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METHOD AND APPARATUS FOR RANDOMIZING COMPUTER INSTRUCTION 

SETS, MEMORY REGISTERS AND POINTERS 

CROSS-REFERENCE TO RELATED APPLICATIONS 

5 This application is based upon and claims the benefit of priority to provisional U.S.  

Application No. 62/092,570, filed December 16, 2014, the entire contents of which are 

incorporated herein by reference.  

BACKGROUND 

FIELD OF DISCLOSURE 

10 Embodiments described herein generally relate to a framework for randomizing 

instruction sets, memory registers, and pointers of a computing system.  

DESCRIPTION OF RELATED ART 

The background description provided herein is for the purpose of generally presenting 

15 the context of the disclosure. Work of the presently named inventors, to the extent the work is 

described in this background section, as well as aspects of the description that may not 

otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly 

admitted as prior art against the present disclosure.  

Instruction sets, memory registers, and pointers that are used in most computing 

20 systems are fairly standardized. Standardized machine instruction sets provide consistent 

interfaces between software and hardware, but they are a double-edged sword. Although they 

yield great productivity gains by enabling independent development of hardware and 

software, the ubiquity of well-known instructions sets also allows a single attack designed 

around an exploitable software flaw to gain control of thousands or millions of systems.  

25 Accordingly, having a standardized instruction set facilitates intellectual property theft, 

computer exploitation, hacking and the like.



WO 2016/100506 PCT/US2015/066080 
2 

Address space layout randomization (ASLR) is a memory-protection process for 

operating systems (OSes) that guard against buffer-overflow attacks by randomizing the 

location where system executables are loaded into memory. While ASLR is a practice to 

30 randomize instruction addresses in library code, and is a form of ontology encoding that 

thwarts library injection code attacks, ASLR does not address the challenges faced by a cloud 

application that is based on binary code static instruction addresses.  

Accordingly, a technique is required to address the above stated deficiencies in the art 

and to further provide software protection such that code cannot be decrypted or attacked by 

35 side-channels.  

SUMMARY 

Computer systems utilize standardized instruction sets and, to a lesser extent, memory 

registers and pointers, regardless of the chip sets used. Such an industry standard help 

40 promote software development. An aspect of the present disclosure provides for the 

randomization of instruction sets, memory registers, and pointers thereby providing security 

against reverse engineering, side-channel intercept and analysis, and other methods of data 

analysis. An aspect of the present disclosure provides for randomizing instruction sets, 

memory registers and pointers without requiring changes in software development, neither in 

45 chip set design nor manufacturing. Accordingly, the security techniques described herein 

overcome technological limitations in both randomization and key index management.  

An aspect of the present disclosure provides for a method and apparatus for software 

protection such that software code cannot be decrypted or attacked by side-channels.  

Furthermore, by one embodiment, the present disclosure overcomes the limitations associated 

50 with standardized instruction sets, memory registers and pointers by introducing a notion of 

randomness in their respective generations. Furthermore the present disclosure provides an
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improvement over typical run-time per call dispatch decryption, wherein typically the body 

of the code remains encrypted in that it leverages, among other things, new discoveries in the 

field of Full Ontological Encryption (FOE), artificial intelligence, machine learning, 

55 networks of semi-autonomous agents, Self-Modifying Instruction Randomization Code 

(SMIRC), and Semantic Dictionary Encryption (SDE).  

The foregoing paragraphs have been provided by way of general introduction, and are 

not intended to limit the scope of the following claims. The described embodiments, together 

with further advantages, will be best understood by reference to the following detailed 

60 description taken in conjunction with the accompanying drawings.  

BRIEF DESCRIPTION OF THE DRAWINGS 

A more complete appreciation of the disclosure and many of the attendant advantages 

65 thereof will be readily obtained as the same becomes better understood by reference to the 

following detailed description when considered in connection with the accompanying 

drawings, wherein: 

Fig. 1 illustrates according to one embodiment, an exemplary hierarchy of processes; 

Fig. 2 illustrates an example depicting the randomization performed by a processor; 

70 Fig. 3 illustrates one embodiment of the framework according the invention; 

Fig. 4 illustrates one embodiment of the process according to the invention; and 

Fig. 5 illustrates a block diagram of a computing device according to one 

embodiment.  

75 DETAILED DESCRIPTION OF EMBODIMENTS 

Referring now to the drawings, wherein like reference numerals designate identical or 

corresponding parts throughout the several views. Accordingly, the foregoing discussion
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discloses and describes merely exemplary embodiments of the present disclosure. As will be 

understood by those skilled in the art, the present disclosure may be embodied in other 

80 specific forms without departing from the spirit or essential characteristics thereof.  

Accordingly, the present disclosure is intended to be illustrative, but not limiting of the scope 

of the invention, as well as other claims. The disclosure, including any readily discernible 

variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology 

such that no inventive subject matter is dedicated to the public.  

85 Turning to Fig. 1 is depicted an exemplary interlocking set of processors. By one 

embodiment, an application program can be divided into various jobs, referred to herein as 

sub-routines or tasks. Each of the tasks can be distributed by a master processor to a 

subordinate processor. The subordinate processor thereafter may elect to become its own 

master processor, and further subdivide the task assigned to it into various sub-tasks and 

90 assign each of the sub-tasks to its subordinate processors. Thus, in this manner, the program 

may be divided into many different tasks, with each task assigned to a subordinate processor.  

It must be appreciated that each subordinate processor is a master processor with regard to 

the processors to whom the subordinate processor assigns tasks. Thus, the execution of the 

program may be considered to be performed by a hierarchy of processors as shown in Fig. 1.  

95 Grammars are used to describe sentence structures based on a set of rules, which 

depend on the type of grammar being implemented. For instance, a context-free grammar 

(CFG) is a set of recursive rewriting rules (or productions) that are used to generate patterns 

of strings. A CFG includes the following components: a set of terminal symbols, which are 

the characters of the alphabet that appear in the strings generated by the grammar; a set of 

100 nonterminal symbols, which are placeholders for patterns of terminal symbols that can be 

generated by the nonterminal symbols; a set of productions, which are rules for replacing (or 

rewriting) nonterminal symbols (on the left side of the production) in a string with other



WO 2016/100506 PCT/US2015/066080 
5 

nonterminal or terminal symbols (on the right side of the production); and a start symbol, 

which is a special nonterminal symbol that appears in the initial string generated by the 

105 grammar.  

By one embodiment of the present disclosure, a master processor creates a hierarchy 

of processors that execute an application program. Specifically, as stated previously, a master 

processor creates a random number of sub-processes. Each sub-processor in turn, may act as 

a master processor and create its own sub-processes. Each of the sub-processors is assigned a 

110 unique random instruction set, memory registers and pointers by its master processor. By one 

embodiment, grammars may be used to determine a randomized instruction set, memory 

registers and pointers for each sub-processor. In doing so, the present disclosure incurs the 

advantageous ability of providing a security mechanism against potential exploitation threats 

to the program.  

115 Accordingly, the attempts by malicious software programs or reverse engineering 

techniques made to exploit the vulnerabilities of the program are prevented. Specifically, due 

to the number of processors that are used to execute the program are random, and the 

instruction set assigned to each processor is determined in a random manner (based on the 

Grammar), current and future reverse engineering programs have no mechanism of acquiring 

120 the translation table for the instruction set, or the locations of pointers and memory registers.  

Furthermore, as an added layer of security, each time the application is turned on, a 

new translation table is provided by a higher-layer processor and attempts to compromise the 

processor fail because the various running applications within the processor will not adhere to 

standardized instruction sets, memory registers or pointers. Thus, by one embodiment, the 

125 number of processors used will be random and as such the reverse engineer or malicious 

software will not know how many times it must attempt to break out of each processor, and 

the attempt to break out of the processor will cause the supervising processor to shut down
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the sub-processor and reboot it, with an entirely new randomized instruction set, memory 

registers and pointers.  

130 By one embodiment of the present disclosure, Van Wijngaarden (VW) grammar is 

used to create a random instruction set, memory registers, and pointers that are assigned to 

each sub-processor. VW grammar can be visualized as a composition of two context-free 

grammars (i.e., the VW is a two-level grammar). The first context-free grammar is used to 

generate a set of terminal symbols which acts as non-terminals for the second context-free 

135 grammar.  

Ontology encryption is a cypher system that obscures the content of data in such a 

way that operations can be performed on specific elements of the data without revealing the 

contents of those elements. Homomorphic encryption techniques rely on homomorphsims, 

which can be defined as a data map which preserves structure of data groups, in other words 

140 it shifts data relative to a single grammar. In contrast, ontology encryption is different as it 

shifts data relative to multiple grammars. Specifically, by one embodiment of the present 

disclosure, data may be shifted within a single grammar, within a two-layer grammar (VW 

grammar) and/or within M of N grammars. M of N grammars can be parallel, serial, or 

cascading. Accordingly, ontology encryption can occur by using many methods and 

145 embodiments of the present disclosure can incorporate and leverage all forms of ontology 

encryption.  

Fig. 1 depicts a non-limiting example illustrating a hierarchy of processors 100. As 

shown in Fig. 1, an application program 101 is executed in a hierarchy of three levels of 

processors. The hierarchical series of processors 100 includes a master processor 110 that 

150 controls sub-processors 121, 122, and 123. Each processor is allocated a randomized 

instruction set, memory pointers, and registers that enable securing, data, instruction set, 

memory pointers and registers from an adversary attempting to reverse engineer, understand,
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or cause the processor to perform unauthorized procedures or assist the adversary in a manner 

the adversary chooses.  

155 As shown in Fig. 1, the master processor 110 implements a master randomization 

process 131 (i.e., creating a grammar) to generate a translation table 141 (translation table of 

instruction sets) that assigns a randomized instruction set, memory registers and pointers to 

the first sub-processor 121. In a similar manner, the sub-processor 121 may act as its own 

master processor and assign a portion or all of the tasks assigned to it by the master processor 

160 110, to a second sub-processor 122. In doing so, the sub-processor 121 also allocates a 

randomized instruction set, memory registers, and pointers (by implementing sub

randomization process 132) to generate a translation table 142 for the second sub-processor 

122.  

Furthermore, the second sub-processor 122 may implement a sub-randomization 

165 process (i.e., creating grammar based on VW grammar) to assign a randomized instruction 

set, memory registers, and pointers to a third sub-processor 123, via the third translation table 

143. Moreover, it must be appreciated that although the illustration as depicted in Fig. 1 

includes only three levels (iterations) of sub-processor creation, the techniques described 

herein are applicable to any number of hierarchical processors.  

170 In Fig. 1, each sub-processor is provided a randomized instruction set, memory 

register, and pointers by its managing processor that controls it. For instance, instead of being 

required to add X+Y, the sub-processor would be tasked with adding Z mod X with A mod 

Y. It is the task of the controlling processor (i.e., the managing processor/master processor of 

the sub-processor) to know the true algorithm, and when provided with an answer (by the 

175 sub-processor) to apply the algorithm (translation) to derive the correct solution. Thus, in this 

manner, each processor will process only portions of the program, and each of those portions 

of the program will have gone through several obfuscation steps. Additionally, by one
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embodiment, each time the corresponding portion of the program is run, it may be executed 

on a different processor, in a different virtual machine. Specifically, due to the randomness in 

180 determining the number of processors to use in execution of a particular program, each 

portion of the program may be executed on different processors during each execution 

iteration of the application.  

In this manner, an adversary will be challenged to know the exact data that is being 

processed at a particular time instant, and also where the full program resides. Furthermore, 

185 the adversary will not know where the unencrypted data resides (instruction set, memory 

pointer, or register) or even the layer of obfuscation that the adversary is examining at that 

moment, or at which layer does the master processor create the master translation table and 

stores the method of key management and randomization for the processors immediately 

under its control.  

190 Furthermore, as each processor activates a sub-processor under its temporary control, 

the processor injects randomization into the controlled processes and retains a generated 

master index for the processor. Accordingly, the overall program is more fully protected.  

The sub-processors controlled by the master processor are themselves in control of yet other 

sub-processors underneath them and act as master processors for those sub-processors. Thus, 

195 the program expands and retracts in a random manner with each expansion being assigned to 

a newly appointed master control processor. In this manner, the program maintains state, yet 

its location in the computer system is known only by itself and each part of it is contained in 

a protected stub state as the program expands throughout the computer system only to retract 

again, reformulate, assign a new master controller processor and repeat an expansion cycle.  

200 An advantageous ability incurred in performing the randomization of the number of 

processors as well as randomizing the instruction sets, memory registers, and pointers is that 

a malicious software or reverse engineer would only be able to determine that the command
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being executed at a particular time instant is, for example, 2+2. An adversary seeing this 

command would not know if the number 2 is an encrypted and randomized number, if the 

205 addition instruction is indeed a true instruction, and neither would the adversary know which 

processor in the computer system is the current master control, sub-processor and the like.  

Finally, the adversary would not know as to why this instruction set is being executed 

at a particular time instant. As the adversary attempts to compromise and analyze each 

processor in the computer system, the adversary will still not know how many processors are 

210 actually in the computer system, because the number of processors themselves is randomly 

chosen. Furthermore, by one embodiment, a random number of additional processors are 

introduced in order to create noise, which appears to be valid processing but is disregarded by 

the program.  

Additionally, but the malicious software or reverse engineer would not know what the 

215 command 2+2 designates, as it has been translated by the master processor. Furthermore, the 

next time that command is run, it might appear as 5/6, as the master processor (of a particular 

sub-processor) randomizes the instruction set at each cycle of execution.  

It must be appreciated that embodiments described herein are not limited to a single 

computer system but is also applicable to a networked computer system having distributed 

220 storage, and processing computer systems, and the like. Additionally, the above described 

embodiments are equally applicable to a distributed processing and storage systems, referred 

to as 'the cloud network'.  

Moreover, whether leveraging distributed processing and storage systems, the process 

of the above described embodiments is still applicable, i.e., a random number of processors is 

225 chosen by the master processor and assigned to the temporary cluster of processors needed 

for the task. Such an M of N structure (i.e., random number of processors, each with a 

random number of processing cycles) further obfuscates the processes and data such that an
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adversary will not know how many processors he or she must examine to fully analyze the 

process and data. The master processor may assign tasks to each layer-I processor, which in 

230 turn may create additional layers underneath it and act as a sub-master processor. Such a 

process continues until the cluster of processors is instructed to reconfigure itself with a new 

master processor and new layers.  

Turning now to Fig. 2 is illustrated a non-limiting example depicting the 

randomization process described in the above embodiments. Fig. 2 depicts an instance of a 

235 program loader 210 coupled to processor/virtual machine 220 and a bytecode file 230 that 

corresponds to a computer object code. The processing performed on the bytecode file 230 by 

a randomization process of the present disclosure is depicted in 240.  

The loader 210 is a component that locates a given program (which can be an 

application or, in some cases, part of the operating system of the computer itself) in an offline 

240 storage (such as a hard disk), and loads it into a main storage (e.g., random access memory in 

a personal computer) for execution.  

Further, the bytecode file 230 includes a computer object code that is processed by a 

program (e.g., a virtual machine). As shown in Fig. 2, the bytecode file includes a header and 

a sequence of indexes 250 for the instructions. For each index (corresponding to an 

245 instruction), by one embodiment of the present disclosure, a special key 260 (i.e., an opcode) 

is generated in a random manner. Note that the opcode generated for an instruction specifies 

an operation to be performed. Accordingly, by randomly generating an opcode for the 

instruction set, provisions the present disclosure to prevent malicious software or reverse 

engineers to track the exact execution of the application. In other words, the bytecode file is 

250 encrypted (in a random manner at run time) such that when the file is decrypted the runtime 

processing is rearranged.
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By one embodiment of the present disclosure, the steps that each processor undertakes 

in the randomization process are as follows: 1) the binary code is transformed into an Self

255 Modifying-Instruction-Randomization-Code (SMIRC) and Semantic Dictionary Encryption 

(SDE) (i.e., a SMIRC+SDE) representation, 2) the SMIRC+SDE representation is further 

transformed into a Van Wijngaarden Grammar Synthesizer (VWGS), that generates via a 

write-back process a generator stub (block of instructions) the which creates a small binary 

executable. Note that the stub is protected via run-time per-call dispatch decryption while the 

260 body of code remains encrypted. The process may further regenerate the original application 

in binary form. Accordingly, a full ontology encryption is employed by the embodiments 

described herein via run-time randomization, at random times, of the binary using ontological 

encryption generated from the stub.  

Cryptographic Protocol 

265 The processing system (for example a virtual machine (VM)) is composed of two 

parts: an Outer Processing System (OPS) OPS host running on the real cpu hardware, and an 

inner, guest part running in an Inner Processing System (IPS) such as in a virtualized virtual 

machine container (i.e. like qemu). All information about the real identity of the user and the 

user's process (i.e computer) is maintained by the OPS. All application subroutines are run 

270 from the IPS. Writable access control is solely permitted by the IPS as a subordinate 

processor such as a virtual device provided by the OPS. Encryption runs on the OPS such that 

the inner machine does not have access to the key.  

In this way the OPS functions as a Master Processor and the IPS functions as a 

Subordinate Processor (which can also function as a Master Processor for its own 

275 Subordinate Processors). The OPS, (for example an IPSOPS virtual machine image) is part 

of a host VM that houses the IPS (for example an inner OPS VM), so that each instance of an 

OPS appears identical in every way that can be seen from inside (i.e. user name, mac
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addresses, and IP addresses). The interface presented to the inner machine by the outer 

machine is always the same also; for example, the inner machine always refers to the outer 

280 machine using the same names.  

The outer machine runs from a hypervisor, and all code that has to talk to the "real" 

network. The inner machine can only connect only to the allocated cryptographic port of the 

outer machine. The outer machine has a firewall configured such that no traffic can ever be 

relayed directly from the inner machine to the network. The only way the inner machine can 

285 talk to another processor should be through the port allocated by the outer machine.  

There are two types of cryptography: 

1. symmetric cryptography (such as RC4, RC5, SHA-1 and MD5) and 

2. asymmetric cryptography (such as RSA and ECC).  

The OPS creates the SMIRC+SDE via cryptography mechanisms, as shown in Figure 

290 4. In this example the symmetric RC5 algorithm is used however any symmetric encryption 

algorithm may be used and adopted for communication between application subroutines (i.e.  

these are co-routines or resource constrained nodes running as a component of the master 

application). An asymmetric cryptography (such as the RSA algorithm), is applied for 

communication between OPS and IPS.  

295 The two protection mechanisms execute within trusted emulators while remaining 

out-of-band of untrusted systems (i.e. the systems that are being emulated). The integrity and 

reliability of the system depends upon keeping attackers in sandboxes within the emulated 

environments. The OPS) and IPS) interact using the following rules: 

1. OPS copies IPS instructions from IPS memory into OPS memory.  

300 2. IPS instructions are translated to a set of OPS instructions. When this set of 

translated OPS instructions execute the state of IPS memory and registers is modified such 

that it appears as if the original IPS instructions had been executed.
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3. The translation process ensures IPS instructions read and write IPS memory 

305 exclusively. The OPS memory is inaccessible by IPS instructions and the translated set of 

OPS instructions cannot read or write OPS memory. As a result, the set of translated 

instructions will never be self-reading. The IPS instructions sandbox is the restricted memory 

space.  

End-to-end encryption is impractical because of large number of communicating 

310 nodes in a Cloud framework because of the need to manage, store and recall large numbers of 

encryption keys. In the present method, we assume the number of computation nodes is N, 

we allocate the OPS to perform a hop-by-hop encryption with IPS nodes, in which each IPS 

subnode stores encryption keys shared with its immediate neighbors. Keys stored in OPS 

nodes include the keys shared with its neighbors and the IPS node which has keys shared 

315 with its subnodes and one key with the OPS. This method minimizes memory required for 

keys as well as the power consumption of transmitting keys.  

Method Protocol 

1. OPS clones encrypted IPS SMIRC+SDE instructions into OPS memory. The 

encrypted IPS decrypt in OPS memory. These instructions remain, therefore, out-of-band of 

320 the IPS and are not accessible by the IPS.  

2. Decrypted IPS SMIRC+SDE instructions are translated (or interpreted) to a set of 

OPS instructions using a Van Wijngaarden grammar specified as a simple two-layer 

translator (see figure 4) of the target IPS.  

3. The set of translated OPS instructions execute the state of the IPS and such that it 

325 appears as if the original IPS instructions had been executed. The translation process ensures 

IPS instructions never read decrypted IPS instructions.
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4. The encrypted instructions are decrypted in OPS memory using OPS routines. The 

emulation sandbox ensures OPS memory is inaccessible by the IPS (i.e. decrypted 

instructions and decryption routines are out-of-band). The encrypted IPS executable does not 

330 have any decryption process and does not see the key needed to decrypt the instructions: 

decryption always stays out-of-band.  

5. The translation mechanism of the OPS will re-write the instructions it has executed 

using the two level grammar into the IPS, which means the IPS never has the same image 

twice in a row and therefore the attack surface will never be the same twice.  

335 Method: Key - CodeHash Pairing Whitelist 

The encryption key itself is associated, using a simple hashmap to a hash (for example 

an MD5) of the subroutine or IPS code as the IPS code reciprocally has the OPS hash: this 

encoding defines an execution model that executes only paired signed OPS with IPS and IPS 

with its subnodes: therefore, unpaired unsigned malicious code such as rootkits and exploits 

340 will never be executed the principal reason is that the hash (example MD5) has to be 

recomputed each time a new translation is completed and this provides tamper evidence as 

well as tamper resistance.  

Van Wijngaarden (VW) Grammar Rules 

VW grammars are context-sensitive and therefore, for those skilled in art, can be used 

345 to write rules which transform one form of code (of, for example, an x86 instruction set) into 

another form while preserving its semantics which is its context's information. VW can 

define a long-range relation: this means that information flows contextually through the 

sentential form of the representation of the code (e.g. x86 assembler). When the VW is used 

in the context of the OPS and IPS then information must flow to the subnodes which look at 

350 their neighbors to rewrite one code form into another. Thus, using the VW grammar as a code
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translation engine implies that it requires almost all rules to know something about almost all 

the other rules which makes the attack surface very difficult.  

The First Level Translator Grammar 

The first level grammar generates the computer code. As a concrete example, the first 

355 level grammar for the x86 instruction set can be given using symbols S, T, U and V as: 

S -> mov eax, key T 

T -> xor [ ebx ], eax U 

U -> inc ebx V 

360 

This first level grammar generates the following executable instruction codes: 

mov eax, key 

xor [ ebx ], eax 

365 inc ebx 

The codes are generated by the sequence of non-terminal symbols S -> T -> U -> V.  

Specifically, a non-terminal such as S can be rewritten as "mov eax, key T", which can be 

again rewritten as "mov eax, key xor [ ebx ], eax U ", etc. . . The production rules defined 

370 can generate an equivalent sequence of instructions for arbitrary programs: 

S -> mov eax, key T | push key; pop eax T 

T -> xor [ ebx ], eax U | mov ecx, [ ebx]; 

and ecx, eax; not ecx; or [ ebx ], eax; 

375 and [ ebx ], ecx U
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U -> inc ebx V ladd ebx, 1 V 

Similarly, code without any functional effect can be added to vary the IPS by the 

OPS. This can be done by adding a new non-terminal which generates "non-operational 

380 sequences" instructions with small overheads such as: S -> G mov eax, key T | G push key; 

pop eax T 

These increase the number of instruction sequences that can be generated to 

increase the variance in the IPS and subnodes.  

The Second-Level Translator Grammar 

385 In the present patent, the method used is a random generator during the production 

process, to enable the production to randomly generate semantic and context preserving code 

sequences using the following VW metarules (to distinguish between metarules, the 

hyperrules, and the production rules, we change the usual Backus-Naur syntax '->' into ';' 

and :: for metarules and colon (':') for hyperrules. To separate the different alternatives of a 

390 rule we use semi-colon ';' instead of '1'): 

N :: 0; 1; 2; ... ; 9; ON; ... 9N; 

HEXIDECIMAL:: N; a; b ; f, a HEXIDECIMAL; b HEXIDECIMAL; ... ; f 

HEXIDECIMAL.  

395 ADDRESS:: OxN.  

NUMBER:: MEMORY ADDRESS; HEXIDECIMAL.  

INSTRUCTION:: mov; push; pop.  

MEMORY REGISTER:: eax; ebx; edx.  

STACK:: esp.  

400 MEMORY REGISTERS :: STACK; REGISTER.
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REGISTER NUMBER:: REGISTER; N UMBER.  

MEMORY:: [ REGISTER], [ADDRESS].  

TO :: ','.  

In the following table we demonstrate in lay terms how Ontological Encryption 

405 functions independent of chip architecture because it is done at a binary level.  

Actual Instruction Original Binary Ontologically Ontologically 

Encrypted Binary Encrypted Instruction 

Add 2 to 2 01000001 01100100 01110011 01110101 Subtract 3 from 3 
01100100 00100000 01100010 01110100 

00110010 00100000 0111001001100001 
0111010001101111 0110001101110100 

0010000000110010 0010000000110011 
00100000 01100110 

01110010 01101111 
0110110100100000 
00110011 

Compare eax to ebx 01100011 01101111 01101101 01101111 Move 3 to 2 

0110110101110000 0111011001100101 
0110000101110010 0010000000110011 
0110010100100000 0010000001110100 

0110010101100001 0110111100100000 
0111100000100000 00110010 

01110100 01101111 

00100000 01100101 

01100010 01111000 

The metanotion NUM represents an address or a hexadecimal number while 

INSTRUCTION represents several instructions, not just a single instruction (e.g. mov, push 

and pop). The following translations will modify an instruction into a readable and 

410 rewritable sentence that can be executed as equivalent to its subroutine given by the 

following hyperrules:
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mov REGISTERS TO REGISTER NUMBER: 

move REGISTER NUMBER in REGISTERS.  

415 push REGISTER NUMBER: 

save REGISTER NUMBER.  

pop REGISTERS: 

restore REGISTERS.  

420 As a concrete example of a short subroutine, the codes "mov eax, 0" will be replaced 

by "move 0 in eax", because of the first hyperrule. To generate even higher complexity, we 

can add hyperrules which will transform codes into other equivalent codes: 

move REGSTER NUMBER in MEMORY: 

425 mov, MEMORY, TO, REGISTER NUMBER; 

move REGISTER NUMBER in REGISTERS: 

mov, REGISTERS, TO, REGISTER NUMBER; 

save REGISTER NUMBER, restore REGISTERS.  

430 For example, the codes obtained before ("move 0 in eax") can be revised into 

"mov, eax, ',', 0" or by "save 0, restore eax". The first alternative will halt the generation 

process. However, the codes "mov", "eax"," ',' " and "0", where none of them match a left

hand side of a hyperrule will halt. However, other alternatives will continue generation, and 

both parts of the code, "save 0" and "restore eax", will be replaced independently from each 

435 other. Therefore, "save 0" can be replaced by "push, 0" or by "subtract 4 from esp, move 0 

in [ esp ]", etc. The metarules defined above can be more extended by creating tables of 

equivalent instruction grammars for different processors (e.g. ARM, Intel, or other hardware)
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because they are performed through binary translation which means that the invention is not 

restricted to just one binary instruction chip architecture but may be used by any chip 

440 architecture (ARM, Intel or other hardware) . The VW grammars can generate an infinite set 

of instructions for variability and so the hyperrules generate an infinite number of production 

rules: in practice, the amount is limited by setting a fixed counter on a per IPS basis to ensure 

diversity but also minimizing overheads of runtime. We call each of the VW generated target 

code sequences a "Stub".  

445 The various subroutines of an IPS can each be defined by a separate VW grammar.  

Starting symbols of the grammar are themselves starting symbols of a grammar describing 

each program as a construction of stubs. The VW grammar produces a constructive method 

to generate those codes of the target machine CPU automatically. The OPS provides the 

whole operational program but the OPS itself can be redefined by the same process of the 

450 IPS. Thus a Van Wijngaarden grammar can be used to define IPS from the starting OPS 

which produces all the parts of the IPS, then the OPS can itself be translated via a runtime 

cloning or copying process: As an example, for a OPS with 4-level VW grammar definition 

where the parent, OPS, rewrites ongoingly is: 

OPS : IPS-STUBO1, IPS-STUB02, IPS-STUB03, IPS-STUB04 

455 IPS-STUBO :VW-Grammar of STUBl01 paired and signed to OPS-CHILD 

IPS-STUB02 :VW-Grammar of STUB02 paired and signed to OPS-CHILD 

IPS-STUB03 :VW-Grammar of STUB03 paired and signed to OPS-CHILD 

IPS-STUB04 :VW-Grammar of STUB04 paired and signed to OPS-CHILD 

OPS-CHILD: OPS-CHILD paired and signed to OPS 

460 For instance, see Dick Grune, How to produce all sentences from a two-level 

grammar Information Processing Letters Volume 19, Issue 4, 12 November 1984, Pages 181

185, incorporated herein by reference. Specifically, each stub is assigned to a different



WO 2016/100506 PCT/US2015/066080 
20 

processor, for instance, in a cloud environment or some other computer system (described 

with reference to Fig. 5), to be processed and reported back to a supervising processor. In this 

465 way, adversaries are challenged to gather the entire code structure, and each time the code 

runs it will have different instruction sets, memory pointers, registers and data encryption.  

Figure 3 illustrates an example of the processing system including a virtual machine 

(VM) that is composed of the Outer Processing System (OPS) (301), and an inner, guest part 

running in an Inner Processing System (IPS) (302) as is described above. The OPS 301 

470 includes a meta-data two layer grammar translator. An asymmetric cryptography is applied 

for communication between OPS 301 and IPS 302. Furthermore, symmetric cryptography is 

used for communication between application subroutines.  

Figure 4 illustrates the process for randomizing instruction sets, memory registers, 

and pointers of a computing system. The execution VM that runs the STUB (to actually run 

475 the program) uses the randomly generated codes --- in other words, the executing code 

always appears once, and then the codes leaves while the stack (part of the stub) remains for 

the next VM to continue the computation.  

In step 1, the instructions are encrypted using the OP-Hash in the inner process. In 

step 2, the encrypted instructions are transmitted to the outer process. In step 3, the 

480 instructions are decrypted into the OPS memory and are executed by the VM that runs the 

STUB. These decrypted instructions remain out-of-band of the IPS and are not accessible by 

the IPS. The encrypted instructions are decrypted in OPS memory using OPS routines. The 

emulation sandbox ensures OPS memory is inaccessible by the IPS (i.e. decrypted 

instructions and decryption routines are out-of-band). The encrypted IPS executable does not 

485 have any decryption process and does not see the secret key needed to decrypt the 

instructions: decryption always stays out-of-band.
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In step 4, the decrypted instructions are translated (or interpreted) to a set of OPS 

instructions using a Van Wijngaarden grammar specified as a simple two-layer translator of 

the target IPS. The set of translated OPS instructions execute the state of the IPS such that it 

490 appears as if the original IPS instructions had been executed. The translation process ensures 

IPS instructions never read decrypted IPS instructions.  

In step 5, the translation mechanism of the OPS re-writes the instructions it has 

executed using the two level grammar into the IPS. This writing ensures that the IPS never 

has the same image twice in a row and therefore the attack surface will never be the same 

495 twice.  

Note the entire process chain shown in Figure 4 is not required for the system to operate. For 

instance, although the system goes through all of these steps in one embodiment, in a different 

embodiment steps may be switched around (reordered) or each and every step may not be required 

(some steps could be left out).  

500 As stated previously, each of the functions of the above described embodiments may 

be implemented by one or more processing circuits. A processing circuit includes a 

programmed processor (for example, processor 503 in Fig. 5), as a processor includes 

circuitry. A processing circuit also includes devices such as an application-specific 

integrated circuit (ASIC) and conventional circuit components arranged to perform the 

505 recited functions. By one embodiment, the circuitry as described in Fig. 5, can be used to 

perform the randomization of the instruction sets, memory registers, and pointers to provide 

the security features described herein. Accordingly, the circuitry upon implementing the 

randomization process, can provide a secure framework to execute applications thereby 

improving the overall fucntionality of the computer.  

510 The various features discussed above may be implemented by a computing device 

such as a computer system (or programmable logic). The circuitry may be particularly 

designed or programmed to implement the above described functions and features which
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improve the processing of the circuitry and allow data to be processed in ways not possible 

by a human or even a general purpose computer lacking the features of the present 

515 embodiments. Fig. 5 illustrates such a computer system 501. The computer system 501 of 

Fig. 5 may be a particular, special-purpose machine. In one embodiment, the computer 

system 501 is a particular, special-purpose machine when the processor 503 is programmed 

to compute vector contractions.  

The computer system 501 includes a disk controller 506 coupled to the bus 502 to 

520 control one or more storage devices for storing information and instructions, such as a 

magnetic hard disk 507, and a removable media drive 508 (e.g., floppy disk drive, read-only 

compact disc drive, read/write compact disc drive, compact disc jukebox, tape drive, and 

removable magneto-optical drive). The storage devices may be added to the computer 

system 501 using an appropriate device interface (e.g., small computer system interface 

525 (SCSI), integrated device electronics (IDE), enhanced-IDE (E-IDE), direct memory access 

(DMA), or ultra-DMA).  

The computer system 501 may also include special purpose logic devices (e.g., 

application specific integrated circuits (ASICs)) or configurable logic devices (e.g., simple 

programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), and 

530 field programmable gate arrays (FPGAs)).  

The computer system 501 may also include a display controller 509 coupled to the 

bus 502 to control a display 510, for displaying information to a computer user. The 

computer system includes input devices, such as a keyboard 511 and a pointing device 512, 

for interacting with a computer user and providing information to the processor 503. The 

535 pointing device 512, for example, may be a mouse, a trackball, a finger for a touch screen 

sensor, or a pointing stick for communicating direction information and command selections 

to the processor 503 and for controlling cursor movement on the display 510.
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The processor 503 executes one or more sequences of one or more instructions 

contained in a memory, such as the main memory 504. Such instructions may be read into 

540 the main memory 504 from another computer readable medium, such as a hard disk 507 or a 

removable media drive 508. One or more processors in a multi-processing arrangement may 

also be employed to execute the sequences of instructions contained in main memory 504. In 

alternative embodiments, hard-wired circuitry may be used in place of or in combination with 

software instructions. Thus, embodiments are not limited to any specific combination of 

545 hardware circuitry and software.  

As stated above, the computer system 501 includes at least one computer readable 

medium or memory for holding instructions programmed according to any of the teachings of 

the present disclosure and for containing data structures, tables, records, or other data 

described herein. Examples of computer readable media are compact discs, hard disks, 

550 floppy disks, tape, magneto-optical disks, PROMs (EPROM, EEPROM, flash EPROM), 

DRAM, SRAM, SDRAM, or any other magnetic medium, compact discs (e.g., CD-ROM), or 

any other optical medium, punch cards, paper tape, or other physical medium with patterns of 

holes.  

Stored on any one or on a combination of computer readable media, the present 

555 disclosure includes software for controlling the computer system 501, for driving a device or 

devices for implementing the invention, and for enabling the computer system 501 to interact 

with a human user. Such software may include, but is not limited to, device drivers, operating 

systems, and applications software. Such computer readable media further includes the 

computer program product of the present disclosure for performing all or a portion (if 

560 processing is distributed) of the processing performed in implementing any portion of the 

invention.
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The computer code devices of the present embodiments may be any interpretable or 

executable code mechanism, including but not limited to scripts, interpretable programs, 

dynamic link libraries (DLLs), Java classes, and complete executable programs. Moreover, 

565 parts of the processing of the present embodiments may be distributed for better performance, 

reliability, and/or cost.  

The term "computer readable medium" as used herein refers to any non-transitory 

medium that participates in providing instructions to the processor 503 for execution. A 

computer readable medium may take many forms, including but not limited to, non-volatile 

570 media or volatile media. Non-volatile media includes, for example, optical, magnetic disks, 

and magneto-optical disks, such as the hard disk 507 or the removable media drive 508.  

Volatile media includes dynamic memory, such as the main memory 504. Transmission 

media, on the contrary, includes coaxial cables, copper wire and fiber optics, including the 

wires that make up the bus 502. Transmission media also may also take the form of acoustic 

575 or light waves, such as those generated during radio wave and infrared data communications.  

Various forms of computer readable media may be involved in carrying out one or 

more sequences of one or more instructions to processor 503 for execution. For example, the 

instructions may initially be carried on a magnetic disk of a remote computer. The remote 

computer can load the instructions for implementing all or a portion of the present disclosure 

580 remotely into a dynamic memory and send the instructions over a telephone line using a 

modem. A modem local to the computer system 501 may receive the data on the telephone 

line and place the data on the bus 502. The bus 502 carries the data to the main memory 504, 

from which the processor 503 retrieves and executes the instructions. The instructions 

received by the main memory 504 may optionally be stored on storage device 507 or 508 

585 either before or after execution by processor 503.
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The computer system 501 also includes a communication interface 513 coupled to the 

bus 502. The communication interface 513 provides a two-way data communication 

coupling to a network link 514 that is connected to, for example, a local area network (LAN) 

515, or to another communications network 516 such as the Internet. For example, the 

590 communication interface 513 may be a network interface card to attach to any packet 

switched LAN. As another example, the communication interface 513 may be an integrated 

services digital network (ISDN) card. Wireless links may also be implemented. In any such 

implementation, the communication interface 513 sends and receives electrical, 

electromagnetic or optical signals that carry digital data streams representing various types of 

595 information.  

The network link 514 typically provides data communication through one or more 

networks to other data devices. For example, the network link 514 may provide a connection 

to another computer through a local network 515 (e.g., a LAN) or through equipment 

operated by a service provider, which provides communication services through a 

600 communications network 516. The local network 514 and the communications network 516 

use, for example, electrical, electromagnetic, or optical signals that carry digital data streams, 

and the associated physical layer (e.g., CAT 5 cable, coaxial cable, optical fiber, etc.). The 

signals through the various networks and the signals on the network link 514 and through the 

communication interface 513, which carry the digital data to and from the computer system 

605 501 may be implemented in baseband signals, or carrier wave based signals.  

The baseband signals convey the digital data as unmodulated electrical pulses that are 

descriptive of a stream of digital data bits, where the term "bits" is to be construed broadly to 

mean symbol, where each symbol conveys at least one or more information bits. The digital 

data may also be used to modulate a carrier wave, such as with amplitude, phase and/or 

610 frequency shift keyed signals that are propagated over a conductive media, or transmitted as
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electromagnetic waves through a propagation medium. Thus, the digital data may be sent as 

unmodulated baseband data through a "wired" communication channel and/or sent within a 

predetermined frequency band, different than baseband, by modulating a carrier wave. The 

computer system 501 can transmit and receive data, including program code, through the 

615 network(s) 515 and 516, the network link 514 and the communication interface 513.  

Moreover, the network link 514 may provide a connection through a LAN 515 to a mobile 

device 517 such as a personal digital assistant (PDA) laptop computer, or cellular telephone.  

According to one embodiment there is described an method and apparatus for 

randomizing instructions to increase computer security. The process includes the steps of 

620 encrypting instructions in an inner processing system (IPS) of a processing system including 

a virtual machine (VM) that is composed of an outer processing system (OPS) and the IPS, 

transmitting the encrypted instructions to the outer processing system, decrypting the 

encrypted instructions at the OPS such that the decrypted instructions are out-of-band of the 

IPS and are not accessible by the IPS, executing the decrypted code via a stub routine in the 

625 virtual machine, translating the decrypted instructions to a set of OPS instructions using a 

Van Wijngaarden grammar specified as a simple two-layer translator for the IPS, and 

transmitting the translated instructions to the IPS.  

While aspects of the present disclosure have been described in conjunction with the 

specific embodiments thereof that are proposed as examples, alternatives, modifications, and 

630 variations to the examples may be made. Furthermore, it should be noted that, as used in the 

specification and the appended claims, the singular forms "a," "an," and "the" include plural 

referents unless the context clearly dictates otherwise.
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CLAIMS: 

Claim 1. An method for randomizing instructions to increase computer security, 

comprising: 

encrypting instructions in an inner processing system (IPS) of a processing system 

including a virtual machine (VM) that is composed of an outer processing system (OPS) and 

the IPS; 

transmitting the encrypted instructions to the outer processing system; 

decrypting the encrypted instructions at the OPS such that the decrypted instructions 

are out-of-band of the IPS and are not accessible by the IPS; 

executing the decrypted code via a stub routine in the virtual machine; 

translating the decrypted instructions to a set of OPS instructions using a Van 

Wijngaarden grammar specified as a simple two-layer translator for the IPS; and 

transmitting the translated instructions to the IPS.
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AMENDED CLAIMS 
received by the International Bureau on 26 April 2016 (26.04.2016) 

CLAIMS: 

Claim 1: A method for randomizing instructions to increase computer security, the 

method comprising: 

encrypting instructions in an inner processing system (IPS) of a virtual machine (VM) 

that includes an outer processing system (OPS) and the IPS; 

transmitting, from the IPS, the encrypted instructions to the OPS; 

decrypting, by the OPS, the received encrypted instructions, the decrypted instructions 

being out-of-band and inaccessible by the IPS; 

translating the decrypted instructions to a set of OPS instructions using a two-level 

grammar specified as a translator for the IPS; and 

executing the set of OPS instructions via a stub routine in the VM.  

Claim 2: The method of Claim 1, wherein the two-level grammar is a Van Wijngaarden 

grammar.  

Claim 3 : The method of Claim 2, further comprising: 

generating randomly, based on the Van Wijngaarden grammar, memory registers and 

pointers for the VM.  

Claim 4: The method of Claim 1, further comprising: 

creating, by the OPS, a semantic dictionary encryption based on a symmetric encryption 

algorithm.
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Claim 5 : The method of Claim 1, wherein the stub routine is included in the OPS of the 

VM and the encryption performed by the IPS is an asymmetric encryption.  

Claim 6: The method of Claim 5, wherein the asymmetric encryption is one of a RSA 

encryption and an elliptic curve cryptography (ECC) encryption.  

Claim 7: The method of Claim 4, wherein the symmetric encryption algorithm is one of 

RC4, RC5, SHA-1, and MD5 algorithm.  

Claim 8 : The method of Claim 1, further comprising: 

transmitting, by the OPS, the executed instruction to another virtual machine, the another 

virtual machine being an immediate successor of the VM in a hierarchy of virtual machines.  

Claim 9: The method of Claim 8, wherein each virtual machine in the hierarchy of 

virtual machines includes a unique two-level grammar.  

Claim 10 : The method of Claim 8, wherein a total number of virtual machines included 

in the hierarchy of virtual machines is randomly selected during application execution.  

Claim 11 : The method of Claim 10, further comprising: 

generating a random number of additional virtual machines to be included in the 

hierarchy of virtual machines, the additional number of virtual machines being generated based 

on a uniform random distribution.
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Claim 12: A non-transitory computer readable medium having stored thereon a program 

that when executed by a computer causes the computer to execute a method for randomizing 

instructions to increase computer security, the method comprising: 

encrypting instructions in an inner processing system (IPS) of a virtual machine (VM) 

that includes an outer processing system (OPS) and the IPS; 

transmitting, from the IPS, the encrypted instructions to the OPS; 

decrypting, by the OPS, the received encrypted instructions, the decrypted instructions 

being out-of-band and inaccessible by the IPS; 

translating the decrypted instructions to a set of OPS instructions using a two-level 

grammar specified as a translator for the IPS; and 

executing the set of OPS instructions via a stub routine in the VM.  

Claim 13 : The non-transitory computer readable medium of Claim 12, wherein the two

level grammar is a Van Wijngaarden grammar.  

Claim 14: The non-transitory computer readable medium of Claim 13, wherein the 

method further comprises: 

generating randomly, based on the Van Wijngaarden grammar, memory registers and 

pointers for the VM.
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Claim 15: The non-transitory computer readable medium of Claim 12, wherein the 

method further comprises: 

creating, by the OPS, a semantic dictionary encryption based on a symmetric encryption 

algorithm.  

Claim 16: The non-transitory computer readable medium of Claim 12, wherein the stub 

routine is included in the OPS of the VM and the encryption performed by the IPS is an 

asymmetric encryption.  

Claim 17: The non-transitory computer readable medium of Claim 16, wherein the 

asymmetric encryption is one of a RSA encryption and an elliptic curve cryptography (ECC) 

encryption.  

Claim 18 : The non-transitory computer readable medium of Claim 15, wherein the 

symmetric encryption algorithm is one of RC4, RC5, SHA-1, and MD5 algorithm.  

Claim 19: The non-transitory computer readable medium of Claim 12, wherein the 

method further comprises: 

transmitting, by the OPS, the executed instruction to another virtual machine, the another 

virtual machine being an immediate successor of the VM in a hierarchy of virtual machines.
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Claim 20: The non-transitory computer readable medium of Claim 19, wherein each 

virtual machine in the hierarchy of virtual machines includes a unique two-level grammar.  

Claim 21 : The non-transitory computer readable medium of Claim 15, wherein a total 

number of virtual machines included in the hierarchy of virtual machines is randomly selected 

during application execution.  

Claim 22: The non-transitory computer readable medium of Claim 21, wherein the 

method further comprises: 

generating a random number of additional virtual machines to be included in the 

hierarchy of virtual machines, the additional number of virtual machines being generated based 

on a uniform random distribution.  

Claim 23 : An apparatus for randomizing instructions to increase computer security, 

comprising: 

memory; and 

circuitry configured to 

encrypt instructions in an inner processing system (IPS) of a virtual machine (VM) that 

includes an outer processing system (OPS) and the IPS, 

transmit, from the IPS, the encrypted instructions to the OPS, 

decrypt, by the OPS, the received encrypted instructions, the decrypted instructions 

being out-of-band and inaccessible by the IPS,
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translate the decrypted instructions to a set of OPS instructions using a two-level 

grammar specified as a translator for the IPS, and 

execute the set of OPS instructions via a stub routine in the VM.  

Claim 24: The apparatus of Claim 23, wherein the two-level grammar is a Van 

Wijngaarden grammar.  

Claim 25 : The apparatus of Claim 24, wherein the circuitry is further configured to 

generate randomly, based on the Van Wijngaarden grammar, memory registers and pointers for 

the VM.  

Claim 26: The apparatus of Claim 23, wherein the circuitry is further configured to 

create, by the OPS, a semantic dictionary encryption based on a symmetric encryption 

algorithm.  

Claim 27: The apparatus of Claim 23, wherein the stub routine is included in the OPS of 

the VM and the encryption performed by the IPS is an asymmetric encryption.  

Claim 28 : The apparatus of Claim 27, wherein the asymmetric encryption is one of a 

RSA encryption and an elliptic curve cryptography (ECC) encryption.  

Claim 29: The apparatus of Claim 26, wherein the symmetric encryption algorithm is 

one of RC4, RC5, SHA-1, and MD5 algorithm.
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Claim 30: The apparatus of Claim 23, wherein the circuitry is further configured to 

transmit, by the OPS, the executed instruction to another virtual machine, the another virtual 

machine being an immediate successor of the VM in a hierarchy of virtual machines.  

Claim 31 : The apparatus of Claim 30, wherein each virtual machine in the hierarchy of 

virtual machines includes a unique two-level grammar.  

Claim 32: The apparatus of Claim 26, wherein a total number of virtual machines 

included in the hierarchy of virtual machines is randomly selected during application execution.  

Claim 33 : The apparatus of Claim 32, wherein the method further comprises: 

generating a random number of additional virtual machines to be included in the 

hierarchy of virtual machines, the additional number of virtual machines being generated based 

on a uniform random distribution.
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