实用新型名称
一种 FTA 卡取样装置

摘要
本实用新型公开了一种 FTA 卡取样装置，涉及分子检测装置技术领域，包括：机座支架，在机座支架上设有二维位移工作台、立柱、以及加热器，在立柱上设有冲头模块，在冲头模块的下方设有送料转盘，在二维位移工作台上设有湿度传感器，湿度传感器的信号输出端子与处理器的串口电连接，处理器的信号输出端子与加热器电连接。通过采用上述技术方案，本实用新型实现了 FTA 卡取样过程的自动化，具有工作效率高的优点；同时减少了对 FTA 卡的污染：由于本实用新型中的冲头和推料杆采用螺纹连接，因此在实际工作过程中，可以根据实际需要选用不同大小的冲头，使得操作更加灵活；由于采用了加热器，因此通过对工作环境的加湿，有效降低了静电的产生概率。
1. 一种FTA卡取样装置，其特征在于：包括：机座支架，在所述机座支架上设有二维位移工作台、立柱、以及加湿器，在所述立柱上设有冲头模块，在所述冲头模块的下方设有送料转盘，在所述二维位移工作台上设有湿度传感器，所述湿度传感器的信号输出端子与处理器的串口号电连接，所述处理器的信号输出端子与所述加湿器电连接。

2. 根据权利要求1所述的FTA卡取样装置，其特征在于：所述二维位移工作台由：横向步进电机、纵向步进电机、导轨、以及托盘组成；其中：所述湿度传感器设置于所述托盘上；所述处理器的信号输出端子分别与所述横向步进电机、纵向步进电机电连接。

3. 根据权利要求1所述的FTA卡取样装置，其特征在于：所述冲头模块包括：固定于所述立柱上的减速电机，所述减速电机与曲轴的一端连接，所述曲轴的另一端与滑块连接，在所述滑块上设置有自上而下贯穿滑块的推料杆，在所述推料杆的下端设有与冲头连接的螺纹，在所述推料杆的上端设有弹簧和螺帽，在所述螺帽上方的立柱上设有挡板。

4. 根据权利要求3所述的FTA卡取样装置，其特征在于：所述立柱上设有两个光电传感器，所述光电传感器与所述处理器的信号输入端子电连接。

5. 根据权利要求1所述的FTA卡取样装置，其特征在于：所述送料转盘由环形转盘和步进电机组成，其中，在所述环形转盘的上表面均匀设有放置FTA卡的凹槽，所述环形转盘的中心轴与步进电机连接，所述步进电机与所述处理器的信号输出端子电连接。
一种 FTA 卡取样装置

技术领域
[0001] 本实用新型涉及分子检测装置技术领域，特别是涉及一种 FTA 卡取样装置。

背景技术
[0002] 目前，随着科技的快速发展，分子检测技术在科研中的应用是越来越广泛。众所周知，在分子检测技术中，FTA 卡是一种非常常见的载物片，在传统的 FTA 卡取样时，大多采用人工取样，通过长期的实践发现，这种传统的取样过程存在如下的缺陷：一、由于手工操作的自动化程度低，因此无法满足大规模化取样的需要；二、手工操作的过程很容易导致 FTA 卡表面被污染。

发明内容
[0003] 本实用新型要解决的技术问题是：克服现有技术的上述缺陷，提供一种自动化程度高，采样效果好的 FTA 卡取样装置。
[0004] 本实用新型为解决公知技术中存在技术问题所采取的技术方案是：
[0005] 一种 FTA 卡取样装置，包括：机座支架，在所述机座支架上设有二维位移工作台、立柱，以及加湿器，在所述立柱上设有冲头模块，在所述冲头模块的下方设有送料转盘，在所述二维位移工作台上设有湿度传感器，所述湿度传感器的信号输出端子与处理器的串口电连接，所述处理器的信号输出端子与所述加湿器电连接。
[0006] 作为优选方案，本实用新型还采用了如下技术方案：
[0007] 所述二维位移工作台由：横向步进电机、纵向步进电机、导轨、以及托盘组成；其中：所述湿度传感器设置于所述托盘上；所述处理器的信号输出端子分别与所述横向步进电机、纵向步进电机电连接。
[0008] 所述冲头模块包括：固定于所述立柱上的减速电机，所述减速电机与曲轴的一端连接，所述曲轴的另一端与滑块连接，在所述滑块上设置有自上而下贯穿滑块的推料杆，在所述推料杆的下端设有与冲头连接的螺纹，在所述推料杆的上端设有弹簧和螺帽，在所述螺帽上方的立柱上设有挡板。
[0009] 所述立柱上设有两个光电传感器，所述光电传感器与所述处理器的信号输入端子电连接。
[0010] 所述送料转盘由环形转盘和步进电机组成；其中：在所述环形转盘的上表面均匀设有放置 FTA 卡的凹槽，所述环形转盘的中心轴与步进电机连接，所述步进电机与所述处理器的信号输出端子电连接。
[0011] 本实用新型具有的优点和积极效果是：一、本实用新型通过采用上述技术方案，实现了 FTA 卡取样的自动化，具有工作效率高的优点；二、通过采用自动化操作过程，减少了对 FTA 卡的污染；三、由于本实用新型中的冲头和推料杆采用螺纹连接，因此在实际工作过程中，可以根据实际需要选用不同大小的冲头，使得操作更加灵活；四、由于采用了加湿器，因此通过对工作环境的加湿，有效降低了静电的产生概率。
附图说明

[0012] 图1是本实用新型一种较佳具体实施例的结构示意图；

[0013] 图2是本实用新型一种较佳具体实施例的局部结构示意图，主要用于显示二位位移工作台的结构；

[0014] 图3是本实用新型一种较佳具体实施例的局部结构示意图，主要用于显示立柱和冲头模块之间的连接关系；

[0015] 图4是本实用新型一种较佳具体实施例的局部结构示意图，主要用于显示滑块、推料杆与冲头之间的连接关系。


具体实施方式

[0017] 为能进一步了解本实用新型的实用新型内容、特点及功效，兹例举以下实施例，并配合附图详细说明如下：

[0018] 请参阅图1、图2、图3、图4，一种FTA卡取样装置，包括：机座支架1，二位位移工作台2，加湿器3，立柱4，送料转盘5，以及冲头模块6；其中：二位位移工作台2，加湿器3，立柱4均设置于机座支架1的上表面，冲头模块6设置于立柱4上，送料转盘5设置于冲头模块6的下方；送料转盘5由环形转盘和步进电机组成；其中：在上述环形转盘的上表面均匀设有放置FTA卡的凹槽，上述环形转盘的中心轴与步进电机连接；图2显示了本具体实施例二位位移工作台2的结构：二位位移工作台2由：横向步进电机2-1，纵向步进电机2-2，以及托盘2-4组成；为了防止空气干燥容易产生静电的现象，本具体实施例在托盘2-4上设置湿度传感器，可以对FTA卡取样装置的工作环境湿度进行实时监测；图3显示了本具体实施例立柱4和冲头模块6之间的连接关系：在立柱4的上部设有减速电机6-1，减速电机6-1与曲轴6-2的一端连接，所述曲轴6-2的另一端与滑块6-7连接，在滑块6-7上设置有自上而下贯穿滑块6-7的推料杆6-4，推料杆6-4的下端设有与冲头6-6连接的螺纹，在推料杆6-4的上端设有弹簧6-5和螺帽，在螺帽上方的立柱4上设有挡板4-1。在上述具体实施例中，还包括有一个对横向步进电机2-1，纵向步进电机2-2，湿度传感器、减速电机6-1，以及步进电机进行控制的处理器；具体连接关系为：处理器的信号输出端子分别与横向步进电机2-1，纵向步进电机2-2电连接；湿度传感器的信号输出端子与处理器的串口电连接，处理器的信号输出端子与加湿器3电连接；为了对滑块6-7的上升位置和下降位置进行监控，在立柱4上设有两个光电传感器，上述光电传感器与处理器的信号输入端子电连接。

[0019] 本实用新型的工作原理为：将FTA卡置于环形转盘上表面的凹槽内，将PVC96孔板置于托盘2-4上，启动托盘2-4上的湿度传感器，将检测到的湿度信息发送给处理器，处理器接收和的湿度信息进行分析判断，然后做出是否启动加湿器3的逻辑判断，当湿度达到要求时，则启动横向步进电机2-1，带动托盘2-4离开冲头6-6的下方，然后冲头6-6在滑块6-7的带动下下探到环形转盘上表面的凹槽内获取FTA卡，然后带动FTA卡上升，随后在
横向步进电机 2-1 和纵向步进电机 2-2 共同作用下驱动托盘 2-4 到达冲头 6-6 的下方，冲头 6-6 在滑块 6-7 的带动下从 PVC96 孔板上的孔内，此时，在推料杆 6-4 的作用力下，冲头 6-6 内的 FTA 卡下落到 PVC96 孔板上的孔内，随后冲头 6-6 上升，横向步进电机 2-1 带动托盘 2-4 离开冲头 6-6 的下方，重复上述工作过程。

[0020] 以上对本实用新型的实施例进行了详细说明，但所述内容仅为本实用新型的较佳实施例，不能被认为用于限定本实用新型的实施范围。凡依本实用新型申请范围所作的均等变化与改进等，均应仍归属于本实用新型的专利涵盖范围之内。
图1
图 2
图 4