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SYSTEMS AND METHODS FOR CHARACTERIZING TOPOLOGICAL NETWORK
PERTURBATIONS

BACKGROUND

[0001] The human body is constantly perturbed by exposure to potentially harmful agents that
can pose severe health risks in the long-term. Exposure to these agents can compromise the
normal functioning of biological mechanisms internal to the human body. To understand and
quantify the effect that these perturbations have on the human body, researchers study the
mechanism by which biological systems respond to exposure to agents. Some groups have
extensively utilized in vivo animal testing methods, but there is doubt as to whether responses
obtained from animal testing may be extrapolated to human biology. Other methods include
assessing risk through clinical studies of human volunteers. But these risk assessments are
performed a posteriori and, because diseases may take decades to manifest, these assessments
may not be sufficient to elucidate mechanisms that link harmful substances to disease. Yet other
methods include in vitro experiments. Although, ir vitro cell and tissue-based methods have
received general acceptance as full or partial replacement methods for their animal-based
counterparts, these methods have limited value. Because in vitro methods are focused on
specific aspects of cells and tissues mechanisms; they do not always take into account the
complex interactions that occur in the overall biological system.

[0002] In the last decade, high-throughput measurements of nucleic acid, protein and
metabolite levels in conjunction with traditional dose-dependent efficacy and toxicity assays,
have emerged as a means for elucidating mechanisms of action of many biological processes.
Researchers have attempted to combine information from these disparate measurements with
knowledge about biological pathways from the scientific literature to assemble meaningful
biological models. To this end, researchers have begun using mathematical and computational
techniques that can mine large quantities of data, such as clustering and statistical methods, to
identify possible biological mechanisms of action.

[0003] Previous work has explored the possibility of finding a characteristic signature of gene
expression changes that results from one or more perturbations to a biological process, and the
subsequent scoring of the presence of that signature in additional data sets. Most work in this

regard has involved identifying and scoring signatures that are correlated with a disease
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phenotype. These phenotype-derived signatures provide significant classification power, but lack
a mechanistic or causal relationship between a single specific perturbation and the signature.
Consequently, these signatures may represent multiple distinct unknown perturbations that, by
often unknown mechanism(s), lead to, or result from, the same disease phenotype.

[6004] One challenge lies in understanding how the activities of various individual biological
entities in a biological system enable the activation or suppression of different biological
mechanisms. Because an individual entity, such as a gene, may be involved in multiple
biological processes (e.g., inflammation and cell proliferation), measurement of the activity of
the gene is not sufficient to identify the underlying biological process that triggers the activity.
[0005] Random walk methods have been used in network analysis to characterize network
topology, for example, Komurov et al. (PLoS Computational Biology, August 2010, 6(8):
¢1000889) have described a method in which a data-biased random walk is defined and
compared to a simple random walk. However, the Komurov approach assumes that each node
has associated data and the network is undirected, but no probabilistic result is offered, and no
sensitivity analysis is available. In addition, when using causal network models, not all entities
(represented as nodes in the model) can be linked to experimental evidence. Moreover, when
specific experimental data are gathered, the network will likely be unequally perturbed due to the
specific mechanisms activated by the experiment. In view of the foregoing, there is in this field
of computational biology a continuing need of more evolved and better methods for analyzing

high throughput datasets in biomolecular network models.

SUMMARY

[0006] Described herein are systems, methods, and products for quantifying the response of a
biological system to one or more perturbations based on measured activity data from a subset of
entities in the biological system. Systems and methods are described for deriving centrality
values based on activity data and a network model of the biological system. The currently
available techniques are not based on identifying the underlying mechanisms responsible for the
activity of biological entities on a micro-scale, nor do they provide a quantitative assessment of
the activation of different biological mechanisms in which these entities play a role, in response
to potentially harmful agents and experimental conditions. Accordingly, there is a specific need

for improved systems and methods for analyzing system-wide biological data in view of
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biological mechanisms, and quantifying changes in the biological system as the system responds
to an agent or a change in the environment.

[0007] In one aspect, the systems and methods described herein are directed to computerized
methods and one or more computer processors for quantifying the perturbation of a biological
system (for example, in response to a treatment condition such as agent exposure, or in response
to multiple treatment conditions). The computerized method may include receiving, at a first
processor, a set of treatment data corresponding to a response of a biological system to an agent.
The biological system includes a plurality of biological entities, each biological entity interacting
with at least one other of the biological entities. The computerized method may also include
receiving, at a second processor, a set of control data corresponding to the biological system not
exposed to the agent. The computerized method may further include providing, at a third
processor, a computational causal network model that represents the biological system. The
computational causal network model includes nodes representing the biological entities and
edges representing relationships between the biological entities. An edge connects a
corresponding first node to a corresponding second node. In some implementations, the edges
represent causal activation relationship between nodes.

[0008] The computerized method may further include calculating, with a fourth processor,
perturbation indices for a subset of the nodes. The perturbation indices are calculated based at
least in part on the network model. A perturbation index represents a difference between the
treatment data and the control data at a corresponding node and an extent to which activity of the
corresponding node is impacted by the perturbation.

[6009] The computerized method may further include calculating, with a fifth processor,
transition probabilities, for the edges. The transition probabilities for the edges may be
calculated based at least in part on the perturbation indices. A transition probability for an edge
represents a likelihood of transitioning from the corresponding first node to the corresponding
second node. Such transition probabilities may define a Markov chain.

[0010] Finally, the computerized method may further include generating, with a sixth
processor, centrality values for the nodes. The centrality values for the nodes may be generated
based at least in part on the transition probabilities, and a centrality value represents a relative

importance of a corresponding node in the network model.
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[0011] In certain implementations, the perturbation index is a linear combination of activity
measures of nodes downstream from the corresponding node. In certain implementations, the
transition probability for an edge is based at least in part on the perturbation index of the
corresponding second node. In such an implementation, the transition probability for an edge
may be a linear function of the perturbation index of the second node.

[0012] In certain implementations, the computerized method further includes calculating, with
a seventh processor, equilibrium probabilities for the nodes that are representative of the
probabilities of a random walk visiting the nodes in the steady state. In such an implementation,
the sixth processor may generate the centrality values based at least in part on the equilibrium
probabilities.

[0013] In certain implementations, the sixth processor generates the centrality value for a
corresponding node based at least in part on a number of expected visits of a random walk to the
corresponding node between consecutive visits to other nodes. In such an implementation, the
centrality value may be a linear combination of the number of expected visits across all nodes in
the network.

[0014] In certain implementations, the centrality values are normalized by simple centrality
values generated based at least in part on simple transition probabilities that are not based on
perturbation indices.

[0015] In certain implementations, each of the first through sixth processors is included within
a single processor or single computing device. In other implementations, one or more of the first
through sixth processors are distributed across a plurality of processors or computing devices.
[0016] In certain implementations, the computational causal network model includes a set of
causal relationships that exist between a node representing a potential cause and nodes
representing one or more measured quantities. In such implementations, the activity measures
may include a fold-change. The fold-change may be a number describing how much a node
measurement changes going from an initial value to a final value between control data and
treatment data, or between two sets of data representing different treatment conditions. The fold-
change number may represent the logarithm of the fold-change of the activity of the biological
entity between the two conditions. The activity measure for each node may include a logarithm

of the difference between the treatment data and the control data for the biological entity
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represented by the respective node. In certain implementations, the computerized method
includes generating, with a processor, a confidence interval for each of the generated scores.
[0017] In certain implementations, the subset of the biological system includes, but is not
limited to, at least one of a cell proliferation mechanism, a cellular stress mechanism, a cell
inflammation mechanism, a mechanism of apoptosis, senescence, autophagy, or necroptosis and
a DNA repair mechanism. The agent may include, but is not limited to, a heterogeneous
substance, including a molecule or an entity that is not present in or derived from the biological
system. The agent may also include, but is not limited to, toxins, therapeutic compounds,
stimulants, relaxants, natural products, manufactured products, and food substances. The agent
may include, but is not limited to, at least one of aerosol generated by heating tobacco, aerosol
generated by combusting tobacco, tobacco smoke, and cigarette smoke. The agent may include,
but is not limited to, cadmium, mercury, chromium, nicotine, tobacco-specific nitrosamines and
their metabolites (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosonoricotine
(NNN), N-nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (NNAL)). In certain implementations, the agent includes a product used
for nicotine replacement therapy.

[0018] In another aspect, the systems and methods described herein are directed to
computerized methods and one or more computer processes for quantifying the perturbation of a
biological system. The computerized method may include receiving, at a first processor, a set of
first treatment data and receiving, at a second processor, a set of second treatment data. The
computerized method may further include providing, at a third processor, a computational causal
network model. The network model includes nodes representing biological entities and edges
representing relationships between the biological entities. The computerized method may further
include calculating, with a fourth processor, perturbation indices for a subset of the nodes. A
perturbation index may be calculated based at least in part on the network model and may
represent a difference between the first and second treatment data at a corresponding node. The
computerized method may further include generating, with a fifth processor, centrality values for
corresponding nodes. A centrality value may be generated based at least in part on the
perturbation indices and represents a relative importance of the corresponding node in the
network model. The computerized method may further include calculating, with a sixth

processor, a partial derivative of a centrality value for a first node with respect to the perturbation
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index for a second node. The partial derivative represents a topological sensitivity measure for
the network model. In certain implementations, calculating the partial derivative includes
determining an effect of a change in the perturbation index of the second node on a change in the
centrality value of the first node.

[0019] In another aspect, the systems and methods described herein are directed to
computerized methods and one or more computer processes for visualizing perturbation effects
on a biological system. The computerized method may include providing, at a first processor, a
computational causal network model. The network model includes nodes representing biological
entities and edges representing relationships between the biological entities. The computerized
method may further include generating, with a second processor, centrality values for
corresponding nodes. The centrality values may be generated based at least in part on the
network model, and may represent a relative importance of corresponding nodes in the network
model. The computerized method may further include calculating, with a third processor,
projections of the centrality values onto spectral transform vectors for representing effects of a
perturbation on the network model. In certain implementations, calculating projections of the
centrality values includes filtering the centrality values. In certain implementations, the
computerized method further comprises displaying the network model and displaying one or
more components of the projections of the centrality values on the displayed network model. In
certain implementations, the edges in the network model are undirected.

[0020] In another aspect, the systems and methods described herein are directed to
computerized methods and one or more computer processes for quantifying the perturbation of a
biological system. The computerized method may include providing, at a first processor, a
computational causal network model. The network model includes nodes representing biological
entities and edges representing relationships between the biological entities. The computerized
method may further include generating, with a second processor, centrality values for
corresponding nodes. The centrality values may be generated based at least in part on the
network model, and may represent the relative degrees of importance of corresponding nodes in
the network model. The computerized method may further include aggregating, with a third
processor, the centrality values to generate a score for the network model representing a
perturbation of the biological system. In certain implementations, the score is a scalar value. In

certain implementations, aggregating the centrality values includes computing a linear
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combination of the centrality values. In certain implementations, aggregating the centrality
values includes computing a linear combination of spectral transforms of the centrality values.

[0021] The computerized methods described herein may be implemented in a computerized
system having one or more computing devices, each including one or more processors.
Generally, the computerized systems described herein may comprise one or more engines, which
include a processing device or devices, such as a computer, microprocessor, logic device or other
device or processor that is configured with hardware, firmware, and software to carry out one or
more of the computerized methods described herein. In certain implementations, the
computerized system includes a systems response profile engine, a network modeling engine,
and a network scoring engine. The engines may be interconnected from time to time, and further
connected from time to time to one or more databases, including a perturbations database, a
measurables database, an experimental data database and a literature database. The
computerized system described herein may include a distributed computerized system having
one or more processors and engines that communicate through a network interface. Such an
implementation may be appropriate for distributed computing over multiple communication

systems.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Further features of the disclosure, its nature and various advantages will be apparent
upon consideration of the following detailed description, taken in conjunction with the
accompanying drawings, in which like reference characters refer to like parts throughout, and in
which:

[0023] FIG.1 is a block diagram of an illustrative computerized system for quantifying the
response of a biological network to a perturbation.

[0024] FIG.2 is a flow diagram of an illustrative process for quantifying the response of a
biological network to a perturbation by calculating a network perturbation amplitude (NPA)
score.

[0025]  FIG.3 is a graphical representation of data underlying a systems response profile
comprising data for two agents, two parameters, and N biological entities.

[0026]  FIGS.4A and 4B are illustrations of computational models of biological networks

having several biological entities and their relationships.
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[0027] FIG.5 is a flow diagram of an illustrative process for generating centrality values for
nodes in a biological network.

[0028] FIG. 6 is a more detailed flow diagram of a portion of FIG. 5 showing an illustrative
process for generating perturbation indices for a set of nodes.

[0029] FIG. 7 is a more detailed flow diagram of a portion of FIG. 5 showing an illustrative
process for defining a reinforced random walk on the network.

[0030] FIG. 8 is a more detailed flow diagram of a portion of FIG. 5 showing an illustrative
process for computing centrality values for a set of nodes.

[0031] FIG.9 is a block diagram of an exemplary distributed computerized system for
quantifying the impact of biological perturbations.

[0032] FIG. 10 is a block diagram of an exemplary computing device which may be used to
implement any of the components in any of the computerized systems described herein.

[0033] FIG. 11 is a simplified diagram of a causal network model.

[0034] FIG. 12 is a simplified diagram of a causal network.

[0035] FIGS. 13 and 14 are simplified diagrams of spectral components of projections of
centrality values in a network.

[0036] FIG. 15 is a diagram of an example of a lung-focused causal network for cell
proliferation.

[0037] FIG. 16 is a graph of experimental results for centrality values for node cell

proliferation.

DETAILED DESCRIPTION

[0038]  The technical terms and expressions used within the scope of this application are
generally to be given the meaning commonly applied to them in the pertinent art. The word
"comprising” does not exclude other elements or steps, and the indefinite article "a" or "an" does
not exclude a plurality. The terms "essentially”, "about", "approximately" and the like in
connection with an attribute or a value particularly also define exactly the attribute or exactly the
value, respectively. Described herein are computational systems,computerized methods and
products that assess quantitatively the magnitude of changes within a biological system when it
is perturbed by an agent. Certain implementations include methods for computing a numerical

value that expresses the magnitude of changes within a portion of a biological system. The
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computation uses as input, a set of data obtained from a set of controlled experiments in which
the biological system is perturbed by an agent. The data is then applied to a network model of a
feature of the biological system. The network model is used as a substrate for simulation and
analysis, and is representative of the biological mechanisms and pathways that enable a feature
of interest in the biological system. The feature or some of its mechanisms and pathways may
contribute to the pathology of diseases and adverse effects of the biological system. Prior
knowledge of the biological system represented in a database is used to construct the network
model which is populated by data on the status of numerous biological entities under various
conditions including under normal conditions and under perturbation by an agent. The network
model used is dynamic in that it represents changes in status of various biological entities in
response to a perturbation and can yield quantitative and objective assessments of the impact of
an agent on the biological system. Computer systems and products for operating these
computational methods are also provided.

[0039] The numerical values generated by computerized methods of the disclosure can be used
to determine the magnitude of desirable or adverse biological effects caused by one or more of
manufactured products (for safety assessment or comparisons), therapeutic compounds including
nutrition supplements (for determination of efficacy or health benefits), and environmentally
active substances (for prediction of risks of long term exposure and the relationship to adverse
effect and onset of disease), among others.

[0040] In one aspect, the systems and methods described herein provide a computed numerical
value representative of the magnitude of change in a perturbed biological system based on a
network model of a perturbed biological mechanism. The numerical value referred to herein as a
network perturbation amplitude (NPA) score can be used to summarily represent the status
changes of various entities in a defined biological mechanism. The numerical values obtained
for different agents or different types of perturbations can be used to compare relatively the
impact of the different agents or perturbations on a biological mechanism which enables or
manifests itself as a feature of a biological system. Thus, NPA scores may be used to measure
the responses of a biological mechanism to different perturbations. The term "score" is used
herein generally to refer to a value or set of values which provide a quantitative measure of the

magnitude of changes in a biological system. Such a score is computed by using any of various
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mathematical and computational algorithms known in the art and according to the methods
disclosed herein, employing one or more datasets obtained from a sample or a subject.

[0041] The NPA scores may assist researchers and clinicians in improving diagnosis,
experimental design, therapeutic decision, and risk assessment. For example, the NPA scores
may be used to screen a set of candidate biological mechanisms in a toxicology analysis to
identify those most likely to be affected by exposure to a potentially harmful agent. By
providing a measure of network response to a perturbation, these NPA scores may allow
correlation of molecular events (as measured by experimental data) with phenotypes or
biological outcomes that occur at the cell, tissue, organ or organism level. A clinician may use
NPA values to compare the biological mechanisms affected by an agent to a patient's
physiological condition to determine what health risks or benefits the patient is most likely to
experience when exposed to the agent (e.g., a patient who is immuno-compromised may be
especially vulnerable to agents that cause a strong immuno-suppressive response).

[0042] FIG. 1 is a block diagram of a computerized system 100 for quantifying the response of
a network model to a perturbation. In particular, system 100 includes a systems response profile
engine 110, a network modeling engine 112, and a network scoring engine 114. The engines
110, 112, and 114 are interconnected from time to time, and further connected from time to time
to one or more databases, including a perturbations database 102, a measurables database 104, an
experimental data database 106 and a literature database 108. As used herein, an engine includes
a processing device or devices, such as a computer, microprocessor, logic device or other device
or devices as described with reference to FIG. 10, that is configured with hardware, firmware,
and software to carry out one or more computational operations.

[0043] FIG. 2 is a flow diagram of a process 200 for quantifying the response of a biological
network to a perturbation by calculating a network perturbation amplitude (NPA) score,
according to one implementation. The steps of the process 200 will be described as being carried
out by various components of the system 100 of FIG. 1, but any of these steps may be performed
by any suitable hardware or software components, local or remote, and may be arranged in any
appropriate order or performed in parallel. At step 210, the systems response profile (SRP)
engine 110 receives biological data from a variety of different sources, and the data itself may be
of a variety of different types. The data includes data from experiments in which a biological

system is perturbed, as well as control data. At step 212, the SRP engine 110 generates systems
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response profiles (SRPs) which are representations of the degree to which one or more entities
within a biological system change in response to the presentation of an agent to the biological
system. At step 214, the network modeling engine 112 provides one or more databases that
contain(s) a plurality of network models, one of which is selected as being relevant to the agent
or a feature of interest. The selection can be made on the basis of prior knowledge of the
mechanisms underlying the biological functions of the system. In certain implementations, the
network modeling engine 112 may extract causal relationships between entities within the
system using the systems response profiles, networks in the database, and networks previously
described in the literature, thereby generating, refining or extending a network model. At
step 216, the network scoring engine 114 generates NPA scores for each perturbation using the
network identified at step 214 by the network modeling engine 112 and the SRPs generated at
step 212 by the SRP engine 110. An NPA score quantifies a biological response to a perturbation
or treatment (represented by the SRPs) in the context of the underlying relationships between the
biological entities (represented by the network).

[0044] A biological system in the context of the present disclosure includes an organism or a
part of an organism, including functional parts, the organism being referred to herein as a
subject. The subject is generally a mammal, including a human. The subject can be an individual
human being in a human population. The term "mammal" as used herein includes but is not
limited to a human, non-human primate, mouse, rat, dog, cat, cow, sheep, horse, and pig.
Mammals other than humans can be advantageously used as subjects that can be used to provide
a model of a human disease. The non-human subject can be unmodified, or a genetically
modified animal (e.g., a transgenic animal, or an animal carrying one or more genetic
mutation(s), or silenced gene(s)). The subject can be male or female. Depending on the
objective of the operation, a subject can be one that has been exposed to an agent of interest.
The subject can be one that has been exposed to an agent over an extended period of time,
optionally including time prior to the study. The subject can be one that had been exposed to an
agent for a period of time but is no longer in contact with the agent. The subject can be one that
has been diagnosed or identified as having a disease. The subject can be one that has already
undergone, or is undergoing treatment of a disease or adverse health condition. The subject can
also be one that exhibits one or more symptoms or risk factors for a specific health condition or

disease. The subject can be one that is predisposed to a disease, and may be either symptomatic
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or asymptomatic. In certain implementations, the disease or health condition in question is
associated with exposure to an agent or use of an agent over an extended period of time.
According to some implementations, the system 100 (FIG. 1) contains or generates computerized
models of one or more biological systems and mechanisms of its functions (collectively,
"biological networks" or "network models") that are relevant to a type of perturbation or an
outcome of interest.

[0045] Depending on the context of the operation, the biological system can be defined at
different levels as it relates to the function of an individual organism in a population, an
organism generally, an organ, a tissue, a cell type, an organelle, a cellular component, or a
specific individual's cell(s).  Each biological system comprises one or more biological
mechanisms or pathways, the operation of which manifest as functional features of the system.
Animal systems that reproduce defined features of a human health condition and that are suitable
for exposure to an agent of interest are preferred biological systems. Cellular and organotypical
systems that reflect the cell types and tissue involved in a disease etiology or pathology are also
preferred biological systems. Priority could be given to primary cells or organ cultures that
recapitulate as much as possible the human biology in vivo. It is also important to match the
human cell culture in vitro with the most equivalent culture derived from the animal models in
vivo. This enables creation of a translational continuum from animal model to human biology in
vivo using the matched systems in vitro as reference systems. Accordingly, the biological system
contemplated for use with the systems and methods described herein can be defined by, without
limitation, functional features (for example, biological functions, physiological functions, or
cellular functions), organelle, cell type, tissue type, organ, development stage, or a combination
of the foregoing. Examples of biological systems include, but are not limited to, the pulmonary,
integument, skeletal, muscular, nervous (for example, central and peripheral), endocrine,
cardiovascular, immune, circulatory, respiratory, urinary, renal, gastrointestinal, colorectal,
hepatic and reproductive systems. Other examples of biological systems include, but are not
limited to, the various cellular functions in epithelial cells, nerve cells, blood cells, connective
tissue cells, smooth muscle cells, skeletal muscle cells, fat cells, ovum cells, sperm cells, stem
cells, lung cells, brain cells, cardiac cells, laryngeal cells, pharyngeal cells, esophageal cells,
stomach cells, kidney cells, liver cells, breast cells, prostate cells, pancreatic cells, islet cells,

testes cells, bladder cells, cervical cells, uterus cells, colon cells, and rectum cells. Some of the
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cells may be cells of cell lines, cultured in vitro or maintained in vitro indefinitely under
appropriate culture conditions. Examples of cellular functions include, but are not limited to, cell
proliferation (e.g., cell division), degeneration, regeneration, senescence, control of cellular
activity by the nucleus, cell-to-cell signaling, cell differentiation, cell de-differentiation,
secretion, migration, phagocytosis, repair, apoptosis, and developmental programming.
Examples of cellular components that can be considered as biological systems include, but are
not limited to, the cytoplasm, cytoskeleton, membrane, ribosomes, mitochondria, nucleus,
endoplasmic reticulum (ER), Golgi apparatus, lysosomes, DNA, RNA, proteins, peptides, and
antibodies.

[0046] A perturbation in a biological system can be caused by one or more agents over a period
of time through exposure or contact with one or more parts of the biological system. An agent
can be a single substance or a mixture or a plurality (for example, one or more) of substances,
including a mixture in which not all constituents are identified or characterized. The chemical
and physical properties of an agent or its constituents may not be fully characterized. An agent
can be defined by its structure, its constituents, or a source that under certain conditions produces
the agent. An example of an agent is a heterogeneous substance, that is a molecule or an entity
that is not present in or derived from the biological system, and any intermediates or metabolites
produced therefrom after contacting the biological system. An agent can be one or more of a
carbohydrate, protein, lipid, nucleic acid, alkaloid, vitamin, metal, heavy metal, mineral, oxygen,
ion, enzyme, hormone, neurotransmitter, inorganic chemical compound, organic chemical
compound, environmental agent, microorganism, particle, environmental condition,
environmental force, or physical force. Non-limiting examples of agents include but are not
limited to nutrients, metabolic wastes, poisons, narcotics, toxins, therapeutic compounds,
stimulants, relaxants, natural products, manufactured products, food substances, pathogens
(prion, virus, bacteria, fungi, protozoa), particles or entities whose dimensions are in or below
the micrometer range, by-products of the foregoing and mixtures of the foregoing. Non-limiting
examples of a physical agent include radiation, electromagnetic waves (including sunlight),
increase or decrease in temperature, shear force, fluid pressure, electrical discharge(s) or a
sequence thereof, or trauma.

[0047] At least some agents or all agents may not perturb a biological system unless it is

present at a threshold concentration or it is in contact with the biological system for a period of
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time, or a combination of both. Exposure or contact of an agent(s) resulting in a perturbation
may be quantified in terms of dosage. Thus, a perturbation can result from a long-term exposure
to an agent. The period of exposure can be expressed by units of time, by frequency of exposure,
or by the percentage of time within the actual or estimated life span of the subject. A
perturbation can also be caused by withholding an agent (as described above) from or limiting
supply of an agent to one or more parts of the biological system. For example, a perturbation can
be caused by a decreased supply of or a lack of one or more nutrients, water, carbohydrates,
proteins, lipids, alkaloids, vitamins, minerals, oxygen, ioms, an enzyme, a hormone, a
neurotransmitter, an antibody, a cytokine, light, or by restricting movement of certain parts of an
organism, or by constraining or requiring exercise. Combinations thereof are contemplated.
[0048] At least some agents or all agents agent may cause different perturbations depending on
which part(s) of the biological system is exposed and the exposure conditions. Non-limiting
examples of an agent may include aerosol generated by heating tobacco, aerosol generated by
combusting tobacco, tobacco smoke, cigarette smoke, and any of the gaseous constituents or
particulate constituents thereof. Further non-limiting examples of an agent include cadmium,
mercury, chromium, nicotine, tobacco-specific nitrosamines and their metabolites (4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosonomicotine (NNN), N-
nitrosoanatabine (NAT), N-nitrosoanabasine (NAB), 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanol (NNAL)), and any product used for nicotine replacement therapy. An exposure regimen
for an agent or complex stimulus should reflect the range and circumstances of exposure in
everyday settings. A set of standard exposure regimens can be designed to be applied
systematically to equally well-defined experimental systems. Each assay may be designed to
collect time and dose-dependent data to capture both early and late events and ensure a
representative dose range is covered. However, it will be understood by one of ordinary skill in
the art that the systems and methods described herein may be adapted and modified as is
appropriate for the application being addressed and that the systems and methods designed
herein may be employed in other suitable applications, and that such other additions and
modifications will not depart from the scope thereof.

[0049] In various implementations, high-throughput system-wide measurements for gene
expression, protein expression or turnover, microRNA expression or turnover, post-translational

modifications, protein modifications, translocations, antibody production metabolite profiles, or
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a combination of two or more of the foregoing are generated under various conditions including
the respective controls. Functional outcome measurements are desirable in the methods described
herein as they can generally serve as anchors for the assessment and represent clear steps in a
disease etiology.

[0050] A "sample" as used herein refers to any biological sample that is isolated from a subject
or an experimental system (e.g., cell, tissue, organ, or whole animal). A sample can include,
without limitation, a single cell or multiple cells, cellular fraction, tissue biopsy, resected tissue,
tissue extract, tissue, tissue culture extract, tissue culture medium, exhaled gases, whole blood,
platelets, serum, plasma, erythrocytes, leucocytes, lymphocytes, neutrophils, macrophages, B
cells or a subset thereof, T cells or a subset thereof, a subset of hematopoietic cells, endothelial
cells, synovial fluid, lymphatic fluid, ascites fluid, interstitial fluid, bone marrow, cerebrospinal
fluid, pleural effusions, tumor infiltrates, saliva, mucous, sputum, semen, sweat, urine, or any
other bodily fluids. Samples can be obtained from a subject by means including but not limited
to venipuncture, excretion, biopsy, needle aspirate, lavage, scraping, surgical resection, or other
means known in the art.

[0051] During operation, for a given biological mechanism, an outcome, a perturbation, or a
combination of the foregoing, the system 100 can generate a network perturbation amplitude
(NPA) value, which is a quantitative measure of changes in the status of biological entities in a
network in response to a treatment condition.

[0052] The system 100 (FIG. 1) comprises one or more computerized network model(s) that
are relevant to the health condition, disease, or biological outcome, of interest. One or more of
these network models are based on prior biological knowledge and can be uploaded from an
external source and curated within the system 100. The models can also be generated de novo
within the system 100 based on measurements. Measurable elements are causally integrated into
biological network models through the use of prior knowledge. Described below are the types of
data that represent changes in a biological system of interest that can be used to generate or
refine a network model, or that represent a response to a perturbation.

[0053] Referring to FIG. 2, at step 210, the systems response profile (SRP) engine 110 receives
biological data. The SRP engine 110 may receive this data from a variety of different sources,
and the data itself may be of a variety of different types. The biological data used by the SRP

engine 110 may be drawn from the literature, databases (including data from preclinical, clinical
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and post-clinical trials of pharmaceutical products or medical devices), genome databases
(genomic sequences and expression data, e.g., Gene Expression Omnibus by National Center for
Biotechnology Information or ArrayExpress by European Bioinformatics Institute (Parkinson et
al. 2010, Nucl. Acids Res., doi: 10.1093/nar/gkq1040. Pubmed ID 21071405)), commercially
available databases (e.g., Gene Logic, Gaithersburg, MD, USA) or experimental work. The data
may include raw data from one or more different sources, such as in vitro, ex vivo or in vivo
experiments using one or more species that are specifically designed for studying the effect of
particular treatment conditions or exposure to particular agents. In vitro experimental systems
may include tissue cultures or organotypical cultures (three-dimensional cultures) that represent
key aspects of human disease. In such implementations, the agent dosage and exposure regimens
for these experiments may substantially reflect the range and circumstances of exposures that
may be anticipated for humans during normal use or activity conditions, or during special use or
activity conditions. Experimental parameters and test conditions may be selected as desired to
reflect the nature of the agent and the exposure conditions, molecules and pathways of the
biological system in question, cell types and tissues involved, the outcome of interest, and
aspects of disease etiology. Particular animal-model-derived molecules, cells or tissues may be
matched with particular human molecule, cell or tissue cultures to improve translatability of
animal-based findings.

[0054] The data received by SRP engine 110 many of which are generated by high-throughput
experimental techniques, include but are not limited to that relating to nucleic acid (e.g., absolute
or relative quantities of specific DNA or RNA species, changes in DNA sequence, RNA
sequence, changes in tertiary structure, or methylation pattern as determined by sequencing,
hybridization - particularly to nucleic acids on microarray, quantitative polymerase chain
reaction, or other techniques known in the art), protein/peptide (e.g., absolute or relative
quantities of protein, specific fragments of a protein, peptides, changes in secondary or tertiary
structure, or posttranslational modifications as determined by methods known in the art) and
functional activities (e.g., enzymatic activities, proteolytic activities, transcriptional regulatory
activities, transport activities, binding affinities to certain binding partners) under certain
conditions, among others. Modifications including posttranslational modifications of protein or
peptide can include, but are not limited to, methylation, acetylation, farnesylation, biotinylation,

stearoylation, formylation, myristoylation, palmitoylation, geranylgeranylation, pegylation,
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phosphorylation, sulphation, glycosylation, sugar modification, lipidation, lipid modification,
ubiquitination, sumolation, disulphide bonding, cysteinylation, oxidation, glutathionylation,
carboxylation, glucuronidation, and deamidation. In addition, a protein can be modified
posttranslationally by a series of reactions such as Amadori reactions, Schiff base reactions, and
Maillard reactions resulting in glycated protein products.

[0055] The data may also include measured functional outcomes, such as but not limited to
those at a cellular level including cell proliferation, developmental fate, and cell death, at a
physiological level, lung capacity, blood pressure, exercise proficiency. The data may also
include a measure of disease activity or severity, such as but not limited to tumor metastasis,
tumor remission, loss of a function, and life expectancy at a certain stage of disease. Disease
activity can be measured by a clinical assessment the result of which is a value, or a set of values
that can be obtained from evaluation of a sample (or population of samples) from a subject or
subjects under defined conditions. A clinical assessment can also be based on the responses
provided by a subject to an interview or a questionnaire.

[0056] This data may have been generated expressly for use in determining a systems response
profile, or may have been produced in previous experiments or published in the literature.
Generally, the data includes information relating to a molecule, biological structure,
physiological condition, genetic trait, or phenotype. In some implementations, the data includes
a description of the condition, location, amount, activity, or substructure of a molecule,
biological structure, physiological condition, genetic trait, or phenotype. As will be described
later, in a clinical setting, the data may include raw or processed data obtained from assays
performed on samples obtained from human subjects or observations on the human subjects,
exposed to an agent.

[0057] At step 212, the systems response profile (SRP) engine 110 generates systems response
profiles (SRPs) based on the biological data received at step 212. This step may include one or
more of background correction, normalization, fold-change calculation, significance
determination and identification of a differential response (e.g., differentially expressed genes).
SRPs are representations that express the degree to which one or more measured entities within a
biological system (e.g., a molecule, a nucleic acid, a peptide, a protein, a cell, etc.) are
individually changed in response to a perturbation applied to the biological system (e.g., an

exposure to an agent). In one example, to generate an SRP, the SRP engine 110 collects a set of
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measurements for a given set of parameters (e.g., treatment or perturbation conditions) applied to
a given experimental system (a "system-treatment” pair). FIG. 3 illustrates two SRPs: SRP 302
that includes biological activity data for N different biological entities undergoing a first
treatment 306 with varying parameters (e.g., dose and time of exposure to a first treatment
agent), and an analogous SRP 304 that includes biological activity data for the N different
biological entities undergoing a second treatment 308. The data included in an SRP may be raw
experimental data, processed experimental data (e.g., filtered to remove outliers, marked with
confidence estimates, averaged over a number of trials), data generated by a computational
biological model, or data taken from the scientific literature. An SRP may represent data in any
number of ways, such as an absolute value, an absolute change, a fold-change, a logarithmic
change, a function, and a table. The SRP engine 110 passes the SRPs to the network modeling
engine 112.

[0058] While the SRPs derived in the previous step represent the experimental data from which
the magnitude of network perturbation will be determined, it is the biological network models
that are the substrate for computation and analysis. This analysis requires development of a
detailed network model of the mechanisms and pathways relevant to a feature of the biological
system. Such a framework provides a layer of mechanistic understanding beyond examination of
gene lists that have been used in more classical gene expression analysis. A network model of a
biological system is a mathematical construct that is representative of a dynamic biological
system and that is built by assembling quantitative information about various basic properties of
the biological system.

[0059] Construction of such a network is an iterative process. Delineation of boundaries of the
network is guided by literature investigation of mechanisms and pathways relevant to the process
of interest (e.g., cell proliferation in the lung). Causal relationships describing these pathways
are extracted from prior knowledge to nucleate a network. The literature-based network can be
verified using high-throughput data sets that contain the relevant phenotypic endpoints. SRP
engine 110 can be used to analyze the data sets, the results of which can be used to confirm,
refine, or generate network models.

[0060] Returning to FIG. 2, at step 214, the network modeling engine 112 uses the systems
response profiles from the SRP engine 110 with a network model based on the mechanism(s) or

pathway(s) underlying a feature of a biological system of interest. In certain aspects, the
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network modeling engine 112 is used to identify networks already generated based on SRPs.
The network modeling engine 112 may include components for receiving updates and changes to
models. The network modeling engine 112 may also iterate the process of network generation,
incorporating new data and generating additional or refined network models. The network
modeling engine 112 may also facilitate the merging of one or more datasets or the merging of
one or more networks. The set of networks drawn from a database may be manually
supplemented by additional nodes, edges, or entirely new networks (e.g., by mining the text of
literature for description of additional genes directly regulated by a particular biological entity).
These networks contain features that may enable process scoring. Network topology is
maintained; networks of causal relationships can be traced from any point in the network to a
measurable entity. Further, the models are dynamic and the assumptions used to build them can
be modified or restated and enable adaptability to different tissue contexts and species. This
allows for iterative testing and improvement as new knowledge becomes available. The network
modeling engine 112 may remove nodes or edges that have low confidence or which are the
subject of conflicting experimental results in the scientific literature. The network modeling
engine 112 may also include additional nodes or edges that may be inferred using supervised or
unsupervised learning methods (e.g., metric learning, matrix completion, pattern recognition).

[0061] In certain aspects, a biological system is modeled as a mathematical graph consisting of
vertices (or nodes) and edges that connect the nodes. For example, FIGS. 4A and 4B illustrate
simple networks 400a and 400b respectively. In particular, network 400a includes 9 nodes
(including nodes 402 and 404) and edges (406 and 408). The nodes can represent biological
entities within a biological system, such as, but not limited to, compounds, DNA, RNA, proteins,
peptides, antibodies, cells, tissues, and organs. The edges can represent relationships between
the nodes. The edges in the graph can represent various relations between the nodes. For
example, edges may represent a "binds to" relation, an "is expressed in" relation, an "are co-
regulated based on expression profiling" relation, an "inhibits" relation, a "co-occur in a
manuscript” relation, or "share structural element" relation. Generally, these types of
relationships describe a relationship between a pair of nodes. The nodes in the graph can also
represent relationships between nodes. Thus, it is possible to represent relationships between
relationships, or relationships between a relationship and another type of biological entity

represented in the graph. For example a relationship between two nodes that represent chemicals

19




WO 2013/030137 PCT/EP2012/066557

may represent a reaction. This reaction may be a node in a relationship between the reaction and
a chemical that inhibits the reaction.

[0062] The edges of a graph may be directed from one vertex to another. For example, in a
biological context, transcriptional regulatory networks and metabolic networks may be modeled
as a directed graph. In a graph model of a transcriptional regulatory network, nodes would
represent genes with edges denoting the regulatory relationships of gene transcription between
them. As another example, protein-protein interaction networks describe direct physical
interactions between the proteins in an organism's proteome and there is often no direction
associated with the interactions in such networks. Thus, these may be modeled as undirected
edges, meaning that there is no distinction between the two vertices associated with an edge.
Certain networks may have both directed and undirected edges. The entities and relationships
(i.e., the nodes and edges) that make up a graph, may be stored as a web of interrelated nodes in
a database in system 100.

[0063] The knowledge represented within the database may be of various different types,
drawn from various different sources. For example, certain data may represent a genomic
database, including information on genes, and relations between them. In such an example, a
node may represent an oncogene, while another node connected to the oncogene node may
represent a gene that inhibits the oncogene. The data may represent proteins, and relations
between them, diseases and their interrelations, and various disease states. There are many
different types of data that can be combined in a graphical representation. The computational
models may represent a web of relations between nodes representing knowledge in, e.g., a DNA
dataset, an RNA dataset, a protein dataset, an antibody dataset, a cell dataset, a tissue dataset, an
organ dataset, a medical dataset, an epidemiology dataset, a chemistry dataset, a toxicology
dataset, a patient dataset, and a population dataset. As used herein, a dataset is a collection of
numerical values resulting from evaluation of a sample (or a group of samples) under defined
conditions. Datasets can be obtained, for example, by experimentally measuring quantifiable
entities of the sample; or alternatively, or from a service provider such as a laboratory, a clinical
research organization, or from a public or proprietary database. Datasets may contain data and
biological entities represented by nodes, and the nodes in each of the datasets may be related to
other nodes in the same dataset, or in other datasets. Moreover, the network modeling engine

112 may generate computational models that represent genetic information, in, e.g., DNA, RNA,
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protein or antibody dataset, to medical information, in medical dataset, to information on
individual patients in patient dataset, and on entire populations, in epidemiology dataset. In
addition to the various datasets described above, there may be many other datasets, or types of
biological information that may be included when generating a computation model. For example,
a database could further include medical record data, structure/activity relationship data,
information on infectious pathology, information on clinical trials, exposure pattern data, data
relating to the history of use of a product, and any other type of life science-related information.
[0064] The network modeling engine 112 may generate one or more network models
representing, for example, the regulatory interaction between genes, interaction between proteins
or complex bio-chemical interactions within a cell or tissue. The networks generated by the
network modeling engine 112 may include static and dynamic models. The network modeling
engine 112 may employ any applicable mathematical schemes to represent the system, such as
hyper-graphs and weighted bipartite graphs, in which two types of nodes are used to represent
reactions and compounds. The network modeling engine 112 may also use other inference
techniques to generate network models, such as an analysis based on over-representation of
functionally-related genes within the differentially expressed genes, Bayesian network analysis, a
graphical Gaussian model technique or a gene relevance network technique, to identify a relevant
biological network based on a set of experimental data (e.g., gene expression, metabolite
concentrations, cell response, etc.).

[0065] As described above, the network model is based on mechanisms and pathways that
underlie the functional features of a biological system. The network modeling engine 112 may
generate or contain a model representative of an outcome regarding a feature of the biological
system that is relevant to the study of the long-term health risks or health benefits of agents.
Accordingly, the network modeling engine 112 may generate or contain a network model for
various mechanisms of cellular function, particularly those that relate or contribute to a feature of
interest in the biological system, including but not limited to cellular proliferation, cellular stress,
cellular regeneration, apoptosis, DNA damage/repair or inflammatory response. In other
embodiments, the network modeling engine 112 may contain or generate computational models
that are relevant to acute systemic toxicity, carcinogenicity, dermal penetration, cardiovascular
disease, pulmonary disease, ecotoxicity, eye irrigation/corrosion, genotoxicity, immunotoxicity,

neurotoxicity, pharmacokinetics, drug metabolism, organ toxicity, reproductive and
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developmental toxicity, skin irritation/corrosion or skin sensitization. Generally, the network
modeling engine 112 may contain or generate computational models for status of nucleic acids
(DNA, RNA, SNP, siRNA, miRNA, RNAi), proteins, peptides, antibodies, cells, tissues, organs,
and any other biological entity, and their respective interactions. In one example, computational
network models can be used to represent the status of the immune system and the functioning of
various types of white blood cells during an immune response or an inflammatory reaction. In
other examples, computational network models could be used to represent the performance of the
cardiovascular system and the functioning and metabolism of endothelial cells.

[6066] In some implementations of the present disclosure, the network is drawn from a
database of causal biological knowledge. This database may be generated by performing
experimental studies of different biological mechanisms to extract relationships between
mechanisms (e.g., activation or inhibition relationships), some of which may be causal
relationships, and may be combined with a commercially-available database such as the
Genstruct Technology Platform or the Selventa Knowledgebase, curated by Selventa Inc. of
Cambridge, Massachusetts, USA. Using a database of causal biological knowledge, the network
modeling engine 112 may identify a network that links the perturbations 102 and the
measurables 104. In certain implementations, the network modeling engine 112 extracts causal
relationships between biological entities using the systems response profiles from the SRP
engine 110 and networks previously generated in the literature. The database may be further
processed to remove logical inconsistencies and generate new biological knowledge by applying
homologous reasoning between different sets of biological entities, among other processing
steps.

[0067] In certain implementations, the network model extracted from the database is based on
reverse causal reasoning (RCR), an automated reasoning technique that processes networks of
causal relationships to formulate mechanism hypotheses, and then evaluates those mechanism
hypotheses against datasets of differential measurements. Each mechanism hypothesis links a
biological entity to measurable quantities that it can influence. For example, measurable
quantities can include an increase or decrease in concentration, number or relative abundance of
a biological entity, activation or inhibition of a biological entity, or changes in the structure,
function or logical of a biological entity, among others. RCR uses a directed network of

experimentally-observed causal interactions between biological entities as a substrate for
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computation. The directed network may be expressed in Biological Expression Language™
(BEL™), a syntax for recording the inter-relationships between biological entities. The RCR
computation specifies certain constraints for network model generation, such as but not limited
to path length (the maximum number of edges connecting an upstream node and downstream
nodes), and possible causal paths that connect the upstream node to downstream nodes. The
output of RCR is a set of mechanism hypotheses that represent upstream controllers of the
differences in experimental measurements, ranked by statistics that evaluate relevance and
accuracy. Accordingly, in certain implementations, the network model useful in the present
disclosure comprises one or more mechanism hypotheses. The mechanism hypotheses output can
be assembled into causal chains and larger networks to interpret the dataset at a higher level of
interconnected mechanisms and pathways.

[0068] One type of mechanism hypothesis comprises a set of causal relationships that exist
between a node representing a potential cause (the upstream node or controller) and nodes
representing the measured quantities (the downstream nodes). This type of mechanism
hypothesis can be used to make predictions, such as if the abundance of an entity represented by
an upstream node increases, the downstream nodes linked by causal increase relationships would
be inferred to be increase, and the downstream nodes linked by causal decrease relationships
would be inferred to decrease.

[0069] A mechanism hypothesis represents the relationships between a set of measured data,
for example, gene expression data, and a biological entity that is a known controller of those
genes. Additionally, these relationships include the sign (positive or negative) of influence
between the upstream entity and the differential expression of the downstream entities (for
example, downstream genes). The downstream entities of a mechanism hypothesis can be drawn
from a database of literature-curated causal biological knowledge. In certain implementations,
the causal relationships of a mechanism hypothesis that link the upstream entity to downstream
entities, in the form of a computable causal network model, are the substrate for the calculation
of network changes by the NPA scoring methods.

[0070] In certain embodiments, a complex causal network model of biological entities can be
transformed into a single causal network model by collecting the individual mechanism
hypothesis representing various features of the biological system in the model and regrouping the

connections of all the downstream entities (e.g., downstream genes and their measurable
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expression levels) to a single upstream entity or process, thereby representing the whole complex
causal network model; this in essence is a flattening of the underlying graph structure. Changes
in the features and entities of a biological system as represented in a network model can thus be
assessed by combining individual mechanism hypotheses.

[0071]  In certain implementations, the system 100 may contain or generate a computerized
model for the mechanism of cell proliferation when the cells have been exposed to cigarette
smoke, an aerosol comprising nicotine, an aerosol generated by heating tobacco, or an aerosol
generated by combusting tobacco. In such an example, the system 100 may also contain or
generate one or more network models representative of the various health conditions relevant to
cigarette smoke exposure, including but not limited to cancer, pulmonary diseases and
cardiovascular diseases. In certain aspects, these network models are based on at least one of the
perturbations applied (e.g., exposure to an agent), the responses under various conditions, the
measureable quantities of interest, the outcome being studied (e.g., cell proliferation, cellular
stress, inflammation, DNA repair), experimental data, clinical data, epidemiological data, and
literature.

[0072] As an illustrative example, the network modeling engine 112 may be configured for
generating a network model of cellular stress. The network modeling engine 112 may receive
networks describing relevant mechanisms involved in the stress response known from literature
databases. The network modeling engine 112 may select one or more networks based on the
biological mechanisms known to operate in response to stresses in pulmonary and cardiovascular
contexts. In certain implementations, the network modeling engine 112 identifies one or more
functional units within a biological system and builds a larger network model by combining
smaller networks based on their functionality. In particular, for a cellular stress model, the
network modeling engine 112 may consider functional units relating to responses to oxidative,
genotoxic, hypoxic, osmotic, xenobiotic, and shear stresses. Therefore, the network components
for a cellular stress model may include xenobiotic metabolism response, genotoxic stress,
endothelial shear stress, hypoxic response, osmotic stress and oxidative stress. The network
modeling engine‘ 112 may also receive content from computational analysis of publicly available
transcriptomic data from stress relevant experiments performed in a particular group of cells.
[0073] When generating a network model of a biological mechanism, the network modeling

engine 112 may include one or more rules. Such rules may include rules for selecting network
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content, types of nodes, and the like. The network modeling engine 112 may select one or more
data sets from experimental data database 106, including a combination of ir vitro and in vivo
experimental results. The network modeling engine 112 may utilize the experimental data to
verify nodes and edges identified in the literature. In the example of modeling cellular stress, the
network modeling engine 112 may select data sets for experiments based on how well the
experiment represented physiologically-relevant stress in non-diseased lung or cardiovascular
tissue. The selection of data sets may be based on the availability of phenotypic stress endpoint
data, the statistical rigor of the gene expression profiling experiments, and the relevance of the
experimental context to normal non-diseased lung or cardiovascular biology, for example.

[0074] After identifying a collection of relevant networks, the network modeling engine 112
may further process and refine those networks. For example, in some implementations, multiple
biological entities and their connections may be grouped and represented by a new node or nodes
(e.g., using clustering or other techniques).

[0075] The network modeling engine 112 may further include descriptive information
regarding the nodes and edges in the identified networks. As discussed above, a node may be
described by its associated biological entity, an indication of whether or not the associated
biological entity is a measurable quantity, or any other descriptor of the biological entity, while
an edge may be described by the type of relationship it represents (e.g., a causal relationship such
as an up-regulation or a down-regulation, a correlation, a conditional dependence or
independence), the strength of that relationship, or a statistical confidence in that relationship, for
example. In some implementations, for each treatment, each node that represents a measureable
entity is associated with an expected direction of activity change (i.e., an increase or decrease) in
response to the treatment. For example, when a bronchial epithelial cell is exposed to an agent
such as tumor necrosis factor (TNF), the activity of a particular gene may increase. This increase
may arise because of a direct regulatory relationship known from the literature (and represented
in one of the networks identified by network modeling engine 112) or by tracing a number of
regulation relationships (e.g., autocrine signaling) through edges of one or more of the networks
identified by network modeling engine 112. In some cases, the network modeling engine 112
may identify an expected direction of change, in response to a particular perturbation, for each of
the measureable entities. When different pathways in the network indicate contradictory

expected directions of change for a particular entity, the two pathways may be examined in more
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detail to determine the net direction of change, or measurements of that particular entity may be
discarded.

[0076] The computational methods and systems provided herein calculate NPA scores based
on experimental data and computational network models. The computational network models
may be generated by the system 100, imported into the system 100, or identified within the
system 100 (e.g., from a database of biological knowledge). Experimental measurements that
are identified as downstream effects of a perturbation within a network model are combined in
the generation of a network-specific response score. Accordingly, at step 216, the network
scoring engine 114 generates NPA scores for each perturbation using the networks identified at
step 214 by the network modeling engine 112 and the SRPs generated at step 212 by the SRP
engine 110. A NPA score quantifies a biological response to a treatment (represented by the
SRPs) in the context of the underlying relationships between the biological entities (represented
by the identified networks). The network scoring engine 114 may include hardware and
software components for generating NPA scores for each of the networks contained in or
identified by the network modeling engine 112.

[0077] The network scoring engine 114 may be configured to implement any of a number of
scoring techniques, including techniques that generéte scalar- or vector-valued scores indicative
of the magnitude and topological distribution of the response of the network to the perturbation.
In general, perturbation metrics quantify the induced perturbation on a model of a network by a
stimulus or an external event. These perturbation metrics may be especially useful in
quantifying perturbations induced in biological models by an experimental stimulus, or other
networks (such as traffic networks, computer networks, etc.). The perturbation metrics are
generated based on two elements. A first element is a computational network model, which may
be assembled based on any known data regarding a causal network underlying the system of
interest (e.g., a biological network model based on biological mechanisms identified in the
scientific literature). A second element is an expression data set describing the behavior of some
or all components of the network model when a perturbation is applied to the system of interest.
In particular, as used herein, expression nodes typically refer to those nodes in the computational
network model for which expression data is available. In some embodiments of perturbation
analysis in a biological analysis setting, the network model is constructed from a curated set of

biological relationships, and the expression data set is generated by an experiment in which
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controlled perturbations are applied and monitored. Perturbation analysis methodologies are
described herein that identify the most likely perturbed or specific regions of the network,
explicitly using the topology of the network.

[0078] In an example, a perturbation metric is representative of a difference (or a fold-change
value) between two data sets (i.e., a treatment data set and a control data set) at a corresponding
node. The perturbation metric may be a perturbation index and may represent an extent to which
activity of the corresponding node is impacted by a perturbation. In particular, as is described in
more detail in relation to FIG. 6, the perturbation index may be computed as a linear combination
of measured activities of nodes downstream from the given node.

[0079] The network model includes nodes that are interconnected over edges, and an edge in
the network model may be associated with a transition probability. The transition probability
may be indicative of a likelihood of transitioning from one node to another node in the network.
As an example, transition probabilities are calculated based at least in part on perturbations
metrics representative of a difference between two data sets (i.e., a treatment data set and a
control data set) at a corresponding node. As an example, as is described in more detail in
relation to FIG. 7, a transition probability may be calculated as a linear function of the
perturbation index of a node. Furthermore, the transition probabilities of the edges in the
network may be used to determine node metrics. The node metric for a corresponding node may
be representative of a relative influence of the node. As is described in more detail in relation to
FIG. 5, in addition to calculating transition probabilities for edges in the network, equilibrium
probabilities for nodes in the network may also be calculated. An equilibrium probability for a
corresponding node is the likelihood in the steady state that the random walk visits the
corresponding node.

[0080] In particular, centrality values for nodes in the network may be computed for
representing the relative importance of a node in the network. The relative importance of a node
in the network may be representative of relationships between the node and other nodes in the
network, and may be dependent on transition probabilities, equilibrium probabilities, or both
transition probabilities and equilibrium probabilities in the network. As an example, when the
traversals through the network are represented by a random walk model, nodes that are visited
more often by the random walk can be relatively more important than other nodes that are less

often visited. Thus, nodes that are visited more often have larger centrality values, and
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calculation of the centrality value for a node may be based on a number of expected visits of a
random walk to the corresponding node between consecutive visits to other nodes. In particular,
as is described in more detail in relation to FIG. 8, the centrality value may be calculated as a
linear combination of the number of expected visits across all nodes in the network. In an
example, calculation of a centrality value is based on a “reinforced” random walk model, in
which the transition probabilities are based on measured activity levels of downstream nodes.
[0081] The centrality values for nodes in a network may be used to study the overall topology
of the network. In an example, sensitivity analysis may be performed, in which a perturbation at
one node in the network may have an effect on a different node’s centrality value. In this
manner, the topology of the network is used to understand effects at one location of the network
of changes at another location. In another example, the centrality values for nodes in the
network may be used to visualize the topology of perturbations across the network. In particular,
projecting the centrality values with a spectral transform and displaying a subset of the
projections may result in reduced noise so that important pathways in the network may be easily
visualized. In another example, the centrality values for nodes in the network may be aggregated
to define a scalar value representative of an overall response of the network model to
perturbations. In general, centrality values for nodes in a network may be used to study or
visualize any topological effect of various perturbations on a network.

[0082] FIGS. 5 — 8 are flow diagrams of example methods for generating values related to
perturbations at nodes in the network, transitions between different nodes in the network, and
centrality values for nodes in the network. In addition, FIGS. 4B and 11 are diagrams of
example networks including upstream nodes, downstream nodes, and edges, and are described in
relation to the flow diagrams in FIGS. 5 — 8. In particular, the flow diagram in FIG. 5 is an
overall method for computing centrality values for nodes, corresponding to a measure of relative
importance of a node in a network. The processes shown in FIGS. 6 — 8 may be used at various
steps of the flow diagram in FIG. 5. In particular, the flow diagram in FIG. 6 is one method for
calculating a perturbation index of a selected node. The perturbation index is a value associated
with activity levels of nodes that are downstream from the selected node. In addition, the
perturbation index may be used in the determination of a “reinforced” random walk model, in

which the edges connecting different nodes in the network are modified. The reinforced random
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walk model is described in more detail in relation to FIG. 7. Finally the flow diagram in FIG. 8
is a method for calculating a centrality value based on the reinforced random walk model.

[0083] FIG. 5 is a flow diagram of an illustrative process 500 for generating centrality values
for nodes in a biological network. As described above, a centrality value represents a relative
importance of a node in the network. At step 502, a causal network model for the system of
interest is identified. As described above in relation to FIGS. 1 and 2, the network modeling
engine 112 may receive and/or generate portions of the model by facilitating the merging of one
or more datasets or the merging of one or more networks. A directed network G is the network
underlying the causal network model. The n nodes in the network (representing, e.g., biological
m- The directed
network G = (V,E ) may be represented by an adjacency matrix A defined in accordance with:

_(lifioj
Aij {O else M

entities, traffic locations, individuals in social networks) are denoted by (V)=

.....

In particular, an element in the adjacency matrix A is 1 if a directed edge exists from a first node
i to a second node j. Otherwise, the element in the adjacency matrix A is 0. Let I denote the set
of nodes for which there are other nodes (upstream or downstream) to which experimental data
can be mapped. The nodes to which experimental data can be mapped may be expression nodes.
In particular, the set of nodes 7 may include any subset of all the m nodes in the network. FIG.
11 illustrates such a scenario, in which four nodes 1102a — 1102d (generally, node 1102) in the
network are presented. In addition, a gene chip 1106 includes multiple probe sets 1104, in which
the shaded pattern and position of each probe set 1104 is representative of an expression level of
a certain gene. Each node 1102 has a set of downstream genes 1108a — 1108c (generally,
downstream gene 1108), and arrows indicate associations between downstream genes 1108 and a
subset of the plurality of the probe sets 1104. For clarity, only a subset of the downstream genes
1108 and probe sets 1104 are labeled in FIG. 11. In particular, the scenario illustrated in FIG. 11
is indicative of the link between the causal model and the experimental data.

[0084] At step 504, a perturbation index (PI) is generated for each of the nodes in Jwit h at
least one downstream measurable node or expression node. In particular, the PI for a node is
representative of an amount of downstream activity from the node. In particular, as will be
described in more detail below in relation to FIG. 6, downstream nodes may provide supporting
evidence for the activity of upstream nodes when a causal relationship exists between the

upstream and downstream nodes. In the example network 1100 in FIG. 11, an upstream node
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1102 has a causal relationship with downstream nodes 1108. Thus, the PI for the upstream node
1102a is dependent on activity levels at the downstream nodes 1108.

[0085] In an example, the PI values represent the extent to which the activity of the node 1102
(e.g., the number of transcriptions in a biological system represented by gene interaction
networks or protein-protein interaction networks) is impacted by an applied perturbation at
another location in the network 1100. The PIs of the nodes provide information about the
evidence that the underlying mechanism has been activated (either inhibited or enhanced). When
the perturbation is applied in an experimental setting, the activity of the node may be a relative
measurement between the activity of the node in a control condition and the activity of the node
in a treatment condition.

[0086] FIG. 6 is a flow diagram of an illustrative process 600 for determining a PI for a
selected node. The process 600 may be implemented by the network scoring engine 114 or any
other suitably configured component of components of the system 100, for example. As
depicted in FIG. 6, determining the PI for the selected node includes calculating a linear
combination of activity measures of nodes downstream from the selected node. At the step 602,
the network scoring engine 114 selects a node i in the set of nodes 1. In an example, the network
scoring engine 114 selects the node 1102a in the network 1100.

[0087] At the step 604, the network scoring engine 114 identifies downstream nodes from the
node 1102a selected at the step 602. Downstream nodes may be expression nodes downstream
of the selected node #, and may represent gene expression (or measurable nodes 1104, in which
the pattern of a measurable node 1104 may correspond to a value of the measured activity level).
Downstream nodes may be identified based on the causal network model defined by the
adjacency matrix A defined in Eq. 1 above. In particular, the identified downstream nodes may
all be separated from the selected node i with a single directed edge (or link), such that the
identified downstream nodes are direct neighbors of the selected node 1102a. In addition, the
identified downstream nodes may correspond to those direct downstream neighbors of the
selected node 1102a which have corresponding measurable nodes 1104.

[0088] At the step 606, the network scoring engine 114 determines the activity changes in the
identified downstream nodes 1108 (identified at the step 604) to different treatment conditions.
In particular, the activity change may be an experimental result of a number describing how

much a node measurement changes going from an initial value to a final value between control
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data and treatment data, or between two sets of data representing different treatment conditions.
In particular, for an identified downstream node £, the activity change may be represented by a
fold-change f for the node k. In particular, a positive value for £ may represent increased
activity at the node k as a result of the treatment data, and a negative value for f; may represent
decreased activity, or vice versa. In some embodiments, the activity change may be fhe
logarithm of the fold-change of the activity of the biological entity between the two conditions.
In general, the fold-change f; may represent any other indicator (absolute or relative) of the
activation of a node £.

[0089] At the step 608, the network scoring engine 114 determines the local false non-
discovery rates (fndr) for the downstream nodes 1108 identified at the step 604. In particular, the
local false non-discovery rate fndr (i.e., the probability that a fold-change value f; represents a
departure from the underlying null hypothesis of a zero fold-change, in some cases, conditionally
on the observed p-value) as described by Strimmer et al. in “A general modular framework for
gene set enrichment analysis,” BMC Bioinformatics 10:47, 2009 and by Strimmer in “A unified
approach to false discovery rate estimation,” BMC Bioinformatics 9:303,2008, each of which is
incorporated by reference herein in its entirety. In other words, the fudr may be used to represent
a probability that the fold-change value g is significantly different from 0, implying that there
was a significant difference between two data sets representing different treatment conditions. A
high frdr means that the different treatment conditions resulted in significant differences in the
data. The local fndr may be based on the false discovery rate fdr (i.e., the probability that a fold-
change value £ does not represent a departure from the underlying null hypothesis of a zero
fold-change). In particular, the local fzdr may be defined for a downstream node & by fudri= 1
— fdri. In an example, the false discovery rate fdry is dependent at least on an adjusted p-value
(i.e., the probability of obtaining a fold-change at least as extreme as the fold-change f; that was
actually observed, assuming that the null hypothesis of a zero fold-change is true).

[0090] At the step 610, the network scoring engine 114 calculates a perturbation index PI for
the selected node i (i.e., node 1102a). In particular, PJ; may be calculated based on the activity
changes and false non-discovery rates of the identified downstream nodes (i.e., nodes 1108). In
an example, PI; may be an aggregate measure of the activity changes and false non-discovery

rates. As an example, the network scoring engine 114 may calculate PI; as a linear combination
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of an expression based on the fiudr and the absolute values of f of the downstream nodes in

accordance with:

1
Pl = |{{downstream nodes Vi}| lifndr - Bl ({downstreamnodes Vi3)- @)

In particular, the downstream nodes 1108 are the children nodes of the selected node 1102a that
are of a particular form of expression of a certain gene. These children nodes are those that are
directly linked to experimental data. For a downstream node such as nodes 1108, the product
between the fudr and the fold-change f represents a scaled version of the difference in data sets
resulting from different treatment conditions. In Eq. 2, the network scoring engine 114
calculates the value for PI; as an average of the absolute values of these scaled fold-change
values across the downstream nodes of the node i. The scaled fold-change values are
representative of activity measures of downstream nodes. In general, PI; may be computed as a
linear combination of these scaled fold-change values across the downstream nodes. Thus, for a
downstream node with a large and significant fold-change S, the downstream node would give
rise to a larger value for the PJ; of the upstream node i. Eq. 2 is one method of calculating a PI
for a node representative of the extent to which activity of the node is impacted by an applied
perturbation. In particular, PI may be a Geometric Perturbation Index (GPI) score dependent on
fold-change values as described in Martin et al. BMC systems biology 2012, 6:54 and in pending
patent application PCT/EP2012/061035, which are both incorporated herein by reference in its
entirety. However, in general, any suitable measure may be used as a PI for a node.

[0091]  Returning now to FIG. 5, at step 506, the network scoring engine 114 defines a
reinforced random walk on the network G. In a reinforced random walk, the transition
probability associated with a particular causal relationship depends on the downstream PIs (if
any). As an illustrative example, FIG. 4B is a diagram of a network 400b including nodes 412a
— 412d (generally node 412) and edges 410a — 410b (generally edge 410). For clarity, only a
subset of the nodes and edges are labeled in network 400b. The edges 410 are directed to
indicate that the transition between two nodes connected by an edge occurs in one direction
indicated by arrows. As an example, relative to the edge 410a, node 412a may be considered as
an upstream node and node 412b may be considered as a downstream node. To reinforce the
causal relationship between nodes 412a and 412b, the probability of transitioning from node
412a to node 412b is dependent on the PI value for 412b. In turn, the PI value for node 412b is

dependent on the measured activity levels of nodes that are further downstream from node 412b,
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such as node 412d. The reinforced random walk thus reinforces causal statements based on the
PIs of the downstream nodes. Analysis of the reinforced random walk provides information
about the importance of each node of the model, since a node that is more likely to be traversed
during the random walk will be a node that is central in the network (i.e., the flow of causalities
implicate the importance of the node).
[0092] Some preliminary notation and explanation are provided below, followed by a descrip-
tion of the reinforced random walk defined at step 506. A random walk on a network G may be
represented by a discrete time Markov chain whose state space is V (the node set, or vertex set,
of the network) and whose transition probabilities p;; are constrained by p;;= 0 if A;; = 0. The
transition probabilities p;; represent the probability of the random walk moving from node 7 to
nodej. The Markov chain may be represented by a transition matrix M (also called the forward
propagation operator) defined by M;; = p;;. This matrix is stochastic, and together with an
initial probability distribution on the vertex set, fully defines a discrete time Markov chain
(X;)n=o on the network. Given the network topology and the causality represented by the edges
in the network, the propagation operator M defines a random walk that evolves through the
causal relationships between nodes.
[0093] When a Markov chain is aperiodic and irreducible, the Markov chain has an equilibrium
measure 7 (i.e., an equilibrium probability) defined in accordance with:

M =1 3
In particular, the equilibrium measure = is an m-length vector (where m is the number of nodes in
the network). Each element in the equilibrium measure & corresponds to a node in the network
and is an overall probability of a random walk visiting the corresponding node in the steady
state. After steady state (or equilibrium) has been reached, the probabilities of the random walk
visiting any node is fixed in time.
[0094] The equilibrium measure © may be computed by an iterative procedure, using the
observation that for any measure p, representing an initial distribution, uM™ converges to © as n
—» o0, where 7 is an integer representative of time. In particular, M™ converges exponentially fast
to a rank one matrix M* that satisfies M;; = m; for all nodes i. The ergodic theorem states that

- 0]
if N,(l‘) represents the number of visits to node 7 before time #, then -Nfl‘— — m; with probability 1 as

n — oo, for any initial distribution. As will be described in more detail in relation to FIG. 8, the
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equilibrium measure © may be used to compute a relative importance of a node in the network
and thus, the node’s centrality value.

[0095] The network scoring engine 114 may also define first hitting times, corresponding to a
first time at which a node i is visited by a random walk. In particular, the first positive hitting
time for node i will be denoted by T;* and may be calculated in accordance with:

T = min{n > 1|X™ = i}, “4)
while the first hitting time for node i will be denoted by 7; and may be calculated in accordance
with:

T; = min{n = 0|X™ = i}. (5)

As will be described in more detail in relation to FIG. 8, the first positive hitting time T;" and the
first hitting time T; may be used to compute centrality values for nodes in a network.
[0096] The fundamental matrix or Green’s measure of a finite ergodic Markov chain may be

defined in accordance with:

G = Y pao(M™ — M™), (6)
or, equivalently,
Gij = ano(pl?} - 1), )

where pj; is the probability that the random walk starting at node i is at node j after » steps. In
general, the average amount of time spent at node j by the random walk between times 0 and ¢
may be roughly estimated with (¢ + 1)m;, regardless of the starting node i. However, when the
starting node 7 is known, the Green’s measure G;; is representative of a correction term to be
combined with the rough estimate. In particular, G;; = lim,_e(T3;(t) — (¢ + 1)7rj), where
T;;(t) corresponds to an average number of times a random walk starting at node 7 visits node j
between times 0 and . As will be described in more detail in relation to FIG. 8, the fundamental
matrix of the Markov chain may be used to compute centrality values for nodes in a network.
[0097] Because G; = Y,50(6; — ) M™ is a fixed point of the operator u ~ uM + (6; — 1),
this fixed point may be represented as the equilibrium measure of a random walk with a source
term &; which continuously provides a source 1 at node i and a uniform sink —m. As a result, the
quantity G; may be represented as a page rank with a source at node i.

[0098] The following list enumerates example properties of = and G. These and other

properties have been described in further detail by Aldous and Fill in Reversible Markov Chains

34




WO 2013/030137 PCT/EP2012/066557

and Random Walks on Graphs, available at
http:/f'www.stat.berkeley.edu/~aldous/RWG/book.html and incorporated by reference herein in its

entirety. The notation E,(-) denotes the expectation for the initial distribution . The notation
E;(-) denotes the expectation for the initial distribution §;.

i) 2.j Gi; = 0 for all nodes i and usually G is not self-adjoint;

i) BT =1

iti)  E;(number of visits to j before time T;{") = 7%) ;

iv)  mEq(T) =Gy

v)  mEL(T)) = Gjj—Gyj ;

vi)  E,(number of visits to j before time T;) = %’: Gy — Gij -
[0099] The reinforced random walk defined at step 506 is a random walk whose transitions are
favored toward the nodes with larger PIs. As an example of a random walk that is not
reinforced, all edges in the network may have the same transition probability. However, in a
reinforced random walk, the transition preferences may be proportional to the PI or a linear
function of the PI. In particular, the transition probability associated with a particular causal
relationship (i.e., the edge 410a in the network 400b) depends on the downstream node’s PI (i.e.,
the node 412b). The reinforced random walk thus reinforces causal statements based on the Pls
of the downstream nodes. Analysis of the reinforced random walk thus provides information
regarding nodes that are more likely to be traversed (i.e., nodes with incoming edges of high
probability) during a random walk, and thus important nodes that are central in the network.
[0100] In some embodiments, the network scoring engine 114 may use the method 700 in FIG.
7 to calculate the propagation operator M € [2(V) for the reinforced random walk of step 506.
In particular, the propagation operator M is a matrix whose elements correspond to the transition
probabilities between nodes. As depicted in FIG. 7, the elements of the matrix M are linear
functions of the node PI values. In particular, if 4 is the number of outgoing edges from a node i
(i.e., the outer degree of node i), the propagation operator M may be defined in accordance with:

=(1+100-PL)ifi—jandj €l
ifiojandj el (®)
else

MjocqL
d
0
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Referring now to FIG. 7, the process 700 may be implemented by the network scoring engine
114 for determining an element M;; of the propagation operator M in accordance with Eq. 8. At
step 702, the network scoring engine 114 selects a transition between two nodes i (i.e., node -
412a) and j (i.e., node 412b). In particular, any two nodes in the network may be selected, and a
direction may be selected. At decision block 704, the network scoring engine 114 determines
whether the directed edge i — j exists (i.e., edge 410a). If the directed edge does not exist, the
network scoring engine 114 assigns the element M;; a value of 0 at step 706 because the
probability of the transition from node i to node j is 0. If the directed edge does exist, the
network scoring engine 114 proceeds to the decision block 708 to determine whether the node i
is in the set of nodes I. In an example, the network scoring engine 114 examines the network
model to determine at decision block 708 whether the node i is connected (i.e., upstream or
downstream) to any expression nodes or any other nodes to which experimental data can be
mapped. In particular, the set of nodes [ is the set of nodes 1102 which have direct links to
experimental data. In particular, if the node i is not in the set of nodes I, the network scoring
engine 114 assigns the element M;; a value proportional to % at step 710 (i.e., M;j a 1/n).
Otherwise, the network scoring engine 114 assigns the element M;; to a value proportional to
%(1 +100 - PI;) at step 712 (ie., M;; o (1+100- PIj)/n ). In particular, the values of the
elements M;; may be normalized such that the sum of the elements M;; across j is equal to one.
[0101] The process 700 shown in FIG. 7 is one example of an implementation of modification
of the probabilities of transition between different nodes in the network by preferentially
weighting transitions based on PI values. However, in general, any suitable method may be used
for modifying the transition probabilities.

[0102] In addition, the Markov chain defined by the transition probabilities of Eq. 8 is not
necessarily irreducible. For example, an absorbing node may exist (such as apoptosis in a
biological network representing cell activity). As an example, the nodes N23, N51, N77, N95,
N100, and N104 in the network of FIG. 12 are examples of absorbing nodes that have only
incoming edges and no outgoing edges. In some embodiments, this issue is addressed by
including additional transition probabilities to allow the random walk to escape to one or more

designated nodes (for example, a node with no upstream nodes). In some embodiments, this

36




WO 2013/030137 PCT/EP2012/066557

issue is addressed by including additional transition probabilities to allow the random walk to
make a random jump at some or all nodes.

[0103] Referring now to FIG. 5, at step 508, centrality values are generated for individual
nodes in the network. In general, a centrality value for a node quantifies the relative importance
of the node in the network. For example, the centrality value for a node may be defined with
respect to other nodes in the network. In particular, the centrality value for a selected node may
be calculated based on an expected number of visits to the selected node before the reinforced
random walk visits another node for the first time. One example of a centrality value is
described by White and Smyth in Algorithms for estimating relative importance in networks,
International Conference on Knowledge Discovery and Data Mining, Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2003,
pp-266-275, incorporated by reference in its entirety herein.

[0104] Referring now to FIG. 8, the process 800 may be implemented by the network scoring
engine 114 for generating a centrality value for a node in the network. As described above, a
centrality value for a node represents a relative importance of a node in the network, and may be
representative of relationships between the node and other nodes in the network. In addition, a
centrality value may be dependent on a reinforced random walk model (as defined for the
propagation operator M in relation to FIG. 7). In an example, the centrality value for a
corresponding node is calculated based on a number of expected visits of a random walk to the
corresponding node between consecutive visits to other nodes. In this way, the centrality value
is representative of an expected number of times a random walk visits the node and is therefore
indicative of a relative importance of the node in the network.

[0105] In particular, at the step 802, the network scoring engine 114 computes the fundamental
matrix G in accordance with Eqgs. 6 and 7. At the step 804, the network scoring engine 114
determines an expected number of visits to a node j before a first visit to a node i. In some
embodiments, the property (vi) from the above list of properties is applied at the step 804. At the
step 806, the network scoring engine 114 sums the expected number of visits over all nodes i,
and at the step 808, the centrality value for node j is set to the sum computed at step 806. In

particular, the Markov centrality for a node is calculated in accordance with:
€G) = Sit,m (2 61 — Gy) ©)
= Yi=1..m Ex(number of visits to j before time T;) (10)
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Therefore, the centrality value for a node j is based on a number of times it is expected for a
random walk to visit the node jbe fore visiting another node. In an extreme case, if one node j/
is visited many times before the random walk visits other nodes for the first time, then the node
Jj1 1s relatively important, resulting in a large centrality value C(jI). On the other hand, if a node
J2 is not visited before the random walk visits other nodes for the first time, then the node ;2 is
relatively unimportant, resulting in a smaller centrality value C(j2).
[0106] In some embodiments, to compute a centrality value for an individual node j, the
Markov centralities of the reinforced random walk (defined at step 506) may be combined with
centralities computed for a random walk that is not reinforced by any data (i.e., with PI; = 0 for
all nodes 7). A random walk that is not reinforced may be referred to as a simple random walk
(SRW), and a comparison between the reinforced random walk and a SRW may distinguish the
impact of including the PIs in the reinforced random walk. Denote the Markov centralities of the
SRW by CS®Y(}). In some embodiments, the centrality values are generated in accordance with:
R() = logso () a1
By using a centrality value that includes the reinforced Markov chain centralities and the
centralities of the SRW, the observed behavior of the system of interest is able to reinforce the
pathways within the network model. If all of the PI values in the reinforced random walk are
zero, then R(j) is zero for all j.
[0107] Eqgs. 9 - 11 are illustrative examples of various techniques for calculating a centrality
value for a node, and the different techniques may offer different advantages. For example, Eq.
11 represents the centrality values of the reinforced random walk as normalized values with
respect to a SRW and is an invariant measure in this manner. The expected number of visits
approach described in Eq. 10 may be more sensitive to reinforcement by the PlIs than the
invariant approach. Finally, the Green measure described in Eq. 9 may also be used to provide
centrality values, but does not provide the ready probabilistic interpretation as the expected
number of visits approach.
[0108] In general, the techniques described herein may be applied to any setting in which a
network model is used to represent a system for which experimental or observed data is
available. For example, a traffic network may be represented by a network whose edges are
weighted by road capacity, each node is a road crossing, and expression nodes may be road

crossings for which accident or traffic jam data is available. The accident or traffic jam data may
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be used to bias the random walk model and predict the behavior at road crossings in response to
changes in traffic. In another example, a web network may be represented by a network whose
edges are links between web pages, each node is web page, and expression nodes may be pages
for which visitor data is available. The visitor data may be used to bias the random walk model
and predict the visits to web pages in response to changes in web surfing habits.

[0109] The centrality values for nodes in a network computed in FIGS. 5 and 8 may be used to
study the overall topology of the network. At least three examples methods for using the
centrality values in a network to study the network’s topology are described herein. In one
example, the network scoring engine 114 may perform sensitivity analysis, which studies the
effect of a perturbation at one node in the network on a different node’s centrality value. In this
manner, the topology of the network is used to understand effects at one location of the network
of changes at another location. In a second example, the centrality values for nodes in the
network may be used to visualize the topology of perturbations across the network. In particular,
these visualization methods may result in reduced noise so that important pathways in the
network may be easily visualized. In a third example, the centrality values for nodes in the
network may be aggregated to define a scalar value representative of an overall response of the
network model to perturbations. These three examples are described in more detail below.
However, in general, centrality values for nodes in a network may be used to study or visualize
any topological effect of various perturbations on a network.

[0110] In some implementations, it is desirable for the network scoring engine 114 to perform
a sensitivity analysis to understand the relationship between a change in a perturbation index for
a node and a centrality value for another (or the same) node. A deeper analysis of the network
can be performed by understanding the impact of the experimental evidence (e.g., via a PI value)
on the centrality values of the network nodes. In some embodiments, the sensitivity analysis

includes determining a value of or an approximation to the following expression:

9R(J)
dPIy ) (12)

The expression of Eq. 12 may be written as:

ac(j)/apPn, _ dCSRW(j)/apI, (13)
W) CSRW(j T

The fundamental matrix G may be represented as:
G=U—-WM—-M2)1—-M>, (14)
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Additionally, E, (number of visits to j before time T;) can be expressed as

diag(G) (Tl[) nl —G.

Thus,
e G+M )(apz BPI)(G+M ) aPI
— oo [O(M—I-1nT o
G+M )(——P————-)(G+M )-———

= (G + M°°) (BPI aPI )(G + M°°) 1 aPI

Using the result of Eq. 18 with the expression of Eq. 10 yields:

%CTCJJ,% Pl (dzag (@) ( )nT - G)

= M(n) + dlag(G) (") T[T + diag(G) ( )

arPIy arPIy
where
G (@)
ar, \w2/ arn,
and
ddiag(G)
arn, = diag (57~ aPI
Additionally, since MTnT = nT ,
‘ 0= a(MT~D)nT
i - aPly
and thus
CLANY B a(MT-I) T
T, M —-D+ e T
arl, Pl . (M —D*.

Finally, using the definition of the reinforced Markov chain given in Eq. 8,

My Mij
oPI, degout(i)-Zle?j
aM,k Ml]

.—)
apPI,  degout(d) ZJMZ forG#ki=j)
aMlk

= -
FIon 0 fornot(i—j)

a6

aPIy

(15)

(16)
17)
(18)

(19)

(20)

€2y

22)

@3)

24)

25

26)
@7)

28)

The relationships of Eqs. 14-28 may be used with the expression of Eq. 13 to determine a

measure of the sensitivity of the centrality values on the perturbation indices.
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[0111] In some implementations, it is desirable to filter, modify or both filter and modify the
centrality values to improve presentation and interpretation of the results. In particular, the

centrality values (generated according to the process of flow diagram 500 of FIG. 5) may be

projected using spectral transform vectors for visually representing effects of a perturbation.on. ..

the network. One tool from graph theory that is useful in this context is the graph combinatorial
Laplacian. The combinatorial Laplacian is independent of the direction of a directed network,
and thus is not readily modified to incorporate causal relationships as described above with
reference to the reinforced random walk. Therefore, the causality of the network is removed. In
particular, let G’ denote the undirected network defined by removing the directionality of G (i.e.,

by making all edges bi-directional) and let L;o be the graph combinatorial Laplacian defined

according to:
deg(i) ifi=j
Lgo (i J) ={ -1 ifi~j (29)
: 0 else

In particular, the expression i~j is satisfied when an edge between nodes i and j exists, such that
the rows of the Laplacian Lo sum to zero. The Laplacian Lo is symmetric positive and hence

its spectrum is real positive. The heat kernel of the network is the fundamental solution of

6%- = —Lgof,Vf € >(V°). The i-th row of the solution, which may be represented as e~ %c°,
provides the solution of the diffusion equation for a Dirac heat source at i, 6. Additionally, the
spectral transform of g € [2(V?), in which g is a vector with m entries and may be calculated in
accordance with: ‘

F(9) = Sievoe™ < gl¢p; > ¢; (30)
where ¢; are the eigenvectors of L;o and A; the corresponding eigenvalues. In particular,
< gl¢p; > is the I scalar product of g and ¢;. In an example, g may be normalized to unit

magnitude such that

< glp; >
llgli3

is used in Eq. 30. The usual convention is to sort the eigenvaluesas 0 < 4; <1, << 4,. In
some embodiments, the centrality values calculated according to flow diagram 500 of FIG. 5
may be projected onto the spectral transform vectors of Eq. 30. Projecting the centrality values,

and only displaying the projections for a limited number of the spectral transform vectors, may
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reduce noise and clarify the dominant pathways in the network. Such a projection may be used
as a multivariate network perturbation amplitude (NPA) metric, representing the response of the
network model to the experimental perturbations. Examples of such projections are provided in
FIGS. 13 and 14, which use different patterns for different nodes to indicate the projection values
for the spectral transform vectors associated with the two smallest non-zero eigenvalues.

[0112] In some implementations, it is desirable to aggregate across the centrality values for
multiple nodes in the network model to define a scalar value representative of the response of the
network model to perturbations. Instead of or in addition to a multivariate network perturbation
amplitude (NPA) metric as described above, a scalar-valued network perturbation amplitude
(NPA) metric may be used to represent the response of the network model to the experimental
perturbations. The centrality values described above may be combined in any number of ways,
and with any number of additional sources of information, to generate a scalar-valued NPA

metric. For example, any one or more of the following approaches may be used.

1. The P-norm of log1o(C): X, j Ilogm ("C—(l)"‘)l

CSRW (1)

2. The norm of the spectral transform of the logo of the centrality values (i.e., the
linear combination of the projections of the centrality ratios onto the spectral transform vectors N}
weighted by exp-4. By using the topology to generate the centrality values, and also using the
topology to generate the spectral transform vectors, this approach provides another level of
granularity to distinguish two perturbations that may have very similar global (scalar-valued)
scores, but not the same topological profiles.

3. The cover time of the reinforced random walk, defined as the random variable
C = max;T; The exact computation of max,E,(C) may be computationally difficult, but an

upper bound is given by Matthew’s theorem according to

n—1

Z 1
k
k
. This upper bound can be used to build a NPA metric, as it represents the time for a perturbation

to propagate asymptotically to the whole network.
[0113] The description of cellular processes and the quantitative analysis of their perturbations
aids in understanding disease. A network model that describes non-kinetic causal relationships

between biological processes has been studied. In this network model, some nodes are
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associated with a set of genes which correspond to the downstream targets of the process
described by the node. The agreement between the behavior contained in the model and the
behavior observed at the gene expression level in a particular experiment allows us to quantify
the activity of the corresponding node. Thus network models help link short term molecular
biological observations to disease related phenotypic endpoints.

[0114] The centrality value techniques described in relation to FIGS. 5-8 have been applied to
a formaldehyde exposure experiment in rats. Eight week old male F344/CrIBR rats were
exposed to formaldehyde through whole body inhalation. Whole body exposures were
performed at doses of 0, 0.7, 2, 6, 10, and 15 ppm (6 hours per day, 5 days per week). Animals
were sacrificed at 1, 4, and 13 weeks following initiation of exposure. Following sacrifice, tissue
from the Level II region of the nose was dissected and digested with a mixture of proteases to
remove the epithelial cells. The epithelial cells acquired from this section of the nose consisted
primarily of transitional epithelium with some respiratory epithelium. Gene expression
microarray analysis was performed on the epithelial cells. To further a systems-level assessment
of the biological impact of perturbations on nondiseased mammalian lung cells, a lung-focused
causal network for cell proliferation was constructed by Westra et al., Construction of a
Computable Cell Proliferation Network Focused on Non-Diseased Lung Cells, BMC Systems
Biology 2011, 5:105 which encompasses diverse biological areas that lead to the regulation of
normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and
Extracellular Signaling, and Epigenetics), and contains a total of 848 nodes (biological entities)
and 1597 edges (relationships between biological entities). The network was verified using four
published gene expression profiling data sets associated with measured cell proliferation
endpoints in lung and lung-related cell types. Predicted changes in the activity of core
machinery involved in cell cycle regulation (RB1, CDKNI1A, and MYC/MYCN) are statistically
supported across multiple data sets, underscoring the general applicability of this approach for a
network-wide biological impact assessment using systems biology data. The centrality results
shown in FIG. 15 are shown in the gradation of shadings for the nodes. In particular, the results
indicate that certain nodes (e.g., nodes with mostly light shading corresponding to Kaof(Akt
family R n), WEE related nodes, and Cdc2 P@Y15) have negative log-centrality values,
indicative of a region of the network that is not reinforced. In addition, a negatively influencing

node 604 with lighter shading (corresponding to taof(E2F2)) has a negative influence on cell
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proliferation. In another example, FIG. 15 shows a positively influencing node (corresponding
to taof(Myc)) for cell proliferation. The results shown in FIG. 15 indicate that taof(Myc) is a
positive influence on regulation of the cell cycle (during a transition from phase G1 to phase S,
for example). A subset of the nodes in FIG. 15 are indicative of a HYP, which is associated with
a type of causal signature of measurable quantities. The name “HYP” is derived from
“hypothesis”, reflective of the fact that the HYP can be considered to make a set of predictions,
and the HYP may provide insight regarding a mechanism of a particular biological process. In
particular, the HYP may correspond to one or more measurable entities (for example, at least
some of the nodes in FIG. 15) and their direction of change (increased or decreased) in response
to a perturbation. Furthermore, FIG. 16 shows an exponential dose dependent pattern in the
reinforcement of cell proliferation, which is consistent with the results described in the literature.
Using the techniques described herein, the perturbed regions of the network are identified and it
reveals a time- and dose-dependent reinforcement, but also reveals regions with opposite signs.
Thus, the structure of the overall system’s response hidden in the noisy behavior of thousands of
downstream-controlled genes is captured by the disclosed approach, providing a insightful way
to describe global effects of external perturbations on a biological network by combining the
knowledge contained in a causal model and the system’s response measured by gene expression
technology.

[0115] FIG. 9 is a block diagram of a distributed computerized system 900 for quantifying the
impact of biological perturbations. The components of the system 900 are the same as those in
the system 100 of FIG. 1, but the arrangement of the system 100 is such that each component
communicates through a network interface 910. Such an implementation may be appropriate for
distributed computing over multiple communication systems including wireless communication
system that may share access to a common network resource, such as "cloud computing"
paradigms.

[0116] FIG. 10 is a block diagram of a computing device, such as any of the components of
system 100 of FIG. 1 or system 900 of FIG. 9 for performing processes described with reference
to figures 1 - 10. Each of the components of system 100, including the SRP engine 110, the
network modeling engine 112, the network scoring engine 114, the aggregation engine 116 and
one or more of the databases including the outcomes database, the perturbations database, and

the literature database may be implemented on one or more computing devices 1000. In certain
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aspects, a plurality of the above-components and databases may be included within one
computing device 1000. In certain implementations, a component and a database may be
implemented across several computing devices 1000.

[0117] The computing device 1000 comprises at least one communications interface unit, an
input/output controller 1010, system memory, and one or more data storage devices. The system
memory includes at least one random access memory (RAM 1002) and at least one read-only
memory (ROM 1004). All of these elements are in communication with a central processing unit
(CPU 1006) to facilitate the operation of the computing device 1000. The computing device
1000 may be configured in many different ways. For example, the computing device 1000 may
be a conventional standalone computer or alternatively, the functions of computing device 1000
may be distributed across multiple computer systems and architectures. The computing device
1000 may be configured to perform some or all of modeling, scoring and aggregating operations.
In FIG. 10, the computing device 1000 is linked, via network or local network, to other servers
or-systems.

[0118] The computing device 1000 may be configured in a distributed architecture, wherein
databases and processors are housed in separate units or locations. Some such units perform
primary processing functions and contain at a minimum a general controller or a processor and a
system memory. In such an aspect, each of these units is attached via the communications
interface unit 1008 to a communications hub or port (not shown) that serves as a primary
communication link with other servers, client or user computers and other related devices. The
communications hub or port may have minimal processing capability itself, serving primarily as
a communications router. A variety of communications protocols may be part of the system,
including, but not limited to: Ethernet, SAP, SAS™, ATP, BLUETOOTH™, GSM and TCP/IP.
[0119] The CPU 1006 comprises a processor, such as one or more conventional
microprocessors and one or more supplementary co-processors such as math co-processors for
offloading workload from the CPU 1006. The CPU 1006 is in communication with the
communications interface unit 1008 and the input/output controller 1010, through which the
CPU 1006 communicates with other devices such as other servers, user terminals, or devices.
The communications interface unit 1008 and the input/output controller 1010 may include
multiple communication channels for simultaneous communication with, for example, other

processors, servers or client terminals. Devices in communication with each other need not be
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continually transmitting to each other. On the contrary, such devices need only transmit to each
other as necessary, may actually refrain from exchanging data most of the time, and may require
several steps to be performed to establish a communication link between the devices.

[0120] The CPU 1006 is also in communication with the data storage device. The data storage
device may comprise an appropriate combination of magnetic, optical or semiconductor
memory, and may include, for example, RAM 1002, ROM 1004, flash drive, an optical disc such
as a compact disc or a hard disk or drive. The CPU 1006 and the data storage device each may
be, for example, located entirely within a single computer or other computing device; or
connected to each other by a communication medium, such as a USB port, serial port cable, a
coaxial cable, an Ethernet type cable, a telephone line, a radio frequency transceiver or other
similar wireless or wired medium or combination of the foregoing. For example, the CPU 1006
may be connected to the data storage device via the communications interface unit 1008. The
CPU 1006 may be configured to perform one or more particular processing functions.

[0121] The data storage device may store, for example, (i) an operating system 1012 for the
computing device 1000; (ii) one or more applications 1014 (e.g., computer program code or a
computer program product) adapted to direct the CPU 1006 in accordance with the systems and
methods described here, and particularly in accordance with the processes described in detail
with regard to the CPU 1006; or (iii) database(s) 1016 adapted to store information that may be
utilized to store information required by the program. In some aspects, the database(s) includes a
database storing experimental data, and published literature models.

[0122]  The operating system 1012 and applications 1014 may be stored, for example, in a
compressed, an uncompiled and an encrypted format, and may include computer program code.
The instructions of the program may be read into a main memory of the processor from a
computer-readable medium other than the data storage device, such as from the ROM 1004 or
from the RAM 1002. While execution of sequences of instructions in the program causes the
CPU 1006 to perform the process steps described herein, hard-wired circuitry may be used in
place of, or in combination with, software instructions for implementation of the processes of the
present disclosure. Thus, the systems and methods described are not limited to any specific
combination of hardware and software.

[0123] Suitable computer program code may be provided for performing one or more functions

in relation to modeling, scoring and aggregating as described herein. The program also may
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include program elements such as an operating system 1012, a database management system and
"device drivers" that allow the processor to interface with computer peripheral devices (e.g., a
video display, a keyboard, a computer mouse, etc.) via the input/output controller 1010.

[0124]  The term "computer-readable medium" as used herein refers to any non-transitory
medium that provides or participates in providing instructions to the processor of the computing
device 1000 (or any other processor of a device described herein) for execution. Such a medium
may take many forms, including but not limited to, non-volatile media and volatile media. Non-
volatile media include, for example, optical, magnetic, or opto-magnetic disks, or integrated
circuit memory, such as flash memory. Volatile media include dynamic random access memory
(DRAM), which typically constitutes the main memory. Common forms of computer-readable
media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other
magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any
other physical medium with patterns of holes, a RAM, a PROM, an EPROM or EEPROM
(electronically erasable programmable read-only memory), a FLASH-EEPROM, any other
memory chip or cartridge, or any other non-transitory medium from which a computer can read.
[0125] Various forms of computer readable media may be involved in carrying one or more
sequences of one or more instructions to the CPU 1006 (or any other processor of a device
described herein) for execution. For example, the instructions may initially be borne on a
magnetic disk of a remote computer (not shown). The remote computer can load the instructions
into its dynamic memory and send the instructions over an Ethernet connection, cable line, or
even telephone line using a modem. A communications device local to a computing device 1000
(e.g., a server) can receive the data on the respective communications line and place the data on a
system bus for the processor. The system bus carries the data to main memory, from which the
processor retrieves and executes the instructions. The instructions received by main memory
may optionally be stored in memory either before or after execution by the processor. In
addition, instructions may be received via a communication port as electrical, electromagnetic or
optical signals, which are exemplary forms of wireless communications or data streams that
carry various types of information.

[0126] In a further aspect, there is provided a computer system for determining metrics for
nodes in a network model of a biological system, comprising a first processor configured or

adapted to receive a set of treatment data corresponding to a response of a biological system to
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an agent, wherein the biological system includes a plurality of biological entities, each biological
entity interacting with at least one other of the biological entities; at a second processor
configured or adapted to receive a set of control data corresponding to the biological system not
exposed to the agent; at a third processor configured or adapted to provide a computational
causal network model that represents the biological system and includes: nodes representing the
biological entities, edges representing relationships between the biological entities, wherein an
edge connects a corresponding first node to a corresponding second node, and a fourth processor
configured or adapted to calculate perturbation indices for a subset of the nodes, based at least in
part on the network model, wherein a perturbation index represents a difference between the
treatment data and the cor%trol data at a corresponding node and an extent to which activity of the
corresponding node is impacted by the perturbation; a fifth processor configured or adapted to
calculate transition probabilities, for the edges, based at least in part on the perturbation indices,
wherein a transition probability for an edge represents a likelihood of transitioning from the
corresponding first node to the corresponding second node; and a sixth processor configured or
adapted to generate centrality values for the nodes, based at least in part on the transition
probabilities, wherein a centrality value represents a relative importance of a corresponding node
in the network model.

[0127] In a further aspect, there is provided a computer system comprising: a first processor
configured or adapted to receive a set of first treatment data; a second processor configured or
adapted to receive a set of second treatment data; a third processor configured or adapted to
provide a computational causal network model including: nodes representing biological entities,
and edges representing relationships between the biological entities; a fourth processor
configured or adapted to calculate perturbation indices for a subset of the nodes, based at least in
part on the network model, wherein a perturbation index represents a difference between the first
and second treatment data at a corresponding node; a fifth processor configured or adapted to
generate centrality values for corresponding nodes, based at least in part on the perturbation
indices, wherein a centrality value represents a relative importance of the corresponding node in
the network model; and a sixth processor configured or adapted to calculate a partial derivative
of a centrality value for a first node with respect to the perturbation index for a second node,

wherein the partial derivative represents a topological sensitivity measure for the network model.
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[0128] In a further aspect, there is provided a computer system, comprising: a first processor
configured or adapted to provide a computational network model including: nodes representing
biological entities, and edges representing relationships between the biological entities; a second
processor configured or adapted to generate centrality values for corresponding nodes, based at
least in part on the network model, wherein a centrality value represents a relative importance of
the corresponding node in the network model; and a third processor configured or adapted to
calculate projections of the centrality values onto spectral transform vectors for representing
effects of a perturbation on the network model.

[0128] In a further aspect, there is provided a computer system for quantifying a perturbation of
a biological system, comprising: a first processor configured or adapted to provide a
computational causal network model including: nodes representing biological entities, and edges
representing relationships between the biological entities; a second processor configured or
adapted to generate centrality values for corresponding nodes, based at least in part on the
network model, wherein a centrality value represents a relative importance of the corresponding
node in the network model; and a third processor configured or adapted to aggregate the
centrality values to generate a score for the network model representing a perturbation of the
biological system.

[0129] In a further aspect there is provided a computer program product comprising a program
code adapted to perform the methods described herein.

[0130] In a further aspect, there is provided a computer or a computer recordable medium or a
device comprising the computer program product.

[0131] While implementations of the disclosure have been particularly shown and described
with reference to specific examples, it should be understood by those skilled in the art that
various changes in form and detail may be made therein without departing from the spirit and
scope of the disclosure as defined by the appended claims. The scope of the disclosure is thus
indicated by the appended claims and all changes which come within the meaning and range of
equivalency of the claims are therefore intended to be embraced. All publications mentioned in

the above specification are herein incorporated by reference.
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CLAIMS

1. A computerized method for determining metrics for nodes in a network model of a
biological system, comprising

receiving, at a first processor, a set of treatment data corresponding to a response of a
biological system to an agent, wherein the biological system includes a plurality of biological
entities, each biological entity interacting with at least one other of the biological entities;

receiving, at a second processor, a set of control data corresponding to the biological
system not exposed to the agent;

providing, at a third processor, a computational causal network model that represents the
biological system and includes:

nodes representing the biological entities,
edges representing relationships between the biological entities, wherein an edge

connects a corresponding first node to a corresponding second node, and

calculating, with a fourth processor, perturbation indices for a subset of the nodes, based
at least in part on the network model, wherein a perturbation index represents a difference
between the treatment data and the control data at a corresponding node and an extent to which
activity of the corresponding node is impacted by the perturbation;

calculating, with a fifth processor, transition probabilities, for the edges, based at least in
part on the perturbation indices, wherein a transition probability for an edge represents a
likelihood of transitioning from the corresponding first node to the corresponding second node; -
and

generating, with a sixth processor, centrality values for the nodes, based at least in part on
the transition probabilities, wherein a centrality value represents a relative importance of a

corresponding node in the network model.

2. The computerized method of claim 1, wherein the perturbation index is a linear

combination of activity measures of nodes downstream from the corresponding node.
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3. The computerized method of claim 1 or claim 2, wherein the transition probability for an

edge is a linear function of the perturbation index of the second node.

4. The computerized method of any of the preceding claims, further comprising calculating,
with a seventh processor, equilibrium probabilities for the nodes representative of probabilities

of a random walk visiting the nodes in the steady state.

5. The computerized method of any of the preceding claims, wherein the sixth processor

generates the centrality values based at least in part on the equilibrium probabilities.

6. The computerized method of any of the preceding claims, wherein the sixth processor
generates the centrality value for a corresponding node based at least in part on a number of
expected visits of a random walk to the corresponding node between consecutive visits to other

nodes.

7. The computerized method of any of the preceding claims, wherein the perturbation index
is further based on a fold-change value representing a difference between the treatment data and

the control data at the corresponding node.

8. A computerized method, comprising:
receiving, at a first processor, a set of first treatment data;
receiving, at.a second processor, a set of second treatment data;
providing, at a third processor, a computational causal network model including:
nodes representing biological entities, and
edges representing relationships between the biological entities;
calculating, with a fourth processor, perturbation indices for a subset of the nodes, based
at least in part on the network model, wherein a perturbation index represents a difference
between the first and second treatment data at a corresponding node;
generating, with a fifth processor, centrality values for corresponding nodes, based at
least in part on the perturbation indices, wherein a centrality value represents a relative

importance of the corresponding node in the network model.
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calculating, with a sixth processor, a partial derivative of a centrality value for a first
node with respect to the perturbation index for a second node, wherein the partial derivative

represents a topological sensitivity measure for the network model.

9. The computerized method of claim 8, wherein calculating the partial derivative includes
determining an effect of a change in the perturbation index of the second node on a change in the

centrality value of the first node.

10. A computerized method, comprising:
providing, at a first processor, a computational network model including:
nodes representing biological entities, and
edges representing relationships between the biological entities;
generating, with a second processor, centrality values for corresponding nodes, based at
least in part on the network model, wherein a centrality value represents a relative importance of
the corresponding node in the network model;
calculating, with a third processor, projections of the centrality values onto spectral

transform vectors for representing effects of a perturbation on the network model.

11.  The computerized method of claim 10, wherein calculating projections of the centrality

values includes filtering the centrality values.

12. A computerized method for quantifying a perturbation of a biological system,
comprising:
providing, at a first processor, a computational causal network model including:
nodes representing biological entities, and
edges representing relationships between the biological entities;
generating, with a second processor, centrality values for corresponding nodes, based at
least in part on the network model, wherein a centrality value represents a relative importance of
the corresponding node in the network model; and
aggregating, by a third processor, the centrality values to generate a score for the network

model representing a perturbation of the biological system.
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13.  The computerized method of claim 12, wherein the score is a scalar value.

14.  The computerized method of claim 12 or 13, wherein aggregating the centrality values

includes computing a linear combination of the centrality values.

15.  The computerized method of claim 12 or 13, wherein aggregating the centrality values

includes computing a linear combination of spectral transforms of the centrality values.
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