

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 May 2006 (04.05.2006)

PCT

(10) International Publication Number
WO 2006/045644 A1(51) International Patent Classification⁷:

G06F 21/00

(21) International Application Number:

PCT/EP2005/052937

(22) International Filing Date: 23 June 2005 (23.06.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/970,461 21 October 2004 (21.10.2004) US

(71) Applicant (for all designated States except US): INTERNATIONAL BUSINESS MACHINES CORPORATION [US/US]; New Orchard Road, Armonk, NY 10504 (US).

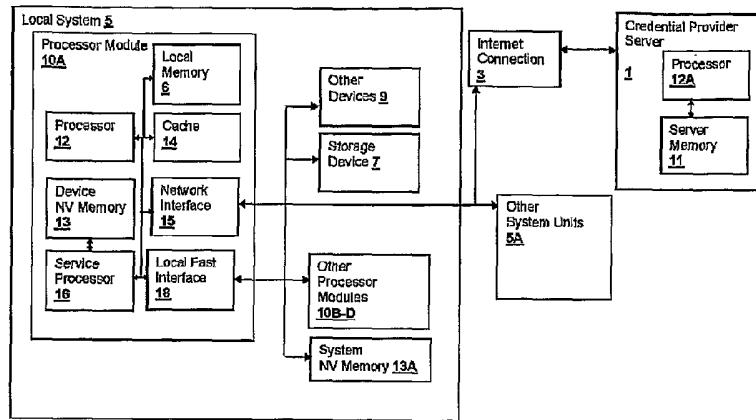
(71) Applicant (for MG only): IBM UNITED KINGDOM LIMITED [GB/GB]; PO Box 41 North Harbour, Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BADE, Steven [US/US]; 204 Buck Bend, Georgetown, TX 78628 (US). CHALLENER, David, Carroll [US/US]; 713 Hunting Ridge Road, Raleigh, NC 27615 (US).

(74) Agent: LING, Christopher, John; IBM United Kingdom Limited, Intellectual Property Law, Hursley Park, Winchester Hampshire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: VERIFYING BINDING OF AN INITIAL TRUSTED DEVICE TO A SECURED PROCESSING SYSTEM

(57) **Abstract:** A method and system for verifying binding of an initial trusted device to a secured processing system binds an initial device or replacement when no binding information is available from another device in the system. A platform credential is issued only when a valid binding is verified, by sending a proof of binding to a credential provider, such as the manufacturer. The method secures against security breaches that can occur when a device is removed from the system during the binding process. The binding information is generated in the device upon installation and includes system identification information so that at each initialization, upon return of binding information from the system to the device, the device can ensure that it is installed in the proper system and abort operation if the system does not match.

WO 2006/045644 A1

Description

VERIFYING BINDING OF AN INITIAL TRUSTED DEVICE TO A SECURED PROCESSING SYSTEM

Technical Field

[001] The present invention relates generally to security in processing systems, and more particularly, to a methodology for installing binding information into an initial or replacement trusted device in a secured processing system.

Background Art

[002] Present-day computing systems, and in particular large-scale server systems, often include support for running multiple virtual machines. The system may be a large-scale on-demand server system that executes hundreds of server instances on a single hardware platform to support customers with varying computing requirements. In the most flexible of these systems, multiple partitions, which may differ in operating system and application mix, are concurrently present in system memory and processes executing in each partition are run in an environment that supports their execution on a guest operating system. The virtual machine provides an environment similar enough to a real hardware platform that the operating system can run with little or no modification. A hypervisor (sometimes referred to as a virtual machine monitor) manages all of the virtual machines or partitions and abstracts system resources so that each partition provides a machine-like environment to each operating system instance.

[003] To implement the above architectural goals, multiple processing modules and other devices are installed in a system, and each device generally supports one or more of the above-described partitions, although it is possible to share tasking on a partition between multiple devices. Groups of devices or an individual device may be associated with a particular customer and it is desirable to secure access to a device or group by only that customer including securing the devices from the manufacturer of the devices and system.

[004] In order to provide security in such a system, devices must be bound to the system, avoiding removal and data mining that can occur by either extracting data from a device, or using a device to “impersonate” a system or portion thereof, from which it was extracted. Binding can be physical, i.e., the device is permanently attached to the system, or binding can be accomplished cryptographically, allowing for removable devices and networked systems. A platform credential is issued to a system (or particular trusted groups of devices within a system) only when the credential provider is certain that a trusted device has been validly bound to the system. The credential certifies that the platform embodies one or more trusted devices and therefore has the

attributes associated therewith. Typically the certification is performed at the manufacturers site and the trusted devices are either permanently physically bound to the system, or are cryptographically bound to the system without possibility of field replacement.

[005] The above-mentioned removable and networked devices provide protection from data tampering or impersonation by refusing to initiate in a system unless the device is cryptographically bound to the system. The information associated with the binding is generally encrypted and is stored in non-volatile storage within the device by the manufacturer. With the above-described mechanism, only a trusted system can access data associated with or stored within a particular device, dramatically reducing the impact of misappropriation or misuse of removable devices. Further, data associated with a device (such as a stored context or "state" of one of the above-mentioned virtual machines) is secured by an encryption mechanism that requires a key that is stored within the associated device or devices. The two-layer mechanism: hardware binding and data encryption keyed to a particular device or devices provides a high level of security against data mining by misappropriation or misuse of removable devices.

[006] When one of the devices fails or at initial installation of a trusted device into a system, the new device must be bound to the system in order for the device to initialize according to the above-described security methodology. If other devices having the desired security binding are present and operational in the system, binding information can be transferred from one of the other devices. However, if no other device is available with the desired binding, i.e., the last device with that binding has failed or only one such device was present in the system originally, then it is necessary for the binding to be established by other means, typically by returning the system to the manufacturer.

[007] Field replacement mechanisms for replacing a trusted device cause potential exposure of the system to unauthorized or modified hardware. Therefore, it is desirable that the replacement techniques be at least as secure as the operational security scheme, again typically requiring return of the device to the manufacturer.

[008] One method of attacking a system with bound devices is to remove a device during the binding process or otherwise rendering a device "unbound" and attempting to install the device on another system. Also, failure could occur during the binding process that may compromise the integrity of the system by causing a device to appear to be secured to a particular platform when it is not.

[009] Therefore, it would be desirable to provide a field-replacement mechanism for binding replacement devices to a system in a secure manner when no other device with the desired binding is present in the system. It would further be desirable to provide a valid credential to the platform when an initial trusted device is installed and only

when the trusted device is known to be validly bound to the system. It would further be desirable to provide a secure binding method that is tolerant of failure or removal during the binding process.

Disclosure of Invention

[010] The invention provides a method as claimed in claim 1 and corresponding apparatus and computer program.

Brief Description of the Drawings

[011] The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein like reference numerals indicate like components, and:

[012] **Figure 1** is a block diagram of a computing system in which an embodiment of the invention is practiced.

[013] **Figure 2** is a block diagram of memory images and information flow within a system in accordance with an embodiment of the present invention.

[014] **Figure 3** is a flowchart depicting portions of a method in accordance with an embodiment of the present invention.

[015] **Figure 4** is a flowchart depicting further portions of a method in accordance with an embodiment of the present invention.

[016] **Figure 5** is a flowchart depicting still further portions of a method in accordance with an embodiment of the present invention.

Best Mode for Carrying Out the Invention

[017] With reference now to the figures, and in particular with reference to **Figure 1**, there is depicted a block diagram of a system in which an embodiment of the present invention is practiced. It should be understood that the depicted embodiment is not intended to be limiting, but only exemplary of the type of processing system to which the methods and techniques of the present invention may be applied. The system includes a secured local system **5** having four processor modules (processor module **10A** and three other identical processor modules **10B-D**). Local system **5** may be connected to other system units **5A** forming a super-scalar processing system. The local systems are connected to a credential provider server **1** via an Internet connection **3** or an alternative network interface. Credential provider server includes a processor **12A** for executing server program instructions in accordance with an embodiment of the present invention and a server memory **11** for storing the program instructions and data.

[018] Each processing module **10A**, **10B-D** includes a processor **12** for executing program instructions, a local memory **6** that is generally mapped as system memory accessible by other processor modules **10B-D** and a cache **14** for storing data and program instructions. Processing modules **10A**, **10B-D** also each includes a non-volatile memory **13** that stores values used by the method of the present invention to verify that processor modules **10A**, **10B-D** are installed in the system to which they are bound. Processor modules **10A**, **10B-D** also each may include a service processor **16** which may carry out the security functions of the present invention, or alternatively processor **12** may perform the tasks described in further detail below. Processor modules **10A**, **10B-D** also include a local fast interface **18** for intercommunication with other modules in local system **5**, and a network interface **15** for communication with other system units **5A** and Internet connection **3**. Local system also includes a storage device **7** as well as other devices **9**, to which the binding techniques of the present invention may be applied. A system non-volatile memory **13A** is also included for storing binding verification data and other system values associated with the security techniques of the present invention, such as the system serial number or other identifier.

[019] Within system local memory **6**, a virtual machine monitor program, or “hypervisor” provides support for execution of multiple virtual machines (VMs) or “partitions” that each provide an execution environment for an operating system and a number of “guest” programs (applications and services executed by an operating system and running in the associated VM).

[020] In order to ensure security of the overall local system **5**, as well as security as between multiple customers using local system **5** in instances where the above-mentioned partitions may belong to different customers requiring data protection as between the partitions, the present invention provides for binding of devices in local system **5** so that the devices can only be used in local system **5**. As a result of the binding process, credential provider server **1** provides a credential to local system **5** that certifies to others that the system includes one or more trusted devices and therefore embodies the attributes associated with the trusted device. The certificate can then be used by other systems to verify that they can inter-operate with system **5** using the characteristics associated with a trusted platform device. The above-described arrangement is an illustration applicable to systems in which processor modules **10A**, **10B-D** are removable modules that may be inserted in or removed from local system **5** via a chassis or other interconnect arrangement. However, binding in the sense of the present invention may extend to other arrangements such as the networked interconnect illustrated between local system **5** and other system units **5A**. The present invention uses encryption and public/private key pairs to secure binding-related com-

munications between devices, and therefore security can be maintained in environments where the devices bound to a system may actually be located in physically disparate locations. However, shared symmetric keys may alternatively be employed.

[021] Further, it should be understood that the techniques of the present invention apply not only to processor modules, but to any device for which it is useful to bind uniquely to a system and where verification of a credential is useful. For example, storage devices within a computer system could be bound to the system so that they will only operate with the system and a credential could be supplied in response to a query before an application or operating system routine trusts data stored on the device or trusts the device as a sink for data. Therefore, it should be understood that the following description, while referring for illustrative purposes to a binding of processor module **10A** to local system **5** applies to binding of other devices and other systems, as well.

[022] Referring now to **Figure 2**, a block diagram is shown depicting memory images and information flow within the computer system of **Figure 1**. Within device non-volatile memory **13**, a device specific identifier is stored, along with a unique device-specific key pair installed at the time of device manufacture.

[023] During the binding process, processor module **10A** generates a random bit sequence (the device-generated secret), which the device then hashes with a system-specific identifier provided by local system **5** to processor module **10A** from system non-volatile memory **13A** (or can be accessed from system non-volatile memory **13A** directly by processor module **10A**). The hashed result, the “platform binding record” (PBR) is stored in processor module **10A** non-volatile memory **13** for future use in verifying that local system **5** is the system bound uniquely to processor module **10A**. A private key unique to processor module **10A** is used to sign the PBR and the signed PBR is sent to local system **5** where it is stored in system non-volatile memory **13A**. Since only processor module **10A** knows its unique private key, processor module can verify that local system **5** is the system to which it was bound upon subsequent return of the signed PBR to processor module **10A**, as the signature on the signed PBR validates the signed PBR as having been generated by processor module **10A**. Upon receipt of the PBR from processor module **10A**, Local system **5** verifies the signed PBR using a system-unique public key provided by the manufacturer of processor module **10A** and stores the signed PBR to return to processor module **10A** for verification at initialization and other intervals as deemed necessary by the hypervisor.

[024] Also during the binding process, a binding verification record is sent to credential provider server **1**, which verifies that the system/device combination is valid and now properly bound. The binding verification record is verified using a device-specific public key retrieved from a database **22**, which is indexed via the device identifier and

system identifier. The binding verification record provides evidence that a particular device was bound to a system by including various information that can exist only in the device. In the illustrative embodiment, this is performed by using the device-specific private key to sign a hash of several pieces of information, including a device-specific public endorsement key, the system identifier provided during the binding process and a unique device identifier (generally the serial number). Before signing, the above information is hashed over a one-time use device secret (distinct from the one-time device generated secret) that was installed at the time of manufacture of the device. The one-time use device secret is then “burned” (erased) after the binding verification record is generated. This one-time secret is also stored in the manufacturer’s (credential provider’s) database, providing a verification that the device has been bound. The verification can only be performed once, as once the device has burned the one-time use secret, if the other one-way ratchets described below are overcome, binding of the device still cannot be verified without a binding verification record generated in conformity with the one-time use device secret.

[025] The device-specific endorsement key is also unique to the initial trusted device and provides further verification that the device being bound is the correct device, as the endorsement key is also retained by the credential provider. The endorsement key is associated with the credential and is later used to show that the trusted platform virtual machines are running on a trusted platform device associated with a particular credential (which will contain the endorsement key as well).

[026] Database 22 maintains public key information for all devices produced so that keys can be found to validate messages from devices, as well as the device one-time use secret. If the binding is validated, a credential 20 is generated and sent to processor module 10A, which stores it in device non-volatile memory 13 (which can include disk file storage) for use in identifying the platform provided by processor module 10A as a trusted platform having an identity certified by the credential provider (e.g., the manufacturer or other certification entity).

[027] Since the unique private key is only stored within processor module 10A and is not retained by the manufacturer after injection of the private key into processor module 10A at the factory, nor stored anywhere else, it is extremely difficult for another device to impersonate processor module 10A during a binding process. It is therefore highly unlikely that a credential would be issued to any combination of devices and systems other than a known system and a known set of devices. Other techniques may be applied in addition to the above in order to further increase the difficulty.

[028] Referring now to **Figure 3**, a portion of a method in accordance with an illustrated embodiment of the invention is depicted. When an unbound device is installed in (or coupled to) a system (**step 30**), if there is another trusted device in the system (

decision 31) then an integration process is performed by migrating binding information from another trusted device (**step 32**). Essentially, the integration securely shares the hashed result (PBR) that was stored in the other device and stores it in the non-volatile memory **13** of the unbound device, which can then return a signed PBR to local system **5** for storage in system non-volatile memory **13A** by signing the PBR from the other device with its own private key. When local system **5** sends the signed PBR to the newly-bound device at initialization time, the newly-bound device can verify the system in the same manner that the existing trusted device can. It should be noted that the unique private key of each device does not need to be exported, only the hashed result that was generated during binding of the existing trusted device.

[029] However, if there is no other trusted device in the system (**decision 31**), then the method of the present invention is employed to bind the new device without performing the integration process of step 32. First, a system-specific identifier such as the system serial number is sent to the device (**step 33**). The device generates a random bit stream used as a secret value and hashes this value with the system-specific identifier to produce a hashed result (PBR) (**step 34**). The device stores the PBR and then signs the hashed result with the device's unique private key to provide a signed PBR (**step 36**) that is then sent to the system for use at each device initialization.

[030] Proof of binding is also generated and is sent along with the system identifier to the credential provider (**step 37**). The credential provider determines whether or not the binding is valid (**decision 38**) by verifying the identity of the system and device as signatures within the signed proof of binding. The credential provider has a public key for each device that is used to validate the signed proof of binding record and verify that it came from that particular device. As the system identifier is also part of the basis for the signed proof of binding, the identity of the system is also thereby identified, even though the device and system identifiers may also be sent "in the clear".

[031] If the binding is valid (**decision 38**), then a credential is issued for the device and sent back to the system (**step 39**) so that the system can prove that it contains a trusted device. However, as explained above, it is not necessary for a credential to be sent to the system, and may be maintained on the credential provider server or stored at another location, as long as it is accessible to components needing to verify that the system contains a trusted device with certain attributes. But, if the binding is invalid (**decision 38**), then the device is notified to abort the binding process (**step 40**).

[032] Referring now to **Figure 4**, another portion of the method in accordance with the illustrated embodiment of the invention is depicted. When a device is installed in the system (**step 50**), a state value is read from the device non-volatile memory (**step 51**). Three states are possible: "bound", "unbound" and "binding". The three states are employed in a one-way "ratchet" scheme that ensures that once the binding process is

started on a device, the device can never return to an unbound state, and once binding is completed, the device can never return from the bound condition.

[033] If the device is in the “binding” state when the device is installed (**decision 51**) it is an indication that a binding process was interrupted in some manner and is an indication that tampering may have occurred by removal of the device during another binding process. So, if the device is in the binding state (**decision 51**) at installation, the device is locked out by the system (**step 52**) and must be returned to the manufacturer in order to be re-used. If the device is in the “bound” state (**decision 53**), then the binding is verified normally (**step 54**) and the device is initialized. If the device is in the “unbound” state (**decision 53**), the binding exchanges and verifications are performed (**step 55**) as exemplified by Figure 3. If the binding is successful (**decision 56**) then the state of the device is set to the “bound” state (**step 57**), otherwise the device is left in the “binding” state (**step 58**), preventing further use of the device. Thus if any point in the binding process is interrupted, the device will be rendered useless until reprogrammed at the factory, preventing attempts to subvert the binding process by removal during installation.

[034] Referring now to **Figure 5**, still another portion of the method in accordance with the illustrated embodiment of the invention is depicted. When failure of a trusted device occurs, a service call is received by the manufacturer (**step 60**). If the system has one functioning trusted device left (**decision 61**) the integration process mentioned above is performed on a replacement device using the trusted device (**step 62**). However, if no trusted devices are left functioning in the system (**decision 61**), then the system credential is invalidated (**step 63**) and a replacement device is optionally pre-bound to the system that sent the service call (**step 64**) and the replacement device is shipped to the customer site (**step 65**). The binding process described above is then performed as illustrated in Figures 3 and 4 once the replacement device is installed in the system. If the device is pre-bound to the system before shipment, then the verification of binding made by the credential provider server is made in conformity with a database entry that indicates that the replacement device is intended for installation in a particular system and will only issue a credential upon binding of the device to the correct system. The database contains information such as the device identifier, system identifier to which the device is assigned and the unique public keys associated with the system and the device.

Claims

[001] 1. A method of securing a processing system, said processing system including multiple devices that verify the identity of a particular processing system prior to initializing to a functioning state, said method comprising: first generating a binding of a given one of said devices to said processing system using a system specific identifier provided by said processing system and a first private information known only to said given device; second generating a proof of said binding using said system specific identifier, a second private information known only to said given device, and a unique device identifier; transmitting said proof of binding from said processing system to a credential provider; determining at said credential provider whether or not said proof of binding indicates that said generated binding is valid; and in response to determining that said generated binding is valid, issuing a platform credential for said processing system.

[002] 2. The method of Claim 1, wherein said second private information includes said first private information.

[003] 3. The method of Claim 1, further comprising in response to receiving said proof of binding at said credential provider, invalidating an existing credential of said processing system.

[004] 4. The method of Claim 1, further comprising transmitting said platform credential to said processing system.

[005] 5. The method of claim 1, further comprising storing said platform credential on a server, whereby authenticity and security of said processing system can be verified by accessing said platform credential on said server.

[006] 6. The method of Claim 1, wherein said first generating comprises: hashing said system specific identifier with a device-generated random value to produce a hashed result; signing said hashed result with a device-specific key to produce a signed result; and binding said given device to said particular system by sending said signed result to another portion of said processing system, whereby said given device will initialize only in said particular system in response to a return and verification of said signed result to said device.

[007] 7. The method of Claim 6, wherein said second generating comprises: hashing a combination of at least said system specific identifier and a unique device identifier; and signing a result of said hashing with a device-specific key to produce a signed result.

[008] 8. The method of Claim 1, further comprising: setting a state of said given device to indicate a binding process is in progress prior to performing said binding; second receiving verification that said proof of binding has been verified by said

credential provider; only in response to receiving said verification, setting said state to indicate said given device is bound.

- [009] 9. The method of Claim 1, further comprising: second determining whether or not said system includes a functioning trusted device; in response to determining that said system does not include a functioning trusted device, performing said first generating, second generating, transmitting, receiving, determining and issuing.
- [010] 10. The method of Claim 1, further comprising: receiving at a server, a service request indicating that a predecessor of said given device has failed, and wherein said second determining is performed in response to receiving said service request at said server; in response to determining that said system does not include a functioning trusted device, initiating shipment of said given device as a replacement for said predecessor; and generating a service record associated with said given device within a database of said server.
- [011] 11. The method of Claim 10, wherein said determining whether or not said generated binding is valid is performed in conformity with information stored in said service record, whereby identity of said given device as said shipped device is verified prior to issuing said platform credential.
- [012] 12. An apparatus comprising means adapted for carrying out all the steps of the method according to any preceding method claim.
- [013] 13. A computer program comprising instructions for carrying out all the steps of the method according to any preceding method claim, when said computer program is executed on a computer system.

[Fig.]



Fig. 1

[Fig.]

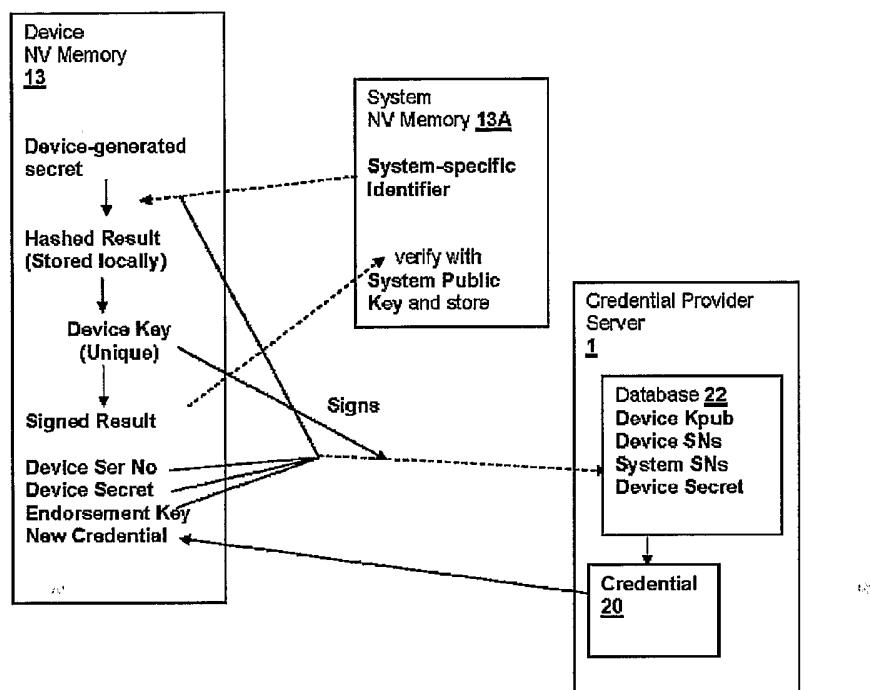
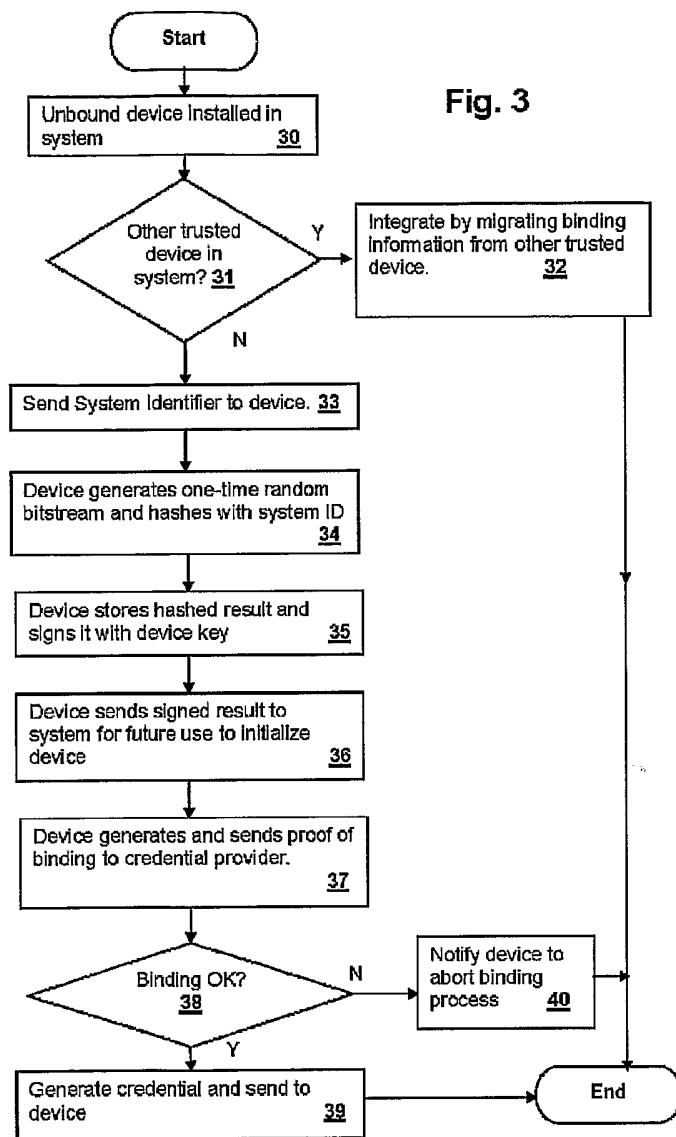
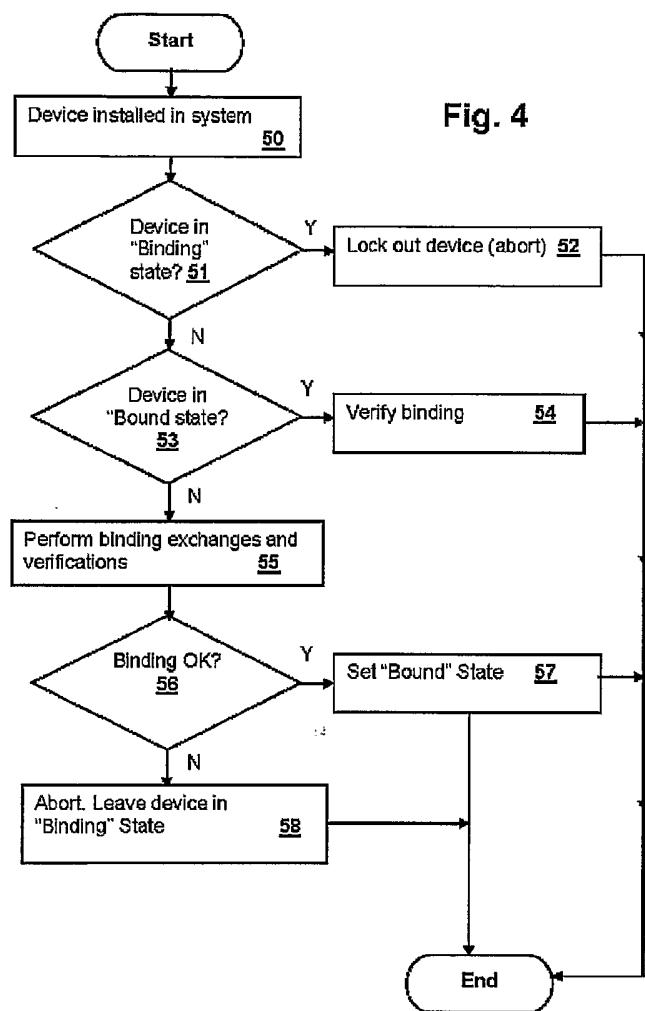
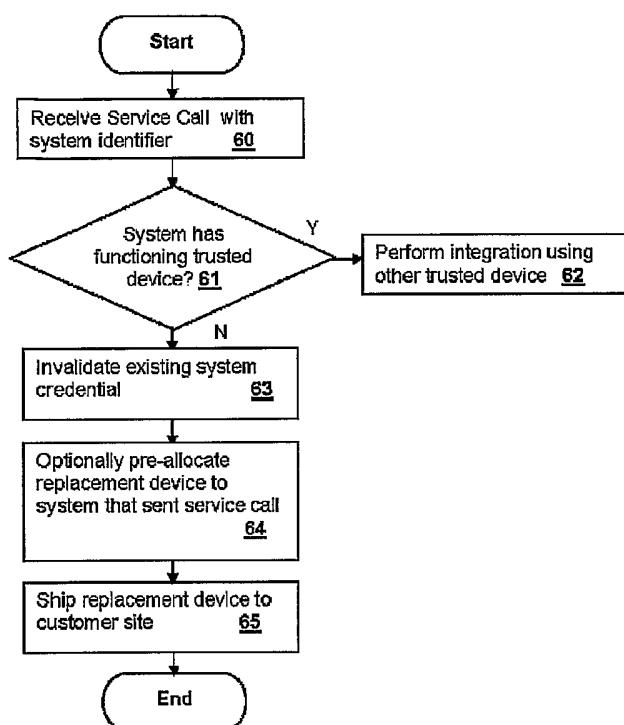




Fig. 2

[Fig.]



[Fig.]

[Fig.]

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2005/052937

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G06F21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G06F H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/188162 A1 (CANDELORE BRANT ET AL) 2 October 2003 (2003-10-02) the whole document	1-13
A	US 2003/115453 A1 (GRAWROCK DAVID W) 19 June 2003 (2003-06-19) paragraph '0001! - paragraph '0035!	1-13
A	WO 01/52234 A (KONINKLIJKE PHILIPS ELECTRONICS N.V) 19 July 2001 (2001-07-19) page 4, line 23 - page 6, line 4	1-13
A	US 2003/056109 A1 (ELLIOTT SCOTT THOMAS ET AL) 20 March 2003 (2003-03-20) the whole document	1-13
		-/-

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 September 2005

23/09/2005

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Segura, G

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP2005/052937

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2003/226040 A1 (CHALLENGER DAVID CARROLL ET AL) 4 December 2003 (2003-12-04) paragraph '0020! - paragraph '0028! -----	1-13
A	EP 1 076 279 A (HEWLETT-PACKARD COMPANY) 14 February 2001 (2001-02-14) paragraph '0100! - paragraph '0109! -----	1-13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2005/052937

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2003188162	A1	02-10-2003	NONE		
US 2003115453	A1	19-06-2003	AU 2002352907 A1		30-06-2003
			CN 1605054 A		06-04-2005
			EP 1456731 A1		15-09-2004
			JP 2005513605 T		12-05-2005
			WO 03052565 A1		26-06-2003
WO 0152234	A	19-07-2001	CN 1350684 A		22-05-2002
			EP 1163659 A1		19-12-2001
			JP 2003520355 T		02-07-2003
US 2003056109	A1	20-03-2003	NONE		
US 2003226040	A1	04-12-2003	JP 2004013899 A		15-01-2004
EP 1076279	A	14-02-2001	DE 60002893 D1		26-06-2003
			DE 60002893 T2		13-05-2004
			WO 0113199 A1		22-02-2001
			JP 2003507785 T		25-02-2003