Title: TRANSFERRING SYSTEM FOR HUGE AND HIGH QUALITY IMAGES ON NETWORK AND METHOD THEREOF

Abstract: A transferring system for huge and high quality images on network and a method thereof are disclosed, wherein various individual image data are converted into high quality image data to be converted into layered image data, and classified into a plurality of sub cells, then stored in database as a compressed form. A client system connected to a server requires information, immediately downloads the required information, releases the compression, and then displays on a screen real time. In the present invention, a user can fast see only his wanted part since images of a newspaper and a magazine are converted as they were. Also, various additional information is provided with image, thereby providing multimedia digital publication services on wire or wireless network.
TRANSFERRING SYSTEM FOR HUGE AND HIGH QUALITY IMAGES ON NETWORK AND METHOD THEREOF

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a transferring system, and particularly, to a transferring system of huge and high quality images on network and a method thereof.

2. Description of the Background Art

Nowadays, it takes much time to display high quality image data in a client computer through Internet service because of a limitation of network bandwidth or processing time in a main memory unit. That requires expansion of the network bandwidth and increased capacity of a main memory unit, resulting in increasing cost of an overall system.

In the related art, newspaper and magazine service through Internet is performed mainly with text or PDF format. The text service provides information with only letters, thereby having a limitation in added image information and various contents construction. Also, in PDF form, a file is downloaded according to a corresponding page on Internet and data are read by using a special program.

In the related art, even if the method is used by some newspaper and magazine service, a user has to download his wanted page each time and can see the part after completing the download, thereby not providing overall contents real time. Also, a constitution and a user interface of the downloaded
page are not intuitive, and in case of PDF, screen renewal time is influenced by a function of the user's computer system, resulting in that the method is not proper to real time service of high quality image data.

5 SUMMARY OF THE INVENTION

Therefore, an object of the present invention is to provide a transferring system which fast transmits image information without extending network bandwidth and increasing capacity of a main memory device and displays the image information real time and a method thereof.

Especially, an object of the present invention is to provide a method in which a form of newspaper and magazine offered off-line is originally converted into high quality image data to provide real time on-line, and various multimedia contents and additional information are connected to be utilized as a synthetic information offering media.

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a transferring system for huge and high quality image on network comprising an image converting system for converting digital information into a high quality image format, the digital information such as image information converted into a file possible to work in a computer or image information read from a scan device; an image database for storing high quality image information made in the image converting system; and a server system for transmitting image information stored in the image database on network by a request of a client system.

Also, in the present invention, there is provided a method for
transferring high quality image on network comprising the steps of converting digital information into high quality image data by the following steps of: (a) converting digital information into layered data with different levels so as to output the digital information in the client system with various magnification or contraction levels; (b) converting digital information into a plurality of sub cells to provide a plurality of divided regions; and (c) compressing the divided digital information as a sub cell unit; storing the converted high quality image data in database; and transferring high quality image data from a server system by a request of a client system on network.

The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

In the drawings:

Figure 1 is a schematic view showing a structure of a transferring system according to the present invention;

Figure 2 is a schematic view showing communication between a server and a client according to the present invention;

Figure 3a is a schematic view showing an image service in
accordance with the conventional art;

Figure 3b is a schematic view showing an image service in accordance with the present invention;

Figure 4 is a flow chart showing generation steps of high quality image data;

Figure 5 is a schematic view showing layered data;

Figure 6 is a schematic view showing a process for classifying a huge image and then transferring;

Figure 7 is a schematic view showing one embodiment of a graphic user interface;

Figure 8 is a schematic view showing that a screen is renewed by transmitting image information in the present invention;

Figure 9 is a flow chart showing a real time service process of a multimedia digital publication in the present invention;

Figure 10 is a screen capture showing an embodiment of GUI of a digital newspaper according to the present invention; and

Figure 11 a screen capture showing an embodiment of GUI of a digital magazine according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

A transferring system for huge and high quality images on network comprises a system for making original data be digital by a regular rule and
converting the data into high quality image format; a database for storing the
digital image data and managing; and a server system for transferring the data
real time on network.

Referring to Figure 1, a server system 10 possible to include a
transferring system 12 extracts necessary information by connecting an image
converting system 20 for generating high quality image data and a database
30 and then transmits the information on network. The database 30 can
additionally include an image database 32 having image information and an
additional information database 34 having additional information.

In a method for transferring image data according to the present
invention, as shown in Figure 2, a server/client model is applied and then data
are transmitted real time between the server system 10 and the client system
40.

One or more client systems simultaneously communicate with the
server system on network, and each client system includes a central
processing unit and at least one memory unit and a display unit.

There are various systems to be used as a client system, for instance
a common-used personal computer (such as desktop PC, notebook PC) or a
mobile system (such as wireless notebook, PDA, Tablet PC, Smart Display)

Figure 3a is a schematic view showing a related art image service.
Image data stored in database 50b of server 50a are transmitted to the client
system through network 51 by a request of a client system, and displayed on a
screen window 55 through a video buffer 54 via main memory 53a, 53b,...53'.
At this time, since capacity of image data is much greater than another
information, the main memory unit of the client system has to be large, and
long transmittance time causes delay until the data are displayed on a screen
window. Also, as capacity of image data is restricted by physical capacity of the main memory 53a, 53b,...53*, there is a limit to provide huge and high quality image data real time.

Meanwhile, in the transferring method, as shown in Figure 3b, high quality image data stored in the database 50b of the server 50a are compressed as a divided form and stored. The image data are transmitted to the client system 52 through the network 51 only for parts requested by a client, then compression of the image data is released in the client system real time, and displayed on the screen window 55 via the main memory unit 53 and the video buffer 54. Accordingly, in the system and method of the present invention, even if capacity of a memory in a client system is less or network bandwidth is less, information requested by a client is displayed real time.

In the present invention, network includes all means in which not only wire Internet or wireless Internet but also all kinds of intranets and at least two electronic media are connected for communication. High quality images generated by the image converting system and/or additional information may be transferred to any client system via network by real-time streaming method.

Hereinafter, network will be explained mainly about Internet.

High quality image data

High quality image data according to the present invention is a special format which fast displays huge image through network in a client system. By using the format, huge image can be fast displayed without delay of time, and fast searched. Also, approximate information is searched by contracting the huge image with layered data, and minute information is searched by magnifying the image. The magnification and contraction processes also work fast.
Digital information including huge image information is converted by image converting system of the present invention by the following main three steps.

(1) converting huge image into multiple layered data according to levels

(2) dividing the huge image into a plurality of sub cells

(3) compressing the image as divided cell units

To convert into high quality image data, general image files such as BMP, GIF, PNG, JPG, etc. are used as original text contents. Also, a text file such as PDF is converted into an image file for use.

Original image files are converted into high quality image data by steps shown in Figure 4. First of all, a plurality of layers sequentially structured from an image file are generated (60). Then, the layered data are divided into a plurality of sub cells (62), and compressed as divided cell units (64). Then, each index is endowed to the compressed cells (66), and each cell is integrated to be stored in database (68). The processes will be explained in detail.

Generation of layered data

In the present invention, image data having a layered structure are generated so as to provide high quality image in which images of multimedia digital publication and etc. transmitted real time on network are magnified or contracted fast and accurately according to levels. That is, a plurality of data layers converted with \(\frac{1}{2^n} \), ..., 1/4, 1/2, 1 times, etc. of an original image are generated.

Figure 5 is a schematic view showing layered data. As shown in Figure 5, high quality individual images are constituted by layers according to
displayed levels at the time of magnification or contraction, and respective layers 70, 80, and 90 are used in magnification or contraction steps. That is, in case of magnifying, images are displayed from upper data 70 to bottom data 90 via middle data 80. On the contrary, in case of contracting, images are displayed in reverse order. Also, it is possible to change the displayed screen discontinuously.

The number of layers in the layered structure are determined by graphic user interface (GUI). In Figure 5, data layers of three steps are illustrated, but if graphic user interface can provide a function of magnification or contraction with four steps, image data are converted to have four layers.

Division of huge image

The generated data layers are divided into a plurality of sub cells. By dividing the data, huge image is fast transmitted. Division units of the huge image into a plurality of sub cells are determined by a processing ability of a client system and a transmittance speed on network. At this time, a number of sub cells are determined within an optimum scope. Indexes are endowed to each cell of the divided images, and the images are integrated by positions or orders. The integrated cells exist as one file, but only corresponding cells of the huge image are transmitted by a client’s request. According to this, a client can fast see his wanted image.

Referring to Figure 6, a process for displaying the divided image data real time on network will be explained. Individual image data 110 and 120 stored in database consist of sub cells respectively. In Figure, Eij and Fij represent sub cells of i line and j column.

As aforementioned, dividing image data into each sub cell unit and then storing is determined by a processing ability of a client system and a
transmittance speed on network. At this time, if a large number of sub cells are divided, a processing speed in a central processing unit of a client system is down, and if few sub cells are divided, a transmittance speed on network is down. Therefore, it is important to divide the sub cells within an optimum scope.

For example, supposing that screen display resolution is 1024x768 pixel, images displayed on a screen are divided into 5 horizontal sub cells and 4 vertical sub cells. The cells divided at an optimum condition prevent delay in a transmitting process or in a display process, and transmit image fast.

The divided sub cells are compressed, and endowed with indexes, so that positions and coordinates etc. in an overall image are recorded. Then, the sub cells are integrated into one file and stored in database.

Compression of the divided image data

High quality image data according to the present invention are stored as a compressed form so as to improve a transmittance speed.

It is preferable to compress data into each divided sub cell unit. At this time, compression technique such as widely known JPEG, GIFE are used. Each sub cell can be compressed with a same method independently, or compressed with different methods. For example, in case of data having a figure and a picture together, GIF compression is used at the figure and JPEG compression is used at the picture. By doing so, it is possible to improve compression efficiency of an image.

The compressed sub cells are integrated according to orders and positions, and are endowed with indexes respectively, then stored in database. The indexes can include not only base information of sub cells but also additional information relevant to the sub cells. A server system is accessed to
the indexes and selects sub cells of a wanted image, thereby fast transmitting.

Transmittance of the divided image

If the client system requests special image information (for example, click of a special item in a graphic user interface circumstance, or move of a viewpoint), a server system selects only sub cells relevant to the client’s request information in image data stored in database and transmits the sub cells to the client system.

For example, in case that a client requests special information (110a) among one individual image data 110, only relevant sub cells (E11, E21, E12, E22) are transmitted on network (130) since sub cells of the individual image data are E11, E21, E12, and E22. Also, the client system releases compression of the transmitted sub cells in a central processing unit (compression will be later explained), and displays only a displayed part 110a in a display unit through a main memory unit.

Meanwhile, in case that the client system requires information included in at least one individual image, sub cells are transmitted by the following method. In Figure 6, if the client requests another special part 120a, the server system transmits sub cells relevant to the part 120a among the two individual image data 110 and 120 to the client system, the sub cells, E33 and E34 included in the first image data 110 and F13 and F14 included in the second image data 120. The client system releases compressions of the transmitted sub cells in a central processing unit, and displays only displayed part 120a in a display unit through a main memory unit (140).

Once individual image data are divided into sub cells and only requested cells by a client among the divided sub cells are transmitted, huge image can be fast transmitted and displayed, even if capacity of a main
memory unit in the client system is less, a processing ability of a main processing unit is less, or data transmitting speed on network is low (that is, bandwidth of transmittance line path on network is less).

Client/server model

High quality image data generated from the image converting system can be displayed with just less memory and less calculation of a main processing unit when a client system receives an image file. The reason is why only required parts among sub cells divided from huge image data are selected, transmitted, and displayed. The larger original text image size (information amount) is and the more the number of layers is, the more advantage is obtained.

The present inventors applied the advantage to the client/server model in which network such as Internet line is used and developed a powerful image providing solution. Accordingly, in the present invention, at best utilized is display ability of a client system having limitation in transmitting data on network (that is, bandwidth), storing for the transmitted data, and processing the data, thereby providing huge image real time.

A server system is connected to image database for storing high quality image data and additional information database for storing additional information, thereby providing information requested by a client system real time. Like the transferring system 12 in Figure 1, the server system can include an independent system for selecting required information from database and transmitting to the client system at an inner side and can include database together. On the other hand, image database and additional information database can be constituted as additional database or exist in another system.
A client system includes a central processing unit, a memory unit, a display unit, and a browser for connecting to each server through network. Once the client system is connected to the server for transferring high quality image data according to the present invention on network, the client system automatically receives a client program for processing the high quality image data.

The client program provides various graphic user interfaces, fast receives various contents provided from the server, and displays in the client system. Figure 7 is a schematic view showing one embodiment of a graphic user interface. In Figure 7, a graphic user interface consists of a function button region 201, a section menu and search region 202, and an image display region 203. The user interface can have various constructions and forms according to kinds of transmitted image data and user's convenience.

High quality image data according to the present invention are applied to the client/server model, so that huge image information is transmitted on network fast and efficiently and displayed in the client system.

In the present invention, contrary to the related PDF service and JPEG image providing solution where an overall image file is transmitted, only a request part by a client system is transmitted and displayed real time, thereby having a more excellent performance. Also, since images are fast magnified or contracted according to levels by a layered data structure, an efficient search of image information is possible. That is, it is possible to transmit, display and search image information real time by image streaming.

In each index of high quality image data, not only information regarding to sub cells but also additional information are recorded. The additional information includes moving image, text, sound, web page
information regarding to each sub cell. Therefore, if the server system transmits the additional information to the client system with the image data, a user of the client system can receive information of the moving picture, text, web page, etc, together with image.

Information request by a client

It is general for an Internet user to search image by moving a view point shown on a screen of a display unit such as a monitor of a client system. Image information requested by a client system exists in a server system, so that the client system has to request transmittance of corresponding information to the server.

The process works by a series of streaming packet defined in advance, and is performed by a client program already transmitted to the transmittance system in the server system and the client system. The process will be explained in detail.

A user is connected to a server on network in a client system. To the first connected user, a client program is automatically transmitted from a server at the time of connection (to the user already connected, the client program needs not to be transmitted), and the client program makes the user search information requested by the server by providing graphic user interface in the client system.

The user requests image information and image level change in the interface provided by the client program. The process is shown as a click for items and icon on the interface displayed on a screen.

By the process, a request by the client system is transmitted to the server on network. The server receives the request and searches sub cells corresponding to a part requested by the client system, then transmits one by
one real time.

In the client system, compressions of sub cells (image tile) transmitted from the server are released real time in a central processing unit, and the sub cells are displayed on a screen via a main memory unit and a video buffer. Accordingly, a screen is immediately displayed without delay of image processing in the client system.

If the user moves a view point to a new region on interface of a monitor screen or changes an image level, the client program transmits information request for the new image region or image of different level to the server.

Figure 8 is a schematic view showing that a screen is renewed by transmitting image information according to the present invention. If display data 110a and 120a transmitted from database of the server are displayed on a screen 250 and the screen is moved (260), image data for a new region 260a are transmitted from the database of the server and integrated with the original display data 110a or 120a in the client system. The integrated data constitute a new integrated image (260a and 110a or 260a and 120a) and are displayed on a screen window. Accordingly, screen change is not delayed or discontinuous, rather a continuous display like moving image is possible.

Providing additional information

In a state that the server selects image data from database according to a request of the client system, if additional information is included on index, the additional information is transmitted to the client system with image data.

Additional information may include multi-media contents such as moving image, music, and flash movie. This information can be transferred with being embedded in the high quality images. Thus, the information can be
magnified, contracted, or moved together with the high quality images. Moreover, the information may be played individually.

The additional information is stored in additional information database of the server. In the database, a location (that is, image data which will be displayed with the additional information), kinds, and styles of the additional information (for example, in case of text information, color, font, and in case of moving image information, image path) are stored. The additional information can be generated through a separate tool and can be input by a hand work.

It is preferable to manage the additional information provided with high quality image according to the present invention through a separate file. The file is defined as MAP file in the present invention. The additional information management file consists of a script language, and contains a position and an attribute of the additional information on the basis of resolution of high quality image.

For example, in case of providing moving image of Abc.mpg in 500x500 position of 1000x1000 high quality image, if an image file name is Abc.IPQ, Abc.MAP having the same file name are generated and defined as follows.

Movie 500, 500 Abc.mpg

The additional information file (Abc.mpg) and the management file (Abc.MAP) are stored in additional information database. If image information requested by the client is Abc.IPQ, the server connects the image information with Abc, MAP and transmits to the client system with Abc.mpg.

Preferred embodiments

Hereinafter, real time service of multimedia digital publication will be explained in detail.
Figure 9 is a flow chart showing a real time service process of a multimedia digital publication according to the present invention.

In a data collecting step (310), individual image data and additional information data which will be constituted as real time integrated data are collected. The individual image data are generally interactive one another. Examples of the individual data include data which scanned each side of a newspaper, data which scanned each side of a magazine, image data converted in PDF file, and image data directly converted from typesetting system, etc. Also, the additional information data which will be used in the step includes moving image file, sound file, another image file, text information, and web page address, etc.

A manufacturing step (320) is a step for converting data collected in the data collecting step into individual high quality image data and for connecting with additional information data.

A file converted from PDF and from typesetting system is converted to high quality image file according to the present invention, and a newspaper and a magazine are scanned to be manufactured as an image file, thereby generating high quality image. In the step, methods such as the aforementioned data layer generation, image division, and compression, etc. are used.

Also, in the step, a search keyword necessary to an image search is extracted. The keyword can be a theme word regarding a headline in case of a newspaper. Then, determined is whether individual image, search keyword, and additional information collected in the data collecting step 310 are interactive one another or not. In the case, the additional information can be edit by hand work or another tool (editing tool), or data relevant one another.
are connected to be integrated.

Then, respective data are stored in high quality image database and additional information database (330).

In a transmitting step (340), at the time of transmitting information according to a request of a client on Internet network, only data display region 110a or 120a are transmitted.

In a displaying step (350), the transmitted data display region is displayed on a screen window via a central processing unit, a main memory unit, a video buffer, etc. in the client system.

As shown in Figure 9, the server reads data stored in database when the client requests individual image and additional information and transmits the data to the client through Internet. At this time, in case that image data requested by a client are on several individual images, corresponding data (that is, each sub cell) are transmitted real time, and integrated in the client system to constitute as one image. The additional information selects corresponding information in additional information database and transmits with image data real time as a streaming form.

Figure 10 is a screen capture showing an embodiment of GUI of a digital newspaper according to the present invention.

A function button region (corresponding to 201 of Figure 7) includes a tool for selecting a newspaper according to kinds, a tool for selecting a page of the selected newspaper, a tool for selecting a part of displayed digital newspaper, a tool for displaying the selected region, and a clipping function for storing the selected region or individual image as another file.

In section menu and searching region (202 in Figure 7), contents of a newspaper are classified into an entire headline, politics, economy, society,
culture, international, sports, entertainment, region, and serials, etc., and corresponding individual image information is included. The searching region consists of a part for inputting a search keyword and a part for displaying a search result. The search result is displayed at a bottom of the section menu as a list form.

In image display region (203 of Figure 7), selected individual image and real time integrated image are displayed.

High quality newspaper or magazine image transmitted from the database of the server can be displayed with various methods besides the methods shown in the preferred embodiments.

Meanwhile, if a user moves a view point along displayed images by using a mouse, only renewed region is transmitted from the server and displayed. Even if the user moves high quality digital image to any directions, image data of the new region are transmitted real time without delay in a transmitting process and displayed on a screen. Also, if the user clicks a wanted part with a mouse, the part can automatically move to a center of a screen.

Image magnification or contraction function is performed by locating a mouse cursor to a wanted part and clicking. The magnification or contraction can be performed by a layer unit step by step, or can be performed at one time from the highest step (70 of Figure 5) to the lowest step (90 of Figure 5). At this time, the renewed data are displayed by the same method shown in Figure 8. In case of magnifying or contracting image, various effects can be simultaneously realized by using contents such as sound, image, text, and flash animation, etc.

In case that hyper-linked additional information exists at a special
position of image displayed from a display unit of the client system, the corresponding information is displayed on a screen real time. At this time, the additional information can be displayed on a current window, or on a new window. Additional information data that will be used with high quality image includes moving image file, sound file, flash animation, another high quality image file, text information, and web page address, etc. Figure 11 shows a real time service of a magazine corresponding to one of multimedia publications. Alike the aforementioned embodiments, various additional information can be provided with high quality image data. Also, in case that another image is requested besides the information shown on a screen, a screen is renewed real time and displayed in the client system.

According to the present invention, high quality image data are provided real time without extending network bandwidth and increasing capacity of a main memory device. Especially, huge image information is provided as high quality image data without extending a client system and delaying time.

Also, in the present invention, possible is real time service of high picture quality multimedia digital publication, and image data and relevant additional information data are provided through a graphic user interface, so that a user can easily obtain various information. Also, wanted information is fast searched, and same resolution is maintained at the time of magnifying a screen. A real time service of high picture quality multimedia digital publication can be applied to all publications issued periodically, so that various on-line services are possible.

As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be
understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to be embraced by the appended claims.
What is claimed is:

1. A transferring system of huge and high quality images on network comprising:
 - an image converting system for converting digital information into a high quality image format, the digital information such as image information converted into a file possible to process in a computer or image information read from a scan device;
 - an image database for storing high quality image information made in the image converting system; and
 - a server system for transmitting image information stored in the image database on network according to a request of a client system.

2. The system of claim 1, wherein the image converting system converts digital information into layered data with different levels so as to display the digital information in the client system with various magnification or contraction levels.

3. The system of claim 1, wherein the image converting system converts digital information into a plurality of sub cells to provide a plurality of divided regions.

4. The system of claim 3, wherein at the time of when the digital information is converted into a plurality of sub cells, a number of the divided sub cells is determined by information processing capacity of the client system and information transmittance speed on network.
5. The system of claim 3, wherein the image converting system compresses the divided digital information into each sub cell unit.

6. The system of claim 5, wherein the compression of a cell unit is performed by individual methods corresponding to each cell.

7. The system of claim 5, wherein each of the compressed cells is endowed with index and then integrated according to its order or position, thereby constituting one file.

8. The system of claim 1, wherein the digital information consists of at least one image information, and each image information is independently converted into layered data, divided into sub cells to be compressed, and integrated according to its order or position in the digital information, thereby constituting one file.

9. The system of claim 1, wherein the image converting system connects the converted image information with a relevant search word and then stores in database.

10. The system of claim 1, wherein the image database consists of high quality image database and additional information database.

11. The system of claim 10, wherein at least one selected from moving image file, sound file, text file, and multimedia file are stored in the additional information database.
12. The system of claim 10, wherein the additional information database includes an additional information file and a management file, the management file connects the additional information and the corresponding image information.

13. The system of claim 1, wherein the server system includes a transferring system for transmitting digital information according to a request of the client system.

14. The system of claim 13, wherein the transferring system transmits only sub cells of a part corresponding to data requested by a client among digital information.

15. The system of claim 13, wherein the transferring system connects high quality image database and additional information database and transmits image information and relevant additional information to the client system.

16. A method for transferring huge and high quality images on network comprising the steps of:

converting digital information into high quality image data by the following steps of:

a) converting digital information into layered data with different levels so as to display the digital information in the client system with various magnification or contraction levels;

b) converting the digital information into a plurality of sub cells
to provide a plurality of divided regions; and

c) compressing the divided digital information as a sub cell unit

storing the converted high quality image data in database; and

transferring high quality image data from the server system according to a request of the client system on network.

17. The method of claim 16, wherein if a client is connected to a server on network, the server system automatically transmits a client program possible to process the high quality image data.

18. The method of claim 16, wherein the server system transmits only sub cells of a part corresponding to data requested by a client.

19. The method of claim 16, wherein the high quality image data are stored with relevant additional information.

20. The method of claim 19, wherein the high quality image data are stored in image database, and the additional information is stored in additional information database.

21. The method of claim 20, wherein the server system connects the high quality image database and the additional information database according to a request of a client and transmits image information and relevant additional information to the client system.
22. The method of claim 16, wherein the server system, from high quality image database, transmits data having a level corresponding to the request among layered data according to a request of a client.

23. The method of claim 16, wherein each of the compressed sub cells is endowed with index and integrated according to its order in digital information, thereby constituting one file.

24. A method for transferring huge and high quality images on network comprising the steps of:

 converting at least one individual image data into digital image data;

 converting the digital information into high quality image data by the following steps of:

 a) converting digital information into layered data with different levels so as to display the digital information in the client system with various magnification or contraction levels;

 b) converting the digital information into a plurality of sub cells to provide a plurality of divided regions; and

 c) compressing the divided digital information as sub cell units storing the converted high quality image data in database; and transferring the high quality image data from the server system according to a request of the client system on network.

25. The method of claim 24, wherein the image data are converted into digital image information by scanning a newspaper or a magazine.
26. The method of claim 24, wherein if a client is connected to a server on network, the server system automatically transmits a client program including graphic user interface for searching and processing the high quality image data.

27. The method of claim 24, wherein the server system transmits only sub cells of a part corresponding to data requested by a client.

28. The method of claim 24, wherein the high quality image data are stored with relevant additional information.

29. The method of claim 28, wherein the high quality image data are stored in image database, and the additional information is stored in additional information database.

30. The method of claim 29, wherein the additional information database includes an additional information file and a management file, the management file connects the additional information and the corresponding image information.

31. The method of claim 30, wherein the management file includes kinds and connection positions of the additional information regarding to high quality image data.

32. The method of claim 31, wherein the additional information
includes at least one selected from moving image, sound, text, individual image data, flash animation, and web page address.

33. The method of claim 24, wherein the server system, from high quality image database, transmits data having a level corresponding to the request among layered data according to a request of a client.

34. The method of claim 33, wherein the layered data are transmitted step by step or directly transmitted from the highest level to the lowest level.

35. The method of claim 33, wherein the additional information is transmitted with layered data so as to obtain various effects at the time of magnifying or contracting a screen in the client system.

36. The method of claim 24, wherein the server transmits only sub cells corresponding to a part requested by the client system among a plurality of individual image data converted into high quality image data, and the client system
 a) releases compression of the transmitted sub cells real time
 b) integrates the compressed sub cells into one image real time
 c) displays the integrated image real time through a screen window of graphic user interface of a client program.

37. The method of claim 36, wherein the graphic user interface includes a function button region, a section menu region, a search function region, and an image display region.
38. The method of claim 37, wherein the function button region includes an item for selecting a newspaper or a magazine, an item for selecting a page of the selected publication, an item for selecting a part of displayed images, an item for displaying the selected region, and an item including a clipping function for storing the selected region or an individual image into additional file.

39. The method of claim 37, wherein the section menu region includes a region for arranging menus according to a classification of high quality image, and the search function region includes a region for inputting a search key word and a region for displaying a search result.

40. The method of claim 39, wherein the search result is displayed at a bottom of a section menu as a list form.

41. The method of claim 37, wherein the selected individual image and the real time integrated image are displayed in the image display region, the displayed image can be magnified, contracted, or moved, and if additional information exists, the additional information is displayed by an user's selection.
FIG. 4

1. Generating a layered data
2. Dividing image into sub cells
3. Compressing sub cells
4. Endowing index to cells
5. Storing cells

FIG. 5
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPCC G06F 17/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPCC G06F15/00, G06F17/00, H04N5/91

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

KR, JP : IPC as above

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>KR10-2001-208 A (INOTIVE CO.LTD.) 05.JAN.2001 See the whole document</td>
<td>1-41</td>
</tr>
<tr>
<td>Y</td>
<td>KR10-2002-7945 A (HUMAN DREAM CO.LTD.) 29. JAN. 2002 ABSTRACT, CLAIMS 1-10, FIG1-5</td>
<td>1-41</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

24 JUNE 2003 (24.06.2003)

Date of mailing of the international search report

25 JUNE 2003 (25.06.2003)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
920 Dunsan-dong, Sco-gu, Daejeon 302-701,
Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer
SONG, Dae Jong

Telephone No. 82-42-481-5992

Form PCT/ISA/210 (second sheet) (July 1998)