INTELLIGENT JOB MATCHING SYSTEM AND METHOD INCLUDING NEGATIVE FILTRATION

Applicants: Adam Hyder, Los Altos, CA (US); Changsheng Chen, Hayward, CA (US)

Inventors: Adam Hyder, Los Altos, CA (US); Changsheng Chen, Hayward, CA (US)

Publication Classification

Int. Cl. G06Q 10/10 (2012.01)
U.S. Cl. CPC G06Q 10/1053 (2013.01)

ABSTRACT

A job searching and matching system and method is disclosed that gathers job seeker information in the form of job seeker parameters from one or more job seekers, gathers job information in the form of job parameters from prospective employers and/or recruiters, correlates the information with past job seeker behavior, parameters and behavior from other job seekers, and job parameters and, in response to a job seeker’s query, provides matching job results based on common parameters between the job seeker and jobs along with suggested alternative jobs based on the co-relationships and based on ratings and preferences provided by the job seeker and provides negative filtration of undesirable jobs based on job seeker input and in response to queries from the system in order to efficiently and accurately accommodate job seeker perception.
Figure 2A
Coarse Matching
Use location, industry and title to get potential matches. These three items in both job seeker profile and job profile are preferably the same.

Calculate match scores
- Location score
- Title score
- Industry score
- Function score
- Function match score
- Skill set score
- Past search score
- Apply history score

Match_result

Figure 3
Figure 4
Figure 5
Job Seeker is looking at a job detail or employer/recruiter is looking at job seeker resume detail

Job seeker likes this job and wants more jobs like this or employer/recruiter likes this resume and wants more resumes like this?

Display similar jobs to the job seeker or resumes to the employer/recruiter

Figure 6
Job Seeker

Login to System

Retrieve System user profile

Match jobs using the Job Seeker profile and display matching results

Job Seeker apply for a job?

No

Return

Yes

Display new matching results using the new additional apply info.

Figure 7

Figure 8

1. Job Seeker

2. Visit to System from an affiliated site

3. Retrieve Job Seeker profile

4. Match jobs using the profile and display matching results

5. Job Seeker enter new search parameter?
 - No: Return
 - Yes: Combine the new search parameter with the profile to find new matches to display. Display the match results and save the new search.
Job Seeker

900 Guest visit to system

902

904 Is there any previous search history?

906 No

908 Yes

910 Analyze previous search history and display matching results

912 Combine the new search with previous searches if existing to find new matches to display. Display the match results and save the new search.

914

Figure 9
Figure 10

1002 Recruiter

1004 Login to System

1006 Retrieve recruiter profile

1008 Go to a job folder?

1010 No

1012 Return

1014 Yes

1016 Search resumes using the recruiter profile and the job profile and display matching results

1018 Interested in a resume?

1020 Yes

1022 Want more resumes like this?

1024 No

1026 Focus on a predefined set of options?

1028 Yes

1030 Input options

1032 Display similar resumes

1034 No
Job Seeker

1202

Login to the system

1200

Are there any previous applied jobs?

1206

No

1202

Search for new jobs?

1210

Yes

1208

Recommend jobs based on past job applies

1208

Display search results

1212

End

1218

Job Seeker applies for a job?

1212

No

1214

Yes

1216

Recommend new jobs based on this newly applied job.

1218

Figure 12
Employer/recruiter

Internet

Web Server

Search Bank

Matching Module

Database access layer

Database

User Activity Monitor Module

Affinity Module

Ratings Module

Filtering Module

Preference Ranking Module

Correlation Module

Figure 13
Job Seeker

Login to the system

Are there any previous applied or rated jobs?

Search for new jobs?

Display search results (apply negative filter here)

Job Seeker applies for a job?

Recommend new jobs based on affinities with rating values changes

Did Job Seeker Rate a Job?

End

Did Job Seeker (User) Change ranking criteria for searching jobs?

Correlate and recommend new jobs based on affinities with rating values/ ranking changes

Figure 14
INTELLIGENT JOB MATCHING SYSTEM AND METHOD INCLUDING NEGATIVE FILTRATION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation in part of U.S. patent application Ser. Nos. 11/136,009 and 11/135,825, both filed on May 23, 2005, the disclosures of which are incorporated herein by reference in its entirety. This application is also related to U.S. patent application Ser. No. ______, Attorney Docket No. 85804.015550, entitled INTELLIGENT JOB MATCHING SYSTEM AND METHOD, filed on even date herewith, and U.S. patent application Ser. No. ______, Attorney Docket No. 85804.015590, entitled INTELLIGENT JOB MATCHING SYSTEM AND METHOD INCLUDING PREFERENCE RANKING, filed on even date herewith, both of which are co-owned by the assignee of the present disclosure and are hereby incorporated herein by reference in their entirety.

BACKGROUND OF THE DISCLOSURE

[0002] 1. Field of the Disclosure
[0003] The present disclosure relates to computer software. In particular, it relates to a technique for enhancing job search results for both job seekers looking for jobs and employer/recruiter looking for job candidates.

[0004] 2. State of the Art
[0005] A challenge common to most companies seeking talented employees is finding the best set of candidates for the position available. One standard practice among human resource departments is to create a job description for each open position, then advertise the position along with the description. Recruiters and job seekers then have to review and analyze these descriptions in order to determine a match between job seekers and particular jobs.

[0006] A number of searching tools are available to a person searching on the Internet for the right job based on his or her skill set. Typical searching tools currently available require the job seeker to select various criteria in the form of keywords, such as desired locations, types of jobs, desired compensation levels, etc. Similarly, the employers provide, in addition to the job description, levels of skill, education, years of experience, etc. required to be considered for a particular job. Searching tools then look up the seeker’s keywords in a database of job descriptions and return, or display those job descriptions that contain the job seeker’s keywords.

[0007] However, available search tools still either often require the employer and the job seeker to each sift through a large number of so-called search results or can return no search results at all if the criteria provided is too specific or narrow. It would be desirable, then, to provide a matching search tool that more intelligently matches job seekers to potential jobs and intelligently assists in narrowing a job seeker’s search for the right job. Such a search and matching tool is also needed to assist an employer/recruiter in matching potential job descriptions to potential job seekers.

SUMMARY OF THE DISCLOSURE

[0008] A system and method for matching jobs or employment opportunities with job seekers is disclosed which intelligently narrows search results based on the job seeker’s or employer/recruiter’s search activity and personalized preferences. The system gathers a job seeker profile of desired and experiential information as job seeker parameters, from a job seeker that accesses the system via a website. Similarly, the system gathers job description information as job parameters from a prospective employing entity such as an employer or recruiter, hereinafter termed an “employer/recruiter.” In addition, the system preferably can obtain further job opening information from other employment opportunity sources via a web crawler application so as to have as broad a base of opportunities to present to a job seeker as possible. The system then correlates the available jobs, tracks all job seeker inquiries, and looks for commonalities and correlations between job parameters, interests of job seekers, features of job seeker resumes, past actions of the job seeker, specific preferences of the job seeker, and job descriptions to narrow in on a more accurate set of suggested jobs being presented to the job seeker each time the job seeker queries the system for matching potential jobs. In this way the system and method become more transparent and quickly become personalized to the preferences of the job seeker of the system.

[0009] Further, the system and method can be used by an employer/recruiter to similarly match prospective job seekers to an employer/recruiter’s job and suggest other job seekers for consideration by the employer/recruiter based on correlations between job parameters, job seeker parameters, employer/recruiter actions, preferences, past actions by the employer/recruiter, interactive queries between the employer/recruiter and the system, and job seeker interest history in order to iteratively narrow the search results to a more accurate set of suggestion job seekers being presented to the employer/recruiter.

[0010] An exemplary software system for matching a job seeker with a job includes a job seeker profile builder module connectable to a database operable to generate job seeker profile parameters in response to job seeker input. The system also includes a job profile builder module connectable to the database that is operable to generate job profile parameters in response to employer/recruiter input, a matching module for matching the job seeker to a potential job through finding one or more common parameters between job seeker parameters and job profile parameters and producing matching results, a correlation module operably connected to the matching module for determining a correlation between one of the common parameters and one or more selected parameters related to one of the job seeker, other job seekers and other jobs and determining relevance of the correlation to the matching results. The system also includes a user interface accessible to one of the job seeker and the employer/recruiter for displaying the matching results and alternative jobs. The system further includes, in the correlation module, a personalization module that the job seeker utilizes to modify the correlations and resultant matches in accordance with user ratings, interactive search and/or matching rule modifications, and preferences gleaned from interactions between the job seeker or employer/recruiter user and queries within the correlation module.

[0011] An exemplary method for matching a job seeker with one or more of a plurality of jobs preferably includes building a job seeker profile of job seeker parameters in response to job seeker input, building a job profile of job parameters in response to employer input for each of the plurality of jobs, and, in response to a job seeker query, matching the job seeker to a potential job through finding one or more common parameters between job seeker parameters
and job parameters and producing matching results. The method also preferably includes tracking popularity of one or more selected job parameters in the matching results based on activity from other job seekers, determining relevance of alternative jobs to the matching results based on the popularity, interactively querying the job seeker to evaluate displayed matching results and provide responses, modifying correlations based on the responses, determining relevance based on the responses, and iteratively displaying re-matching results and relevant alternative jobs for consideration by the job seeker.

An exemplary method for matching a job seeker to a job or jobs includes permitting a job seeker to rate jobs previously presented to him/her in displayed matching results and factoring in received ratings so that subsequent queries by the job seeker takes such ratings into account. Another method for matching a job seeker to a job or jobs includes engaging the job seeker in interactive evaluation to refine matching rules and ranking user preferences established through ranking queries provided to the job seeker. These preferences are then utilized in the system such that listing generation for subsequent display of results provided to the job seeker appears more focused and transparent to the job seeker or employer/recruiter utilizing the system, thus permitting the job seeker or employer/recruiter to more quickly focus on personally preferred opportunities.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are disclosed in the following detailed description. The disclosure will be better understood when considered in conjunction with the accompanying drawing figures wherein:

FIG. 1 shows an overall system view of an illustrative embodiment of a job matching system incorporating features of the present disclosure.

FIGS. 2A and 2B are a high level process flow diagram for a simple illustrative embodiment incorporating features of the present disclosure.

FIG. 3 is a process flow diagram for a matching module in an illustrative embodiment incorporating features of the present disclosure.

FIG. 4 is an exemplary web page screen that is preferably presented to a job seeker in an illustrative embodiment incorporating features of the present disclosure.

FIG. 5 is an exemplary web page screen preferably presented to the job seeker upon selecting a “View All my Jobs Recommended” in FIG. 4.

FIG. 6 is a simplified process flow diagram for any user, either a job seeker or an employer/recruiter, utilizing an embodiment of the present disclosure.

FIG. 7 is an overall process flow diagram for a job search in an exemplary embodiment of the present disclosure in which the job seeker has previously established an identification on the system shown in FIG. 1.

FIG. 8 is a process flow diagram for a job search in an exemplary embodiment of the present disclosure in which the job seeker has identification on an affiliated portal such as a web server, but not an established identification on the system.

FIG. 9 is a process flow diagram as in FIG. 8 in which the job seeker has no prior identification on an affiliated portal but does have a browser identifier such as a “cookie.”

FIG. 10 is a process flow diagram for an employer/recruiter in accordance with an embodiment of the present disclosure.

FIG. 11 is an overall view of a simplified system in accordance with another embodiment of the disclosure that utilizes only an affinity module in determination of match results.

FIG. 12 is a process flow diagram for the simplified system shown in FIG. 11.

FIG. 13 is an overall view of a more complex system in accordance with another embodiment of the disclosure similar to that shown in FIG. 11 that includes modules to illicit user input to enhance the matching results provided to the user.

FIG. 14 is a process flow diagram of the method using the system in accordance with the embodiment shown in FIG. 13.

FIG. 15 is a screen shot of a user interface presented upon a user selecting similar jobs.

FIG. 16 is a screen shot of a user interface presented to a job seeker providing search results.

FIG. 17 is a screen shot of a user interface presented to a job seeker to set ranking preferences in accordance with the disclosure.

DETAILED DESCRIPTION

Throughout this specification and in the drawing, like numerals will be utilized to identify like modules, operations and elements in the accompanying drawing figures.

A block diagram of one exemplary embodiment of the job search architecture software system 100 is shown in FIG. 1. The system 100 includes a matching module 102, a database 104, and a correlation module 106. As described herein, modules refer generally to functional elements that can be implemented in a centralized or distributed manner so that features or functions described in an exemplary manner as associated with one or more modules can be located or can take place or be carried out in other modules or at other locations in the system.

The matching module 102 receives information and queries via a job seeker interface module 108 and employer/recruiter interface module 110 through accessing a web server 105 typically via the internet 101. Throughout this specification description, primarily an exemplary job seeker will be used to describe system operations. However, this is not the only use of the system 100. The system 100 preferably can also be used for example, in a reverse direction, by an employer/recruiter to evaluate candidate job seekers in a similar manner.

The web server 105 in turn communicates preferably through a search bank 107 to the matching module 102 which draws from the correlation module 106. The correlation module 106 incorporates a number of modules which gather and catalog information from within the system 100 and other sources outside the system 100 to provide specific services to the matching module 102 for correlating information contained in the database 104 and coordination with information from other sources.

The correlation module 106, for example, preferably includes one or more of an affinity engine module 112, a location mapping module 114, a user activity monitor module 116, a resume extraction module 118, a job description extraction module 117, and a weight determination module 119. The correlation module 106 can optionally also incor-
porate other modules. The modules 112, 114, 116, 117, 118, 119, 121, and 123 are merely exemplary of one embodiment illustrated. The correlation module 106, in general, incorporates modules that provide information or contain routines that look for relationships between various data and draw inferences from the data that correlate with information provided, either directly or indirectly, from the job seeker and/or the employer/recruiter.

[0036] The affinity engine module 112 within the correlation module 106 generally examines combinations of informational parameters or data to determine whether there are any correlations, i.e., affinities between any of the parameters. Such affinities preferably relate a job seeker to other job seekers based on, for example, a particular location, a job, skill set, job categories, spatial relationships, etc. Similarly, jobs can also be related to other jobs. In general, the affinity module 112 is used to identify commonalities and trends between otherwise disparate data. This information can then be utilized to identify alternative jobs to the job seeker or alternative job seeker candidates to an employer/recruiter user of the system 100 that otherwise might be missed.

[0037] The location mapping module 114 converts locations of jobs input by employers/recruiters and desired work location input by job seekers into “geocodes,” specifically latitude and longitudinal coordinates such that distances between locations and relative spatial positions between jobs and job seekers can be easily manipulated and compared to determine relative distances between locations. The information provided by the location mapping module 114 can be used by the matching module 102 or one of the other modules within the correlation module 106.

[0038] The user activity monitor module 116 tracks, for each job seeker, and each employer/recruiter, his or her behavior, e.g., prior queries, choices, actions and interactions with the system 100 so as to be able to draw correlations, e.g., inferences from such actions. For example, a job seeker can apply for, or otherwise express an interest in one of a number of suggested jobs. This “apply” fact is tracked for potential use in the affinity engine module 112 to infer other potential matches to offer as suggested jobs. Note that throughout this specification, the term “apply” is used. This term is synonymous and interchangeable with an expression of interest. Similarly, an employer/recruiter can examine resumes and indicate an interest in or contact for interview one of a number of suggested job seekers for a particular job. This indicated interest fact, or behavior, is tracked in the user activity monitor module 116 when the employer/recruiter next queries the system 100.

[0039] The job description extraction module 117 is a tool for extracting key information from job descriptions, and other textual content, parameters such as job titles, skills required or recommended, prior experience levels, etc. There is a number of commercially available text extraction engines that can be used. For example, Resumix Extractor, now marketed by Yahoo Inc., described in U.S. Pat. No. 5,197,004 is one such engine that can be incorporated into and utilized by this module 117.

[0040] Similarly, the resume extraction module 118 is a tool for extracting key information from resumes, and other textual content, parameters such as job titles, skills required or recommended, prior experience levels, etc. Again, there are a number of commercially available text extraction engines that can be used. For example, Resumix Extractor, now marketed by Yahoo Inc., described in U.S. Pat. No. 5,197,004 is one such engine that can be incorporated into and utilized by this module 118.

[0041] The weight determination module 119 preferably incorporates an adaptive learning engine and optionally can be tunable by the system operator, the job seeker, the employer/recruiter, or other system user. This module 119 can essentially optimize weighting factors to be applied to the various parameters in order to tune or more accurately hone in on desired matched jobs or resumes based on input from the other modules in the correlation module 106.

[0042] The personalization module 121 examines what preferences the jobseeker or employer/recruiter has on his display screen to make inferences from. For a hypothetical example, if the jobseeker has stock ticker banners overlaying his/her window and New York weather site being monitored, the personalization module would provide this information so that the system 100 might infer a tendency toward the northeast United States and possibly a preference for the financial and business related industry positions and factor that correlation into the suggestions that may be made to the job seeker.

[0043] The personalization module 121 may, for example, include a ratings module, a rules modification module and a negative filtration module, each designed to help the job seeker, or employer/recruiter refine and hone his or her preferred search criteria by interactively obtaining from the job seeker subjective information that might not otherwise be provided. The rating module 125 provides a mechanism for the system 100 to understand the relative value to the job seeker of recommendations provided and thus more accurately direct affinities that can be drawn. The rules modification module 127 may give the job seeker an opportunity to select or provide search criteria that he or she might not otherwise intuitively provide that can help enhance the experience for the job seeker. The negative filtration module 129 can similarly provide a simple mechanism for the job seeker to eliminate those recommendations that he or she views as outside the realm of interest. These modules all enhance the transparency of the system 100 to the job seeker or employer/recruiter so that each feels like the system is customizable to their needs. The personalization module 121 is shown as a dashed box since the enclosed modules 125, 127 and 129 may optionally be separately provided or integrated into the personalization module 121.

[0044] The Aggregate network data module 123 queries other sources on the network to which the system 100 has access for information related to the jobseeker. This module helps fill in details on the job seeker or employer/recruiter from other available sources for relevant information that may be used to make correlations.

[0045] Job Seeker information is preferably developed in a Job Seeker Profile Builder module 200 within the job seeker module 108. Employer/recruiter job information is preferably developed in a Job Profile Builder module 202 within the Employer/Recruiter module 110. These two builder modules, shown in FIG. 2A, essentially provide tabular data as input to the matching module 102 while at the same time storing the profile informational parameters in the database (DB) 104.

[0046] More particularly, the profile builder modules 200 and 202 feed the information obtained from the job seeker or the employer/recruiter, such as the job seeker’s city, state, login ID, etc., and employer/recruiter provided job description information such as the job city, state, zip code, company name, job title, etc. into an Extraction, Translation and Load
In one embodiment, the job seeker profile builder module 200 queries a job seeker, or the job seeker's person table, for some or all of the following information and then constructs a job seeker profile 206. Exemplary entries in this profile 206 are described generally as follows:

- **Location.** This is the job seeker's desired location. Including the city, state, country and zip code.
- **Proximity preference.** This parameter is a number. The user will enter this information or it can be imported from a mapping software product.
- **Industry.** This information can be directly inputted by the job seeker or obtained from a person table previously generated by the job seeker and stored in the database 104.
- **Function.** The function is the overall activity of the desired job that the job seeker is looking for. This information is obtained from the person table or directly inputted by the job seeker.
- **Title.** The title of the desired job, if any, and is preferably obtained from the job seeker directly or from his/her person table, or it can be obtained from the job seeker's resume text through an extraction program in the extraction module 118. This case the title can correspond to the job seeker's most recent title listed in his/her resume text.
- **Past search criteria.** For saved search, this information is preferably stored in a job agent table. For an ad-hoc search, the search bank 107 where all data that is yet be searched is queried. This includes keywords used the job seeker has used in prior searches as well as other indicators detailing prior behavior of the job seeker on the system 100.
- **Apply (expression of interest) history.** The job seeker's prior job application/interest history information is logged and updated in the user activity monitor module 116 each time the job seeker applies for a job utilizing this software system 100. This information is preferably obtained from the job seeker's "jobs applied for" table, which is a table primarily containing the job seeker's resume ID and the applied for job ID and preferably includes a timestamp.
- **Click-throughs.** This information comes from the user activity monitor module 116 which tracks all activity of the job seeker on the system 100, particularly sequential clicking activity, e.g. tracking action of how the job seeker got to the application stage, for example.
- **Resume ID.** This is the same field as pindex in the person table. This is a unique identifier for a particular resume corresponding to a particular job seeker. There can be several different resumes submitted by a single job seeker, depending on the one or more industries the job seeker is interested in.
- **Login ID.** This field has the job seeker's username. This field is also put into the "match result" table for fast access.
- **An exemplary Job seeker database table called "job_seeker_profile" is illustrated in Table 1 below.
d. Function. This info is preferably obtained from the job table in the database 104 or can be provided by the employer/recruiter module 110.

e. Title. This is obtained from job table database or can be provided by the employer/recruiter module 110.

f. Past search criteria. For previously saved searches, this information is stored in an "agent_person" table in the database 104.

g. Employer interest history. This information is either null or can be obtained from the user activity monitor module 116, or a Jobs Applied for table in the database 104.

h. Click-throughs. This can be obtained from the User activity monitor module 116 which tracks the history of the actions taken by the user, a job seeker or an employer/recruiter.

i. Job description analysis. This information can be provided by the Employer/recruiter, previously stored in database 104 in a job table, or can be obtained through the resume extraction module 118.

j. Job ID. This is the ID for this job.

k. User ID. This is the user account id.

The Job Profile builder 202 performs the same functions as the job seeker profile builder, and in that the data is obtained from the employer/recruiter to complete the job profile. Similarly, a sophisticated keyword/phrase extractor such as “Resumix Extractor” marketed by Yahoo Inc. and described in U.S. Pat. No. 5,781,004 can be used to extract job titles from the job description and extract out skills for the extracted skills column.

An exemplary Job Profile table is shown below in Table 2.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Nullable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job_id</td>
<td>Unique identifier for a job</td>
<td>N</td>
</tr>
<tr>
<td>Latitude</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Longitude</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Proximity</td>
<td>Number of miles within the desired location.</td>
<td>Y</td>
</tr>
<tr>
<td>Industry_id</td>
<td>Unique identifier for an industry</td>
<td>Y</td>
</tr>
<tr>
<td>Function_id</td>
<td>Unique identifier for a job function</td>
<td>Y</td>
</tr>
<tr>
<td>Title_id</td>
<td>Unique identifier for a job title. Extractor can be used to extract out the title.</td>
<td>Y</td>
</tr>
<tr>
<td>Past_search</td>
<td>Past search criteria saved by the user or ad-hoc search performed by the user.</td>
<td>Y</td>
</tr>
<tr>
<td>Interest_history</td>
<td>Employer interest history. This can be comma-separated resume IDs. All job seeker resumes that the employer/recruiter has expressed interest in can be in this list. This is preferably obtained through the use of the user activity monitoring module 116.</td>
<td>Y</td>
</tr>
<tr>
<td>Click_throughs</td>
<td>Recruiter click-throughs. This could be comma-separated resume IDs. This is preferably obtained through the use of the user activity monitoring module 116.</td>
<td>Y</td>
</tr>
<tr>
<td>user_id</td>
<td>Owner of the job</td>
<td>Y</td>
</tr>
<tr>
<td>login</td>
<td>Employer/recruiter login ID</td>
<td>Y</td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The job profile data and the job seeker profile data are then fed to the matching module 102. In the exemplary embodiment shown in FIG. 2, the matching module 102 draws information from one or more of the modules 112-119, and, for example, from the affinity engine module 112 to generate a set of matching results 210.

An embodiment of the matching algorithm 300 used in the matching module 102 is shown in FIG. 3. In this exemplary embodiment, the matching algorithm 300 involves a two step approach. First, one or more of the location, industry, and title from the job seeker profile 206 and the location, industry, and title from prospective job profiles 208 are retrieved from the database 104 and evaluated in a course matching operation 301. To simplify location and proximity combinations mass observation 301, locations preferably have been converted in the location mapping module 114, or alternatively directly by the job seeker input or the employer/recruiter input, to geo-bound numbers so that when latitude and longitude are within the bound, the distance is approximately within the proximity range desired. The operation 301 provides a narrowing of the number of potential matches to those that have an identity between corresponding locations, industries, and title. It is to be understood that other criteria can be utilized in the course matching operation 301 such as function instead of title, etc., but for this example, identity between these three parameters will be used for illustration purposes only.

Given a job seeker (lat, lon, proximity, industry, company, and titleValue), an exemplary SQL query to find all potential job matches is:

\[
\text{Sql} = \text{select* from job_profile j where Abs(lat-j.latitude) < geoBound and abs(lon-j.longitude) < geoBound and IndustryValue in (select value from industry_match jm where j.industry_id = jm.industry_id and titleValue in (select value from title_match jm where j.title_id = jm.title_id))}
\]

Note that, in this particular example, an exact match is required in operation 301 so the query in the first step will be given a job seeker: lat, lon, proximity, industryId, titleId: Sql = select* from job_profile j where

\[
\text{Abs(lat-j.latitude) < geoBound and abs(lon-j.longitude) < geoBound and IndustryId = j.industry_id and TitleId = j.title_id}
\]

Control then transfers to matching operation 302. In matching operation 302, a detailed match is made between the job seeker profile 206 against this reduced list of potential jobs. This detailed matching operation 302 in this exemplary embodiment involves using the following formula given a job seeker profile 206 and each job profile 208:

\[
S = \text{AWAEW}^t + \text{AWAEWF} + \text{AWAEWFK} + \text{AWAEWJ} + \text{AWAEWJSK}
\]
[0082] Where:
[0083] S is the total matching score
[0084] LW is a weight given to the location parameter.
[0085] L is the location matching score 312.
[0086] JW is a weight given to the job function factor.
[0087] F is the job function factor 316.
[0088] TW is a weight given to the title parameter.
[0089] T is the title matching score 318.
[0090] SW is a weight given to the past search factor.
[0091] S is a past search matching score 320.
[0092] J is the apply history and click-throughs matching score 322.
[0093] AW is a weight given to the resume/job description text matching parameter.

[0094] A is the resume/job description matching score 324.
[0095] KW is a weight given to the skill set matching score.
[0096] K is the skill set matching score 321.
[0100] Each of the weights 304 that are used is a value that initially is one and can be varied based on user prior activity history, determined in activity monitoring module 116 or can be tunable by the job seeker or employer/recruiter user or system operator, whoever is using the system 100 at the particular time using the weight determination module 119 shown in FIG. 1.

[0101] Each of the matching scores 312-324 is preferably determined in a particular manner exemplified by the following descriptions of an exemplary embodiment. The location matching score “L” (312) is calculated according to the following formula: L = 1 - D/P where D is the distance between the desired location by the jobseeker and the actual job location and P is the Proximity parameter given in the job seeker or job profile tables. When L is negative, the location is out of range, which means they do not match. The score is linearly reduced with the distance. One is the highest score, when the distance is zero.

[0102] The Industry matching score 314 is calculated according to a matrix in which I = IndustryMatchMatrix (Desired Industry, Actual Industry). An example is given using the following Table 4 below.

<table>
<thead>
<tr>
<th>Banking</th>
<th>Finance</th>
<th>Software Eng.</th>
<th>Prog. Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banking</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Finance</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Software Eng.</td>
<td>0</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Prog. Analyst</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0103] In Table 4, assume for a particular match scenario between a job seeker and a job that is the desired industry is banking and the actual job industry is also banking. In this case, the industry match score would be 1. However, if the desired industry is a programmer analyst and the industry is banking, the industry match score would be zero. Similarly, if the job seeker’s desired industry is a software engineer and the job industry is programmer analyst, the industry match score would be weighted more toward a match, thus 0.6 would apply because there are numerous similarities between these industries. The actual industry matching table is many orders of magnitude larger than Table 4, but the philosophy behind table development is the same.

[0104] The function matching score “F” (316) and the Title matching score “T” (318) are preferably determined utilizing matrix tables similar in design to that of Table 4 above, but it will be recognized that techniques other than tabular matrices can be employed.

[0105] The past search matching score “S” (320) may or may not apply. If a job seeker has saved searches, then this term will apply. This score S (320) is determined by S=Number of matching terms/minimum of: number of terms for the job seeker or number of terms for the employer/recruiter. Thus, if only the job seeker has a saved search, then if keywords are present, search keywords against the job description. Then S=number of matching terms/number of terms.

[0106] If only the employer/recruiter has a saved search, then a search is made of keywords in the resume text and S=number of matching terms/number of terms in the job seeker resume text.

[0107] The apply history and click-through matching score 322 is generally calculated using the affinity engine 112 and the user activity monitoring module 116. The affinity engine generates an affinity file using data from a “jobs applied for” (expression of interest) file as described in more detail below with reference to Table 5. This file tracks all jobs for which the job seeker has applied for or otherwise expressed an interest in. Note that a “click-through,” in this exemplary embodiment being described, is determined in the user activity monitoring module 116 and tracks every job seeker action, such as when a job seeker “clicks through” from one screen to another, selects something to view, enters information, or applies to a job. In the case of an employer/recruiter user, the apply history and click through matching score 322 is really a candidate job seeker interest history and click through matching score. In this latter case, the actions of the employer/recruiter user are tracked and employer/recruiter’s indicated interest in a candidate job seeker is logged in the activity monitor module 116. Thus the click through is a path history of how the employer/recruiter reached the conclusion to conduct an interview or pass on a resume of interest to the appropriate personnel manager. This information is tracked so that his/her reasoning and preferences can be deduced.

[0108] The affinity module preferably can utilize an affinity engine such as is described in U.S. Pat. No. 6,873,996, assigned to the assignee of the present disclosure and hereby incorporated by reference in its entirety. The affinity engine operates in affinity module 112 to determine the matching score 322 can be simply understood with reference to an example set forth in Table 5 below, and the description thereafter.

<table>
<thead>
<tr>
<th>Job</th>
<th>Applied for Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>J1</td>
</tr>
<tr>
<td>P2</td>
<td>J2</td>
</tr>
<tr>
<td>P3</td>
<td>J1</td>
</tr>
<tr>
<td>P4</td>
<td>J2</td>
</tr>
<tr>
<td>P5</td>
<td>J1</td>
</tr>
<tr>
<td>P6</td>
<td>J1</td>
</tr>
<tr>
<td>P7</td>
<td>J2</td>
</tr>
<tr>
<td>P8</td>
<td>J1</td>
</tr>
<tr>
<td>P9</td>
<td>J2</td>
</tr>
</tbody>
</table>
TABLE 5-continued

<table>
<thead>
<tr>
<th>Job Seeker</th>
<th>Applied for Job</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>J1</td>
</tr>
<tr>
<td>P4</td>
<td>J1</td>
</tr>
<tr>
<td>P6</td>
<td>J2</td>
</tr>
<tr>
<td>P8</td>
<td>J2</td>
</tr>
<tr>
<td>P10</td>
<td>J2</td>
</tr>
<tr>
<td>P11</td>
<td>J2</td>
</tr>
<tr>
<td>P1</td>
<td>J3</td>
</tr>
<tr>
<td>P2</td>
<td>J3</td>
</tr>
</tbody>
</table>

TABLE 6-continued

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Nullable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANDIDATE_CLICKED_TIME</td>
<td>The time when the candidate clicked this link</td>
<td>Y</td>
</tr>
<tr>
<td>SHOWN_TO_MEMBER</td>
<td>This resume is displayed on the member’s home page.</td>
<td>N (Two valid values: Y, N. Default to N.)</td>
</tr>
<tr>
<td>MEMBER_CLICKED_TIME</td>
<td>The time when the member clicked this link</td>
<td>Y</td>
</tr>
<tr>
<td>Member_login</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Job_seeker_login</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Industry</td>
<td>Number</td>
<td>N</td>
</tr>
<tr>
<td>Industry_name</td>
<td>varchar</td>
<td>N</td>
</tr>
<tr>
<td>function_id</td>
<td>Number</td>
<td>N</td>
</tr>
<tr>
<td>function_name</td>
<td>varchar</td>
<td>N</td>
</tr>
<tr>
<td>title_id</td>
<td>Number</td>
<td>N</td>
</tr>
<tr>
<td>title_name</td>
<td>varchar</td>
<td>N</td>
</tr>
</tbody>
</table>

[0109] a. Job1 to job2 affinity is defined as follows: a = J12/ J1, where J12 is the number of applicants who applied for both job1 and job2, J1 is the number of applicants who applied for job1.

[0110] b. Job1 to Job2 normalized affinity is defined as follows: n = a/(J1xN), where a is Job1 to Job2 affinity, J2 is the number of applicants who applied for Job2, N is the total number of applicants. Note that N is a common factor, so it can be taken out.

[0111] The score = # of multiple applies “m” divided by J1 applies times J2 applies. Thus, in this Table 5, job seekers P1, P2, P3, P4, P5, P6 and P8 each applied for the job identified as “J1.” Thus the affinity for J1 is a Total number: 7. Job seekers P2, P4, P6, P7, P9, P8, P10 and P11 applied for J2. Total number: 8. Note that job seekers P2, P4, P6 and P8 applied for both jobs J1 and J2. Total number: 4.

[0112] Therefore J2 is a recommendation for J1 with a score of 4/(7x8) = 0.07.

[0113] J1 is a recommendation for J2 with a score of 4/(8x7) = 0.07.

[0114] J3 is a recommendation for J1 with a score of 1/(1x7) = 0.14.

[0115] This same exemplary apply history can also generate affinities for job seeker (candidates) so that system 100 can make recommendations for employers/recruiters. For example, P1 applied for J1, J3 and J4. P2 applied for J1, J2 and J3. P1 and P2 both applied for J1 and J3. So P1 is a recommendation for P2 with a score of 2/(3x3) = 0.33.

[0116] Each of the match scores is calculated in operation 302. As discussed above weights can also be factored into each individual score from operation 304. The affinity engine module 112 is used, as an example, in the apply history score determination. As mentioned above, in this particular example, the title match score determination operation 306, the industry match score determination operation 310 and the location match score are required to match at a value of one.

[0117] The results of the match operation are stored in the database 104 in a match_result table 326, an example of which is shown in such as Table 6 below.

TABLE 6

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
<th>Nullable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resume_id</td>
<td>Resume ID</td>
<td>N</td>
</tr>
<tr>
<td>Job_id</td>
<td>Job ID</td>
<td>N</td>
</tr>
<tr>
<td>Member_id</td>
<td>Member ID</td>
<td>N</td>
</tr>
<tr>
<td>SCORM</td>
<td>Matching score</td>
<td>N</td>
</tr>
<tr>
<td>CTIME</td>
<td>Created time stamp</td>
<td>N</td>
</tr>
<tr>
<td>SHOWN_TO_CANDIDATE</td>
<td>This job is displayed on the job seeker's home page.</td>
<td>N (Two valid values: Y, N. Default to N.)</td>
</tr>
</tbody>
</table>

[0118] When a job seeker, or an employer/recruiter, logs in to the system 100, all jobs he/she ever applied for are retrieved from database 104, ordered by date. In the case of the employer/recruiter, all candidate job seekers marked by the employer/recruiter as being of interest to the employer/recruiter are retrieved in a similar manner. The correlation module 106 then is utilized in conjunction with the matching module 102 to identify potential other jobs (or other candidates) based on his/her applied for history (or employer interest history).

[0119] A screen shot 400 of an exemplary job seeker web page is shown in FIG. 4. In FIG. 4, the job seeker, in this case an individual who has signed on previously and has applied for jobs via the system 100 which have been saved, is presented with other jobs 402 that he might be interested in. If the job seeker then clicks on the “View All My Job Recommendations” 404, the screen 500 shown in FIG. 5 is presented. Here there are eight jobs 502 presented to the job seeker along with a series of potential selections 504 for him to choose those positions that he/she is not interested in. When the job seeker places a check 506 in one of these boxes as shown, this action is tracked and saved in the user activity monitor module 116. This job and its associated parameters will no longer be considered in the matching module 102, although the parameters will be considered when handled in the user activity monitor module 116 in future search results. No jobs marked “not interested” by a job seeker will show to the job seeker in subsequent queries. Also, all applied jobs and saved jobs will not be recommended again to the job seeker. A new column called “not interested” is added to the user profile table to store all the job ids that the user is not interested in.

[0120] Similarly, if an employer/recruiter checks a “not interested” block for a particular job seeker candidate, in a corresponding screen, that particular job seeker will no longer show to the employer/recruiter in any subsequent queries. A corresponding column called “candidatesnotinterested” would be added to the employer/recruiter profile table to store all the job seeker IDs that the user is not interested in.
Referring now to FIG. 6, a simplified general process flow diagram 600 of one sequence of operations that occur when a job seeker or employer/recruiter signs on to the system 100. In operation 602 the job seeker is presented with, and looks at an exemplary job description. Control then transfers to query operation 604. Here the user is asked whether he likes this job and therefore would like to see more job descriptions like this one. If the user clicks on “yes” or “show me more like this one” etc., then control transfers to operation 606 and the user sees a different screen with a series of different but similar job descriptions. On the other hand, if the user clicks or selects “No,” then control transfers to return operation 608 and control returns to the calling operation, whatever it might have been.

Specifically for job seekers, several scenarios are shown in FIGS. 7 through 9. FIG. 10 provides an exemplary flow diagram for an employer/recruiter.

FIG. 7 shows a sequence of operations 700 when a job seeker 702 accesses the system 100 and the job seeker is a prior system user with his own login ID. The job seeker 702 enters his ID code in operation 704 to log onto the system 100. When he does so, control transfers to operation 706. In operation 706, the job seeker’s user profile 206 is retrieved from the database 104. Control then transfers to operation 708, where the system 100 searches available jobs in module 102 as described above with reference to FIG. 3, and displays the matching results to the job seeker, on a screen similar to that shown in FIG. 4. Control then transfers to operation 710 where the system 100 awaits the job seeker to choose whether to apply for a displayed job. If the job seeker chooses not to apply for a job, control transfers to return operation 712. On the other hand, if the user chooses to apply for one of the jobs, the apply history for the job seeker is updated in the user activity monitoring module 116, and control transfers to operation 714.

In operation 714, since the job seeker has now applied for one of the displayed jobs, a new search through the sequence 300 shown in FIG. 3 is performed, with the updated apply history and click-through information provided as a result of the job seeker’s actions. Control then returns to query operation 710, in which the new search results are displayed to the job seeker 702. Again, the job seeker 702 is given the opportunity to apply for one of the displayed jobs and, if he/she does so, control again passes to operation 714, the matching search sequence 300 repeats, and then back to query operation 810. This iterative process repeats until the job seeker chooses not to apply for one of the displayed jobs, at which point control transfers to return operation 812 where the job seeker can continue with another search.

In operation 810, if the job seeker has now requested a modified search by adding or changing a parameter, a new search through the matching sequence 300 shown in FIG. 3 is performed, with the updated click-through information provided as a result of the job seeker’s actions. Control then returns to query operation 814, in which the new search results are displayed to the job seeker 802. Again, the job seeker 802 is given the opportunity to modify parameters for another search, and, if he/she does so, control again passes to operation 810, the matching search sequence 300 repeats, and then back to query operation 810. This iterative process repeats until the job seeker chooses not to apply for one of the displayed jobs, at which point control transfers to return operation 812 where the job seeker can continue with another search.

In operation 900 when a job seeker 902 accesses the system 100 and the job seeker 902 has no prior history at all either with the system 100 or with a portal such as the web server 105 carrying system 100. Here the job seeker 902 likely has no known ID. The job seeker 902 therefore enters as a visitor in operation 904 to log onto the system 100. When he does so, control transfers to query operation 906. In query operation 906, the job seeker’s browser ID is identified using cookies obtained from his browser software to determine whether there are any previous searches for this user. If not, control transfers to query operation 910. However, if there is a previous search retrieved from the database 104, control then transfers to operation 908, where the system 100 searches available jobs in module 102 as described above with reference to FIG. 3, based on the stored prior search results, and displays the matching results to the job seeker 902, again on a screen similar to that shown in FIG. 4. Control then transfers to operation 910 where the system 100 awaits the job seeker 902 to choose whether to conduct a search. If the job seeker chooses not to search, control transfers to return operation 912. On the other hand, if the user chooses to conduct a search, the history for the job seeker 902 is updated, if any from previous searches, in the user activity monitoring module 116, and control transfers to operation 914.

In operation 914, since the job seeker has requested a search, a new search through the matching sequence 300 shown in FIG. 3 is performed, with the updated click-through information provided as a result of the job seeker’s actions. Control then returns to query operation 910, in which the new matching results are displayed to the job seeker 902. Again, the job seeker 902 is given the opportunity to modify parameters and request a modified search for jobs and, if he/she does so, control again passes to operation 914, the matching search
sequence 300 repeats with the modified parameters, and then control passes back to the query operation 910. This iterative process repeats until the job seeker 902 chooses not to modify the search so as to modify the match, at which point control transfers to return operation 912.

[0130] FIG. 10 shows a sequence of operations 1000 when an employer/recruiter 1002 accesses the system 100 and the employer recruiter 1002 is a prior system user with his own employer login ID. The employer/recruiter 1002 enters his ID code in operation 1004 to log onto the system 100. When he does so, control transfers to operation 1006. In operation 1006, the employer/recruiter’s user profile 206 is retrieved from the database 104. Control then transfers to query operation 1008. Here, the question is asked whether the employer/recruiter wishes to retrieve and examine a particular job folder containing jobs he/she has already loaded profiles of and saved. If not, control transfers to return operation 1010. If the employer/recruiter selects a job folder, answering yes in query operation 1008, control transfers to operation 1012.

[0131] In operation 1012 the system 100 searches all the resumes in the database 104 using the recruiter profile and the job profile on file in the job folder, matching module 102 as described above with reference to FIG. 3, and displays the matching results to the employer/recruiter 1002, on a screen similar to that shown in FIG. 4, except set up for the employer/recruiter 1002. Control then passes to query operation 1014.

[0132] In query operation 1014, the question is asked of the employer/recruiter whether he/she is interested in a particular displayed resume. If so, then control transfers to operation 1016 in which the selected resume is displayed for the employer 1002. If no resume is chosen for display, however, control returns to query operation 1008, where the employer/recruiter is again asked to go to a job folder, perhaps this time to a different job folder.

[0133] Once the employer/recruiter views a resume in operation 1016, control transfers to query operation 1018. Query operation 1018 asks whether the recruiter wants to see other resumes similar to the one shown. If the answer is yes, control transfers to operation 1020. In query operation 1020, the employer/recruiter is asked whether the next search of similar resumes should include additional predetermined options. If so, control transfers to operation 1022 where the employer/recruiter inputs the selected options or qualifications to more narrowly define the search. Control then transfers to operation 1024 where the resumes are again searched with the new input from the predefined set of options, or simply with the click-through history added from the just completed search and the search of resumes is again performed. The results of this research are displayed to the employer/recruiter in operation 1012 again as potential job seeker candidates instead of potential jobs. Control then transfers again to query operation 1014. This iterative process through operations 1012 through operation 1024 is repeated until the employer/recruiter 1002 returns a negative answer in operation 1014 and then in operation 1008 such that control transfers to return operation 1010.

[0134] Another simplified embodiment of the system in accordance with the present disclosure is illustrated in FIGS. 11 and 12. In this embodiment, the system 1100 includes a matching module 1102, a database 1104, and a correlation module 1106. The matching module 1102 receives information and queries via a job seeker interface module 1108 and employer/recruiter interface module 1110 through accessing a portal such as a web server 1105 typically via the internet 1111.

[0135] Throughout this description, primarily an exemplary job seeker will be used to describe system operations. However, this is not the only use of the system 1100. The system 1100 can also be used for example, in a reverse direction, by an employer/recruiter to evaluate candidate job seekers in a similar manner.

[0136] The web server 1105 in turn communicates preferably through a search function 1107 to the matching module 1102 which draws from the correlation module 1106, although the matching module 1102 can communicate directly to and through the web server 1105 to the job seeker module 1108 or the employer/recruiter module 1110. The correlation module 1106 in this embodiment is limited in its content to an affinity engine module 1112 and a user activity monitor Module 1116. The affinity module 1112 provides information and contains routines that look for relationships between job data and job seeker data and draw inferences from the data that correlate with information provided, either directly or indirectly, from the job seeker and/or the employer/recruiter.

[0137] The affinity engine module 1112 within the correlation module 1106 generally examines combinations of informational parameters or data to determine whether there are any correlations, i.e. affinities between any of the parameters. Such affinities can relate a job seeker to other job seekers based on, for example, a particular location, a job, skill set, job categories, spatial relationships, etc. Similarly, jobs can also be related to other jobs. In general, the affinity module 1112 is used to identify commonalities and trends between otherwise disparate data. This information can then be utilized to identify alternative jobs to the job seeker or alternative job seeker candidates to an employer/recruiter user of the system 1100 that otherwise might be missed.

[0138] The affinity module again preferably can utilize an affinity engine such as is described in U.S. Pat. No. 6,873,996, assigned to the assignee of the present disclosure and hereby incorporated by reference in its entirety. The affinity engine operation in affinity module 1112 to determine the matching score 322 as set forth in FIG. 3 above, can be simply understood with reference to an example set forth in Table 5 discussed in detail above.

[0139] The user activity monitor module 1116 tracks, for each job seeker, and each employer/recruiter, his or her prior queries, choices, actions and interactions with the system 1100 so as to be able to draw correlations, e.g., inferences from such actions. For example, a job seeker can apply for one of a number of suggested jobs. This “apply” fact is tracked for potential use in the affinity engine module 1112 to infer other potential matches to offer as suggested jobs. Similarly, an employer/recruiter can examine resumes and indicate an interest in or contact for interview one of a number of suggested job seekers for a particular job. This indicated interest fact is tracked in the user activity monitor module 1116, for use by the affinity engine module 1112 when the employer/recruiter next queries the system 1100.

[0140] In this simplified embodiment 1100, the matching is limited in several distinct ways. First, the job location, the job title, and the industry are all identical between the jobs and the job seeker 1102 and thus there is a one to one match on each of these parameters. Second, the matching is only performed utilizing apply history (prior applied for jobs). As mentioned above, in this particular example, the title match score deter-
mination operation 306, the industry match score determination operation 310 and the location match score, all referring to FIG. 3, are required to match at a value of one. The results of the match operation are stored in the database 1104.

[0141] Third, the affinity module 1112 in this simplified embodiment looks only at other job seekers and other jobs those job seekers have applied for, as is particularly shown in the example set forth in Table 5.

[0142] FIG. 12 shows a sequence of operations 1200 when a job seeker 1202 accesses the simplified system 1100 and the job seeker is a prior system user with his own Login ID. The job seeker 1202 enters his ID code in operation 1204 to log onto the system 1100. When he does so, control transfers to operation 1206. In operation 1206, the job seeker’s user profile 206 is retrieved from the database 1104. This previously saved profile 206 will contain any records of jobs that the job seeker previously applied for.

[0143] If such previously applied for jobs are found, control transfers to operation 1208 where the system 1100 searches and matches available jobs in module 1102 as described above with reference to FIG. 3, and then displays the matching results to the job seeker 1202, on a screen similar to that shown in FIG. 4. Control then transfers to operation 1214 where the system 1100 permits the job seeker to choose to apply for a newly displayed job. If the job seeker chooses not to apply for one of the displayed jobs, control transfers to query operation 1210. On the other hand, if the user chooses to apply for one of the jobs, the apply history for the job seeker is updated in the user activity monitoring module 116, and control transfers to operation 1216.

[0144] In operation 1216, since the job seeker has now applied for one of the displayed jobs, a new search and matching operation, through the sequence 300 shown in FIG. 3, is performed with the updated apply history and click-through information provided as a result of the job seeker’s actions. The results of this match are displayed as recommendations to the job seeker 1202. Control then returns to query operation 1214. Again, the job seeker 1202 is given the opportunity to apply for one of the newly displayed jobs and, if he/she does so, control again passes to operation 1216, the matching search sequence 300 repeats, and then back to query operation 1214. This iterative process repeats until the job seeker chooses not to apply for one of the displayed jobs, at which point control transfers to operation 1210.

[0145] When control transfers to query operation 1210, either from operation 1214 as just described, or initially from query operation 1206, if the stored job seeker profile 206 contains no previous applied for jobs, the job seeker 1202 is permitted to conduct a new search for jobs. In this case, perhaps the job seeker can provide different input parameters for the job search desired, such as a different location, title, etc. If such a new search is requested, control transfers to operation 1212 where the search is conducted and matching results are displayed as potential jobs. Control then passes to query operation 1214 as described above.

[0146] On the other hand, if the job seeker 1202 does not want to perform another job search at this time, the job seeker’s job profile 206 is updated and stored, and control passes to return operation 1218 in which the current process 1200 terminates. The next time the job seeker 1202 logs into the system 1100, the above described process again begins, but this time with updated information in the job seeker’s profile 206 based on the previously applied for jobs and correlations determined in the affinity module 112 described above.

[0147] Another more complex embodiment of a system in accordance with the present disclosure is illustrated in FIGS. 13 through 17. This embodiment provides improved functionality and usability for the user, whether job seeker or employer/recruiter, in order to more efficiently and transparently narrow search results in a manner useful to the user. Throughout the description of this embodiment, an exemplary job seeker will be used primarily to describe system operations. However, this is not the only use of the system 1300. The system 1300 can also be used for example, in a reverse direction, by an employer/recruiter to evaluate candidate job seekers in a similar manner.

[0148] In this embodiment, the system 1300 includes a matching module 1302, a database 1304, and a correlation module 1306 as in the embodiments described above. The matching module 1302 receives information and queries via a job seeker interface module 108 and employer/recruiter interface module 110 through accessing a portal such as a web server 1305 typically via the internet 101.

[0149] The web server 1305 in turn communicates preferably through a search bank 1307 to the matching module 1302 which draws from the correlation module 1306, although the matching module 1302 can communicate directly to and through the web server 1305 to the job seeker module 108 or the employer/recruiter module 110. The correlation module 1306 in this embodiment is not limited in its content to an affinity engine module 1312 and a user activity monitor Module 1316. The affinity module 1312 provides information and contains routines that look for relationships between job data and job seeker data and draw inferences from the data that correlate with information provided, either directly or indirectly, from the job seeker and/or the employer/recruiter.

[0150] The affinity engine module 1312 within the correlation module 1306 generally examines combinations of informational parameters or data to determine whether there are any correlations, i.e. affinities between any of the parameters. Such affinities can relate a job seeker to other job seekers based on, for example, a particular location, a job, skill set, job categories, spatial relationships, etc. Similarly, jobs can also be related to other jobs. In general, the affinity module 1312 is used to identify commonalities and trends between otherwise disparate data. This information can then be utilized to identify alternative jobs to the job seeker or alternative job seeker candidates to an employer/recruiter user of the system 1300 that otherwise might be missed.

[0151] The affinity module again preferably can utilize an affinity engine such as is described in U.S. Pat. No. 6,873,966, assigned to the assignee of the present disclosure and hereby incorporated by reference in its entirety. The affinity engine operation in affinity module 1312 to determine the matching score 322 as set forth in FIG. 3 above, can be simply understood with reference to an example set forth in Table 5 discussed in detail above.

[0152] The user activity monitor module 1314 tracks, for each job seeker, and each employer/recruiter, his or her prior queries, choices, actions and interactions with the system 1300 so as to be able to draw correlations, e.g., inferences from such actions. For example, a job seeker can apply for one of a number of suggested jobs. This "apply" fact is tracked for potential use in the affinity engine module 1312 to infer other potential matches to offer as suggested jobs. Similarly, an employer/recruiter can examine resumes and indicate an interest in or contact for interview one of a number of suggested job seekers for a particular job. This indicated interest
The fact is tracked in the user activity monitor module 1314, for use by the affinity engine module 1312 when the employer/recruiter next queries the system 1300.

The correlation module 1306 in this embodiment also includes a ratings module 1316, a filtering module 1318, and a preference ranking module 1320, all designed to assist a user, whether she be job seeker or employer/recruiter, by personalizing the system to make it more transparent and effective for the user.

In this embodiment 1300, the functionality of the matching is less limited in several distinct ways from that of embodiment 1100 described above. First, the job location, the job title, and the industry may differ between the jobs and the job seeker 102 and thus there is not necessarily a one to one match on each of these parameters. Second, the matching is performed utilizing apply history (prior applied for jobs) as well as several input parameters received from interaction from the user. As mentioned above, in the previous example, the title match score determination operation 306, the industry match score determination operation 310 and the location match score, all referring to FIG. 3, may match at a value of one. The results of the match operation are stored in the database 1304.

Second, the job ratings module 1316, the filtration module 1318, and the performance ranking module 1320 all contribute to the functionality of the user activity monitor module 1314.

Third, the affinity module 1312 in this embodiment looks at other job seekers and other jobs those job seekers have applied for, as is particularly shown in the example set forth in Table 5 and, in addition, evaluates user input received from a ratings module 1316, a filtering module 1318, and a preference ranking module 1320. Each of these modules provides input to the affinity module 1312, and, in turn, the matching module 1302, in response to interaction between the Job Seeker and the system 1300 as illustrated in the accompanying flow diagram of FIG. 14 below. This interaction between the system and the job seeker provides a personalized aspect to the system 1300 that is absent from the system shown in FIG. 11. Hence this embodiment 1300 gives the job seeker an enhanced transparency experience that efficiently leads to the type of results that he or she may be searching for.

For example, an additional database called “LDB” may be incorporated into database 1304. This LDB database provides preference information determined in response to queries made to the user in the user’s profile. These preferences may include: location_preference, type_preference, title_preference, industry_preference, experience_preference. Each field has the same data structure:

Record=value ‘Bimportance score’, . . .

Where ‘A’ and ‘B’ are delimiters, ‘A’ separates records and ‘B’ separates fields within a record. This information may be stored in other data structures and/or data storages such as an Oracle database. For example, location_preference field could have the following value:

Sunnyvale-CA-USA B*5* A*New York-NY-USA* B*5* A*Chicago-IL-USA* B*0*

Here 5 applied jobs have the location Sunnyvale, Calif., USA and none of the “not-interested-jobs” has this location. 5 “not-interested-jobs” have the New York location and none of the applied jobs is located in New York. The significance of 0 for Chicago is that the user explicitly said he/she did not like Chicago. If it was “0” for Chicago, then it would mean that the user explicitly said he/she liked Chicago.

The following is an example for the type_preference field:

PERM B6 ACON'T B5 ATMP 0

Similarly, for title, a standard set of titles may be defined along with user specified not-interested titles. For industries, preferably standard industry codes are used. For company names, variations of names are encompassed. For experience level, a numerical span of years is utilized.

As an example of information collection from the user, whether job seeker 108 or employer/recruiter 110, the following description is exemplary. When a job seeker 108 clicks “No Interest” on a displayed job, a popup small window may be displayed asking the job seeker 108 what he/she does not like about this job, with a series of predefined descriptions provided. For example, “I don’t like the title”, “I don’t like the location”, “I don’t like the industry”, “I don’t like the company” may be used. If the user does or does not check any of these descriptions, that fact is saved as a user preference for use in the user activity module 1314, the affinity module 1312, and the matching module 1302.

When a user expresses no interest in a particular displayed job, the system 1300 learns from that. As mentioned previously, attributes are defined that enable the job seeker to focus on such as “title”, “location”, “industry”, “company”, “type of job”. These attributes are combined with saved searches, applied for jobs, and not-interested jobs. Lists of predefined attributes for applied for jobs and disliked jobs are compared in order to eull common attribute values to create two hash maps. One is a positive map that contains any attribute-value pairs that are in the applied list but not in the disliked list. The other is a negative map that contains any attribute-value pairs that are in the disliked list but not in the applied list. The two maps can then be the basis for preference ranking analysis.

Positive ranking utilizes commonality of attribute-value pair to rank recommended jobs. For example, if location_Sunnyvale is the most common pair among the applied for jobs, recommendation of jobs with location “Sunnyvale” should be presented to the job seeker first, i.e., on the top.

Negative ranking is similarly accomplished using commonality of attribute-value pairs to filter jobs. For example, if location_Sunnyvale is the most common pair in the disliked jobs list, then the system 1300 may filter out all jobs with location “Sunnyvale”, or at least place them last in the presentation to the job seeker 108.

An example of a user preference ranking setting screen 1700 is shown in FIG. 17. Each of the major categories, location, title, industry, job type, company, and experience level is shown along with a weighting factor 1702, a most preferred parameter 1704, and a least preferred parameter 1706. As an example, note that location for this user is weighted at 30%, while all of the other parameters are weighted less. If the job seeker now decides that he/she wants to zero in on the title of the job rather than its location, she could change the title weight to 30% while reducing one of the other categories. Note that the sum of the weights must equal 100%. Thus if the location is the most important category, and ALL other criteria are of no significance, one could even weight Location as 100% and all others as 0%. The jobs displayed would then all be ranked first according to the most
preferred location to least preferred, with no weight being given to title, industry, type, company or experience level.

As a job seeker utilizes the system 1300, at any time he or she may access her preferences pages. The ranking settings page shows each of the major categories and provides the user with an opportunity to change each of the three parameters associated with each category. The ranking settings govern how the system displays results to the job seeker 108 or employer/recruiter 110. The preference ranking module 1320, filtration module 1318 and ratings module may be utilized alone or together to provide a more transparent and personalized job search system to the user than the simplified version 1100 described with reference to FIG. 11 above. In this more advanced system 1300, when the job seeker 108 first signs in, he/she may be directed to the preferences screen where he or she is presented with explanations as to how the user can enhance their search results. In addition, each time a search is made, the interactions, preferences and results are incorporated by the affinity module 1312 and user activity monitor module 1314 in order to continually refine the strategy for search and presentation of search results to the job seeker 108 or employer/recruiter 110.

FIG. 14 shows an enhanced sequence of operations 1400 when a job seeker 1402 accesses the system 1300 and the job seeker is a prior system user with his own login ID. The job seeker 1402 enters his ID code in operation 1404 to log onto the system 1300. When he does so, control transfers to operation 1406. In operation 1406, the job seeker’s user profile 206 is retrieved from the database 1304. This previously saved profile 206 will contain any records of jobs that the job seeker previously applied for, along with previously saved personal preferences. If the job seeker 108 wishes to change preferences, such as ranking settings, he/she may be presented with a display screen 1700 in which the previously saved settings may be modified as described above.

If previously applied for jobs are found, control then transfers to operation 1408 where the system 1300 searches and matches available jobs in module 1302 as described above with reference to FIG. 3, and then displays the matching results to the job seeker 1402, on a screen 1600 such as is shown in FIG. 16 after applying any prior negative filtration selections.

Screen 1600 displays featured job results 1604, based on previously defined job searches as shown by boxes checked in the last search 1602. The results 1604 are shown based on prior ranking parameters as shown on screen 1700 in FIG. 17. In the screen 1600, an opportunity is provided for the job seeker to rate the jobs presented on a scale of 1-5, indicated by stars 1606. In addition, on screen 1600, the job seeker can look at similar jobs by clicking on “similar jobs that may interest you” 1608. If the job seeker clicks on this icon 1608, a listing of similar jobs 1500 appears as is shown in FIG. 15. The job seeker 1402 can then apply a negative filter for subsequent searches by clicking on “Don’t suggest this job again” 1502. This applies a negative filter into the user activity monitor module 1314 and the affinity module 1312.

Control then transfers to operation 1414 where the system 1300 permits the job seeker 1402 to choose to apply for a newly displayed job. If the job seeker chooses not to apply for one of the displayed jobs, control transfers to operation 1410. On the other hand, if the user chooses to apply for one of the jobs, the apply history for the job seeker 1402 is updated in the user activity monitoring module 1314, and control transfers to operation 1416.

In operation 1416, since the job seeker has now applied for one of the displayed jobs, a new search and matching operation, through the sequence 300 shown in FIG. 3, is performed with the updated apply history and click-through information provided as a result of the job seeker’s actions. The results of this match are displayed as recommendations to the job seeker 1402 as shown in FIG. 16. Control then returns to query operation 1414. Again, the job seeker 1402 is given the opportunity to apply for one of the newly displayed jobs and, if he/she does so, control again passes to operation 1416, the matching search sequence 300 repeats, and then back to query operation 1414. This iterative process repeats until the job seeker chooses not to apply for one of the displayed jobs, at which point control transfers to operation 1420. In operation 1420, the query is made whether the job seeker rated one or more of the jobs displayed. If so, control transfers to operation 1418, where new jobs are recommended based on this new information. Control then transfers to query operation 1419.

In operation 1419, the query is made whether the job seeker 1402 has changed ranking criteria for searching jobs. If not, control transfers back to operation 1414. If the job seeker 1402 has changed criteria, then control transfers to operation 1422.

In operation 1422, new jobs are presented based on rating and/or ranking changes. Control then transfers again to operation 1414 where the system awaits the job seeker to apply for a job, change a rating, or ask for similar results as described above. If no jobs are re-rated by the job seeker 1402 in operation 1420, control transfers back to operation 1410.

When control transfers to query operation 1410, either from operation 1420 as just described, or initially from query operation 1406, the job seeker 1402 is permitted to conduct a new search for jobs. In this case, perhaps the job seeker can provide different input parameters for the job search desired, such as a different location, title, etc. If such a new search is requested, control transfers to operation 1412 where the search is conducted and matching results are displayed as potential jobs, including elimination of jobs for which a negative response has been provided. Control then passes to query operation 1414 as above described.

On the other hand, if the job seeker 1402 does not want to perform another job search at this time, the job seeker’s job profile 206 is updated and stored, and control passes to end operation 1432.

The next time the job seeker 1402 logs into the system 1300, the above described process again begins, but this time with updated information in the job seeker’s profile 206 based on his/her prior actions, preferences set, the previously applied for jobs and correlations determined in the affinity module 1312 described above. In this way, the system 1300, as well as is the case with each of the systems explained above, continually updates itself and is continually refined, both by the user’s preferences, and by the user’s actions. In addition, the system 1300 is continually updated based on other user’s activities impact the affinity module, such that the system 1300 remains a dynamic system responsive to the user and other user input. In this way the system 1300 is constantly changing and being updated such that the user perceives a dynamic job search system that keeps abreast of changes in the job marketplace as it is being utilized.

The embodiments described above are exemplary and are not to be taken as limiting in any way. They are merely illustrative of the principles of the disclosure. Various
changes, modifications and alternatives will be apparent to one skilled in the art. Accordingly, it is intended that the art disclosed shall be limited only to the extent required by the appended claims and the rules and principles of applicable law.

1-26. (canceled)

27. A processor-implemented content recommendation method, comprising:
 obtaining an access request including login credentials from a user;
 retrieving a user profile including a plurality of user parameters;
 capturing information indicative of user interests characteristics from a real-time content updating widget instantiated on a user interface;
 inferring a first user interests indicator from the captured information;
 obtaining user activity data including user interactions with a content posting via the user interface;
 determining a second user interests indicator based on the user activity data pertaining to the content posting;
 querying for content posting recommendations for the user based on the user parameters, the inferred first user interests indicator and the determined second user interests indicator; and
 presenting the content posting recommendations to the user via the user interface.

28. The method of claim 27, wherein the user comprises a job seeker engaging a computing device.

29. The method of claim 27, wherein the user parameters comprise any of:
 user address;
 user job title; and
 user resume.

30. The method of claim 27, wherein the real-time content updating widget instantiated on the user interface comprises a stock ticker banner over a browser window.

31. The method of claim 30, wherein the first user interests indicator from the captured information includes user interests in finance related industry.

32. The method of claim 27, wherein the real-time content updating widget instantiated on the user interface comprises a weather site.

33. The method of claim 32, wherein the first user interests indicator from the captured information includes user preference in a geographical region.

34. The method of claim 27, wherein the user interactions with the content posting includes a user viewing the content posting.

35. The method of claim 27, wherein the user interactions with the content posting includes a user submitting information in response to the content posting.

36. The method of claim 27, wherein the content posting includes a job posting.

37. The method of claim 27, wherein the second user interests indicator is obtained based on content postings that the user has viewed or submitted information to.

38. The method of claim 27, further comprising:
 determining a matching score between the content posting recommendations and the plurality of user parameters.

39. The method of claim 27, further comprising:
 determining an affinity relevance value for each of the content posting recommendations based on a popularity of each content posting recommendation.

40. The method of claim 39, further comprising:
 ranking the content posting recommendations based on the determined affinity relevance value.

41. The method of claim 27, further comprising:
 obtaining an access request from an affiliated site.

42. The method of claim 41, further comprising:
 retrieving basic user information based on user identifying information in the access request.

43. The method of claim 42, wherein the basic user information contains limited information than the retrieved user profile.

44. The method of claim 27, wherein the user interface comprises a browser window displaying a content page.

45. A content recommendation apparatus, comprising:
 a memory;
 a processor disposed in communication with said memory, and configured to issue a plurality of processing instructions stored in the memory, wherein the processor issues instructions to:
 obtain an access request including login credentials from a user;
 retrieve a user profile including a plurality of user parameters;
 capture information indicative of user interests characteristics from a real-time content updating widget instantiated on a user interface;
 infer a first user interests indicator from the captured information;
 obtain user activity data including user interactions with a content posting via the user interface;
 determine a second user interests indicator based on the user activity data pertaining to the content posting;
 query for content posting recommendations for the user based on the user parameters, the inferred first user interests indicator and the determined second user interests indicator; and
 present the content posting recommendations to the user via the user interface.

46. A computer-readable non-transitory medium storing processor-issuable and generated content recommendation instructions, the instructions executable by a processor to:
 obtain an access request including login credentials from a user;
 retrieve a user profile including a plurality of user parameters;
 capture information indicative of user interests characteristics from a real-time content updating widget instantiated on a user interface;
 infer a first user interests indicator from the captured information;
 obtain user activity data including user interactions with a content posting via the user interface;
 determine a second user interests indicator based on the user activity data pertaining to the content posting;
 query for content posting recommendations for the user based on the user parameters, the inferred first user interests indicator and the determined second user interests indicator; and
 present the content posting recommendations to the user via the user interface.

47. A processor-implemented content recommendation method, comprising:
 receiving an access request including login credentials from a recruiter;
retrieving a previously stored recruiter profile associated with the recruiter from a database;
obtaining a job reviewing indication from the recruiter, the job reviewing indication including identifying information of a job listing;
obtaining a plurality of job seeker resumes;
querying the plurality of job seeker resumes based on the recruiter profile and the job listing;
obtaining an interests indication from the recruiter pertaining to a first job seeker resume from the plurality of job seeker resumes;
incorporating the obtained interests indication into query parameters indicating recruiter interests;
determining a second job seeker resume based at least in part on the query parameters indicating recruiter interests; and
presenting the second job seeker resume to the recruiter.

* * * * *