
(12) STANDARD PATENT (11) Application No. AU 2017332710 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method for automated detection, correction, and translation of un-localized lines

(51) International Patent Classification(s)
G06F 3/0484 (2013.01) G06F 7/10 (2006.01)

(21) Application No: 2017332710 (22) Date of Filing: 2017.09.20

(87) WIPO No: W018/057605

(30) Priority Data

(31) Number (32) Date (33) Country
62/397,051 2016.09.20 US

(43) Publication Date: 2018.03.29
(44) Accepted Journal Date: 2022.04.28

(71) Applicant(s)
CloudBlue LLC

(72) Inventor(s)
Bugrov, Pavel

(74) Agent / Attorney
RnB IP, PO Box 9530, Deakin, ACT, 2600, AU

(56) Related Art
Anonymous, "Internationalization and localization", (2016-09-10), URL:
https://web.archive.org/web/2016-09-10175747/https://en.wikipedia.org/wiki/
Internationalizationandlocalization, (2020-03-31)
US 2003/0041110 Al
US 2016/0098261 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) OrganizationIIIIIIIIIIIDIIDIIIDIIIDIIIIIIIIIII

International Bureau (10) International Publication Number

(43) International Publication Date W O 2018/057605 Al
29 March 2018 (29.03.2018) W IPO I PCT

(51) International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
G06F 3/0484 (2013.01) H04L 12/24 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
G06F 7/10 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(21) International Application Number: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

PCT/US2017/052487 TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date: (84) Designated States (unless otherwise indicated, for every

20 September 2017 (20.09.2017) kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(25) Filing Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(26)PublicationLanguage: English EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(30) Priority Data: MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

62/397,051 20 September 2016 (20.09.2016) US TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

(71) Applicant: INGRAM MICRO, INC. [US/US]; 3351 KM, ML, MR, NE, SN, TD, TG).

Michelson Drive, Suite 100, Irvine, CA 92612 (US). Declarations under Rule 4.17:

(72) Inventor: BUGROV, Pavel; 46 Nagatinskaja Naberezhna- - as to applicant's entitlement to applyfor and be granted a

ja, Apt. 119, Moscow, 115470 (RU). patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the

(74) Agent: COLE, Troy, J.; Ice Miller LLP, One American earlier application (Rule 4.17(iii))
Square, Suite 2900, Indianapolis, IN 46282 (US).

Published:
(81) Designated States (unless otherwise indicated, for every - withinternationalsearchreport(Art.21(3

kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

(54) Title: METHOD FOR AUTOMATED DETECTION, CORRECTION, AND TRANSLATION OF UN-LOCALIZED LINES

(57) Abstract: A method for periodic checking of localized lines in the applica
tion source code before the assembled application is propagated into message files

Source Code (*.po). An automated internationalization of lines for all supported application lan
guages is provided. The lines and their translations in locale files (JSON) are val

APS T-, 104 idated against the message files (PO). The un realized lines are checked in the
MSGMAKE source code using a localization marker. According to the APS, a special trap (i.e.,

a hook) is used for APS msgmake utility in order to derive localization data from

PorcbleOes 106 a set of aps_ commandlinetools for assembling a user interface. The lines are
(PO) corrected and loaded back into "*.po" file.

Tech'Vriter

110

APSToolsBUILD 112

With winter zti oni

FIG.1

WO 2018/057605 PCT/US2017/052487

Method for Automated Detection, Correction, and Translation of Un-localized

Lines

CROSS REFERENCE TO RELATED APPLICATION

[0001] The present application is an international application of, and claims the priority

benefit of U.S. Application Serial No. 62/397,051, filed September 20, 2016, the text and

drawings of which are hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This invention relates to a method for automated detection of un-localized code

lines, and more particularly, to detection, correction and translation of code lines in Application

Packaging Standard (APS)-compliant application interfaces.

BACKGROUND

[0003] Service automation systems require a large number of applications compliant with

the Application Packaging Standard (APS). The Application Packaging Standard (APS) is a

standard that defines a technology for integrating application software with hosting platforms.

Integration of an application with such hosting platforms is implemented by creating an APS

package for the application, and the application is called an APS application in this case.

Development on an APS platform allows for universal use of an application on different hosting

platforms. Such applications are also deployed in various regions of the world in native

languages and/or dialects. In order for such applications to be used, their Graphical User

Interfaces (GUI) are sometimes deployed using the local language. For example, where a GUI

might have a text element that is in English when presented to a user in the United States (U.S.),

the same GUI element may have the same text translated into Russian, when presented to a user

1

WO 2018/057605 PCT/US2017/052487

in Russia. Using a local language (as opposed to English only) for GUI elements allows for a

customized and improved user experience.

[0004] Internationalization (il8n) is the process of developing an application such that

the strings and other locale-specific bits (such as date or currency formats) can be abstracted out

of the application so they can be localized for languages and cultures easily. Localization (110n),

is the process of adapting applications and text to enable their usability in a particular cultural or

linguistic market by providing translations and localized formats for the abstracted bits. For

example, making a U.S. application accessible to Australian or British users may require a little

more than a few spelling corrections. But to make a U.S. application usable by Japanese users,

or to make a Korean application usable by German users, will require the software to operate not

only in different languages, but also to use different input techniques and presentation

conventions.

[0005] Developing a GUI (and the GUI elements therein) for each language and for each

application is not a viable proposition. The time, effort and money required to develop so-called

"language native" GUIs can be burdensome when trying to deploy an application in multiple

regions of the world.

[0006] To reduce the burden, software and development platforms, such as for example,

the APS platform, allow for GUI elements to be localized and translated. This allows for a GUI,

when rendered, to be in a language that is native to the region (or the user). However, traditional

translations and conversions of the GUI interface elements do not present consistently. This can

be because the character set that comprises the alphabet of one language is different from another

language; the change in spatial characteristics renders the text in the translated language larger

(or smaller); or there is meaning "lost in translation."

2

WO 2018/057605 PCT/US2017/052487

[0007] Furthermore, when a GUI is developed or improved, the amount of data rendered

on the screen to the end user may increase, including any text messages that the user sees as part

of the GUI. In particular, the number of lines, marks of the interface elements, and screen forms

tend to increase. According to the APS standard, all application interface elements have to be

localized and internationalized. However, the interface lines and elements are not always

properly formatted after they are included into the application code. As a result, the end user can

observe glitches caused by a partial localization and translation of messages inside the

application.

[0008] For example, referring now to FIG. 1, there is shown an embodiment of a

conventional method for translation of un-localized lines of an APS compatible application,

generally at 100. The conventional method includes step 102 of collecting the source code; step

104 of importing of localization through nsgmake posts; step 106 of creating portable objects

(.po) message files; step 108 of transferring the nsgmake posts to a technical writer who drafts

translations for the un-localized lines; step 110 of adding the translation; step 112 of building the

APS package by exporting the localized message in JavaScript Object Notation (JSON); which

results at 114 with the APS package with internationalization files.

[0009] In the conventional method 100, not all lines can be presented and localized into

the interface correctly. The reasons for this can include, but are not limited to, incorrect format

of the localities, a processor error, an incorrect key, lack of available translations, or typos or

missing files relating to an additional locality, to name a few non-limiting examples. This results

in an incomplete implementation of required scenarios and in high costs associated with checks

and verifications.

3

WO 2018/057605 PCT/US2017/052487

[0010] Ideally, the above problems can be prevented in the application development

phase. Furthermore, automated and semi-automated checks of correctness of translation of GUI

elements are desired. This will help improve the checks and reduce costs associated with manual

verification. Lastly, a method for timely detection of localization errors within the application

lifecycle management is desired.

[0011] Therefore, there is a need for a method for automated detection, correction, and

translation of un-localized lines.

SUMMARY

[0012] Accordingly, the present disclosure is directed to a method for automated

detection, correction and translation of un-localized code lines that substantially obviates one or

more of the disadvantages of the prior art (as further discussed below). In one aspect of the

present disclosure, a method for periodic checking of localized lines in the application source

code before the assembled application is propagated into message files (*.po) is provided. In

another embodiment, an automated translation of lines for all supported application languages is

provided. The lines and their translations, which are provided in il8n JSON files, are validated

against the message files. According to an exemplary embodiment, the un-localized lines are

checked in the source code using a localization marker. According to the APS, a special trap

(i.e., a hook) is used for aps msgmake utility in order to derive localization data from a set of aps

command line tools for assembling a user interface.

4

WO 2018/057605 PCT/US2017/052487

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 displays a schematic drawing of an existing process of manual translation

of code lines by technical writer.

[0014] FIG. 2 displays a schematic drawing of a suggested method for automated

detection, correction, and translation of un-localized lines.

[0015] FIG. 3 displays a flowchart of a method for automated detection and collection

of localization patterns.

[0016] FIG. 4 displays a flowchart of a method for automated detection, correction, and

translation of un-localized lines.

[0017] FIG. 5 displays a flowchart of a method for automated detection, , and validation

of propagation lines.

[0018] FIG. 6 displays a schematic drawing of a method for automated detection,

correction, and translation of un-localized lines.

5

WO 2018/057605 PCT/US2017/052487

DETAILED DESCRIPTION

[0019] Reference will now be made in detail to the preferred embodiments of the present

invention, examples of which are illustrated in the accompanying drawings.

[0020] In at least one embodiment of the present disclosure, a method for periodic

checking of localized lines in the application source code before the assembled application is

propagated into message files (*.po) is provided. In another embodiment, an automated

internationalization of lines for all supported application languages is provided. The lines and

their translations are validated against the message files (*.po).

[0021] According to the exemplary embodiment and with reference to FIG. 2, the

localized lines are marked in the source code 202 using a localization marker. In an embodiment

using the APS, a special trap (i.e., a hook) is used for the aps msgmake utility 204 in order to

derive localization data from a set of aps command line tools for assembling a user interface.

The aps msgmake command extracts the translation strings into message files (*.po), one file per

language. A .po message file is a plain-text file, representing a single language that contains all

available translation strings and their interpretation (translation) in the given language. This file

is a convenient way for translators to provide the interpretation of the translation strings in the

target language. The .po message file is made up of many entries, each entry describes the

relation between an original untranslated string and its corresponding translation:

msgid "[Original translation string is here]"

msgstr "[Translated string is here]"

[0022] Using the above example, a translation in Spanish can be expressed as follows:

msgid "Diskspace - Usage Only"

msgstr "Espacio en disco - Solamente Uso"

6

WO 2018/057605 PCT/US2017/052487

[0023] According to the exemplary embodiment, two exemplary formats of a hook (i.e., a

localization marker) are used:

JavaScript files (*.js) Java files (*.java)

j"message") _("message")

[0024] The pair of underscores for *.java and single underscore for *.js function is a

hook that makes a string available for translation. For example, _("string to translate") makes

the aps msgmake command create the msgid "string to translate" and nsgstr "translated string"

pair in.po files 206. In the general case, a string may contain mapped parameters that should not

be translated. The mapped parameters must be enclosed between a pair of underscores "_". In

the following example, the msgKey string contains parameters, which values must be found in

the paramObjects mapping string:

_(msgKey, paramObjects)

[0025] It will be further appreciated that the localization marker can be used in a short or

full format. For example:

JavaScript (*.js):

Short format: _("User __username__ created")

Full format: _("User __username__ created", {"username":"John Smith")

Java (*.java):

Short format: __("User _username__ created")

Full format: __("User __username__ created", {"username":"John Smith"})

[0026] Accordingly, all of these lines are added into the .po message file, and

subsequently into JSON as follows:

7

WO 2018/057605 PCT/US2017/052487

Source code (*.js, *.java); file: DocumentNotificationFactory.java

private static final String NEWUNPAIDINVOICEISSUEDTITLE= __("New

Unpaid Invoice Issued");

Messagefile (*.po);file: esES.po

#: src/main/java/DocumentNotificationFactory.java:59

nisgid "New Invoice Issued"

msgstr

[0027] The _() function is used to localize the string @msgKey. For example,

@msgKey is actually a string "Found __itemsCount__ ite(s)." This string contains the

itemsCount parameter, wrapped by a pair of underscores. The parameter is defined by the

mapping string ["itemsCount":counter}. So, if aps msgmake meets the following code when

parsing a JavaScript code:

_("Found __itemsCount__ item(s)", {"itemsCount":itemsCount})

it automatically generates the following pair of records in the .po message file:

nisgid "Found __itemsCount__ item(s)"

msgstr ""

[0028] The resulting .po message file 206 is considered to be correct and is used as a

basis for a dictionary of localization samples (i.e., localization patterns). Since the variability of

code is rather high, it is impossible to determine the lines to be localized in the product source

code with a high degree of accuracy. According to the exemplary embodiment, the lines of the

8

WO 2018/057605 PCT/US2017/052487

source code of the keys that have been written into the .po message file of native locality

enUS.po are automatically considered and collected as the localization samples.

[0029] As shown in FIG. 2, a source code analyzer 208 may be used to review various

sources of code 202. Once a line with a localization marker is found, the source code analyzer

208 saves everything preceding the localization marker within the current line into a database

(i.e. database 656):

Pattern Timestamp FileExtention

label: 2016-04-10 0:00:00.000 JS

[00301 The above record is called the localization pattern. For example in the

following:

var warn =_("Assign the serviceName service to yourself to start using it.",

{serviceName: serviceConstants.SERVICENAME}, the localization sample will be "var warn

[0031] According to the exemplary embodiment, the localization samples (patterns) are

generated based on a plurality of rules. In at least one embodiment of the present disclosure, If a

line in the *.java file contains a declaration of the text constant (i.e., a text "static final String" or

"final static"), the application considers everything positioned before the string including the

actual word "String" to be a localization pattern. Thus, for the string public final static String

PASSWORDNOTCHANGED = __("Password Not Changed") the localization pattern is

publicfinal static String.

[0032] When there is no text in front of the localization marker (e.g., in a multi-line

string), the source code analyzer 208 takes everything located one line above as a localization

9

WO 2018/057605 PCT/US2017/052487

pattern. If the above line contains a string with the localization marker, the application moves to

the next line above. For example, for a line:

return runNotification(apsAccountUuid, apsUserUuid,(->{

return buildNotification(apsAccountUuid, apsUserUuid, entity, domainName,

NotificationMessageStatus.inProgress,

_"AssigningDomain"),

__('Assigning of domain\"{domain}\" is in progress."),

__('Assigning of domain\"{domain]V is in progress." +

"It can take several minutes to complete.))

send;

});.

the localization pattern is:

return buildNotification (apsAccountUuid, apsUserUuid, entity, domainName,

NotificationMessageStatus.inProgress).

[0033] If the multi-line string is encountered during a search based on an already

generated localization pattern, the source code analyzer 208 reads the string to the semicolon,

which is interpreted as a string end. All other borderline cases are resolved during a code review

so the mechanism of creation of localization patterns is implemented within the same standard.

According to one exemplary embodiment, the localization marker is added automatically, after a

list of localization patterns is formed. After a list of localization patterns is formed, the source

code analyzer 208, using the saved localization patterns, looks for entries in all files with the

particular FileExtention (e.g., JS). For example, if there is a sample label: marker, then find the

10

WO 2018/057605 PCT/US2017/052487

end of the line where this is a sample string marker (e.g. double quotes), and then extend this

string with alocalization marker if it did not exist. For example:

Label: "test string" --- > label:_("test string")

[00341 Then, a line propagation process (wherein all code lines with a localization

marker are moved to PO files), via the aps msgmake tool is implemented as

shown in FIG. 2. At step 204, the aps msgmake facilitates placing the content

which is placed inside the quotation marks inside the message file (*.po) and this

becomes a localization key.

[0035] After all of the localization keys are added into the .po message file of the native

locality (e.g. "enUS.po"), a locale analysis is started 210. Locale analyzer parse a native

language *po message file for all the existing msgID's. After that the tool compares the native

and additional languages files and extends the additional languages files with msgID's which are

not presented in it. Then the line internationalization process 212 is started using any of the

available libraries configured for working with gettext files (*.po) 214. It will be appreciated

that gettext files are based on an internationalization and localization (il8n) system commonly

used for writing multilingual programs. For example, for the Python programming language, the

"Polib" library can be used. Google Translate API can be used for automated translation of lines.

[0036] For each msgID (strings in *po files consist of a keys), a translation request is sent

to a translation engine, like Google Translate using the Google Translate API in JSON format, to

name one non-limiting example.

[0037] If the request is executed successfully, the server returns an "OK" response and a

translation result in JSON:

200 OK

11

WO 2018/057605 PCT/US2017/052487

{

"data":{

"translations":[

{

"translatedText": "Nueva factura emitida" (Spanish)

}

]

}

[0038] According to the exemplary embodiment, the translation is requested for all

languages supported by the APS application or only for the languages having the .po message

file present in the system. The translation selection is made based on an internationalization

script launching mode. The translated lines are also written into the database (i.e. database 656)

in the following format:

Key Value Timestamp LocaleCode

New Nueva 2016-04-10 esES

Invoice Issued factura emitida 0:00:00.000

New Nieuwe 2016-04-10 deDE

Invoice Issued factuur 0:00:00.001

Uitgegeven

[0039] According to the exemplary embodiment, the appropriate translated lines are

written into appropriate gettext files. Then the translation validation manual process 218 is

started. Responsible Tech Writer reviews strings that were automatically translated.

12

WO 2018/057605 PCT/US2017/052487

[0040] At step 220, after the APS application (i.e., APS package 222) is assembled, the

content of the message file (*.po) is converted into the localization file *.json.

[0041] According to the exemplary embodiment, the lines are validated between the .po

messagefiles and JSON 224. After the package is assembled, the validation script imports all of

the localization keys and the corresponding localization values from the.po messagefiles. Then,

the script checks for the file with the same name and the file extension *.json. Subsequently, the

script compares the keys and the values loaded into memory against the keys and the values in

the JSON file. If the key or the value is not found, an automated error report is created 226, and

can be sent to an application developer, to name one non-limiting example.

[0042] Referring now to FIG. 3, there is shown a flowchart of a method for checking for

un-localized lines in a source code populating a database with localization samples, in

accordance with one embodiment of the present disclosure. In step 305, the.po messagefiles are

generated by an aps msgmake tool as disclosed above. In at least one embodiment of the present

disclosure, the aps msgmake command extracts the translation strings into .po message files, one

file per language. This file is a convenient way for translators to provide the interpretation of

the translation strings in the target language. The aps msgmake utility uses a special trap (i.e., a

hook) in order to derive localization data from a set of aps command line tools for assembling a

GUI.

[0043] In step 310 a native locality .po messagefile is parsed. For example, enUS.po is

a locality .po message file for the English language (en) in the United States (US). The .po

message file name is in the form of llCC.po. The two-letter primary code (11) is defined by

the ISO 639-1 language specification. The two-letter subcode (CC) is interpreted according to

the ISO 3166-1 country specification. The language part is always written in lower case and the

13

WO 2018/057605 PCT/US2017/052487

country part in upper case. The separator is underscore(""). In at least one embodiment of the

present disclosure, a.po message file is a plain-text file, representing a single language that

contains all available translation strings and their interpretation (translation) in the given

language. It will be appreciated that a .po message file may be made up of many entries, each

entry describing the relation between an original untranslated string and its corresponding

translation:

nisgid "Original translation string is here"

msgstr "Transtated string is here"

[0044] In step 320, the process determines whether a string msgid already exists in a

database (e.g. database 656). If the msgid exists, the process returns to step 310. Otherwise, the

process gathers localization patterns in step 330. Then, the process saves the localization

patterns into database 656 and sends a report 212 to a responsible party, such as, for example, a

technical writer in step 340. It will be appreciated that report 212 contains newly added

localization patterns that can be analyzed by developer or technical writer to exclude it and make

an exception to not recognize such string(s) as localization patterns. In step 350, the process

determines whether it has reached the end of file (EOF) of the .po message file. If the EOF has

been reached, the process ends in step 360. Otherwise, the process returns to step 310.

[0045] Referring now to FIG. 4, there is shown a flowchart of a method for the

automated internationalization of lines in a source code populating a database with localization

samples, in accordance with one embodiment of the present disclosure. In step 405, .po message

files are generated by an aps msgmake tool as disclosed above. In at least on embodiment, *po

files can be retrieved from the previous stage after working of source code analyzer (second

iteration of 204 step). In at least one embodiment of the present disclosure,

14

WO 2018/057605 PCT/US2017/052487

the aps msgmake command extracts the translation strings into .po message files, one file per

language. This file is a convenient way for translators to provide the interpretation of

the translation strings in the target language. The aps msgmake, utility uses a special trap (i.e., a

hook) in order to derive localization data from a set of aps command line tools for assembling a

GUI.

[0046] In at least one embodiment of the present disclosure, the process automatically

creates a plurality of .po message files for each locality where a translation is desired. It will be

further appreciated that the .po messagefile for each locality comprises the each msgid that needs

to be translated. In step 410, a native locality .po message file is parsed as disclosed in step 310.

If, in step 415, the msgid exists in an additional locality, the process sends the msgid via a

request to a translation engine, such as, for example, the Google Translate API, via network 658

in step 430, and receives a translated string. Otherwise, the process extends the additional

locality 420 by the msgid (i.e. the process adds the msgid to the additional locality if necessary)

and moves to step 410. Then, in step 440, the process saves the translated strings into a message

file, the message file being provided for each additional locale and into database (e.g. database

656) and sends a report. In step 450, the process checks if it has reached the end of file (EOF) of

the .po message file. If the EOF has been reached, the process ends in step 460. Otherwise, the

process returns to step 410.

[0047] Referring now to FIG. 5, there is shown a flowchart of a method for validation of

lines between .po message files and JSON, in accordance with the exemplary embodiment. In

step 505, the process acquires a msgid from the .po message file for a native locality. In step

510, the process parses a locality reference file (i.e. JSON il8n files) for all existing localities.

In step 520, the process determines whether a key/value in the .po message file is equal to the

15

WO 2018/057605 PCT/US2017/052487

locality reference file (i.e. the JSON il8n file) except native locale where values are emty by

default. So, for the native locale compares only values of keys. If the key/value in the .po

message file is equal to the locality reference file, the process determines whether the JSON

(locality reference file) file has reached the end of file (EOF) in step 530. If the JSON file has

reached the end of file (EOF), the process ends in step 560. Otherwise, the process moves to

step 510. If, in step 520, key/value in the.po messagefile is NOT equal to the locality reference

file, the process saves absent strings into a database 656 and sends a report to a responsible party

(e.g. the responsible technical writer) in step 540 and moves to step 510. In step 550, the errors

are processed manually.

[0048] Referring to FIG. 6, there is shown a system and components for automated

detection, correction, and translation of un-localized lines, generally at 650. This description is

presented in terms of programs, data structures or procedures executed on a computer or network

of computers. The software programs implemented by the system may be written in any

programming language - interpreted, compiled, or otherwise. These languages may include, but

are not limited to, PHP, ASP.net, HTML, HTML5, Ruby, Perl, Java, Python, C++, C#,

JavaScript, and/or the Go programming language. It should be appreciated, of course, that one

of skill in the art will appreciate that other languages may be used instead, or in combination

with the foregoing and that web and/or mobile application frameworks may also be used, such

as, for example, Ruby on Rails, Node.js, Zend, Symfony, Revel, Django, Struts, Spring, Play, Jo,

Twitter Bootstrap and others. It should further be appreciated that the systems and methods

disclosed herein may be embodied in software-as-a-service available over a computer network,

such as, for example, the Internet. Further, the present disclosure may enable web services,

16

WO 2018/057605 PCT/US2017/052487

application programming interfaces and/or service-oriented architectures through one or more

application programming interfaces or otherwise.

[0049] FIG. 6 shows a system for automated detection, correction, and translation of un

localized lines. In at least one embodiment of present disclosure, the system comprises a user

GUI 652, server 654, database 656, and computer network 658.

[0050] The user GUI 652 may be configured to transmit information to and generally

interact with a web service and/or application programming interface infrastructure housed on

server 654 over computer network 658. The user GUI 652 may include a web browser, mobile

application, socket or tunnel, or other network connected software such that communication with

the web services infrastructure on server 654 is possible over the computer network 658.

[0051] The user GUI 652 includes one or more computers, smartphones, tablets,

wearable technology, computing devices, or systems of a type well known in the art, such as a

mainframe computer, workstation, personal computer, laptop computer, hand-held computer,

cellular telephone, MP3 player, or personal digital assistant. The user GUI 652 comprises such

software, hardware, and componentry as would occur to one of skill in the art, such as, for

example, one or more microprocessors, memory systems, input/output devices, device

controllers, and the like. The user GUI 652 also comprises one or more data entry means (not

shown in FIG. 6) operable by customers of the user GUI 652 for data entry, such as, for example,

voice or audio control, a pointing device (such as a mouse), keyboard, touchscreen, microphone,

voice recognition, and/or other data entry means known in the art. The user GUI 652 also

comprises a display means which may comprise various types of known displays such as liquid

crystal diode displays, light emitting diode display, and the like upon which information may be

displayed in a manner perceptible to the customers. It will be appreciated that user GUI 652 may

17

WO 2018/057605 PCT/US2017/052487

further comprise such software, hardware, and componentry as would occur to one of skill in the

art, to operably perform the functions allocated to the user GUI 652 in accordance with the

present disclosure.

[0052] The database 656 is configured to store information generated by the system

and/or retrieved from one or more information sources. In at least one embodiment of the

present disclosure, database 656 can be "associated with" server 654 where database 656 resides

on server 654. Database 656 can also be "associated with" server 654 where database 656

resides on a server or computing device remote from server 654, provided that the remote server

or computing device is capable of bi-directional data transfer with server 654, such as, for

example, in Amazon AWS, Rackspace, or other virtual infrastructure, or any business network.

In at least one embodiment of the present disclosure, the remote server or computing device upon

which database 656 resides is electronically connected to server 654 such that the remote server

or computing device is capable of continuous bi-directional data transfer with server 654.

[0053] For purposes of clarity, database 656 is shown in FIG. 6, and referred to herein as

a single database. It will be appreciated by those of ordinary skill in the art that database 656

may comprise a plurality of databases connected by software systems of a type well known in the

art, which collectively are operable to perform the functions delegated to database 656 according

to the present disclosure. Database 656 may also be part of distributed data architecture, such as,

for example, a Hadoop architecture, for big data services. Database 656 may comprise relational

database architecture, noSQL, OLAP, or other database architecture of a type known in the

database art. Database 656 may comprise one of many well-known database management

systems, such as, for example, MICROSOFT's SQL Server, MICROSOFT's ACCESS,

MongoDB, Redis. Hadoop, or IBM's DB2 database management systems, or the database

18

WO 2018/057605 PCT/US2017/052487

management systems available from ORACLE or SYBASE. Database 656 retrievably stores

information that is communicated to database 656 from user GUI 652 or server 654.

[0054] Having thus described an embodiment, it should be apparent to those skilled in

the art that certain advantages of the described method and system have been achieved. It should

also be appreciated that various modifications, adaptations, and alternative embodiments thereof

may be made within the scope and spirit of the present disclosure. The disclosure is further

defined by the following claims.

19

CLAIMS

Vhat is claimed is:

1) A computer implemented system for automated detection, correction, and translation of
un-localized lines, the computer implemented system comprising the steps of:

a. receiving at least one source file;

b. generating at least one message file from the at least one source file for a at least one

locality, the at least one message file comprising at least one message id, and at least

one location of the message id in the at least one source file;

c. parsing each of the at least one message files and retrieving the at least one message

id, checking the at least one message id to see if it already exists in a message id

database;

d. generating and saving into the message id database, a plurality of localization

patterns using at least the context of the at least one message id in the at least one

source file;

e. checking the at least one message id to see if it exists in at least one other locality,

and if it does, proceeding to step (g), if it does not, proceeding to step (f);

f. extending an additional locality based on the updated message identifier, and

returning to step (e) to check a next at least one message id;

g. requesting a translation to a translation engine and receiving a translated code string

from the translation services, recording the translated code string in the message id

database;

h. generating a report to a reviewing party;

i. generating a plurality of presentation files for presentation via a GUI;

20

j. parsing the plurality of presentation files to verify if the plurality of presentation files

has the same message id and translated code string for the at least one locality;

k. updating the plurality of presentation files if the message id and translated code string

are not available;

1. correcting mistakes and reporting about changes to the reviewing party.

2. The computer implemented system of claim 1, further comprising validating the message
file against JavaScript

Object Notation (JSON) by:

parsing JSON files for all existing localities; and

sending a report and processing errors based on the report.

3. The computer implemented system of claim 1, further comprising acquiring localization

patterns and saving them into the database.

4. The computer implemented system of claim 1, wherein the native locality message file is
en US.po file.

5. The computer implemented system of claim 1, wherein the translation is requested using a

translation utility application programming interface.

6. The computer implemented system of claim 1, wherein correcting mistakes comprises one

of automatically correcting errors found by the script, and manually correcting errors found by

propagation errors between message files and local files.

21

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

