发明名称

基于 Matlab/Simulink 的交流故障电弧仿真方法

摘要

本发明涉及一种基于 Matlab/Simulink 的交流故障电弧仿真方法。包括以下步骤：1）基于直流电弧的数学模型，根据电弧静特性和动特性关系，对电弧的动态伏安特性的数学模型提出假设，从而建立阻性系统和阻感性系统中的低电压串联交流故障电弧动态数学模型；2）通过对交流故障电弧动态数学模型的分析，确定交流故障电弧的燃烧过程；3）根据交流故障电弧的燃烧过程和动态数学模型，通过 Matlab/Simulink 软件建立交流故障电弧的仿真模型；4）在阻性系统和阻感性系统中运行交流故障电弧的仿真模型，并输出仿真模型的仿真结果，与现有技术相比，本发明具有仿真精度高、精确分析电弧动态特性、通用性强等优点。
1. 一种基于Matlab/Simulink的交流故障电弧仿真方法，其特征在于，包括以下步骤：
 1) 基于直流电弧的数学模型，根据电弧静特性和动特性关系，对电弧的动态伏安特性的数学模型提出假设，从而建立阻性系统和阻性系统中的低电压串联交流故障电弧动态数学模型；
 2) 通过对交流故障电弧动态数学模型的分析，确定交流故障电弧的燃烧过程；
 3) 根据交流故障电弧的燃烧过程和动态数学模型，通过Matlab/Simulink软件建立交流故障电弧的仿真模型；
 4) 在阻性系统和阻性系统中运行交流故障电弧的仿真模型，并输出仿真模型的仿真结果。

所述的步骤1)具体为：
11) 直流电弧的数学模型可由Ayrton的经验公式来表达如下：

 \[U_a = A + \frac{B}{I_a} \]

式中U_a为直流电弧两端电压，I_a为直流电弧电流，A、B为常数；

12) 根据电弧静特性和动特性关系和静特性的Ayrton经验公式，对电弧的动态伏安特性的数学模型提出假设公式为：

 \[u_a = a + \frac{b}{i_a + c} \]

式中u_a为交流电弧两端电压，i_a为交流电弧电流，a、b、c为常数；

13) 当系统为阻性系统时，设负载电阻为R；

设输入的交流电压源为u_a(t)，且

 \[u_a(t) = U_a \sin \omega t, \text{其中} U_a \text{为交流电最大值，} \omega \text{为交流电频率} \]

阻性系统中的低电压串联交流故障电弧动态数学模型如下：

 \[U_a \sin \omega t = i_a R + a + \frac{b}{i_a + c} \]

得到的电弧电流i_a和电弧两端电压u_a分别如下：

 \[i_a(t) = \frac{U_a \sin \omega t - cR - a + \sqrt{(cR + a - U_a \sin \omega t)^2 - 4R(ac + b - U_a \sin \omega t)}}{2R} \]

\[u_a(t) = a + \frac{2bR}{U_a \sin \omega t + cR - a + \sqrt{(cR + a - U_a \sin \omega t)^2 - 4R(ac + b - cU_a \sin \omega t)}} \]

当系统为阻性系统时，设负载阻抗为Z = R + j \omega L；

阻性系统中低电压串联交流故障电弧动态数学模型如下：

 \[U_a \sin \omega t = i_a R + L \frac{di_a}{dt} + a + \frac{b}{i_a + c} \]

用欧拉法求解上述微分方程的数值解得到电弧电流的递推公式：

 \[i_a^{n+1} = i_a^n + \frac{b}{L} \left(U_a \sin \omega t - i_a^n R - a - \frac{b}{i_a^n + c} \right) \]

其中h为时间步长；

所述的步骤2)具体为：
21) 阻性系统中交流串联回弧的燃烧过程：在电源电压的正半周期中，当触头两端的电
压随着电源电压的升高而增大，当达到击穿电压时，电弧两端被击穿电弧后开始燃烧，此时
电弧电压随着电弧电流的变化而变化，当电弧电流减小到零时，电弧两端的电压上升到熄
弧电压，此时电弧电流进入“零体”状态，电弧电流为零，触头两端的电压等于电路中的电源
电压；在电源电压正半周期中，电弧的产生与熄灭重复之前的过程，电弧电流和电压的方向
与之前相反；

22) 阻性系统中交流串联回弧的燃烧过程：由于电感的存在，电弧的熄弧电压要小于
电源电压，所以在电弧电流过零瞬间，电弧两端的电压会突变到电源电压，如果电弧没有重
燃则会随着电源电压而变化，重燃后电流也不会发生突变。

2. 根据权利要求1所述的一种基于Matlab/Simulink的交流故障电弧仿真方法，其特征
在于，所述的通过Matlab/Simulink软件建立交流故障电弧的仿真模型具体为：

模型中的电压表和电流表用来采集电弧电压和电流信号，开关用来决定电弧的产生和
熄灭，可控电源来输出电弧的电压降，控制器根据采集进来电弧的电压和电流信号，来控
制开关的闭合和断开，并通过电弧的动态伏安特性来计算并控制可控电源的输出电压，
同时通过设置电弧电极的间距来调节电弧的击穿电压和熄弧电压的大小。

3. 根据权利要求2所述的一种基于Matlab/Simulink的交流故障电弧仿真方法，其特征
在于，所述的步骤4）中的仿真过程需要输入电压、负载和电弧长度参数。

4. 根据权利要求2所述的一种基于Matlab/Simulink的交流故障电弧仿真方法，其特征
在于，所述的步骤4）中的仿真模型的仿真结果包括阻性系统和阻性系统交流故障电弧
两端的电压和通过线路的电流。
基于Matlab/Simulink的交流故障电弧仿真方法

技术领域
[0001] 本发明涉及一种交流故障电弧仿真方法，尤其是涉及一种基于Matlab/Simulink的交流故障电弧仿真方法。

背景技术
[0002] 随着社会经济的不断发展，火灾事故的数量也伴随城市建设与社会发展而同比上升，住宅内部或家用电器内部线路由于长时间使用和受外力影响，会造成线路绝缘老化、脱落甚至断裂，这样会导致串并联电弧的产生，电弧燃烧时会产生局部高温极易引燃周围的可燃物造成火灾。因此，完善低压电弧的动态模型有助于我们更好地识别电弧的燃烧过程，也为低压电弧的检测提供更多的途径。
[0003] 电弧动态模型是长期以来很多科学工作者研究的对象，其中包括两种研究方法。一种方法是研究其物理—数学模型，即研究电弧燃烧时的物理过程，根据能量守恒定律和弧柱等离子体特征写出微分方程组，求解出电弧的数学表达式，以克蛋(Cassie)模型和麦克尔(Mayr)模型为代表。另一种方法是研究电弧纯粹的数学模型，即为黑盒模型。它将电弧当做为一个两端的元件，仅描述电弧燃烧时的外部特性，以Beland模型和Matthews模型为代表。然而现有的Mayr模型不能准确的描述电弧燃烧时的物理过程，因此和实际的电弧实验数据有所差别；Matthews模型将电弧燃烧时电弧两端的电压作为常数，而电弧实际在燃烧时，电弧两端的电压不是一成不变的，是通过线路的电流值的函数，因此Matthews模型也不能准确的模拟交流电弧燃弧时，电弧两端电压和电流的变化。

发明内容
[0004] 本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种仿真精度高、精确分析电弧动态特性、通用性强的基于Matlab/Simulink的交流故障电弧仿真方法。
[0005] 本发明的目的可以通过以下技术方案来实现：
[0006] 一种基于Matlab/Simulink的交流故障电弧仿真方法，其特征在于，包括以下步骤：
[0007] 1)基于直流电弧的数学模型，根据电弧静特性和动态性的关系，对电弧的动态伏安特性的数学模型提出假设，从而建立阻性系统和阻感性系统中的低电压串联交流故障电弧动态数学模型；
[0008] 2)通过对交流故障电弧动态数学模型的分析，确定交流故障电弧的燃烧过程；
[0009] 3)根据交流故障电弧的燃烧过程和动态数学模型，通过Matlab/Simulink软件建立交流故障电弧的仿真模型；
[0010] 4)在阻性系统和阻感性系统中运行交流故障电弧的仿真模型，并输出仿真模型的仿真结果。
[0011] 所述的步骤1)具体为：
[0012] 11)直流电弧的数学模型可由Ayrton的经验公式来表达如下：
式中 U_n 为直流电弧两端电压，I_n 为直流电弧电流，A, B 为常数；

(12) 根据电弧静特性和动特性的关系和静特性的Ayrton经验公式，对电弧的动态伏安特性的数学模型提出假设公式为：

$$v_n = a + \frac{b}{i_n + c}$$

式中 u_n 为交流电弧两端电压，i_n 为交流电弧电流，a, b, c 为常数；

(13) 当系统为阻性系统时，设负载电阻为 R；

(14) 设输入的交流电压源为 $u_n(t)$，且

$$u_n(t) = U_n \sin \omega t$$

其中 U_n 为交流电最大值，ω 为交流电频率

(15) 阻性系统中的低电压串联交流故障电弧动态数学模型如下：

$$U_n \sin \omega t = i_n R + a + \frac{b}{i_n + c}$$

得到的电弧电流 i_n 和电弧两端电压 u_n 分别如下：

$$i_n(t) = \frac{U_n \sin \omega t - cR - a + \sqrt{(cR + a - U_n \sin \omega t)^2 - 4R(ac + b - cU_n \sin \omega t)}}{2R}$$

$$u_n(t) = a + \frac{2bR}{U_n \sin \omega t + cR - a + \sqrt{(cR + a - U_n \sin \omega t)^2 - 4R(ac + b - cU_n \sin \omega t)}}$$

(16) 当系统为感性系统时，设负载阻抗为 $Z = R + j \omega L$；

(17) 感性系统中低电压串联交流故障电弧动态数学模型如下：

$$U_n \sin \omega t = i_n R + L \frac{di_n}{dt} + a + \frac{b}{i_n + c}$$

(18) 用欧拉法求解上述微分方程的数值解得到电弧电流的递推公式：

$$\bar{U}_n = \bar{U}_n - \frac{h}{L} (U_{n-1} \sin \omega t - \bar{U}_n R - a + \frac{b}{\bar{U}_n + c})$$

(19) 其中 h 为时间步长。

(20) 所述的步骤2) 具体为：

(21) 阻性系统中交流串联电弧的燃烧过程：在电源电压的正半周期中，当触头两端的电压随电源电压的升高而增大，当达到击穿电压时，电弧两端被击穿电弧后开始燃烧，此时电弧电压随电弧电弧电流的变化而变化，当电弧电流减为零时，电弧两端的电压上升到熄弧电压，此时电弧电流进“零休”状态，电弧电压为零，触头两端的电压等于电路中的电源电压；在电源电压负半周期中，电弧的产生与熄灭重叠之前的过程，电弧电流和电压的方向与之前相反；

(22) 感性系统中交流串联电弧的燃烧过程：由于电感的存在，电弧的熄弧电压要小于电源电压，所以在电弧电流过零瞬间，电弧两端的电压会突变至电源电压，如果电弧没有重燃则会随着电源电压而变化，重燃后电流也不会发生突变。

(23) 所述的通过Matlab/Simulink软件建立交流故障电弧的仿真模型具体为：

(24) 模型中的电压表和电流表用来采集电弧电压和电流信号，开关用来决定电弧的产生和熄灭，可控电源源来输出电弧的电压降，控制器根据采集进电弧的电压和电流信号，
来控制开关的闭合和断开，并通过电弧的动态伏安特性来计算并控制可控电压源的输出电压，同时通过设置电弧电极的间距来调节电弧的击穿电压和熄弧电压的大小。

[0037] 所述的步骤4)中的仿真过程需要输入电压、负载和电弧长度参数。

[0038] 所述的步骤4)中的仿真模型的仿真结果包括电弧电压系统和阻性系统交流故障电弧两端的电压和通过线路的电流。

[0039] 与现有技术相比，本发明具有以下优点：

[0040] 1)仿真精度高，相比于现有的Mayr模型和Matthews模型，本发明在电弧电压和电弧电流上都与实际电弧数据更接近。

[0041] 2)精确分析电弧动态特性，本发明所建立的Simulink电弧模型仿真模型，是根据实际电弧的燃烧过程建立的数学模型，可以精确的计算分析电弧的动态特征。

[0042] 3)通用性强，本发明所针对的阻性系统和阻性系统基本覆盖了常见民用和工业用负载，具有一定的通用性。

[0043] 4)本发明为交流故障电弧的研究提供了一个实验仿真平台，本实验仿真平台采用通用的Matlab/Simulink软件，利用仿真结果可以进一步研究交流故障电弧的电压和电流的具体特征，为交流故障电弧的检测建立了理论和实验基础。

附图说明

[0044] 图1是串联交流故障电弧系统电路图；

[0045] 图2是本发明所建立电弧模型在阻性系统中电弧电压和电流波形；

[0046] 图3是本发明所建立电弧模型在阻性系统中电弧电压和电流波形；

[0047] 图4是串联交流故障电弧仿真模型图；

[0048] 图5是阻性系统中电弧模块仿真电流波形和实际数据的对比图；

[0049] 图6是阻性系统中电弧模块仿真电压波形和实际数据的对比图；

[0050] 图7是阻性系统中电弧模块仿真电流波形和实际数据的对比图；

[0051] 图8是阻性系统中电弧模块仿真电压波形和实际数据的对比图。

具体实施方式

[0052] 下面结合附图和具体实施例对本发明进行详细说明。

[0053] 实施例

[0054] 本发明的仿真计算和实验验证比较均采用中国工业交流用电，即交流电频率f =50Hz。在图1所示的交流单相阻性系统中，令电源电压u_{ac}(t) = 220\sqrt{2}\sin\omega t,R=56.5 \Omega ,可数值计算得到在阻性系统中串联交流故障电弧的电流和两端的电压波形如图2所示。

[0055] 在图1所示的交流单相阻性系统中，令电源电压u_{ac}(t) = 220\sqrt{2}\sin\omega t,\tau = 56.5+j22 \Omega ,可数值计算得到在阻性系统中串联交流故障电弧的电流和两端的电压波形如图3所示。

[0056] 图4是根据本发明所建立的交流故障电弧的数学模型，在Matlab/Simulink软件中搭建的交流故障电弧仿真模型。模型中的电压表5和电流表6用来采集电弧电压和电流信号，开关4用来法定电弧的产生和熄灭，可控电压源7来输出电弧的电压降。控制器3根据采集进来电弧的电压和电流信号，来控制开关4的闭合和断开，并通过电弧的动态伏安特性来
计算并控制可控电压源的输出电压，同时通过设置电弧电极的间距来调节电弧的击穿电压和熄弧电压的大小，其中1为输入端，2为输出端。

[0057] 交流单相阻性系统实施方式：

[0058] 建立法1图1所示的串联交流故障电弧试验阻性系统，令电源电压$u_1(t) = 220\sqrt{2}\sin\omega t$，负载R＝56.5Ω，电弧发生器根据UL1699的标准包括一个固定电极和一个移动电极，其中固定电极是一个铜棒，移动电极是一个直径为6.4mm的石墨棒，并将碳棒的起弧端磨尖，实验时令电弧两端的距离为0.2mm，由电流测得电弧的电压和电流数据。同时用Matlab/Simulink软件在不同条件下仿真图4所示电弧模块，可得阻性系统中串联交流故障电弧的电压电流波形与实际波形对比分别如图5和图6所示。

[0059] 交流单相阻性系统实施方式：

[0060] 设图1所示的串联交流故障电弧试验阻性系统中电源电压$u_1(t) = 220\sqrt{2}\sin\omega t$，负载$z = 56.5+j22\Omega$，在实验平台中测得电弧的电压和电流数据。同时用Matlab/Simulink软件在不同条件下仿真图4所示电弧模块，可得阻性系统中串联交流故障电弧的电压电流波形与实际波形对比分别如图7和图8所示。

[0061] 将实测的0.15mm的串联电弧在纯阻性系统中的电流和电压的数据与Matlab/Simulink软件对Matthews电弧模型、Mayr电弧模型和本文建立的模型的仿真数据导入到Matlab中进行FFT谐波分析，其谐波主要为奇次谐波，将分析数据列表对比如表1。可以看到本文所建立模型与实际电弧数据在谐波组成上最接近。

[0062] 表1

<table>
<thead>
<tr>
<th>电弧电流和电压谐波分析</th>
<th>各次谐波相对基波的幅值/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 次</td>
</tr>
<tr>
<td>电弧电流</td>
<td>实测</td>
</tr>
<tr>
<td></td>
<td>本文模型</td>
</tr>
<tr>
<td></td>
<td>Matthews模型</td>
</tr>
<tr>
<td></td>
<td>Mayr模型</td>
</tr>
<tr>
<td>电弧电压</td>
<td>实测</td>
</tr>
<tr>
<td></td>
<td>本文模型</td>
</tr>
<tr>
<td></td>
<td>Matthews模型</td>
</tr>
<tr>
<td></td>
<td>Mayr模型</td>
</tr>
</tbody>
</table>
图8