a2 United States Patent

US010955461B2

ao) Patent No.: US 10,955,461 B2

Hsu et al. 45) Date of Patent: *Mar. 23, 2021
(54) SMART AND EFFICIENT PROTOCOL USPC ittt s 714/37
LOGIC ANALYZER CONFIGURED WITHIN See application file for complete search history.
AUTOMATED TEST EQUIPMENT (ATE)
HARDWARE (56) References Cited
(71) Applicant: Advantest Corporation, Tokyo (JP) U.S. PATENT DOCUMENTS
(72) Inventors: Linden Hsu, San Jose, CA (US); Ben 6,173,440 Bl 1/2001 Darty
Rogel-Favila, San Jose, CA (US); 6,449,741 Bl 9/2002 Organ et al.
Duane Champousx, San Jose, CA (US) (Continued)
(73) Assignee: ADVANTEST CORPORATION, FOREIGN PATENT DOCUMENTS
Tokyo (JP)
EP 3518441 Al 7/2019
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 57 days.
. Nagappan, Meiyappan. “Analysis of execution log files.” In 2010
Thl.s patent is subject to a terminal dis- ACM/I EEE 32nd International Conference on Software
claimer. Engineering,vol. 2, pp. 409-412. IEEE, 2010. (Year: 2010).
(21) Appl. No.: 15/981,646 Primary Examiner — Sarai E Butler
(22) Filed: May 16, 2018 (57) ABSTRACT
(65) Prior Publication Data A method for monitoring a communication link between a
device under test (DUT) and automated test equipment is
US 2015/0353696 Al Nov. 21, 2019 disclosed. The method comprises monitoring data traffic
associated with testing a DUT using a protocol analyzer
(51) Imt.CL . .
module, wherein the data traffic comprises a flow of traffic
GO6F 11/00 (2006.01)
between the DUT and a protocol core of a programmable
GOIR 31/28 (2006.01)
. logic device, wherein the protocol analyzer module is inte-
(Continued) grated within the programmable logic device, wherein the
(52) US. CL programmable logic device is controlled by a system con-
CPC ... GOIR 31/2834 (2013.01); GOIR 31/3177 troller and is operable to generate commands and data to test
(2013.01); GOIR 31/31703 (2013.01); GOIR the DUT, and wherein the protocol core is operable to
31731705 (2013.01); GOIR 31/31907 generate signals to communicate with the DUT using a
(2013.01); GOIR 31/31908 (2013.01); GOIR protocol associated with the DUT. The method further
31/31921 (2013.01); GOIR 31/318307 comprises saving results associated with the monitoring in a
(2013.01); GO6F 11/079 (2013.01); GO6F memory associated with the protocol analyzer module and
112733 (2013.01) transmitting the results upon request to an application pro-
(58) Field of Classification Search gram executing on the system controller.

CPC . GO1R 31/2834; GO6F 11/008; GO6F 11/079;
GOGF 11/3409; GO6F 11/3604

17 Claims, 11 Drawing Sheets

110~
N
¥
i '%4 116 1 20 122
L / (/
Processor| | System Memory o | Communication
memaory controfler controller interface
— ; ;
1)
Ao .
112 Display | 126 Input | 130 Storage :_"_l 34
adapler interface interface
: {
¥ -
Display input Primary Backup
device device storage storage
A N device device
1
124 128 . 5
Databaxses 133

T
132 140

US 10,955,461 B2

Page 2
(51) Int. CL 2008/0005630 Al* 1/2008 Adsitt GOIR 31/318335
GOIR 3173177 (2006.01) 714/718
GOIR 31/319 (2006.01) 2008/0126874 Al* 5/2008 Oyadomari GO6F 11/008
714/39
gz;ﬁ. j;;j;; 888288 2010/0142543 Al* 6/2010 Shaikhc.c...... HO04L 45/04
: 370/401
GOIR 31/3183 (2006.01) 2012/0079132 AL* 3/2012 Litt ©ooororen HOAL 1/0002
GOG6F 11/07 (2006.01) 709/233
(56) References Cited 2013/0266154 Al* 10/2013 McCormack HO04R 3/00
381/117
U.S. PATENT DOCUMENTS 2014/0122921 Al* 5/2014 Imamichi GOGF 16/9027
o 714/6.2
9,164,821 B2 10/2015 Burghard et al. 2014/0236524 Al* 82014 Frediani GO1R 31/2834
9,495,267 B2 11/2016 Buege et al. 702/108
9,958,502 B2 5/2018 Goh et al. 2016/0112287 Al1* 4/2016 Farmer HO4L 43/04
10,379,158 B2* 82019 Champoux GOIR 31/3177 709/224
2006/0123266 Al* 6/2006 Matsumoto G06Q 20/10 2018/0224502 A1* 8/2018 Champoux GO6F 11/27
) 714/1 2019/0353696 Al* 11/2019 HsU ..ccooccovvnne.. GO1R 31/31703
2007/0263649 Al* 11/2007 Cuniccceevveenen. HO41L 43/00
370/412 * cited by examiner

U.S.

Patent

Mar. 23, 2021 Sheet 1 of 11 US 10,955,461 B2
110-
‘\\\\
|
114 116 118 120 122
/ / /) J
{ { { / {
Processor System Memory O Communication
memaory controlier controlier interface
- ¥ . y ‘.
; :
149 Display | 195 Input | 439 Storage |-~ 134
adapter interface } interface {
Display input Primary Backup
device device storage storage
¢) device device
1
124 128 3
Daiabalses 133
\
?22 140

FIG. 1

US 10,955,461 B2

Sheet 2 of 11

Mar. 23, 2021

U.S. Patent

¢ Old

06"~ A 19

ELELICCI WA \\ \
LML VU NN 7 \
T\ i}’/\\

21y
\\

2
+fa far] it it | 0. s 21§
[a] v -] e . . e 2 | e | 1
fa 3 o | . e | 0 1
[f e i v fn] sty | 2 1

N AN

AN AN \ N y
\) ¥

U.S. Patent Mar. 23, 2021 Sheet 3 of 11 US 10,955,461 B2

300
\ r"' mmmmmmmmmmmmmmmmmmm "";
| T
301 ‘ i !
; 302 »Memory - ! 5
\ i] 308 |
__ 32 | 304 ° N
Network)Q § {) 330 352 ; i\é E \ ;
: switch i Tester |y /| Ny
: 3 312 processor A FPGA NP 7 DUTH g
System | | 535 b |
controfler | | I 354 1 N !
! z 8 WRSIEERE
L | | site FPGA | AN 1
? f I
b * Loy |
ap A FO2 >Memory | i|372C |
T copud) STV Mo |
] z s i
L | et LipuT3
; §31QBT - Site module (optional) | AN _AIN | : ;
: !
! ! { ST
| | B4RV I
; 3324 __;,/ -1 Device power supply ; ; § §
! !
L | | B e
b ! : N L HDUT
! ; - Device power suppl
B + P PPy] M
g ; Tester slice ; [1372M |
! i
i e e eree e e oo e e eeem e e e oo oeee o o oo o e
; . 7 - || Load ||
§ I . 340A 3801 board | |
i i e |
- Toster slice, ~340B i i
! ! = Thermal
| R . 3901 3
. | chamber |
§ : b
§ | I -
L_"_m___,m_i Tester slice ;/-34(}?@
b e o e e e e

U.S. Patent Mar. 23, 2021 Sheet 4 of 11 US 10,955,461 B2

410
\ Tester
——
DUT FPGA L~ 420
B 430
495
FPGA |
ag6A- DUT | | = @) (<> Software
o \ \
4504 451A | 452A \
: 440
49881 DUT | | @
" A
. 4508 il
s \
’ 4510
—
4g6N-—1 DUT Kﬁ -
{
450N

US 10,955,461 B2

Sheet 5 of 11

Mar. 23, 2021

U.S. Patent

SIEMOS

)

G0G

¥

G Ol
w‘ iiiiiiiiiiii 2 S g
m
w duejsou] e Bupjoen alglg e |
j EleDEISIN e BumBWIo- e M
| B |
S/G | 1B e uopodes e |
/ | | NSSS
SoB IO . | 0.S R AELEEPE
Jejsues] | w Aowsw | 21604 o
<7 ﬁ w aimden [g uosinboy M .
[\
f RN "~ ssaippy | T
obe _ﬁmmmwﬁmwaaayaaaa AU S NN B £-C
0SS gog LLG 0Zg
dwejsawi]

SMEeIS
SOIEIQ e
el e

N JOHUCK

2
&
L]

| JOHUOC

U.S. Patent Mar. 23, 2021 Sheet 6 of 11 US 10,955,461 B2

640 610
\ \
6"{0 Tester
\
> +62
DUT Protocol | 17620
» core
sepa 0%

FIG. 6

US 10,955,461 B2

Sheet 7 of 11

Mar. 23, 2021

U.S. Patent

L 9l
I o
" Bleq M
| - — m
| . 082 |
| e A |
e = aifio
2IBMUO Alowispy Uonoe wo - ! |
S |) O30 Jossaidwiod . m
_ eled m
\ | N |
®E : oz, |
| I — |
| \ \ . 1 |
ELEEEEEELE%%E U N S
0G.L Oyl QMH.\.,.
Nﬁm.
2400 R — AHd = 1Na
{00010id | : o
\ \
0cL oLl

US 10,955,461 B2

Sheet 8 of 11

Mar. 23, 2021

U.S. Patent

SJBMHOS

068

jozheur
1030104 d

[

2102 |020}01d

1Nd

/

!

018

US 10,955,461 B2

Sheet 9 of 11

Mar. 23, 2021

U.S. Patent

big—

16—

6 Ol
026
m
(shuodal (s)boj |
SIBIBUBD) sjeseuesy | 606
ﬂ |
aimden aimded i
sseooid-1sod azAeuy | 806
’ ’ 906 G086
% %
2Mded BABS | ainjdes o1 do
B BAdURY | doig 1581 40iS
\
L06 ﬂ SaA| g0
OG- 158} Usiul y ..%E_mmnmu

<06

/

jsa) Jely

ammdes
ajgeuy

~-106

U.S. Patent Mar. 23, 2021 Sheet 10 of 11 US 10,955,461 B2

1000 —

Programming a plurality of capture buffers into a programmable | 41002
logic device for monitoring data traffic within the logic device

3
Monitoring the data traffic using the plurality of capture buffers,
wherein the capture buffers comprise acquisition logic circuitry to 1004
determine what data traffic o capture

'

Saving results associated with the monitoring in respective | _1pps
memories associated with each of the plurality of capture buffers

L

Transmitling the results upon request {0 an application program | __1npg
executing on a system controller

End

FIG. 10

U.S. Patent Mar. 23, 2021 Sheet 11 of 11 US 10,955,461 B2

1100 —

{ Start }

X
Programming a protocol analyzer into a programmabile logic device
of a tester for monitoring data traffic between a device under test 1102
and the programmable logic device

¢
Monitoring the data traffic using the protocol analyzer, wherein the
protocol analyzer compresses incoming data and discards less ~1104
critical data

Saving results associated in a memory associated with the protocol] 41404
analyzer

'

Transmitting the results upon request to an application program | _440g
executing on a system controlier

'

Performing post-processing on the results to display the results | _444g
graphically to a user

i
{ End }

FIG. 11

US 10,955,461 B2

1
SMART AND EFFICIENT PROTOCOL
LOGIC ANALYZER CONFIGURED WITHIN
AUTOMATED TEST EQUIPMENT (ATE)
HARDWARE

CROSS-REFERENCE TO RELATED
APPLICATIONS

Related Applications

The present application is related to U.S. patent applica-
tion Ser. No. 15/981,634, filed May 16, 2018, entitled
“TRAFFIC CAPTURE AND DEBUGGING TOOLS FOR
IDENTIFYING ROOT CAUSES OF DEVICE FAILURE
DURING AUTOMATED TESTING,” naming Linden Hsu,
Ben Rogel-Favila, Michael Jones, Duane Champoux, and
Mei-Mei Su as inventors. That application is incorporated
herein by reference in its entirety and for all purposes.

The present application is related to U.S. patent applica-
tion Ser. No. 15/916,126, filed Mar. 8, 2018, entitled “A
LOG POST PROCESSOR FOR IDENTIFYING ROOT
CAUSES OF DEVICE FAILURE DURING AUTOMATED
TESTING,” naming Linden Hsu, Ben Rogel-Favila, Bob
Collins, Ed Chow, Michael Jones, Duane Champoux and
Mei-Mei Su as inventors. That application is incorporated
herein by reference in its entirety and for all purposes.

FIELD OF THE INVENTION

The present disclosure relates generally to the field of
electronic device testing systems and more specifically to
the field of electronic device testing equipment for testing
devices under test (DUTs).

BACKGROUND OF THE INVENTION

Automated test equipment (ATE) can be any testing
assembly that performs a test on a semiconductor device or
electronic assembly. ATE assemblies may be used to execute
automated tests that quickly perform measurements and
generate test results that can then be analyzed. An ATE
assembly may be anything from a computer system coupled
to a meter, to a complicated automated test assembly that
may include a custom, dedicated computer control system
and many different test instruments that are capable of
automatically testing electronics parts and/or semiconductor
wafer testing, such as system-on-chip (SOC) testing or
integrated circuit testing. ATE systems both reduce the
amount of time spent on testing devices to ensure that the
device functions as designed and serve as a diagnostic tool
to determine the presence of faulty components within a
given device before it reaches the consumer.

ATE is typically used to test anywhere from one to several
hundred devices under the test (DUTs) at the same time. In
order to verify that the ATE is communicating properly with
the DUTs, workbench equipment such as oscilloscopes and
protocol analyzer can be used. These devices are typically
bulky, cumbersome and inordinately expensive. Further,
they require highly trained engineers to use and to interpret
the data. As a result, these devices are not generally suitable
for production facilities.

Protocol analyzers, for example, are passive diagnostic
tools that collect, organize, and display protocol traffic
occurring on a serial link. Protocol analyzers use large
amounts of memory to store the traffic, typically many
gigabytes. The stored traffic represents one of two forms of
data: raw and protocol. In raw mode the protocol analyzer

10

25

30

40

45

2

saves the serial data bit for bit in its memory. In protocol
mode the protocol analyzer first decodes and descrambles
the data prior to saving the data to memory. In both cases,
the protocol analyzer uses a prohibitively large amount of
memory to store all the diagnostic data for an engineer to be
able to analyze.

There are many situations where it is useful to have a
standard protocol analyzer but financial, space and memory
constraints limit the ability to have one. In such cases, lab
engineers are not left with many choices for monitoring the
signaling and communication link between the ATE and the
DUTs.

Further, one of the drawbacks with conventional ATE is
that they typically only report pass/fail results. In other
words, the ATE only reports whether one or more devices
under test (DUTs) passed or failed the respective test being
executed. The ATE is not configured to identify root causes
of device failure that occur during qualification testing.
Typically, the ATE will not have any hardware or software-
based tools built into it that would enable engineers to easily
diagnose problems with the DUTs.

In a typical testing environment, the engineers operating
the ATE will need to identify the cause of failure manually
by collecting data logs and performing analysis on the logs.
This approach is labor intensive, error prone and not scal-
able. It may also not yield the desired result since there may
not be enough information available to the engineers to
determine which data logs to analyze or how to find the root
causes of device failure within the data logs. Further, tradi-
tional ATE systems do not contain any intelligence built into
the hardware that would help engineers capture and auto-
matically interpret and analyze diagnostic information per-
taining to the tests.

BRIEF SUMMARY OF THE INVENTION

Accordingly, a need exists for a protocol analyzer that
uses the pre-existing hardware of the tester to collect diag-
nostic information about the tests. Further, a need exists for
a protocol analyzer that uses compression and selection to
reduce the amount of memory it needs for collection. Also,
a need exists for a protocol analyzer that can collect critical
information relevant to an engineer, selectively discard the
less critical information, and report the critical information
to the engineer in an organized and timely manner.

In addition, a need exists for an ATE that comprises
hardware-based traffic capture modules that collect and
monitor data being exchanged between a tester and a device
under test (DUT) in order to collect valuable information
regarding the state of the tester over time and the data being
exchanged between the tester and the DUT over time.

In one embodiment, a method for monitoring a commu-
nication link between a device under test (DUT) and auto-
mated test equipment is disclosed. The method comprises
monitoring data traffic associated with testing a DUT using
a protocol analyzer module, wherein the data traffic com-
prises a flow of traffic between the DUT and a protocol core
of a programmable logic device, wherein the protocol ana-
lyzer module is integrated within the programmable logic
device, wherein the programmable logic device is controlled
by a system controller and is operable to generate commands
and data to test the DUT, and wherein the protocol core is
operable to generate signals to communicate with the DUT
using a protocol associated with the DUT. The method
further comprises saving results associated with the moni-
toring in a memory associated with the protocol analyzer

US 10,955,461 B2

3

module and transmitting the results upon request to an
application program executing on the system controller.

In a different embodiment, an apparatus for diagnosing a
cause of failure using automated test equipment (ATE) is
disclosed. The apparatus comprises a computer system com-
prising a system controller, wherein the system controller is
communicatively coupled to a site module board comprising
a tester processor and a programmable logic device, wherein
the system controller is operable to transmit instructions to
perform a test on a device under test (DUT) to the tester
processor and the programmable logic device. Further, the
programmable logic device is communicatively coupled to
the DUT and operable to generate commands and data for
executing the test on the DUT, and wherein the program-
mable logic device comprises a protocol analyzer module
programmed on the programmable logic device and oper-
able to: (a) monitor data traffic associated with testing the
DUT, wherein the data traffic monitored comprises a flow of
traffic between the DUT and a protocol core programmed on
the programmable logic device; (b) compress data sequences
in the flow of traffic and selectively discard less critical data
from the flow of traffic; (c) store results associated with
monitoring the data traffic in a memory associated with the
protocol analyzer module; and (d) transmit the results upon
request to a tester application program executing on the
system controller.

In one embodiment, a tester comprises a system controller
for controlling a test program for testing a plurality of DUTs
and a plurality of modules operable to interface with and test
the plurality of DUTs, the plurality of modules coupled to
the system controller, wherein each module comprises a site
module board, and wherein each site module board com-
prises: (a) a tester processor coupled to communicate with
the system controller to receive instructions and data there-
from in accordance with the test program; and (b) a plurality
of programmable logic devices coupled to the tester proces-
sor, each programmable logic device comprising a protocol
core and operable to generate test data for application to a
respective DUT, further operable to receive and compare test
data generated by the respective DUT, and further yet the
protocol core of each programmable logic device operable to
be programmed to communicate with the respective DUT in
a communication protocol compatible with the respective
DUT, and wherein each of the programmable logic devices
comprise a protocol analyzer module, wherein the protocol
analyzer module is programmed on the programmable logic
device and operable to: (i) monitor data traffic associated
with testing the DUT, wherein the data traffic monitored is
between the DUT and the protocol core; (ii) perform com-
pression on data sequences in the data traffic and selectively
discard less critical data from the data traffic; (iii) store
results associated with monitoring the data traffic in a
memory associated with the protocol analyzer module; and
(iv) transmit the results upon request to a tester application
program executing on the system controller.

The following detailed description together with the
accompanying drawings will provide a better understanding
of the nature and advantages of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, in the figures
of the accompanying drawings and in which like reference
numerals refer to similar elements.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a computer system on which embodiments of the
automated test system of the present invention can be
implemented in accordance with one embodiment of the
present invention;

FIG. 2 illustrates a typical testing environment in which
DUTs are placed into a controlled environmental chamber.

FIG. 3 is a schematic block diagram illustrating an
exemplary embodiment of a tester slice and its interconnec-
tions with the system controller and the DUTs.

FIG. 4 is a high-level block diagram illustrating the
manner in which the traffic capture modules of the present
invention collect diagnostic information pertaining to auto-
mated testing in accordance with an embodiment of the
present invention.

FIG. 5 is a block diagram illustrating the manner in which
the traffic capture modules of the present invention are
programmed in accordance with an embodiment of the
present invention.

FIG. 6 is a high-level block diagram illustrating the
manner in which the smart and efficient protocol analyzer
(SEPA) of the present invention collects information per-
taining to automated testing in accordance with an embodi-
ment of the present invention.

FIG. 7 is a block diagram illustrating the manner in which
the protocol analyzer of the present invention reports data in
accordance with an embodiment of the present invention.

FIG. 8 is a high-level block diagram illustrating the
manner in which the protocol analyzer of the present inven-
tion works in conjunction with the capture modules in the
FPGA to report data in accordance with an embodiment of
the present invention.

FIG. 9 illustrates a flowchart of an exemplary computer
implemented process for capturing critical information dur-
ing the course of automated device testing in order to
determine root causes for device failure in accordance with
one embodiment of the present invention.

FIG. 10 illustrates a flowchart of an exemplary computer
implemented process for using capture modules during
automated device testing for monitoring data traffic and
diagnosing problems in accordance with one embodiment of
the present invention.

FIG. 11 illustrates a flowchart of an exemplary computer
implemented process for programming a protocol analyzer
in a tester to collect and display information in accordance
with one embodiment of the present invention.

In the figures, elements having the same designation have
the same or similar function.

DETAILED DESCRIPTION OF THE
INVENTION

Reference will now be made in detail to the various
embodiments of the present disclosure, examples of which
are illustrated in the accompanying drawings. While
described in conjunction with these embodiments, it will be
understood that they are not intended to limit the disclosure
to these embodiments. On the contrary, the disclosure is
intended to cover alternatives, modifications and equiva-
lents, which may be included within the spirit and scope of
the disclosure as defined by the appended claims. Further-
more, in the following detailed description of the present
disclosure, numerous specific details are set forth in order to
provide a thorough understanding of the present disclosure.
However, it will be understood that the present disclosure
may be practiced without these specific details. In other
instances, well-known methods, procedures, components,

US 10,955,461 B2

5

and circuits have not been described in detail so as not to
unnecessarily obscure aspects of the present disclosure.

Some portions of the detailed descriptions that follow are
presented in terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and repre-
sentations are the means used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art. In the present
application, a procedure, logic block, process, or the like, is
conceived to be a self-consistent sequence of steps or
instructions leading to a desired result. The steps are those
utilizing physical manipulations of physical quantities. Usu-
ally, although not necessarily, these quantities take the form
of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipu-
lated in a computer system. It has proven convenient at
times, principally for reasons of common usage, to refer to
these signals as transactions, bits, values, elements, symbols,
characters, samples, pixels, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present disclosure, discussions utilizing
terms such as “configuring,” “providing,” “executing,”
“transmitting,” “obtaining,” “implementing,” “program-
ming,” “allocating,” “associating,” “setting,” “accessing,”
“retrieving,” “saving,” “capturing,” “generating,” “complet-
ing,” “monitoring,” “controlling,” “determining,” “identify-
ing,” “caching,” “maintaining,” “comparing,” “removing,”
“reading,” “writing,” or the like, refer to actions and pro-
cesses (e.g., flowchart 1000 of FIG. 10) of a computer
system or similar electronic computing device or processor
(e.g., system 110 of FIG. 1). The computer system or similar
electronic computing device manipulates and transforms
data represented as physical (electronic) quantities within
the computer system memories, registers or other such
information storage, transmission or display devices.

Embodiments described herein may be discussed in the
general context of computer-executable instructions residing
on some form of computer-readable storage medium, such
as program modules, executed by one or more computers or
other devices. By way of example, and not limitation,
computer-readable storage media may comprise non-transi-
tory computer-readable storage media and communication
media; non-transitory computer-readable media include all
computer-readable media except for a transitory, propagat-
ing signal. Generally, program modules include routines,
programs, objects, components, data structures, etc., that
perform particular tasks or implement particular abstract
data types. The functionality of the program modules may be
combined or distributed as desired in various embodiments.

Computer storage media includes volatile and nonvola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer-readable instructions, data structures, program
modules or other data. Computer storage media includes, but
is not limited to, random access memory (RAM), read only
memory (ROM), electrically erasable programmable ROM
(EEPROM), flash memory or other memory technology,
compact disk ROM (CD-ROM), digital versatile disks
(DVDs) or other optical storage, magnetic cassettes, mag-
netic tape, magnetic disk storage or other magnetic storage

% <

2 2 < 2

29 <

2 2 <

20

25

35

40

45

55

6

devices, or any other medium that can be used to store the
desired information and that can accessed to retrieve that
information.

Communication media can embody computer-executable
instructions, data structures, and program modules, and
includes any information delivery media. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, radio fre-
quency (RF), infrared, and other wireless media. Combina-
tions of any of the above can also be included within the
scope of computer-readable media.

FIG. 1 is a block diagram of an example of a tester control
system 110 capable of incorporating a protocol analyzer
within the tester hardware. For example, system 110 may
incorporate a protocol analyzer as a discrete module within
the tester hardware or the protocol analyzer may be pro-
grammed onto FPGA devices within the tester control
system alongside a third party IP core. Tester control system
110 broadly represents any single or multi-processor com-
puting device or system capable of executing computer-
readable instructions. Examples of control system 110
include, without limitation, workstations, laptops, client-
side terminals, servers, distributed computing systems,
handheld devices, or any other computing system or device.
In its most basic configuration, control system 110 may
include at least one processor 114 and a system memory 116.

Processor 114 generally represents any type or form of
processing unit capable of processing data or interpreting
and executing instructions. In certain embodiments, proces-
sor 114 may receive instructions from a software application
or module. These instructions may cause processor 114 to
perform the functions of one or more of the example
embodiments described and/or illustrated herein.

System memory 116 generally represents any type or
form of volatile or non-volatile storage device or medium
capable of storing data and/or other computer-readable
instructions. Examples of system memory 116 include,
without limitation, RAM, ROM, flash memory, or any other
suitable memory device. Although not required, in certain
embodiments control system 110 may include both a volatile
memory unit (such as, for example, system memory 116)
and a non-volatile storage device (such as, for example,
primary storage device 132).

Tester control system 110 may also include one or more
components or elements in addition to processor 114 and
system memory 116. For example, in the embodiment of
FIG. 2A, control system 110 includes a memory controller
118, an input/output (I/O) controller 120, and a communi-
cation interface 122, each of which may be interconnected
via a communication infrastructure 112. Communication
infrastructure 112 generally represents any type or form of
infrastructure capable of facilitating communication
between one or more components of a computing device.
Examples of communication infrastructure 112 include,
without limitation, a communication bus (such as an Indus-
try Standard Architecture (ISA), Peripheral Component
Interconnect (PCI), PCI Express (PCle), or similar bus) and
a network.

Memory controller 118 generally represents any type or
form of device capable of handling memory or data or
controlling communication between one or more compo-
nents of control system 110. For example, memory control-
ler 118 may control communication between processor 114,
system memory 116, and /O controller 120 via communi-
cation infrastructure 112.

US 10,955,461 B2

7

1/O controller 120 generally represents any type or form
of module capable of coordinating and/or controlling the
input and output functions of a computing device. For
example, /O controller 120 may control or facilitate transfer
of data between one or more elements of control system 110,
such as processor 114, system memory 116, communication
interface 122, display adapter 126, input interface 130, and
storage interface 134.

Communication interface 122 broadly represents any type
or form of communication device or adapter capable of
facilitating communication between example control system
110 and one or more additional devices. For example,
communication interface 122 may facilitate communication
between control system 110 and a private or public network
including additional control systems. Examples of commu-
nication interface 122 include, without limitation, a wired
network interface (such as a network interface card), a
wireless network interface (such as a wireless network
interface card), a modem, and any other suitable interface. In
one embodiment, communication interface 122 provides a
direct connection to a remote server via a direct link to a
network, such as the Internet. Communication interface 122
may also indirectly provide such a connection through any
other suitable connection.

Communication interface 122 may also represent a host
adapter configured to facilitate communication between
control system 110 and one or more additional network or
storage devices via an external bus or communications
channel. Examples of host adapters include, without limi-
tation, Small Computer System Interface (SCSI) host adapt-
ers, Universal Serial Bus (USB) host adapters, IEEE (Insti-
tute of Electrical and Electronics Engineers) 1394 host
adapters, Serial Advanced Technology Attachment (SATA)
and External SATA (eSATA) host adapters, Advanced Tech-
nology Attachment (ATA) and Parallel ATA (PATA) host
adapters, Fibre Channel interface adapters, Ethernet adapt-
ers, or the like. Communication interface 122 may also
allow control system 110 to engage in distributed or remote
computing. For example, communication interface 122 may
receive instructions from a remote device or send instruc-
tions to a remote device for execution.

As illustrated in FIG. 1, control system 110 may also
include at least one display device 124 coupled to commu-
nication infrastructure 112 via a display adapter 126. Dis-
play device 124 generally represents any type or form of
device capable of visually displaying information forwarded
by display adapter 126. Similarly, display adapter 126
generally represents any type or form of device configured
to forward graphics, text, and other data for display on
display device 124.

As illustrated in FIG. 1, control system 110 may also
include at least one input device 128 coupled to communi-
cation infrastructure 112 via an input interface 130. Input
device 128 generally represents any type or form of input
device capable of providing input, either computer- or
human-generated, to control system 110. Examples of input
device 128 include, without limitation, a keyboard, a point-
ing device, a speech recognition device, or any other input
device.

As illustrated in FIG. 1, control system 110 may also
include a primary storage device 132 and a backup storage
device 133 coupled to communication infrastructure 112 via
a storage interface 134. Storage devices 132 and 133 gen-
erally represent any type or form of storage device or
medium capable of storing data and/or other computer-
readable instructions. For example, storage devices 132 and
133 may be a magnetic disk drive (e.g., a so-called hard

10

15

20

25

30

35

40

45

50

55

60

65

8
drive), a floppy disk drive, a magnetic tape drive, an optical
disk drive, a flash drive, or the like. Storage interface 134
generally represents any type or form of interface or device
for transferring data between storage devices 132 and 133
and other components of control system 110.

In one example, databases 140 may be stored in primary
storage device 132. Databases 140 may represent portions of
a single database or computing device or it may represent
multiple databases or computing devices. For example,
databases 140 may represent (be stored on) a portion of
control system 110 and/or portions of example network
architecture 200 in FIG. 2 (below). Alternatively, databases
140 may represent (be stored on) one or more physically
separate devices capable of being accessed by a computing
device, such as control system 110 and/or portions of
network architecture 200.

Continuing with reference to FIG. 1, storage devices 132
and 133 may be configured to read from and/or write to a
removable storage unit configured to store computer soft-
ware, data, or other computer-readable information.
Examples of suitable removable storage units include, with-
out limitation, a floppy disk, a magnetic tape, an optical disk,
a flash memory device, or the like. Storage devices 132 and
133 may also include other similar structures or devices for
allowing computer software, data, or other computer-read-
able instructions to be loaded into control system 110. For
example, storage devices 132 and 133 may be configured to
read and write software, data, or other computer-readable
information. Storage devices 132 and 133 may also be a part
of control system 110 or may be separate devices accessed
through other interface systems.

Many other devices or subsystems may be connected to
control system 110. Conversely, all of the components and
devices illustrated in FIG. 1 need not be present to practice
the embodiments described herein. The devices and subsys-
tems referenced above may also be interconnected in dif-
ferent ways from that shown in FIG. 1. Control system 110
may also employ any number of software, firmware, and/or
hardware configurations. For example, the example embodi-
ments disclosed herein may be encoded as a computer
program (also referred to as computer software, software
applications, computer-readable instructions, or computer
control logic) on a computer-readable medium.

The computer-readable medium containing the computer
program may be loaded into control system 110. All or a
portion of the computer program stored on the computer-
readable medium may then be stored in system memory 116
and/or various portions of storage devices 132 and 133.
When executed by processor 114, a computer program
loaded into control system 110 may cause processor 114 to
perform and/or be a means for performing the functions of
the example embodiments described and/or illustrated
herein. Additionally or alternatively, the example embodi-
ments described and/or illustrated herein may be imple-
mented in firmware and/or hardware.

A Smart and Efficient Protocol Logic Analyzer Config-
ured within Automated Test Equipment (ATE) Hardware

FIG. 2 illustrates a typical testing environment in which
DUTs may be placed into a controlled environmental cham-
ber 10. The DUTs are connected to tester slices of a test head
20. Many DUTs can be connected to a single tester slice 40.
The tester slices contain the test circuitry, which performs
tests on the DUTs in accordance with a test plan. There can
be many tester slices per test head 20. The DUTs are placed
into trays 30 when inserted into the oven 10. In a typical
environmental chamber, the plurality of tester slices operate
in lock step executing the same test plan on the plurality of

US 10,955,461 B2

9

DUTs. Further, the test head is typically controlled by a
single controller computer system (e.g. tester control system
110) that is directly connected to the test head and, in this
fashion, controls all of the slices of the test head 20. The
system controller 110 is typically operated by a single user
executing a single test plan on the DUTs. As will be
described further below, each tester slice comprises FPGAs
onto which the protocol analyzer of the present invention
can be programmed. For example, in one embodiment, the
FPGAs can be programmed with the protocol analyzer that
will enable compression of data being exchanged between
the FPGA s and the connected DUTs and selective capture of
the critical data in order to reduce the amount of memory
needed for collection. In a different embodiment, the pro-
tocol analyzer may be programmable on a discrete program-
mable logic device within the tester hardware.

In addition, the FPGAs on each of the tester slices may
also comprise traffic capture modules and debugging mod-
ules. For example, the FPGAs can be programmed with
logic and buffers that collects information pertaining to the
state of the FPGAs and the data being exchanged between
the FPGAs and any connected DUTs.

FIG. 3 is a schematic block diagram illustrating an
exemplary embodiment of a tester slice and its interconnec-
tions with the system controller and the DUTs.

Referring to FIG. 3, each tester slice comprises site
modules. The site modules, in one embodiment, can be
mechanically configured onto tester slices 340A-340N,
wherein each tester slice comprises at least one site module.
In certain typical embodiments, each tester slice can com-
prise two site modules and two device power supply boards.
In other embodiments, the tester slice may comprise more or
fewer site modules and/or power supply boards. Tester slice
340A of FIG. 3, for example, comprises site modules 310A
and 310B and device power supply boards 332A and 332B.
However, there is no limit to the number of device power
supply boards or site modules that can be configured onto a
tester slice. Tester slice 340 is connected to system controller
301 through network switch 302. Network switch 302 can be
connected to each of the site modules with a 32 bit wide bus.

In one embodiment, the system controller 301 may be a
computer system, e.g., a personal computer (PC) that pro-
vides a user interface for the user of the ATE to load the test
programs and run tests for the DUTs connected to the ATE
300. The Advantest Stylus Operating System is one example
of test software normally used during device testing. It
provides the user with a graphical user interface from which
to configure and control the tests. It can also comprise
functionality to control the test flow, control the status of the
test program, determine which test program is running, and
log test results and other data related to test flow. In one
embodiment, the system controller can be connected to and
control as many as 512 DUTs.

In one embodiment, the system controller 301 can be
connected to the site module boards 310A-310B through a
network switch, such as an Ethernet switch. In other
embodiments, the network switch may be compatible with a
different protocol such as Fibre Channel, 802.11 or ATM, for
instance.

Each of the device power supply boards 332A-332B can
be controlled from one of the site modules 310A-310B. The
software running on the tester processor 304 can be config-
ured to assign a device power supply to a particular site
module. In one embodiment, the site modules 310A-310B
and the device power supplies 332A-332B are configured to
communicate with each other using a high speed serial

20

25

30

40

45

60

10
protocol, e.g., Peripheral Component Interconnect Express
(PCle), Serial AT Attachment (SATA) or Serial Attached
SCSI (SAS), for instance.

In one embodiment, each site module is configured with
two FPGAs as shown in FIG. 3. Each of the FPGAs 316 and
318 in the embodiment of FIG. 3 is controlled by the tester
processor 304. The tester processor 304 can communicate
with each of the FPGAs using a 8 lane high speed serial
protocol interface such as PCle as indicated by system buses
330 and 332 in FIG. 3. In other embodiments, the tester
processor 304 could also communicate with the FPGAs
using different high speed serial protocols, e.g., Serial AT
Attachment (SATA) or Serial Attached SCSI (SAS).

FPGAs 316 and 318 are connected to memory modules
308 and 304 respectively. The memory modules can be
coupled with and can be controlled by both the FPGA
devices and the tester processor 304.

FPGAs 316 and 318 can be connected to the DUTs
372A-372M on the load board 380 through buses 352 and
354 respectively. The load board 380 is a physical harness
that allows a general purpose high speed connection at the
site module end that is agnostic to the protocol used to
communicate to the DUTs in on lines 352 and 354. At the
DUT end, however, the load board needs to be designed so
as to have connectors specific to the protocol being used by
the DUT. It should be noted that the DUTs can be connected
to the FPGAs in a myriad of ways and are not limited to
using a load board.

It should be noted that FIG. 3 only illustrates an exem-
plary embodiment of a tester slice. Further, note that
embodiments of the present invention are not limited to only
the type of tester slices shown in FIG. 3. Embodiments of the
present invention can include many different types of tester
slices and primitives. Each tester slice will, however, com-
prise FPGAs onto which the protocol analyzer and traffic
capture modules of the present invention can be pro-
grammed regardless of the configuration of the tester slice.

The DUTs 372A-372M, in one embodiment of the inven-
tion, are loaded on a load board 380 that is placed inside a
thermal chamber 390 for testing. The DUTs 372A-372M and
the load board 380 derive power from the device power
supplies 332A and 332B.

The number of DUTs that can be connected to each FPGA
is contingent on the number of transceivers in the FPGA and
the number of I/O lanes required by each DUT. In one
embodiment, FPGAs 316 and 318 can each comprise 32
high speed transceivers and buses 352 and 354 can each be
32 bits wide, however, more or less can be implemented
depending on the application. If each DUT requires 8 1/O
lanes, for example, only 4 DUTs can be connected to each
FPGA in such a system.

The tester processor 304 is connected to and can com-
municate with the system controller 302 over bus 312. In
one embodiment, tester processor 304 communicates with
each of the FPGA devices 316 and 318 over a separate
dedicated bus (e.g., 330 and 332 respectively). In one
embodiment, tester processor 304 can control the testing of
the DUTs 372A-372N transparently through the FPGAs
with minimal processing functionality allocated to the
FPGA devices. In this embodiment, the data traffic capacity
of buses 330 and 332 can be exhausted rapidly because all
the commands and data generated by the tester processor
need to be communicated over the bus to the FPGA devices.
In other embodiments, the tester processor 304 can share the
processing load by allocating functionality to control the
testing of the DUTs to the FPGA devices. In these embodi-

US 10,955,461 B2

11

ments, the traffic over buses 330 and 332 is reduced because
the FPGA devices can generate their own commands and
data.

In one embodiment, each of the FPGA devices, e.g., 316
and 318 is connected to its own dedicated memory block,
e.g., 308 and 304. These memory blocks can, among other
things, be utilized to store the test pattern data that is written
out to the DUTs. In one embodiment, each of the FPGA
devices can comprise two or more instantiated FPGA tester
blocks (not shown) with functional modules for performing
functions including implementation of communicative pro-
tocol engines and hardware accelerators.

Further, each of the DUTs 372A-372M in the system can
be connected to a dedicated instantiated FPGA tester block
in a “tester per DUT” configuration, wherein each DUT gets
its own instantiated tester block. This allows separate test
execution for each DUT. The hardware resources in such a
configuration are designed in a manner to support individual
DUTs with minimal hardware sharing. This configuration
also allows many DUTs to be tested in parallel, where each
DUT can be connected to its own dedicated FPGA tester
block within the FPGA and be running a different test
program.

The architecture of the embodiment of the present inven-
tion depicted in FIG. 3 has several advantages. First, it
eliminates the need for protocol-specific bus adapter sockets
and cards in the system because the communication protocol
modules can be programmed directly on a configurable
interface core (or IP core) of the instantiated FPGA tester
blocks within the FPGA devices. The instantiated tester
blocks can be configured to communicate with the DUTs in
any protocols that the DUTs support. Accordingly, if DUTs
with different protocol support need to be tested, they can be
connected to the same system and the FPGAs can be
reprogrammed with support for the associated protocols. As
a result, one ATE body can be easily configured to test DUTs
supporting many different types of protocols.

In one embodiment, new protocols can be downloaded
and installed directly on the FPGAs via a simple bit-stream
download from a cache on system controller 301 without
any kind of hardware interactions. An FPGA will typically
include an IP core that is programmable to provide func-
tionality of one or more protocol based interfaces for a DUT
and is programmable to interface with the DUT. For
example, the FPGAs 316 and 318 in the ATE apparatus will
include an interface core that can be configured with the
PCle protocol to test PCle devices initially and subsequently
reconfigured via a software download to test SATA devices.
Also, if a new protocol is released, the FPGAs can easily be
configured with that protocol via a bit-stream download
instead of having to physically switch all the hardware bus
adapter cards in the system. Finally, if a non-standard
protocol needs to be implemented, the FPGAs can nonethe-
less be configured to implement such a protocol.

In another embodiment, the FPGAs can be configured to
run more than one communicative protocol, wherein these
protocols also can be downloaded from system controller
301 and configured through software. In other words, each
FPGA implements custom firmware and software images to
implement the functionality of one or more PC based testers
in a single chip. The required electrical signaling and
protocol-based signaling is provided by on-chip IP cores in
the FPGAs. As mentioned above, each FPGA instantiated
tester block is programmable with pre-verified interface or
IP cores. This ensures compliance and compatibility accord-
ing to a given interface standard. The programmable nature
of the FPGA is utilized to optimize flexibility, cost, paral-

10

15

20

25

30

35

40

45

55

60

65

12

lelism and upgradeabilty for storage testing applications
from SSDs, HDDs and other protocol based storage devices.

For instance, an instantiated FPGA tester block within
FPGA 316 can be configured to run the PCle protocol while
a different instantiated FPGA tester block within the same
FPGA 316 can be configured to run the SATA protocol. This
allows the tester hardware to test DUTs supporting different
protocols simultaneously. FPGA 316 can now be connected
to test a DUT that supports both PCle and SATA protocols.
Alternatively, it can be connected to test two different DUTs,
one DUT supporting the PCle protocol and the other DUT
supporting the SATA protocol, where each instantiated func-
tional module within the FPGA is configured with a protocol
to test the respective DUT it is connect to.

In one embodiment, the interface or IP core in the FPGA
may be acquired from a third party vendor but may require
some customization to be compatible with the embodiments
described herein. In one embodiment, the interface core
provides two functions: a) wraps storage commands into a
standard protocol for transmission over a physical channel;
and 2) is the electrical signal generator and receiver.

FIG. 4 is a high-level block diagram illustrating the
manner in which the traffic capture modules of the present
invention collect diagnostic information pertaining to auto-
mated testing in accordance with an embodiment of the
present invention.

As shown in FIG. 4, each tester 420 (or tester slice)
comprises at least one FPGA 430 that is in communication
with at least one DUT 410. As shown in FIG. 3, typically
each FPGA will communicate with multiple DUTs.

Embodiments of the present invention add traffic capture
logic modules and buffers to the FPGA, e.g., 450A,
4508, . . . 450N, 451A . . . 451M and 452A, in order to
collect information such as the state of the tester 420 over
time (including the FPGA 430) and data being exchanged
between the tester 420 and the DUT over time. Using traffic
capture modules and buffers allows the tester to advanta-
geously collect information pertaining to device failure
within modules and buffers inside the tester firmware itself.
It should be noted that the invention herein is not limited to
FPGAs, the capture modules of the present invention can be
programmed onto other types of programmable logic
devices as well.

Currently, debug tools are being developed in the testing
industry for easier interpretation of collected data. The tools
are mostly software-based and are geared towards organiz-
ing collected data in a context relevant manner, which allows
the expert to more easily identify issues. However, these
approaches are still fairly labor intensive because they
require an engineer to manually review testing logs and files.

Embodiments of the present invention advantageously
add analysis capability within the logic modules of the
hardware, e.g., inside the FPGA. For example, the capture
logic modules and buffers can be programmed to monitor for
device failure precursors. The failure precursors provide an
indication regarding DUTs that are potentially going to fail.
Previously, an engineer would have to review several logs to
determine information regarding impending device failure.
Embodiments of the present invention advantageously build
in the capability to identify and alert the engineer regarding
potential device failures within the firmware. The traffic
capture modules analyze the debug data in real time. Further,
the traffic capture modules identify suspicious conditions
and flag them upon logging for a person to examine or
software to review at a later time.

In one embodiment, the traffic capture and debug tools of
the present invention comprise a collection of FPGA logic

US 10,955,461 B2

13

(firmware) and software-based tools that advantageously
work together help identify causes of device failure. The
logic modules programmed onto the FPGAs monitor and
capture: (1) traffic or proxies of traffic exchanged between
the tester and respective DUTs; (2) configuration commands
used to configure the tester or the respective DUTs; and (3)
states with the tester. Further, during the testing process,
occasionally errors or unforeseen behavior may occur within
the FPGA, which can be captured by the capture modules.
Additionally, logic within the capture modules also check
for failure precursors and flag them as they get logged. The
automated software-based debugging tools included within
software 440 can extract the capture results from the capture
modules, e.g., 450A-450N, 451A-451M, etc., organize the
data, and display the root cause of the failure.

In a typical test configuration, the FPGA 430 will write a
predetermined pattern to the DUT 410, read the pattern back
from the DUT 410, and compare the two in order to
determine if the DUT is functioning properly. As mentioned
in reference with FIG. 3, each FPGA can be configured to
execute a different protocol, e.g., the PCle protocol and can
further be configured to generate commands and data to test
one or more connected DUTs.

The capture modules of the present invention allow the
exchange of data and commands between the FPGAs and
the DUTs to be captured and monitored to check for aber-
rations. An FPGA 430 can communicate with one or mul-
tiple DUTs at the same time. Accordingly, each FPGA may
comprise multiple capture modules at the first stage, e.g.,
450A-450N, each of which is configured to communicate
with a discrete DUT, e.g., DUT 496 A, DUT B496B . . . DUT
496N. The information gathered from the DUTs can flow
upstream through one or more stages till it is communicated
to the software 440.

For example, the FPGA illustrated in FIG. 4 comprises
three stages. Data is communicated from the DUTs to the
capture modules in the first stage, e.g., 450A-450N. Subse-
quently, the data flows through the second stage comprising
exemplary capture modules 451A-451M. From there, the
data passes through the final stage comprising capture
module 452A before it is communicated to the software. It
should be noted that embodiments of the present invention
are not limited to a particular number of stages or a par-
ticular number of capture modules. An FPGA can comprise
one or more stages, with each stage comprising one or more
capture modules, depending on the complexity of the FPGA
and the test to be performed. Typically, however, the data
captured from the DUTs will be communicated upstream to
the software 440 using multiple stages of capture modules
and buffers.

The capture modules in each stage within the FPGA will
typically have a different configuration from the capture
modules in other stages. For example, the capture modules
in the first stage, e.g., 450A-450N of the FPGA illustrated in
FIG. 4 will be configured to communicate with and collect
data from the DUT directly. The capture modules in the
second stage, e.g., 451A-451M are configured to have
properties similar to switches because they route the data
collected from the DUTs to the software block 440. Finally,
the capture modules in the third stage of FPGA 495 are
configured to transfer the information gathered from the
DUTs to the software module 440 and, further, to transfer
data and commands downstream from the software 440 to
the DUTs. Disseminating capture modules throughout the
FPGA allows any errors or unforeseen behavior by the
FPGA to be readily captured and analyzed.

10

15

20

25

30

35

40

45

50

55

60

65

14

In one embodiment, the capture cells can be used to
convey information between the DUTs 496 A-496N and the
software 440. For instance, the software 440 can send
commands and data downstream to the DUTs through the
chain of capture modules. Further, the DUTs can send
responses to the software 440 upstream through the chain of
capture modules. The capture modules are programmable
and have the necessary logic to identify and flag any error
condition that may occur during any stage of the commu-
nication. For example, while transmitting information
upstream, capture module 451M may encounter an error
condition. Capture module 451M may contain logic cir-
cuitry to determine whether the error condition is related to
the DUT it received the information from or whether the
error is related to the switch programmed into capture
module 451M.

Alternatively, capture module 451M may be programmed
to analyze the data received from a connected DUT, e.g.,
469N, and identify a device failure precursor. In other
words, capture module 451M may use the data gathered
from the DUT to indicate that the DUT will fail imminently.
Capture module 451M may then flag an error condition or a
potential error condition and relay information pertaining to
the error to software 440 so the user can be alerted.

In one embodiment, capture modules may also contain
logic circuitry and be programmed to analyze the informa-
tion captured and identify a cause of error. For example, the
capture module may be programmed with a rule checker that
is run on the information collected. In other words, the
rule-checker can parse through all the failure related infor-
mation captured to identify some possible causes of the
failure by running a set of rules on the information captured.

In one embodiment, there may be several different types
of capture logic modules programmed into the FPGA,
wherein each capture module serves a different purpose.

For example, if the DUTs are PCle devices, one or more
of the capture modules can comprise Transaction Layer
Packet (TLP) capture modules. Transaction layer packets are
exchanged between a host and a client (or between a tester
and a device under test) using the PCle protocol and the
capture module in the FPGA may, for example, capture these
TLPs for further inspection and to collect failure related
information.

Another type of capture module may be programmed as
a Link Training Status State Machine (LTSSM) Capture
module. The LTSSM capture module is programmed to
comprise FPGA logic that logs LTSSM events. The LTSSM
defines the states machine that the physical and link layer
states in the PCle protocol go through in order to commu-
nicate from one end point to another. These states can be
captured and analyzed using capture module logic within an
FPGA. For example, the capture module may be able to
identify and capture the different states the IP core of the
FPGA is transitioning through in the execution of the PCle
protocol. If there is a failure in transitioning to an expected
state or if a failure occurs while processing a particular state,
the capture module will capture the information and transmit
it to software 440 for further analysis. Alternatively, in one
embodiment, the capture module may contain further logic
circuitry to analyze the error condition, e.g., using a rule-
checker and determine the root cause of error. The diagnos-
tic information can then be transmitted to the software 440
to relay to the user.

Another type of capture module can comprise a NAK
Capture module. NAK is an abbreviation for negative
acknowledgement or not acknowledged. It is a signal used
in digital communications to ensure that data is received

US 10,955,461 B2

15

with a minimum of errors. One type of capture module
comprises logic that logs NAK events.

In one embodiment, a capture module can comprise an
Activity Capture module. An Activity Capture module com-
prises FPGA logic that logs activity detection events. If there
is any activity detected on the incoming or outgoing lines,
the activity detection capture module will log such events to
present to the user.

In one embodiment, a capture module can comprise an
Equalization Capture module. The Equalization Capture
module logs equalization events. Equalization can be per-
formed for the PCle protocol by adjusting the signals on a
transmitter and receiver so that the integrity of the data
communicated can be maintained. The capture module will
monitor the PCle IP core to determine the manner in which
equalization is progressing. In other words, the capture
module will monitor the IP core to determine which settings
are being requested and used for purposes of equalization
and whether they are being accepted. If there is suspicious
activity or any illegal values being set, the activity can be
captured and flagged and reporter to the user through
software module 440.

In one embodiment, a capture module can comprise a
Completion Capture module. The Completion Capture mod-
ule is designed to log a latency between a read request and
completion of the read.

In one embodiment, a capture module can comprise an
Enhanced Advanced Error Reporting (AER) Capture mod-
ule. This capture module comprises logic that reports the
number of occurrences of Advanced Error Reporting (AER)
events. Advanced Error Reporting is a feature of the PCle
protocol and, therefore, this would be a type of capture
module programmable in an FPGA running the PCle pro-
tocol.

In one embodiment, a capture module can comprise a
Register Access Capture module. A Register Access Capture
module comprises FPGA logic that logs the read/write
access of control and status registers.

In one embodiment, a capture module can comprise a
Traffic Filtering Capture module. A Traffic Filtering Capture
module selectively reduces the amount of traffic that the TLP
Capture modules will collect. Because buffer space inside
the FPGA is limited, a Traffic Filtering Capture module may
be used in conjunction with the TLP Capture module to filter
or selectively choose a subset of the packets that would be
of most interest to the user for diagnostic purposes.

In one embodiment, a capture module can comprise a
Traffic Triggering Capture module. A Traffic Triggering
Capture module comprises FPGA logic that stops a capture
based upon a detected event. In other words, if a user wanted
to stop capturing traffic after detecting a particular condition,
a Traffic Triggering Capture module can be programmed
onto the FPGA.

In one embodiment, a capture module can comprise an
Enhanced Data Logging Capture module. This capture mod-
ule comprises FPGA logic that compares the expected
versus received data and displays the results to the user by
sending them to software block 440.

In another embodiment, a capture module can comprise
an LTSSM Rules Checking module. This type of capture
module in PCle devices comprises FPGA logic to determine
if the LTSSM state transitions are normal. The LTSSM
Rules Checking capability can also be programmed into
post-processing software (e.g., within software 440) in cases
where it may be more efficient to perform rules-checking
using software rather than hardware modules.

10

15

20

25

30

35

40

45

50

55

60

65

16

FIG. 5 is a block diagram illustrating the manner in which
the traffic capture modules of the present invention are
programmed in accordance with an embodiment of the
present invention. It should be noted that the Capture Block
550 illustrated in FIG. 5 is exemplary. Different types of
capture modules may be programmed or configured differ-
ently depending on their function.

A typical capture module, e.g., capture module 550 can
comprise one or more inputs. For example, each of the
inputs, Monitor 1 555A through Monitor N 555N is a
discrete input relating to data traffic, states or status that the
capture block is programmed to monitor.

The acquisition logic 520 of the capture block selects and
captures the information regarding the traffic, states or status
and formats them in a desirable order (based on the pro-
gramming) so that it can be saved in capture memory 530.
The acquisition logic block 520 can also selectively capture
the desired data. In other words, the acquisition logic block
may be programmed to gather only a subset of data inputted
through the monitor signals 555A-555N. Certain configu-
ration bits can be programmed into the acquisition block
logic that specifies how much of the incoming data should
be captured, e.g., in certain instances only the headers of the
incoming packets may need to be captured.

In one embodiment, the capture module may only capture
certain types of data, e.g., data packets with a particular bit
configuration. The acquisition logic 520 can be programmed
to selectively capture only the desired data packets while
ignoring the rest. In one embodiment, a pre-filtering module
(not shown) can be added to the capture block that precedes
the acquisition logic block 520 and selectively filters the
incoming data.

As a result, the acquisition logic block 520 has access to
the format of the data collected. Further, the acquisition
logic block 520 can also perform state-tracking, e.g., for
LTSSM events. As noted above, the LTSSM defines the
states machine that the physical and link layer states in the
PCle protocol go through in order to communicate from one
end point to another.

The information acquired by the acquisition logic block
520 can be transferred to the capture memory 530, wherein
each entry 570 stored in the memory 530 is accompanied
with an address 571. As mentioned earlier, the acquisition
logic block 520 has access to the format of the monitored
information and can use this to create entries to be stored
within memory 530. Typically, the acquisition logic 520 will
determine the address 571 within the memory 530 to save
the information. In one embodiment, discrete information is
captured during each clock cycle and an entry into memory
530 is created for each clock cycle. For example, a TLP
Capture block may capture a TLP packet each clock cycle
and create a new entry in the memory module for each TLP
packet. On the other hand, since each TLP packet can
comprise 256 bits, each TLP packet may be stored across
multiple entries in the capture memory 530.

In different embodiments, certain types of data may take
multiple clock cycles to capture. Accordingly, an entry is
created in memory 530 for such types of data when all the
data regarding a particular event has been collected.

In one embodiment, the acquisition logic block 520 may
comprise a simple state machine that transitions through a
sequence of states to format the data from the monitors to
generate entries and addresses to be stored in the memory
530. The state machine further increments the address for
the next entry. The state machine may also have additional
states depending on the type of capture module. For

US 10,955,461 B2

17

example, a Traffic Triggering capture block may have addi-
tional states related to the triggering of an event.

In one embodiment, memory 530 can comprise a circular
buffer to store the entries and accompanying addresses
received from the acquisition logic module 520. The number
of entries and their frequency depends on the type of capture
block. For example, a capture module like the TLP capture
may need to store an entry in memory 530 for every
transaction layer packet. On the other hand, a capture block
that is monitoring states may only create an entry when a
state change is detected. Typically, a timestamp is associated
with each entry when it saved in the capture memory 530.
This allows the data to be sorted easily. This is especially
convenient after data from the various capture modules in
the FPGA have been transferred to the software 505. The
time-stamped data can be sorted using the time-stamps,
which makes it easy for an engineer to view the results in
time-order and diagnose any problems. In addition to the
data and the time-stamp, in some cases metadata may also
be stored with the entry containing additional details regard-
ing the event. For example, if the capture module stores
information pertaining to state change events, then metadata
regarding the type of state change event may be saved with
each entry in the memory module 530.

In one embodiment, each capture module communicates
the information collected to the tester software 505 using
transfer interface 540. Typically, each capture module will
comprise a transfer interface block to communicate the
captured data to the software 505. The transfer interface
block 540 can access the capture memory 530 using address
and data lines, 572 and 573, respectively. The status signal
(s) 574 provides information to the transfer interface regard-
ing the location in memory 530 where the information is
stored and any further information regarding the format of
the data. The control signal(s) 575 allow the transfer inter-
face block 540 to control the data flow to the software 505
and set any other preferences regarding controlling the data
flow to the software 505.

In one embodiment, where a capture module is merely
capturing status information, instead of a capture memory
530, the buffer would typically only comprise registers for
storing the status information.

In one embodiment, the capture module can be pro-
grammed to determine time lags between events. For
example, the capture module may be a Completion Capture
module that logs the latency between a read request and the
completion of the read request. Accordingly, one of the
signals being monitored (e.g., using monitor 1 555A) will be
a read request while another signal being monitored (e.g.,
using monitor N 555N) by the capture module will be a
completion packet sent in response to completing the read
request. The capture module can use time-stamps to monitor
the time lag between the read-request and the completion or
determine if there was no completion at all. The acquisition
logic 520 of the capture module will typically need to be
programmed with information from the specification, e.g.,
the PCle specification regarding typical read request times
and the maximum time beyond which a read-request failure
needs to be flagged. The capture module can record infor-
mation regarding the read-request times or any failure
information in the capture memory 530 and report it out to
the user through software 505.

In one embodiment, the user has control over how many
and what type of capture modules should be programmed
into a particular FPGA. Because FPGAs can easily be
reprogrammed, a user is not necessarily limited to a fixed
configuration. For example, a user may choose a different

25

40

45

55

18

number and type of capture module based on the type of
protocol being emulated on the FPGA or based on the type
of design within which the FPGA is being used. The number
and type of capture modules to be added to any particular
FPGA can be specified at a command line interface when the
designer is building the bit-files to be programmed into the
FPGA. In other words, appropriate selection of certain build
options when programming the FPGA allows the user to
easily select the number and type of capture modules to
include in a design.

FIG. 6 is a high-level block diagram illustrating the
manner in which the smart and efficient protocol analyzer
(SEPA) of the present invention collects information per-
taining to automated testing in accordance with an embodi-
ment of the present invention.

As mentioned previously, protocol analyzers are a passive
diagnostic tool that collect, organize, and display protocol
traffic occurring on a serial link. Protocol analyzers use large
amounts of memory to store the traffic, typically many
gigabytes. The stored traffic represents one of two forms of
data: raw and protocol. In raw mode the protocol analyzer
saves the serial data bit for bit in its memory. In protocol
mode the protocol analyzer first decodes and descrambles
the data prior to saving the data to memory. Some protocol
analyzers can filter “idle” traffic. Idle traffic refers to data
that conveys no information. For example, in PCI Express
idle traffic is scrambled zeros. After descrambling, idle
traffic is discarded to conserve on memory usage. Despite
having the ability to discard idle traffic, conventional pro-
tocol analyzers still require considerable amounts of
memory to store all the data traffic.

There are many situations where it is useful to have a
standard protocol analyzer but constraints, including finan-
cial, memory and spatial constraints, limit the ability to have
one. One application where this is the case is within a solid
state device (SSD) tester.

In one embodiment, a full protocol analyzer could be
integrated into a SSD tester, wherein the protocol analyzer
could be programmed using the FPGA and memory
resources within the tester. However, this would require
adding a large amount of FPGA logic and memory resources
to the SSD tester. Accordingly, a need exists for a protocol
analyzer integrated into ATE, e.g., a SSD tester to be more
selective in the information that is collected.

Embodiments of the present invention use a pared down
version of a protocol analyzer that is built into the tester
itself. For example, the protocol analyzer of the present
invention can comprise a module programmed onto an
FPGA. The tester may be an SSD tester or any other type of
tester that connects with and tests DUTs. For example, FIG.
6 illustrates a smart and efficient protocol analyzer (SEPA)
630 that is built into the tester 610 and can monitor signals
communicated between DUT 640 and the tester 610. The
protocol analyzer of the present invention advantageously
uses compression and selection to reduce the amount of
memory it needs for collection and analysis of data. Accord-
ingly, it provides a significant advantage over conventional
protocol analyzers that require extensive amounts of
memory storage. Further, the protocol analyzer can be built
directly into a tester, thereby, saving on cost and space
required for a conventional protocol analyzer.

It should be noted that the smart and efficient protocol
analyzer of the present invention offers much of the func-
tionality of a protocol analyzer while also using compression
and selection to reduce the amount of memory it needs for
collection. For example, the protocol analyzer would moni-
tor data and command sequences being exchanged on link

US 10,955,461 B2

19
670 between the tester and the DUTs. Embodiments of the
present invention enable monitoring sequences that are
identical to be stored as a single instance with a repeat count
that keeps track of the number of times the sequence was
communicated. As a result, considerable memory savings
result because the protocol analyzer is able to intelligently
and advantageously determine the information of interest
and save and organize it in a manner that allows the user to
re-create the entire data sequence if needed. Further, because
the protocol analyzer of the present invention does not
require considerable memory resources like a conventional
protocol analyzer, it can be programmed onto an FPGA. An
FPGA would have access to a much smaller memory than a
conventional protocol analyzer.

In one embodiment, the protocol analyzer will report on
the critical information in the signals/packets that was
transmitted and the number of times it was transmitted. Data
that is less critical is discarded. Information regarding that
data can be represented in a useful manner e.g., if the data
falls within specification can be reported out succinctly.
Alternatively, the report out only takes place when data falls
outside of specification, which is more efficient.

As noted above, the interface or IP core 620 within the
FPGAs of the tester core provide two functions: a) wraps
storage commands into a standard protocol for transmission
over a physical channel; and 2) is the electrical signal
generator and receiver. Both the IP core 620 and the protocol
analyzer 630 of the present invention can be programmed
onto the FPGA (in addition to the capture modules discussed
in relation to FIGS. 4 and 5). For example, the protocol core
620 may be a PCle core that allows the PCle core to be
emulated on the FPGA and for the FPGA to generate
commands and data that allow communication with and
testing of PCle DUTs.

In one embodiment, the protocol analyzer 630 can be
programmed onto the same instantiated tester block on the
FPGA as the protocol core 620. As mentioned above, the
protocol core 620 is the electrical signal generator and
receiver for the signals exchanged over communication link
670. The protocol analyzer 630 can be programmed to
monitor the signals generated and received by the protocol
core 620. In one embodiment, the protocol analyzer 630 and
the protocol core 620 may be programmed into the same
module on the FPGA or within separate modules of the same
FPGA. This allows the protocol analyzer 630 to relatively
easily monitor all the signals being transmitted and received
by the protocol core 620.

A conventional protocol analyzer would typically com-
prise an interposer that needs to be situated in between the
protocol core 620 of the tester and a connected DUT 640.
Alternatively, a conventional protocol analyzer or oscillo-
scope may comprise probes that tap off the signaling wires
comprising communication link 670. In both these cases,
monitoring communication link 670 by inserting an inter-
poser or probing the line affects the test results from the
subtlest to more gross ways. Programming the protocol
analyzer into the tester 610 advantageously avoids altering
the test results because there is no need to physically probe
or alter communication link 670 in any way.

FIG. 7 is a block diagram illustrating the manner in which
the protocol analyzer of the present invention reports data in
accordance with an embodiment of the present invention.

In one embodiment, the protocol analyzer 730 of the
present invention comprises one or more data compressor
modules 770 and one or more data checker modules 780.
These modules may, for example, be programmed into the
firmware of the FPGA and may contain memory or buffers

10

15

20

25

30

35

40

45

50

55

60

65

20

to store incoming data. The data compressor module may
compress data being exchanged on communication link 702
(the link between the protocol core 720 and the DUTs) by
identifying identical sequences that repeat. For example, in
the PCle protocol, identical training sequences are sent
repeatedly, sometimes in the thousands. The protocol ana-
lyzer can, in one embodiment, collect the first one and keep
track of the number of times the identical sequence was
transmitted (or received) by the protocol core 720. By
comparison, conventional protocol analyzers collect all the
sequences and optionally perform the compression when
displaying the sequences to the user. The protocol analyzer,
on the other hand, will advantageously only report out the
first collected sequence and indicate the number of times it
was transmitted.

In one embodiment, the data compressor module 770
operates in conjunction with collection logic 740 to store the
repeating sequence and the accompanying count value to be
reported out to the user through software 790. Software 790
may be tester application software executing on system
controller 301.

In one embodiment, the protocol analyzer also performs
selective discard. For example, in PCle, repeated training
sequences can be interrupted with a synchronizing pattern
known as EIEOS. The PCle specification dictates the fre-
quency of how EIEOS is inserted between adjacent training
sequences. The protocol analyzer can monitor and discard
those patterns. Further, the protocol analyzer may create a
report out only if the pattern appears to fall outside of
specification mandates. By way of further example, PCle
also specifies how frequently SKP ordered sets are sent. In
most debugging scenarios, SKP ordered sets are not perti-
nent. The protocol analyzer discards SKP ordered sets and,
again, only provides reports if the result do not comply with
specification requirements.

In one embodiment, one or more data checker modules
780 in the protocol analyzer can monitor for certain patterns,
e.g., EIEOS and SKP, that appear on the communication link
702 while the collection logic 740 can perform the selective
discard. In other words, the collection logic 740 can com-
prise logic circuitry to decide whether a pattern should be
saved or discarded.

As shown in FIG. 7, the protocol analyzer comprises a
data compressor 770 for identifying repeating sequences and
performing data compression and also a data checker 780 for
checking patterns to determine if a pattern is out of speci-
fication. In one embodiment, data compressor 770 and data
check 780 are firmware modules that can be programmed
directly on the FPGA. Further, the protocol analyzer can
comprise collection logic 740 that stores the logic to decide
whether a pattern is out of spec, for example, and to perform
a report out to software 790 if the pattern is outside of
specification requirements. Additionally, the protocol ana-
lyzer can comprise memory 750 that stores particular
sequences, e.g., repeating sequences identified by the data
compressor. [t should be noted that the memory 750 for the
protocol analyzer of the present invention will be signifi-
cantly less than a memory required for a conventional
protocol analyzer because the protocol analyzer of the
present invention will only save critical information that
needs to be reported out to the user and discard the less
critical information.

As stated above, in one embodiment, the protocol ana-
lyzer can be programmed on an FPGA alongside a third
party IP core 720. The protocol analyzer can, for example,
extracts data from the third party IP core 720 pertaining to
the communication between the protocol core 720 and the

US 10,955,461 B2

21

DUT. The protocol core 720 communicates through the
DUT through PHY layer 710. The PHY layer 710 connects
the protocol core module 720 to a physical medium, e.g.,
optical fiber, copper cable etc. The protocol analyzer com-
presses the data down (in other words, selects the data that
it wants to save), and also checks the data to determine if
there are any issues with the data. As mentioned above
compressor module 770 selects the repeating data and
compresses it down while the checker module 780 actively
discards less critical information. The protocol analyzer can
present the information regarding the data in a useful
manner e.g., if the data falls within specification, the infor-
mation can be reported out succinctly to software 790.
Alternatively, the report out only takes place when data falls
outside of specification, which is more efficient.

In one embodiment, the capture modules discussed in
FIGS. 4 and 5 may be used in conjunction with the protocol
analyzer of FIG. 7. FIG. 8 is a high-level block diagram
illustrating the manner in which the protocol analyzer of the
present invention works in conjunction with the capture
modules in the FPGA to report data in accordance with an
embodiment of the present invention.

In one embodiment, FPGA 805 comprises a protocol
analyzer 850 and a protocol 830, wherein the protocol core
comprises multiple capture modules 815. FPGA 805 also
comprises other capture modules 825, which as discussed
above, may be programmed to perform one of several
different functions. The protocol core 830 communicates
with DUT 810 through a PHY layer (not shown). The FPGA
805 communicates information gathered by the capture
modules and the protocol analyzer to the tester software 890.

In one embodiment, the capture modules 815 within the
protocol core 830 may capture information to be directed to
the protocol analyzer 850. For example, certain repeating
sequences may be initially captured by the capture modules
815 and transmitted to the protocol analyzer where the data
compressor 770 identifies the sequence and maintains a
count in conjunction with the collection logic 740. In one
embodiment, there can be multiple capture modules 815 per
protocol core that can be used to store data useful to perform
protocol analysis.

In one embodiment, the protocol traffic captured from the
capture modules (e.g., capture modules 815 and 825) and the
protocol analyzer can be transmitted to software 890 and
converted into a graphical illustration. Most conventional
protocol analyzers display the data in a graphical format.
Accordingly, embodiments of the present invention facilitate
analysis by displaying the data captured graphically. The
graphical interface is usually easier to use because the data
has been sorted and labeled to highlight key features of the
communication that would otherwise need to be manually
tease out of the raw textual data by referring to the protocol
specification. Accordingly, software 890 can perform further
post-processing of the data gathered from the capture mod-
ules and the protocol analyzer in order for the user to be able
to view the data in a graphical manner.

FIG. 9 illustrates a flowchart of an exemplary computer
implemented process for capturing critical information dur-
ing the course of automated device testing in order to
determine root causes for device failure in accordance with
one embodiment of the present invention.

At step 901, capture is enabled for a particular test. This
typically involves setting up the traffic capture including
setting up the various configurations to enable and start the
test. For example, the user would have to program the FPGA
and determine the type and number of capture modules to
include within the FPGA.

10

15

20

25

30

35

40

45

50

55

60

65

22

At step 902, the test is started. At step 903, if a failure is
detected, the test is stopped at step 905. Subsequently, the
capturing is stopped at step 906. If no failure is detected, the
test is allowed to run its course until it finishes at step 904.
Subsequently, the capturing is stopped at step 906.

Thereafter, the captured results are retrieved and saved at
step 607 using the tester software. For example, the captured
results may be saved and downloaded into software 905.

Once the data is gathered, at step 908, it can be analyzed
either manually or automatically, e.g., using a rule-checker.

At step 909, logs are generated related to the test. At step
912, if there is no more data to process and the test is
complete, the test ends at step 920. If, however, there is more
data to process, a post-process analysis is run on the data at
step 910. In one embodiment, the post-process analysis
typically involves analyzing the logs to determine the root
cause of device failure as explained in related U.S. patent
application Ser. No. 15/916,126, filed Mar. 8, 2018, entitled
“A LOG POST PROCESSOR FOR IDENTIFYING ROOT
CAUSES OF DEVICE FAILURE DURING AUTOMATED
TESTING.” However, there may be other types of post-
processing performed on the data as well. For example, the
data along with the additional metadata with timestamps
stored in the capture module memory 530 may not be in a
format easily discernible by the user. The post-processing at
step 909 may convert the information retrieved from the
capture modules into a format that a user can easily under-
stand and use.

At step 911, a report is generated regarding the test. For
example, the report may identify the root cause of a device
failure or alert the user regarding any devices that may
imminently fail.

FIG. 10 illustrates a flowchart of an exemplary computer
implemented process for using capture modules during
automated device testing for monitoring data traffic and
diagnosing problems in accordance with one embodiment of
the present invention.

At step 1002, a plurality of capture modules is pro-
grammed into a programmable logic device, e.g., an FPGA
to monitor data traffic associated with a test on the FPGA.
The FPGA, e.g., FPGA 495 is connected to a plurality of
DUTs, e.g., DUTS 496A-496N to be tested. Further, the
FPGA is also connected to a system controller, e.g., system
controller 301 that executes the tester software application
program for coordinating the tests. As mentioned above, the
user can select the type and number of capture modules to
program into the logic device prior to downloading the
bit-file for programming the FPGA.

At step 1004, the data traffic in the FPGA is monitored
using the capture modules. The capture modules comprise
acquisition logic circuitry 520 that determines the relevant
data to capture and monitor.

At step 1006, the results associated with the monitoring
are saved in respective memories within each of the plurality
of capture modules.

Finally, at step 1008, the results are transmitted to the
tester software application program executing on the system
controller.

FIG. 11 illustrates a flowchart of an exemplary computer
implemented process for programming a protocol analyzer
in a tester to collect and display information in accordance
with one embodiment of the present invention.

At step 1102, a protocol analyzer is programmed into a
programmable logic device, e.g., an FPGA to monitor data
traffic between the FPGA and a connected DUT. More
specifically, the protocol analyzer would monitor the signals
transmitted from and received by the protocol core 830 of

US 10,955,461 B2

23
the FPGA. The FPGA, e.g., FPGA 805 is connected to one
or more DUTs, e.g., DUT 810 to be tested. Further, the
FPGA is also connected to a system controller, e.g., system
controller 301 that executes the tester software application
program for coordinating the tests.

At step 1104, the data traffic between the connected DUT
and the FPGA is monitored using the protocol analyzer. The
protocol analyzer comprises a data compressor module 770
that compresses data being exchanged on communication

link 702 (the link between the protocol core 720 and the 10

DUTs) by identifying identical sequences that repeat. Fur-
ther, the protocol analyzer can also selectively discard
certain information using a data checker module 780.

At step 1106, the results associated with the monitoring
are saved in a memory associated with the protocol analyzer.

Subsequently, at step 1108, the results are transmitted to
the tester software application program executing on the
system controller.

Finally, at step 1110, the system controller performs
post-processing on the results (which may be in text format)
and renders them for graphical display for a user.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the invention to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and
various embodiments with various modifications as may be
suited to the particular use contemplated.

What is claimed is:

1. A method for monitoring communications between a
device under test (DUT) and an automated test equipment
(ATE), the method comprising:

monitoring data traffic associated with testing a DUT

using a protocol analyzer module, wherein the data
traffic comprises a flow of traffic between the DUT and
a protocol core of a programmable logic device,
wherein the programmable logic device is a Field
Programmable Gate Array (FPGA), wherein the pro-
tocol analyzer module is integrated within the FPGA,
wherein the protocol analyzer module is programmed
onto the FPGA and uses memory resources associated
with the FPGA, wherein the programmable logic
device is controlled by a system controller and is
operable to generate commands and data to test the
DUT, wherein the protocol core is operable to generate
signals to communicate with the DUT using a protocol
associated with the DUT, and wherein the protocol
analyzer module is operable to compress data
sequences in the flow of traffic and selectively discard
less critical data from the flow of traffic;

storing results associated with the monitoring in a

memory associated with the protocol analyzer module;
and

transmitting the results upon request to an application

program executing on the system controller.

2. The method of claim 1, further comprising:

performing post-processing on the results; and

displaying the results graphically on a screen for a user.

3. The method of claim 1, wherein the protocol emulated
by the protocol core is selected from a group consisting of:
Peripheral Component Interconnect Express (PCle), Serial
AT Attachment (SATA) or Serial Attached SCSI (SAS).

15

20

25

30

35

40

45

50

55

60

65

24

4. The method of claim 1, wherein the protocol analyzer
module is operable to compress the data sequences by:

identifying repeating sequences from the data sequences;

storing a single copy of a repeating sequence in the
memory; and

maintaining a count of a number of repetitions of the

repeating sequence.

5. The method of claim 1, wherein the protocol analyzer
module is operable to selectively discard less critical data
by:

identifying specific sequences from the flow of traffic;

determining if the specific sequences are in accordance

with specification requirements;

responsive to a determination that the specific sequences

are in accordance with specification requirements, dis-
carding the specific sequences; and

responsive to a determination that the specific sequences

are not in accordance with specification requirements,
transmitting a report through the application program.

6. The method of claim 1, wherein the protocol core
comprises a plurality of programmable capture modules, and
wherein the monitoring further comprises: capturing the data
traffic into the programmable capture modules; and

transmitting the data traffic to the protocol analyzer mod-

ule for further analysis.

7. An apparatus for diagnosing a cause of failure using
automated test equipment (ATE), the apparatus comprising:

a computer system comprising a system controller,

wherein the system controller is communicatively
coupled to a site module board comprising a tester
processor and a programmable logic device, wherein
the system controller is operable to transmit instruc-
tions to perform a test on a device under test (DUT) to
the tester processor and the programmable logic device;
and

the programmable logic device communicatively coupled

to the DUT and operable to generate commands and

data for executing the test on the DUT, wherein the

programmable logic device is an FPGA, and wherein

the FPGA comprises a protocol analyzer module pro-

grammed on the FPGA and using memory resources

associated with the FPGA, and wherein the protocol

analyzer module is operable to:

monitor data traffic associated with testing the DUT,
wherein the data traffic monitored comprises a flow
of traffic between the DUT and a protocol core
programmed on the programmable logic device;

compress data sequences in the flow of traffic and
selectively discard less critical data from the flow of
traffic;

store results associated with monitoring the data traffic
in a memory associated with the protocol analyzer
module; and

transmit the results upon request to a tester application
program executing on the system controller.

8. The apparatus of claim 7, wherein the tester application
program is operable to:

perform post-processing on the results; and

display the results graphically on a screen for a user.

9. The apparatus of claim 7, wherein the protocol core is
operable to emulate a protocol to generate signals to com-
municate with the DUT using a protocol associated with the
DUT.

10. The apparatus of claim 9, wherein the protocol emu-
lated by the protocol core is selected from a group consisting

US 10,955,461 B2

25
of: Peripheral Component Interconnect Express (PCle),
Serial AT Attachment (SATA) or Serial Attached SCSI
(SAS).

11. The apparatus of claim 7, wherein the protocol ana-
lyzer module is operable to perform compression on the data
sequences by:

identifying repeating sequences from the data sequences;

storing a single copy of a repeating sequence in the
memory; and

maintaining a count of a number of repetitions of the
repeating sequence.

12. The apparatus of claim 7, wherein the protocol ana-
lyzer module is operable to selectively discard less critical
data by:

identifying specific sequences from the flow of traffic;

determining if the specific sequences are in accordance
with specification requirements;

responsive to a determination that the specific sequences
are in accordance with specification requirements, dis-
carding the specific sequences; and

responsive to a determination that the specific sequences
are not in accordance with specification requirements,
transmitting a report out through the application pro-
gram.

13. A tester comprising:

a system controller for controlling a test program for
testing a plurality of DUTs;

a plurality of modules operable to interface with and test
the plurality of DUTs, the plurality of modules coupled
to the system controller, wherein each module com-
prises a site module board, and wherein each site
module board comprises:

a tester processor coupled to communicate with the
system controller to receive instructions and data
therefrom in accordance with the test program; and

a plurality of programmable logic devices coupled to
the tester processor, wherein the plurality of pro-
grammable logic devices comprise FPGAs, each
programmable logic device comprising a protocol
core and operable to generate test data for applica-
tion to a respective DUT, further operable to receive
and compare test data generated by the respective
DUT, and further yet the protocol core of each
programmable logic device operable to be pro-
grammed to communicate with the respective DUT
in a communication protocol compatible with the

10

15

20

25

30

35

40

45

26

respective DUT, and wherein each of the FPGAs

comprise a protocol analyzer module, wherein the

protocol analyzer module is programmed on the

FPGA and operable to:

monitor data traffic associated with testing the DUT,
wherein the data traffic monitored is between the
DUT and the protocol core;

perform compression on data sequences in the data
traffic and selectively discard less critical data
from the data traffic;

store results associated with monitoring the data
traffic in a memory associated with the protocol
analyzer module; and

transmit the results upon request to a tester application

program executing on the system controller.

14. The tester of claim 13, wherein the tester application
program is operable to:

perform post-processing on the results; and

display the results graphically on a screen for a user.

15. The tester of claim 13, wherein the protocol used by
the protocol core to communicate with the DUT is selected
from a group consisting of: Peripheral Component Intercon-
nect Express (PCle), Serial AT Attachment (SATA) or Serial
Attached SCSI (SAS).

16. The tester of claim 13, wherein the protocol analyzer
module is operable to perform compression on the data
sequences by:

identifying repeating sequences from the data sequences;

storing a single copy of a repeating sequence in the

memory; and

maintaining a count of a number of repetitions of the

repeating sequence.

17. The tester of claim 13, wherein the protocol analyzer
modules is operable to selectively discard less critical data
by:

identifying specific sequences from the data traffic;

determining if the specific sequences are in accordance

with specification requirements;

responsive to a determination that the specific sequences

are in accordance with specification requirements, dis-
carding the specific sequences; and

responsive to a determination that the specific sequences

are not in accordance with specification requirements,
transmitting a report out to a user through the applica-
tion program.

