changes. Additional backup products can also easily be supported by
developing new sub-adaptors 532 as new backup products emerge. ,

Turning now to the event agent 504, the backup server software 42 is configured so
that a backup event trigger is called in the event of a backup job being completed. This
backup event trigger in turn collects all the information pertaining to the backup job by
calling relevant command line interfaces to the backup server software 42. The information
collected is next packaged into Java Objects, serialized, magic keyed, compressed and
transported to the data receiver agent 520, thus providing the data receiver agent 520 with the
information pertaining to the backup job.

FIG. 13A-D are a flow chart depicting an example backup process 600 using
NetBackup as exemplary backup server software 42. In a step 602, a backup job is performed
on a BMS 22 using NetBackup. In a step 604, NetBackup completes the backup job and calls
a script (e.g., “$NETBACKUP HOME/backup_exit_notify”) that writes the client name,
class label, schedule label, schedule type, status and stream number to a log (e.g.,
$APTARE_HOME/mbs/logs/backups.lst”). In step 606, the event agent 504 monitors the log.

WO 2004/10
2325 2 PCT/US2004/014151

If the event agent 504 observes an addition to the log, it reads the backup parameters,
initializes a backup driver, and starts a new thread to process this backup event.

In a step 608, the backup driver initializes a BackupEvent object and in a step 610 the
BackupEvent object makes a determination if the backup job was successful.

If the job is determined to be successful, in a step 612 the BackupEvent object calls
the NetBackup command line interface (CLI) to query data about the backup job and sets its
status to “Success”. In a step 614 the BackupEvent object populates itself with the backup job
data. Alternately, if the job is determined to be unsuccessful, in a step 616 the BackupEvent
object sets its status to “Failed”.

Then, in a step 618, a BackupDetailsGenerator initializes connection to the data
receiver agent 520 running on the SC portal server 30 and in a step 620 data transfer
commences in an iterative manner as long as the transfer is successful or a loop count is less
than a pre-set max error count (a “while condition”).

In a step 622, the BackupEvent object is transferred to the data receiver agent 520 and
the data receiver agent 520 processes the data and sends back an acknowledgement (ACK).

In a step 626, a determination is made if the ACK indicates the status of the
BackupEvent object is “Success”. If so, in a step 628 a branch (1a) is followed, described -
presently. Otherwise, in a step 630 a determination is made if the ACK indicates an invalid
server exception-or an invalid TP address exception. If so, in a step 632 a branch (2) is
followed, described presently. Otherwise, in a step 634 a determination is made if the ACK
indicates an invalid policy name exception or an invalid schedule name exception. If so, a
sub-process 636 is called to collect backup policy data, also described presently. And
otherwise, step 620 is returned to for another iteration (L loop).

Picking up now with the branch (1a) in step 628, this leads to a step 640 where a
determination is made if file level details are to be collected from the BMS 22. One way to do
this is to store flags in the SC database 54. Flags can indicate whether as little as one
particular file or as much as all of the files and folders under a BMS 22 are of interest. of
course, many millions of files and folders will usually be under a single BMS 22 and billions
may be present in even a medium sized enterprise, so setting the flags permits administrators
to configure the GBS 10 as they feel efficient and necessary.

Tf the ACK contains a flag indicating the BMS 22 has file level details, a sub-process
642 is called to collect the file level details, discussed presently. Otherwise, in this
implementation, the sub-process 636 is here also called to collect backup policy data and,

after that, in a step 644 the process 600 terminates.

WO 2004/102325 PCT/US2004/014151

23

Picking up again in step 620, only now considering the case that the “while condition”™
is not met, in a step 650 a determination is made if transfer has not been successful and the
loop count is equal or greater than the pre-set max error count (i.e., that here has been a
serious failure). If so, in a step 652 an e-mail advisement is sent to an appropriate party, and
step 644 is proceed to, where the process 600 terminates.

Picking up finally with the branch (2) in step 632, this also leads to step 652, from
there to step 644 and termination of the process 600.

FIG. 13C particularly shows the sub-process 636 that collects backup policy data. In a
step 660, the backup driver (at the BMS 22) initializes a BackupPolicy object. In a step 662,
the BackupPolicy object calls NetBackup CLIs to populate itself with policy data. And in a
step 664, the BackupDetailsGenerator initializes connection to the data receiver agent 520
running on the SC portal server 30.

In a step 666, data transfer commences in an iterative manner as long as the transfer is
successful or a loop count is less than the pre-set max error count (a “while condition”).

In a step 668, the BackupPolicy object is transferred to the data receiver agent 520,
which processes the data and sends back an acknowledgement (ACK).

In a step 670, a determination is made if the ACK. indicates success in persisting the
policy data into the SC database 54. If so, the sub-process 636 is finished. Otherwise, step
666 is returned to for another iteration (H loop).

Picking up again in step 666, only now considering the case that the “while condition”
is not met, in a step 672 a determination is made if transfer has not been successful and the
loop count is equal or greater than the pre-set max error count (i.e., that here has been a
serious failure). If so, the branch (2) to step 652 (FIG. 13B) is followed. Otherwise, in a step
674 a branch (4) is followed that leads out of the sub-process 636 to step 618 (FIG. 13B) in
the main part of process 600.

FIG. 13D particularly shows the sub-process 642 is called that collects the file level
details. In a step 680, the backup driver (at the BMS 22) initializes a FileDetails object. In a
step 682, the FileDetails object calls NetBackup CLIs and initializes a FileDetailsStream.
And in a step 684, the BackupDetailsGenerator initializes connection to the data receiver
agent 520 running on the SC portal server 30.

In a step 686, data transfer commences in an iterative manner as long as the transfer is
successful or a loop count is less than the pre-set max error count (a “while condition”).

In a step 688, data transfer continues in an iterative manner as long as the

FileDetailsStream has data (also a “while condition™). In a step 690, the FileDetailsStream

WO 2004/102325 PCT/US2004/014151

24
initializes a FileAttributes object for each line from the NetBackup Image catalog for the
given backup event, and in a step 692 the FileAttributes object is transferred to the data
receiver agent 520, which processes the data and sends back an acknowledgement (ACK).
And then step 688 is returned to for another iteration (J loop).

Next considering the case of data no longer being present in the FileDetailsStream, in
a step 694 a determination is made ifthe ACK indicates success in persisting the data into the
SC database 54. If so, the sub-process 642 is finished. Otherwise, step 686 is returned to for
another iteration (K loop).

Picking up again in step 686, only now considering the case that the “while condition”
there is not met, in a step 696 a determination is made if transfer has not been successful and
the loop count is equal or greater than the pre-set max error count (i.e., that here has been a
serious failure). If so, the branch (2) to step 652 (FIG. 13B) is followed. Otherwise, in step
674 the branch (4) to step 644 is followed that leads out of the sub-process 642 to step 618
(FIG::13B) in the main part of process 600. -

Turning now to the restore event trigger 506, the backup server software 42 is
configured to call the restore event trigger 506 in the event of a restore job being completed.
The restore event trigger 506 in turn collects all the information pertaining to the Restore Job
by calling relevant command line interfaces (CLIS) to the backup server software 42. The
information collected is then packaged into Java Objects, serialized, magic keyed,
compressed and transported to the data receiver agent 520, thus providing the data receiver
agent 520 with the information pertaining to the backup job.

FIG. 14A-B are a flow chart depicting an example restore process 700, again using
NetBackup as backup server software 42. In large part, process 700 resembles process 600
described above. In a step 702, a restore job is performed on a BMS 22. In a step 704,
NetBackup completes this job and calls a standard script (e.g.,
$NETBACKUP HOME/restore_notify) once the restore is completed. ThlS starts a special
script (e.g., $APTARE HOME/mbs/bin/restoretrigger.sh), passing it the client name and the
event time stamp (so the GBS 10 can identify the particular backup event). In a step 706, the
special script then initializes a RestoreDetailsGenerator class that loads a backup driver
specific to the type of backup server software 42 that performed the backup.

In a step 708, the backup driver initializes 2 RestoreEvent object and in a step 710 the
RestoreEvent object makes a determination if the backup job was successful. If the job is
determined to be successful, in a step 712 the RestoreEvent object calls the NetBackup

command line interface (CLI) to query data about the restore job and sets its status to

WO 2004/102325 PCT/US2004/014151

25
“Success”. In a step 714 the RestoreEvent object populates itselt with the restore job data.
Alternately, if the job is determined to be unsuccessful, in a step 716 the RestoreEvent object
sets its status to “Failed”.

Then, in a step 718, the BackupDetailsGenerator initializes connection to the data
receiver agent 520 running on the SC portal server 30 and in a step 720 data transfer
commences in an iterative manner as long as the transfer is successful or a loop count is less
than the pre-set max error count (a “while condition”).

In a step 722, the RestoreEvent object is transferred to the data receiver agent 520 and
the data receiver agent 520 processes the data and sends back an acknowledgement (ACK).

In a step 724, determination is made if the ACK indicates success in persisting the
restore data into the SC database 54. If so, process 700 is finished. Otherwise, in a step 726 a
determination is made if the ACK indicates an event does not exist exception. If so, a sub-
process 728 processes the RestoreEvent object for the given event ID. And otherwise, step
720 is returned to for another iteration (K loop).

Picking up again in step 720, only now considering the case that the “while condition”
is not met, in a step 730 a determination is made if transfer has not been successful and the
loop count is equal or greater than the pre-set max error count (i.e., that here has been a
serious failure). If so, in a step 732 an e-mail advisement is sent to an appropriate party, and
in a step 734 the process 700 is exited.

With reference again to FIG. 11, the cron agent 508 is implemented a standalone Java
demon process, which spawns threads for its child agents 510 based on the jobs declared.in a
Crontab file. Currently, the inventors have the cron agent 508 spawn multiple threads (e.g., 3
or more, one each for various jobs (child agents 510), namely the Restore Scheduler, Tape
Inventory, Tape Details, Tape Status, and other. Each of these child agents 510 is configured
to run at particular time intervals.

The restore scheduler child agent 510 is initiated to poll the job queue agent 522 to
determine if a restore job is pending for its BMS 22. If so, the restore scheduler calls the
backup server software 42, via its CLL, to initiate that restore job.

The tape inventory child agent 510 is initiated to call the backup server software 42 to
gather a list of the robots and tape drives present on its BMS 22. The tape details child agent
510 is initiated to call the backup server software 42 to gather a list of the tapes in a tape
Jibrary on its BMS 22. The tape status child agent 510 is initiated to call the backup server
software 42 to gather the status of the tapes within the tape library. The policy details child
agent 510 captures all of the backup policies that are maintained by the backup server

WO 2004/102325 PCT/US2004/014151
26

software 42. The backup polices define rules that the backup server software follows when
backing up the client servers 20. The étorage unit details child agent 510 captures all of the
storage unit details from the backup server software 42. In backup server software 42, such as
NetBackup, a storage unit is a group of one or more storage devices 46 of a specific type and
storage density in a BMS 22. The information from these child agents 510 is collected,
packaged into Java Objects, serialized, magic keyed, compressed and transported to the data
receiver agent 520.

The smart updater child agent 510 pools the data receiver agent 520 in the SCS 14 for
updates to the core libraries in the SC database 54. In the case it finds newer version of the
core library, the smart updater automatically downloads it and re-starts the cron agent 508
and the event agent 504.

As mentioned previously, the data receiver agent 520 is implemented as a Java servlet
that is configured to listen for requests from the event triggers 504, 506 and the child agents
510 of the cron agent S08 on the BMSs 22. On receiving a request; the data receiver agent
520 decodes the information and determines what type of request it has just received. Once
the type of the message has been deciphered, the data is authenticated, decompressed, de-
serialized and persisted into the SC database 54.

FIG. 15A-C are a flow chart depicting a suitable flow process 800 for the data
receiver agent 520. In a step 802, the data receiver agent 520 receives a request from the
event triggers (the event agent 504 or the restore event trigger 506) or a child agent 510 of the
cron agent 508. In a step 804, the request type, compression and source are determined, and
un-compression is performed as needed. In a step 806, whether the source of the request is
authorized and authenticated is determined, and appropriate action is taken. In a steps 808-
822, determinations are made about the request type and appropriate branches are followed
for further process. If none of the types are proper, however, in a step 824 a message that an
illegal request has been made can be sent back, and in a step 826 the process 800 returns
control to the SC portal server 30 for other tasks.

If the request type was “EVENT”, in a step 830 the BackupEvent object in the request
is de-serialized. Then, in a step 832 a DbBackupEvent object is initialized to persist the
BackupEvent object into the SC database 54. Next, in a sub-process 834, any error codes are
processed. If there were no error codes, in a step 836 the data receiver agent 520 sends a
message that persisting the BackupEvent object was successful, and in a step 838 the process
800 returns control to the SC portal server 30 for other tasks.

'If the request type was “POLICY”, “FAILURE”, “RESTORE”, “TAPE DETAILS”,

W
0 2004/102325 ’; PCT/US2004/014151

«[NVENTORY DETAILS”, or “TAPE STATUS” (branches “3” through "8 1n F1G. 154)
the steps are effectively the same. The object is de-serialized; a Db-type object is initialized
to persist the received object into the SC database 54; the sub-process 834 looks for and
processes any error codes (these can vary as needed, say, if processing “TAPE DETAILS”
could result in particular error codes); if there were no error codes, the data receiver agent
520 sends an appropriate message that persisting the object was successful; and the process
800 returns control to the SC portal server 30 for other tasks.

Tf the request type was “FILE”, however, a slightly different approach is used. Ina
step 840 the FileDetailsLine object in the request is de-serialized. Then, in a step 842 a
DbFileDetails object is initialized to persist the FileDetailsLine object into the SC database
54. Next, in steps 844-846, any error codes are processed, and in a step 848 the process 800
returns control to the SC portal server 30. If there were no error codes, in a step 850 the data
receiver agent 520 sends a message that persisting the FileDetailsLine object was successful,
and in step 848 the process 800 returns control to the SC portal server 30.

With reference again to FIG. 11, every child agent 510 of the cron agent 508 may be
implemented with an automatic recovery feature, to execute in the event of an exception
condition pccurring during the transmission of meta data from its BMS 22 to the data receiver
. agent 520. The child agent 510 tries to transmit the meta-data to the data receiver agent 520 a
configurable number of times, or until the child agent 510 receives an acknowledgement from
the data receiver agent 520. The interval between the retries is also a configurable parameter.
The default data transmission mechanism is Java object serialized over HTTP(s). The re-try
logic uses this data transmission mechanism to transfer the data, but in the event of a
communication failure, the child agent 510 tries to use an alternate transmission mechanism.
The alternate mechanism used may be transmitting data over SMTP (Simple Mail Transfer
Protocol). An email message containing the textual representation of the meta data can be
sent over SMTP to the data receiver agent 520. This alternate transmission mechanism is
used to transmit the data a configurable number of times, or until the child agent 510 receives
an acknowledgement. If the child agent 510 is still unsuccessful in transmitting the data, an
email message containing a suitable error message, ¢.g., the possible cause and source of the
message, is sent to an appropriate party.

As was discussed previously, the backup event agent 504 transmits backup event
related meta data to the data receiver agent 520, where the backup event is related to the
client server 20 that was backed up by the backup management server. The data receiver

agent 520 validates the information about the client server 20 that is part of the backup meta-

WO 2004/102325 PCT/US2004/014151
28

data. In the case the client server 20 does not exist in the SC database 54, however,
information for the client server 20 can be automatically added into the SC database 54.
These is 'straightforward, since the client server 20 is also associated to the default server
group that its BMS 22 belongs to. The same can happen when a new client server 20 1s
encountered as the data recei)ver agent 520 processes restore event meta-data.

The foregoing drawing figures and descriptions are not intended to be exhaustive or to
Jimit the invention to the forms and embodiments disclosed. Rather, specific details are
presented to illustrate the invention. In light of the teachings herein, the techniques known to
those skilled in the art, and advances in the art yet to be made, numerous modifications,
variations, selections among alternatives, changes in form, and improvements can be made to
the invention. Thus, the breadth and scope of the invention should not be interpreted in a
Jimited manner, and should be defined only in accordance with the following claims and their

- equivalents.
INDUSTRIAL APPLICABILITY

The present invention is well suited for application to capture, transmit and persist
backup and recovery meta data. As has been described herein in the context of the global
backup system (GBS 10), various embodiments of the invention, provide methods and
) apparatuses for one or more of the following: for providing a centralized repository'for meta
data and related communication and control mechanisms; for efficiently storing and
retrieving the meta data at the StorageConsole server (SCS 14); for securely and efficiently
transferring meta data and other backup information over a network (I-net 16); for reducing
the footprint on the backup management servers (BNSs 22) of a StorageConsole agent (SC
agent 48) that directs the process of gathering the meta data and sending it to the SCS 14; for
automatically recovering from exceptions, or for automatically provisioning a client server 20
that is newly added to the enterprise; and for meaningfully representing and presenting the
status of the GBS 10. .

On request, some embodiments of the invention display an array of aggregated status
indicators. The aggregated status indicators are displayed in what is termed herein a mission
control report (MCR 80).

Rows of the array of aggregated status indicators correspond with servers within the
enterprise. or correspond with domains where each domain contains multiple servers.

Columns of the array correspond with time intervals, including but not limited to a particular

WO 2004/102325 PCT/US2004/014151

29
day or week. Aggregated status indicators within cells of the array display the aggregated
status of every backup or restore event that occurred for the server(s) or domain(s) that
correspond to the cell during the time interval that corresponds to the cell.

Aggregated status indicators may have various iconic shapes and colors; for example,
a green smiley face may indicate that all scheduled backup and restore events were
completely successful, a yellow neutral face may indicate that at least one backup or restore
event generated a warning, and a red frowning face may indicate that at least one of the
events failed. By looking at the array of aggregated status indicators, the system administrator
can see at a glance a meaningful representation of the current status of the backup system for
which he is responsible.

Some embodiments of the invention meet the need for efficient storage and retrieval
of meta data by appropriately structuring the meta data in a relational database or in a similar
data structure (the SC database 54). This employs a schema 70 that includes a file table 72, a
backup table 74, and a link table 76.

The file table 72 contains one entry or row for each separate file, folder or link (also
known as a shortcut) on a server that is backed up. The backup table 74 contains one row for
~ each backup event. The link table 76 contains one row for every occasion on which any file
was backed up, where each row in the link table 76 contains a pointer to the file-table row for
that the file that was backed up and also contains a pointer to the backup-table row for the
backup event in which the file was backed up.

. The link table 76 may grow to be very large. For example, if an enterprise has 50,000
files that are fully backed up once a day and the backup copies of the files are kept for 180
days, then the link table 76 will contain 9 million entries. Such a large number of potential
entries makes it particularly advantageous that each row in the link table 76 is small. Each
link-table row is small because it points to, but does not duplicate, the meta data about the file
involved and the meta data about the backup event involved.

Further, finding all backup events that include a particular file can be efficiently
performed. Such a find operation consists of selecting those entries in a link table 76 that
contain a pointer to the corresponding file-table row.

Some embodiments of the invention meet the need for efficient and secure transfer of
meta data and other backup information by using the secure hyper-text transfer protocol (S-
HTTP or HTTPS), by using public keys in the HTTPS communication that come from digital
server certificates that are signed and verified by a trusted third party, by initiating

communication only from the BMSs 22 to the SC portal server 30 and never the other way

WO 2004/102325 PCT/US2004/014151
30

around, or by including in each message that initiates a communication session an identity
verification tag or magic key that is unique to the BMS 22 initiating the session.

Because a BMS 22 never responds to a communication session that an external device
is aftempting to initiate, there is no way that a curious person, a deliberate hacker or any kind
of impostor can use this communication path to compromise the security of any BMS 22.

The magic key used some embodiments of in the GBS 10 is an encoded form of
information tokens. At least some of the information tokens have unique values for each
BMS 22, making it unlikely that a communication session can be accidentally or maliciously
initiated from any device other than the BMS 22 that purports to initiate the session.

Some embodiments of the invention meet the need for reducing the footprint on the
BMSs 22 of the process of gathering the meta data and sending it to the SC portal server 30
by running only light-weight software on the BMSs 22 as the SC agents 48.

The footprint of the SC agents 48 is reduced by using one or more of the following
techniques: by executing only when a backup or restore event terminates, and not when a
polling or request message is received from the server; by communicating with the SC portal
server 30 only via HTTP or HTTPS sessions initiated by the SC agent 48, and not allowing
the SC portal server 30 to initiate communications; and by storing data only at the SCS 14
and not storing any data on any BMS 22.

Some embodiments of the invention meet the need for automatically recovering from
exceptions by expecting an acknowledgement message in response to every communication
that occurs over the I-net 16 (Internet and / or intranet), and then retrying the communication
until such an acknowledgement is received.

The interval between retries, or the schedule of time intervals to be used between the
retries, can be configured. A maximum number of retries can be set. If this number is
exceeded without a successful acknowledgement, then the GBS 10 initiates communication
via a secondary channel. In some embodiments, this escalation process can be repeated as
needed, that is, if the secondary-channel communication is not acknowledged then it is tried
again and if necessary third-level fallback channels, and so on, are used.

Such fallback communication channels may include, but are not limited to: accessing
servers via alternate communication links; accessing alternate servers; or sending e-mail
messages describing the failure to one or more designated e-mail address. The use of these
escalating or fallback communication channels allows the GBS 10 to recover from many
exceptions without loosing the integrity of the meta data, without loosing the ability to

communicate, and with a minimal amount of intervention from system administrators.

WO 2004/102325 PCT/US2004/014151
31

Some embodiments of the invention also meet the need for automatically provisioning
a client server 20 that is newly added to an enterprise. If in the course of a processing a
backup or restore event, it is determined that a client server 20 has no entry in the SC
database 54, an acknowledgement message can be sent back to the SC agent 48 that both
confirms correct receipt of the meta data for the event and that further requests that the SC
agent 48 gather the basic information necessary to enter the new client server 20 into the SC
database 54.

These embodiments can further be implemented to automatically add basic
information to the SC database 54 and to assign new client servers 20 to the default group of
BMSs 22 that were established when an enterprise was initially set up to use the SCS 14.
Initial values used for a new client server 20 for configuration settings that can be altered on a
system by system basis can be taken from established client servers 20 for a default BMS 22
within the enterprise network 12.

For the above, and other, reasons, it is expected that the global backup:system (GBS
10) of the present invention will have widespread industrial applicability. Therefore, it is
expected that the commercial utility of the present invention will be extensive and long

lasting.

WO 2004/102325 PCT/US2004/014151
32

CLAIMS

What is claimed is:
1. A system to capture, transmit and persist backup and recovery meta data over a network,
comprising:

an agent to capture the meta data at a computerized backup management system;

said agent to transmit the meta data from said backup management system to a storage
console portal system; and

said computerized console portal system including a database to store the meta data,

thereby capturing, transmitting and persisting the meta data.

PCT/US2004/014151

WO 2004/102325

1/21

SaSNOdS3Y (S)dLLH

SISNOdSTY (S)dLLH

wio)shs
wi 2josuod
-afel03}s

s1s3ano3y (S)dLLH

s1s3ano3y (S)dLLH

ot

jouesu]
asudiajuzy

10 | pue

jousaiu]

ol

. \ s1s3Nno3ay (S)dL1H

L "Oid

SaSNOdS3Y (S)d.LLH

(jeuonndo)

aayndwo)
"ulwupy
wojshAs
10 19sM)

G "ON
IOAIDS
Jusalld

e,

Z 'ON

| __——>1 JI9AISS

JWB N

¥ "ON
I9NIDS
3ualld

80¢
'0¢

Ngm
'0¢

€ "ON
FEY VT
3ualld

‘0T

(s)oo1n2Q@
yiomjoN |&—| dmided
40 | pue
(s)iremautd
asudiajuzy qzz'ze _
\\\W
I "ON
FEY VT
JwbN
— dnyoeg
14 IW

€ 'ON
I9AI9S
3uald

TAA A h

I "ON
FEYVETS
3ualld

PCT/US2004/014151
2/21

WO 2004/102325

s3ISNOd4SIY ogar c ..0_u_

S3aASNOdSIY (S)dL1H

S3ISNOJS3Y (S)dLLH
S3ISNOdS3Y (S)d.LLH

opE YE
)

m l°z =
19AIDS ._M >szm
asegejed aom
ajosuo?d sj0SuoD
-obeioys —=> —=> -obei0}S ~—
(reuonndo)
zZoN | (3d0) | qog'oe —/ jouesu| (s)romIoN
FEY VLT (s)ed1n0@ osudiajuzy asudiayugy
asegejed (s)huem Mi0M)ON 10 | pue)
ajosuoy H—> n.:mv....m_..u_: 1o / pue jousa)u]
ave -obe103g [) (s)iemaand
‘we /] jeuaayxsy a1 AN
. L "ON
} '"ON < <—| ion08 [S—
FEYNETY qom
asegejed | etosuog
ajosuo) -obe10}s s1s3no3y (S)dLLH
-abei03}s
T
Wy — c0c 08— — $183N03Y (S)dLLH

vl \ SANVINNOD 99ar SLs3aNDIY (S)dilH /
ol

PCT/US2004/014151

WO 2004/102325

3/21

ﬂ'
L0

viva

geesssses R viva
' 19AI9S G9M | 0 icay VAE
' ajosuogabheio}s | dayove
(] [
]
m 05 "
: le3iod
[N =
ajosuo)d '
' - 1SIN03Y
0¢ nmL" abeioys /™ ayoLS3Y
: :
:)
oococsaeoaeen ooeeoe®
S3ISNOdSTY T
SANVININOD
ogar oaar
R A 1s3ano3y
' ' Fyo.Ls=d
: -5 ' ONIGN3d
' ¥od 110d
: 21em3}jos m
' ajosuon '
m -obel103}s H YHOMISN
’ ‘
: : —
' ¢ 9l
“ “
: oju| '
m dmyjoeg '
] pue ejeq | m
o B30l : or
[]
=
[]
[}

14 m 1on19g aseqejeq

' ajosuonobelols !

L

/

-

€ "9old

8y

jyuaby
ajosuo)
-abei103}s

viva 1s3N0O3Y
\AE | FHOLSTY »

dn)ovd

kA7

2Jem)jos
dnyoegd

Bojeyed

sa921A9(d
abei0}s

OO

| "ON 49AI3S |
by dnyoegd m

viva
VAL

2 viva
dnNMovd

viva

“‘sz----

viva

E

FO.LSIA

HO.LS3Y

viva
Y13

? viva
dnMova

d0¢

S —

aiemipjos
jualo

dmyoeg /N 0F
.
[]
[}
' .
i [oeq]
' s
H = !
H C'ON'!
\ Jd9Al9g JuUdl) |
'
[]
[]
[}
[}
21eMm)jos
3ualld
dnyoeg
1)

| 2
19AI9S JUDI[D ¢

4/IN

o
Z

B0¢

PCT/US2004/014151

WO 2004/102325

4/21

ajosuopohieiols

05
|eyiod G9M
ajosuo)
-abei103}s

0¢

SASNOdSTY
oqaar

' 1s3No3d
F40.LS3Y

viva v.i3in
SNLV1S

ANVININOD
odar

k4]
aiemyjos
ajosuo’n
-ahei103}s

oju|

dnyoeg

pue ejeq
ej}oiN

O

"

%W. (S

1s3aNnO3d
SNLVLS

12°]

1oni9g aseqejyed !
ajosuogabelo}s |

WI0OM}ON

v "9ld

9
Josmoug

qom

auyoe 19sn
toe-

N@...HN..-!.:.-.-

09

lojensiuiuupy
walsiAs
10
imsn

s

PCT/US2004/014151

WO 2004/102325

5/21

aji} @Y} s2103S
jey3 19A19S JUdI|D
ay3 jo @] 19NIDS

snjejs dnyoeg .
dn payoeq sajAg

dn pa)oeq
S9|1} JO JGUINN o

popua dn)yoeq
auwn @ 9ajeq »

pajie)s dnyoeq
awn) g ajeq o

(Aax) @l dmyoeg .

ajqel dnyoegd

S "Old

payipow jse|
awi} g 9)eq o

az1s 3|4

(Kay) @i dmydeq

(Kox) a1 =214

ajqeL juli

o)
omi\

)

Kio)o241p
juaaed jo @l 21id

o1} 9y} S2103}S
jey} I19AI19S JuUdI|D
ay3 Jo @] I9AIDG .

oj1} 9Y3} JO IDUMQ o
Ki1o03o2941p 10
a1} 03 Huri -
fioyo011Qq -
old -
:jo auo - adA} 3|1 »

(Kox) al 21id »

ajqel 9id

u$

PCT/US2004/014151

WO 2004/102325

6/21

@,

®

TEIELY)

KepasjsoA

[eidA0

O|®

N I9AIOS o

®

G I9AIOS o
p 19A19S -
¢ I9AIDS -
1g urewoq o
Z 19AIOS o
g urewog

®

®

L J9AI9S

oby
sheq L

jooMm
snoinaid

jeAsa3u]
wojshg)

N

WO 2004
/102325 PCT/US2004/014151

[100

7/21

102

From the data stream generated by the backup
management system, get the summary meta data for a
a backup or restore event, or the current statistics on
backup devices, media and catalogs

104

Parse the data stream into fields and extract the fields 106
relevant to the StorageConsole™ software

Enter the relevant fields into a data structure, such as a 108
Java object

Serialize the Java objects, compress and encrypt the 110

serialized data stream and transport it to the
StorageConsole software via an HTTP(S) session

WO 2004
/102325 PCT/US2004/014151

8/21

200

Q"
v Y

From the data stream generated by the backup
management system, get the meta data for a batch of
the files in a backup or restore event

,— 206

Parse the data stream into fields and extract the fields
relevant to the Storage(:omr»ole"""I software

,— 208

Enter the relevant fields into a data structure, such as a
Java object, one instance per file in this batch

Serialize the Java objects, compress and encrypt the
serialized data stream and transport it to the
StorageConsole software via an HTTP(S) session

212
214

No, event
completed

More
files in this

Yes, process next
batch of files

backup/
restore
event?

FIG. 8

WO 2004/102325 PCT/US2004/014151

/ 300

9/21

Send serialized data stream via the normal
communication channel, that is, an HTTP(S) session

ACK

ACK not received
received

retry limit not exceeded
Result of

send?

ACK not received
retry limit exceeded

’ Send seriali;ed data stream via an escalated
communication channel, for example SMTP (e-mail)

ACK

ACK not received
received

retry limit not exceeded
Result of

send?

ACK not received
retry limit exceeded

Send e-mail to sustainment

WO 2004/102325

PCT/US2004/014151

/’ 400

10/21

Receive meta data for a client server and
lookup that client server in the meta data database

Found in

database?

Send to the StorageConsole agent a request for basic
server information along with ACK that meta data received

Receive basic server information from StorageConsole
t. Add server and basic information to the database.

agen

Enter meta data in database

PCT/US2004/014151

WO 2004/102325

11/21

o_.ll/}

— iz3
¥S
aseqeje(9|oeI0 JETNETS
aseqgeled

1

ajosuonabelols

1
odaar

by
anand 2
czs | 31328
weby | 8 |3 3] [
075 joneoey | ~ & ®
— | ee
0¢ d

JaAIeg [BHod djosuo)abelols

Lol |

_
,
(91 18U-| BIA)

seulyoeI JuSlIO

Y

lajepdn pews

s|ieyo@ Hun ebeiols

sjiejeq Adijod

sjieyeQ qor

sneig ade |

sjieleq ade |

A.\

SdLlH/dliH
|

alnjonisesu] sjosuoHebelols

_y
/S\ EN_\
JouBIU| / JoUISlU

| er-

aoep8)u| Jueby

Aioyuanu| ede]

Jo|npayog aiojsey

|

0
LO|

0

Juaby uoi)

U

90

O

1oDDI1| JUSAT 91018y |

¥0G

Jueby uand |

v -

dnyoegdieN

[44

Jonieg uswebeuely dnyoegd

ainjonliseu| dnyoeg

PCT/US2004/014151

12/21

oL ¥ . .
X 2l old ~p | @MBSOYY | JSHOMISN a:x%mmymz Q:V_Nmmzwz

|]
) | | L

WO 2004/102325

— To] <
ces s £ 9 S9 52
| 28 | 2§ | &S 35
22 | 3% | 82 | 2%
< z B 3
pz4 =
ogaar —
0cs
aoeyelu| Joydepy dnyoeg
sjoslqoap —
358
s109(qo Joydepy dnoegd 0| -2| © 7]
sd11H/d11H 1eno pejsod = &
soeeiul Joydepe dnyoeq - m 20
0¢S | «———Bunuawadwi spelqo ener— | & | 71 [& - 1©
uaby Janeoey eled oiH]l o =
pabbey Ajunoes <ol .nnU
‘pessaldwiod ‘pazieles b= m -
Slale
wilr 1O
90§ —— 8% jusebe sjosuno)ebeio}s

WO 2004/102325

602 ™| performs a backup

PCT/US2004/014151

13/21

BMS

using NetBackup

!

/— 600

604 —~_|

NetBackup
calls script once backup is completed; Script writes
the client name, class Ibl, sched Ibl, sched type,
status and stream number to log

l

606 —__|

608 —___| Backup driver initializes

(‘612

Event Agent monitors log, reads the backup
params, initializes its backup driver and starts a
new thread to process the backup event.

!

BackupEvent object

BackupEvent object calls
NetBackup CLI to query data
about the backup job;
BackupEvent object sets its
status to “Success”

(‘616

BackupEvent object
checks if backup job
successful

BackupEvent
object sets its
status to “Failed”

610

(‘614

BackupEvent object
populates itself with the
backup job data.

!

connection to the data receiver agent
running on the SC portal server

BackupDetailsGenerator initializes - 618

FIG. 13A

WO 2004/102325 PCT/US2004/014151
14/21

620
(_' 622

Transfer BackupEvent
object over to data receiver
agent to process data and
send ACK

While transfer
successful or loop
count < max error
count

650
f— 65?

Send e-mail
Yes— advisement @ 626 628
o o (1)

and loop count >

No
@ 630
632
628 Is ACK an invalid server
or IP address Yes
exception?
628 No
636

Collect
Backup
Policy
Data

Is ACK an invalid policy or
schedule name exception?

Yes

Collect File

ACK flag
indicates client Lth?l
has file level Details

details

Collect
Backup
Policy
Data

636

FIG. 13B

Terminate

WO 2004/102325

PCT/US2004/014151

15/21

Collect
Backup Policy
Data

Backup driver
initializes a
BackupPolicy
object

l

BackupPolicy object calls NetBackup
CLls to populate itself with policy data

:

BackupDetailsGenerator initializes
connection to the data receiver agent
running on the SC portal server

| —660

f 636

662

| 664

l 666
successful or loop N

While transfer
count < max error
count

672

s transfer failure and loop
count > max error count

674

FIG.

Transfer BackupPolicy
object to data receiver
agent; data receiver
agent processes data
and sends ACK

Yes@

670

Yes Loop break

Is ACK a success
persisting policy?

No

13C

WO 2004/102325 PCT/US2004/014151
16/21

Collect File
Level
Details

FileDetailsStream reads

Backup driver initializes
FiroDetails object for the |— 000 individual lines of the
NetBackup Image

backup event
Catalog (access to the

¢ image catalog is thru the

FileDetails object calls CL'SQJZ:]? e "bf;k”p
NetBackup CLlsand | 682 returned by the CLI

. mutghzes ' contains metadata about
FileDetailsStream the backed up file

v _f 684
BackupDetailsGenerator initializes

connection fo the data receiver agent
running on SC web portal server

+ 686 :
While transfer
successful or loop FileDetailsStream

While
count < max error
has data

count
1 +

' FileDetailsStream initializes a

FileAttributes object for each

632 line from NetBackup Image | 690

catalog for given backup
event

!

Transfer FileAttributes object

674 to data receiver agent; data | 692

receiver agent processes
data and sends ACK

688

transfer failure and
loop count > max erro
count

694

Does ACK have success
persisting data?

Yes Loop break

No

FIG. 13D

WO 2004/102325

702 ™| Server

17/21

Backup Management

performs a restore
using NetBackup

v

704 /|

NetBackup
calls a standard script once restore is
completed; This script calls a special
script, passing it the client name and
the event timestamp

v

706 —~__

708 ™ initializes RestoreEvent

(‘712

RestoreEvent object calls
NetBackup CLI to query data
about the restore job;
RestoreEvent object sets its
status to “Success”

(‘714

RestoreEvent populates itself

Second script initializes a
RestoreDetailsGenerator.class that
loads a backup product specific driver

Y

The backup driver

object

RestoreEvent object
checks if backup job
successful?

710

PCT/US2004/014151

/“ 700

("716

RestoreEvent object
sets its status to
“Failed”

with the restore job data.

Y

RestoreDetailsGenerator

data receiver agent running on
the SC portal server

initializes connectiontothe | 718

FIG. 14A

WO 2004/102325

PCT/US2004/014151

18/21

720

(—‘ 722

While transfer
successful or loop
count < max error
count

Transfer BackupEvent
object over to data
receiver agent to
process data and send
ACK

Send e-mail
advisement

('_‘ 732

s ACK = SUCCESS_
PERSISTING_
RESTORE?

No

Is ACK an
EVENT_DOES_
NOT_EXIST_
exception?

No

724

Yes Loop break

726
Process

Restore

Event

Yes

FIG. 14B

WO 2004/102325

Receive
request from
SC event
triggers or cron 802
agent’s child J
agents

v

Determine
request type,
compression

and source;
uncompress as
needed

Y

Determine if
source is
authorized and \/— 806
authenticated,;
proceed
accordiingly

\\///"804

808

is req type =

EVENT Yes

©

No 810

Is req type =

FILE Yes

©

No 812

Is req type =

POLICY Yes

©

No 814

Is req type =

FAILURE Yes

©

19/21

PCT/US2004/014151

‘(//—‘800

FIG. 15A

No

Is req type =
RESTORE

No

Is req type =
APE DETAIL

No

s req type =
INVENTOTY

DETAILS

No

Is req type =
APE STATU

No
Yy

816

Yes

©

818

Yes

©

820

Yes

©

822

Send back
ILLEGAL_REQUEST_
TYPE

_w <
(0]
()]

o0

N

N

826

WO 2004/102325

into BackupEvent
object

v

DbBackupEvent to
persist BackupEvent
object into database

if DB err code
= 50000

No

If DB err code
= 50001

No

If DB err code
= 50002

No

{f DB err code
= 50003

No

If other DB
err code

Send back

836 ™™ _ | SUCCESS_

PERSISTING_
EVENT

20/21

De-serialize request 830

Initlialize | 832

Handle DB err codes (5000,

50001, 50002, 50003, & other)

Send back
INVALID_MGMT_
SERVER_EXCEPTION

Send back
INVALID_POLICY _
NAME_EXCEPTION

Send back
INVALID_SCHED_
NAME_EXCEPTION

Send back
IP_ADDR_FORMAT_
EXCEPTION

Send back
SQLException
ErrorCode: errorCode
SQLException
Message: errorilessage
SQLException SQL
State: SQLState

—— —— —— S — S—— Ta—n — ——— —— —— — — —— — — —— — — — — — — C— a— —— —— — —— w—

838

PCT/US2004/014151

FIG. 15B

WO 2004/102325 PCT/US2004/014151
21/21

De-Serialize Request |~ 840
into FileDetailsLine

v

Initlialize DbFileDetails
to persist 842

FileDetailsLine object
in batches of n

Send back ——/— 846

SQLException
ErrorCode: errorCode
Yesw SQLException
Message: errorMessage

SQLException SQL

State: SQL.State

844

If other DB
err code

No

Y

850
L Send back 848
SUCCESS_ Return
PERSISTING_

FILEDETAILS

FIG. 15C

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

