L. A. BROWN
HOLLOW HANDLE FOR METAL VESSELS
Filed March 23, 1927

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Signatures:

Leslie A. Brown

Seymour Earl Nichols

Aug. 2, 1927.

1,637,853
This invention relates to an improvement in hollow handles for metal vessels, such, for instance, as tea, coffee, and hot-water pots. In the more general construction of handles of this character, they are composed of socket members and grip members, with insulators between the ends of the grip members and sockets, to prevent heat from the vessel passing to the grips. Articles of table service of this character in hotels and restaurants are subjected to hard usage, particularly in cleaning, and not infrequently the handles become loose at the insulated joints. The object of this invention is to employ hollow handles for metal vessels with the grips integral with the socket members and with closures at the point where insulators are usually located, so as to prevent air from circulating through the grips, and the invention consists in the construction as hereinafter described and particularly recited in the claims.

In the accompanying drawings:

Fig. 1 is an edge view of a hollow handle for metal vessels constructed in accordance with my invention;
Fig. 2 is a similar view with the parts separated;
Fig. 3 illustrates side views of the same;
Fig. 4 is a sectional view on the line 4—4 of Fig. 3 enlarged;
Fig. 5 is a sectional view on the line 5—5 of Fig. 3; and
Fig. 6 is a perspective view of two stop-plates detached.

These handles are struck up from sheet-metal in two parts, that is, the handle is divided vertically and consists of two shells 7 and 8 of the proper size and of suitable design. The two shells, when placed together and connected, form a complete handle, as shown in Fig. 1 of the drawings, the grip portions being integral with the socket portions 9 and 10. At the joint where insulators are usually located, the shells are formed with internal grooves 11, producing ribs 12 on the outside of the handle, these ribs simulating, in appearance, the usual insulators. In these grooves I place stops 13 and 14 conforming to the inside of the handle, so as to closely fit in the grooves 11 and flush with the edges of the shells. The two shells, with the stops located therein, are then connected together by silver solder in the usual manner, and the two stops form a plate between the socket portions and the grip portions, so as to prevent the circulation of air through the grip portions, which are thereby prevented from becoming heated by the contents of the vessel. These plates not only form stops to prevent the circulation of air, but reinforce the handles near the socket portions and thus produce a stronger handle than would otherwise be formed except by considerably heavier metal, and the use of separate insulators is avoided; consequently, the danger of breakage at that point is also avoided.

I claim:

1. A hollow handle for metal vessels, consisting of two shells, each comprising grip-portions and socket-portions, the said shells formed within their inner faces with grooves, stops located in said grooves, and the two shells connected together.

2. A hollow handle for metal vessels, consisting of two shells, each comprising grip-portions and socket-portions, the said shells formed within their inner faces with grooves forming corresponding external ribs, stops located in said grooves, and the two shells connected together.

In testimony whereof, I have signed this specification.

LESLIE A. BROWN.