(19 DANMARK (100 DK/EP 2619664 T3
(12) Overseettelse af
europaeisk patentskrift
Patent- og
Varemeaerkestyrelsen

(51) Int.Cl.: G 06 F 9/455 (2018.01) G 06 F 11/00 (2006.01) G 06 F 11/30 (2006.01)
(45) Overseettelsen bekendtgjort den: 2022-03-07
(80) Dato for Den Europaeiske Patentmyndigheds

bekendtgarelse om meddelelse af patentet: 2021-12-22
(86) Europaeisk ansggning nr.: 11827381.2
(86) Europaeisk indleveringsdag: 2011-09-20
(87) Den europeeiske ansggnings publiceringsdag: 2013-07-31
(86) International ansggning nr.: US2011052413
(87) Internationalt publikationsnr.: W02012040241
(30) Prioritet: 2010-09-20 US 886138
(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT Ll LT LU LV

MC MK MT NL NO PL PT RO RS SE SI SK SM TR
(73) Patenthaver: Netflix, Inc., 100 Winchester Circle, Los Gatos, California 95032, USA
(72) Opfinder: ORZELL, Gregory S., 45 Seward St. 2, San Francisco, California 94114, USA

IZRAILEVSKY, Yury, 13991 Saratoga Ave., Saratoga, California 95070, USA
(74) Fuldmaegtig i Danmark: RWS Group, Europa House, Chiltern Park, Chiltern Hill, Chalfont St Peter, Bucks SL9

9FG, Storbritannien
(54) Benaevnelse: VALIDERING AF TOLERANCEN AF APPLIKATIONER | NETVARK
(56) Fremdragne publikationer:

US-A1-2008 052 719

US-A1- 2010 223 378

US-B1- 6 694 346

William Hoarau ET AL: "Easy fault injection and stress testing with FAIL-FCI", , 1 January 2005 (2005-01-01),
XP055265742, Retrieved from the Internet: URL:https //www.Iri.fr/~bibli/Rapports-int ernes/2005/RR1421.pdf
[retrieved on 2016-04-15]

HOARAU ET AL: "FAIL-FCI: Versatile fault injection”, FUTURE GENERATIONS COMPUTER SYSTEMS,
ELSEVIER SCIENCE PUBLISHERS. AMSTERDAM, NL, vol. 23, no. 7, 17 May 2007 (2007-05-17), pages 913-919,
XP022081808, ISSN: 0167-739X, DOI: 10.1016/J.FUTURE.2007.01.005

BRENTN CHUN ED - TERUO HIGASHINO: "DART: Distributed Automated Regression Testing for Large-Scale
Network Applications”, 18 August 2005 (2005-08-18), PRINCIPLES OF DISTRIBUTED SYSTEMS; [LECTURE
NOTES IN COMPUTER SCIENCE;;LNCS], SPRINGER-VERLAG, BERLIN/HEIDELBERG, PAGE(S) 20 - 36,
XP019012325, ISBN: 978-3-540-27324-0 * page 235, paragraph 1 - page 237, paragraph 2 * * page 239, paragraph
3 - page 240, paragraph 1 *

Anonymous: "Log file - Wikipedia"”, , 7 December 2009 (2009-12-07), XP055754572, Retrieved from the Internet:
URL:https://en.wikipedia.org/w/index.php?t itle=Log_file&oldid=330225477 [retrieved on 2020-11-27]

Fortseettes ...

DK/EP 2619664 T3

DK/EP 2619664 T3

DESCRIPTION

BACKGROUND OF THE INVENTION

Field of Invention

[0001] Embodiments of the present invention generally relate to techniques for assessing the
resiliency of a distributed computing service provided by a collection of interacting servers.

Description of Related Art

[0002] A broad variety of computing applications have been made available to users over
computer networks. Frequently, a networked application may be provided using multiple
interacting computing servers. For example, a web site may be provided using a web server
(running on one computing system) configured to receive requests from users for web pages.
The requests can be passed to an application server (running on another computing system),
which in turn processes the requests and generate responses passed back to the web server,
and ultimately to the users.

[0003] Another example includes a content distribution system used to provide access to
media titles over a network. Typically, a content distribution system may include access
servers, content servers, efc., which clients connect to using a content player, such as a
gaming console, computing system, computing tablet, mobile telephone, network-aware DVD
players, efc. The content server stores files (or "streams") available for download from the
content server to the content player. Each stream may provide a digital version of a movie, a
television program, a sporting event, user generated content, a staged or live event captured
by recorded video, efc. Users access the service by connecting to a web server, where a list of
content is available. Once a request for a particular title is received, it may be streamed to the
client system over a connection to an available content server.

[0004] The software applications running on systems such as these are often updated as
ongoing development results in patches to fix vulnerabilities or errors as well upgrades to make
new features available. At the same time, the servers in a networked application may depend
on one another in unforeseen or unintended ways and changes to one system may result in an
unintended dependency on another. When this happens, if a server fails, then access to the
networked application can be disrupted.

[0005] "East fault injection and stress testing with FAIL-FCI" by Hoarau et al discloses fault-
loading existing distributed application and injecting specific faults at very specific moments in
the program code of the application under test. "FAIL-FCI: Versatile fault injection" by Hoarau

DK/EP 2619664 T3

et al also discloses fault-loading existing distributed application and injecting specific faults at
very specific moments in the program code of the application under test. "DART: Distributed
Automated Regression Testing for Large-Scale Network Applications" by Chun, B N discloses a
framework for distributed automated regression testing of large-scale network applications that
provides a programming environment, scripted execution of multinode commands, fault
injection, and performance anomaly injection

SUMMARY OF THE INVENTION

[0006] One embodiment of the invention disclosed herein provides a computer-implemented
method for validating the resiliency of a networked application. The method may generally
include identifying a plurality of active application components within a network used to provide
the networked application and selecting, based on one or more selection criteria, at least one
of the identified application components. This method may also include terminating the
selected active application component and, following the termination of the selected active
application component, monitoring one or more remaining active application components
within the network.

[0007] Other embodiments include, without limitation, a computer-readable medium that
includes instructions that enable a processing unit to implement one or more aspects of the
disclosed methods as well as a system configured to implement one or more aspects of the
disclosed methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] So that the manner in which the above recited features of the present invention can be
understood in detail, a more particular description of the invention, briefly summarized above,
may be had by reference to embodiments, some of which are illustrated in the appended
drawings. It is to be noted, however, that the appended drawings illustrate only typical
embodiments of this invention and are therefore not to be considered limiting of its scope, for
the invention may admit to other equally effective embodiments.

Figure 1 illustrates a computing infrastructure configured to implement one or more aspects of
the present invention.

Figure 2 illustrates a plurality of interacting server instances in a cloud computing environment,
according to one embodiment of the present invention.

Figure 3 is a view of a computing system which includes a resiliency monitoring application,
according to one embodiment of the invention.

Figure 4 further a method for validating the resiliency of networked applications, according to
one embodiment of the present invention.

DK/EP 2619664 T3

DETAILED DESCRIPTION

[0009] Embodiments of the invention provide techniques for validating the resiliency of a
networked application made available using a collection of interacting servers. For example, a
network monitoring application may be configured to terminate an instance of a running
application to determine whether systems that depend on the failed one can still function
correctly (or degrade gracefully) following a random, unanticipated failure. Thus, the
monitoring application may observe the impact of a server failure on other systems in the
networked application in a controlled manner. This approach may be useful in cloud based
deployments where any server can disappear at any time.

[0010] In one embodiment, the network monitoring application observes each running server
(or application) at unspecified intervals, picks one and terminates it. In the case of a cloud
based deployment, this may include terminating a virtual machine instance, terminating a
process running on the server, etc. For physical servers in a data center, it could involve
shutting off a server, terminating a process running on the server, closing a network connection
on the server, efc. However performed, the participation of the selected server in the network
application ends, cutting off the server (or application) from the rest of the network application.

[0011] By observing the effects of the failed server on the rest of the network application, a
provider can ensure that each component can tolerate any single instance disappearing
without warning. In one embodiment, the network monitoring application may be used in a test
environment prior to deploying an update or patch to servers (or applications) in a production
environment. Doing so allows the effects of the update or patch to be evaluated without being
deployed to the production environment. Further, certain applications (or hosts or systems)
can be excluded (or included) from possible termination using an exclusion/inclusion list.
Similarly, in a cloud based deployment, the network monitoring application can be configured to
terminate server instances that are members of an auto scaling group. Doing so allows the
functioning of the auto scaling processes to be evaluated against, randomly occurring server
failures. Thus, in various embodiments, the network monitoring application helps enforce
requirements for fault tolerance, which might otherwise be lost over time as production
systems are upgraded, patched, or otherwise changed in manners that create unintended or
unwanted dependencies. More generally, any logical group of systems may be defined and
tested by the network monitoring application described herein.

[0012] In the following description, numerous specific details are set forth to provide a more
thorough understanding of the present invention. However, it will be apparent to one of skill in
the art that the present invention may be practiced without one or more of these specific
details. In other instances, well-known features have not been described in order to avoid
obscuring the present invention.

DK/EP 2619664 T3

[0013] Further, particular embodiments of the invention are described using an example of a
networked application used to stream movies, music, television programming, user generated
content efc., over a data communications network to end-user client devices. However, it
should be understood that embodiments of the invention may be adapted to validate the
resiliency to individual system failure for a broad variety of networked applications or services.
Accordingly, references to a streaming media service are merely illustrative and not limiting.

[0014] Figure 1 illustrates a computing infrastructure 100 configured to implement one or more
aspects of the present invention. In this example, the computing infrastructure 100 represents
an infrastructure used to provide a networked application or service to client systems. As
shown, server systems 137 at a data center 130 and virtual machine instances 145 running at
cloud provider 140 are used to provide a network application or service to clients 1054_4 over a

network 120. Additionally, the data center 130 includes an availability/reliability monitoring
system 135.

[0015] As noted, embodiments of the invention may used to validate the resiliency of virtual
machine instances 145 deployed using a cloud computing infrastructure made available by
cloud provider 140. Cloud computing generally refers to the provision of scalable computing
resources as a service over a network. More formally, cloud computing may be defined as a
computing capability that provides an abstraction between the computing resource and its
underlying technical architecture (e.g., servers, storage, networks), enabling convenient, on-
demand network access to a pool of configurable computing resources that can be rapidly
provisioned and released with minimal management effort or service provider interaction.
Thus, cloud computing allows a user to access virtual computing resources (e.g., storage,
data, applications, and even complete virtualized computing systems) in "the cloud," without
regard for the underlying physical systems (or locations of those systems) used to provide the
computing resources.

[0016] Typically, cloud computing resources are provided to a user on a pay-peruse basis,
where users are charged only for the computing resources actually used (e.g., an amount of
storage space consumed by a user or a number of virtual machine instances spawned by the
user). A user can access any of the resources that reside in the cloud at any time and from
anywhere. Once provisioned, a virtual machine instance 145 provides an abstraction of a
computing server, and a user can generally install and execute applications on the virtual
machine instance 145 in the same manner as thought they controlled the physical computing
server represented by the virtual machine instance 145.

[0017] In context of the present invention, a service provider may deploy servers or
applications on virtual machine instance 145 and allow clients 105 to connect to and access
the applications (e.g., a streaming media service) in same manner as accessing physical
server systems 137 in data center 130. At the same time, as the service provider can rapidly
scale the service simply by spawning additional virtual machine instances 145. This allows the
provider to respond to peak demand periods without having to build and maintain a large

DK/EP 2619664 T3

computing infrastructure at the data center 130. The cloud provider 140 may provide an auto
scaling feature used to automatically scale up or down the number of virtual machine instances
145 allocated to a given application (or application component) based on its needs at any
given time.

[0018] However, as service provider does not control the underlying computing hardware, the
servers or applications executing on the virtual machine instances 145 should be configured to
tolerate any single virtual instance (or service provided by the virtual machine instance)
disappearing without warning. Accordingly, as described in greater detail below, monitoring
system 135 may include an application program configured to periodically terminate an
instance of a running application on the server systems 137 or virtual machine instances 145
and observe the impact on the service overall (in either production or test environments). And
may also ensure that, following the termination of a virtual machine instance, instances
associated with an auto scaling group are properly scaled. In cases where unknown or
unwanted dependencies are identified, the applications may be refactored as appropriate.

[0019] Figure 2 illustrates a plurality of interacting server instances in a computing cloud 200,
according to one embodiment of the invention. lllustratively, computing cloud 200 provides an
example of a computing infrastructure used to provide a streaming media service to client
systems. Of course, as noted above, computing cloud 200 could be used to provide a broad
variety of computing services to clients 105.

[0020] As shown, the computing cloud 200 includes virtual machine instances (220, 225, 230
and 235) allocated among four different auto scaling groups 2051_4. Each auto scaling group

may be associated with a minimum and/or maximum number of instances that should be
provisioned, based on demand for services. In this example, a first auto scaling group 205,

includes web server instances 220 used to receive initial requests from client systems 105.
Once received, the request is passed to one of the application server instances 235 in a
second auto scaling group 2054, which may generate content for a web page passed back to

the web server instance 220, where it is served to a requesting client system 105. For
example, an initial web page may include a form allowing a user submit credentials in order to
access streaming media content. In such a case, the credentials are passed back to the web
server instance 220 and to the application server instance 235. And in turn, the application
server 235 may validate the credentials by communicating with one of the database server
instances 230 in a third auto scaling group 2055. For example, the database server instance
230 may retrieve information from a database 210 indicating a subscription status for a user,
determined using the credentials. Once authenticated, the application server instance 235
generates web pages showing the media titles available for streaming passed to the client 105
or the web server instance 220.

[0021] Thereafter, when a client requests to stream a title, one of the content streaming
instances 225 (in a fourth auto scaling group 2055) retrieves a streaming media data from a

content database 215 and transmits it to the requesting client system 105. In a case where the

DK/EP 2619664 T3

streaming media service is hosted from a provider's data center, the virtual machine instances
220, 225, 230 and 235 generally correspond to physical computing systems in the data center.

[0022] In one embodiment, the monitoring system 135 may be configured to evaluate the
resiliency of the streaming media service provided by the computing cloud 200 (or the
systems/applications in a provider's data center). For example, the monitoring system 135 may
select to terminate one of the instances 220, 225, 230 or 235 (or an instance selected from a
specified one of the auto scaling groups 2054.4). The selection may be done at random

intervals or may occur on a scheduled basis. Terminating an instance allows the provider to
evaluate whether systems that depend on the terminated one continue to function correctly (or
degrade gracefully) following a random, unanticipated failure. For example, if one of the
application server instances 235 is terminated, the ability of content streaming instances 225 to
continue to stream content to clients 105 may be observed. Thus, the monitoring system 135
allows users to observe the impact of a server failure on other systems in the networked
application in a controlled manner

[0023] In one embodiment, some of the instances 220, 225, 230 and 235 may be excluded
from being eligible to be terminated by the monitoring system 135. Individual instances may be
excluded using an exclusion list. Such a list may exempt individual instances from being eligible
for termination using an instance ID. For example, an instance used as an authentication
server may be excluded from eligibility for termination. Similarly, if the failure of one instance
(or an application provided by that instance) is known to be disruptive to others, it may be
excluded from eligibility for termination.

[0024] Additionally, instances may be exempted based on group membership. For example,
the monitoring system 135 may be configured to exclude all instances in a specified auto
scaling group. Another example would be to exclude all instances which belong to a specific
security group. Note, in this context, a security group is a group of systems to which a group of
firewall-like access rules applied to any instance which is a member of the group. For example,
the database server instances 230 could be a member of a "database" group that allows
access to the application server instances 235, but blocks access to the web server instances
220. Similarly, the web server instances 220 could belong to a "web group,” and be granted
access to the public internet on a specified port (e.g., port 80 for HTTP traffic). Of course, other
logical groups of systems may be defined and tested by the network monitoring application
apart from the auto scaling and security group examples discussed above

[0025] Note, that while shown outside of the computing cloud 200, the monitoring system 135
may itself be running a virtual machine instance spawned in the computing cloud 200.

[0026] Figure 3 is a view of the monitoring system 135 which includes a resiliency monitoring
application, according to one embodiment of the invention. As shown, the monitoring system
135 includes, without limitation, a central processing unit (CPU) 205, a network interface 315,
an interconnect 320, a memory 325, and storage 330. The monitoring system 135 may also
include an I/O device interface 310 connecting I/O devices 212 (e.g., keyboard, display and

DK/EP 2619664 T3

mouse devices) to the monitoring system 135.

[0027] In general, the CPU 305 retrieves and executes programming instructions stored in the
memory 325. Similarly, the CPU 305 stores and retrieves application data residing in the
memory 325. The interconnect 320 facilitates transmission of programming instructions and
application data between the CPU 305, I/O devices interface 310, storage 330, network
interface 315, and memory 325. CPU 305 is included to be representative of a single CPU,
multiple CPUs, a single CPU having multiple processing cores, and the like. And the memory
325 is generally included to be representative of a random access memory. The storage 330
may be a disk drive storage device. Although shown as a single unit, the storage 330 may be a
combination of fixed and/or removable storage devices, such as fixed disc drives, floppy disc
drives, tape drives, removable memory cards, optical storage, network attached storage
(NAS), or a storage area-network (SAN).

[0028] lllustratively, the memory 325 contains a monitoring application 321 and storage 330
includes monitoring logs 335. As shown, the monitoring application 321 includes a termination
component 323, a recovery monitor 327, and instance monitoring parameters 329. As noted
above, the monitoring application 321 may provide a software application configured to
periodically select and terminate a running virtual machine instance, server, application or
other component used in a networked application (e.g., one of the virtual machine instances
220, 225, 230 or 230 in cloud computing cloud 200 or a application running on a server in a
provider's data center). For convenience, reference will be made terminating "instances," but, it
will be understood that terminating any other component is contemplated.

[0029] In one embodiment, the termination component 323 selects which instance to terminate
(as well as when to terminate an instance) according to the monitoring parameters 329. The
selection parameters may specify criteria such as excluded instances, or groups of instances,
times of day, efc., which the termination component 323 may use to make a termination
selection. For example, the monitoring parameters 329 may specify to select an instance at
random (or select from a group at random) at any time or during a specified time interval.

[0030] Once an instance is selected (and terminated) the recovery monitor 327 may observe
the actions of the remaining instances of a networked application, and generate corresponding
information which recovery monitor 327 then stores the information in logs 335. The content of
logs 335 may include information specified by the monitoring parameters 329 as well as
include the logging data created natively by the instances (or applications running on an
instance). That is, the applications running on an instance may generate logs depending on
the applications running thereon (e.g., an access history log for a web-server).

[0031] Figure 4 illustrates a method 400 for validating the resiliency of networked applications,
according to one embodiment of the present invention. As shown, the method 400 begins at
step 405 where the monitoring application is initialized according to the configuration specified
by the monitoring parameters. For example, the configuration parameters may specify criteria
for determining when to select an instance to terminate, as well as for selecting which instance,

DK/EP 2619664 T3

application, or server, to terminate. At step 410, the monitoring application waits until reaching
the time to terminate a running instance. Once reached, at step 415, the monitoring application
identifies a plurality of active application components (e.g., active virtual machine instances,
applications, or processes) being used to provide a network application.

[0032] At step 420, the monitoring application selects a virtual machine instance (or process or
application) to terminate. Once selected, the monitoring application transmits a message to Kkill
the selected instance. For example, in the case of a virtual machine instance, the monitoring
application may transmit a terminate instance message to the cloud network. Alternatively, the
monitoring application may shutdown a server program (e.g., an HTTP web server) on a virtual
machine instance (or on a data center server) or use mechanisms provided an operating
system to kill a process.

[0033] At step 425, the monitoring application waits for the selected instance to terminate (or
otherwise shutdown or cease executing). Following the termination of the selected instance, at
step 430, the monitoring application observes the behavior of the remaining instances (or
applications) and records log data to capture how the disappearance of the terminated
instance impacts the rest of the network application. By observing the effects of the terminated
on the rest of the network application, a provider can ensure that each component can tolerate
any single instance disappearing without warning.

[0034] Advantageously, embodiments of the invention provide techniques for validating the
resiliency of a networked application made available using a collection of interacting servers. In
one embodiment, a network monitoring application observes each running server (or
application) and at unspecified intervals, picks one and terminates it. In the case of a cloud
based deployment, this may include terminating a virtual machine instance or terminating a
process running on the server. Doing so may test the effectiveness of an auto-scaling (or other
logical group of systems) made available by a cloud service provider. Additionally, some
systems (or groups of systems) may be excluded from being eligible for termination by the
network monitoring application (e.g., systems belonging to a security group).

[0035] While the foregoing is directed to embodiments of the present invention, other and
further embodiments of the invention may be devised without departing from the basic scope
thereof. For example, aspects of the present invention may be implemented in hardware or
software or in a combination of hardware and software. One embodiment of the invention may
be implemented as a program product for use with a computer system. The program(s) of the
program product define functions of the embodiments (including the methods described
herein) and can be contained on a variety of computer-readable storage media. lllustrative
computer-readable storage media include, but are not limited to: (i) non-writable storage media
(e.g., read-only memory devices within a computer such as CD-ROM disks readable by a CD-
ROM drive, flash memory, ROM chips or any type of solid-state non-volatile semiconductor
memory) on which information is permanently stored; and (ii) writable storage media (e.g.,
floppy disks within a diskette drive or hard-disk drive or any type of solid-state random-access
semiconductor memory) on which alterable information is stored. Such computer-readable

DK/EP 2619664 T3

storage media, when carrying computer-readable instructions that direct the functions of the
present invention, are embodiments of the present invention.

[0036] Therefore, the scope of the present invention is determined by the claims that follow.

REFERENCES CITED IN THE DESCRIPTION

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not
form part of the European patent document. Even though great care has been taken in
compiling the references, errors or omissions cannot be excluded and the EPO disclaims all
liability in this regard.

Non-patent literature cited in the description

» HOARAUEast fault injection and stress testing with FAIL-FCI, [3{85]
« HOARAUFAIL-FCI: Versatile fault injection, [§38&]
« CHUN, B NDART: Distributed Automated Regression Testing for Large-Scale Network

Applications, [83451

10

15

20

25

30

35

DK/EP 2619664 T3

Patentkrav

1. Computerimplementeret fremgangsmade (400) til at validere
tolerancen 1 en netverksapplikation, idet fremgangsmaden
omfatter:

identificering (415) at en flerhed at aktive
applikationskomponenter i et netvark, der bruges til at
tilvejebringe netvarksapplikationen, hvor hver af flerheden af
aktive applikationskomponenter omfatter en virtuel
maskinforekomst, der udferer i en computersky, hvor
autoskalering anvendes 1 computerskyen til automatisk op- eller
nedskalering af et antal virtuelle maskinforekomster, der er
allokeret til en given applikationskomponent pa basis af behov
ved et givent tidspunkt,

udvalgelse (420) aft mindst én aft de identificerede
applikationskomponenter pa basis af:

en tilsvarende virtuel maskinforekomst, der er medlem af en
forste autoskaleringsgruppe, der er indbefattet af en flerhed
af forskellige autoskaleringsgrupper, og

et udvalgelseskriterie, der udelukker (1) virtuelle
maskinforekomster, der er medlem af en sikkerhedsgruppe, som
specificerer én eller flere netverksadgangsregler, der er
anvendt pé& medlemmerne af sikkerhedsgruppen, og (2) virtuelle
maskinforekomster, som nar de fejler, vides at forstyrre andre
virtuelle maskinforekomster,

afslutning (425) af den valgte applikationskomponent, og

efter afslutningen af den valgte applikationskomponent,
overvagning (430) af handlingerne af én eller flere resterende
aktive applikationskomponenter 1 netvaerket for at evaluere
funktionen af autoskaleringen 1 forhold til tilfeldigt
forekommende serverfejl, og

oprettelse af én eller flere logposter, der registrerer data,
som svarer til handlingerne aft de resterende aktive
applikationskomponenter, som feglger af afslutningen af den

valgte aktive applikationskomponent.

2. Den computerimplementerede fremgangsmade 1ifelge 1, hvor

hver autoskaleringsgruppe i flerheden at forskellige

10

15

20

25

30

DK/EP 2619664 T3

autoskaleringsgrupper angiver mindst én af et minimums- eller
maksimumsantal af virtuelle maskinforekomster, der opsplittes i

autoskaleringsgruppen.

3. Den computerimplementerede fremgangsmade ifglge et hvilket
som helst af kravene 1 eller 2, hvor afslutning af den valgte
aktive applikationskomponent omfatter afslutning af udferelsen

af den valgte virtuelle maskinforekomst i1 computerskyen.

4, Den computerimplementerede fremgangsmade ifglge et hvilket
som helst af de foregdende krav, hvor den wvalgte aktive
applikationskomponent omfatter en angivet proces, der udfgres
pa en virtuel maskinforekomst, og hvor afslutning af den valgte
applikationskomponent omfatter standsning af udfegrelsen af den

angivne proces.

5. Computerprogramprodukt, der omfatter instruktioner, som,
nar de udfegres af en

processor, far processoren til at udfere en operation til
validering af tolerancen af en netvarksapplikation, hvor
operationen omfatter den computerimplementerede fremgangsmade

ifeglge et hvilket som helst af de foregaende krav.

6. Computerprogramproduktet ifwlge krav b5, der omfatter et

computerlasbart medie, der indbefatter instruktionerne.

7. System (315), der omfatter:

en processor (305), og

en hukommelse (325), der indeholder et program (321), der, nar
de udfgres af processoren, udforer en operation til at wvalidere
tolerancen for en netvaerksapplikation, idet operationen omfatter
den computerimplementerede fremgangsmade ifelge et hvilket som
helst af kravene 1 til 4.

DK/EP 2619664 T3

DRAWINGS

I ©OId
Omvrj
¥3LNID VLVa
orl
— SWILSAS YIAHAS
Gyl ~, H3AINOHA ANOTO oL
S3ONVLSNI IWILSAS ONIHOLINOW
ANIHOVI TIVNLEIA oo, ——{ ALEVITIIALIEVIVAY
0zl
WILSAS WIL1SAS IWILSAS WILSAS / 00l
1IN0 1IN IN3IMO IN3D
vgol - €501 - SE\ 62\

DK/EP 2619664 T3

W3LSAS
el] ONIYOLINOW
dno¥o dNO¥O
ONITYIS OLNY ONITYIS OLNY .
¢ 9ld
SIONVISNI SIONVLSNI
¥IAMIS | ONINVIULS |
002 NOILYOITddY| S€2 IN3JINOD
Y60z
dNo¥o dNOYo
ONITYOS OLNY ONITYOS OLNY
SIONVLSNI SIONVLSNI
HINIAS | IS |
asyaviva g3am
SWILSAS

1 IN3INO

GOl

DK/EP 2619664 T3

312
TO DATA
USER INPUT DEVICES COMMUNICATIONS
NETWORK
305 ~310 315
cPU INPUT DEVICE NETWORK
INTERFACE INTERFACE
]
|
INTERCONNECT (BUS) 320
!
‘ 325 330
MEMORY STORAGE
MONITORING APPLICATION LOGS 355
321 _
TERMINATION o0
COMPONENT ==
RECOVERY
MONITOR e
MONITORING 329
PARAMETERS ==
MONITORING SYSTEM

FIG. 3 135

G

DK/EP 2619664 T3

400

INITIALIZE MONITORING APPLICATION

ACCORDING TO CONFIGURATION PARAMETERS

405

410

TIME

NO REACHED TO

KILL INSTANCE?

IDENTIFY CURRENTLY RUNNING
APPLICATIONS/MACHINE INSTANCES

415

]

SELECT INSTANCE/APPLICATION
TO KILL; TRANSMIT TERMINATION MESSAGE
TO SELECTED APPLICATION/INSTANCES

420

425

NO

INSTANCE
TERMINATED

MONITOR REMAINING RUNNING INSTANCES/
APPLICATIONS; RECORD DATA IN LOGS

FIG. 4

	Page 1 - ABSTRACT/BIBLIOGRAPHY
	Page 2 - ABSTRACT/BIBLIOGRAPHY
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - CLAIMS
	Page 13 - CLAIMS
	Page 14 - DRAWINGS
	Page 15 - DRAWINGS
	Page 16 - DRAWINGS
	Page 17 - DRAWINGS

