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METHOD AND APPARATUS FOR SYNTHESIS

FIELD OF THE INVENTION

The present invention is directed towards method and apparatus for synthesis.

BACKGROUND OF THE INVENTION

A combinational logic synthesizer produces an efficient circuit description for a specific
region of an integrated circuit ("IC"). The IC region can be the entire IC or a portion (i.e., a block)
of the IC. An IC or IC block typically performs a set of Boolean combinational-logic functions F
that depend on a set of Boolean variables X. The Boolean function set F typically includcs several
functions f_1,.., f_m, and the Boolean variable set X typically includes several variables X_1,...,
X_n.

In terms of the IC design, the variable set X includes inputs of thc4 IC region. Also, the
outputs of some or all Boolean functions f_i serve as the outputs of the IC region. In addition,
each function f_i specifies a logic operation that needs to be performed on one or more inputs to
the function. The output of each Boolean function f_i(X) can be either true or false.

Each function f_i may be initially given in a variety of formats, such as register transfer
level (RTL) description (e.g., Verilog or VHDL description), a Boolean expression, or a
technology-level netlist, etc. These description formats are mutually interchangeable, and there
are well-known ways to transform one such description into another.

The “efficiency” of the circuit description produced by a synthesizer is usually measured
in terms of the estimated “size” and “depth,” although other criteria are also possible. Size and
depth are defined with the desired output format of the description. Two output formats that are
typically used for the IC design are: (1) technology-level output, and (2) intermediate-level

output.
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A technology-level design is a circuit description that is tied to a specitic technology
library, which is typically referred to as a target library. The circuit elements in a technology-level
design can be implemented in silicon as units with known physical characteristics (e.g., known
timing behavior, power consumption, size, etc.), since such circuit elements and their relevant
Jogic and physical behavior are described in the target library. Accordingly, for technology-level
output, the terms "size" and "depth” usually refers to an actual physical characteristic of the
overall circuit. For instance, "size" can be measured in terms of the number of circuit elements,
the total area of the circuit elements, the total power consumption, etc., while "depth" can be
measured in terms of the circuit's timing behavior, which typically relates to the number of stages
of the circuit.

An intermediate-Jevel design is a circuit description that is not tied to a specific
technology library. Rather, the circuit description is in some intérmediate format that might be
mapped onto a specific target library in a subsequent step. An intermediate-level output can
include circuit elements that are not tied to a specific target library and that compute arbitrary,
complex logic functions.

As intermediate design elements are not necessarily tied to a direct physical IC
implementation, the “size” of an intermediate-level design is usually measured by an estimate of
the final area, the total sum of all variables within the functions performed by the circuit elements
in the design, or some other abstract quantification. Similarly, the “depth” of an intermediate-
level design is often abstractly quantified. For instance, it might be measured as the number of
stages of the circuit plus an estimate about the internal depth of each circuit element. Other more
sophisticated estimates are also possible.

The problem of deriving an efficient circuit design has been extensively studied, because
both the size and speed of an IC directly depend on the efficiency of the circuit design. Three
current approaches to the problem of combinational-logic optimization include: (1) rule-based

techniques, (2) optimization-by-factoring techniques, and (3) two-level minimization techniques.
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In rule-based systems, the input is typically a technology-level description. 'Ihe system
then iteratively tries to make improvements according to a relatively small fixed set of rules. Each
rule specifies some local configuration and the manner for replacing the configuration with a
different set of circuit elements. Such rules are often defined and handcoded by experts and
programmers, although they can sometimes be parameterized by end users of the system. Sets of
rules are combined as scenarios or scripts (either by the end user or as templates by human
experts). A script specifies a number of optimization passes that are applied sequentially and the
subset of rules (and their parameters) that should be used during each pass.

In optimization-by-factoring systems, the input and output are typically expressed in terms
of intermediate-level descriptions of circuit elements that implement arbitrary Boolean functions.
These systems perform optimization by applying algebraic factoring algorithms that try to
identify common sub-functions (i.e., common factors) in different parts of the circuit. Instead of
realizing such a sub-function multiple times, the function is extracted (realized separately once)
and the result is fed back to the multiple places where it is needed. These systems also modify the
design in other ways, such as collapsing nodes (i.e., merging multiple nodes into one), etc.

Two-level minimization is a special optimization technique for two-level logic, e.g., for
logic functions that are represented as a sum of products. The known algorithms are very
powerful and, in part, even optimal. The application of two-level minimization is limited, though,
because only simple logic functions can be represented efficiently in that form.

There are also a variety of algorithms and techniques that have been developed for special
underlying chip technologies, such as PLA-folding, Look-Up Table optimization for FPGAs, etc.
These are highly specific algorithms that are not suitable for the optimization of more general
circuits.

Therefore, there is a need for a robust logic synthesizer that does not work only for simple
logic functions or hand-coded functions. Ideally, such a synthesizer would use a rich set of pre-

tabulated sub-networks. For such an approach, there is a need for an indexing scheme that
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efficiently stores and identifies pre-tabulated sub-networks. ldeally, such an indexing scheme
would allow for the efficient storing and identification of multi-element and/or multi-function
sub-networks.

Some current approaches use indexing schemes for mapping technology-level designs to a
specific technology-level library for simple circuit elements. Current approaches find all circuit
elements in the library that realize a single-function query. Previous filters were built such that
each library circuit element was tested irrespective of whether it is a match. These tests were
performed by checking several easy computable characteristics first (to exclude most possibilities
fast) and then applying a final test for equality (based on some representation of the logic

function).
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SUMMARY OF THE INVENTION

Some embodiments of the invention provide a method for pre-tabulating sub-networks.
This method (1) generates a sub-network that performs a function, (2) generates a parameter
based on this function, and (3)stores the sub-network in a storage structure based on the
generated parameter. In some embodiments, the generated sub-network has several circuit
elements. Also, in some embodiments, the generated sub-network performs a set of two or more
functions. The generated parameter is an index into the storage structure in some embodiments.
Also, some embodiments generate this parameter based on a symbolic representation of an output
of the function performed by the sub-network. The symbolic representation of a function's output
is different than the function's name. Examples of symbolic representation include a binary
decision diagram, a truthtable, or a Boolean expression. Some embodiments store the graph
structure of each generated sub-network in an encoded manner.

Some embodiments of the invention provide a method for producing a circuit description
of a design. From the design, this method selects a candidate sub-network. It then identifies an
output function performed by the sub-network. Based on the identified output function, the
method identifies a replacement sub-network from a storage structure that stores replacement
sub-networks. It then determines whether to replace the selected candidate sub-network with the
identified replacement sub-network. If the method determines to replace the selected candidate
sub-network, it replaces this sub-network in the design with the identified replacement sub-
network. In some embodiments, the selected sub-network has several circuit elements. Also, in
some embodiments, the selected sub-network performs a set of two or more functions. The
generated parameter is an index into the storage structure in some embodiments.

In some embodiments, this method maps a design to a particular technology library. In
some of these embodiments, the selected sub-network can have a directed acyclic graph structure.
Also, in some embodiments, the selected sub-network has several output nodes. In addition, some

embodiments use this method to map a design that is based on one technology to a design that is
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based on a second technology.

Some embodiments provide a method for encoding sub-networks that have a set of circuit
elements. This method initially defines a plurality of graphs, where each graph has a set of nodes.
It then specifies different sets of local functions for each graph, where each set of local function
for each parﬁcular graph includes one local function for each node of the particular graph, and the
combination of each graph with one of the set of local functions specifies a sub-network. The
method stores the graph and the local functions. For each particular specified sub-network, the
method stores an identifier that specifies the set of particular local functions and the particular

graph that specify the particular sub-network.
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BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the appended claims. However, for
purpose of explanation, several embodiments of the invention are set forth in the following
figures.

Figure 1 illustrates the software architecture of a logic synthesizer of some embodiments.

Figure 2 illustrates a process that conceptually represents the overall flow of the
synthesizer of Figure 1.

Figure 3 illustrates an example of a circuit network.

Figure 4 illustrates an example of a combinational-logic sub-network of the circuit
network of Figure 3.

Figure 5 illustrates a block diagram of a network database that is used by the logic
synthesizer of Figure 1.

Figure 6 illustrates a process that a query manager performs to respond to a received
query for a set of combinational-logic functions.

Figure 7 illustrates the components of an indexer that is used in some embodiments.

Figures 8 and 9 conceptually illustrate two processes that an indexer manager of the
indexer of Figure 7 performs in some embodiments of the invention.

Figures 10-13 illustrate an example of a matching determination performed by the query
manager.

Figure 14 illustrates a process that the query manager performs to determine whether a
replacement sub-network matches a candidate sub-network.

Figures 15 and 16 illustrate several database tables that are used in some embodiments.

Figure 17 conceptually illustrates a process that some embodiments use to retrieve pre-
tabulated sub-networks from a database.

Figures 18-20 illustrate an example of a graph encoding scheme that is used in some
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embodiments of the invention.

Figure 21 presents a process that conceptually illustrates several operations performed by
a data generator in some embodiments of the invention.

Figure 22 illustrates a more specific process that a data generator performs in some
embodiments of the invention.

Figure 23 illustrates a pivot node of a graph.

Figure 24 illustrates a three-node sub-network.

Figure 25 illustrates a process for performing technology mapping according to some
embodiments of the invention.

Figure 26 illustrates a computer system that can be used in conjunction with some

embodiments of the invention.
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DETAILED DESCRIPTION OF THE INVENTION

In the following description, numerous details are set forth for purpose of explanation.
However, one of ordinary skill in the art will realize that the invention may be practiced without
the use of these specific details. In other instances, well-known structures and devices are shown
in block diagram form in order not to obscure the description of the invention with unnecessary

detail.

I.  TERMINOLOGY.

The definitions of several terms in this document are provided below.

IC region refers to the entire IC or a portion (or block) of the IC.

Logical description of a design refers to the logical representation of the design. Examples
of logical description include an RTL description (e.g., a Verilog, VHDL, HDL, or BLIFF
description), a combinational-logic expression (e.g., a Boolean expression), etc. Circuit
description of a design refers to the circuit representation of the design. Examples of circuit
description include technology-level designs (also called bound circuit networks), intermediate-
level designs (also called unbound circuit networks), etc.

IC designs use a variety of circuit elements. Such elements typically have inputs and
outputs. These circuit elements include combinational and sequential clements. A combinational
element receives one or more discrete-value inputs and generates one or more discrete-value
outputs that depend on the values of the received inputs and on one or more logic functions
performed by the combinational element. The outputs of combinational elements do not depend
on prior states of the‘ element. Boolean combinational elements are one example of combinational
elements. In Boolean combinational elements, the inputs and outputs can have one of two values.
Each Boolean combinational element computes one or more Boolean functions. Examples of
Boolean combinational circuit elements include low-level elements (e.g., inverters, NAND gates,

NOR gates, AND gates, OR gates, XOR gates) or high-level elements (e.g., multiplexors, adders,
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etc.).

Sequential elements are elements that generate outputs that depend on one or more prior
states of the element (e.g., one or more prior values of their inputs and/or outputs). Some
sequential elements store values that they receive at their inputs at some time and release these
values later (depending on a clock or control signal, etc.). Examples of such elements are latches,
registers, flip-flops, RAM, ROM, etc.

A circuit element that is tied to a specific technology library can be implemented in
silicon as a unit with known physical characteristics (e.g., known timing behavior, power
consumption, size, etc.). Depending on the underlying technology and design style, a circuit
element may correspond to a standard cell, a custom block, an elementary cell of a Gate Array or
FPGA, etc.

A technology library (also called a target library) includes standard circuit elements that
can be used in a particular technology to implement an IC. Such a library typically includes
description of the logical and physical characteristics of its circuit elements. A net is typically
defined as a collection of circuit-element pins that need to be electrically connected. A net may be
seen as a physical network of wiring (e.g., metal or polysilicon wiring) that connects pins or a
purely abstract connection that propagates a logic signal (e.g., a binary signal) from one set of
pins to another set of pins. A netlist is a list of nets.

A technology-level design is a circuit description of an IC region. This description is tied
to a specific technology library (i.e., it includes only circuit elements from a specific technology
library). An intermediate-level design is also a circuit description of an IC region. However, this
description is not tied to a specific technology library (i.e., all or some of its circuit elements are
not part of any technology library). Rather, the circuit description is in some intermediate format
that might be mapped onto a specific target library in a subsequent step. In other words, an
intermediate-level output includes circuit elements that are not tied to a specific target library and

that compute arbitrary, complex logic functions.
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A circuit network refers to a circuit description of multiple IC's, an entire IC, or a portion
of an IC. A circuit network can be either a technology-level design or an intermediate-level
design. A circuit network that is a technology-level design is a bound circuit network (i.e., its
circuit elements are "bound" to a specific technology library). On the other hand, a circuit
network that is an intermediate-level design is an unbound circuit network (i.e., its circuit
elements are not "bound" to a specific technology library).

A circuit element in a circuit network is also referred to as a node in the network. Each
combinational node (i.e., each combinational-logic circuit element) of a circuit network performs
a set of combinational-logic functions, each of which is referred to as a local function of the
combinational-logic node. When the circuit network is not bound to a specific technology library,
the networks circuit elements are typically not associated with physical characteristics (such as
size, timing behavior, etc.), and the local functions of the combinational-logic nodes may be

arbitrary complex logic functions.

11 TOP LEVEL ARCHITECTURE AND FLOW

Figure 1 illustrates the software architecture of a logic synthesizer 100 of some
embodiments of the invention. The synthesizer 100 works on circuit networks that may or may
not be bound to specific technology libraries. This synthesizer takes as input a circuit network
design 135 and optimizes this design with respect to one or more objectives.

Specifically, this synthesizer's generates a modified bound or unbound circuit network
that receives the same set of inputs and produces the same set of outputs as the original circuit
network supplied to the synthesizer. However, the modified circuit network is superior with
respect to the objective or objectives used to optimize the design. For instance, the modified
network might have fewer nodes and/or intermediate inputs, or it might be better with respect to
physical characteristics (such as size, timing, etc.).

In some embodiments, a user can define the objectives that the synthesizer optimizes.
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Also, in some embodiments, the synthesizer 100 optimizes the received combinational-logic
network design for one or more objectives in view of one or more constraints. Like the
objectives, the constraints can relate to the size and depth of the design.

In the embodiment described below, the synthesizer receives combinational-logic-
network designs as its inputs. In several examples described below, the combinational-logic
network designs are Boolean-network designs. One of ordinary skill will realize that in some
embodiments the combinational-logic designs can include multi-value circuit elements that
receive inputs and/or generate outputs that can have more than two discrete states.

Also, in other embodiments, the synthesizer 100 receives the starting design in another
format. For instance, the synthesizer 100 might receive a logical representation of the starting
design (e.g., receives the starting design in logical formats such as Verilog, VHDL, HDL, BLIFF,
etc.). In some of these embodiments, the synthesizer uses known techniques to convert received
logical representations to circuit networks that it then optimizes.

As shown in Figure 1, the synthesizer 100 includes a network data storage 105, a global
optimizer 110, and one or more costing engines 130. The network data storage 105 stores and
manages numerous (e.g., several million) combinational-logic sub-networks that may or may not
be tied to specific target libraries.

In some embodiments, the sub-networks stored in the data storage 105 are pre-computed
in advance . In some of these embodiments, a data generator 115 pre-tabulates these networks in
an automated fashion. Also, in the embodiments described below, this generator is not used
during optimization. The network data storage 105 supports queries for alternative
implementations of sub-networks in the design. In the embodiments described below, the
network data storage is organized as a relational database. However, other embodiments might
use different databases (e.g., object-oriented databases), or might use other data storage structures
(e.g., data files, etc.), for the data storage 105.

The global optimizer 110 controls the synthesizer's operation by (1) selecting for
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replacement a candidate sub-network from the design 135, (2) querying the data storage 105 to
identify one or more sub-network alternatives for the selected candidate sub-network,
(3) analyzing the alternatives, and (4) based on the analysis, determining whether to replace the
selected candidate sub-network in the design 135 with an identified alternative.

In some embodiments, the optimizer 110 iteratively performs these four operations until it
reaches one or more criteria for stopping. In addition, the optimizer uses one or more of the
costing engines 130 to compute costs that will allow the optimizer to analyze the alternative sub-
networks retrieved from the data storage. The optimizer 110 can use such costs to assess the
alternatives and/or the overall design with respect to one or more objectives and/or constrainis.

Figure 1 illustrates three examples of costing engines 130, which are a timing engine 120,
an area engine 123, and a power engine 140 The timing engine 120 computes timing costs for the
optimizer in order to guide the optimizer towards generating designs for faster chips. Specifically,
when this engine is used, the optimizer informs the timing engine about an alternative that it is
considering, and the timing engine in return supplies the optimizer with information about how
the alternative would affect the timing behavior of a particular sub-network, the received circuit
network, and/or a larger design containing the circuit network. For instance, in some
" embodiments, the timing engine computes the expected time differential at a certain output if the
alternative is selected. In some embodiments, the timing engine uses a user-defined timing model
that is appropriate for a certain technology.

The area engine 125 computes and returns an area estimate, which guides the optimizer
towards reducing the area of the design. Specifically, when the area engine 125 is used, the
optimizer informs this engine about an alternative that it is considering. In turn, the area engine
supplies the optimizer with information about how this would affect the area of a particular sub-
network, the received circuit network, and/or a larger design containing the circuit network.

The power engine 140 estimates the change of the power consumption when choosing an

alternative. Power consumption of an IC is often one of the important factors in designing an IC.
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The timing engine, area engine, and power engine can be implemented based on any ol the
known techniques in the art. Other costing engines may also be used when the optimizer needs to
consider other objectives and/or constraints.

Figure 2 illustrates a process 200 that conceptually represents the overall flow of the
synthesizer 100 of Figure 1 in some embodiments of the invention. In some embodiments, the
optimizer 110 directs this overall flow. The synthesizer 100 performs this process for a circuit
network 135 that may or may not be bound to a specific technology library. Figure 3 illustrates
an example of a portion 300 of the circuit network 135. As shown in this figure, the circuit
network has several Boolean circuit elements 305-335 (also called nodes) and each circuit
element performs a particular function (also called the local function).

In the embodiments described below, the received circuit network 135 is expressed in
terms of a linked graph data structure that has one node for each circuit element of the network.
Each node is either a combinational or sequential logic node. In some embodiments, each node
includes a flag that specifies whether it is a combinational-logic node. For each of its
combinational-logic nodes, the received network also specifies a set of local functions. In these
embodiments, a reduced order binary decision diagram (ROBDD) expresses each local function
of a combinational-logic node.

An ROBDD is a graph data structure that includes nodes and edges, where the nodes
represent input or output variables, and the edges represent true or false Boolean results. In some
embodiments, an ROBDD is used to express each output function of a combinational-logic node.
Accordingly, a combinational-logic node has several ROBDD's associated with it when the node
has several output bits. For instance, a three input adder has two ROBDD's, one for each of its
two outputs. One of ordinary skill will realize that other embodiments might use other types of
BDD's (such as MDD's) or other function representations (such as truthtable representations).

As shown in Figure 2, the process 200 initially traverses the received circuit network to

identify any multi-output combinational-logic node (such as a three-input adder), i.e., to identify
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any combinational-logic node that performs two or more local functions. If the process tinds any
such node, it replaces this node with a set of single-output combinational-logic nodes.

The process 200 can perform this replacement by using any known techniques in the art.
For instance, it can replace the multi-output combinational-logic node with several single-output
nodes, where each single-output node performs one local function. For each particular output
function performed by the multi-output node, the process initially tries to identify a sub-network
(of one or more nodes) stored in its data storage 105 that performs the particular output function;
the process for identifying whether the data storage stores a sub-network is described below by
reference to Figures 5-17. If the process 200 cannot identify a pre-tabulated sub-network for a
particular output function of the multi-output node, the process decomposes this function into
simpler functions, and then identifies sub-networks stored in the data storage that perform the
simpler functions. The process can use any known decomposition process, such as the Shannon
expansion, which is discussed in Giovanni De Micheli, Synthesis and Optimization of Digital
Circuits, McGraw-Hill, 1994, or the Reed-Muller expansion, which is described in “Some
classical mathematical results related to the problems of the firmware/hardware interface,” by
T.C. Wesselkamper, Proceedings of the eighth annual workshop on Microprogramming, Chicago,
1975 (available in the ACM Digital Library). Once the process 200 identifies a sub-network for
each output function of the multi-output node, the process replaces the multi-output node with the
identified set of sub-networks. Specifically, in the received circuit network, the process replaces
the multi-output node with several replacement nodes that represent the nodes of the identified
set of sub-networks. For each replacement node, the process specifies the node's local function in
terms of its ROBDD.

After replacing each multi-output node with a set of single-output nodes, the process in
some embodiments associates the set of single-output nodes (e.g., links them, identifies their
association in a list, or uses some other association technique). This association can then be used

duiing the selection of candidate sub-networks for replacement (at 210, which is described
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selection would allow the entire node set of the multi-output node to be optimized alone or in
conjunction with other combinational-logic nodes. The collective optimization of the entire node
set of a multi-output node is especially beneficial when the data storage stores a desired
implementation of the multi-output node.

One of ordinary skill will realize that although the process 200 decomposes a multi-output
node into a set of single-output nodes, other embodiments might address multi-output nodes
differently. For instance, some might simply not select such nodes for optimization. Others might
handle them without any decomposition: For example, the process 200 might try to find
alternatives (at 220) based solely on the combinational-logic functions of the candidate sub-
network identified at 215. Accordingly, other embodiments may use any kind of representation of
the circuit network — including multi-output nodes — so long as the combinational-logic functions
realized by a sub-network can be computed.

After 205, the process 200 selects (at 210) a combinational-logic-sub-network S in the
circuit network 135. The selected sub-network S is a candidate sub-network for replacement. This
selected sub-network is also a combinational-logic network, which means that each of its nodes is
a combinational-logic node.

In some embodiments, the process 200 selects (at 210) the candidate sub-network S
through a random growth process. Numerous such random-growth processes are known in the
art. Several such processes randomly pick a combinational-logic node in the circuit network and
then randomly pick other combinational-logic nodes that are connected to the first selected
combinational-logic node or the subsequently selected combinational-logic nodes, until they
reach a certain sub-network complexity (e.g., until the total number of input variables to the sub-
network falls within a certain range). At any point in the growth of the candidate sub-network
that encounters a sequential-logic node in the circuit network, the growth is terminated at that

point (i.e., that point becomes an input or output of the candidate sub-network). Once the growth
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is terminated at a particular combinational-logic node, the growth might be continued at other
nodes of the specified candidate sub-network until the desired level of complexity is achieved.

In some instances, the sub-network identified at 210 has multiple outputs (i.e., the
identified sub-network performs multiple functions). In some embodiments, the random-growth
process ensures that the selected sub-network S has at least one output dependent on all the inputs
of the sub-network. Such a criteria is used in these embodiments in order to facilitate the database
indexing, as further described below.

Figure 4 illustrates an example of a combinational-logic sub-network 400 that is selected
from the circuit network that is partly illustrated in Figure 3. The sub-network 400 illustrated in
Figure 4 has four inputs X0-X3, three circuit elements 305-315, and three outputs YO-Y2. The
three circuit elements are an AND gate 305, a NAND gate 310, and an OR gate 315. The
combinational-logic expressions for the three functions represented by the three outputs of the

selected sub-network are:

YO=X0eXI; (1)
Y1 = X2@X3; )
Y2 = (X0e XI)o( X2 X3). 3)

In the sub-network 400, the output Y2 depends on all the inputs X0-X3 of the sub-network.

After 210, the process 200 identifies (at 215) a set of combinational-logic functions F
realized by the selected candidate sub-network S. The identified set F includes only one logic
function FO when the selected sub-network S has only one output. On the other hand, the
identified set F includes several logic functions FO..FM when the selected sub-network S has
several outputs YO..YM.

The set of output functions F can come from two different types of circuit elements. The
first type is a circuit element that does not receive the output of any other circuit elements in the

candidate sub-network S selected at 210. In other words, all the inputs of the first-type circuit
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element are inputs to the selected candidate sub-network S. The second type is a circuit element’
that receives the output of at least one other circuit element in the selected candidate sub-network
S. Some or all of the second-type element's inputs are from other circuit elements in the selected
candidate sub-network S.

The candidate sub-network's output function that comes from a first-type circuit element
is just the local function of the ﬁrst-type circuit element. For instance, in the example illustrated
in Figure 4, the sub-network outputs YO and Y1 come from first-type elements 305 and 315. As
recited by equations (1) and (2) above, these outputs are just the local functions of the AND gate
305 and the OR gate 315.

On the other hand, the function that is supplied at the output of a second-type circuit
element has to be derived. Such a function is derived from the local functions of the second-type
circuit element and the circuit element or elements whose output or outputs the second-type
circuit element receives. For instance, in the example illustrated in Figure 4, the sub-network
outputs Y2 come from second—type elements 310. As recited by equations (3), this output is
derived from the local functions of NAND gate 310 and the local functions of the AND gate 305
and the OR gate 315.

As mentioned above, each output function is represented by an ROBDD in the
embodiments described below. In some of these embodiments, the process 200 uses the BuDDy®
software package to identify the ROBDD representation of each function in the set of
combinational-logic functions F realized by the candidate sub-network S selected at 210.

Specifically, the process 200 traverses the graph data structure of the selected candidate
sub-network to examine each node in the combinational-logic sub-network. The process 200
starts with the first-type of nodes (i.e., the nodes that do not receive the output of any other
nodes). For each of these nodes, the process provides the BuDDy package with the node's local
function (in form of an ROBDD) and its inputs in the received sub-network. The BuDDy package

then identifies the node's output function, which is essentially its local function after it has been
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modified to account for the representation of its inputs in the combinational-logic sub-network.

After identifying with all the first-type nodes, the process steps through the second-type of
nodes (i.e., the nodes that receive the output of at least one other node) in a manner that ensures
that it selects each second-type node after it has identified the ROBDD of the set of nodes that
supply their output to this node. For each selected second-type node, the process 200 provides the
BuDDy package with the node's local function (in ROBDD format), the node's inputs in the sub-
network, and the ROBDD's of the set of nodes that supply their outputs to the node. The BuDDy
package then identifies the node's output function (in an ROBDD format) based on the received
information.

Information about the BuDDy package can be obtained from Jorn Lind-Nielsen,
Computer Systems Section at the Department of Information Technology, Technical University

of Denmark, or from http://www.itu.12/research/buddy/, or by sending an e-mail to

buddy@itu.12.

One of ordinary skill will realize that other embodiments might identify the realized set of
combinational-logic functions differently. For instance, some embodiments might use other
software packages, such as the CUDD package provided by the University of Colorado. Yet other
embodiments might not use the ROBDD representation for the combinational-logic functions.
Some embodiments might use the truthtable representation, or some other representation. Still
other embodiments might use other BDD variants.

After 215, the process 200 queries (at 220) the network data storage 105 to determine
whether it has stored one or more alternative sub-networks that implement the combinational-
logic function set identified at 215. The network data storage converts the identified
combinational-logic function set to a parameter based on which one or more alternative sub-
networks might have been stored in the data storage. Accordingly, the network data storage uses
this parameter to try to identify one or more alternative sub-networks in the data storage.

In the embodiments described below, the data storage 105 is a database, and the parameter
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generated by the network database is a set of integer indices into database tables that store the
pre-tabulated sub-networks. The network database uses these indices to retrieve any alternative
sub-network C that is stored in the database according to the generated set of indices. The
operation of the network database in response to the query at 220 will be further described below
by reference to Figures 5-17. One of ordinary skill will realize that other embodiments might use
different storage structures (e.g., data files) and/or different storage parameters (e.g., string
indices).

If the process determines (at 220) that the network database 105 does not store any
alternative sub-network C that implements the combinational-logic function set identified at 2135,
it transitions to 240, which will be described below. On the other hand, if the process identifies
one or more such alterative sub-networks, it uses (at 225) one or more of the costing engines 130
to compute costs for the candidate sub-network selected at 210 and for each alternative sub-
network identified at 220.

The costing engines can estimate actual physjcal costs when the synthesizer 100 is
optimizing a design that is bound to a specific technology. For instance, the area engine 125
might estimate a candidate or alternative sub-networl's total area, the number of circuit elements,
etc. The timing engine 120 might estimate the sub-network's timing behavior, delay, etc. The
power engine 140 might estimate the power consumption of a sub-network.

On the other hand, when the synthesizer is working on an unbound design, the optimizer
110 uses one or more costing engines that compute more abstract costs of the candidate or
alternative sub-networks. For instance, an area engine 125 might measure the “size” of an
unbound sub-network by some estimate of its final area, by the number of its lowest-level and
intermediate-level inputs, by the number of variables within the functions performed by the sub-
network's circuit elements, or by some other abstract quantification. Another costing engine
might estimate the “depth” of a sub-network as the number of stages of the sub-network plus an

estimate about the internal depth of each circuit element. The optimizer might also use such
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abstract costing engines for bound designs.

In some embodiments, the optimizer uses just one of the costing engines (e.g., uses only
the timing engine 120 or the area engine 125) to compute only one cost (e.g., to compute only a
timing cost or an area cost) for each candidate or alternative sub-network. In other embodiments,
the optimizer uses several costing engines (e.g., uses both the timing and area engines) to
compute several costs for each sub-network at issue. In some of these embodiments, the costs
generated for each sub-network are combined in a weighted or unweighted fashion into a single
cost for the sub-network, while in other embodiments they are not.

Based on the computed costs, the process 200 next determines (at 230) whether any
identified alternative sub-networks is acceptable. This determination depends on the type of
optimization that the optirrﬁzer 110 performs. For instance, certain types of optimizations (such
as local optimization) do not accept alternative sub-networks that have worse cost than the
original sub-network identified at 210. Other optimization techniques (such as simulated
annealing) do accept alternative sub-networks that have worse calculated costs, but decrease the
cost penalty (i.e., decrease the number of bad exchanges) that they are likely to accept as the
number of iterations of process 200 increases.

The determination (at 230) of whether any identified alternative is acceptable might be
based solely on optimizing an objective function, or it might be based on optimizing an objective
function within a certain constraint. In addition, the objective function might be associated with
only one computed cost or with a (weighted or unweighted) combination of several computed
costs. Similarly, the constraints, if any, might be associated with only one computed cost or with
several computed costs. Examples of objective functions include an area costing function and a
timing costing function, both of which can be computed at 225. Another example of an objectivg
function can be a costing function that produces a weighted combination of an area cost and a
timing cost. Such a function can be computed at 225, or it can be computed at 230 based on costs

computed at 225. Examples of constraints can include maximum area, time, depth constraints,
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and/or maximum power consumption.

If the process 200 does not find any alternative sub-network acceptable at 230, it
transitions to 240, which will be described below. On the other hand, if the process finds one or
more alternative sub-networks acceptable at 230, it then exchanges (at 235) the sub-network
identified at 210 with one of the acceptable alternative sub-networks. If more than one alternative
sub-networks are acceptable, the process 200 randomly selects one of the acceptable sub-
networks. One of ordinary skill will realize that other embodiments might choose the best sub-
network with respect to the costing, or might choose randomly one out of the k best ones, where k
is a user-defined parameter. After 235, the process transitions to 240.

At 240, the process determines whether it has reached a criterion for stopping. If not, it
transitions back to 210 to identify another candidate sub-network S and to repeat the subsequent
operations for this sub-network. Otherwise, the process 200 ends.

In different embodiments of the invention, the optimizer uses different criteria for
stopping. For instance, this criterion might relate to the number of iterations performed by the
process 200 without identifying a better alternative sub-network. Alternatively, it might simply
relate to the overall number of iterations. The criterion for stopping at 240 depends on the type of
optimization that the optimizer 110 performs. One type of optimization is simulated annealing,
which is described in many publications, such as Nahar, et. al., Simulated Annealing And
Combinatorial Optimization, Proceedings of the 23 Design Automation Conference, 1986. The
pseudo code for the optimization process 200 when it uses a version of simulated annealing is as

follows:

e S:=S_0 (S_0is initial solution)
e T :=T 0(T_0is the initial temperature)
e Inner_Loop_Count := Outer_Loop_Count := 0
e TInner_Loop_Max :=i_0 (maximum number of iterations of inner loop)
e Outer_Loop_Max :=i_max (maximum number of iterations of outer loop)
o Repeat
* Repeat

e Increment Inner_Loop_Count and Outer_Loop_Count by 1;
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Identify candidate sub-network, CanS, for replacement; //See 210 of Figure 2
Identify set of functions F; //See 215 of Figure 2;
Call query manager for replacement candidates; //See 220 of Figure 2;
If any replacement returned,
e Cost each replacement, //See 225 of Figure 2;
e If at least one replacement acceptable, then randomly select one of the
acceptable replacements as NewS//See 230 of Figure 2;
o If (h(NewS) < h(CanS)) or (Random < exp( (h(CanS)-h(NewS)) / T) ), //Se
230 of Figure 2;
e Then replace CanS with NewsS //See 235 of Figure 2;
e Until (Inner_Loop_Count = Inner_Loop_Max) or
(Outer_Loop_Count = Outer_Loop_Max)
e T :=alpha* T; Inner_Loop_Max = beta * Inner_Loop_Max; Reset Inner_Loop_Count
¢ Until Outer_Loop_Count = Outer_Loop_Max //See 240 of Figure 2;

In this pseudo code, T_0, i_0, i_max, alpha, beta are parameters for the simulated
annealing algorithm. These parameters might be specified by a user or set by the optimizer. In
some embodiments, alpha equals 0.98, and beta equals 1.1. The selection of the annealing
parameters is well studied. One scheme for specifying these parameters is disclosed in "A
Comparison of Annealing Techniques for Academic Course Scheduling," by M.A. Saleh
Elmohamed, et al., published at 2nd international conference, PATAT97. See also, e.g.,
"Simulated Annealing and Combinational Optimization," by Surendra Nahar, et al., University of
Minnesota, 23 Design Automation Conference, pp. 293-299. Also, several software packages are
available for determining the parameters for simulated annealing. One such package is ASA,

written by Lester Ingber, www.ingber.com.

The evaluation function h() is performed by one of the costing engines, such as the timing
engine. Random is a random value within the interval [0,1) that is generated within each pass of
the inner return loop. Also, in the example above, the stopping criterion is the overall number of
iterations, which is recorded by the Outer_Loop_Count.

In some embodiments, after the process 200 terminates, the global optimizer maps the
optimized circuit network into a technology-level description, if the circuit network is not at that

level already. In other words, if the optimized circuit network is not bound to a specific
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technology library, the global optimizer 110 in some embodiments converts the neTWorK 1nto a
technology-level network by using standard techniques for performing such conversions. In some
of these embodiments, the global optimizer performs this technology mapping by repeating the
process 200 except this time it uses a database that is tied to the target technology library (i.e.,
uses a database that stores only sub-networks that are made up only of circuit elements from the
target technology library). Such technology mapping will be further described below in
Section V.

The following discussion initially describes in Section III the operation of the network
database 105 in response to search query at 220. Several processes for offline generation of sub-
network candidates and the storage of these candidates in the database 105 are then described in
Section IV. These processes are performed by the data generator 115 and the network database

105.

III. NETWORK DATABASE

The network database 105 is designed to store a large number (e.g., millions) of sub-
networks, and to support queries for the stored sub-networks. In the embodiments described
below, this database has the following features. First, it stores each sub-network completely along
with full information about the logic function or functions performed by the sub-network.
Second, in the embodiments described below, each stored sub-network includes one or more
circuit elements, each of which can be independently analyzed (e.g., independently examined,
replaced, etc.) by the global optimizer. In other words, the circuit elements of each sub-network
do not need to be treated as one entity but rather can be treated as separate elements. In other
embodiments, a stored sub-network might include several circuit elements that are part of an
unbreakable block that the synthesizing optimizer needs to analyze as one entity.

Third, the stored sub-networks are machine generated in order to exploit the space of all

existing networks up to a given size. For instance, in some embodiments, the stored sub-networks
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cover any implementation of any logic function that can be realized With networks up 10 a given
complexity (e.g., up to the complexity of seven 2-input circuit elements). This is far superior to
an approach that only stores alternative implementations of functions that are derived from expert
knowledge.

Fourth, the network database uses new encoding schemes for the sub-networks that make
it possible to store large number of sub-networks efficiently. Fifth, this database uses an indexing
scheme that efficiently uses memory and CPU time. This indexing scheme transforms the
problem of multi-valued logic function matching into a relational database system that is based
on sets of integer primary and secondary indices. Accordingly, the network database can use any
method from standard relational database systems for fast search and retrieve. Fifth, the database
may reside either on disk or in physical memory or partially on both media (e.g., by using a
filein/fileout swapping mechanism).

Figure 5 illustrates a block diagram of the network database 105 in some embodiments.
As shown in this figure, the database includes a query manager 505, a network encoder 510, an

indexer 515, a table manager 520, and database tables 525.

A. Query Manager

From the global optimizer 110, the query manager 505 receives a query for one or more
sub-networks that perform a set F of combinational-logic functions. The received set of
combinational-logic functions might include one function F_1 or several functions F_1...,F_M. In
the embodiments described below, each combinational-logic function in the received set is in a
ROBDD format, although one of ordinary skill will realize that other formats (such as truth
tables, symbolic forms, other types of BDD's, etc.) can be used to represent the received
combinational-logic functions.

In response to the received query, the query manager 505 interacts with the network

encoder 510, indexer 515, and table manager 520 to try to identify a set of sub-networks that are
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stored in the database table 525 and that match the query. In other words, the query manager tries
to identify pre-tabulated sub-networks that compute (i.e., realize) all the functions in the received
set of functions.

Figure 6 illustrates a proceés 600 that the query manager performs to respond to a
received query for a set F of combinational-logic functions. As shown in Figure 6, the query
manager initially passes (at 605) the received set of input functions to the indexer 515. This
indexer translates each of the functions into an integer index into the database tables 525.

In other words, the indexer 515 generates a set of one or more indices I from the set of
one or more functions F. In the embodiments described below, the indexer converts a single-
function query F_1 into a single index I_1 into the network database, and this single index
identifies a set of one or more sub-networks that realize the function of the query. For a multi-
function query, this indexer selects one of the functions as a pivot function, specifies an input
variable order based on this pivot function, and generates an index for this pivot function. When
there are more than one pivot functions in a query, the indexer randomly selects among the pivot
functions. Also, when there are several input variable orders (also called input variable
configurations below) that can be specified for a pivot function, the indexer randomly selects
among the viable input variable configurations. Based on the specified input variable order of the
pivot function, the indexer generates an index for each of the non-pivot functions of the query.
The indexer 515 is described further below by reference to Figures 7-9.

Once the indexer returns (at 605) the set of indices I, the query manager 505 passes (at
610) this set to the table manager 520. The table manager 520 interacts with the database tables
525 that store pre-tabulated sub-networks that are sorted based on set of indices. In the
embodiments described below, the database tables use a relational database scheme to store all
sub-networks together with their associated indices. In some embodiments, the database tables
also store for each stored sub-network some additional data, such as actual or estimated size or

speed of the sub-network. In addition, the sub-networks are stored in these tables in an encoded
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form.

Based on the received set of indices I, the table manager 520 tries to retrieve a set of pre-
tabulated replacement sub-networks from the database tables 525. If the table manager
successfully retrieves replacement sub-networks from the database tables, the table manager
might also retrieve additional parameters (such as estimated or actual size or speed) that are
stored in Ithe database for each replacement sub-network. The global optimizer can use such
parameters to decide whether to replace the selected candidate sub-networks with replacement
sub-networks retrieved from the database. The operation of the database tables 520 and the table
manager 515 are further described by reference to Figures 15-17.

After 610, the query manager determines (at 615) whether the table manager returned any
replacement sub-network for the set of indices it received at 610. If not, the process transitions to
655, which will be explained below. Otherwise, the query manager selects (at 620) one
replacement sub-network retrieved by the table manager at 610.

The replacement sub-networks retrieved by the table manager are in an encoded form.
Accordingly, the query manager directs (at 625) the network encoder 510 to decode the
replacement sub-network selected at 620. The network encoder decodes this sub-network into
(1) a linked graph data structure that has one node for each circuit element of the sub-network
and one edge for each connection between the circuit elements of the sub-network, and (2) a local
function for each node in the graph structure. Also, each local function is represented by an
ROBDD in some embodiments. The network encoding and decoding used in some embodiments
are further described in detail in Section IILD.

After decoding the replacement sub-network selected at 625, the query manager
determines (at 630) whether the replacement sub-network selected at 620 matches the candidate
sub-network selected at 210. In the embodiments described below, the replacement sub-network
matches the candidate sub-network only if the replacement sub-network performs all the output

functions of the candidate sub-network (i.e., all the functions in the set of functions F identified at
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215 for the candidate sub-network) for a particular input variable configuration of the
replacement sub-network. This determination of the query manager requires understanding of the
operation of the indexer 515. Accordingly, this determination will be described below in sub-
section IIL.B.4, after the indexer's operation is described below in sub-section III.B.1-3. Also, sub-
section I B.4 explains why the query manager even needs to check whether the replacement sub-
network performs all the output functions of the candidate sub-network.

If the query manager determines (at 630) that the replacement sub-network selected at 620
does not match the candidate sub-network selected at 210, the query manager transitions to 640,
which will be further described below. However, if the selected replacement sub-network
matches the selected candidate sub-network, the query manager adds (at 635) the matching
replacement sub-network to a set of matching replacement sub-networks. From 635, the query
manager transitions to 640.

At 640, the query manager determines whether it has examined all the sub-networks
retrieved by the table manager at 610. If not, the query manager returns to 620 to select another
retrieved sub-network that it has not yet examined and to repeat its above-described subsequent
operations for this sub-network.

When the query manager determines (at 640) that it has examined all the replacement sub-
networks retrieved by the table manger, the query manager determines (at 645) whether at least
one of the retrieved replacement sub-networks matched the selected candidate sub-network (i.e.,
determines whether the set of matching replacement sub-networks includes at least one
replacement sub-network).

If so, the query manager then returns (at 650) a set of the matching replacement sub-
networks to return to the global optimizer, and then ends. In some embodiments, the query
manager receives from the global optimizer parameters (e.g., user-defined parameters) that
specify the maximum number of sub-networks to return to the global optimizer. In these

embodiments, the query manager uses (at 650) these parameters to select the sub-networks that it
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wants to return to the optimizer from the set of matching sub-networks. Alternatively, in other
embodiments, the query manager (1) might randomly select one or more matching sub-networks
to return, (2) might select all matching sub-networks, or (3) might select all matching sub-
networks that do not have more than a specified number of nodes.

On the other hand, if the query manager determines (at 645) that no retrieved replacement
sub-network matched the selected candidate sub-network, the query manager transitions to 655.
As mentioned above, the query manager also transitions to 655 from 615 when the table manager
fails to retrieve any sub-network at 610. From either 615 or 645, the query manager ends up at
655 when it fails to identify a matching pre-tabulated sub-network for the candidate sub-network
selected at 210.

This failure might be because the query manager cannot confirm that any retrieved
replacement sub-network performs the set of output functions of the selected candidate sub-
network. Alternatively, this failure might be due to the indexer's choice for the input variable
configuration. As mentioned above, when the indexer has to generate multiple indices (i.e., when
the candidate sub-network performs several output functions), the indexer selects an input
variable configuration as the basis for the indices. This selection is further described below in
Section IILB. If the indexer's selection does not match the input variable configuration selected
during the pre-tabulation of the sub-networks in the database, the set of indices generated by the
indexer during the run-time optimization operation might not return matching replacement sub-
networks (i.e., might not return any replacement sub-network, or might return replacement sub-
networks that do not satisfy the two matching criteria of 630).

Accordingly, the query manager performs 655, 660, and 665 to reduce the possibility that
the failure to match is because of the indexer's choice of input variable configuration.
Specifically, at 655, the query manager determines whether the query was a multi-function query.
If not, the failure to find a match is not because of the choice of input variable configuration.

Accordingly, the process informs (at 670) the optimizer 110 that it could not find a matching sub-
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network for the selected candidate sub-network (i.e., could not find any viable pre-tabulated
replacement sub-network that performs the same function as the candidate sub-network) and then
ends its operation.

On the other hand, if the process determines (at 655) that the function is a multi—function
query, the query manager determines (at 660) whether the indexer specified the existence of more
than one input variable configuration when it returned the set of indices at 605. When the indexer
has not specified this, the failure to identify a matching sub-network is not due to the indexer's
choice of input variable configuration. Accordingly, the query manager transitions from 660 to
670, where it informs the optimizer 110 that it could not find a matching sub-network for the
selected candidate sub-network. The query manager then ends its operation.

Alternatively, when the indexer specified (at 605) more than one input variable
configuration, the query manager transitions to 665 from 660. At 665, the query manager
determines whether it has tried a sufficient number of times to get from the indexer a set of
indices that results in a matching sub-network. In some embodiments, the query manager uses a
function T to specify the number of times that it should try to obtain sets of indices from the
indexer. This function returns an integer that is dependent on the number N of input variable
configurations specified by the indexer at 605. It should be noted that the indexer might return a
different number N each time at 605 for a different pivot function.

If the function T equals N when it receives N (i.e., if T(N) = N), then the expected number
of times that the query manager tries each possible input ordering is once, given that the indexer
randomly chooses an input variable configuration each time. To speed up the process, some
embodiments define

T(N) = min[10, (N/constant)],
where the constant is at times set to something in the range from 5-10. Yet other embodiments
(1) specify a likelihood "p", O<p<=1, for the query manager and the indexer to find an input

configuration that matches the configuration used during the pre-tabulation, and then (2) define
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T(N) = N*p.

Still other embodiments might have the query manager and indexer deterministically
search through possible input variable configurations in hope of finding an input variable
configuration used during pre-tabulation to store a particular sub-network. However, such an
approach is more time-consuming. This time consumption is problematic when there are no
matching sub-networks in the database for any of the input variable configurations. It is also
especially problematic when the number of input configurations is relatively large (e.g., for
totally symmetric pivot functions like a n-way AND).

If the query manager determines (at 665) that it has not asked the indexer to generate sets
of indices for more than the number of times specified by function T, it transitions back to 605 to
direct the indexer again to generate a set of indices. As mentioned above and further described
below, the indexer generates the set of indices by randomly selecting a viable pivot function and a
viable input variable configuration for this pivot function. Consequently, the next generated set of
indices might result in the identification of a set of replacement sub-networks that match the
selected candidate sub-network.

If the query manager determines at 665 that it has unsuccessfully tried a sufficient number
of times to identify a matching replacement sub-network, it informs (at 670) the optimizer 110
that it could not find a matching sub-network for the selected candidate sub-network (i.e., could
not find any viable pre-tabulated replacement sub-network that performs the same set of

functions as the candidate sub-network, and then ends its operation.

B. Indexer

In order to search for sub-networks that realize one or more logic functions, it is necessary
to have an efficient indexing scheme for storing these sub-networks. This scheme must be

capable of returning flawlessly, or with a high probability, all sub-networks that match a specific

query.
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The indexer 515 facilitates such an indexing scheme. Specifically, the indexer maps
combinational-logic functions to database indices. As for relational databases, the term index
denotes an elementary data type (e.g., integers or strings) that can be stored, sorted, and
compared. In the embodiments described below, each index is an integer.

The embodiments described below uses a direct indexing scheme that can identify single-
output or multi-output sub-networks (i.e., sub-networks that realize one function or multiple
functions). Each time the indexer 515 receives a single-function or multi-function query from the
query manager, this indexer converts each function in the received query to an integer index into
the database tables 525. The generated set of indices can then be used to search the network
database (like an ordinary relational database) for all entries (i.e., all sub-networks) that are
associated (i.e., related) with each index in the generated set.

Figure 7 illustrates the components of the indexer 515 in some embodiments. As shown
in this figure, this indexer includes a translator 705, an input order identifier 710, a hasher 715,
and an index manager 720. This indexer can be used during the pre-tabulation of sub-networks,
or during run-time optimization of a network. In each instance, the indexer generates a set of
indices for a received set of functions. The generated set of indices is used to store the generated
sub-networks during pre-tabulation and is used to retrieve pre-tabulated sub-networks during
optimization.

The manager 720 directs the flow of operations of the indexer. This manager interacts
with the query manager 505, the translator 705, the input order identifier 710, and hasher 715.
The manager 720 uses the translator 705 to convert each function's ROBDD representation into
an intermediate integer representation. In the embodiments described below, this intermediate
representation is a truth table representation, as further described below. The manager 720 uses
the input-ordering identifier 710 to specify one or more orders for the input variables of the
candidate sub-network selected at 210. The manager 720 then uses the hasher 715 to reduce the

number of bits that represent each function's index.
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Figures 8 and 9 conceptually illustrate two processes that the index manager 720
performs in some embodiments. This manager uses the process 800 of Figure 8 to identify the
index for the function of a single-function query. This manager uses the process 900 of Figure 9
to generate multiple indices for a multi-function query. Specifically, as further described below,
the process 900 for a multi-function query (1) identifies one of the query functions as a pivot
function, (2) uses the process 800 to identify the index for the designated pivot function and
identify an input variable configuration, and then (3)identifies an index for each non-pivot

function of the query based on the identified input variable configuration.

L Computing the Index for a Single-Function Query or
a Pivot Index for a Multi-Function Query

As mentioned above, the index manager 720 performs process 800 of Figure 8 to identify
the index for a single-function query. The manager also performs this process as part of the
process 900 of Figure 9 to identify the pivot index for a multi-function query. Whenever the
process 800 is called, it is supplied with a function and an operational parameter. The operational
parameter specifies whether the process 800 should select an input variable configuration
randomly or deterministically. The operational parameter specifies a random operation during
optimization, while it specifies a deterministic operation during pre-tabulation.

As shown in Figure 8, the process 800 initially directs (at 805) the translator 705 to
generate a truthtable representation for the function on which it is operating. As mentioned
above, the query manager supplies functions in a ROBDD format to the indexer, although in
other embodiments the query manager might provide the functions in another format.

The truthtable representation is a binary bit string where each bit corresponds to an output
of the function for one set of input values..Table 1 below provides examples of truthtables for
two functions. The first function G is a two-input AND function. As shown in fhe table below,
the truthtable for this function is 0001. This truthtable is four bits long because there is one

output bit for each set of input values. The second function H is a two-input AND that has its
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second input inverted. As shown in Table 1 below, the truthtable for this function H is 0100.

False False 0 0
True False 0 1
False True 0 0
True True 1 0

If the order of inputs 1 and 2 were reversed, the truthtable for function G would remain
the same, but it would change to 0010 for function H. As further discussed below, the change in
the truthtable for function H reflects the fact that the truthtable representations of functions are
dependent on the order of the input signals.

After generating (at 805) the truthtable of the function, the process 800 directs (at 810) the
input-ordering identifier 710 to identify a canonical representation of the truthtable for the
function F. A canonical representation is a fixed, unique representation, chosen from the set of
possible representations, that a particular algorithm will always pick. In the embodiments
described below, this canonical representation is the smallest truthtable of F from the set of
truthtables for all variations of input variable ordering. For instance, the above-described function
H has two input variable configurations, since it has two inputs and the order of these two inputs
can be switched. The truthtables for these two input variable configurations are 0100 and 0010.
Taking the least significant bit of a truthtable to be the right most bit, then the canonical
truthtable representation for function H is 0010.

In some embodiments, the input ordering identifier identifies the canonical truthtable
representation for the function F by having a branch-and-bound technique use the truthtable
representation identified at 805 as an initial starting point to search through the space of the
function's truthtables without examining all input variable configurations. One such branch-and-
bound technique is described in "Boolean Matching for Large Libraries" by Uwe Hinsberger and
Reiner Kolla, DAC98, June 15-19, 1998.

At 810, the input-ordering identifier also specifies a set of one or more input variable

configurations. Each input variable configuration in this set results in the canonical representation
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identified at 810. In other words, the truthtable representation of F is identical for each
configuration in the specified set of input variable configurations.

One of ordinary skill will realize that other embodiments do not convert the BDD
representation of the supplied function to a truthtable representation in order to perform
canonicalization. These embodiments directly perform the canonicalization operation at 810 on
the BDD representation of the supplied function. Jerry Burch and David Long, Efficient Boolean
Function Matching, Proc. ICCAD 1992 describe obtaining semi-canonical BDD representations.
The process 800 applies the canonicalization operation for the truthtable representation since this
approach is fast, especially for functions with a small number of inputs, as it can be efficiently
implemented by using fast machine-implemented bitwise operations.

After identifying the canonical truthtable representation and the set of input variable
configurations that lead to this representation, the process 800 selects (at 815) one of the
identified set of input variable configurations either deterministically or randomly based on the
operational parameter that it receives. During run-time generation of indices for a candidate sub-
network, the operational parameter directs the process 800 to select an input variable
configuration randomly.

However, the operational parameter directs the process 800 to select an input order
deterministically during pre-tabulation. The input order identifier returns (at 810) the set of input
variable configurations always in a particular order. When the process 800 operates
deterministically during pre-tabulation, the process 800 always selects the same input
configuration in the returned set of input configurations as the input configuration. For instance,
in some embodiments, this process always selects the first input configuration in the returned set
as the designated configuration. The operation of the indexer 515 during pre-tabulation is further
described below in Section IV.

After selecting an input variable configuration at 815, the process 800 directs (at 820) the

hasher 715 to map the resulting canonical truthtable representation of the function F to an index
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into the network database. The truthtable representation does not serve as a good index into the
Ydatabase as it can be a long bitstring in many instances. Accordingly, the hasher maps the
truthtable representations to hashed index values that are shorter than the truthtable
representations. Section IIL.B.3 describes the hashers used by some embodiments of the
invention. After 820, the process 800 returns (at 825) the hash value identified at 820 and then

ends.

2. Computing Indices for a Multi-Function Query

Figure 9 conceptually illustrates a process 900 that identifies the indices for a multi-
function query. The index manager 720 directs this process whenever it receives a multi-function
query. As shown in Figure 9, the index manager 720 initially selects (at 905) one of the functions
in the query as a pivot function. When the query has multiple pivot functions (i.e., when the
candidate sub-network selected at 210 has multiple pivot functions), the index manager 720
randomly selects (at 905) one of the pivot functions in the query. In the description below, the
selected pivot function is designated as the first function F_1 in order to simplify the discussion.

Index manager 720 will use the pivot function to identify an order for the input variables
to the sub-networks. Accordingly, the embodiments described below select as the pivot function a
function that is dependent on all the input variables, since such a pivot function could be used to
impose an ordering for all input variables.

As mentioned above, the process 200's selection (at 210) of the candidate sub-network
ensures that this sub-network has at least one function that is dependent on all the input variables.
Also, in the embodiments described below, the sub-network pre-tabulation comports with such a
selection of the pivot function, since the pre-tabulation process pre-tabulates only multi-function
sub-networks that have at least one pivot function.

In other embodiments, the selection of the candidate sub-network at 210 and/or the pre-

tabulation of the sub-networks do not need to ensute the existence of at least one pivot function
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(i.e., of an output function that is dependent on all input variables). For instance, the process 900
could deal with candidate sub-networks that do not have an output function dependent on all
input variables, by terminating its search for replacement sub-networks. Alternatively, the process
900 could deal with multi-function queries that do not have pivot functions by selecting (at 905) a
function that is dependent on the most number of inputs and then using a particular scheme to
specify the position of the other sub-network inputs. For instance, if the selected candidate sub-
network has five inputs, and its best output function depends on only 4 inputs, the process 900
might select the best output function and position the fifth input as the leftmost input.
Accordingly, the existence of the pivot function is not crucial, but rather is employed by the
embodiments described below in order to improve the hit rate of the optimizer.

After 903, the process 900 computes (at 910) the index I_1 for the selected pivot function
F_1. The index manager uses process 800 of Figure 8 to compute this index value I_1. As
described above, the canonicalization procedure at 810 returns the canonical truthtable
representation of the function F_1 plus an input ordering. The returned input variable order is
used to generate the indices for the remaining non-pivot functions in the query.

Specifically, for each particular non-pivot function, the index manager uses (at 915) the
translator 705 to generate the truthtable representation for the non-pivot function, based on the
input variable ordering returned at 910. At 915, the index manager also uses the hasher 715 to
generate an index for each non-pivot function from the function's generated truthtable
representation. At 920, the index manager 720 then returns the generated set of indices to the
query manager 505.

In sum, the indexing scheme used by the indexer is as follows in some embodiments of
the invention. The indexer converts a single-function query into a single index into the network
database, and this single-index identifies a set of one or more sub-networks that realize the
function of the query. For a multi-function query, this indexer selects one of the functions as a

pivot function, specifies an input variable order based on this pivot function, and generates an
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index for this pivot function. Based on the specified order, it then generates an index for each of
the non-pivot functions of the query.

As described below, the pre-tabulation process associates each particular combinational-
logic function with exactly one pivot index, which is used Whenever the particular function serves
as pivot for a certain query. Each function's pivot index (also called primary index) is the index
that indexer generates during pre-tabulation by using a process similar to the process 800 except
that during pre-tabulation the index generation process deterministically selects one of the input
variable configurations as opposed to the random selection at 815. In addition, during pre-
tabulation, each combinational-logic function is associated with a number of secondary indices.
Secondary indices of a function F are used to number (or identify) the cases when a query is made
for some set {G.,...,F,...} where a different function ,G serves as pivot function and therefore

determines the input ordering.

3. Hasher

In some embodiments, the hasher 715 uses a hashing function that is described in "An
Optimal Algorithm for Generating Minimal Perfect Hashing Functions," by Zbigniew J. Czech, et
al., Information Processing Letters, 43(5); 257-264, October 1992 ("Czech's paper"). This
hashing function is referred to as the "minimal” hashing function. Czech's paper describes in
detail how to generate this hashing function.

In the current context, the minimal hashing function is generated during the pre-tabulation
of the sub-networks. Specifically, during pre-tabulation, the data generator generates numerous
sub-networks. For each sub-network, the data generator has the indexer compute the canonical
truthtable representation of each pivot function of the sub-network. When the sub-network
performs more than one function, the indexer also specifies an input variable configuration based
on the canonical truthtable representation, and generates a truthtable representation for each non-

pivot function of the sub-network. Based on the computed truthtable representations, the data
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generator uses a hashing function creator (not shown) to associate each of the precomputed
truthtable representations with a unique-index value and generates a hashing function that
realizes this association. The creation of the minimal hashing function from a defined (static)
hash table is described in detail in Czech's paper. During optimization, the hasher uses the
generated hashing function to generate an index for each truthtable that the hasher receives from
the index manager 720.

This minimal hashing function has the advantage that it takes only a small amount of
memory while still performing a single evaluation of the hashing function in linear time
dependent on the size of the truthtable that is input to the hashing function. However, the tradeoff
is that this function has the property that it will always return a value for any truthtable
representation. For a truthtable that is equal to one of the precomputed tables, the hashing
function returns always its unique index value. For any other input this function returns also some
integer but it is difficult to check whether the returned value is a valid value for a valid input or
just an arbitrary output for an invalid input. Consequently, because of this hashing function, the
query manager has to determine at 630 whether a retrieved replacement sub-network performs the
set of output functions of the selected candidate sub-network.

Other embodiments might use other hashing approaches. For instance, some embodiments
might use more traditional hashing techniques, such as those described in Cormen, Leiserson,
Rivest, and Stein, "Introduction to algorithms,” Second edition, MIT Press, 2001, Chapter 11.
Traditional hashing approaches specify values for only valid keys (i.e., for only valid truthtable
representations). For instance, some traditional hashers support the query "retrieve a value stored
in hash table for a particular key" and the query "is anything for a particular key stored in the hash
table." Other traditional hashers return some dedicated NULL value for any query of type
"retrieve value stored in hash table for some key" when no element is stored for the key.

Traditional hashers have the advantage that they can detect that there is no hashed value

for a particular truthtable. Accordingly, in such circumstances, the indexer would not return
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indices for functions that do not have an associated hashed value and instead would notify the
query manager that there is no associated index for the particular function. Because of this, the
query manager would not retrieve irrelevant sub-networks from the database and, therefore,
would not need to perform the matching determination at 630. On the other hand, a traditional
hashing approach requires the storage of all valid keys within the hash-table. This, in turn, would
require the storage of all lengthy truthtable representations, which would require a large amount

of memory.

4. Input Variable Correction by the Query Manager

As mentioned above, the query manager determines (at 630) whether a retrieved
replacement sub-network matches the candidate sub-network selected at 210. The replacement
sub-network matches the candidate sub-network only if the replacement sub-network performs all
the output functions of the candidate sub-network (i.e., all the functions in the set of functions F
identified at 215 for the candidate sub-network) for a particular input variable configuration of
the replacement sub-network.

Figures 10-13 illustrate an example of such a matching determination. Figure 10
illustrates a candidate sub-network 1005 from a network 1000. The candidate sub-network
includes two AND gates 1010 and 1015, and a NAND gate 1020. The candidate sub-network
receives inputs x_0, x_1, and x_2 in the order illustrated in Figure 10. When the output functions
are specified by a BDD package (such as BuDDy described above), the input variables have a
natural ordering as they are just integer indices provided by the BDD package.

In the example illustrated in Figure 10, the candidate sub-network 1005 has only one
output function F. Based on this output function, the indexer generates an index, and the table
manager retrieves a replacement sub-network. Figure 11 illustrates the circuit schematic for such
a replacement sub-network after it has been decoded. (This schematic is only for explanatory

purposes since after the replacement sub-network is decoded at 625, the sub-network is
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represented by a graph and a local function for each node in the graph.)

As shown in Figure 11, the replacement sub-network 1105 has two gates and three inputs
1.0,1 1, and I 2. One gate is a two-input AND gate 1110 with an inverted input. The other gate
is a two-input AND gate 1115. The inputs have a generic ordering. Specifically, when the
replacement sub-network is decoded, it is a graph made of a linked node list. If the replacement
sub-network has n inputs then the decoded network structure has a "dummy" node 1120 for each
input. Internal nodes that are fed by one of these network inputs have a directed arc from the
network input to one of their node inputs. The dummy nodes are stored in an array so they have a
generic ordering just by array index.

The matching operation at 630 tries to identify an input configuration for the replacement
sub-network 1105 so that this sub-network's set of output functions includes the output function
of the candidate sub-network selected at 210. In other words, the matching operation tries to
identify a reordering of the array of "dummy" nodes and a correlation of each dummy node's
input with one of the input variables (x_0 to x_2) that enables the replacement sub-network to
perform the output function set of the candidate sub-network 1005.

As shown in Figure 11, because of its input configuration, the output function of the
replacement sub-network 1105 has a different truthtable from the output function F of the
candidate sub-network 1005. Figure 12, however, illustrates an input configuration for the
replacement sub-network 1105 that produces the same output function (i.e., has the same output
truthtable) as the candidate sub-network's output function F. Figure 13 illustrates how the
configuration illustrated in Figure 12 can be inserted in the network 1000.

Figure 14 illustrates a process that the query manager 505 performs at 630 to determine
whether a replacement sub-network matches the candidate sub-network selected at 210. As
shown in this figure, the process 1400 initially identifies (at 1405) all pivot functions of the
replacement sub-network. In other words, it identifies all pivot functions in the replacement sub-

network's function set G {G_0,...,.G_n}, where each function is computed with respect to the
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input ordering after the decoding of the sub-network at 625.

The process then selects (at 1410) one of the identified pivot functions. For the selected
pivot function, the query manager has the indexer compute a set of indices deterministically (i.e.,
performing an index-generation operation that always produces the same set of indices for the
same pivot function and the same set of non-pivot functions).

To perform this deterministic operation, the process 1400 initially has the indexer
deterministically identify (at 1415) an input variable configuration P that leads to the canonical
truthtable representation of the pivot function. To identify such a configuration, the index
manager 720 (1) has the translator 705 generate a truthtable representation of the pivot function,
and then (2) has the input order identifier 710 identify a set of input configurations that lead to
the smallest-valued truthtable representation of the pivot function. The input order identifier
always returns the set of input variable configurations in a particular order. The index manager
always selects the same input configuration in the returned set of input configurations as the input
configuration P identified at 1415. For instance, in some embodiments, the index manager always
selects the first input configuration in the returned set as the designated configuration P.

This deterministic operation of the indexer during run-time optimization works in
conjunction with its deterministic operation during the database generation, as further described
below. Also, this deterministic operation during input-configuration matching is different from
the above-described randomized operation of the process 800 during the generation of a set of
indices for a set of functions of the candidate sub-network selected at 210. In its randomized
operation, the process 800 randomly selects (at 815) an input variable configuration from the set
of viable input configurations for a particular function.

After deterministically identifying (at 1415) an input variable configuration P, the process
1400 readjusts (at 1420) the identified input configuration based on the configuration used at 605
to generate the set of indices for the candidate sub-network selected at 210. For instance, assume

that the set of output functions of the candidate sub-network had an initial configuration R, and
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that the indexer selected (at 815) an input configuration R' that produced the canonical
representation of a particular function. If an operation Q has to be performed on R to obtain R/,
then the process 1400 obtains (at 1420) a new configuration by applying the inverse of the
operation Q to the input configuration P identified at 1415 (i.e., apply Q’l(P)).

The process 1400 then identifies (at 1425) the set of functions H performed by the
replacement sub-network based on the input ordering identified at 1420. In some embodiments,
the process specifies (at 1425) each function in terms of its ROBDD. Also, in some
embodiments, the identified set of output functions includes an output for each node of the
replacement sub-network. The output function at a particular node's output is the particular node's
local function when the particular node does not receive the output of any other node in the
replacement network graph. Alternatively, when the particular node receives the output of
another node or other nodes in the replacement sub-network, an output function at the particular
node's output can be derived from the particular node's local function and the local function of
each node whose output the particular node receives.

After 1425, the process then determines (at 1430) whether the set of functions H
identified at 1425 includes the set of functions F that were identified for the candidate sub-
network at 215. If so, the replacement sub-network matches the candidate sub-network for the
input configuration specified at 1425. Accordingly, the process 1400 specifies (at 1435) a match
and the input configuration resulting in this match and then ends.

On the other hand, if the process determines (at 1430) that the set of functions H
identified at 1425 does not include the candidate sub-network's set of functions F, the process
determines (at 1440) whether it has examined all the pivot functions identified (at 1405) for the
replacement sub-network. If not, the process transitions back to 1410 to select another pivot
function, and performs the subsequent operations for this function. Otherwise, the process 1400
specifies (at 1445) that the replacement sub-network does not maich the candidate sub-network

and then ends.
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C. Database Tables and Table Manager

Once the indexer 515 returns a set of indices to the query manager, the query manager
directs the table manager 520 to retrieve all sub-networks that are associated with the returned set
of indices. In response, the table manager searches the database 525 and returns a set of sub-
networks. This set is an empty set when the database 525 does not store any sub-network that is
associated with the received set of indices. When the set of identified sub-networks is not empty,
the sub-networks in this set are in an encoded form, and the table manager returns these sub-

networks in this form to the query manager.

1. Database Tables

In the embodiments described below, the database 525 is a relational database, and the
table manager 520 is the querying engine of this database. Figures 15 and 16 conceptually
illustrate the database schema used by the database 525. One of ordinary skill will realize that
these figures simply conceptually illustrate the database design for some embodiments of the
invention, and that other embodiments of the invention might use other database designs.

Figures 15 and 16 illustrate five database tables. These tables include (1) the pivot table
1500 and secondary table 1505, which are illustrated in Figure 15, and (2) the sub-network table
1510, the graph table 1515, and the function table 1520, which are illustrated in Figure 16.

As shown in Figﬁre 15, the pivot table 1505 includes a row for each pivot index 1525,
while the secondary table includes a set of one or more rows for each pivot index 1525. In
addition, each particular pivot table row in the pivot table specifies first row 1530 and last row
1535 in the secondary table 1505 for the pivot index of the particular pivot-table row. During pre-
tabulation, all the rows in secondary table 1505 that are related to the same pivot index are
arranged next to each other in a particular order (e.g., sorted by increasing secondary index stored
in each secondary table row). Accordingly, a particular pivot table row needs to describe only an

interval of rows within the secondary table (i.e., needs to identify only first and last secondary
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table rows) rather than enumerating all rows explicitly.

' The rows of the secondary table 1505 have variable lengths. Hence, each row includes a
field 1540 that specifies the row's length. In addition, each row of the secondary table 1505 has a
field 1545 for specifying a particular secondary index associated with a particular pivot index. A
secondary table row might store a null value in its secondary index field, as further described
below.

The secondary table 1505 also expresses the relation between pre-tabulated sub-networks
and the pivot and secondary indices. Specifically, each particular secondary table row has a set of
fields 1550 that specify a set of one or more network indices for each pair of pivot and secondary
indices that the particular secondary table row stores. The set of network indices within a single
row are sorted in a particular order (e.g., by increasing network indices) during pre-tabulation.
Each set of network indices can include one or more indices.

After identifying a range of rows for the pivot index of a set of database indices I received
from the query manager, the table manager tries to identify a secondary table row in the identified
range for each secondary index in the received set of database indices. If the table manager is
successful, each network index that is stored in all the identified secondary table rows specifies a
potentially matching sub-network that the table manager should return to the query manager.

Each network index that is stored in a secondary table row specifies a row in the network
table 1510, which is illustrated in Figure 16. Each row in the network table 1510 corresponds to
a particular sub-network. In the embodiments described below, each sub-network is specified by
(1) a graph having one or more nodes, and (2) a set of functions that includes a local function for
each node of the graph. Accordingly, each row in the network table specifies a graph-table index
1555 and a set of function-table indices 1560.

A graph-table index 1555 identifies a graph-table row that stores the encoded graph 1565
for the sub-network associated with a network index of the network table row. As further

described below in Section ILD, each encoded graph 1565 specifies in an encoded manner
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(1) one or more nodes of the sub-network, and (2) the connections between these nodes. Also,
Figure 16 illustrates each graph-table row in the graph table 1515 to include a set of fields 1570
that store additional attributes of the graph stored in that row. Examples of such attributes include
the actual or estimated size or speed of the sub-network represented by the graph. Typically, such
attributes can be derived from the structure of the graph, but they can be stored in the database to
speed up the operation of the optimizer.

The function table 1520 stores the local functions 1575 of the graph nodes. In some
embodiments, the functions are stored in an ROBDD format in the function table. The function
table is indexed by the function table indices 1560 that are stored in this table and in the network
table 1510. More specifically, each function-table index 1560 in a network table row corresponds
to a particular node of a graph 1565 that is indexed in the graph table 1515 by the network table
row's graph-table index. A network table row stores its function-table indices in a particular
manner that corresponds to the ordering of the nodes. For example, for a multi-function set, the
first function index corresponds to the first-node's function, the second function index
corresponds to the second-node's function, etc. For its corresponding graph node, a function-table
index specifies a function 1575 in the function table.

Although Figure 16 illustrates only one function table, other embodiments use multiple
function tables. For instance, some embodiments might have one function table for all two-input
functions, one function table for alll three-input functions, one function table for all four-input
functions, and one function table for five or more input functions. For a particular function index
of a particular node, the table manager in some of these embodiments identifies the particular
node's number of inputs and then uses the particular function index to identify the function in the
function table for the identified number of inputs.

The schema described above allows fast search for matching networks. In other words, no
table needs to be fully scanned. Instead, this schema provides direct access to pivot rows, a binary

search for secondary rows, a linear scan for the computation of the intersection of the secondary
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rows, and direct access to the functions, graphs, and networks stored in the function table, graph

table, and network table.

2. Table Manager

Given a set of database indices I, which may include one or more indices I_1,..,I_n, the
table manager has to return a graph and a set of functions for each sub-network SNW, where
(1) each sub-network SNW is related to the pivot index of the received set, and (2) the sub-
network SNW and the pivot index are related to all secondary indices in the received set. In other
words, the table manager has to return all sub-networks that are associated with the pivot index
and all secondary indices of the received database-index set.

This task is a standard function that is supported by any relational database management
system, such as those offered by Oracle Corp. or Informix, Inc. Therefore, the table manager can
be directly realized with any commercial or non-commercially available relational database
system.

Figure 17 conceptually illustrates a process 1700 that the table manager 520 uses in some
embodiments to retrieve pre-tabulated sub-networks (i.e., pre-tabulated encoded graphs and
functions) from the database 525. The table manager performs this process each time it receives a
set of database indices I, which might include one index or several indices.

As shown in Figure 17, the table manager initially determines (at 1705) whether the pivot
table has a row for the pivot index of the received set of database indices. If not, the table
manager informs (at 1710) the query manager that there is no matching sub-network (i.e., the
database does not store a sub-network that is related with all the indices of the query) and then
ends.

Otherwise, the process accesses (at 1715) the row in the pivot table 1500 that is for the
pivot index of the received set of database indices. When the received database-index set includes

only one index, this set's pivot index is its one and only index. On the other hand, the pivot index
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of a multi-index set is the index that the process 900 specified at 905 and 910.

The table manager accesses (at 1715) the pivot-table row of the set's pivot index in order
to identify a range of rows in the secondary table 1505. This range of rows specifies all the
secondary indices that might be associated with the pivot index of the received database-index
set. The table manager can search the pivot table 1500 in constant time since the pivot table is
sorted such that its row numbers are equal to the "Pivot_Index" of this row.

At 1720, the table manager selects a secondary index in the received database-index set. It
then determines (at 1725) whether a row in the identified range has a secondary index that
matches the selected secondary index. If not, the table manager then informs (at 1710) the query
manager that there is no matching sub-network and then ends.

On the other hand, if the process identifies (at 1725) a row in the identified range that has
a secondary index that maiches the selected secondary index, it retrieves (at 1730) the set of
network indices from the selected row. Because the rows within the secondary table are sorted by
secondary indices, the table manager's search of this table can be done efficiently as a binary
search. Also, when the received database-index set includes only one index, a secondary table
row maiches the received database-index set if it specifies the received set's pivot index and a
null for the secondary index.

Next, at 1735, the process determines whether it has searched for all secondary indices in
the received database-index set. If not, the process transitions back to 1720 to select another
secondary index in this set. Otherwise, the process determines (at 1740) whether the received
database index set includes more than one secondary index. If not, the process transitions to
1755, which is described below.

However, if the received database index set includes more than one secondary index, the
process cross compares (at 1745) all the sets of network indices retrieved at 1730 to identify each
network index that is in all sets of network indices retrieved at 1730. The table manager can

perform this cross-comparison in linear time (i.e., in an amount of time that scales linearly with
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the number of network indices) because the network indices are sorted in a particular order.

Next, the process determines (at 1750) whether this cross-comparison leads to an empty
set. If so, the table manager then informs (at 1710) the query manager that there is no matching
sub-network and then ends. Otherwise, the process transitions to 1755. For each network index
that the process identifies to be in all the sets of network indices retrieved at 1730, the process (at
1755) identifies graph- and function-table indices from the network table. As mentioned above,
each network index specifies a graph-table index and a set of function-table indices. At 1755, the
process (1) uses each identified graph-index to retrieve an encoded graph from the graph table,
and (2) uses the set of function indices associated with the identified graph-index to retrieve a set
of functions for the nodes of the retrieved graph. The table manager then returns (at 1760) the

retrieved sets of graphs and functions to the query manager.

D. Sub-Network Encoding and Decoding

Once the table manager returns a set of graphs and functions to the query manager, the
query manager determines (at 615) whether the table manager returned any sub-network. If so,
the query manager selects (at 620) one of the returned sub-networks and directs (at 625) the
network encoder 510 to decode the selected sub-network.

In order to store a large number of sub-networks in a database, some embodiments use a
compact encoding of the sub-networks. The embodiments described below use an encoding

scheme that has three levels of encoding.

1. Graph and Function Tables

The first level of encoding (which was described above by reference to Figure 16)
specifies each sub-network by (1) a graph having one or more nodes, and (2) a set of functions
that includes one local function for each node of the graph. This manner of specifying sub-
networks exploits similarities between different sub-networks.

Specifically, each sub-network can be described by its structure and by the set of
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functions performed by its node or nodes. Different sub-networks might have similar structures or
might have nodes that perform similar functions. Consequently, the encoding scheme (1) stores
the structural and functional attributes separately, and then (2) describes each sub-network by
reference to the stored structural and functional properties.

In the embodiments described below, the structure of each sub-network is described in
terms of a directed acyclic graph. The nodes of such a graph represent the circuit elements of the
sub-network, and the directed edges correspond to the connection between the sub-network's
circuit elements.

Because of the offline computation of the database, all graphs that occur as network
structures within the database are known in advance. Moreover, many of these graphs are
isomorphic, i.e., they are identical with respect to a certain numbering of the nodes. In fact, the
number of distinct non-isomorphic graphs is very small compared to the total number of sub-
networks in the database.

Accordingly, in some embodiments, the graph table 1515 illustrated in Figure 16 stores
all non-isomorphic graphs up to a certain size. SectionIV below describes techniques for
generating a table of all smaller non-isomorphic graphs up to a certain size. Each generated graph
structure is stored as an entry in the graph table 1515. In some embodiments, entries in this table
are numbered (indexed) sequentially from 0,..,n.

Also, in some embodiments, the function table 1520 stores all local functions that can
occur in any of the pre-computed sub-networks. As all possible local functions are known
beforehand, and their number tends to be small, such a table can be easily generated during the
pre-tabulation process.

For a database that is bounded to a specific technology library, the local functions are
taken from the specific technology library (i.e., they correspond to all logic functions that can be
computed by a single circuit element in the library). Some technology libraries contain fewer than

256 different logic functions that can be implemented by a single block. Therefore, for such a
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library, an index 1560 into table 1520 can be implemented as a single byte. A further reduction
can be achieved by using several function tables to store combinational-logic functions with the
same number of inputs separately, as described above.

For a database that is not bound to a specific technology library, the function table can
include local functions from one or more technology libraries and/or additional abstract functions
that are not from any particular technology library. Adding additional functions to the function
table increases the size of the database (i.e., increases the number of sub-networks specified in
the database). However, some efficiency can be realized by using several function tables to store

the functions according to their number of inputs.

2. Encoding Each Graph

The second level of encoding relates to the encoding of the graph structures. When the
number of graphs is relatively small (e.g., 10000-50000), any reasonably sparse compression
encoding of the graph structures can be used. Some embodiments use the following schema:

Graph_Encoding = {Node_1_Encoding}...{Node_N_Encoding},
where

Node_J_Encoding = {Node_Identifier} {Edge_1_Encoding}...{Edge_M_Encoding},
where

Edge_I_Encoding = {Edge_Identifier } {Node_X_Index}.

In other words, this schema defines each encoded graph in terms of one or more encoded
nodes (i.e., in terms of one of more Node_J_Encoding's). Each encoded node is defined in terms
of an identifier (Node_Identifier) and one or more encoded edges (i.e., one of more
Edge_I_Encoding's). The Node_Identifier specifies the start of the description of an encoded
node. Also, each encoded edge for a node specifies an incoming edge to the node.

Each encoded edge is defined in terms of an identifier (Edge_Identifier) and a node index

(Node_X_Index). The Edge_Identifier specifies the start of the description of an encoded edge,
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while the node index identifies the graph node from which the edge is coming. One of ordinary
skill will realize that other embodiments might use a schema that specifies outgoing edges of
nodes as opposed to incoming edges. Only incoming or outgoing edges need to be defined for
each encoded node because the graph is a directed one.

A more specific version of. the schema described above stores each graph nodewise
according to a certain numbering of the nodes from O, ... ,n-1. This schema encodes each graph
as a bitstring. In this bit string, this schema uses a single "1" bit as the common node identifier
(Node_Identifier) for each node in the graph, and a single "0" bit as the common edge identifier

" (Edge_Identifier) for each edge of each node. Also, the node index for each edge is an integer that
corresponds to the number assigned to the starting node for the edge.

Some embodiments store only sub-networks with fewer than 16 nodes/network in the
database. In these embodiments, it is possible to encode the index of a starting node of an edge
with 4 bits. Therefore, the maximum number of bits that this scheme uses is provided by the
equation below:

Maximum number of bits = #nodes + #edges™(1+4).

A further reduction is achieved based on the following observation. Some embodiments

require combinational-logic sub-networks to be acyclic, i.e., require certain ordering of the nodes

LA

such that any node "i" only has ingoing edges from nodes "j

nam _n:sn

, where "j"<"i". In other words, this
denotes that the input of a certain node must not depend on the output of this node. Computing
such an ordering of the nodes requires linear time only. From such an ordering, it follows that the
starting node of an edge incident on node "i" is within the range of 0, ...,i-1. Accordingly, the
node index of each starting node can be encoded (1) with 1 bit for nodes 0, ...,2, (2) with 2 bit for
nodes 3,...,4, (3) with 3 bits for nodes 5,...,8 and (4) 4 bits for nodes 9,...,15. For graphs with at
most 8 nodes, this results in a further reduction by at least one bit/edge.

Figures 18-20 illustrate an example of the graph encoding scheme described above.

Figure 18 illustrates a graph of a sub-network. This graph includes three nodes and seven edges.
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Also, in this graph, the three nodes are defined as nodes 1, 2, and 3. Node 0 defines an "abstract”
set of nodes from which the inputs to the sub-network originate. Figures 19 and 20 illustrate a
bitstring that represents the graph of Figure 18 in an encoded fashion.

This graph encoding yields highly compressed structural descriptions of sub-networks.
For instance, if all networks have at most 8 nodes and on average 12 edges, then the average size
of a graph encoding is bound by 56 bits (i.e., 8+12x4). For a database with several million
networks, empirically fewer than 65536 different graphs are needed, so that the total size of table
1515 is bound by 3670016 bits (i.e., 56 bits * 65536 graphs), which is about 450kbyte.

One of ordinary skill will realize that other embodiments might use other encoding
schemes. For instance, some embodiments might use Huffman encoding or arithmetic encoding

to encode the structure of each graph.

IV. DATA GENERATOR

Figure 21 presents a process 2100 that conceptually illustrates several operations
performed by the data generator 115 in some embodiments of the invention. As shown in this
figure, the data generator specifies (at 2105) numerous sub-networks. These sub-networks might
include multi-element sub-networks and/or multi-output sub-networks. For each specified sub-
network, the data generator defines (at 2110) a parameter for storing the sub-network. Based on
each sub-network's defined parameter, the data generator stores the sub-network in a storage
structure 105.

As discussed above, some embodiments use a database as the storage structure, and use
indices into this database as the parameters for storing the sub-networks. One of ordinary skill
will realize that other embodiments might use different storage structures (e.g., data files) and/or
different storage parameters.

Figure 22 illustrates a more specific process 2200 that the data generator 115 performs in

some embodiments to construct and organize the data tables 525. Before it starts, this process
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receives (1) a set of combinational-logic functions (e.g., Boolean functions) that are allowed to
serve as local funcﬁons (i.e., as functions of nodes in the combinational-logic sub-network), and
(2) information specifying the maximum number of nodes and edges of the sub-networks that are
to be constructed. The set of combinational-logic functions can be received in one or more
function tables 1520, or can be organized in one or more function tables 1520 by the process
2200. Also, in the embodiments described below, each received function is expressed in terms of
its ROBDD.

The received set of combinational-logic functions is called a combinational-logic library.
In some embodiments, this Iibrary is typically derived from an existing technology library that
contains all circuit elements that may be used for a specific technology. In this situation, the
combinational-logic library contains all combinational-logic functions that can be computed by a
single circuit element within this technology library. Moreover, it contains additional information
relating to the physical implementation of the corresponding circuit element (e.g., estimated size
of the circuit element, estimated power consumption, timing characteristics, etc.). Such additional
information can be used in the various network filters in order to construct databases that contain
only networks with specific characteristics.

In other embodiments, the combinational-logic library includes functions that are not all
from one specific technology library. For instance, for a database that is not bound to a specific
technology library, the combinational-logic library can include local functions from one or more
technology libraries and/or additional abstract functions that are not from any particular
technology library. The artificially defined functions correspond to artificially defined circuit
clements that have artificially defined physical characteristics. By using a combinational-logic
library that includes arbitrary local function, it is possible to construct a database free from any
set of specific technology characteristics. Some embodiments require, however, that the set of
functions be complete so that the generator can generate most, if not all, combinational-logic

functions. Other embodiments, on the other hand, do not impose this requirement.



WO 03/077630 PCT/US03/02984
55

As shown in Figure 22, the process 2200 initially generates (at 2202) numerous directed
graphs up to the given maximum number of nodes and edges. The process 2200 in some
embodiment generates graphs with at most 8 nodes and at most 16 edges, because the number of
graphs grows exponentially with the number of nodes and edges. The pseudo code below
illustrates how some embodiments generate such directed graphs.
¢ For node_number = 1,..,max_node_number

e For edge_number = 1,..,max_edge_number

e Construct all graphs that have node_number nodes and edge_number edges and that

have a top node that is dependent on all input variables,

o For each constructed graph, if graph is not isomorphic to any previously saved graphs

and if graph is cycle free, then encode graph and save encoded graph in a list
e Construct the Graph Table 1515 from the list of saved graphs.

As indicated in the pseudo code above, the process 2200 in some embodiments performs
2202 by initially enumerating all combinations of nodes and edges. For each combination of
nodes and edges, the process then constructs each graph that has the number of nodes and edges
in the combination and that has at least one pivot node. As illustrated in Figure 23, a pivot node
is a node that has its topological fan-in cone receive all the input variables.

Numerous known techniques can be used to construct all graphs for a given number of
nodes and edges. Some embodiments construct initially all undirected graphs for a given number

of nodes and edges. There are software packages available for constructing all undirected graphs.

One such package is the "geng" program package by Brendan D. Mckay (bdm@cs.anu.edu.au),

Computer Science Department, Australian National University. This package can be downloaded
at:

http://cs.anu.edu.au/~bdm/nauty/gtools10betall.tar.gz
After generating all undirected graphs, these embodiments generate all directed graphs by trying
all possible assignments for directions on all edges of each graph. After constructing all directed
graphs for each combination of nodes and edges, the process discards all cyclic graphs for the

combination, and then stores each remaining graph in the graph table so long as the graph is not
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isomorphic to a previously stored graph.

Checking for cycles and identifying isomorphic graphs is commonly known in the art. For
instance, Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, Second Edition,
Chapter 22 (Elementary Graph Algorithms), MIT Press 2001 discloses one manner of checking a
graph for cycles by traversing the graph. In addition, there are software packages available for
identifying isomorphic graphs. One such package is the "nauty" package by Brendan D. Mckay

(bdm@cs.anu.edu.au), Computer Science Department, Australian National University. This

package can be downloaded at:

http://cs.anu.edu.au/people/bdm/nauty.

For each graph that the process 2200 stores in the graph table, the process assigns and
stores a graph-table index. The graphs are stored in the graph table index in a particular order
specified by their graph-table indices (e.g., are sorted by increasing indices).

After 2202, the process 2200 selects (at 2204) one of the graphs from the graph table. It
then constructs (at 2206) all combinational-logic sub-networks that can be derived from the
selected graph. The process constructs each sub-network for the selected graph by assigning a
unique set of functions to the set of nodes for the graph. Any function of the combinational-logic
library can be assigned to any node of the graph so long as the node is suitable for the function. A
node is suitable if the number of ingoing edges of this node is equal to the number of variables on
which the function depends. In some embodiments, each sub-network specified at 2206 is
expressed temporarily in terms of its graph and the set of local functions for the nodes of this
graph.

The process next selects (at 2208) a sub-network identified at 2206. The process then
computes (at 2210) all output functions that the selected sub-network realizes (i.e., identifies a
fu;lction for each output of the sub-network). In some embodiments, the process defines the
output of each node of the sub-network as an output of the sub-network. Also, the output function

at a particular node's output is the particular node's local function when the particular node does
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not receive the output of any other node in the graph. Alternatively, when the particular node
receives the output of another node or other nodes in the graph, an output function at the
particular node's output can be derived from the particular node's local function and the local
function of each node whose output the particular node receives.

In some embodiments, each sub-network specified at 2210 is expressed just in terms of its
set of output functions. This is because at this stage the sub-networks are constructed only to
create the hashing function. Also, at this stage, each output function is expressed in terms of its
ROBDD. Also, at 2210, the process identifies any output function of a sub-network that can serve
as a pivot function. As mentioned above, a sub-network's pivot function is a function that is
dependent on all the inputs to the sub-network.

The process then (at 2212) applies a set of filtering rules to the selected sub-network and
discards (i.e., filters) the selected sub-network if the selected sub-network falls into any one of
these rules. In different embodiments, the process uses different sets of rules to filter the sub-
networks. For instance, in some embodiments, the process 2200 discards a sub-network when
(1) the sub-network has duplicate output functions, (2) it has an output function that is identical
to one of the sub-network's inputs, or (3) it does not have a pivot output function. Even though
each generated graph has a pivot node, the resulting sub-networks might not have pivot functions
because some of the input variables might drop out as a result of the particular functions
implemented by the sub-networks.

The process also discards a sub-network when the sub-network has at least one node with
an output that is not dependent on all the inputs that are fed into the node's topological fan-in
cone. For instance, Figure 24 illustrates a three-node sub-network that includes a first node 2405
that receives the outputs of second and third nodes 2410 and 2415, where the second node
receives first and second input signals, and the third node receives third and fourth input signals.
In such a sub-network, the output of each node must depend on its inputs, and the output of the

first node must depend on the first through fourth inputs, according to the above-described



WO 03/077630 PCT/US03/02984
58

filtering rule.

The process next determines (at 2214) whether it has examined all the sub-networks
generated at 2206. If not, it transitions back to 2208 to select an unexamined sub-network.
Otherwise, it determines (at 2216) whether it has examined all the graphs generated at 2202. If it
has not examined all the graphs, it transitions to 2204 to select an unexamined graph.

If the process has examined all the graphs, it transitions from 2216 to 2218. By the time
the process reaches 2218, it has identified and retained numerous sub-networks. Each retained
sub-network is specified by a set of output functions that includes one or more functions that can
serve as pivot functions. Each sub-network's function set might also include one or more
functions that cannot serve as pivot functions.

Next, the process uses (at 2218-2226) the generated sets of output functions of the sub-
networks to generate a hashing function. Specifically, at 2218, the process selects one set of
output functions (which represents one sub-network) that was not discarded at 2212 (i.e., that
remains after 2216).

From this selected set, the process defines (at 2220) one or more sets of functions, with
each defined set having one pivot function and potentially one or more non-pivot functions (a set
does not have a non-pivot function if it only has one function). At 2220, the process defines as
many sets of functions as there are potential pivot functions in the set selected at 2218. For
instance, the set selected at 2218 might have five functions (F1, F2, F3, F4, and F5), of which
only the second and third (F2 and F3) ones can serve as pivot functions. From such a set, the
process defines (at 2220) two sets of functions, one with the second function as the pivot function
and the rest as non-pivot functions, and the other with the third function as the pivot function and
the rest as non-pivot functions.

For each of the function sets identified at 2220, the process 2200 directs the indexer to
generate a truthtable representation of each function in the set based on an input variable ordering

that is identified from the pivot function. As described above, some embodiments select the input
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ordering that leads to the canonical truthtable representation of the pivot function. In some
embodiments, the canonical truthtable is the smallest-valued truthtable.

When several input variable orderings lead to the pivot function's canonical truthtable
representation during database generation, the indexer's process 800 deterministically selects the
input ordering. Specifically, as mentioned above, the indexer's input order identifier always
returns (at 810) the set of input variable configurations in a particular order. When the indexer
operates deterministically during pre-tabulation, the index manager always selects (at 815) the
same input configuration in the returned set of input configurations as the designated input
configuration. For instance, in some embodiments, the index manager always selects the first
input configuration in the returned set as the designated configuration.

The process then determines (at 2222) whether it has examined all sub-networks that were
retained at 2212 (i.e., whether it has examined all sets of functions that remained after 2216). If
not, the process returns to 2218 to select another set of output functions (which represents another
sub-network) that was not discarded at 2212.

Otherwise, the process generates (at 2224) a hash table by associating the truthtable of
each particular function in each set defined at 2220 with a particular index value. The process
then computes a hashing function (at 2226) based on the generated hash table. One such manner
of generating a hash table and function is described in Czech's paper, which was cited above.

After 2226, the process essentially executes all of the operations 2204-2216 once again.
Specifically, at 2228, the process selects one of the graphs from the graph table generated at
2202. It then constructs (at 2230) all combinational-logic sub-networks that can be derived from
the selected graph. The process constructs each sub-network in the same manner as described
above for 2206.

The process next selects (at 2232) a sub-network identified at 2230. The process then (at
2234) computes all output functions that the selected sub-network realizes (i.e., identifies a

function for each output of the sub-network) and identifies each of the sub-network's output
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functions that can serve as a pivot function. The operation of the process at 2234 is similar to its
operation at 2210, except that at 2234 the process specifies each sub-network not only in terms of
its identified output functions but also in terms of its graph. At this stage, each output function is
expressed in terms of its ROBDD.

The process then applies (at 2236) a set of filtering rules to the selected sub-network and
discards (i.e., filters) the selected sub-network if the selected sub-network satisfies any one of
these rules. The process applies the same filtering rules at 2236 that it applied at 2212. The
process next determines (at 2238) whether it has examined all the sub-networks generated at
2230, If not, it transitions back to 2232 to select an unexamined sub-network. Otherwise, for each
sub-network that the process retained at 2236, it defines (at 2240) one or more sets of output
functions, with each set having one pivot function and potentially one or more non-pivot
functions. As in 2220, the process at 2240 defines as many sets of functions for each particular
sub-network as there are potential pivot functions in the function set specified at 2234 for the
particular sub-network.

For each set of functions specified at 2240 for a particular sub-network, the process also
generates (at 2240) a set of indices for the particular sub-network. Each set of indices includes
one pivot index and potentially one or more secondary indices; a set does not include any
secondary indices if it was generated for a function set with only one function.

At 2240, the process directs the indexer to generate a truthtable representation of each
function in the set based on an input variable ordering that is deterministically selected from the
canonical truthtable representation of the pivot function. The deterministic selection of the input
variable ordering at 2240 is identical to the deterministic selection of the input ordering at 2220.
Specifically, the indexer's input order identifier always returns (at 810) the set of input variable
configurations in a particular order, and the index manager during pre-tabulation always selects
(at 815) the same input configuration in the returned set of input configurations as the input

configuration. After generating the truthtable representation of each function, the process
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generates (at 2240) the indices by using the hashing function generated at 2226.

At 2240, the process also assigns a network table index to each sub-network that was
retained at 2236. For each retained sub-network, the process stores (at 2240) in a list the sub-
network's graph table index (which specifies its graph in the graph table), one or more function
table indices (each specifying a local function in the function table), one or more sets of function
indices (which were defined at 2240), and a generated network table index.

After 2240, the process determines (at 2242) whether it has examined all the graphs
generated at 2202. If it has not examined all the graphs, it transitions to 2228 to select an
unexamined graph. Otherwise, it discards (at 2244) multiple definitions of the same network or
nearly the same networks. This is done by deleting all but one out of each group of generated sub-
networks that have (1) the same graph table index, and (2) the same sets of function indices
(defined at 2240). Such duplicate networks may appear for example because of symmetries of the
graph structure. Based on the list of network table indices and function indices, the process then
completes (at 2246) the database tables 525. Specifically, the process first creates the network
table 1510, then the secondary index table 1505, and then the pivot-index table 1500. As
mentioned above, the network table is sorted in an order specified by its stored network indices,
the secondary table is sorted in an order specified by its stored primary and secondary indices,
and the primary table 1500 is sorted in an order specified by its stored primary indices. After
2246, the process ends.

The process 2200 generates a large number of combinational-logic sub-networks up to a
specified size. This is radically different from previous approaches that work with network
transformations from a small set of possibilities that are derived from expert knowledge. This
new approach enables optimization processes to identify numerous sub-network alternatives
through a simple and direct lookup into a database. In contrast, hand-coded transformations
(whether directly implemented as program code or used as parametrizable input-rules to a logic

synthesis system) can exploit only a small subset of possible implementations. Moreover, the
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above-described, automated database approach makes it possible to integrate expert knowledge in
addition to the machine generated networks. In other words, this approach provides the ability to

add sub-networks to the database with arbitrary circuit elements.

V. TECHNOLOGY MAPPING

The data storage-driven synthesis described above ca;l also be used to perform technology
mapping. Some current logic synthesis systems perform the following three operations. First, they
perform logic optimization on unbounded networks that contain circuit elements that perform
arbitrary local functions. Second, they map the optimized network into a sub-optimal network
that is made of simple local functions (like 2-way-NANDs, etc.). Third, they map the sub-optimal
network into a bounded network that is bounded to a particular technology library. These systems
follow this approach because the powerful logic-optimization techniques work best on
unbounded circuit networks. Technology mapping operations do not always map the sub-network
into a network that is made of simple local functions (like 2-way-NANDs, etc.). This operation
simply makes the mapping to the technology library simpler.

There are other similar technology mapping systems. For instance, some systems perform
the following three operations. First, they map an unbound network, which contains circuit
elements that perform arbitrary local functions, into another network that is made of simple local
functions (like 2-way-NANDs, etc.). Second, they perform logic optimization on the mapped
network. Third, these systems map the optimized network into a network that is bound to a
particular technology library.

Under current technology mapping techniques, additional mapping operations have to be
performed to map into the target library in order to ensure the manufacturability of the final
network. These mapping operations need to take into account physical implementation details
(such as timing and size of the gates). These mapping operations are usually based on different

algorithms from those used for the optimization operation. Therefore, there is the risk of getting
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sub-optimal results from the algorithmic differences between the optimization and technology
mapping operations.

One type of technology mapping operation is tree mapping. Typical tree mapping
operations use recursive dynamic programming techniques that (1) select small sub-networks,
(2) in each selected sub-network, identify micro-trees or micro-leaf DAG's with one or more
elements, and then (3) map each micro-tree or micro-leaf DAG to one gate in the technology
library. Other tree mapping operations identify micro-trees directly from the network, and then
map each micro-tree to one gate in the technology library.

A tree includes N nodes and N-1 edges. A micro-tree is a tree with a few nodes. A DAG
is a directed acyclic graph. A DAG can have any number of edges. A micro-leaf DAG is similar
to a micro-tree except that its leaf nodes can have outputs that connect to more than one other
node.

The tree-mapping operations select micro-tree or micro-leaf DAG sub-networks that have
only one output, which is the output at the root node (top-level node) of the micro-tree or micro-
leaf DAG. These operations do not select any graph structure that has lower-level nodes (i.e., its
non-root nodes) that have outputs outside of the tree (i.e., have fan-outs to nodes outside of the
tree). In other words, each graph selected by a typical tree-mapping operation has a set of fan-ins
(i.e., one or more inputs) and only one fan-out (i.e., only one output).

Another previous technology mapping operation is structural mapping. Structural mappers
typically use inverters and a single other type of gate (such as a two-input NAND or NOR) to
remap the optimized network to a sub-optimal network. Under this approach, the local function
of a node is entirely determined by the number of inputs of the node (e.g., a one-input-node is an
inverter, while all other nodes are the chosen base function, such as a NAND). Therefore, the
combinational-logic functions that are realized by any sub-network are entirely defined solely by
its graph structure.

Structural mappers also typically remap each element in the technology library into a
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graph structure by using inverters and the same type of gate used to remap the optimized network.
Once each member of the technology library is represented as some graph, the structural mapping
process then partitions the sub-optimal network into sub-parts. For each sub-part, it then tries to
identify a graph structure (1) that represents a single element in the target library that corresponds
to the sub-part's graph structure, and (2) that is as good as possible according to specific cost
functions (area, timing, power). The partitioning process is often performed using string matching
techniques similar to the ones that are used within compilers that translate high-level
programming languages to low-level machine languages.

Though structural mapping defines a general framework to solve the library mapping task,
it has several practical disadvantages. Efficient algorithms are known only for tree structures.
More general graph structures have to be decomposed heuristically into simple tree structures.
This decomposition makes the quality of structural mapping suffer from this artificial
decomposition.

The invention's data storage-driven optimization does not suffer from any of these
deficiencies. The candidate sub-networks that it maps to a particular technology do not need to
have tree structures, but rather can have more general directed acyclic graph ("DAG") structures.
There is no restriction on the number of edges that these structures can have. Also, each candidate
sub-network can have multiple output nodes. Accordingly, the candidate sub-networks can be
larger, as their internal nodes can have fan-outs to nodes outside of the sub-networks. In addition,
the data storage-driven optimization can explore large number of pre-tabulated sub-networks
based on their functions. It does not require inefficient mapping to simple gates. Also, it can
retrieve a multi-clement replacement sub-network in a single operation based on this sub-
networks set of output functions. Moreover, for a particular set of local functions, it can pre-
tabulate all sub-networks up to a specified level of complexity.

Figure 25 illustrates a process 2500 for performing technology mapping using the

invention's data storage-driven optimization. This process starts each time it receives (1) a circuit
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network that is not designed for a specific technology library, and (2) a database (or other storage
structure) that contains pre-tabulated sub-networks that are bound to the specific technology
library. The database can be pre-tabulated based on the approach described above in Section IV.
Once the process 2500 receives the circuit network and the database, it optimizes the circuit
network for the specific technology library.

As shown in Figure 25, the process initially uses (at 2505) the received database to
perform process 200 for the received circuit network. The process 200 continuously changes the
received network so that more and more parts of it are bound to the target library (as each
replacement sub-network is bound to the target library). Some embodiments might use the
process 200 slightly differently when they use it as part of the process 2500 for technology
mapping. So long as the query manager returns, for a selected candidate sub-network, at least one
replacement sub-network from the data storage that stores the technology-bound sub-networks,
these embodiments will always find (at 230) one of the replacement sub-networks acceptable, and
thereby will always exchange (at 235) the selected candidate sub-network with one of the
returned replacement sub-networks. Other embodiments, however, might still evaluate (at 230)
whether to replace a selected candidate sub-network with one of the retrieved replacement sub-
networks, and might not replace candidate sub-networks with replacement sub-networks in some
instances. Also, when the query manager returns more than one replacement sub-network for a
candidate sub-network, the process 200, as described above, selects one of the replacement sub-
networks randomly or selects a replacement sub-network that has the best cost (which was
computed at 225).

Once the process 200 reaches its stop criteria (e.g., performs a maximum number of
iterations or reaches the stopping criteria of the optimization algorithm, such as the annealer), the
process 2500 transitions to 2510. At 2510, the process 2500 traverses the circuit network that
exists after 2505 in order to identify any node (i.e., any circuit element) in this network that is

potentially not bound to the target library. Some embodiments regard a node as potentially
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unbound if it was not added to the circuit network within any exchange step performed in 2505.
For any node N that is potentially not bound to a gate in the target library, the process 2500 treats
the node N as a one-node candidate sub-network and accordingly finds all matching sub-networks
in the database that realize the function of the node N. The process 2500 then replaces the node N
with the best suitable replacement for this node. The process 2500 continues its search through
the circuit network until it ensures that it contains any circuit element that is not bound to the
technology library.

It should be noted that finding some replacement in the database for an unbound node is
always possible as long as the local function of the node is not too complex. In the majority of
cases, this criterion is easily satisfied. However, in cases where a network has an arbitrarily
complex node function, the process 2500 needs to use other methods (e.g., Boolean
decomposition by Shannon expansion as described above) first to simplify the unmanageable
nodes and then to map the simplification to the target library. In other words, the process 2500
. needs to decompose the complex node function into a set of smaller functions, and then identify a
set of replacement sub-networks that perform the set of smaller functions.

After 2510, the process 2515 uses (at 2505) the received database to perform process 200
again on the circuit network that remains after 2510. The process 200 then optimizes this network
again for the target library. This optimization can be viewed as a clean-up operation that rectifies
any sub-optimal networks that resulted from the forced exchanges at 2510.

The technology mapping operation of process 2500 can be advantageous in many
contexts. It provides superior mapping of networks that are not bound to any target library to a
particular target library. Also, it provides superior mapping of networks from one bound target
library to another. This can be highly advantageous when mapping from one technology (e.g., .13

micron technology) to another technology (e.g., 0.1 micron technology).
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VI. NPN-EQUIVALENCE

As discussed above by reference to Figures 10-13, some embodiments treat as equivalent
two sub-networks that can be made identical by permuting the set of inputs of one of the sub-
networks. By using this first equivalence relationship, these embodiments can reduce the number
of equivalent sub-networks that are stored in the data storage.

Some of these embodiments establish two other equivalence relationships to reduce the
number of stored equivalent sub-networks. First, these embodiments treat as equivalent two sub-
networks that can be made identical by inverting any subset of the inputs (i.e., one, several, or all
of the inputs) of one of the sub-networks. Second, they treat as equivalent two sub-networks that
can be made identical by inverting any subset of the outputs (i.e., one, several, or all of the '
outputs) of one of the sub-networks. Accordingly, in these embodiments, two sub-networks are
treated as equivalent whenever they can be made identical by any combination of one or more of
the following transformations: (1) inverting a particular subset of the inputs, (2) permuting the set
of inputs, and (3) inverting a particular subset of the output. Two sub-networks are identical when
they perform the same output functions and have the same graph.

The term NPN equivalence refers to all three equivalent relationships described above. In
this term, the first "N" refers to the inversion of a subset of the inputs, the "P" refers to the
permuting of the input set, and the second "N" refers to the inversion of a subset of the output set.

Both N equivalences are based on the assumption that the inversion of signals is cost-free
(i.e., any signal in a design may be inverted by an additional inverter with no costs — area, timing,
etc.).There are several reasons for this assumption. First, during early optimization, it may be
suitable to drop the inversion issue and just focus on the general restructuring of the circuit
description, since at this stage the final properties of the circuit description can only roughly be
inferred. Second, some technologies by default provide output signals in both polarities (i.e., for

each output pin "A," they have a pin "A_BAR" than provides the complemented signal). Third,
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by having no cost on inversions, the storage of pre-tabulated sub-networks can be made much
more powerful, since more complex sub-networks can now be stored within the same amount of
memory. This results in more powerful optimization as it enables exchange of more complex
sub-networks.

The embodiments described above account for the P equivalence (i.e., account for the
permuting of the input set). To account for the two N equivalences (i.e., to account for the
equivalence due to the inversion of the input and/or output), the following operations have to be
modified.

Process 800 at 810 and 815.

To account for NPN equivalence, the canonicalization operation 810 of process 800 of
Figure 8 needs to be modified. For the truthtable representation of a combinational-logic
function, the canonicalization can be made NPN-aware based on the technique disclosed in
"Boolean Matching for Large Libraries" by Uwe Hinsberger and Reiner Kolla, DAC98, June 15-
19, 1998. This technique uses a similar branch and bound algorithm as the P-case. N-aware
canonicalization for other combinational-logic function representations are disclosed in other
references, such as “Efficient Boolean Function Matching”, Jerry R. Burch and David E. Long,
Proc. ICCAD 1992.

NPN-canonicalization of combinational-logic functions F_1 and F_2 results in the same
representation whenever F_1 and F_2 can be made equal by a combination of (1) switching one
or more input phases, (2) permuting inputs, and (3) switching one or more output phases. For the
truthtable representation of a function F, the process of NPN-canonicalization for the function F
identifies (at 810) one or more transformation sets. Each identified transformation set consists of
some input switchihg , input permutation, output switching — in this order—and leads to the
canonical truthtable representation of the pivot function. Specifically, each identified set of NPN
transformations T specifies (1) an input variable configuration P, (2) a subset Z of the input

variables to be switched, and (3) a Boolean variable O that indicates whether the whole function
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should be complemented or not.

At 810, the process 800 (at 810) identifies the NPN-canonical representatioﬁ of the
function F. This canonical representation is the truthtable that the function F produces after
accounting for the transformations specified by one of the sets identified at 810 (i.e., after
accounting for the set's input variable inversion Z, then accounting for the set's input variable
configuration P, and then accounting for the set's output variable inversion O).

Instead of selecting only an input variable configuration at 815, the process 800 when
running in an NPN-mode selects (at 815) an NPN transformation set. This transformation set is
one of the ones identified at 810. The process 800 randomly selects this set to generate indices of
a query during optimization. On the other hand, it deterministically selects this NPN
transformation during pre-tabulation.

Process 900 at 910 and 915.

In NPN-mode, the process 900 of Figure 9 receives (at 910) the NPN-transformation set
selected at 815. The process 900 of Figure 9 applies the N and the P transformations in the
transformation set selected at 815 first to non-pivot functions of a multi-function query.
Specifically, it applies the set's input variable inversion Z to a non-pivot function. It then applies
the set's input variable configuration P after applying the set's input variable inversion Z. Next, it
takes the resulting truthtable ("non-inverted truthtable") for the non-pivot function and inverts it
to obtain an inverted truthtable. The process then examines the inverted and non-inverted
truthtables as binary-number strings and selects the smaller one of the non-inverted truthtables
and the inverted truthtable. The process then computes the hashed value based on the selected
truthtable.

Process 1400 at 1415-35.

In NPN mode, the process 1400 determines an NPN transformation set T (Z,P,0) in a
deterministic manner by selecting the first transformation specified in the list of returned

transformations. At 1420, the process applies the inverse of the transformation X = (W, V, Y)
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that is used at 605 (i.e., it will use XN(T)). At 1425, the process computes the functions based on
the reordering and input phase switching identified in 1420.

At 1430, the process checks whether the computed set includes the output function set of
the candidate sub-network by additionally assuming two functions to be equal if one is the
complement of the other. This is because the inversion of each individual output function of the
replacement sub-network may be done in addition at no extra cost. If it does specify a match at
1435 all the necessary inverters (i.e., additional nodes with a single input that performs simply
complementation of its input function) that realize the underlying input and output phase
switches will be added to the replacement sub-network.

Process 2200 at 2220 and 2240

At 2220 or 2240, the process 22 deterministically identifies the NPN transformation
(Z,P,0) based on the pivot function. At 2220 or 2240, the process 2200 then generates a
truthtable for the pivot function according to the identified transformation. It also generates a
truthtable for each non-pivot function of the set at 2220 or 2240. To generate the truthtable for a
non-pivot function, it applies the set's input variable inversion Z to the non-pivot function. It then
applies the set's input variable configuration P after applying the set's input variable inversion Z.
Next, it takes the resulting truthtable ("non-inverted truthtable") for the non-pivot function and
inverts it to obtain an inverted truthtable. The process then examines the inverted and non-
inverted truthtables as binary-number strings, and selects the smaller one of the non-inverted
truthtable and the inverted truthtable.

As mentioned further below, some embodiments do not use NPN-equivalence with
technology mapping. Accordingly, the process 2500 of Figure 25 is not modified.

Using the NPN-equivalence relationships establishes many more equivalences between
the pre-computed sub-networks than just P-equivalence. Accordingly, the use of NPN-
equivalence results in a large number of sub-networks and index sets being removed at 2242,

This reduces the number of sub-networks in the data storage significantly and facilitates the
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creation of data storage with more complex sub-networks.

The size of the data storage can be reduced by not considering sub-networks that contain
an explicit inverter. If the inverter drives inputs of other nodes of the sub-network, then it can be
assumed that the node itself complements the input signal (at no cost). If the inverter drives a
sub-network output O, then this is considered logically equivalent with a sub-network that
generates the same functions except that the function at O is complemented. The embodiments
that do not consider buffers (i.e., consider single-input/single-output nodes that just present the
input signal at the output) for either P-only equivalence or NPN-equivalence, do not consider
graphs with any node that has only one input during pre-tabulation. This reduces the number of
sub-networks in the data storage significantly and facilitates the creation of data storage with
more complex sub-networks.

Accounting for NPN-equivalence is usually an optimization that is done for unbound
combinational-logic networks. Optimizing bound combinational-logic networks or mapping
unbound combinational-logic networks to bound ones is usually accomplished by being fully
aware of physical characteristics of the gates of the target library (in costing). Inversion is usually
not cost free with respect to such detailed physical characteristics. Accordingly, neither N-
equivalence is used during technology mapping. Only P-equivalence is considered during
technology mapping.

One of ordinary skill will realize that other embodiments might just account for NP-
equivalence or PN-equivalence (i.e., might consider just input or just output inversion to be cost
free). In these circumstances, the canonicalization is just NP or PN canonicalization. The PN-case
may be interestiné even for bound combinational-logic networks as some tcc;hnology libraries

indeed always provide output pins for both polarities of the signal.

VII. THE COMPUTER SYSTEM

Figure 26 presents a computer system with which one embodiment of the present
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invention is implemented. Computer system 2600 includes a bus 2605, a processor 2610, a
system memory 2615, a read-only memory 2620, a permanent storage device 2625, input devices
2630, and output devices 2635.

The bus 2605 collectively represents all system, peripheral, and chipset buses that
communicatively connect the numerous internal devices of the computer system 2600. For
instance, the bus 2605 communicatively connects the processor 2610 with the read-only memory
2620, the system memory 2615, and the permanent storage device 2625.

From these various memory units, the processor 2610 retrieves instructions to execute and
data to process in order to execute the processes of the invention. The read-only-memory (ROM)
2620 stores static data and instructions that are needed by the processor 2610 and other modules
of the computer system. The permanent storage device 2625, on the other hand, is read-and-write
memory device. This device is a non-volatile memory unit that stores instruction and data even
when the computer system 2600 is off. Some embodiments of the invention use a mass-storage
device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent
storage device 2625. Other embodiments use a removable storage device (such as a floppy disk or
zip® disk, and its corresponding disk drive) as the permanent storage device.

Like the permanent storage device 2625, the system memory 2615 is a read-and—write
memory device. However, unlike storage device 2625, the system memory is a volatile reail—and—
write memory, such as a random access memory. The system memory stores some of the
instructions and data that the processor needs at runtime. In some embodiments, the invention's
processes are stored in the system memory 2615, the permanent storage device 2625, and/or the
read-only memory 2620.

The bus 26035 also connects to the input and output devices 2630 and 2635. The input
devices enable the user to communicate information and select commands to the computer
system. The input devices 2630 include alphanumeric keyboards and cursor-controllers. The

output devices 2635 display images generated by the computer system. For instance, these
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devices display IC design layouts. The output devices include printers and display devices, such
as cathode ray tubes (CRT) or liquid crystal displays (LCD).

Finally, as shown in Figure 26, bus 2605 also couples computer 2600 to a network 2665
through a network adapter (not shown). In this manner, the computer can be a part of a network
of computers (such as a local area network (“LAN”), a wide area network (“WAN"), or an
Intranet) or a network of networks (such as the Internet). Any or all of the components of
computer system 2600 may be used in conjunction with the invention. However, one of ordinary
skill in the art would appreciate that any other system configuration may also be used in
conjunction with the present invention.

While the invention has been described with reference to numerous specific details, one
of ordinary skill in the art will recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. For instance, some embodiments might
store sub-networks differently than the storage-scheme described above. Also, some
embodiments might use databases and data storages that are not machine generated. In addition,
some embodiments might use different encoding and indexing schemes than those described
above. Thus, one of ordinary skill in the art would understand that the invention is not to be

limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
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CLAIMS

We claim:

1. A method of pre-tabulating sub-networks comprising:

a) generating a sub-network that has a plurality of circuit elements, wherein the sub-
network performs a function;

b) based on the function, generating a parameter;

c) storing the sub-network in a storage structure based on the generated parameter.

2. The method of claim 1 further comprising identifying the function performed by the
sub-network before generating the parameter.

3. The method of claim 1, wherein the parameter is an index for storing the sub-network
in the storage structure.

4. The method of claim 3, wherein the index is a numerical index.

5. The method of claim 1, wherein the parameter is a set of indices for storing the sub-
network in the storage structure.

6. The method of claim 1, wherein the sub-network performs a set of functions, and
wherein generating the parameter comprises generating the parameter based one the set of
functions.

7. The method of claim 6, wherein the parameter is a set of indices that includes an
index for each function in the set of functions.

8. The method of claim 7, wherein the indices are numerical indices.

9. The method of claim 1, wherein specifying the sub-network comprises:

a) defining a graph that has one node for each circuit element;
b) specifying a local function for each node;
¢) identifying the function from the local functions.
10. The method of claim 1, wherein a synthesizer can independently analyze each circuit

element.
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11. The method of claim 1, wherein generating the parameter includes generating the
parameter based on a symbolic representation of an output of the function.

12. The method of claim 11, wherein the symbolic representation is a BDD
representation.

13. The method of claim 11, wherein the symbolic representation is a truthtable
representation.

14. The method of claim 11, wherein the symbolic representation is a Boolean expression.

15. A method of pre-tabulating sub-networks comprising:

a) specifying a plurality of sub-networks up to a particular threshold complexity,
wherein each sub-network has at least one circuit element, and a plurality of the sub-networks
have more than one circuit elements, wherein each sub-network performs at least one output
function and outputs the results of its output function;

b) for each sub-network, generating a parameter based on the sub-network's output
function;

¢) storing each sub-network in a storage structure based on the parameter generated
for the sub-network.

16. The method of claim 15, wherein the particular threshold complexity relates to at least
one structural attribute of the sub-networks.

17. The method of claim 16, wherein each sub-network receives a set of inputs, wherein
the structural attribute relates to the number of inputs in the set of inputs for each sub-network.

18. The method of claim 16, wherein the structural attribute relates to the number of
circuit elements of each sub-network.

19. The method of claim 16, wherein the structural attribute relates to the number of
interconnections between the circuit elements of each sub-network.

20. The method of claim 15 further comprising identifying the output function performed

by each sub-network before generating the parameter for the sub-network.
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21. The method of claim 15, wherein each sub-network performs a set of functions, and
wherein generating the parameter for each sub-network comprises gcncrating( the parameter based
one the set of functions performed by the sub-network.

22. The method of claim 21, wherein the barameter for each sub-network is a set of
indices that includes an index for each function in the set of functions of the sub-network.

23. The method of claim 22, wherein the indices are numerical indices.

24. The method of claim 15, wherein specifying the sub-networks comprises:

a) defining a plurality of graphs up to the particular threshold complexity, wherein
each graph has a set of nodes;

b) specifying different sets of local functions for each graph, wherein each set of
local function for each particular graph includes one local function for each node of the particular
graph, and each set of local functions for each particular graph specifies a different sub-network;

c¢) identifying a set of output functions for each particular specified sub-network from
the set of local functions used to specify the sub-network.

25. The method of claim 14, wherein storing each sub-network includes:

for each particular sub-network, storing in the storage structure the graph and the set
of local functions that specify the particular sub-network.

26. A method of pre-tabulating sub-networks comprising:

a) specifying a sub-network that performs a set of at least two functions;

b) generating a parameter based on the set of functions;

c) storing the sub-network in the storage structure based on the generated parameter.

27. The method of claim 26, wherein the set of functions includes only one function.

28. The method of claim 26, wherein the set of functions includes a plurality of functions.

29. The method of claim 28 further comprising identifying the functions performed by the
sub-network before generating the parameter.

30. The method of claim 28, wherein the parameter is a set of indices for storing the sub-
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network in the storage structure, wherein the set of indices includes an index for each function
| performed by the sub-network.

31. The method of claim 30 wherein the storage structure is a relational database, and the
set of indices are indices into the relational database.

32. The method of claim 30 wherein the sub-network has a set of input variables, wherein
generating the parameter comprises:

a) identifying one of the'functions as a pivot function;

b) using the pivot function to specify a configuration for the input variables;

c) based on the specified input-variable configuration, specifying an index for each
function.

34. The method of claim 32 wherein using the pivot function to specify an input-variaBle
configuration comprises:

a) identifying a canonic representation of the pivot function,
b) selecting an input-variable configuration that results in the canonic representation
of the pivot function as the specified input-variable configuration.

35: The method of claim 34 further comprising:

a) generating a truthtable representation of the pivot function;
b) wherein identifying a canonic representation includes identifying a canonic
representation of the truthtable representation of the pivot function.

36. The method of claim 35 further comprising using the specified input-variable
configuration to specify a truthtable representation for each non-pivot function of the sub-
network.

37. The method of claim 34 further compﬁsing condensing the canonic representation to
obtain a condensed representation of the pivot function.

38. The method of claim 34 further comprising specifying a condensed representation of

each non-pivot function based on the selected input-variable configuration.
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39. The method of claim 26 wherein specifying the sub-network comprises:

a) defining a graph that has a set of nodes and multiple outputs for the set of nodes,

b) specifying a local function for each node in the set of nodes,

¢) identifying the function from the local functions.

40. A method of pre-tabulating sub-networks comprising:

a) specifying a plurality of sub-networks up to a particular threshold complexity,
wherein each sub-network performs at least one output function, and a plurality of the sub-
networks perform more than one output function, wherein each sub-network outputs the result of
each output function;

b) for each sub-network, generating a parameter based on the set of output function
performed by the sub-network;

c) storing each sub-network in a storage structure based on the parameter generated
for the sub-network.

41. A method of pre-tabulating sub-networks comprising:

a) defining a plurality of graphs, wherein each graph has a set of nodes,

b) specifying different sets of local functions for each graph, wherein each set of
local function for each particular graph includes one local function for each node of the particular
graph, and the combination of each graph with one of the sets of local functions specified for the
graph specifies a sub-network,

¢) identifying a set of output functions for each particular specified sub-network from
the set of local functions used to specify the sub-network;

d) storing the graph and local functions,

e) generating a parameter for each sub-network based on the identified set of output
functions for each sub-network,

f) storing the generated parameters in the storage structure, and

g) associating the stored parameter for each sub-network with the graph and set of
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local functions for the sub-network.

42. A method for producing a circuit description of a design, the method comprising:

a) from the design, selecting a candidate sub-network that includes multiple circuit
elements;

b) generating a parameter based on a set of output functions performed by the
selected candidate sub-network;

¢) using the parameter to retrieve a replacement sub-network from a storage structure
that stores replacement sub-networks; and

d) replacing the selected candidate sub-network with the replacement sub-network in
the design.

43. The method of claim 42 further comprising identifying a set of output functions
performed by the sub-network.

44. The method of claim 43, wherein the set of output functions includes only one output
function.

45. The method of claim 43, wherein the set of output functions includes a plurality of
output functions.

46. The method of claim 43, wherein each circuit element of the sub-network has an
output, and each circuit element's output provides a result of one output function performed by
the selected candidate sub-network.

47. The method of claim 43, wherein each circuit element of the sub-network has an
output, and each output function performed by the selected candidate sub-network is provided at
only a circuit-element output that fans out of the sub-network.

48. The method of claim 43, wherein a particular circuit element of the sub-network has
more than one outputs, and each output of the particular circuit element provides a result of one
output function performed by the selected candidate sub-network.

49. The method of claim 42 further comprising:
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receiving a local function for each circuit element of the selected candidate sub-
network;
identifying each output function from the received local functions.
50. The method of claim 49, wherein each local or output function is represented in terms
of a binary decision diagram ("BDD"), and the sub-network has at least first and second circuit
elements, wherein the first circuit element performs a first local function, and the second circuit

element performs a second local function, wherein the BDD of a first output function is derived

“

!

from the BDD of the first local function, and the BDD of a second output function is derived
from the BDD's of at least the first and second local functions.
51. The method of claim 42 further comprising
receiving the design, wherein the design is a combinational-logic network;
selecting additional candidate sub-networks;
replacing at least some of selected additional sub-networks with replacement sub-
networks retrieved from the storage structure;
wherein the replacement of the candidate sub-networks optimizes the combinational-
logic network design.
52. The method of claim 42 further comprising
receiving a logical representation of the design,;
converting the logical representation of the design to a circuit-level representation;
wherein selecting the candidate sub-network includes selecting the candidate sub-
network from the circuit-level representation.
53. The method of claim 42, wherein the parameter is an index for storing the sub-
network in the storage structure.
54. The method of claim 53, wherein the index is a numerical index.
55. The method of claim 42, wherein the parameter is a set of indices for storing the sub-

network in the storage structure.
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56. The method of claim 53, wherein the set of indices includes an index for each function
in the set of output functions.

57. The method of claim 56, wherein the indices are numerical indices.

58. The method of claim 42 further comprising:

a) before replacing the candidate sub-network with the replacement sub-network,
evaluating whether to replace the selected candidate sub-network with the replacement sub-
network;

wherein said replacing is based on the evaluation.

59. The method of claim 58, wherein the evaluating comprises computing a cost function.
60. The method of claim 58 further comprising:
selecting additional candidate sub-networks;
for each candidate sub-network:
identifying at least one replacement sub-network for each selected candidate sub-
network;
evaluating each identified replacement;
based on the evaluations, determining whether to replace the candidate sub-
network with the replacement sub-network identified for the candidate sub-networks.
61. The method of claim 58,

wherein retrieving the replacement sub-network comprises retrieving several
replacement sub-networks, the method further comprising:

evaluating each retrieved sub-network to identify viable replacement candidates;

wherein the replacement sub-network that replaces the candidate sub-network is one
of the viable replacement candidates.

62. A computer readable medium storing a computer program for producing a circuit
description of a design, the program comprising:

a) a first set of instruction for selecting, from the design, a candidate sub-network;
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b) a second set of instruction for identifying a set of output functions performed by
the sub-network;
¢) a third set of instruction for retrieving, based on the identified set of output
functions, a replacement sub-network from a storage structure that stores replacement sub-
networks;
d) afourth set of instruction for replacing the selected candidate sub-network with
the replacement sub-network in the design.
63. A method for producing a circuit description of a design, the method comprising:
a) from the design, selecting a candidate sub-network that performs a set of output
functions, wherein the candidate sub-network includes a set of circuit elements;
b) generating a parameter based on the set of output functions;
¢) using the parameter to retrieve a replacement sub-network from a storage structure
that stores replacement sub-networks;
d) replacing the selected candidate sub-network with the replacement sub-network in
the design.
64. The method of claim 63, wherein the set of output funqtions includes only one output
function.
65. The method of claim 63, wherein the set of output functions includes a plurality of
output functions.
66. The method of claim 65 further comprising identifying the output functions performed
by the sub-network.
67. The method of claim 65, wherein the set of circuit elements includes only one circuit
element.
68. The method of claim 66, wherein the set of circuit elements includes at least two
circuit elements.

69. The method of claim 65, wherein each circuit element of the sub-network has an
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output, and each circuit element's output provides a result of one output function performed by
the selected candidate sub-network.

70. The method of claim 65, wherein each circuit element of the sub-network has an
output, and each output function performed by the selected candidate sub-network is provided at
only a circuit-element output that fans out of the sub-network.

71. The method of claim 65 further comprising:

receiving a local function for each circuit element of the selected candidate sub-
network; i
identifying each output function from the received local functions.

72. The method of claim 71 wherein each local or output function is represented in terms
of a binary decision diagram ("BDD"), and the sub-network has at least first and second circuit
elements, wherein the first circuit element performs a first local function, and the second circuit
element performs a second local function, wherein the BDD of a first output function is derived
from the BDD of the first local function, and the BDD of a second output function is derived
from the BDD's of at least the first and second local functions.

73. The method of claim 65 further comprising

receiving the design, wherein the design is a combinational-logic network,

selecting additional candidate sub-networks;

replacing some of the selected additional sub-networks with replacement sub-
networks retrieved from the storage structure;

wherein the replacement of the candidate sub-networks optimizes the combinational-
logic network design.

74. The method of claim 65 further comprising

receiving a logical representation of the design;
converting the logical representation of the design to a circuit-level representation;

wherein selecting the candidate sub-network includes selecting the candidate sub-
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network from the circuit-level representation.

75. The method of claim 65, wherein the parameter is a set of indices for storing the sub-
network in the storage structure, wherein the set of indices includes an index for each output
function performed by the sub-network.

76. The method of claim 75, wherein using the parameter comprises:

a) identifying each replacement sub-network stored in the storage structure that is
associated with each index in the set of indices; and
b) retrieving each identified replacement sub-network.

77. The method of claim 76, wherein the storage structure is a relational database, and the
set of indices are indices into the relational database.

78. The method of claim 75, wherein the candidate sub-network has a set of input
variables, wherein generating the parameter comprises:

a) identifying one of the output functions as a pivot function,;

b) using the pivot function to specify a configuration for the input variables,

¢) based on the specified input-variable configuration, specifying an index for each
function.

79. The method of claim 78, wherein using the pivot function to specify an input-variable
configuration comprises:

a) identifying a canonic representation of the pivot function;
b) selecting an input-variable configuration that results in the canonic representation
of the pivot function as the specified input-variable configuration.

80. The method of claim 79 further comprising:

a) generating a truthtable representation of the pivot function;
b) wherein identifying the canonic representation includes identifying a canonic
representation of the truthtable representation of the pivot function.

81. The method of claim 79 further comprising condensing the canonic representation to
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obtain a condensed representation of the pivot function.

82. The method of claim 79 further comprising specifying a condensed representation of
each non-pivot function based on the selected input-variable configuration.

83. The method of claim 78, wherein the index of the pivot function is a primary index,
and the index of each non-pivot function is a secondary index, wherein using the parameter
comprises:

a) for each particular index pair formed by the primary index and one of the
secondary indices, identifying each replacement sub-network stored in the storage structure that is
associated with the particular index pair;

b) determining whether any of the identified replacement sub-networks are
associated with all'the index pairs;

¢) retrieving any identified replacement sub-network that is associated with all index
pairs.

84. The method of claim 65 further comprising:

before replacing the candidate sub-network with the replacement sub-network,
evaluating whether to replace the selected candidate sub-network with the replacement sub-
network,

wherein said replacing is based on the evaluation.
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