(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO O

International Bureau

(43) International Publication Date
24 April 2008 (24.04.2008)

(10) International Publication Number

WO 2008/049008 A2

(51) International Patent Classification:
GOGF 9/30 (2006.01)

(21) International Application Number:
PCT/US2007/081652

(22) International Filing Date: 17 October 2007 (17.10.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/550,356 17 October 2006 (17.10.2006) US
(71) Applicant (for all designated States except US): MAN-
AGE IQ, INC. [US/US]; 345 Route 17 South, Upper Sad-

dle River, New Jersey 07458 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FITZGERALD,
Joseph [US/US]; 821 Atterbury Lane, Franklin Lakes,
New Jersey 07417 (US). BARENBOIM, Oleg [US/US];
5 Horizon Road, Apartment 1501, Fort Lee, New Jersey
07024 (US).

(74) Agents: GOEDKEN, James F. et al.; BELL, BOYD &
LLOYD LLP, P.O. Box 1135, Chicago, [llinois 60690-1135
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

(34)

49008 A2 I 0O A0 0O OO

(54) Title: REGISTERING AND ACCESSING VIRTUAL SYSTEMS FOR USE IN A MANAGED SYSTEM

& (57) Abstract: Techniques are disclosed for controlling and managing virtual machines and other such virtual systems. VM exe-
of cution approval is based on compliance with policies controlling various aspects of VM. The techniques can be employed to benefit
&= all virtual environments, such as virtual machines, virtual appliances, and virtual applications. For ease of discussion herein, assume
& that a virtual machine (VM) represents each of these environments. In one particular embodiment, a systems management partition

=

(SMP) is created inside the VM to provide a persistent and resilient storage for management information (e.g., logical and physical
VM metadata). The SMP can also be used as a staging area for installing additional content or agentry on the VM when the VM
is executed. Remote storage of management information can also be used. The VM management information can then be made
available for pre-execution processing, including policy-based compliance testing.

WO 2008/049008 PCT/US2007/081652

REGISTERING AND ACCESSING VIRTUAL SYSTEMS
FOR USE IN A MANAGED SYSTEM

Inventors:
Joseph Fitzgerald
Oleg Barenboim

L

RELATED APPLICATIONS)

[0001] This application is related to U.S. Applicétion No. (not yet known), ﬁled
October 17, 2006, titled “Control and Management of Virtual Systems” <attorney docket
number 25077-11991>. In addition, this application is related to U.S. Applicaﬁo’n No.
(not yet known), filed October 17, 2006, titled “Enforcement of Compliance Policies in
Managed Virtual Systems” <attorney docket number 2-_5077-\1‘1993>. In addition, this
application is related to U.S. Application No. (not yet known), filed October 17, 2006,
titled “Compliance-Based Adaptations in Managed Virtual Systems” <atforney docket
number 25077-11994>. In addition, this application‘ ’is related to U.S. Application No.
(not yet known), filed October 17, 2006, titled “Automatic Optimization for Virtual
| Systems” <attorney docket number 25077-11995>, Each of these applications is herein

incorporated in its entirety by reference.

FIELD OF THE INVENTION

[0002] The invention relates to virtual execution environments, and more particularly,
to the control and management of virtual systems such as virtual machines, virtual

appliances, and virtual applications.

BACKGROUND OF THE INVENTION

[0003] Virtual machines are becoming increasingly prevéllent and there are a number of
commercial vendors and open source products providing or enabling virtual machine"
environments. Such enablement involves getting virtual machine monitors (hosts or
VMMSs) running on a variety of hardware platforms and then allowing virtual machines

(guests or VMs) to run in those environments.

WO 2008/049008 PCT/US2007/081652

[0004] The VMs themselves are typically stored in vendor-version and implementation-
specific formats, and there are utilities to create them and convert between the formats.
Within a VM there are typically one oi‘ more virtual disks and bsome additional files
~ containing description of the VM and the hardware it virtualizes, as well as some optional
files 1iké system snapshots of the VM at various stages of processing. There ina}; also be
a delta, difference, and undo/redo files for changes that are not committed to the VM
virtual disks. In some grid environments (e.g., Globus®) there are the concepts of VM
workspaces that contain virtual disks or partitions, one each for the operating éystern

(0O8), application, and the data.

[0005] One of the challenges in managing VMs is that VMs can‘ be created in one
vendot’s environmént, moved to another vendor’s through a conversion utility, be moved
between hosts (within a single vendor environment) during execution (e.g., VMware®
VMotion, Microsdﬁ® LiveMotion) and be snapshoted, copied, cloned, or templated.
Each vendor, tool, and implementation has its own proprietary management
instrumentation (e.g., VMware® has Virtual Center, VMI SDK, etc; Microsoft® has
WMI, System Center Virtual Machine Manager, etc), its own repository, VM djsk format,
eventing technique and format, logging format and location, VM control file name and
format. The formats may even differ within a single vendor’s product family, as well as

between versions of a product.

[0006] There are additional vendors like PlateSpinT™ PowerConvert, AkimbiT™ and
Surgient® and others who provide tools and utilities that copy, transform, snapshot,
template, manipulate and proliferate VMs within and between environments and formats.
The original creator of a VM as well as anyone who wants to manage a VM has a very
difficult task in determining who has the VM and is using it, which formats the VM has
been converted to, and where and how many derivatives of the VM exist. Many
‘enterprises are also trying to create and maintain central configuration management
databases (CMDBs) which would have a very difficult time keeping up with all the VMs
coming and going.

[0007] -~What is needed, therefore, are techniques for controlling and managing virtual
machines and other suéh virtual systems. | |

L

WO 2008/049008 PCT/US2007/081652

SUMMARY OF THE INVENTION

[0008] One embodiment of the present invention provides a method for registering and
accessing virtual machines (VMs). The method includes registering one or more VMs for
use in a managed system, wherein registering includes assigning a logical name to each
VM‘and registering each VM and its location in a VM registry. In one .particular case,
registering one or more VMs further includes extracting at least one of 1ogica1 and
physical metadata associated with a target VM (the metadata for ﬁse in pre—execﬁtion
compliance tesﬁng), generating one or more signatures using the logical and/or physical
metadata, and storing the one of more signatures. In one such case, at least one or more
VM compliance policies with which ‘the target VM must comply to execute are signature-
based policies thereby allowing the pre-execution compliance testing to be carried out
using signature comparisons. In another such case, registefing one or more VMs further
includes generating a system signature based on the one or more signatures. Generating a
system signature based on the one or more signatures may include, for example,
generating a logical system signature based on logical metadata signatures associated with -
- at least one of the targef VM and a target execution platform, generating a physical
system signature based on physical metadata signatures associated with at least one of the
target VM and the target execution platform, and ’generating the system signature based
on both the logical and physical system signatures.. The signatures can be computed, for
example, using one or more hashing functions (e.g., MD5) or other suitable signature
generation process. Extracting logical and/or physical metadata associated with a target
VM may include, for example, extracting content metadata about oné or more files stored
on Vthe target VM. In one such case, generating one or more signatures includes
generating a file content signature for each of the one or more files using the
corresponding content metadata. Here, registering one or-more VMs may further include
generating a system signature based on the file content signatures. In another particular
case, generating one or more signatures may include generating one or more logical
metadata signatures using the logical metadata extracted from the target VM. Here,
registering one or more VMs may further include generating a logical metadata system

signature based on the logicél metadata signatures. In another particular case, registering

WO 2008/049008 PCT/US2007/081652

one or more VMs further includes generating a unique ID for each VM, and extracting at
least one of logical and physical metadata associated with each VM for use in pre-
execution compliance testing. In one such case, the method may further include storing
the unique ID and metadata. The unique ID, at least one of the logical metadata and
physical metadata, and one or more signatures reflective of VM content can be stored, for
example, in one of a conﬁgufation management database or an asset management
database. In another particular case, registering one or more VMs further includes
creating VM genealogy‘metadata about a target VM, wherein the VM genealogy metadata
is indicative of all VMs to which the target VM is related, including any parent VMs and
children VMs (e.g., including clones and partial clones and other derivatives). In one
such case, creating VM genealogy metadata includes storing a unique ID for each relative
VM into the target VM. The method may further include generating a family ID for all
VMs in a given family based on the unique IDs for each VM in that family, and storing
the family ID in each of the related VMs. In another particular case, the method includes
storing the registered VMs in a repository. In one such case, storing the registered VMs
in a repository is achieved by transferring the registered VMs to the repository, copying
the registered VMs to the repository, and/or storing an address in the repository that
points to a memory location where a corresponding master VM resides. In another such
case, the method further includes translating a target VM to one or more alternate
formats, and storing the one or more alternate format VMs in the repository. In another
such case, the method further includes modifying, compressing and/or encrypting a target
VM prior to storing. In another such case, the method further includes locking a target
VM prior to storing, so that the target VM will not execute unless it is used in thé
managed system. In another particular case, the method includes accessing a target VM
for use in the managed system. In one such casé, accessing a target VM is accomplished
using a UDDI registry or a SQL database look-up. - In another such case, accessing a
target VM includes initiating a registry look-up by implicitly requesting the target VM via
logical namé, resolving the logical name into an explicit FVM name, locating a storage
location of the target VM, and transferring the target VM or a copy of the target VM to a

target execution platform environment. In one such case, the logical name is associated

WO 2008/049008 PCT/US2007/081652

with a plurality of VMs, and all those VMs are accessed by the accessing step. In another
such case, logical names are represénted by tags, and initiating a registry look-up by
implicitly requesting the target VM via logical name includes requesting a multiple tag
look-up, where all explicit VMs associated with the requested tags are accessed by the
accessing step. The method may include decompressing the target VM, decrypting the
tafget VM, and/or translating the target VM to a talrget execution platform environment
format. The accessing étep can be initiated, for example, by a user request to use the‘ |
target VM. The method may include caching at least one of the registered VMs at a
target location, as part of a staging scheme. The method may include creating a
management partition in a tafget VM for storing management data for use in a VM
management and control scheme. In one such case, the management data includes a
unique ID for the target VM, and logical and/or physical metadata associated with the
target VM for use in pre-execution compliance testing. In another such case, registering -

one or more VMs further includes generating one or more signatures using logical and/or
‘ physical metadata extracted from a target VM énd/or a target execution platform, and
storing the metadata and the one or more signatures on the management partition. In one
such case, at least one or more VM compliance policies with which the target VM must
comply to execute arc signature-based policies thereby allowing the pre-execution
compliance testing to be carried out using signature comparisons. In another particular
. case, a target VM can only be executed by an exeéution platform that is included in the
managed system. In another particular case, an execution platform that is included in the
managed system will only execute registered VMs. In another particular case, a target
- 'VM can only be accessed by a user that is authorized to access that target VM. Numerous
variations of this method for registering and accessing VMs will be apparent in light of

L

this disclosure.

[0009] For example, another embodiment of the present invention provides a method
for registering and accessing VMs, the method including accessing a target VM for use in ,
a managed system, wherein the target VM is explicitly disabled for use outside the
managed system. In one such case, the method further includes the preliminary steps of

registering one or more VMs for use in the managed system, wherein registering includes

WO 2008/049008 PCT/US2007/081652

assigning a logical name to each VM and registéring each VM in a VM registry for use in
pre-execution compliance testing, and storing the registered VMs in a repository. In
another such case, accessing a target VM -includes initiating a registry look-up by
implicitly requesting a target VM via logical name, resolving the logical name into an
explicit VM name, locating a storage location of the target VM, and transferring the target
VM or a copy of the target VM to a térget execution platform environment. In anothér
such case, accessing a target VM includes initiating a registry ‘locr)k-up by implicitly
requesting one or more VMs via logical name, resolving the logical name into one or
more explicit VM names, and locating a storage lo>cation of each explicitly named VM.
' Here, accessing a target VM may further include displaying at least one of a list of the
explicitly named VMs and their respective storage locations. The target VM can be, for
example, a virtual application, virtual appliance, or other such virtual system or special

purpose virtual process.

[0010] Another embodiment of the present invention provides one or more machine-
readéble mediums (e.g., one or more compact disks, diskettes, servers, memory sticks, or
hard drives) encoded with instructions, that when executed by one or more processors,
cause the processor to carry out a proce‘s‘s for registering and accessing virtual machines
(VMs). This process can be, for example, similar to or a variation of the methods

described here.

[0011] Another embodiment of the present invention provides a system for registerihg
and accessing virtual machines (VMs). The system functionality can be implemented
with a number of means, such as software (e.g., executable instructions encoded on one
or more computer-readable mediums), hardware (e.g., géte level logic or one or more
ASICs), firmware (e.g., one or more microcontrollers with I/O capability and embedded

routines for carrying out the functionality described herein), or some combination thereof.

[0012] THe features and advantages described herein are not all-inclusive and, in
particular, many additional features and advantages will be apparent to one of ordinary
skill in the art in view of the figures and description. Moreover, it should be ﬂoted that
the language used in the specification has been principally selected for readability and

instructional purposes, and not to limit the scope of the inventive subject matter.

WO 2008/049008 PCT/US2007/081652

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 illustrates a virtual environment configured in accordance with one

embodiment of the present invention.

[0014] Figure 2a illustrates a VM management module configured in accordance with
an embodiment of the present invention. ‘
[0015] Figure 2b illustrates different control poiﬁts and actions that can be called by the
event handler module shown in Figure 2a, in accordance with an embodiment of the
present invention.

[0016] Figure 2c illustrates a dispatcher command shell of the command interface
module shown in Figure 2a, configured in accordance with an embodiment of the present
invention. |
[0017] Figure 2d illustrates request/event intercept mechanisms used to enable
managed execution environments, in accordance with an embodiment of the presé‘nt

N
invention.

[0018] Figure 3 illustrates a virtual environment configured with a management
partition in accordance with one embodiment of the present invention.
[0019] Figure 4 illustrates an overall management and control scheme for a virtual

environment, in accordance with one embodiment of the present invention.

[0020]_ Figure 5 illustrates a registration module and VM management data storage
facility configured in accordance with one embodiment of the present invention.
[0021] Figure 6 illustrates a VM registration process conﬁvgured 1n accordance with one
embodiment of the present invention. - ' "
[0022] Figure 7 illustrates a VM acquisition process configured in accordance with one
embodiment of the present invention.
[0023] Figure 8a illustrates a policy enforcement process for a virtual environment, in

accordance with one embodiment of the present invention.

[0024] Figures 8b-d each illustrate a get VM data process configured in accordance

with one embodiment of the present invention.

WO 2008/049008 PCT/US2007/081652

[0025] Figures 9 illustrates a VM adaptation process conﬁgufed in accordance with one

embodiment of the present invention.

[0026] Figure 10 illustrates a combined learn and optimization process in accordance

with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0027] Techniques are disclosed for controlling and managing virtual machines and
other such Viqrtual systems. Traditional VMM/host environments employ the concept of
admission control, which is quantitative in nature, in that VMs are only allowed to
execute if there are enough resources (e.g., memory, swap space and bandwidth) for the
VM to execute and run. One technique desbribed herein is qualitative, in that VM
execution approval is based on compliance with various policies, such as those regarding
one or more of VM content, VM characteristics, execution context (e.g., production vs.
test), change management, configuration management, asset management, version
control, security management, license management, and resource management. These
policies can be stored in a single or multiple ldcatiOns. They can be contained in files,
databases, directories, fepositories, or other externalypolicy stores, such as a CMDB,
inventory database, or version control system. The techniques can be employed to benefit
all virtual environments, such as virtual machines, virtual appliances, and virtual
applications. For ease of discussion herein, assume that a virtual machine (VM)

represents each of these environments.

General Overview

[0028] An effective way to manage management information associated with a VM is
to create a new, résilient location to store the management information. This location can
be attached to the VM or within the VM itself, in accordance with one embodiment of the
present invention. Creating a new virtual partition or disk inside thé VM provides an
ideal location that will survive transportation, conversion etc and can even be used for
introspection from the VM itself, as will be explained in turn. Such a virtual parti'tionor
disk is referred to herein as a systems management partition (SMP). This SMP travels

with other VM disks/partitions, such as the operating system, applications, and data

WO 2008/049008 PCT/US2007/081652

drives. Conversion, migration, and transformation utilities can be used to transport the
SMP transparently, with such utilities being unaware that the SMP is for VM
management. The VM management information can be stored across executions and

vendors.

[0029] The management information generally includcs relevant metadata about the
VM contents, which is above and beyond metadata about the infrastructure necessary to
start or insfantiate the VM (e.g., how many CPUs it needs or the type of architecture it
runs on, for example x86). As is known, there are various types of metadata, including
logiéal and physical metadata. Physical metadata relates to the actual location of a data
item and the characteristics of that item’s storage system. Physical metadata includes, for
example, data item size, times when the data item was accessed/modified, and data item
access permissions. Logical metadata describes the contents of a data item or collection,
independent of that data’s actual location.. Logical metadata includes, for example, a
description of what the data item represents (e.g., VM transformation log), provenance
information (e.g., the name and description of a data item’s creator or modifier), and
other information that allows the data to be interpreted. In addition, replication metadata
refers fo information that describes the relatioﬁship between logical data identifiers and
one or more physical instances of the data. The management information can also
include historical VM metadata (e.g., uptime/downtime, crashes/blue screens) or time-
based VM metadata (e.g., VM to expire after X days, or do not run VM after
mnﬂdd(yyyy), historical performance data (e.g., number of transactions and/or jobs by
VM), historical VM system log, and historical VM event log information. Such historical
information can be used in a system management scheme to improve user expetience as
well as overall system performance and efficiency. For instance, historical use data for a
particular VM may indicate, for example, what execution platform that VM performs best
(or worst) on based on the number of 'crashes or abrupt terminations, or what operator has
the best (or worst) test performance using that VM, or what developer/user has the most
(or least) run time on that VM, or how many times that VM has been copied or translated
into new VMs, or how fast that VM executes to completion relative to other comparable

VMs, or how that VM is only used during a certain time period and/or for a certain

WO 2008/049008 PCT/US2007/081652

purpose, or how that VM always (or never) ekecutes certain installed software, or how
that VM is used in the same geographic ldcation. Numerous such useful management
data points can be monitored, extracted, and/or otherwise derived for use in a given
system management scheme. In addition, note that historical use data can be collected
from multiple SMPs and/or other management data storage locations. Further note that
those SMPs and/or other managément data storage locations can be all included in one
enterprise (intra-enterprise historical use data collection) or from multiple enterprises’

(inter-enterprise historical use data collection).

[0030] In é’ccordance with one embodiment of the present invenﬁon, management
information includes metadata about the VM itself, VM logs, and VM events (e.g., such
as creation, executioﬁ, snapshoting, templating), as well as metadata about the host and
host eﬁvironrnent (e.g., such as vendor, version, location, author, usage, licensing and
other such pertinyent host data). By storing such information within the VM container (or
otherwise making such information accessible to the VM), it is possible to effectively
track what a VM is doing and where it has been (similar to a flight recorder or “black
box” that contains information about an airplane). The persistence and resilience of the
SMP allows for the storing and accessing of security certificates, VM IDs or “tattoos”,
signatures (as will be explained in turn), and content metadata about the other VM
partitions. The SMP can also be used as a staging area for installing additional content or
agentry on the VM when the VM is executed. Management agents, software, settings,
and content can be placed on the SMP pre-execution, or by a process running outside the
VM and then later referenced by the VM during eXecution, startup, or shutdown to alter

the VM.

[0031] When a VM is created, discovered, or registered, an SMP is dynamically added
to the VM, in accordance with one embodiment. Templates and clones can also have the
SMP added at the time of creation or later discovery. The SMP can be creatéd, for
example, by modifying a VM configuration file to reflect the new partition. Capturing
the managément information can be achieved in a number of ways, as will be apparent in
light of this disclosure. For instance, information about the VM available in the host

environment and vendor control files can be queried and the output saved as a file in the

10

WO 2008/049008 PCT/US2007/081652

SMP. In addition, any host ehvironment activity that touches the VM (e.g., starting,
stopping, snapshoting, and other such ac;tivity) can be written to an activity log stored on
the SMP. This host activity can be detected, for example, by an agent that registers for
events in the host environment and then writes the event entry to the log on the respective
VM’s SMP. Information regarding the vendor, version, and technique used to create or
manipulate the VM, as well as aﬁy other extracted metadata (e.g., physical and logical),
can also be written to the SMP. The partition settings in the VM description can be set to
force the changes to be committed to the VM when the VM execution is complete,

regardless of the other partition settings.

[0032] The extracted management information (including any créated, derived, and/or
harvested metadata) about a VM can then be made available (e.g., on the SMP itself, in a
dedicated enterprise storage afea, and/or on a remote management server) fof pre-
execution processing (i.e., before the VM is initiated or any instruction cdritained in the
VM is executed). In addition, the extracted management information enables the control
of the execution of VMs across an enterprise based on what the content of the VM is (or
isn’t), and as well as the control of who can execute what VM, where the VM can
execute, when it can execute, and why it is being requested. The fact the VM machine -
need not be running during this pre-execution processing provides many advéntages. For
example, the ability to determine that malware (e.g., viruses, rootkits, worms, and other
such bad intent code) is present in the VM before the VM is executed allows for
eradication before the toxic payload actually has any opportunity to execute, even just a
few instructions. KnoWing what software and services will be started upon VM
activation can be used to prevent or delay executing of the VM to enforce policies and

optimize licensing strategies.

[0033] Techniques described herein overcome numerous problems associated with
conventional VM systems, to provide effective VM control and management. For
exampie, the use of VMs in production environments typically involves operators using
runbooks, scripts, and workflows to mahage the VM startup (boot), shutdown, rélocation,
pause, eté. These processes whether manual, semi-automated, or automated explicitly

reference VMs by name. When new versions of a VM are provided, the procedures and

11

WO 2008/049008 PCT/US2007/081652

autom.ation scripts need to be changed. Distributed systems, geographically separated
datacenters, and backup sites create an additional set of challenges. The new VM needs
to be distributed and all references to the new VM need to be changed at multiple
locations, both in a coordihated fashion. In accordance with one embodiment of the
present invention, VMs can be referenced or otherwise addressed using a unique tattoo
that uniquely identifies the VM even though its explicit name (e.g., VM42) is renamed in

a file system.

[0034] Also, when VMs are shutdown or quiesced, there are settings that govern
whether any updates or changes made to the VM will be accvepted or discarded. On one
hand, changes may be discarded at shutdown creating false positives in reports and
databaseé. On the other hand, changes that are inappropriate, unauthorized or destructive
may be committed when the VM is shutdown. One embodiment o.f the present invention
operates to manage the VM change or “evolution” process based on policy and behavior.
In addition, one advantage of VMs is that they can be readily cloned and created.
Templates can be created that allow a VM to be used as a model for many users of that
VM. Another embodiment of the present invention is configured to automatically derive
what changes are being made to copies, clones, and template-derived systems and evolve
new VMs that embody those changes. In one such case, when multiple copies of VMs
are executed, trends or patterns of VM usage are examined. New VMs are then created

that embody changes based on analysis of that historical data.

[0035] Furthermore, many areas within IT organizations and vendors use virtualization
and VMs to enhance, autemate, and optimize their functional area. Such a VM usually
operates in isolation and when the goal of its work is achieved, the VM is typically not
passed on to other areas in the development to production lifecycle. Each area typically
distills the components of their application or product, and packages the components
using traditional packaging tools and formats. Each subsequent area then takes those
packages and installs them on their systems, and then creates VMs from that resulting
system. This process is repeated multiple times. Software vendors and integrators go
through the same process in their software development, test, and release lifecycles and

ultimately create installation packages that have to be installed by the customer. Such

12

WO 2008/049008 PCT/US2007/081652

t

redundant or duplicative efforts are wasteful of enterprise resources. Another
embodiment of the present invention is configured to manage a lifecycle where VMs are
passed from vendor to customer or between departments, thereby reducing redundant
efforts within an enterprise. Such an embodiment can be configured with various
capabilities as discussed herein, including: the ability to verify a VM complies with
policy before it ié allowed to execﬁte; the ability to create and adapt a VM in accordance
with policy; the ability to provide reliable, resilient information about the VM (e.g.,
including information regarding its contents, performance, history, author, etc); the ability
to verify the integrity of and authenticate a VM; the ability to inspect a VM without
having to execute the VM and the ability to register, dynamically translate, transport and

decrypt a VM when needed.

[0036] Another embodiment of the present invention is configured to control and
sometimes prevenf VM execution in a given environment. This ensures that only
enterprise-safe VMs are’allowed to execute and update, and unsafe or unauthorized VMs
are removed or disabled. In addition, unmanaged VMs (those not included in the
~ managed system of the enterprise) will not be able> to execute on managed execution
platforms of the managed system. Likewise, unmanaged execution platforms (those not
included in the managed system of the enterprise) will not be able to execute managed
VMs. In short, only managed VMs and managed execution platforms can be used. Any

other VM/platform combination will not function.

System Architecture

[0037] Figure 1 illustrates é virtual environment configured in accordance with one
embodiment of the présent invention. VM management and/or control are enabled at
both the individual VM level and the system level. As can be seen, this example system
includes an enterprise communicatively coupled to a remote VM service centér via a
network 113: The enterprise can be, for example, a small company included in a single
office suite or a large company having a multi-building campus over which the enterprise
is spread. Likewise, the enterprise can be distributed over an even lafger geographi§ area
(e.g., regional, national, or international). Alternatively, the enterprise can be a home-

based ne_twork.

N

13

WO 2008/049008 PCT/US2007/081652

[0038] The enterprise in this example embodiment includes an enterprise storage
facility 109, an enterprise VM manager 111, and a number of computing envirohmgnts,
generally referred to as exe/c'ution platforms. 101. Each execution platform 101 can be
implemented‘, for example, as a general purpose computer (e.g., ,desktop; laptop), server
(e. g., file, application, email, and/or web servers), or special-purpose computer appliance
(e.g., gateway or network interface; firewall, set-top box). Alternatively, or in addition to,
an execution platform 101 can be implemented as a mobile communication device (e.g.,
cellular or satellite'telephone, personal digital assistant, smartphone) or a GPS syétern

(e.g., vehicle or personal navigation).

[0039] Each execution platform 101 includes a host or virtual machine monitor
(host/VMM 103) running on that platfbrm. The host/VMM 103 can be implemented with
conventional or custom fechnology, so as to allow a virtual machine (guests/VM 107) to
run therein. Each guests/VM 107 can be configured to carry out some specific function
or set of functions (as typically done), and is further configured with a systems
management partition (SMP) for storing the VM management information, as will be
discussed in turn. Also running in the host/VMM 103 is a mandgeme‘nt agent (m-agent)
105. In altqmative embodiments, thé‘ .agent 105 can be implemented outside: the
host/ VMM 103, so that it executes directly on the execution platform 101. In either case,
the agent 105 is programmed or otherwise configured to provide access to the SMP of the
guests/'VM 107, and to provide management and control functions as described herein.
The management agent 105 will be discussed in more detail with reference to Figures 2a-

C.

[0040] The enterptisc VM manager 111 can be implemented, for example, as a network
computer appliance or enterprise server that is prbgTammed or otherwise configured to
‘provide VM management and control functions as described herein. In particular, the
enterprise VM manager 111 can optionally be used to carry out the functionality of the
management agents 105 for each of the deployed guests/VMs 107. The enterprise VM
manager 111 can access the enterprise storage facility 109 to obt‘ain, for example, copiés
of the guests/VMs 107 themselves and VM management information for carrying out the

management and control functions. The enterprise VM manager 111 can also be

14

WO 2008/049008 PCT/US2007/081652

configured to carry out a digital rights management (DRM) scheme (e.g., for monitoring
and tracking license usage of host applications, content, and/or the guests/VMs 107
themselves, and ensuring licensing obligations are satisfied). In another e_rhbodiment, the
enterprise VM manager 111 and the storage 109 can be implemented with a CMDB. The
enterprise VM manager 111 will be discussed in more detail with reference to Figures 2a-

C.

[0041] The remote VM service center includes a VM management server 115 that can
be implemented with conventional or custom server technology, so as to provide VM
management and control functions as well as access to VM management information 117
as described herein. The VM management information 117 can be stored in any number '
of storage facilities (e.g., object-oriented or relational database, or an indeXeci look-up
table) Many server and storage schemes can be used, depending on factors such as the
amount of information 117, as well as desired access speeds:and query/response
complexity. The VM management and control' functionality, as well as example
structures of the VM management server 115, will be discussed in further detail with

reference to Figures 2a-c.

[0042] Note that, just as with the enterprise VM manager 111, the VM management
server 115 is optional, depending on the desired'management and control scheme. In
‘particular, VM management and centrol can be implemented at the guest/VM 107 level
(e.g., via SMP agenfry), the host/VMM 103 or platform 101 level (e.g., via m-agent 105),
the enterprise level (e.g., via manager 111), or at the remote network level (e. g., via server
115). Likewise, any combination of these management sites can be employed to carry out
various portions of the management and control scheme, as will be apparent in light of

this disclosure.

[0043] As previously explained, the VM management information 117 generally
includes any information that' can be used in managing and/or controlling guests/VMs
107 of the enterprise, and includes, for example, both physical and logicel'metadata such
as information about each guest/VM 107 (e.g., vendor, veféion, contenf, structure, activity
logs, access permissions, authorized users, and technique used to create or manipulate the

guest/VM 107) and information about each host/VMM 103 environment (e.g., OS, file

15

WO 2008/049008 PCT/US2007/081652

system, applications and executable content, licensing data, and contrbl files). The VM
managemeﬁt information 117 may further include policies (e.g., security compliance rules
such as security software and patches that are required prior to execution of a guést/V M
107, and licensing requirements to prevent use of unauthorized software) that apply to
each guest/VM 107 and/or host/VMM 103, so that enforcement of those policies can be
carried out prior to executing the VM. For instance, sﬁch enforcement may occur after a
VM start request is received and prior to executing the target VM in response to that VM
start request. Alternatively, such ehforcement can be made prior to executing the target
VM but independently of any start request (e.g., such as in the case where bulk
compliancy testing is carried out on a plurality of VMs being introduced into a managed
~ system). | The VM managcrﬁent information 117 may further include copies of the
guests/'VMs 107, and well as any DRM data (e.g., number of évailable licenses for a
given application and number of those licenses curréntly in-use) associated those

guests/VMs 107.

[0044] The network 113 can be any type of communications network, such as a local
area network (e.g., intranet), wide area network (e.g., cable networks, Internet), cellular or
satellite network, or some combination thereof. Alternatively, the network 113 can be
implernénted with direct connections between each execution platform 101 and the VM
management server 115, and/or direct connections between each execution platform 101
and the enterprise VM manager 111. In general, the execution platform 101, the
~ enterprise VM manager 111, network 113, and VM mahag’crhent server 115 may be in
communication via any type of wired and/or wireless connections, using a wide variety of
communication protocols and transmission techniques (e.g., TCP/IP, HTTP, FTP,
TDMA, CDMA, HTTPS, SFL), security schemes (e.g., VPN, encryption), encodi‘ngs or
formats (e.g., XML, HTML), and inter-network interfaces, as needed to allow for desired:

communication.

1[0045] As previously explained, enabling a virtual environment typically involves
getting a host/VMM 103 running on a execution platform 101 and then allowing a VM
(such as a guest/VM 107) to run in that environment. The hosts/VMMs 103 are

 constrained by hardware and instruction set architectures, and each guest/VM 107 can be

16

WO 2008/049008 PCT/US2007/081652

initially prepared for each vendor-specific host environment, as conventionally done. In
particular, the guests/VMs 107 are typically derived from physical machines that are then
converted into VMs via a processi of physical-to-virtual conversion, or P2V. The
guests/VMs 107 can also be created by installing software on the guest directly, where the
installation software believes it is instélling on a physical machine, when in fact it is
installing on a VM. ‘:ly"here are a number of software products and utilities that help create
and promote proliferation of VMs (e.g., such as pfoducts_ from AkimbiT, PlateSpinT™,
VMware®, and others). Once a guest/VM 107 is created, it can then have a systems
management partition (SMP) installed as discussed herein, in accordance with one
embodiment of the present invention. The SMP can be used for stoﬁng the VM
management information for that particular guest/VM 107, as well as management and/or
control agentry. An example SMP generation process is discussed in further detail with
reference to Figures 2a and 3. The guesté/VMs 107 themselves can be stored (e.g., in -
storage facility 109 and/or database 117) as files in any number of formats (e.g., vi_rfual
machine format of one or more Vendors); or as clones and templates of model virtual

machines previously made.

[0046] In one embodiment, each host/VMM 103 can have its own vendor-specific
proprietary format for storing the guest/VM 107, clones, and templates on the enterprise
storage facility 109, which can be, for example, a file server, NAS (network-attached
storage), SAN (storage area network), or other suitable storage mechanism (e.g., intranet,
removable drive, CD, DVD, tape, USB stick, etc). The enterpﬁse storage facility 109
may also store management information for the gueStS/V Ms 107, as well as management
and/or control agentry (just as that information can be stored at the remote VM service
center). Thus, the VM management information, as well as any management and/or
control >agentry can be stored in any one or combination of places within the virtual
environment (on an SMP of a guest/VM 107, on the host/V MM 103 or platform lOlb, in
the enterprise storaée facility 109, and/or in the VM management information database

117). (
[0047] In order to execute a guest/'VM 107, only an available host/VMM 103 and read

access to the files(s) representing the guest/VM 107 (e.g., referenced by an explicit file

17

WO 2008/049008 PCT/US2007/081652

name Or logi}cal file name) are required. In an enterprise environment such as that shown
in Figure 1, many different departments and groups have their own hosts used in
developmeht, testing, QA, support,'documentation and 6thér areas. A guest/VM 107 can’
be passed between groups or accessed from a shared location on the enterprise nethrk
such as enterprise storage facility 109. A guest/VM 107 can also be emailed, as many are
typically implemented with juSt one or two files contained in virtualized machine files

and parameters.

[0048] Although multibple’ execution platforms 101 are shown networked to a remote
VM service center, other embodiments may include a single execution platform 101
configured with a guest/VM 107 and a management agent (m-agent) 105 that are
executable on a host/VMM 103, as will be discussed in turn. In addition, some
embodiments may include other and/or different modules and functionality. Likewise,
other embodiments may lack modules and functionality described herein and/or distribute
the described functionality among the modules in a different manner (e.g., storage facility
109 can be integrated into manager 111, and/or storage 117 can be integrated into server

115).

Management Module

[0049] Figure 2a illustrates a VM management rﬁodule configured in accordance with
an embodiment of the present invention. - As previously éxplained, the functionality of
this module can be implemented, for instance, as the management a’gént 105, as the
enterprise VM manager 111, or on the VM management server 115, as discussed with
reference to Figure 1. Further note that the functionality illustrated in Figure 2a can be
distributed among the management agent 105, enterprise VM manager 111, and/or VM

management server 115.

[0050] In this example embodiment, the VM management module includes an SMP
génerator 201, a registration module 203, an access VM module 205, an enforce module
207, an event handler 217, an I/O (ihput/output) module 209, an adapt VM module 211, a
learning module 213, an optimization module 215, aﬁd a request handler module 219.
Each of these modules can be implemented in software. However, other embodiments

may be implemented in hardware (e.g., gate-level logic) or a combination of hardware

18

WO 2008/049008 PCT/US2007/081652

and software (e.g., microcontroller with embedded routines for carrying out the particular

functions as discussed herein), if so desired.

[0051] The SMP generator 201 is progrémmed or otherwise configured to dynamically
add an SMP to a guest/VM (thereby producing a guest/VM 107). This SMP generation
process can take place, for example, when the VM is created, discovered, or registered.
Likewise, templates and clones can also have the SMP added SMP by génerator 201 at
the time of creation or later discovery. In more detail, a VM typically has a configuration
file that can be modified to add the SMP. In one particulaf embodiment, the SMP
generator 201 is configured to make this modification. For instance, in a VMware®
environment, the VMX file (which describes the VM and all of its hardware including
drives) can be edited by the SMP genérator 201 to add the SMP. Simildr files and/or
commands also exist in other VM vendor environments (e.g., Microsoft® Virtual Server,
Xen™™, Linux® VServer™, coLinux™, etc), so as to allow for the addition of the SMP.
The SMP generator 201 can be configured to operate with a number of different vendor
environments, configuration files, and/or command sets. Alternatively, the SMP
generation process can be carried out manually, if so desired. The SMP is not bootable
and can either be hidden to the guest/'VM 107 during execution or available to the
guesf/VM 107 in a limited fashion (e.g., read only). In one paﬁicular embodiment, the
format of the SMP is FAT32, which allows for easy mounting from inside or outside of
the guest/VM 107, from both Windows® and Linux®. Other drive formats can be used
as well, depending on factors su@h as the underlying OS and desired mount/unmount
‘complexity (e.g., HFS for Macintosh® systems). Figure 3 illustrates a ‘Viftual
environment configured with an SMP, in accordance with one embodiment of the preseﬁt
invention. As can be seen, a target guest/VM 301\is pfocessed by the SMP generator 201
to produce a guest/VM 107. Within the guest/VM 107 (as well as the target guest/VM
301), there are one or more virtual disks 303 and one or more VM description files 305
(which describes the VM and the hardware it virtualizes, as well as some optional files
like system snapshots of the VM at various stages of processing). There may also be a
delta, difference, and undo/redo files for changes that are not committed to the VM

virtual disks 303. After processing by the SMP generator 201, the guest/VM 107 further

19

WO 2008/049008 PCT/US2007/081652

includes the SMP 309, which can be used for Storing management information as well as
- agentry for managing and controlling the guest/VM 107. Access to the SMP 309 is
provided by the m-agent 105. ‘ |

[0052] The registration module 203 is programmed or otherwise configured to register
VMs (such as gueSts/VMs 107) that will be used in a managed sysiéfn according to an
embodiment of the present invention. In one such case, the registration module 203
operates to register both logical and physical names of a VM, and to then transfer the VM
bits to a file server repository (e.g., storage facility 109 or database 117). The registration
module 203 may also be configured to translate the VM to any or all target host
environment variants (e.g., Microsofti® Virtual Server, VMware®, XenTM, Parallels, etc),
and to transfer those variants to the repository as well. The registration'module 203 may
also be configured to compress and/or encrypt the VMs (e.g., using conventional or
custom compression/encryption techniques), if so desired. The registration module 203
may also be configured to transfer the VMs fo their intended deployment destinations, as
part of a pre-caching or staging scheme. Such pre-caching/staging can be based on, for
example, historical use statistics and VM functionality (e. g., VMs that perform function
X are historically requested for use on node ten of enterprise network). The historical use
data can be stored, for instance, at storage facility 109 or database 117 and exploited by
VM manager 111. The registrétion process carried out by module 203 is discussed in

further detail with reference to Figures 5 and 6.

[0053] The access VM module 205 is programmed or otherwise configured to access
stored VMs (such as guests/VMs 107) and make them available for use in a managed
' system according to an embodiment of the preseﬁt invention. In one such case, the access
module 205 is configured to ifnplicitly request ba VM via logical name, which is resolved
into an explicit name. The explicit named VM is then looked-up to find source -
location(s) to get the physical VM bits. The acquired VM bits are then transferred to, or
directly referenced by, the target destination. That destination can be, for exémple, a
particular host/VMM 103 (or a set of hosts/VMMSs 103 to which the acquired VM is
copied) or to a cache or other designated storage location in which the VM can be stored

or effectively staged for subsequent use. . The access module 205 may also be configured

20

WO 2008/049008 PCT/US2007/081652

. to decompress and/or decrypt the VM (e.g., after transfer) using technfques

complementary to any compression/encryption techniques used when storing/registering |
the VM, if applicable. The access module 205 may also be configured to translate the
VM to various target host environment formats (e.g., Micrbsoft® Virtual Server,
VMware®, XenTM, Parallels, etc), assuming those VMs have not been pre-translated
(e.g., at the registration proéess). The acquisition process carried out by module 205 is

discussed in further detail with reference to Figure 7.

[0054] The enforce module 207 is programmed or otherwise configured to enforce a
VM compliance scheme in a managed system according to an embodiment of the present
invention. In one such case, the enforce module 207 ié configured to execute policy-
based checking of the VMs, as well as their respective hosts (such as host/ VMM 103)
and/or the requestor. For ihstance, the enforce module 207 can be configured to check if
a)guestNM 107 is properly licensed, and/or if the target host has the proper security
software and patches installed, and/or to check if the requestor has access permission to
use the guest/VM 107. The context and time of the request can also be checked for
policy compliance to enforce policies regarding execution windows (e.g., M-F, 9-5) and
intended uses (e.g., production vs. test). The qnforcc module 207 may also be configured
to call or otherwise execute plug-ins to aSsiét in the enforcement of the compliance
scheme. Further note that the enforce module 207 may be configured with excc;ptions to
Various policies (e.g., administrator level access may be exempt fromrpolicy or certain
ﬁle; known to be good may be excused from the virus scanning process). The enforce
process carried out by module 205 is discussed in fﬁrther detail with reference to Figures

Ra-8d.

: [0055] The adapt VM module 211 is programmed or otherwise configured to 'adapt a
non-compliant VM (such as a guest/VM 107) into compliance in a managed system
according to an embodiment of the present invention. Thus, the enforce module 207
applies the poliéies and detects non-compliances, and the adapt VM module 211 makes
the changes necéssary to bring the VM into compliance. In one such case, the adapt VM
module 211 is configured to adapt a non-coﬂqpliant VM into compliance by making

changes to the VM, such as direct manipulation/insertion of files, parameters, settings,

21

WO 2008/049008 PCT/US2007/081652

and/or dafa into the VM. The adapt VM module 2-11-may. also be configured to .call of
otherwise schedule other agents ,or‘processes to correct non-compliances. Example non-
compliances that cén be fixed b}{ the adapt VM module 211 include missing security
software (e.g., install virus scanniﬁg software, install security patches to the host OS), bug
fixes and hotfixes, configuration (e.g., require certain user-conﬁgurablensecmit‘y settings,
such as firewall level of medium ;jr higher), and licensing issues (e.g., removal/ﬂagging
of unauthorized or bootleg software and DRM conformance based on number of available
licenses). There are also non-compliances not contained in the VM which can be
~addressed by the adapt VM module 211, such as the registration of the VM in a CMDB or
Asset Management database or integration with a license manager or servef to acquire
appropriate licenses for the execution. The adapt process carried out by module 211 is

discussed in further detail with reference to Figure 9.

[0056] The learning module 213 is programmed or otherwise configured to leafn which
VMs (such as guests/VMs 107) require what adaptations in a managed system according
to an embodimenf of the present invention. In one such case, the learning module 213 is
conﬁgured to derive changes made during the adapt process (e.g., just after compliance is
satisfied), and to capture those changes into a profile database (e.g., stored on SMP 309 of
guest/VM 107, or in the storage facility 109, or in database 117). Likewise, changes
made to the VM since its startup can be captured. Such captured data provides insight
into more efficient VM management. For example, such data can be analyzed to detect |
that certain service packs are reapplied eVery time (not committed) a pérticular guesf/VM
- 107 is used. Likewise, software that is consistently re-installed or removed during each
VM use sessioﬁ can be identified. Such learning enables optimization, which can reduce
repetitive or consistent adaptations that can be permanently integrated into a VM. The
learn process carried out by module 213 is discussed in further detail with reference to
Figure 10. |

[0057] The optimization module 215 is programmed or otherwise configured to
optimize the VMs (such as guests/VMs 107) in a managed system according to an
embodiment of the present invention. In one such case, the optimization module 215 is

configured to analyze the changes detected during the learning process, and to suggest

22

WO 2008/049008 PCT/US2007/081652

and/or derive optimized variants of the VM. For example, the optimization module 215
may be configured to detive a new (optimized) VM without applications that were
. installed, but are never or rarely executed (thereby saving licenses for other uses, in
accordance with a given DRM scheme). Likewise, a patch or security update that is
consistently installed “during adaptation of a VM can be permanently installed
(committed) for that VM. The optimization process carried out by module 215 is

discussed in further detail with reference to Figure 10.

[0058] The event handler 217 is programmed or otherwise configured to provide VM
host (such as host/VMM 103) and utility integration by logging events that affect a VM

= (such as a guest/VM 107) in a managed system according to an embodiment of the

present invention. In one such case, various events (e. g., starts, stops, conversions,
snapshoting, and 6ther such activity) are captured, hooked, or otherwise intercepted by
the event handler 217 and subsequently logged to the cérresponding VM’s SMP. For
example, events for multiple hosts (e.g., VMware® host, Microsoft® host, Xen™ host)
can be intércepted by the ‘event handler 217 upon execution. Likewise, events for
multiple utilities (e.g., VMware® VirtualCenter, PlateSpinT™ PowerConvert) can be
intercepted or otherwise forwarded to the event ‘handler 217 ‘upon execution. ’ One
example event handler 217 flow is for VM execution (starting and stopping VM), which
is as follows:

a) Guest/VM 107 is powered on;

b) Start event is sent to the event handler 217;

¢) Event handler 217 writes the start event to the SMP of the guest/VM 107;

d) Guest/VM 107 is pdwered off; |

e) Stop event is sent to the event handler 217; and ‘

f) Event handler 217 writes the stop event to the SMP of the guest/VM 107.
Note that events can still be written to the SMP (as it is mounted or otherwise available
via its host) even when the guest/VM 107 is powered off. Another exam‘pie event handler
217 flow is for VM conversion from one format (e.g., VMware®) to another format (e.g.,
Microsoft®), which is as follows: | |

“a) Guest/VM 107 is converted from one vender format to another;

WO 2008/049008 PCT/US2007/081652

b) Cenvert event is sent to the event handler 217,

¢) Event handler 217 writes the convert event to the SMP of the pre- '
conversion guest/VM 107 (e.g., effective entry: “converted to Microsoft® VM on Jan. 1,
1999”); and o : | |

d) Event handler 217 writes the convert event to the SMP of the post-
conversion guest/VM 107 (e.g., effective entry: “converted from VMware® VM on J an.
1,1999”). | |
In this example, the conversion process is intercepted and logged. Note that once a
request for conversion is detected; the new VM resulting from the conversion procesé can
be initiated into a managed system via the registration process as discussed herein, for
example, with reference to Figure 6. Such event intereept-triggered registration can be
employed for any type of VM translation, conversion, creation, and-other such processes
resulting in new VMs to be registered for use in a managed system (e.g., convert process
= convert process + registration process for new.VM).' Another example event handler
217 flow is for detection of a VM has been converted from one format to another (after
the fact), which is as follows:

‘a) Guest/VM 107 is. converted from one vender format to another (no convert
event is sent to the event handler 217, as conversion utility is not hooked);

b) Post-conversion guest/VM 107 is powered on;

c) Start event is sent to the event handler 217;

d) Event handler 217 reads the SMP of the post conversion guest/VM 107,
and learns that the guest/VM 107 was a VMware® VM at the last management control
point; ' »
¢) Bvent handler 217 writes the convert event to the SMP of the post-
conversion guest/VM ‘1 07 (e.g., effective entry: “discovered as a Microsoft® VM on Jan.
1, 1999 from VMware® VM); and |

- f) Event handler 217 writes the convert event to the SMP of the pre-
conversion guest/VM 107 (e.g., effective entry: “converted to Microsoft® on Jan. 1,
1999”). | | L

24

WO 2008/049008 PCT/US2007/081652

In this example, the initial conversion process was not hooked (for what ever reason, such
as not configured or intercept mechanism was temporarily suspended). Thus, the event
handler 217 effectively detects that a conversion (from a VMware® VM to a Microsoft®

VM) has taken place, aﬁd then logs the detected activity.

[0059] The event handler 217 effectively providés a control point to allow a program or
process to intercept the start VM process (or other such events) so there are several ways
to force a request through. In one particular case, the event handler 217 intercepts file
system requests for the target VM and does not return control until some desired action or
actions have completed. Figure 2b illustrates different control points and example actions
that can be called by the event handler module 217, in accordance with an embodiment of
the present invention. In the pre-execution mode, when a startrr‘equest is received, it is
intercepted by the event handler 217, and various pre-execufion processes are called or
otherwise verified, such as registration (e.g., if VM is not registered, then tattoo and
metadata extraction processes can be engaged as discussed herein), policy enforcement
(e.g., apply given policies to content of VM), adaptation (e.g., rhake necessary changes to
VM to achieve compliance with policies), and commit/discard (e.g., permanently adopt
changes, or mark changes as “do not commit”). In the execution mode, commands such
as stop, suspend, log, snap, and commit/discard can also be intercepted by the event
handler 217, and various processes are called or otherwise verified, such as an
“execution—Watcher” module or monitoring program to ensure compliance is not
compromised during execution. In the post-exeéution mode, when a stop tequest is
received, it is intercepted by the event handler 217, and various post—exeéution processes
can be called or otherwise verified, such as learn (e.g., identify what changes have been
made to VM), optimize (e.g., adopt VM to permanently contain certain or all changes
made), and commit/discard (e.g., permanently adopt changes, or mark changes as “do not
commit”). | |

[0060] In one particular embodiment, the execute/start intercept point is implemented
by placing a wrapper in front of the start VM process so thé event handler 217 gets called
ﬁrst, and pre-execution processing can then be executed. After pre-execution processing,

if ok to execute (e.g., VM complies with all content policies), then the event handler 217

25

WO 2008/049008 PCT/US2007/081652

directly in\}okes the start VM request. In another embodiment, the execute/start intercept
point is effectively forced by changing the VM description file so the VM fails to start
every time. The failure event is then reported to the event handler 217 by a hook, which
initiates pre-exécution processing. After pre-execution processing, if ok to execute (e.g.,
VM complies with all content policies), then the event handler 217 is ‘conﬁgured to
temporarily fix up the VM description ﬁle\ to allow normal start event flow. Other
example VM management functions and their respective intercept event/control points
include: |

e Metadata creation/VM discovery - hook into the VM creation, import and
registration processes to initiate or queue requests to generate VM metadata as
VMs are “discovered”.

e VM detection - Optionally intercept file system requests to the VM file system
(e.g., VMFS for Vmware®) to detect creation of new VMs.

e VM detection - Scan disks, directories, SANs, and media looking for VMs based
on name (*.VHD, *.VMDK, etc) or inspect files (e.g., open and read them)
looking for known VM formats. f ,

e Pre-execution control - Create an exit or method dispatch at strategic points in the
VM start process on the host to force a compliance test (e.g., check VM itself or
VM metadata against policies) and conditionally allow VM execution to proceed,
be aborted or have corrective action taken.

[0061] The request handler module 219 is programmed or otherwise configured to
replace native commands and interfaces, so as to effectively provide a homogenous
command set and interface across multiple vender VM environments, in a managed
system according to an embodiment of the present invention. In currently available
virtualization products, there is a lack of control points and events hecessary for effective
VM management and control. For instance, there are no exits or events that are generated
when someone requests a VM to start. By the time any event is generated, the VM is
already exccuting. Thus, until such control points/events are provided in a given
virtualization product, an alternative approach is necessary to acquire control at various
critical points in the VM lifecycle. Request handler module 219 can be used for this
purpose. The request handler module 219 can be implemented, for example, using a
command line or shell (e.g., DOS command line), web services, APIs, and other such
suitable interfaces. In one particular e’mbodiment, request handler module 219 is
configured with a dispatcher command shell as graphically illustrated in Figure 2¢. Note

P

26

WO 2008/049008 PCT/US2007/081652

that the vertical grouping of commands is not intended to implicate any rigid structure or
relationship between the commands. Other such command sets can be used as well, as
will be apparent in light of this disclosure. The command shell effectively acts as a front-
end wrapper that is invoked and performs whatever additional processing is required.-and
also invokes the native VM command. The following pseudo code explains ééch of the
commands in this example command set, in accordance with one embodiment of the
present invention:

¢ RegisterVM
o Call AnalyzeVM (optional)
o -Tag Processing
» TagVM(logical name)
= Parse Logical Name into Discrete Tags, call TagVM for each
» Add optional additional tags describing/characterizing this VM,

call TagVM
o TagVM ‘
o SQLPUT Row into Table VMTag with Columns VM (passed in) and Tag
e UnTagVM
o SQL Remove Row from Table VMTag with Columns VM (passed in) and
Tag

e UnRegisterVM
' o Atend of life for VM
o Harvest info (e.g., performance, uptime/downtime, usage, licenses) on the
SMP before deregistering/destroying VM (historical use statistics and data
for use in a macro- management scheme apphed to the overall managed
system)
o UnTagVM(*) for this VM
o Optionally remove from databases (e.g., asset management, CMDB, etc)

e AnalyzeVM
o) Call MetadataExtractVM (e.g., various extractor plugins can be used)
» Physical VM metadata
» Logical VM metadata

Internal VM (e.g., does VM have proper content?)
External VM (e.g., is VM propetly registered?)
* VM host system may be similarly analyzed
o Generate meta-metadata (system signature)
o Call TattooVM '
= Tattoo can be either via unique ID process (e.g., UUID/URN in
UNIX) or can be assigned based on time, randomness, name
o Place results of extraction in SMP and/or external database
e PutVM

27

WO 2008/049008 PCT/US2007/081652

o

Via FTP or HTTP, upload VM (passed in) into a data repository
remembering its name in the repository; alternatively, don’t actually move
the VM, but ensure location where VM is registered is continuously
network accessible and contains the definitive VM (e.g., URL/URI)

SQL PUT into Table VMData with Columns passed in (VM, Type, etc)
and data repository Name as Location, and Location (passed in) as
OriginalLocation ’

StartLogical VM

(0]

O

o

Ask specified host via external interface (e.g., Web Service, API,
Command line) to start a LogicalVM

On specified host, Logical VM is transformed to an actual accessible VM
via Access logic

Call StartVM

StopLoglcaIVM

o]

o

o]

0o

o

0]

o

(0]

e

Ask specified host via external interface (e.g., Web Service, API,
Command line) to stop a Logical VM

On specified host, LogicalVM is transformed to an actual accessible VM
via Access logic

Perform policy scan: if policy violation detected during execution, then
disable commit

, Call StopVM
LookupVM

Use Logical Name as a tag or use requested Tag(s)

For each tag, do a SQL Query from Table VMTag storing each result set
Compute the intersection of all the resultant sets to create a set of
PhysicalVMs that match the Logical Name

If more than one Physical VM is part of the result, algorithmically pick one
(e.g., the first one in the list) or optionally prompt for selection or return
list for further refinement

Return the PhysicalVMs matched or a return code indicating that no
matches were found

GetVM

(0]

.

0
o

For specified VM and Type, do a SQL Query from Table VMData
If no matching record found,
* Do a SQL Query from Table VMData searchlng for VM with any
Type -
» If Matching Records Found,
e Pick the First Matching Record
e In atemporary location, convert VM (e.g., via PlateSpinTM
PowerConvert) from stored type to passed-in type
e Do a PutVM on the converted VM
e For specified VM and Type, do a SQL Query from Table
VMData (on the record just added) '
If no matching record found, return a VM Not Found return code
Return the matched VM

28

WO 2008/049008 PCT/US2007/081652

GetPolicy

0]

0o

0o

Do LDAP Quenes based on any combination of Who (userid), What (vm),
Where (host), When (time)

Take the union of the resultant set of queries and use the result for the next
step

Convert the result into an XML Rules document (e g., RuleML format)
and return the XML document

CreatePolicy

0o

¢]
o

o}

Five types

= Requestor/Userid (who)

" VM (what)

» Host (where)

» Time (when)

» Context (why)
Access Control List/Discretionary Access Control List (ACL/DACL)
Rules: (e.g., If Context = Prod and VMOS = WINDOWS then MUST
CONTAIN SP2)
Patterns: Allow(Prod*, *Websphere *)

ChcckPohcy

o]

o
O

O
o
o

Verify that VM is allowed (based on Requestor, Type Location, Tattoo
etc)

Verify that Host is allowed

Verify that mandatory items (data, appllcatlons patches, settings, etc) are
on VM

Verify that disallowed items (data, apphcatlons games, settings, etc) are
NOT on VM }
Optionally, verify that context/reason (Production, Test, etc) matches rules

~ Optionally, verify that time window matches rules (e.g., VM only allowed

to execute on 1% shift when IT support is available)

Verify VM is correctly and currently registered in CMDB/Change control
system

Verify starting this VM would not violate concurrency limit for this VM
If any verification fails, return failure

If all verifications pass, return success

AdaptVM

(o]

o}

o]

O
O

For mandatory items in policy, add them to VM either directly (1nsert10n)
or indirectly (schedule task to add)

For disallowed items in policy, remove them from VM either directly
(removal) or indirectly (schedule task to remove)

By default, do NOT register this changed VM nor store this VM centrally

“(e.g., via RegisterVM or PutVM)

Record in the SMP the adaptations necessary and performed
VM host system can be adapted per pohcy as well, if necessary

StartVM

0o

Call CheckVM

29

WO 2008/049008 PCT/US2007/081652

o On specified host, remember the original commit setting in SQL database -
for this VM and disable commits in actual VM
o On specified host, Physical VM is started (e.g., on ESX Server - vimware-
cmd start command)
o Optionally for every PolicyInterval specified, call CheckVM
e StopVM .
o Call CheckVM
o 'Stop VM using host native command (e.g., on ESX Server - vmware-cmd
stop command)
e LearnVM
o After the VM stops or is suspended, the following operatlons are
performed:
= BeforeVM is taken as the VM before any adaptatlon occurred
* AfterVM is taken as the stopped or suspended VM (pending
commits via REDO log)
= BeforeVM and AfterVM are differenced against each other to learn
what happened when the VM ran
» Examples.of what may be learned:
e Which applications/services/programs were installed or
uninstalled ,
e Which fixes/service packs were applied to what (e.g., OS,
programs, services)
e What applications/services/programs ran
e How much system resources were used (e.g., CPU vs. 1/O
vs. Network, etc).
o Similar learning may be employed for the VM host system
e CheckVM
o The VM is checked for policy adherence -
» This can be achieved using an agent running inside the VM and
, - communicating with it to acquire metadata '
= This can be achieved by suspending the VM and doing an external
metadata scan
» Once the metadata is obtained by one of these methods, GetPolicy
and CheckPolicy calls are made to determine adherence of VM to
specified policy ' ’
0 VM host system can be checked for policy adherence using similar
techniques :
o IfPolicy is violated, one or more of several (configured) actions may be
. performed Some examples:
= Suspend VM (e.g., vmware-cmd suspend)
* Set Commit=NO flag for VM (thus throwing away any changes)
* Notify Administrator (e.g., email, SNMP, message to console)
" JLog
o CommltVMChanges
o Retrieve Commit settlng stored during StartVM phase

30

WO 2008/049008 PCT/US2007/081652

o If Commit=Yes, merge VM with REDO log
o If Commit=No, discard VM changes
e EvolveVM
o Based on information determined in Learn phase and information specified
in Policy and/or Configuration settings create derivative VMs from the
current VM
o VM host system can be evolved as well, if necessary
o Add these derivative VMs to the repository via PutVM
o Examples:
= Create derivative VM Wlth Windows® Service Pack 2 (SP2)
applied
» Create derivative VM by removing application (e.g., SQL Server)
that has not been used the last 10 times that this VM was run)

[0062] The following are example command sequences ofv request handler module 219
(comments for each command line are included in brackets / ... /):

Register: RegisterVM lvm=prodwebspheresm,vm=VM42
/register both logical name (prodwebspheresm) and the explicit name (VM42)/
PUTVM vm=VM42 type=vmware,location=...
/store VM by explicit name, along with VM type in specified location/

Specify: STARTLOGICALVM lvmzprodwebspheresm,host=host9
/specify logical name of target VM and explicit name of target host/
/other embodiments specify explicit name of target VM, if so desired/

Access: LOOKUPVM prodwebspheresm
/look-up logical name of target VM to get location of VM bits/
GETVM vin=VM42
/use explicit name to get target VM from location/

- Enforce: GETPOLICY vm=vm42
/get policies for explicitly named VM/
CHECKPOLICY vm=vm42.vmx,policy=vmpolicy87
/apply given policy to explicitly named VM/

Adapt: ADAPTVM vm=vm42,avm=vm42a
/adapt explicitly named VM to match another explicitly named VM/

Execute: STARTVM vm=vm42a.vmx,policyinterval=5minutes
Learn: LEARN vm=vm42 redo=vm42redo
Commit: COMMITVMCHANGES vm=vm42

Optimize: EVOLVEVM oldvm=vm42,newvm=vni43,changes=prodrun

31

WO 2008/049008 PCT/US2007/081652

REGISTERVM oldvm=vm42 newvm=vm43, lvm=prodwebsphere

Functionality associated with each of these commands is discussed in further detail with
reference to Figures 4-10. Other commands and their underlying fuﬁctionality will be
apparent in light of this disclosure, such as ReplacePolicy, UpdatePolicy, and
DeletePolicy. |

[0063] An alternative to providing an interface layer for VM requests (such as request
handler module 219) for transparently handling VM management capabilities is fo
configure the VM execution platform itself to intercept VM requests. As previously
explained, such interception may be necessary if the control points necessary to process
the requests are not provid'ed by the host vendors. In one such particular embodiment, the
-host iﬁterception process also allows the current, existing VM requests (e.g., starting,
stopping, creaﬁng VM, etc) issued by operators, scripts, and other interfaces to be
transparently intercepted so additional processing can be performed, such as those
described herein. The interception of the requests will vary by host vendor and platform.
VM requests can be intercepted at both relatively high and low system levels. At a
relétively high level, VM requests can be intercepted as early as possible.in the host
processing, before the VM is accessed or read, and the interception should be
synchronous. At -a relatively low level, the interception can be accom‘plishéd, for
example, by replacing a shared object or dynamic link library, trapping the /O call to
access the VM, and/or inserting code into the VM host or open source host versions to
redirect requests combined with recompiling the_ code with the appropriate control points

added to the source;

[0064] Figure 2d effectively summarizes the various request/event intercept
mechanisms used to enable managed execution environments, as discussed herein. In this
example, the intercept mechanism enables request/event interception and provides a
managed request interface. The intercept mechanism can be implemented, for example,
| as event handler 217, request handler module 219, or an intercept-enabled platform 101,
as previously discussed. With such a mechanisin in place, the platform 101 is enabled
(either directly/within the host, or indiréctly/oqtside of the host) to be a managed

execution platform. It will be appreciated in light of this disclosure that the specific

32

WO 2008/049008 PCT/US2007/081652

implementation of the intercept mechanism will vary based on the vender version and

architecture of the execution platform.

[0065] The I/O module 209 is programmed or otherwise configured to provide
“input/output capability to the VM management module, so that each of the m‘odules‘
within can communicate with a guest/VM 107, data storage 109, data storage 117, and/or
other entity on network 113 or otherwise accessible within the managed system.
Furthermore, note that the modules within the VM management module may
~ communicate with one another directly using, for example, conventional inter-process

communication techniques.

VM Managenient and Control Process -

[0066] Figure 4 illustrates an overall VM management and control process 400, in
accordance with one embodiment of the.present invention. As can be seen, the overall
process 400 includes a register process 600, a specify process 401, an access process 700,
an enforce process 800, and adapt process 900, an execute process 403, a learn process
1000, a commit process 405, and an optimize process 1100. Each of these processes can
be implemented in software, hardware, or some combination thereof, as previously

explained.

[0067] The regi’stration process 600 can‘be carried out, for example, by module 203.
As previously ' explained, this module can be implemented in the tn-agent 105, the
enterprise manéger 111, and/or the management server 115. In general, the process 600
operates to register VMs (such as guests/VMs 107) that will be used in a managed system
according to an embodiment of the present invention. In 'onesuch embodiment, the
registering one or 1Iiore VMs for use in a managed system includes assigning a logical
name to each VM and registering each VM and its location in a VM registry.
Management data can also be extracted from each VM. In addition, each VM can be
disabled for use outside the managed system. Pvrocess 600 is discussed in further detail

with reference to Figures 5 and 6.

[0068] The specify process 401 can be implemented as typically done and can be
carried out, for example, by a dedicated specification module or integrated into another

process or processes, if so desired. In accordance with one particular embodiment, the

33

WO 2008/049008 PCT/US2007/081652

| specify process 401 operates to explicitly specify the name of a guest/VM 107 that is in
the target format, and already co-located with the target host/VMM 103. The type of
host/'VMM 103 and the locale are implied by the guest/VM 107 requested. AltematiVely,
the specify process 401 can be conﬁgured to implicitly specify the name of a guest/VM
107 by using its logical name and the explicit target host/VMM 103 name on which that
VM is located. Such a specification module or functionality can be implemented, for
' example, in the m-agent 105, the enterprise manager 111, and/or the management server

115.

[0069] The access process 700 can be carried out, for example; by module 205. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the mahagement server 115. In general, the process 700 operates to |
access stored VMs (such as guesfs/VMs 107) and make them available for use in a
managed system, éccording to an embodiment of the present invention. As Wiil be
ap‘preciéted in light of this disclosure, the accessed VMs can be explicitly disabled for use
outside the managed system (e.g., by way of encryption or VM code modification). Note
that the registration process 600 can occur independently and remotely from the access
process 700. For instance, the registration process 600 can take place on a first network,
while the access process 700 can takerplace on another network (e.g., which accesses
registered VMs stored on the first network). Process 700 is discussed in further detail

with reference to Figure 7.

[0070] The enforce process 800 can be carried out, for example, by module 207. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 800 operates to
enforce a VM compliance scheme in a managed systern,‘ according to an embodiment v’of
the present invention. In one such embodiment, process 800 includes getting compliance
policies regarding a target VM, and prior to executing the target VM, applying the
compliance policies against the target VM to determine if the target VM is compliant
with the VM compliance scheme. Process 800 is discussed in further detail With ,

reference to Figure 8.

34

WO 2008/049008 PCT/US2007/081652

[0071] The adapt process 900 can be carried out, for example, by module 211. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 900 operates to
adapt a non-compliant VM into compliance in a managed system, according to-an
embodiment of the present invention. In one particular embodiment, the enforce process
800 and the édapt process 900 are components of the registration process 700 (e.g., where
a number of VMs are registered, compliance tested, and adapted as neceésary for -
subsequent access and use in a managed system). Process 900 is discussed in further

detail with reference to Figure 9.

[0072] The execute process 403 can be implemented as ~typi¢a11y done aﬁd can be
carried out, for example, by a dedicated execution module or integrated into another
process or processes, if so desired. In accordance with one particular embodiment, the
execute process 403 operates to execute the target guest/VM 107 in a requested
host/VMM 103 environment. Resource manageinent principles can be used to select an
appropriate host/VMM ’103, if so desired. In addition to this typical functionality, the
process 403 may further include an ‘“execution-watcher” functionality. In such an
embodiment, the process 403 operates to periodically examine the running guest/VM 107.
If the guest/VM 107 becomes non-compliant for any reason (e.g., based on policy), then
process 403 can implement one or more remedial actions, such as log, stop, suspend,
snap, and mark the guest/VM 107 as do-not-commit changes. Other remedial action may
also be taken, such as virus scanning and removal, removal of unauthorized software, and
configuration setting adjustments. Such an execute module or functionality can be
implemented, for example, in the m-agent 105, the enterprise manager 111, and/or the

management server 115.

[0073] In one example embodiment configured with execution-watcher functionality,
prior to the VM starting.(or resuming) to execute, process 403 opérates to change the
settings of thé VM to create a transaction log (e.g., .REDQ file) and not commit changes;
the commit setting in the managed system (e.g., set within module 105, 111, and/or 115
for Figﬁre 1) is set to its default value (e.g., do-not-commit or selective commit). Note

that this change to VM settings can be done on-the-fly. This effectively takes the commit

35

WO 2008/049008 PCT/US2007/081652

functionality from the éxecution platform and gives it to the managed system, so that no
or otherwise selective committing can be carried out as desired. Once the VM is running,
the’ execution-watcher checks (e.g., on a configurable time interval) that the VM is in
policy-compliance. If not, remedial action can be téken (e.g., by operation of process 403
itsélf, or other processes of the managed system, such as the enforce process 800, adapt
process 900, or léarn process 1000, and/or commit process 405). Once the VM stops (or
suspends), the managed system checks its commit setting and makes decisioﬁs to commit
or not. If commit is decided upon, the managed system can then call a conirrlit process
(e.g., one of the Vendor-supplieéi utilities or commit process 405) to commit the

transaction log to the VM.

[0074] The‘learn process 1000 can be carried out, for example, by module 213. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 1000 operates to
learn which VMs (such as guests/VMs 107) require what compliance adaptations in a
managed system, according to an embodiment of the present invention. Process 1000 is

discussed in further detail with reference to Figure 10.

[0075] The commit process 405 can be implemented as typically done and can be
carried out, for example, by a dedicated commit module or integrated into another process
or processes, if so desired. In accordance with one particular embodiment, the commit -
process 405 operates after execution is finished to permanently commit changes made to
a guest/VM 107, or to discard those changes. In addition to this typical functionality, the
process 405 may be configured to further include a selective commit control. In such an
~ embodiment, if the post-execution VM content violates policy or is otherwise non-
compliant, then process 405 can implement one or more actions, such as log, disable VM, ‘
mark the VM as do-not-commit changes, or prevent the changes from being committed
(e.g., by deleting REDO/DifT file(s)). Process 405 may further be configured to partially
accept changes made ‘(e. g., by editing REDO/Diff file(s) to eliminate undesired changes,
but keeping the desired changes, and then committing the desired changes). Such a
commit module or functionality can be implemented in the m-agent 105, the enterprise

manager 111, and/or the management server 1 15,

36

WO 2008/049008 PCT/US2007/081652

[0076] The optimize process 1100 can be carried out, for example, by module 215. As
previously explainéd, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 1100 operates to
optimize the VMs (such as guests/VMs 107) in a managed systerh based on information
provided by the learn process 1000 (e.g., where adaptations that are consistently made by
the adapt process 900 each'time a VM is run are permanently committed to that VM),
according to an embodiment of the present invention. Alternatively, or in addition to, the
procéss 1100 can operate to suggest and/or derive a Variaht of a target VM that
permanently includes any desired change. Process 1100 is discussed in further detail with

reference to Figure 10.

[0077] One particular embodiment of the present invention can be used (e.g., by the
cumulative operation of the register process 600, access process 700, enforce process 800,
and adapt process 900) to protect against the execution of VMs on execution platforms
not included in a given managed system. Likewise, Such‘ an embodiment can be used to
prbtect against the execution of unregistered VMs in an execution platform included in a
given managed system. In one such embodiment, the register process 600 makes a VM
available by logical, abstract names and tags, and also disables or protects the VM by
altering the VM 1in one of several ways. The VM can be encrypted and only a managed
VM can request the decryption. Alternatively, or in addition to, the VM can have part of
its VM control information or header manipulated so that only a managed execution
platform can correct/reverse the manipulation. Note that an advantage of such
manipulation over encryption is elapsed time and CPU necessary to decrypt a VM (e.g.,
some VMs are very large, in excess of 20 gigabytes, and the decrypt times could be long).
* Thus, the goal in accordance with one such embodiment is to ‘have a managed VM that
can only be executed on a mahaged .execution platform. Any other VM/host combination
will not operate (e.g., a maﬂéged host will not execute an unmanaged VM, and a managed

VM cannot be éxecuted by an unmanaged host).

VM Registration

[0078] Figure 5 illustrates a registration module 203 and VM management data storage

facility configured in accordance with one embodiment of the present invention. The VM

37

WO 2008/049008 PCT/US2007/081652

management data storage facility could be implemented, for example, as the enterprise
storage facility 109, VM management data database 117, or a combination of the two

storages.

[0079]. As can be seen, the registration module '203 of this example embodiment
includes a tattoo process 501, a metadata extraction process 503, a registry/naming
process 505, and a security process 507. Each of these processes can be implemeflted in
software (e.g., C, C++), although other hardware and firmware embodiments will be
apparent in light of this disclosure. The VM management data storage facility includes a
VM méﬁagement data storage 509, a VM repository 511, and a VM registry 513. These
storages 509, 511, and 513 can be co-located or exist in geographically different areas.
Module 203 can write data from the registration process directly to the storages 509, 511,
and 513, or via a communications network, such as that discussed with reference to

network 113.

[0080] The VM management data storage 509 is. used for storing VM tattoos
(guest/VM 167 idehﬁﬁcation mechanism) and VM metadata (details about the guest/VM
107) 'and signatures (based on physical, logical metadata, and/or content). The VM
repository 511 is used for storing the actual bits of the VMs, such as guests/VMs 107.
Note that the stored VMs can be compressed, encrypted, and/or tattooed. The VM
registry 513 stores VM logical names with the location of the corresponding VM bits
(within the VM repository 511, or some other reported location). The overall storage
facility (as well as any of the individual storages 509, 511, and 513) can be implemented,
for example, using conventional data storage and access technology. In one particular
embodiment, storage 509 is implemented with a configuration management database
(CMDB), and storage 511 is implemented as a SAN or file server repository, and storage
513 is implemented as UDDI (Universal Description, Discovery, and Integration) registry
or an SQL database. Many suitable data storage/access choices are available. The
metadata can be stored in any suitable form, such as XML or other such data structure or

format.

[0081] At the time of guest/VM 107 creation, the registration module 203 receives a

VM event notification (e.g., via an intercept mechanism as discussed herein) that a new

38

WO 2008/049008 PCT/US2007/081652

‘guest/VM 107 has been created. The guest/VM 107 can be in any vendor format, such as
VMware® ESX, GSX, Microsoft® Virtual Server, Xen™, Parallels). Note that other
VM events, like start, stop, registration, cloning and templating, can be similarly hooked,
intercepted, or otherwise detected to provide notifications. In general, notification of
such events can be used as a trigger to interrogate the VM disk files (e.g., disks 303
and/or description file 305) as well as control information kept about the guest/VM 107
“in the vendor specific locations (e.g., VMware — VMX file, Virtual Center repository). In |
the case where guests/VMs 107 are being copied or imported into a host environment, the
storage facility where the guests/VMs 107 are kept can be scanned or monitored by the
registration module 203 (or other modules) to detect new guests/VMs 107. -

[0082] The tattoo process 501 is programmed or otherwise cohﬁgured to generate a
unique ID (a “tattoo’) for each registered VM. The tattoo process 501 can be
implemented, for example, using a unique ID process (e.g., UUID or GUID or other
universal ID scheme). Alternatively, the tattoo process 501-can be configured to generate
a unique ID based on time, randomness, and/or VM data. For instance, 'the tattoo process
501 can be impl_emented using hashing functions to generate the unique ID (e.g., MD5 of
VM content+metadata), or random code generation processes. The result of the tattoo
proeess 501 is a robust and universally unique ID for the VM. In the example shown, this
ID or tattoo is stored in database 509 and can be used throughout the managed system to
identify the VM, wherever it may be deployed. Other variations on the tattoo process 501
| will be apparent in light of this disclosure, depending on factors such as the desifed
uniqueness of the ID and computation complexity. For instance, the generated tattoo -may
be based on a single layer of data or multiplle layers (e.g., one hashing function operation,
or multiple such operations using aggregations).
[0083] A VM tattoo can be used in a nﬁmber of ways. One use is unique identification
as it relates to clones, which are copies of the same VM but in different formats (e.g.,
Vmware®, XenT™™, and Microsofi® versions). This cloning may occur, for example,
during the access pfocess 700, if a requestor needs a particular VM but in a format
different than the one in the VM repository 511. A second use of the VM tattoo is

genealogy/family tree type handling. In general, when a new VM is derived or evolved,

39

WO 2008/049008 PCT/US2007/081652

the tattoo/ID of the VM from which it was derived is kept embedded in the new VM and
a new tattoo is generated for. the derived VM. Thus, each VM has embedded tattoos that
indicate familial relations. Over time, this allows for a trace back thru related VMs,
which may be helpful for a number of reasons. For example, if a VM is found to have
some major problem (e.g., virus or wrong software), the embedded chain/tree of tattoos
could be used to generate a list of potentially affected offspring VMs that were derived
from the compromised VM. A third use of the VM tattoo is for uniquely identifying a
VM even though its explicit name (e; g., VM42) is renamed in a file system. The
internally stored tattoo can be used to verify the VM. A fourth use of the VM tattoo is a
unique key in a database (e.g., CMDB, database 509, repository 511, registry 513, etc), as
well as in logs, eventing, and other structures/actions where a unique ID is helpful, that
uniquely identifies the VM, regardless of logical names, tags, physical file names, or VM

formats.

[0084] The metadata extraction process 503 is programmed or otherwise configured to
extract and/or create metadata from the VMs and/or host systems (such as guests/VMs
107 and hosts/VMMs 103) for use in managing the VMs. In accordance with one such
embodiment, the first step in creating/exfracting metadata. is making the VM disk files
(such as disks 303) available te process 503, which is configured to understand the disk
format, the installed OS on the VM, and the semantics of the VM itself. Making the
disks available is generally referred to as mounting the disks. Such mounting can be
accomplished via utilities like vmware-mount by VMware®. Once a virtual drive/disk is
mounted, then the metadata extractien process 503 (which may include one or more
.routines, such as a mounting foutine, data mining/interrogation routine, and unmounting
routine) interrogates the file system and reads any file or the directory information about
the file. In one particular embodiment, the metadata extraction process 503 is configured
to read several major drive types, such as NTFS for Windows®, FAT(12/16/32) rfor
Windows®, ext2, ext3 for Linux®, HFS/HFS+/HFSX for MacOS®, BSD UFS/UFS2 for
MacOS®, and other systems. Once the metadata extraction pfocess 503 has read access
to the disks, it can perform OS-specific metadata extraction. For example, on Microsoft®

Windows® systems, extraction process 503 can read configuration files like *.ini files,

40

WO 2008/049008 PCT/US2007/081652

application installation files like * MSI, and user and‘account information and the system
files (e.g., SYSTEM, USER, etc) that constitute the Windows® registry. On a Linux®
system, the extraction process 503 can read the etc/config files, application installation
files like * RPM, et;/inittab indicating which applications will auto start; and other
information kept in the etc/* files (such as etc/password). From these files, the extraction
prdcess 503 can determine what applications are installed, and which ones are
automatically started when the system is booted. The process 503 can also see what
accounts and users are defined, and can determine what system services/daemons are
present and will be executed (e.g., DHCP,‘ PXE, Active Directory, SAMBA, Apache
Webserver, etc). The MBR can also be read by the metadata extraction process 503, to
determine what OS and disk will be used when the system is booted. Note that the MBR
" is obtained outside of the normal file pfocess because it is normally hidden to programs

outside of the boot environment.

[0085] In one particular embodiment, the metadata extracted by process 503 includes
both physical and logical metadata. The physical metadata maps to physical things on the
VM disk, such as the file syétem. The contents of a file can be interrogated and processed
physically without regard to what the file logically contains and a signature can be
derived for the file (e.g., MDS). Logical metadata can be obtained by mapping a logical
view to a physical file. For example, the Windows® registry is stored as a set of physical
files on a VM disk. Inside the registry is information about which applications and
services are automatically started when the system is started/booted. The 'metadavta
extraction process 503 is configured to be aware of the different parts of the registry and
~how to logically map the structure. Other metadata such as replication metadéta, which
refers to information that describes the relationship between logical data identifiers and
one or more physical instances of the data, may also be created by the process 503. After
all the appropriate VM disk information is obtained by_the extraction process 503, the
extraction process 503 operates to read the information kept in various host control files
and database. In one such embodiment, the extraction lprocess 503 is configured to
extract information kept in the description files that each VM host vendor keeps about a

VM. For instance, ona Vmware® host, this file is the VMX file. This file may include,

41

WO 2008/049008 PCT/US2007/081652

for example, device information, author, date/time information, number of disks, disk
sizes, etc. Such information can be extraeted by the extraction process 503 and added to
the collected metadata. The extracted/created metadata can be stored for subsequent
interrogation or use without incurring the extraction/processing overhead (e.g., inounﬁng, ”
extraction, deriving/creation, unmounting) described above. For example, the extraction
process 503 can store the extracted metadata externally in a database or directory, such as
in the database 509. Alfernatively,' or in addition to, the process 503 can store the
extracted metadata with the VM itself in the VM .repository 511, or as a file or files on
one of the existing VM disks (e.g., on a disk 303), or with the VM on a separate disk
(e.g., on the SMP 309) within the VM. Other data can be stored as well (e. g.', in database
509), such as intermediate signatures used to generate an overall signature, with all such
signatures (e.g., initial, intermediate, and overall signatures) being available for
subsequent use. The extraction process 503 couid also be performed in real-time at the
- time of the execution request, but would incur some time delay due to the processing such

as mounting and reading files.

[0086] As indicated above, the metadata extraction process 503 can be configured to
generate signatures using the extracted physical and/or logical metadata. In one such
embodiment, the metadata extraction process 503 operates to read files on each VM disk
dﬁve (such as disks 303), and then generates a content ’sign'ature or signature for each and
every file using a technique like MDS5 or other hashiﬁg function. The signatures
themselves can be stored in a data structure (e.g., tree structure reﬂectiye of the content)
or file. The metadata extraction procese 503 may be further configured to derive a whole
physical system signature by perforrhing an MD35 or similar on the data strueture (or other
aggregation of content signatures). The Master Boot Record (MBR) can also be read and
captured into the signature generation process as well, if so desired. Alternatively, or in
addition to, the metadata extraction process 503 can be configured to generate a signature
for logical metadata extracted from the VM and/or host. The metadata extraction process
503 then stores the logical metadata signatures in a structure and generates a logical
metadata system signature, using MDS5 or some other hashing function. Such a process is

useful for logical structures such as the Windows registry, which is hierarchical in nature.

42

WO 2008/049008 PCT/US2007/081652

' The metadata extraction process 503 can further operate to generate an entire system
signature by combining both logical and physical system signatures, using MD5 or some

other hashing function.

[0087] The registry/naming process 505 is programmed or otherwise configured to
translate VM logical names to VM physical names (e.g., similar to a network DNS), and
to store those names as well as the location (in repositofy 511) of corresponding VM bité
in the VM registry 513. This registered location cduld be, for example, where the VM is
sent after the registration process is completed, or the location where ‘the VM is
discovered.” Thus, the VM registry 513 associates the VM logical and physical names
with the location of the corresponding VM bits (within the VM repositofy 511, or some

/

other reported location). =

[0088] The ksec_urity process 507 is programmed or otherwise configured to compress
and/or encrypt the VMs prior to storing them in the VM repository 511, if s’o desired. In
one particular embodiment, the security process 507 implements VM corripression using
the GZIP compression, and VM encryption using AES128 encryption. Complementary
decompression and decryption techniques can be used when accessing the stored VMs for
deployment. Other techniques can be used to secure or otherwise disable the VM against
execution 6utside of a managed host environment (e.g., modifying first few line of VM

code to effectively disable).

[0089] Figure 6 illustrates a VM registration process 600 configured m accordan_ce with
one embodiment of the present invention. This process 600 operates on a nevﬂy created
- or newly discovered VM, which may be an original VM or VM copy.‘ In any case, the
VM being operated on by process 600 is generally referred to as the f_arget VM, for
p’urpdses of this discﬁssion.

[0090] The process 600 includes registering 601 the target VM in a VM registry (e.g.,
registry 513, such as a UDDI registry or an SQL database). In one particular
-embodiment, step 601 includes assigning a logical name or tag to the target VM (e.g.,
VMT ag). Recall that the VM can later be implicitly requested via this logical name,

which is resolved into an explicit name.

43

WO 2008/049008 PCT/US2007/081652

[0091] The process 600 continues with extracting and/or deriving 603 physical (e.g., ’
file system, registry, etc) and logical (e.g., installed applications, started service) content
metadata from the target VM, and creating 605 a VM tattoo or UUID for the target VM,

as previously described.

[0092] The process 600 continues with creating 605 VM genealogy metadata. In more
detail, and in accordance with an embodiment of the present invention, a VM’s genealogy
metadata indicates where the VM came from (so as to allow for tracing its existence back
to some original VM) and what children and/or clones have been spawned from that VM.
For instance, every time a VM is copied or translated, its genealogy metadata data is
updated (e.g., effectively: “I am a copy (or derivation) of VM 42 which is a copy of VM
7, which is a copy of VM1”). A corresponding entry would be made in the genealogy
metadata of each related VM (e.g., for VM1: “T was duplicated into VM7, which was
duplicated into VM42”; for VM7: “I am a copy of VM1 and was duplicated into VM42”).
In one particular embodiment, the same result is accomplished using VM tattoos, as
previously explained. In more detail, when a new VM is copied, derived, or evolved, the
 tattoo/ID of the “parent” VM it was derived or cloned from is kept embedded in the new
“child” VM. Also, a tattoo is generated for the child VM, and stored into both the child
itself and the parent VM. Thus, the parent VM now has genealogy metadata indicating its
- children VMs, and the child has genealogy metadata indicating its parentage. Over time
this embedded genealogy metadata provides a full family tree for the VM. Other event
irlformation can be maintained in the gerlealogy metadata as well, such as event dates and
specific VM formats. As the registration process is used to initiate many new VMs into
the managed system, such genealogy metadata can be readily created/added to the VM.
For those VMs that are discovered (as opposed to created), there may not be a complete
set of genealogy metadata (or simpl‘y*hone). In such a case, the target VM’s genealogy
may be detected or otherwise deduced from the target VM itself, as well as from other
VMs that list the target VM in their respective genealogies. For instance, recall that the
event handler 217 can effectively detect that a copying event has taken place (e.g., by
reading the SMP of the post-event VM and reviewing management control points), so

that particular copying event can be detected and logged. Such post-event detection can

44

WO 2008/049008 PCT/US2007/081652

also be used in detecting or otherwise creating VM- genealogy metadata. In another
particular embodiment, a family ID can be computed using _the VM genealogy metadata
(e.g., via MD5) for all members of a particular VM family, because the VM genealogy or
family tree for each VM will effectively be the same. For instance, assume an example
family includes a parent VM (e.g., tattoo equals ABC), a first child VM (e.g., tattoo
equals DEF), and a second child VM (e.g., tattoo equals GHI). Thus, when computing a
family ID for any of these three related VMs, the tattoo values of ABC, DEF, and GHI
will be processed (e.g., MD5 {ABC, DEF, GHI}) for each VM famlly member, thereby
providing each VM with the same family ID (which will be unique to that particular
famiiy). Tracking VM family members (e.g., for purposes of recall and remediation, or
other reasons) can be facilitated using this family ID. As will be appreciated in light of
this dislesure, note that a “child” VM may be an exact copy (clone) or a derivative
(partiél clone) of its parent, and that a clone may evéntually evolve to be partially or

completely different than its parent.

[0093] The process 600 continues with translating 607 the VM to other formats (e.g.,
common variant target host formats used in a given managed system) using tools like
PoWerConveft apis from PlateSpinT™, as well as similar ‘conversion tools from '
Vmware® and Microsoft®. The translated VM‘s can also be registered and/or stored for
immediate availability alongside the original VM in the VM repository 511. The process
600 continues with compressing and/or encrypting 609 the VM (e.g., vGZIP compression
and AES128 encryption, or other suitable compression/encryption techniques). Such
compression/encryption can be used to ensure a secure and efficient transmission of the‘

VM to its intended location.

[0094] The process 600 continues with transferring/copying 611 the VM files (typically
in the form of bits (e.g., 8-bit bi/tes, 16-bit words, 32-bit long word, data blocks, packets,
or other such digital e)ipression) to a VM repository (e.g., repository 511, such as a SAN
or file server repository). Alternativeiy, step 607 may be implemented in a more indirect
way, by storing an address that points to a memory location where a “master” VM
resides. As an alternative to 611, in addition to 61 1, the process 600 may furthér include

staging 613 the VM to target host locations/domains (in anticipation of subsequent

45

WO 2008/049008 PCT/US2007/081652

requests from those locations/domains) using standard transmission protocols like HTTP,

HTTPS, and FTP.

VM Acquisition

[0095] Figure 7 illustrates a VM acquisition process 700 configured in accordance with
one embodiment of the present invention. This process 700 operates to acquire a
previously stored VM, which may be an original VM or VM copy. In any case, the VM
being accessed by process 700 is generally referred to as the target VM, for purposes of
this discussion. |

[0096] The process 700 includes initiating 701 a registry look-up by implicitly
requesting the target VM via logical name.v The process 700 continues with resolving 703
the logical name into an explicit VM name, and locating 705 the storage location of the
target VM. In accordance with one embodiment, and as previously explaiﬁed, a UDDI
registry or a SQL database look-up can be used to resolve the logical->physical VM name
and location(s) of the target VM bits. The target VM is then looked-up using the explicit
name to find the source locatioh(s) of the physical VM bits. Consider the following
example in Table 1, in which tags are used to compose logical names that implicitly refer

to one or more VMs.

Tag VM
Production VM42
Production VM43
Production VM44

Test VM15
- Test "VM16

Oracle® VM42

Oracle® VMI15
Web Server VM43
Web Server VM16

Oracle® VM44

Table 1

In more detail, Table 1 illustrates a number of tags, each of which corresponds to one or
more explicitly named VMs. Note that some VMs can correspond to more than one tag
(e.g., VM42 corresponds to Production and Oracle tags). The VMs can be specified, for

example, using a URL or URIL. By implicitly requésting a VM via single logical name or

46

WO 2008/049008 PCT/US2007/081652

“tag,"’ the explicit VMs associated with that tag are identified.. By implicitly requesting a
multiple tag logical name, only the explicit VMs associated with all requested tags are
identified. For instance, with regard to,the example of Table 1, requesting all Prodﬁction v
VMs would result in the set of {VM42, VM43, VM44}; requesting all Orécle® .VMs
would result in the set of {VM42, VM15, VM44}; requesting all Producti‘on Oracle VMs
would result in the set of {VM42, VM44}; requesting all Web Server VMs would result
in'the set of {VM43, VM16}; requesting all Production Web Server VMs would result in
the set of {VM43}; and requesting all NON Oracle VMs would result in the set of
{VM43, VM16}. The intersection processing of a multi-tag query can be done either on-
the server or client. For example, on the server, the logical name can be broken out into
individual tags, and then each query made and the intersection of the resultant set of sets
would be returned to the'requesting client. On the client, a request for each tag making
up the logical name can be made, and the intersection processing then performed on that
client.

[0097] Note that such a tag-based registry look-up can also be used to locate all the
members of a VM family. Consider, for example, the tagged VM families shown in
Table 2. Here, requesting all Family A VMs would result in the set of {VM42, VM43,
VM44}; requesting all Family B VMs would result in the set of {VM15, VM16, VM17};
requesting all Family C VMs would result in the set of {VM17, VM44, VM55, VM61};
and requesting all Family D VMs would result in the set of {VM35}. Thus, if necessary,
all VMs belonging to a particular family can be accessed if so desired (e.g., such as the
case when a family member is found to contain a virus or unlicensed software or is

otherwise compromised).

Tag VM
Family A | VM42
FamilyA| = VM43
Family A . VM44
Family B VMI15
FamilyB| =~ VMI16
Family C VM17
Family C | VM44
Family C VM55
Family C VM61

47

WO 2008/049008 PCT/US2007/081652

[FamilyD| VM35]
Table 2

[0098] The process 700 continues with transferring 707 the located VM bits to where
the target host environment exists. These bits of the target VM can be transferred to the
host environment using, for example, FTP, HTTP, HTTPS, or other such unicast or

multicast transmission protocols.

[0099] The process 700 continuesﬁwith decompressing 709 the target VM (e.g., after
transfer), assuming the VM was stored and transferred in a compressed state. In one
particular embodiment, the target VM is decompressed using GUNZIP decompression,
assuming GZIP was used to compress the VM. The process 700 continues with
decrypting and/or otherwise unlocking 711 the VM (e.g., after transfer), assuming the
VM was stored and transferred in an enérypted/locked state. In one particular
embodiment, the VM is decrypted and/or unlocked using AES128 decryption (assuming
AES128 was used to encrypt the VM). Note that any decompression/decryption can be

carried out before transfer as well, if so desired.

[00100] After transfer, the process 700 further includes translating 713 the target VM to
the target host format, if necessary. As previously explained, the VM can be tr';inslated to
the target host format using tools like PowerConvert apié from" VPlateSpinTM. In
alternative embodiments, this translation can take place prior to transferring the VM to
the target host. In such a case, the VM can be compressed and/or encrypted after it is
translated, if so desired. Further note that the translation can be pérformed offline (in
advance of request) or in real-time (at_time of request). In the case of offline translation,
note that each specific VM format can have a unique explicit name and storage location,
thereby effectively eliminating or otherwise reducing the need for post-request translation
~ and reducing VM acquisition time.

[00101] The process 700 may further include other functionality as well. For instance,
the process may include caching the bits of the target VM at various tafget
locations/domains, in anticipation of subsequent requests for those VMs. In one
particular embodiment, the VM s cached using an LRU (least recently used) caching

scheme for subsequent requeSts in the target location/domain. Numerous VM caching

48

WO 2008/049008 PCT/US2007/081652

schemes can be used here, including predictive or otherwise informed caching based on
factors such as VM use history (e.g., this VM is consistently used on host machiﬁe #12),
ﬁser permissions at a given location (e.g., the user of this machine can only use VM #1
and VM #7, so don’t cache any other vVMs), and host environment restrictions (e.g., only
VM #s1-5 are currently authorized for use here, so cache no»VMs). In this sense, the
process 700 may include staging VMs at various locations, in anticipation of future
execution requests. Further note that such caching schemes can be updated as

permissions/authorizations change.

VM Policy Enforcement

[00102] In accordance with another embodiment of the present invention, when a request
to initiate, start, boot (execute) a VM is detected, the content metadata and/or other
aspects of the VM are checked against compliance policiés, and a pre-execution
determination is made as to allow VM execution or prevent it. In certain cases VM
execution may be allowed with warnings issued to alert an opetrator console or auditing
system (e.g., “The license for App#1 will expire in two days” or “This system must be
upgraded to include SeéurityApp#7 by tomorrow” or “A new security OS patch is now
available, and will be automatically downloaded and installed”). In the case of execution
being prevented, an alert/event sequence with details about why the execution was
prevented, including the exact policy or policies that disqualified the VM from execution
(e.g.’, “this VM must have SecurityPatch#1 installed prior to execution” in combination
with an automatic patch download and install sequence), can be issued. In some
embodiments, if the VM execution is not allowed due to policy non-compliance, the VM
could be allowed to either: execute and adjust or otherwise correct the violation to bring
itself into policy compliance (e.g., download and install latest set of security patches as
soon as booted), or execute with no or limited network connectivity (e.g., in a sandbox or
~ other limited execution environment) in order to perform problem isolation, recreation,

and/or remediation.

[00103] Policies can be defined and stored in a database, directory, file, or any
combination thereof (e.g., on SMP 309 and/or storage 109, and/or storage‘ 117). Policies

generally control when and how VMs can be executed. For instance, anti-malware

49

WO 2008/049008 PCT/US2007/081652

policies can be used to prevent the execution of VMs based oﬁ the presence of malware.
As is known, malware is software that can execute on a computing system to effect

malicious intent of an attacker. Malware can take many forms, such as viruses, infectious

worms, Trojan horse programs, rootkits (a type of Trojan horse, which is a collection of
tools that allows an attacker to provide a backdoor into a target computing system), and

spyware that monitors keystrokes and/or other us‘er. actions (e.g., surreptitious browser

monitoring) on the computing system in order to capture sensitive information and/or to

display unsolicited content (e.g., advertisements). Malware is usually iinported into a

target system via communications (unbeknownst to the user), such as those that occur

when accessing and/or downloading from websites, or those received in the form of
emails or text/instant messages. Other types of malware can remotely operate on a target

system to conduct malicious or otherwise inappropriate activity (e.g.; port scanning).

Malwate may also include adware, which is generally advertising/marketing material that

is embedded within a software program (e.g., banner ads and other such unsolicited -
advertising).

[00104] Some policies might specify, for example:

e No VM is allowed to execute if it contains malware (as detected by anti-
malware applications).

e No VM is allowed to execute if it contains a file named DOOM.EXE.

No VM is allowed to execute if it contains a file having a signature of xyz321
(e.g., where xyz321 is an MDS5 signature for known malware or inappropriate
content).

No Windows® VM can be executed unless it has Service Pack 2 installed.

e No Linux® VM can be executed if it has WebSphere® installed.

e No VM can be executed unless it is registered in Configuration Management
Database (or other suitable registry) with the correct MDS signature
information (or other suitable signature info).

e No VM can be executed if Installed Application = Oracle® and no

- OracleLicense. TXT present.

e No VM can execute with a system signature of 567abc. :

e No super user (or other such superior account access and/or authority) status
for VMs having non-administrative context.

e No VMs havmg a test context can be operated in a productlon context.

e Certain production VMs cannot be executed on 2™ and 3" shifts (i.e., outside
of the 8am to 5pm work schedule) when full production support teams are not
available.

50

WO 2008/049008 PCT/US2007/081652

_ e No VM can be executed by unauthorized user and/or uhmanaged host.
Note that the actual storing and specification of a policy can be much more cryptic. For

example there may be a DO_NOT_RUN file or databasé table containing entries like:
FILENAME = DOOM.EXE and FILEMDS5 = xyz321 (cortesponding to the first: two
samplé policies above). | |

[00105] The enforcement/cOmpliance schéeme may also iﬁclude a REQUIRED or
MANDATORY policy list,‘ where any VM/system that does not have the rﬁandatory
content is denied execution (e.g., must have virus scanning software to be compliant).

Other policies may include:

e Registry Verification: check to see if VM is registered (e.g. in a CMDB) and if
registration is current; if not registered or current, then deny the execution and
initiate registration process.

e License verification: check license information against logical metadata indicating
which applications are installed and/or started. If license count would be
exceeded by the VM executing with the typical/registered execution profile, then
deny or optionally wait for a license to become available.

If VM is compliant, then allow to execute or optionally request key to unlock the
encrypted VM, decrypt the VM, and then execute. If all conditions for execution are
satisfied except for a time based condition (e.g., not allowed to execute in requested
window or no license available now), then optionally allow VM to execute when
condition is cleared or otherwise satisfied (e.g., either queue or retry later). o

[00106] Capturing signatures for the files allows for very fast comparison. For example;,
to prevent DOOM.EXE from running on VMs of the managed system, a signature for the
DOOM.EXE file can be computed by performing an MD5 calculation of the file. That
signature can then be compared against other ﬁle signatures very quickly using traditional
hash table lookups. Fér an entire system, a signature of the.entire VM contents would
allow for quick system level corﬁpaﬁson without having to compare all of the files or all
of the sub-signatures. This would allow for a quick allowing/disallowing of a speciﬁc
system based on its system signature, regardless of what the VM might be named. One
embodiment of the present invention generates a system signature by taking all the file

signatures and creating a file or structure containing those signatures, and then generating

51

WO 2008/049008 PCT/US2007/081652

a signature for that file or structure using an MDS35 or similar process, as previously

explained with reference to Figure 5.

[00107] One way to handle signature-based poliéies is to use the concept of Blacklist,
Greylist, or Whitelist used in network security applications. Instead of an IP address, a
VM file name, content signature, or system signature can be used in such lists. For
example, if a file néme of DOOM.EXE is placed in the »Blacklist‘ file, any VM systémr
containing it will not be allowed to execute. Likewise, the content signature for
DOOM.EXE could also be placed in the list, and any system containing that signature
will not be allowed to execute. Use of a signature (as opposed to an explicit name) will
ensure proper compliance even if someone has renamed the'prohibited file. In a similar
manner, an entire syste;n signature for a “good/compliant” VM can be placed in the
Whitelist, and only VM systems having that signature will be allowed to execute. Ina
similar manner, entire system signatures for known “bad” VMs can be placed in the
Blacklist, and VMS on that list will not be allowed to execute. Thus, in this embodiment
the Whitelist would identify known good contenfs, the Blacklist would identify known
bad contents, and the Greylist (which is effectively a temporary Blacklist) could contain
dubious content, perhaps requiring additional processing or opérator intervention to allow

execution.

' [00108] Figure 8a illustrates a policy enforcement process 800 for a virtual environment,
in accordance with one cmbodiment of the present invention. This process 800 operates
to enforce policies against a VM, which may be an original VM or VM copy. In any case,
the VM being operated on by process 800 is generally referred to as thé target VM, for

- purposes of this discussion.

[00109] The process 800 includes getting 801 content metadata of the target VM. For
example, the VM content metadata can be extracted in real-time. Alternatively, the VM
content metadata can be pre-extracted metadata that is stored and accessible to the
process 800. The content metadata may include, for example, both physicél (e.g., file
system, registry, index, etc) and logical (e.g., installed applications, started services)
components. In more detail, and in accordance with an embodiment of the present

invention, the content metadata on a VM containing Windows® or Linux® includes the

52

WO 2008/049008 PCT/US2007/081652

Master Boﬁot Record (MBR) and the file system tree (e.g., names, sizes, permissions,
dates, tattoos, signatures, actual data backing each file). Also, and with particular regard
to a Windows® system, the content metadata includes embedded version information for
each executable and/or dynamic link library. Also, theA content metadata includes the
registry from the file system. Also, the content metadata includes sjrstem level
information (e.g., Se'rvice Pack, Patches, Build #), services, installed applications, auto-
started applications, accounts (e.g., Userids, Groups, Home Directory, Shell Program,
Quotas), network information, and other such information from the Windows® Registry.
With particular regard to a Linux® system, the content metadata includes, for example,
system level information, daemons or services (e.g., /etc/rc.d/init.d/directory), aécounts
(e.g., Userids, Groups, Home Directory, Shell Program, Quotas) such as /etc/passwd,
installed\ applications, auto-started applications, and network information. in addition,
recall that pre-extracfed metadata can be stored locally to the target VM (e.g., in the SMP
309 or other dedicated partition) or remotely to the target VM (e.g., in storage 109 or -
117). In one particular embodiment, the getting 801 step includes the following
sequence: attempt to read content metadata on the target VM, if not available on VM,
then attempt to read content metadata stored elsewhere like storage 109 kor 117 (e.g.,
CMDB); and if the content metadata is not available at alternate storagé, then derive
content metada‘ta in real-time (é. g., such as described with reference to metadata
extraction process 503). Additional details of the getting step will be discussed with

reference to Figures 8b-d.

[00110] The process 800 further includes getting 803 compliance policies regarding VM
content, and arbitrating 805 the compliance policies for priority, conflict, or deadlocks.
The compliance policies can be read, for example, from an SQL database or an LDAP
directory (e.g., such as from storage 109 or 117). An example arbitration scheme uses
4+ A+ +,---,--- as an attribute in each compliance policy for relative strength or priority
indicator to resolve conflicts and arbitrate on compliance policies (e.g., a policy having an
attribute of ““+++ would take priority over a policy having an attribute of “+”). In the
event of a tie (e.g., where two competing policies have an #attribute'of “+++7), a tie-

breaking mechanism can be used (e.g., older policy wins, or some other acceptable tie-

53

WO 2008/049008 PCT/US2007/081652

breaker). Attributes and tie-breakers can be set as desired by an administrator of the
managed system. ’

[00111] The process 800 continues with applying 807 the compﬁance policies against
the content metadata of VM. Example results of applying the. policies against the content
metadata include allow execution ‘\\(ri.e., content metadata is compliant with policies),”
disallow (i.e., content metadata is non-compliant with policies), or retry based on what
content is required, allowed or disallowed. Comparisons pérformed by application of
,poliéies can require, for example, exact pattérn matching. For example: If
Filename.present (Doom.exe) THEN NOEXEC or IF Filenamemissing (LICENSE.*)
THEN NOEXEC). Recall that compliance can be tested by comparing signatures (e.g.,
MDS5 or other hashes) of the content metadata against signatures of known blacklisted,
grey listed, and white listed content. Fuzzy pattern matching may also be used, to allow
for degrees of matching (as opposed to exact pattern matching). As previously explained,
~ the enforcement process 800 may also execute one or more plug-ins to assist in the
enforcemént of the compliance' scheme. Also, there may be exceptions'to various policieé
(e.g., files kpown to be secure are excused froin the Vifus scanning processes, or VM22 is
exempt from policies 2-5). |

[00112] Figure 8b illustrates a get VM content metadata process 801 configured in
“accordance with one particular embodiment of the present invention. In this example
embodiment, proceés 801 includes making 811 a copy of the target VM to operaté on, and
injecting 813 the necessary amount of changes into the VM copy to execute the system
(e.g., minimal agentry to make the VM copy executable). The process 801 continues with
executing 815 the VM copy in a secure, isolated host or sandbox (e.g., no network access,
no SAN, limited resource access). Thé process 801 continues with interrogating 817 the
now running VM copy using runtime intérfaces (e.g., Windows® WMI) to gather the
content metadata, and saving 819 that content metadata (e.g., to the SMP 309 or external
storage facility such as 109 or 117). The process 801 continues with stopping the system
and discarding 821 the VM copy. l |

[00113] Figure 8c illustrates a get VM ‘co‘nterft metadata process 801 configured in

“accordance with another particular embodiment of the present invention. In this example

54

WO 2008/049008 PCT/US2007/081652

embodiment, process 801 includes exporting 831 the target VM to disk or other such
poﬁable storage media (e.g., using VMware® Disktools Export or other such tools), and
then transferring 833 the VM disk to another location for analysis (e.g., using FTP or
“other suitable transmission protocol), such as a server systeni like server 115 or to the
enterprise VM manager 111. The process 801 proceeds with mounting 835 tﬁe VM disk
as a virtual drive at the other location via the local system (e.g., on a Windows® Server
‘system, issue a “vmware-mount V: vm.vmdk” command), and interrogating 837 the
system using file system interfaces (e.g., read the file system or system registry of a
Windows® based VM) to gather the content metadata. The process 801 continues with
saving 839 the content metadata (e.g., to ‘the SMP 309 or other storage facility such as
109 or 117), and discarding 841 the target VM from the disk to which it was exported.

[00114] Figure 8d illustrates a get VM content metadata process 801 configured in
‘accordance with another particular embodiment of the present invention. In this example
‘ embodiment, process 801 includes startiﬁg 851 an agent on the target VM host machine
(e.g., VMware® ESX Server), and mounting 853 the VM disk files to an NFS associated
with the host machine (NFS = Network File System, which is a protocol that allows a
machine to mount a disk of another machine locally or over a network). The process 801
continues with accessing 855 (via the agent) the VM disk from the same or other system
using file share (e.g., \\server\drive\file). The process 801 further includes interrogating

857 (via the agent) the system using file system direct (e.g., fopen, fclose) to gather the
content met_adata. The process 801 continues with saving 859 the content metadata (e.g.,
to the ‘SMP 309 or other storage facility such as 109 or 117), and unmounting 861 the
disk files of the target VM from the NFS.

VM Adaptation

[00115] Figures 9 illustrates a VM adaptation process configured in accordance with one
embodiment of the present invention. This process 900 operates to adapt a non-
| compliant VM, which may be an original VM or VM copy. This adaptation may be
temporary (where changes made are discarded post-execution) or permanent (where

changes made are committed to effectively evolve the VM). Ivn‘any cése, the VM being

55

WO 2008/049008 PCT/US2007/081652

operated on by process 900 is generally referred to as the target VM, for purposes of this

discussion. : ,

[00116] The first steps of process 900 are éimilar to those discussed with referenqe to
process 800, and include: getting 901 content metadata of the target VM; getting 903
~ compliance policies regarding VM content; arbitrating 905 the compliance policies for
priority, conflict, or deadlocks; and applying 907 the content compliance policies against
the content metadata of VM. The previous discussion with reference to corresponding

steps 801, 803, 805, and 807 is equally‘ applicable here.

[00117] VIn addition, when the VM does not satisfy one or more policies or is otherwise
found to be non-éompliant, then process 900 continues with adapting 909 the VM to
conform. Adaptation can be, for example, via direct manipulation and/or insertion of
files, settings, and data into the target VM (e.g., update virus definitions, install anti-virus
software and/or security patches, run- anti-virus scanning application (an other malware
detection/eradication applications), enable ﬁrewéll and/or adjust firewall setﬁngs, delete
unauthorized content, obtain necessary licensing or automatically issue email notification
to administrator to obtain additional licensing, and any other such remedial aétivity). The
' adapting 909 may also include scheduling of other agents dr processes to correct non-
compliances or otherwise carry out refnedial action. For instance, the adapting 909 may
engage a download égent to fetch updates or security patches, and/or a virus scanning
agent to search for and eradicate viruses and/or other malware. The adapting 909 may
also include the scheduling of required VM start time processes (e.g., Windows®
RunOnce) to make adjustments. The adapting 909 may also include restricting or
otherwise adjusting access and/or user permissions, so that the target VM can/cannot
access certain content, resources, or areas of the managed network. Numerous Such
adaptations can be made, whether those adaptations operate to provide direct VM content
changes or indirect VM content changes. The adapting 909 can also interface with
external processes and databases (e.g., to make sure that a particular VM is registered in a

CMDB or asset database).

[00118] After adaptation is performed/scheduled, the process 900 may further include

validating 911 any changes made during the adaptation process. - In one such

56

WO 2008/049008 PCT/US2007/081652

embodiment, a validation test is requested or otherwise performed to validate the changes
were successfully made. For instance, the validation test may include repeating steps
- 901, 903, 905, and 907 (or some combination thereof, such as 901 and_ 907, since it vmay
not be necessary to repeat stép 903 and 905). ’

Learn and Optimize

[00119] Figure 10 illustrates a combined .learn and optimization process 1000 in
accordance with one embodiment 6f the pre’sént invention. This process 1000 operates to
learn ‘adaptations made to a VM (e.g., to achieve policy compliance or other desired
change), and to optimize the VMs so that future adaptations can be reduced (thereby
~ effectively evolving the VM). Such optimization/evolution is particularly useful for
adaptations that are consistently madé over a period of tirhe. In any case, the VM being
operated on by process 1000 is generally referred to as the target VM, for purposes of this |

discussion.

[00120] The process 1000 includes gettirig 1001 a pre-execution state of the target VM,
and getting 1003 a post-execution state of the target VM, and then computing 1005 the
delta to show changes made to the target VM. These changes to the target VM may ha\}e
been made during pre-execution adaptation as discussed herein. Altérnatively, or in -
addition to, changes to the target VM could have been made during execution (e.g., by/the
user). In one particular émbodiment, computing 1005 the delta between the pre- énd
post- execution states includes differencing the content metadata or the actual content
itself. The differences can be captured into a profile database, so that changes can then be
analyzed. Altemnatively, computing 1005 the delta includes readiﬁg a vdelta file created
during VM execution (e.g., redo, undo, diff files), which only has the differences. In any
. case, and -as previously explained, such captured difference data provides insight into
more efficient VM management. For example, such data can be analyzed to detect what
software that was installed, removed, or updated, as well as other system changes (e.g.,
paging file, accounts, event log). Also, regularly performed adaptations can be detected,
based on view of historical data (e.g., service packs that are reapplied during each}VM
use session, and software that is consistently re-installed or removed during each VM use

session).

57

WO 2008/049008 PCT/US2007/081652

[00121] The process 1000 may continue with discarding 1007 one or more of the
adaptations made, if adaptation is found to be undesired or otherwise not appropriate for
permanent use. The process may further continue with suggesting and/or deriving 1009
variants of the target VM, so as to provide an optimized VM that will require few_er
adaptations going forward. For example, a new optimized VM can be derived without
previously installed under-utilized applications, thereby conserving license -use.
Likewise, a new 6ptimized VM can be derived to permanently include a security patch or
other software that has been historically and consistently installed during adaptation of a -
VM. Thus, the optiﬁization can be based on single or multiple executions of a VM.
Likewise, executions/adaptations of multiple VMs included in a group can be analyzed to
determine the cbmmonality of adaptations made. If changes are consistently made-to a-
quorum (or any such metric that indicates consistency of the VM group) of the VMs
included in the set analyzed, then optimizations can confidently be made to the entire set, .
even if data for some of the VMs in the set is not available. In any case, optimized VMs

are provided that pre-include all common delta items.

[00122] The fofegoing description of the embodiments of the invention has been
presented for the purposes. of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many modifications
and variations are possible in light of 'this disclosure. For instance, numerous suitable
execution platforms and VM formats can be used as a host, and the term host is not
intended to limit the présent invention to any particular environment, structure, format, or
“the like. Likewise, the term virtual machine as used herein is intended to include ali
virtual systems, including virtual appliances, virtual applications, special-purpose virtual
processing environmer;ts, and other such virtual manifestations that can benefit from the

management and/or control techniques discussed herein.

58

10

11

WO 2008/049008 PCT/US2007/081652

CLAIMS

What is claimed is:

!

1. A method for registering and accessing virtual machihés (VMs),
comprising: ‘ ,

registering one or more VMs for use in a managed system, wherein registering

| includes assigning a logical name to each VM and registering each VM

_ "and its location in a VM registry.

2. The method of claim 1 wherein registering one or more VMs further
comprises:

extracting at least one of logical and physical nieta’data associated with a target
VM, the metadata for use in pre-execution compliance testing; |

generating one or more signatures using the at least one of logical and physical
metadata; and

storing the one or more signatures;

wherein at least one or more VM compliance policies with which tﬁe target VM
must comply to execute are signature-based policies thereby allowing the
pre-execution compliance testing to be carried out using signature

comparisons.

3. The method of claim 2 wherein registering one or more VMs further

comprises:

generating a system signature based on the one or more signatures.

4. The method of claim 3 wherein generating a systelh signature based on the

ohe or more signatures comprises:v _ |
generating a logical system signature based on logical metadata signatures
associated with at least one of the target VM and a target execution

platform;

59

WO 2008/049008 PCT/US2007/081652

generating a physical system signature based on physical metadata signatures

‘ associated with at least one of the térget VM and the target execution
platform; and . : .

generating the system signature based on both the logical and physical system
signatures. ' |

5. The method of claim 3 wherein all signatures are computed using one or
more hashing functions.

/

6. The method of claim 2 wherein extracting at least one of logical and
physical metadata associated with a target VM includes extracting content metadata about
one or more files stored on the target VM, and generating one or more signatures
comprises: '

generating a ﬁlé content signature for each of the one or more files using the

_corresponding content metadata.

7. The method of claim 6 wherein registering one or more VMs further
comprises:

generating a system signature based on the file content signatures.

8. The method of claim 2 wherein generating one or more signatures'
comprises: ' '
generating one or more logical metadata signatures using the logical metadata

extracted from the target VM.

0. The method of claim 8 wherein registering one or more VMs further
comprises:
generating a logical metadata system signature based on the logical metadata

signatures.

60

WO 2008/049008 PCT/US2007/081652

10. The method of claim 1 wherein registering on/e or more VMs further
comprises: |

generating a unique ID for each VM; and

extracting at least one of logical and physical metadata associated with each VM

for use in pre-execution compliance testing. -

11. The method of claim 10 further comprising:

storing the unique ID and metadata.

12. The method of claim 11 wherein the unique ID, at least one of the logical
metadata and physical metadata, and one or more signatures reflective of VM content are

stored in one of a configuration management database or an asset management database.

v

13. The method of claim 1 wherein registering one or more VMs further
comprises: | | ,
creating VM genealogy metadata about a target VM, wherein the VM genealogy

“ metadata is indicative of all VMs to which the target VM is related,

including any parent VMs and children VMs.

14, The method of claim 13 wherein creating VM genealogy metadata

includes storing a unique ID for each relative VM into the target VM.

15. The method of claim 14 further comprising:

generating a family ID for all VMs in a given family based on the unique IDs for
each VM in that family; and _

storing the family ID in each of the related VMs.

16. The method of claim 1 further comprising;

storing the registered VMs in a repository.

61

WO 2008/049008 PCT/US2007/081652

17. The method of claim 16 wherein storing the registered VMs in a repository
is achieved by at least one of transferring the registered VMs to the repository, copying
- the registered VMs to the repository, and storing an address in the repository that points

to a memory location where a corresponding master VM resides.

18. The method of claim 16 further comprising:
translating a target VM to one or more alternate formats; and

storing the one or more alternate format VMs in the repository.

19. The method of claim 16 further comprising at least one of modifying,

compressing and encrypting a target VM prior to storing.

20. The method of claim 16 further comprising locking a target VM prior to

storing, so that the target VM will not execute unless it is used in the managed system.

21. The method of claim 1 further comprising:

accessing a target VM for use in the managed system.

22. The method of claim 21 wherein accessing a target VM is accomplished

using a UDDI registry or a SQL database look-up.

23, The method of claim 21 wherein accessing a target VM comprises:
. initiating a fegistry look-up by implicitly requesting the target VM via logical
name; ' o
resolving the logical name into aﬁ explicit VM name;
locating a storage location of the target VM and
transferring the target VM or a copy of the target VM to a target execution

platform environment.

24. The method of claim 23 wherein the logical name is associated with a -

plurality of VMs, and all those VMs are accessed by the accessing step.

62

WO 2008/049008 PCT/US2007/081652

25. The method of claim 23 wherein logical names are represented by tags,
and iniﬁating a registry look-up by implicitly requesting the target VM via logical name
includes: | \

requestihg a multiple tag look-up, where all explicit VMs associated with the

requested tags are accessed by the accessing step.

26. The method of claim 21 further comprises at least one of:
decompressing the target VM,
decrypting the target VM; and

translating the target VM to a target execution platform 'enVironmcnt format.

27. The method of claim 21 wherein the accessing step is initiated by a user

request to use the target VM.

28. The method of claim 1 further comprising:
caching at least one of the registered VMs at a target location, as part of a staging

scheme.

29. The method of claim 1 further comprising:
creating a manager'nentr partition in a target VM for storing management data for

use in a VM management and control scheme.

30. - The method of claim 29 wherein the management data includes a unique
ID for the target VM and at least one of logical and physical metadata associated with the

target VM for use in pre-executibn compliance testing.

63

WO 2008/049008 PCT/US2007/081652

31. The method of claim 29 wherein registering one or moré VMs further
COmprises: 7

generating one or more signatures using at least one of logical and physical
metadata extracted from at least one of a target VM and a target execution
platform; and \ '

storing the metadata and the one or more signatures on the management partition,

wherein at least one or more VM compliance policies with which the target VM
must comply to execute are signature-based policies thereby allowing the
pre-execution compliance testing to be carried out using signature

comparisons.

32. The method of claim 1 wherein a target VM can only be executed by an

executipﬁ platform that is included in the managed system.

33. The method of claim 1 wherein an execution platform that is included in

the managed system will only execute registered VMs.

34. The method of claim 1 wherein a target VM can only be accessed by a user

that is authorized to access that target VM.

35. A method for registering and accessing virtual machines (VMs),
comprising: }
; a‘CceSsing a target VM for use in a managed system, wherein the target VM is

explicitly \d‘isabled for use outside the managed system.

36. The method of claim 35 wherein accessing a target VM comprises:
initiating a registry look-up by implicitly requesting a target VM via logical name;
resolving the logical name into an explicit VM name;

locating a storage location of the target VM; and

64

WO 2008/049008 PCT/US2007/081652

transferring the target VM or a copy of the target VM to a target execution

platform environment.

37. 'Th‘e method of claim35 further comprising the preliminary steps of:

registering one or more VMs for use in the managed system, wherein registering
includes assigning a logical name to each VM and registering eabh VM in
a VM registry for use in pre-execution compliance testing; and

storing the registered VMs in a repository.

38. The method of claim 35 wherein accessing a target VM comprises:

initiating a registry look-up by implicitly requesting one or more VMs via logical
name;

resolving the logical name into one or more expliéit VM natnes; and

locating a storage location of each explicitly named VM.

39. The method of claim 38 wherein accessing a target VM comprises:
displaying a list of the explicitly named VMs and their respective storage

locations.

- 40. A system for registering and accessing virtual machines (VMs),
comprising: 7 ' _
a registration module for registering one or more VMS for use in a managed
system, wherein registering includes assigning a logical name to each VM
and registering each VM and its location in a VM registry; and |

an access module for accessing a target VM for use in the managed system.

41. The system of claim 40 wherein the targét VM can only be executed by an

execution platform that is included in the managed system.

42, The system of claim 40 wherein an execution platform that is included in

the managed system will only execute VMs registered for use in the managed s'ystem. ,

65

WO 2008/049008 PCT/US2007/081652

43, The system of claim 40 wherein the target VM is a virtual application or a

virtual appliance.

44, One or more machine-readable mediums encoded with instructions, that
when execﬁted by one or more processors, cause the processor to carry out a process for
registering and accessing virtual machines (VMs), the process compﬁsing: |

registering one or more VMs for use in a managed system; and

accessing a target VM for use in a managed system, wherein the target VM is

explicitly disabled for use outside the managed system.

45, The one or more machine-readable mediums of claim 44 wherein
registering includes assigning a logical name to each VM and registering each VM and its

location in a VM registry.

46. The one or more machine-readable mediums of claim 44 wherein
registering includes storing the registered VMs in a repository, and the target VM is

accessed from the repository.

47. The one or more machine-readable mediums of claim 44 wherein an
exccution platform that is included in the managed system will only execute VMs

registered for use in the managed system.

48. The one or more machine-readable mediums of claim 44 wherein
accessing a target VM comprises: |
initiating a registry look-up by implicitly requesting one or more VMs via logical
name; '
resolving the logical name into one or more explicit VM names; and

locating a storage location of each explicitly named VM.

66

WO 2008/049008 PCT/US2007/081652

1/16

Enterprise

/,__,/___\

Execution Platform
101
Host/VMM
103
Guest/VM | | M-Agent
107 105
' Remote VM
Service Center
" /
Execution Platform M
101 Management
Server
Host/VMM 115
103 \
Guest/VM | | M-Agent 4
107 105
VM

Management
Information
117

Enterprise /
Storage Facility |,/
(e.g., SAN, NAS)

109

A

A
Enterprise

VM Manager
111

Fig. 1

WO 2008/049008 PCT/US2007/081652
2/16
VM Management Module
(e.g., 105, 111, and/or 115))
|
|
|
! SMP Registration | | Access VM Enforce Event
: Generator Module Module Module Handler
| 201 203 205 207 217
|
A A A A
. ﬂ .
: A4 \ 4 A 4 A 4
|
| Adapt VM Learning Optimization Request
: /o E\?/Ioogdule Module Module Module Handler
[211 213 215 219
|
|
|
VMs and/or

VM Management Data
(e.g., To/From Network 113)

Fig. 2a

PCT/US2007/081652

WO 2008/049008

3/16

Ja|pueH
1U9A]

pJeoss|gAIuuwoD-
aziwndo-
uleoa-

UoRNooXg-1504d

paddoig
JUOIIND9X3-1S0d

101
NAASeND

<—

dojg 0}
1Sonbay

qg 614

pledsigAwwod- -
doig-
deug-
6o7-
puadsng-
MO~

TSUDIE A-UONOSX g

pauelg
/Bunnoaxgy

L01L
NAASEND

pJeods|g/AIWWoD-
uoljeydepy-
JusWwaslojug Aoljod-

{eyepejoly ‘oone] }
uoneqsibay-

gonnoaxJ-aig

paddo)g
Juonnoaxg-aid

= 01
WASEND

pels o}
1sonbay

PCT/US2007/081652

WO 2008/049008

4/16

oz "bi4

Aoijod INA INA

SIEIETel 3¥99yQ bel

INA INA

yepdn leuy un un

sabue

A 2| | Aowea || olod WA WA WA ebon
1depy JLIWoA Mosayn aoe|day nd Ja1s1bay dois dois
K K WA
NA NA Jllod ollod A WA INA [esi6o
9A|OA] ulea 129 ajealD =TS dnoom yels tﬂw

[I9US puewwo) Jayoiedsiq

\

6l¢

Ja|pueH 1senbay

WO 2008/049008 PCT/US2007/081652

5/16

Intercept Mechanism
(e.g., Event Handler 217,
Request Handler 219, or

Intercept-enabled platform 101)

L Managed
Request Request
Interception Interface
L % _______ o
e ¥ [
! o
Execution _ | ! Execution L
Platform 4+ - Platform | |
101 o 101 L
L o
| | |
' l
' |

'Fig. 2d

PCT/US2007/081652

WO 2008/049008

6/16

A
60€ \

(dNs)
uonied
1uswabeuely
SWIDISAG

SOl
Juaby-N
_
G0¢
Sl
uonduosaqg
WA

Go¢
94
uonduosa

(1174
A"H_ Jojelsusg)
dNS
~ S

L0}
€0¢ WAASSNO

sysiQ [eNUIA

WA

RN

€0€
sysiQ [eNHIA

10¢

WAASOND
196ue 1

PCT/US2007/081652

WO 2008/049008

7/16

¥ "B14

<

0oLt
Ziwiid

OAA_&NOAA

0001
uieaT

<

cor
1noaxg

006
depy

008
aoJojug

- 00L Lop 009
SSa00Y Aloadg Jo1s160

<

\

00v
$$99014 [0J1U0D

pue juswebeuepy WA |[B49AD

PCT/US2007/081652

WO 2008/049008

8/16

Slig JO UONBO0T &=
pue saweN /\/ @

[ea1boT A

SIWA Pa0Cpe |

‘passaidwio)

sainjeubig
pue ‘elepelsy

‘SoopEe | NA

”
|
_
|
|
|
|
_
|
" pue ‘paidAioug
|
|
|
|
_
|
|
_
|

€Ls
Ansiboy

NA

LLS
Alojisoday

A

609
obeio)g

ele(] juswabeuepy
WA

A/ (Z11 Jo/pue g0l “69)

seallioe4/Al10e abelols

G "Bi4

L0S

S$S920.1d —~—

Anoeg @
AI\ \V

S0S
sse20.1d

PuiweN
J/Ansibay

€0S

LOS
$S900.1d

oope |

/ €0C

a|npoj uoneisibay

(=

SUOIJEOLIION
jusng AN

L0}
NAASIND

PCT/US2007/081652

WO 2008/049008

9/16

9 ‘B4

€19
SUONIB20T
O} SNA
abeig

LL9
Aioypsoday
0] siig NI

lajsued |
JAdoD

mco

E\Cocm_
10/pue
ssaJiduio

<

209
sjewlo
49yjo 01 AIA
sjejsuel |

€09
509 elepeon
elepelo JUBILOD
os1bojeausn) oAL(]
ayeal) bom.bxm_

L09
soaweN WA
|eoisAyd
© |eo1607
Jo15169y

h

009
$S90014 1018160y

PCT/US2007/081652

WO 2008/049008

10/16

A

M—F
Bm_mcﬂ 1

—._L.

v_oo_cD
ndAioaQ

<

60.
NA
ssaidwod

-2

L0L
lojsuel|

¢

+11) €0.L
mu‘_m_ SWweN NA
[eoisAyd
mumoo._ OA|0SDY

10L
dn-»007]
Ansiboy

\

00.
$S800.1d SS90y

PCT/US2007/081652

WO 2008/049008

11/16

eg "B
108 508 €08 108
Blepels Jusiuod saloljod saoIj0d eyepel1ain
jsuieby saoijod Jusjuo) JUSU0YD JuLju0n
Jusjuon Alddy djeliqiy WA 12D WA 1D

\

008
$S9820.1d 92.10Ju]

PCT/US2007/081652

WO 2008/049008

12/16

qag "bi4

4
Adoo WA
pleosiq 2

woisAs
dois

618
elepels
aneg

Am

Ll8

Buisn welsAs
ajebouialu|

oRISU| SWRUNY A

GL8
xogpueg
ut WA
a)noexg

€8
Aijuaby
uosu|

118
NA
Jo AdoD

Men

\

L0g SS©20.1d
elepejsi\
JUSIUOD 19D

PCT/US2007/081652

WO 2008/049008

13/16

og "Bi14
£eg
1€8 Geg LES
£d Lve mmwm SOOBLIBIU| WoISAS wIBISAsS J8yjo uo c“um_wmwmwn_ NSIa
9 NA EMWM W 8|l4 Buisn walsAg aAL(Q [enyiA se o1 4810 A 01 NA
pleOSIa S ajeboiieyu| MsiQ WA JUNOW ‘_ﬁm.cm._._. podx3g

\

LOg SS920.d
B1epRISIN
JUSIUOD 19D

PCT/US2007/081652

WO 2008/049008

14/16

pg ‘614

198
S4dN
woly sa|y

ASIp WA
junowun

658
elepels
aAeg

<

1S8
103.I(] WLISAS
9|4 Buisn wolIsAg
o1ebolisiu]

GG8
a|)\JonISS

se NA
SS900Y

€68
S4dN
0} sali
%SIP A
JUNOA]

LG8
JISOH INA
uo jusby

Helg

\

LO8 SSo20.d
elepeIs|\
JUSILOD 199

PCT/US2007/081652

WO 2008/049008

15/16

<

LL6
sobueyn

SlEPIEA

606
WIoJUOD
01 NA
Jdepy

<

106
Blepesn Jusuo)d
1suieBy saijod
jusuo) A|ddy

S06
seljod
jusuo)
ajeligly

€06
sololjod
JusjuoD
NA 199

L06
EJepeIoN
JuauoD
NA D

\

006
$S800.d 1depy

PCT/US2007/081652

WO 2008/049008

16/16

ol b1
6001 J00L €001 L0OL
sjueue ale o)e
lo/pue UNMM__U,Q a1ndwo)n uonnoaxy uonnoox3y
1sebbng P 'a -180d 199 -2id 199

\

0001L
$S900.d 9ziwndo pue uiea] pauiquiod)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings

