

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0198242 A1 Jia et al.

Jul. 13, 2017 (43) **Pub. Date:**

(54) CLEARCOAT CONTAINING THERMOLYSIN-LIKE PROTEASE FOR EASY-CLEANING OF INSECT BODY STAINS

(71) Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Erlanger, KY (US); Toyota Motor Corporation, Toyota (JP)

(72) Inventors: Hongfei Jia, Ann Arbor, MI (US); Wei Song, Sussex, WI (US); Masahiko Ishii, Okazaki City Aichi (JP); Minjuan Zhang, Ann Arbor, MI (US)

(21) Appl. No.: 15/468,694

(22) Filed: Mar. 24, 2017

Related U.S. Application Data

Continuation of application No. 15/193,242, filed on Jun. 27, 2016, which is a continuation of application No. 13/567,341, filed on Aug. 6, 2012, now Pat. No. 9,388,370, which is a continuation-in-part of application No. 12/820,101, filed on Jun. 21, 2010, now Pat. No. 8,796,009.

Publication Classification

(51)	Int. Cl.	
` ′	C11D 3/386	(2006.01)
	C08L 33/00	(2006.01)
	C09D 189/00	(2006.01)
	C09D 5/16	(2006.01)
	C09D 133/00	(2006.01)
	C11D 3/37	(2006.01)
	C08L 89/00	(2006.01)

(52) U.S. Cl. CPC C11D 3/386 (2013.01); C11D 3/3757 (2013.01); C11D 3/3769 (2013.01); C12Y 304/24027 (2013.01); C08L 33/00 (2013.01); C08L 89/00 (2013.01); C09D 5/1662 (2013.01); CO9D 5/1637 (2013.01); CO9D 133/00 (2013.01); C09D 189/00 (2013.01)

ABSTRACT (57)

Provided are processes for facilitating the removal of a biological stain is provided wherein a substrate or coating including a protease is capable of enzymatically degrading of one or more components of the biological stain to facilitate biological stain removal from the substrate or said coating.

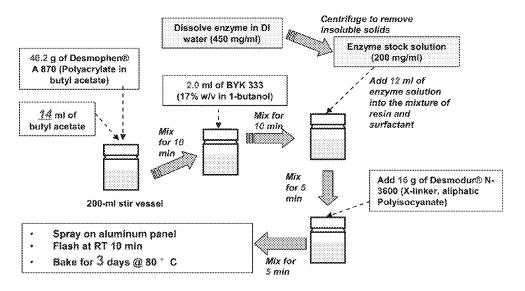
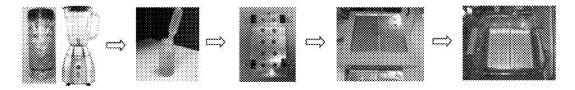
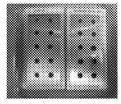
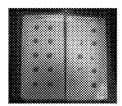
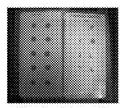
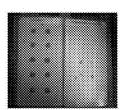


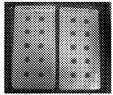
FIG. 1

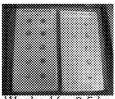

FIG. 2


Before wash

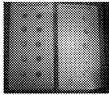
Washed for 0.5 hr

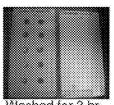


Washed for 1 hr



Washed for 3 hr

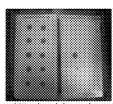

FIG. 3

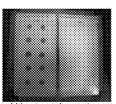

Before wash

Washed for 0.5 hr

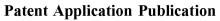
Washed for 1 hr

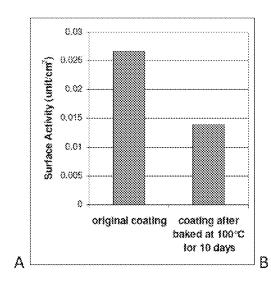
Washed for 3 hr


FIG. 4


Before wash

Washed for 0.5 hr




Washed for 1 hr

Washed for 3 hr

FIG. 5

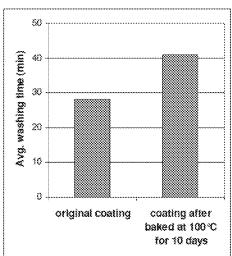
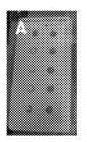
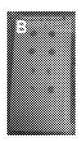
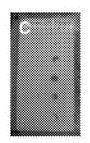





FIG. 6

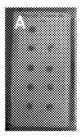
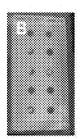
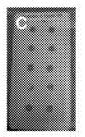
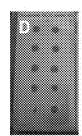






FIG. 7

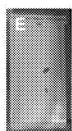


FIG. 8

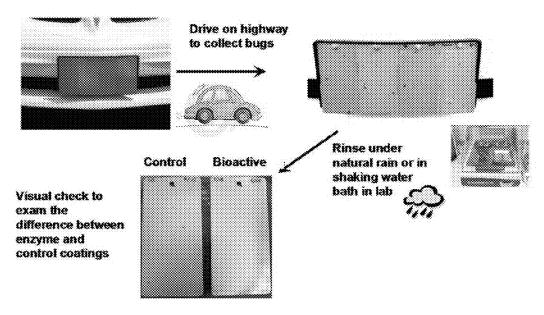


FIG. 9

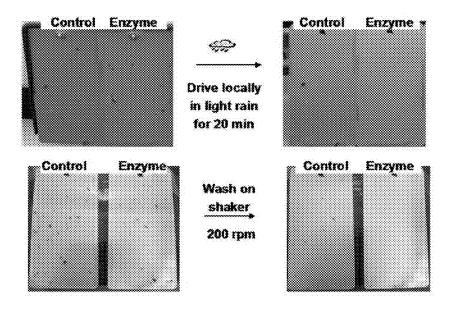


FIG. 10

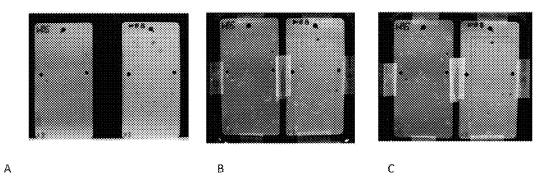


FIG. 11

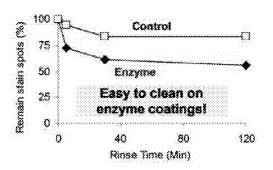


FIG. 12

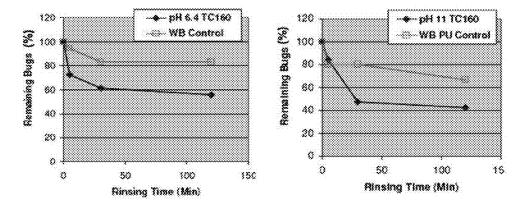


FIG. 13

CLEARCOAT CONTAINING THERMOLYSIN-LIKE PROTEASE FOR EASY-CLEANING OF INSECT BODY STAINS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 15/193,242 filed on Jun. 27, 2016, which is a continuation of U.S. patent application Ser. No. 13/567,341 filed Aug. 6, 2012 (now U.S. Pat. No: 9,388, 370), which in turn is a continuation-in-part of U.S. patent application Ser. No. 12/820,101, filed Jun. 21, 2010 (now U.S. Pat. No. 8,796,009).

FIELD

[0002] The present disclosure relates generally to coating compositions including bioactive substances and methods of their use to facilitate removal of insect stains. In specific embodiments, the invention relates to compositions and methods for prevention of insect stain adherence to a surface as well as insect stain removal by incorporating a protease into or on polymer composite materials to degrade insect body components.

BACKGROUND

[0003] Many outdoor surfaces are subject to stain or insult from natural sources such as bird droppings, resins, and insect bodies. As a result, the resulting stain often leaves unpleasant marks on the surface deteriorating the appearance of the products.

[0004] Traditional self-cleaning coatings and surface are typically based on water rolling or sheeting to carry away inorganic materials. These show some level of effectiveness for removal of inorganic dirt, but are less effective for cleaning stains from biological sources, which consist of various types of organic polymers, fats, oils, and proteins each of which can deeply diffuse into the subsurface of coatings. Prior art approaches aim to reduce the deposition of stains on a surface and facilitate its removal capitalize on the "lotus-effect" where hydrophobic, oleophobic and superamphiphobic properties are conferred to the surface by polymeric coatings containing appropriate nanocomposites. An exemplary coating contains fluorine and silicon nanocomposites with good roll off properties and very high water and oil contact angles. When used on rough surfaces like sandblasted glass, nanocoatings may act as a filler to provide stain resistance. A drawback of these "passive" technologies is that they are not optimal for use in high gloss surfaces because the lotus-effect is based on surface roughness.

[0005] Photocatalytic coatings are promising for promoting self-cleaning of organic stains. Upon the irradiation of sun light, a photocatalyst such as TiO₂ chemically breaks down organic dirt that is then washed away by the water sheet formed on the super hydrophilic surface. As an example, the photocatalyst TiO₂ was used to promote active fingerprint decomposition of fingerprint stains in U.S. Pat. Appl. Publ. 2009/104086. A major drawback to this technology is its limitation to use on inorganic surfaces due to the oxidative impairment of the polymer coating by TiO₂. Also, this technology is less than optimal for automotive coatings due to a compatibility issue: TiO₂ not only decomposes dirt, but also oxidizes polymer resins in the paint.

[0006] Therefore, there is a need for new materials or coatings that can actively promote the removal of biological stains on surfaces or in coatings and minimize the requirement for maintenance cleaning.

SUMMARY

[0007] A process of facilitating the removal of biological stains is provided including providing a substrate or a coating with an associated protease or analogue thereof such that said protease or analogue thereof is capable of enzymatically degrading a component of a biological stain. A protease is optionally a member of the M4 thermolysin-like proteases which include thermolysin or analogues thereof. In some embodiments a protease is a bacterial neutral thermolysin-like-protease from *Bacillus stearothermophilus* or an analogue thereof.

[0008] The surface activity is related to the ability of the substrate or coating to facilitate biological stain removal. The substrate or coating optionally has a surface activity that is 0.0075 units/cm² or greater.

[0009] A protease or analogue thereof is optionally covalently attached, non-covalently adhered to or admixed into to the substrate or to the coating or combinations thereof.

[0010] A substrate or coating optionally includes an organic crosslinkable polymer resin. An organic crosslinkable polymer resin optionally includes a functional group of acetoacetate, acid, amine, carboxyl, epoxy, hydroxyl, isocyanate, silane, vinyl, or combinations thereof. In some embodiments the organic crosslinkable polymer resin includes aminoplasts, melamine formaldehydes, carbamates, polyurethanes, polyacrylates, epoxies, polycarbonates, alkyds, vinyls, polyamides, polyolefins, phenolic resins, polyesters, polysiloxanes, or combinations thereof. Optionally, an organic crosslinkable polymer is a hydroxyl-functionalized acrylate resin.

[0011] Also provided is a composition for facilitating biological stain removal including a substrate or a coating and a thermolysin, thermolysin-like protease, or analogues thereof capable of degrading a biological stain component, wherein the thermolysin, thermolysin-like protease, or analogue thereof is associated with the substrate or coating. The thermolysin-like protease is optionally a bacterial neutral thermolysin-like-protease from *Bacillus stearothermophilus* or analogue thereof. In some embodiments the substrate or said coating has a surface activity of 0.0075 units/cm² or greater.

[0012] A composition optionally includes an organic crosslinkable polymer resin. An organic crosslinkable polymer resin optionally includes a functional group of acetoacetate, acid, amine, carboxyl, epoxy, hydroxyl, isocyanate, silane, vinyl, or combinations thereof. In some embodiments the organic crosslinkable polymer resin includes aminoplasts, melamine formaldehydes, carbamates, polyurethanes, polyacrylates, epoxies, polycarbonates, alkyds, vinyls, polyamides, polyolefins, phenolic resins, polyesters, polysiloxanes, or combinations thereof. Optionally, an organic crosslinkable polymer is a hydroxyl-functionalized acrylate resin.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 represents a schematic of a spray-down application process of one embodiment of a coating;

[0014] FIG. 2 represents a schematic of stain application and protease mediated stain removal on a coated substrate; [0015] FIG. 3 illustrates improved rinsing of insect stains using a *B. sterothermophilus* TLP (Thermoase C160) based coating relative to an enzyme free control;

[0016] FIG. 4 illustrates improved rinsing of insect stains using a *B. sterothermophilus* TLP (Thermoase C160) based coating relative to a Lipase PS based coating;

[0017] FIG. 5 illustrates improved rinsing of insect stains using a *B. sterothermophilus* TLP (Thermoase C160) based coating relative to an α -Amylase based coating;

[0018] FIG. 6 illustrates affects on 100° C. balling for 10 day on surface enzyme activity (A) and stain cleaning time (B);

[0019] FIG. 7 illustrates increased loading of protease increases self-cleaning performance with relative enzyme loading concentrations of 0.2% (A), 2.0% (B), 4.0% (C), 6.0% (D), and 8.0% (E);

[0020] FIG. 8 illustrates rinsing of insect stains by a (A) Protease N based SB coating, (B) Protin SD AY-10 based SB coating, (C) Protease A based SB coating, (D) Thermoase GL30 based SB coating (<0.0075 units/cm² surface activity B. sterothermophilus TLP), or (E) Thermoase C160 based SB coating:

[0021] FIG. 9 illustrates a schematic of a road test protocol for active stain removal by an embodiment of a coating;

[0022] FIG. 10 illustrates rain or water bath rinsing of enzyme containing or control coatings after depositing insect bodies during road driving;

[0023] FIG. 11 illustrates rain or water bath rinsing of enzyme containing or control coatings after depositing insect bodies during road driving, WBS represents enzyme coatings; WBB represents control coatings; (A) left panes are before rinsing, (B) middle panel after 5 min of rinsing, (b) 2 hours of rinsing; blue circles are counted stains; red lines are the boundaries of the counting area;

[0024] FIG. 12 illustrates average road obtained insect stain removal from panels coated with an enzyme containing coating or a control coating;

[0025] FIG. 13 illustrates average road obtained insect stain removal from panels coated with an enzyme containing coating or a control coating whereby the enzyme containing coatings are prepared at different buffer pH levels.

DETAILED DESCRIPTION

[0026] The following description of embodiment(s) of the invention is merely exemplary in nature and is in no way intended to limit the scope of the invention, its application, or uses, which may, of course, vary. The invention is described with relation to the non-limiting definitions and terminology included herein. These definitions and terminology are not designed to function as a limitation on the scope or practice of the invention but are presented for illustrative and descriptive purposes only.

[0027] The present invention is based on the catalytic activity of a protease enzyme to selectively degrade components of organic stains thus, promoting active stain removal. Organic stains typically include organic polymers, fats, oils, and proteins. It was traditionally difficult to identify a protease that was simultaneously incorporatable into or on a coating or substrate with remaining activity and successfully promote active breakdown and subsequent removal of biological stains, particularly stains from insect sources. The inventors unexpectedly discovered that a par-

ticular family of hydrolases, the bacterial thermolysins (EC 3.4.24.27) successfully promoted biological stain removal whereas similar proteases, even other closely related metalloproteases, were unsuccessful.

[0028] The protease is either immobilized into or on coatings or substrates and catalyzes the degradation of biological stain components into smaller molecules. The small product molecules are less strongly adherent to a surface or coating such that gentle rinsing such as with water, air, or other fluid promotes removal of the biological material from the surface or coating. Thus, the invention has utility as a composition and method for the active removal of biological stains from surfaces.

[0029] It is appreciated that the while the description herein is directed to coatings, the materials described herein may also be substrates or articles that do not require a coating thereon for promotion of functional biological stain removal. As such, the word "coating" as used herein means a material that is operable for layering on a surface of one or more substrates, or may comprise the substrate material itself. As such, the methods and compositions disclosed herein are generally referred to as a protease associated with a coating for exemplary purposes only. One of ordinary skill in the art appreciates that the description is equally applicable to substrates themselves.

[0030] An inventive method includes providing a coating with a protease such that the protease is enzymatically active and capable for degrading one or more components of a biological stain. In particular embodiments a biological stain is based on bioorganic matter such as that derived from an insect, optionally an insect body.

[0031] A biological stain as defined herein is a bioorganic stain, mark, or residue left behind, after an organism contacts a substrate or coating. A biological stain is not limited to marks or residue left behind after a coating is contacted by an insect body. Other sources of bioorganic stains are illustratively: insect wings, legs, or other appendages; bird droppings; fingerprints or residue left behind after a coating is contacted by an organism; or other sources of biological stains.

[0032] A protease is optionally a bacterial metalloprotease such as a member of the M4 family of bacterial thermolysinlike proteases of which thermolysin is the prototype protease (EC 3.4.24.27) or analogues thereof. A protease is optionally the bacterial neutral thermolysin-like-protease (TLP) derived from Bacillus stearothermophilus (Bacillus thermoproteolyticus Var. Rokko) (illustratively sold under the trade name "Thermoase C160" available from Amano Enzyme U.S.A., Co. (Elgin, Ill.)) or analogues thereof. A protease is optionally any protease presented in de Kreig, et al., J Biol Chem, 2000; 275(40):31115-20, the contents of which are incorporated herein by reference. Illustrative examples of a protease include the thermolysin-like-proteases from Bacillis cereus (Accession No. P05806), Lactobacillis sp. (Accession No. Q48857), Bacillis megaterium (Accession No. Q00891), Bacillis sp. (Accession No. Q59223), Alicyclobacillis acidocaldarious (Accession No. Q43880), Bacillis caldolyticus (Accession NO. P23384), Bacillis thermoproteolyticus (Accession No. P00800), Bacillus stearothermophilus (Accession No. P43133), Bacillus subtilis (Accession No. P06142), Bacillus amyloliquefaciens (Accession No. P06832), Lysteria monocytogenes (Accession No: P34025; P23224), among others known in the art. The sequences at each accession number listed herein are incorporated herein

by reference. Methods of cloning, expressing, and purifying any protease operable herein is achievable by methods ordinarily practiced in the art illustratively by methods disclosed in Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates); and Short Protocols in Molecular Biology, ed. Ausubel et al., 52 ed., Wiley-Interscience, New York, 2002, the contents of each of which are incorporated herein by reference.

[0033] An analogue of a protease is optionally a fragment of a protease. An analogue of a protease is a polypeptide that has some level of activity toward a natural or synthetic substrate of a protease. An analogue optionally has between 0.1% and 200% the activity of a wild-type protease.

[0034] Specific examples of proteases illustratively have 10,000 U/g protease activity or more wherein one (1) U (unit) is defined as the amount the enzyme that will liberate the non-proteinous digestion product from milk casein (final concentration 0.5%) to give Folin's color equivalent to 1 µmol of tyrosine per minute at the reaction initial reaction stage when a reaction is performed at 37° C. and pH 7.2. Illustratively, the protease activity is anywhere between 10,000 PU/g to 1,500,000 U/g inclusive or greater. It is appreciated that lower protease activities are operable. Protease activity is optionally, protease activity is between 300,000 U/g and 2,000,000 U/g or higher.

[0035] A protease is a "peptide," "polypeptide," and "protein" (terms used herein synonymously) and is intended to mean a natural or synthetic compound containing two or more amino acids having some level of activity toward a natural or synthetic substrate of a wild-type protease. A wild-type protease is a protease that has an amino acid sequence identical to that found in an organism in nature. An illustrative example of a wild-type protease is that found at GenBank Accession No. P06874 and SEQ ID NO: 1.

[0036] A protease functions with one or more cofactor ions or proteins. A cofactor ion is illustratively a zinc, cobalt, or calcium.

[0037] Methods of screening for protease activity are known and standard in the art. Illustratively, screening for protease activity in a protease protein or analogue thereof illustratively includes contacting a protease or analogue thereof with a natural or synthetic substrate of a protease and measuring the enzymatic cleavage of the substrate. Illustrative substrates for this purpose include casein of which is cleaved by a protease to liberate folin-positive amino acids and peptides (calculated as tyrosine) that are readily measured by techniques known in the art. The synthetic substrate furylacryloylated tripeptide 3-(2-furylacryloyl)-L-glycyl-L-leucine-L-alanine obtained from Bachem AG, Bubendorf, Switzerland is similarly operable.

[0038] Amino acids present in a protease or analog thereof include the common amino acids alanine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, asparagine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, and tyrosine; as well as less common naturally occurring amino acids, modified amino acids or synthetic compounds, such as alpha-asparagine, 2-aminobutanoic acid or 2-aminobutyric acid, 4-aminobutyric acid, 2-aminocapric acid

(2-aminodecanoic acid), 6-aminocaproic acid, alpha-glutamine, 2-aminoheptanoic acid, 6-aminohexanoic acid, alphaaminoisobutyric acid (2-aminoalanine), 3-aminoisobutyric acid, beta-alanine, allo-hydroxylysine, allo-isoleucine, 4-amino-7-methylheptanoic acid, 4-amino-5-phenylpentanoic acid, 2-aminopimelic acid, gamma-amino-beta-hydroxybenzenepentanoic acid, 2-aminosuberic acid, 2-carbeta-alanine, boxyazetidine, beta-aspartic biphenylalanine, 3,6-diaminohexanoic acid, butanoic acid, cyclobutyl alanine, cyclohexylalanine, cyclohexylglycine, N5-aminocarbonylornithine, cyclopentyl alanine, cyclopropyl alanine, 3-sulfoalanine, 2,4-diaminobutanoic acid, diaminopropionic acid, 2,4-diaminobutyric acid, diphenyl alanine, N,N-dimethylglycine, diaminopimelic acid, 2,3diaminopropanoic acid, S-ethylthiocysteine, N-ethylasparagine, N-ethylglycine, 4-aza-phenylalanine, 4-fluoro-phenylalanine, gamma-glutamic acid, gamma-carboxyglutamic acid, hydroxyacetic acid, pyroglutamic acid, homoarginine, homocysteic acid, homocysteine, homohistidine, 2-hydroxyisovaleric acid, homophenylalanine, homoleucine, homoproline, homoserine, homoserine, 2-hydroxypentanoic acid, 5-hydroxylysine, 4-hydroxyproline, 2-carboxyoctahydroindole, 3-carboxyisoquinoline, isovaline, 2-hydroxypropanoic acid (lactic acid), mercaptoacetic acid, mercaptobutanoic acid, sarcosine, 4-methyl-3-hydroxyproline, mercaptopropanoic acid, norleucine, nipecotic acid, nortyrosine, norvaline, omega-amino acid, ornithine, penicillamine (3-mercaptovaline), 2-phenylglycine, 2-carboxypiperidine, sarcosine (N-methylglycine), 2-amino-3-(4sulfophenyl)propionic acid,1-amino-1carboxycyclopentane, 3-thienylalanine, epsilon-Ntrimethyllysine, 3 -thiazolylalanine, thiazolidine 4-carboxylic acid, alpha-amino-2,4-dioxopyrimidinepropanoic acid, and 2-naphthylalanine. A protease includes peptides having between 2 and about 1000 amino acids or having a molecular weight in the range of about 150-350, 000 Daltons.

[0039] A protease is obtained by any of various methods known in the art illustratively including isolation from a cell or organism, chemical synthesis, expression of a nucleic acid sequence, and partial hydrolysis of proteins. Chemical methods of peptide synthesis are known in the art and include solid phase peptide synthesis and solution phase peptide synthesis or by the method of Hackeng, TM, et al., Proc Natl Acad Sci USA, 1997; 94(15):7845-50, the contents of which are incorporated herein by reference. A protease may be a naturally occurring or non-naturally occurring protein. The term "naturally occurring" refers to a protein endogenous to a cell, tissue or organism and includes allelic variations. A non-naturally occurring peptide is synthetic or produced apart from its naturally associated organism or modified and is not found in an unmodified cell, tissue or organism.

[0040] Modifications and changes can be made in the structure of a protease and still obtain a molecule having similar characteristics as protease (e.g., a conservative amino acid substitution). For example, certain amino acids can be substituted for other amino acids in a sequence without appreciable loss of activity or optionally to reduce or increase the activity of an unmodified protease. Because it is the interactive capacity and nature of a polypeptide that defines that polypeptide's biological functional activity, certain amino acid sequence substitutions can be made in a

polypeptide sequence and nevertheless obtain a polypeptide with like or other desired properties.

[0041] In making such changes, the hydropathic index of amino acids can be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a polypeptide is generally understood in the art. It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still result in a polypeptide with similar biological activity. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. Those indices are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/ cysteine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); aspartate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

[0042] It is believed that the relative hydropathic character of the amino acid determines the secondary structure of the resultant polypeptide, which in turn defines the interaction of the polypeptide with other molecules, such as enzymes, substrates, receptors, antibodies, antigens, and the like. It is known in the art that an amino acid can be substituted by another amino acid having a similar hydropathic index and still obtain a functionally equivalent polypeptide. In such changes, the substitution using amino acids whose hydropathic indices are within ±2, those within ±1, and those within ±0.5 are optionally used.

[0043] Substitution of like amino acids can also be made on the basis of hydrophilicity. The following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0 ±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); proline (-0.5±1); threonine (-0.4); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain an enzymatically equivalent polypeptide. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2, those within ±1, and those within ±0.5 are optionally used.

[0044] Amino acid substitutions are optionally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include (original residue: exemplary substitution): (Ala: Gly, Ser), (Arg: Lys), (Asn: Gln, His), (Asp: Glu, Cys, Ser), (Gln: Asn), (Glu: Asp), (Gly: Ala), (His: Asn, Gln), (Ile: Leu, Val), (Leu: Ile, Val), (Lys: Arg), (Met: Leu, Tyr), (Ser: Thr), (Thr: Ser), (Tip: Tyr), (Tyr: Trp, Phe), and (Val: Ile, Leu). Embodiments of this disclosure thus contemplate functional or biological equivalents of a polypeptide as set forth above. In particular, embodiments of the polypeptides can include analogues having about 50%, 60%, 70%, 80%, 90%, 95%, or 99% sequence identity to a wild-type protease.

[0045] It is further appreciated that the above characteristics are optionally taken into account when producing a protease with reduced or improved enzymatic activity. Illustratively, substitutions in a substrate binding site, exosite,

cofactor binding site, catalytic site, or other site in a protease protein may alter the activity of the enzyme toward a substrate. In considering such substitutions the sequences of other known naturally occurring or non-naturally occurring proteases may be taken into account. Illustratively, a corresponding mutation to that of Asp213 in thermolysin is operable such as that done by Mild, Y, et al., Journal of Molecular Catalysis B: Enzymatic, 1996; 1:191-199, the contents of which are incorporated herein by reference. Optionally, a substitution in thermolysin of L144 such as to serine alone or along with substitutions of G8C/N60C/S65P are operable to increase the catalytic efficiency by 5-10 fold over the wild-type enzyme. Yasukawa, K, and Inouye, K, Biochimica et Biophysica Acta (BBA)—Proteins& Proteomics, 2007; 1774:1281-1288, the contents of which are incorporated herein by reference. The mutations in the bacterial neutral protease from Bacillus stearothermophilus of N116D, Q119R, D150E, and Q225R as well as other mutations similarly increase catalytic activity. De Kreig, A, et al., J Biol. Chem., 2002; 277:15432-15438, the contents of which are incorporated herein by reference. De Kreig also teach several substitutions including multiple substitutions that either increase or decrease the catalytic activity of the protease. Id. and De Kreig, Eur J Biochem, 2001; 268(18): 4985-4991, the contents of which are incorporated herein by reference. Other substitutions at these or other sites optionally similarly affect enzymatic activity. It is within the level of skill in the art and routine practice to undertake site directed mutagenesis and screen for subsequent protein activity such as by the methods of De Kreig, Eur J Biochem, 2001; 268(18):4985-4991 for which this reference is similarly incorporated herein by reference.

[0046] A protease is illustratively recombinant. Methods of cloning, synthesizing or otherwise obtaining nucleic acid sequences encoding a protease are known and standard in the art that are equally applicable to protease. Similarly, methods of cell transfection and protein expression are similarly known in the art and are applicable herein. Exemplary cDNA encoding the protein sequence of SEQ ID NO: 1 is the nucleotide sequence found at accession number M11446 and SEQ ID NO: 2.

[0047] A protease may be coexpressed with associated tags, modifications, other proteins such as in a fusion peptide, or other modifications or combinations recognized in the art. Illustrative tags include 6XHis, FLAG, biotin, ubiquitin, SUMO, or other tag known in the art. A tag is illustratively cleavable such as by linking to protease or an associated protein via an enzyme cleavage sequence that is cleavable by an enzyme known in the art illustratively including Factor Xa, thrombin, SUMOstar protein as obtainable from Lifesensors, Inc., Malvern, Pa., or trypsin. It is further appreciated that chemical cleavage is similarly operable with an appropriate cleavable linker.

[0048] Protein expression is illustratively accomplished from transcription of a protease nucleic acid sequence, illustratively that of SEQ ID NO: 2, translation of RNA transcribed from the protease nucleic acid sequence or analogues thereof. An analog of a nucleic acid sequence is any sequence that when translated to protein will produce a protease analogue. Protein expression is optionally performed in a cell based system such as in *E. coli*, Hela cells; or Chinese hamster ovary cells. It is appreciated that cell-free expression systems are similarly operable.

[0049] It is recognized that numerous analogues of protease are operable and within the scope of the present invention including amino acid substitutions, alterations, modifications, or other amino acid changes that increase, decrease, or not alter the function of the protease protein sequence. Several post-translational modifications are similarly envisioned as within the scope of the present invention illustratively including incorporation of a non-naturally occurring amino acid, phosphorylation, glycosylation, addition of pendent groups such as biotinylation, fluorophores, lumiphores, radioactive groups, antigens, or other molecules.

[0050] An inventive method uses an inventive composition that is one or more proteases incorporated into a substrate itself or into a coating on the substrate. The protease enzyme is optionally non-covalently associated and/or covalently attached to the substrate or coating material or is otherwise associated therewith such as by bonding to the surface or by intermixing with the substrate/coating material during manufacture such as to produce entrapped protease. In some embodiments the protease is covalently attached to the substrate or coating material either by direct covalent interaction between the protease and one or more components of the substrate or coating material or by association via a link moiety such as that described in U.S. Pat. App. Publ. No. 2008/0119381, the contents of which are incorporated herein by reference.

[0051] There are several ways to associate protease with a substrate or coating. One of which involves the application of covalent bonds. Specifically, free amine groups of the protease may be covalently bound to an active group of the substrate. Such active groups include alcohol, thiol, aldehyde, carboxylic acid, anhydride, epoxy, ester, or any combination thereof. This method of incorporating protease delivers unique advantages. First, the covalent bonds tether the proteases permanently to the substrate and thus place them as an integral part of the final composition with much less, if any at all, leakage of the protease. Second, the covalent bonds provide extended enzyme lifetime. Over time, proteins typically lose activity because of the unfolding of their polypeptide chains. Chemical binding such as covalent bonding effectively restricts such unfolding, and thus improves the protein life. The life of a protein is typically determined by comparing the amount of activity reduction of a protein that is free or being physically adsorbed with that of a protein covalently-immobilized over a period of time.

[0052] Proteases are optionally uniformly dispersed throughout the substrate network to create a substantially homogenous protein platform. In so doing, proteases may be first modified with polymerizable groups. The modified proteases may be solubilized into organic solvents in the presence of surfactant, and thus engage the subsequent polymerization with monomers such as methyl methacrylate (MMA) or styrene in the organic solution. The resulting composition optionally includes protease molecules homogeneously dispersed throughout the network.

[0053] Proteases are optionally attached to surfaces of a substrate. An attachment of 1 proteases corresponding to approximately 100% surface coverage was achieved with polystyrene particles with diameters range from 100 to 1000 nm.

[0054] Chemical methods of protease attachment to materials will naturally vary depending on the functional groups

present in the lipase and in the material components. Many such methods exist. For example, methods of attaching proteins (such as enzymes) to other substances are described in O'Sullivan et al, *Methods in Enzymology*, 1981; 73:147-166 and Erlanger, *Methods in Enzymology*, 1980; 70:85-104, each of which are herein incorporated herein by reference.

[0055] Proteases are optionally present in a coating that is layered upon a substrate wherein the protease is optionally entrapped in the coating material, admixed therewith, modified and integrated into the coating material or layered upon a coating similar to the mechanisms described for interactions between a protease and substrate material.

[0056] Materials operable for interactions with a protease to form an active substrate or coating illustratively include organic polymeric materials. The combination of these materials and a protease form a protein-polymer composite material that is used as a substrate material or a coating.

[0057] Methods of preparing protein-polymer composite materials illustratively include use of aqueous solutions of protease and non-aqueous organic solvent-borne polymers to produce bioactive organic solvent-borne protein-polymer composite materials.

[0058] Methods of preparing protein-polymer composite materials are illustratively characterized by dispersion of protease in solvent-borne resin prior to curing and in the composite materials, in contrast to forming large aggregates of the bioactive proteins which diminish the functionality of the proteases and protein-polymer composite materials. Proteases are optionally dispersed in the protein-polymer composite material such that the proteases are unassociated with other bioactive proteins and/or form relatively small particles of associated proteins. Illustratively, the average particle size of protease particles in the protein-polymer composite material is less than 10 µm (average diameter) such as in the range of 1 nm to 10 µm, inclusive.

[0059] Curable protein-polymer compositions are optionally two-component solvent-borne (2K SB) compositions. Optionally, one component systems (1K) are similarly operable. Illustratively, a protease is entrapped in a coating material such as a latex or enamel paint, varnish, polyure-thane gels, or other coating materials. Illustrative examples of incorporating enzymes into paints are presented in U.S. Pat. No. 5,998,200, the contents of which are incorporated herein by reference.

[0060] In two-component systems the two components are optionally mixed shortly before use, for instance, application of the curable protein-polymer composition to a substrate to form a protease containing coating such as a bioactive clear coat. Generally described, the first component contains a crosslinkable polymer resin and the second component contains a crosslinker. Thus, the emulsion is a first component containing a crosslinkable resin and the crosslinker is a second component, mixed together to produce the curable protein-polymer composition.

[0061] A polymer resin included in methods and compositions of the present invention can be any film-forming polymer useful in coating or substrate compositions, illustratively clear coat compositions. Such polymers illustratively include, aminoplasts, melamine formaldehydes, carbamates, polyurethanes, polyacrylates, epoxies, polycarbonates, alkyds, vinyls, polyamides, polyolefins, phenolic resins, polyesters, polysiloxanes; and combinations of any of these or other polymers.

[0062] In particular embodiments, a polymer resin is crosslinkable. Illustratively, a crosslinkable polymer has a functional group characteristic of a crosslinkable polymer. Examples of such functional groups illustratively include acetoacetate, acid, amine, carboxyl, epoxy, hydroxyl, isocyanate, silane, vinyl, other operable functional groups, and combinations thereof.

[0063] Examples of organic crosslinkable polymer resins includes aminoplasts, melamine formaldehydes, carbamates, polyurethanes, polyacrylates, epoxies, polycarbonates, alkyds, vinyls, polyamides, polyolefins, phenolic resins, polyesters, polysiloxanes, or combinations thereof.

[0064] A cross linking agent is optionally included in the composition. The particular crosslinker selected depends on the particular polymer resin used. Non-limiting examples of crosslinkers include compounds having functional groups such as isocyanate functional groups, epoxy functional groups, aldehyde functional groups, and acid functionality. [0065] In particular embodiments of protein-polyurethane composite materials, a polymer resin is a hydroxyl-functional acrylic polymer and the crosslinker is a polyisocyanate.

[0066] A polyisocyanate, optionally a diisocyanate, is a crosslinker reacted with the hydroxyl-functional acrylic polymer according to embodiments of the present invention. Aliphatic polyisocyanates are preferred polyisocyanates used in processes for making protein-polymer composite materials for clearcoat applications such as in automotive clearcoat applications. Non-limiting examples of aliphatic polvisocyanates include 1.4-butylene diisocyanate, 1.4-cyclohexane diisocyanate, 1,2-diisocyanatopropane, 1,3-diisocyanatopropane, ethylene diisocyanate, lysine diisocyanate, 1,4-methylene bis (cyclohexyl isocyanate), diphenylmethane 4,4'-diisocyanate, an isocyanurate of diphenylmethane 4,4'-diisocyanate, methylenebis-4,4'-isocyanatocyclohexane, 1,6-hexamethylene diisocyanate, an isocyanurate of 1,6-hexamethylene diisocyanate, isophorone diisocyanate, an isocyanurate of isophorone diisocyanate, p-phenylene diisocyanate, toluene diisocyanate, an isocyanurate of toluene diisocyanate, triphenylmethane 4,4',4"-triisocyanate, tetramethyl xylene diisocyanate, and meta-xylene diisocya-

[0067] Curing modalities are those typically used for conventional curable polymer compositions.

[0068] Protease -polymer composite materials used in embodiments of the present invention are optionally thermoset protein-polymer composite materials. For example, a substrate or coating material is optionally cured by thermal curing. A thermal polymerization initiator is optionally included in a curable composition. Thermal polymerization initiators illustratively include free radical initiators such as organic peroxides and azo compounds. Examples of organic peroxide thermal initiators illustratively include benzoyl peroxide, dicumylperoxide, and lauryl peroxide. An exemplary, azo compound thermal initiator is 2,2'-azobisisobuty-ronitrile.

[0069] Conventional curing temperatures and curing times can be used in processes according to embodiments of the present invention. For example, the curing time at specific temperatures, or under particular curing conditions, is determined by the criteria that the cross-linker functional groups are reduced to less than 5% of the total present before curing. Cross-linker functional groups can be quantitatively characterized by FT-IR or other suitable method. For example,

the curing time at specific temperatures, or under particular curing conditions, for a polyurethane protein-polymer composite of the present invention can be determined by the criteria that the cross-linker functional group NCO is reduced to less than 5% of the total present before curing. The NCO group can be quantitatively characterized by FT-IR. Additional methods for assessing the extent of curing for particular resins are well-known in the art. Illustratively, curing may include evaporation of a solvent or by exposure to actinic radiation, such as ultraviolet, electron beam, microwave, visible, infrared, or gamma radiation.

[0070] One or more additives are optionally included for modifying the properties of the protease -polymer composite material and/or the admixture of organic solvent and polymer resin, the aqueous protease solution, the emulsion, and/or the curable composition. Illustrative examples of such additives include a UV absorbing agent, a plasticizer, a wetting agent, a preservative, a surfactant, a lubricant, a pigment, a filler, and an additive to increase sag resistance. [0071] A substrate or coating including a protease is illustratively an admixture of a polymer resin, a surfactant and a non-aqueous organic solvent, mixed to produce an emulsion. The term "surfactant" refers to a surface active agent that reduces the surface tension of a liquid in which it is dissolved, or that reduces interfacial tension between two liquids or between a liquid and a solid.

[0072] Surfactants used can be of any variety including amphoteric, silicone-based, fluorosurfactants, anionic, cationic and nonionic such as described in K. R. Lange, Surfactants: A Practical Handbook, Hanser Gardner Publications, 1999; and R.M. Hill, Silicone Surfactants, CRC Press, 1999, incorporated herein by reference. Examples of anionic surfactants illustratively include alkyl sulfonates, alkylaryl sulfonates, alkyl sulfates, alkyl and alkylaryl disulfonates, sulfonated fatty acids, sulfates of hydroxyalkanols, sulfosuccinic acid esters, sulfates and sulfonates of polyethoxylated alkanols and alkylphenols. Examples of cationic surfactants include quaternary surfactants and amineoxides. Examples of nonionic surfactants include alkoxylates, alkanolamides, fatty acid esters of sorbitol or manitol, and alkyl glucamides. Examples of silicone-based surfactants include siloxane polyoxyalkylene copolymers.

[0073] When a surface which is optionally a substrate or a coated substrate, is contacted with biological material to produce a biological stain, the protease enzyme or combinations of enzymes contact the stain, or components thereof. The contacting allows the enzymatic activity of the protease to interact with and enzymatically alter the components of the stain improving its removal from the substrate or coating.

[0074] Enzyme containing substrates or coatings have a surface activity generally expressed in Units/cm². Substrates and coatings optionally have functional surface activities of greater than 0.0075 Units/cm². In some embodiments surface activity is between 0.0075 Units/cm² and 0.05 Units/cm² inclusive. Optionally, surface activity is between 0.0075 Units/cm² and 0.1 Units/cm² inclusive. Optionally, surface activity is between 0.01 Units/cm² and 0.05 Units/cm² inclusive.

[0075] It is appreciated that the inventive methods of facilitating stain removal will function at any temperature whereby the protease is active. Optionally, the inventive process is performed at 4° C. Optionally, an inventive process is performed at 25° C. Optionally, an inventive

process is performed at ambient temperature. It is appreciated that the inventive process is optionally performed from 4° C. to 125° C., or any single temperature or range therein. [0076] The presence of protease combined with the material of a substrate or a coating on a substrate, optionally, with water or other fluidic rinsing agent, breaks down stains for facilitated removal.

[0077] Methods involving conventional biological techniques are described herein. Such techniques are generally known in the art and are described in detail in methodology treatises such as Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, ed. Sambrook et al., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989; and Current Protocols in Molecular Biology, ed. Ausubel et al., Greene Publishing and Wiley-Interscience, New York, 1992 (with periodic updates).

[0078] Various aspects of the present invention are illustrated by the following non-limiting examples. The examples are for illustrative purposes and are not a limitation on any practice of the present invention. It will be understood that variations and modifications can be made without departing from the spirit and scope of the invention.

EXAMPLE 1

[0079] Production of a bacterial neutral protease from *Bacillus stearothermophilus* containing material operable for coating a substrate.

[0080] Materials: Freeze-dried crickets are purchased from PetSmart. Cricket bodies reportedly contain 58.3% protein. (D. Wang, et al., Entomologic Sinica, 2004; 11:275-283, incorporated herein by reference.) α-Amylase, Lipase PS, Protease N, Protease A, Protin SD AY-10, B. sterothermophilus TLP (Thermoase C160), and Thermoase GL30 (low activity preparation of B. sterothermophilus TLP) are obtained from AMANO Enzyme Inc. (Nagoya, JAPAN). Polyacrylate resin Desmophen A870 BA, and the hexamethylene diisocyanate (HDI) based polyfunctional aliphatic polyisocyanate resin Desmodur N 3600 are obtained from Bayer Corp. (Pittsburgh, Pa.). The surfactant BYK-333 is obtained from BYK-Chemie (Wallingford, Conn.). 1-butanol and 1-butyl acetate are obtained from Sigma-Aldrich Co. (Missouri, USA). Aluminum paint testing panels are purchased from Q-Lab Co. (Cleveland, USA). All other reagents involved in the experiments are of analytical grade. [0081] Enzyme based 2K SB PU coatings are prepared by either a draw-down method or by spray application and used for subsequent biological stain removal experiments. Each enzyme is dissolved in DI water to a final enzyme solution concentration of 200 mg/mL for all water borne (WB) coatings. For solvent borne (SB) enzyme prepared coatings 50 mg/mL enzyme is used. A solution of 150 ml of deionized water containing 1.5 g B. sterothermophilus TLP is first purified by ultrafiltration (molecular weight cut-off of 30 kDa, all liquids were kept on ice).

[0082] For the draw-down method or coating preparation, the surfactant BYK 333 is diluted with 1-butanol to the concentration of 17% by weight. The resin part of the 2K SB PU coating is prepared by mixing 2.1 g of Desmophen A 870 with 0.5 mL of 1-butyl acetate and 0.1 mL surfactant in a 20 mL glass vial. The solution is mixed using a microspatula for 1 min followed by addition of 0.6 mL of enzyme solution (or DI water for control coating without enzyme) followed by mixing for another 1 min. This solution is then poured out into a 20-mL glass vial with 0.8 g of NA 3600 and stirred for

1 min. This formulation produces an enzyme concentration of 6% by weight. Pre-cleaned aluminum testing panels are coated with the enzyme containing coating material using a draw-down applicator with a wet film thickness of 2 mils. The coating panels are baked at 80° C. for 30 minutes and then cured at ambient temperature for 7 days.

[0083] For the spray application method, coating are prepared essentially as described in FIG. 1.

EXAMPLE 2

[0084] Preparation of biological stains and application to coated substrate. An exemplary schematic of an experimental procedure is provided in FIG. 2. 60 g of Freeze-dried crickets are chopped into powder by a blender (Oster, 600 watt) for 10 min. The stain solution is prepared by vigorously mixing 2 g of cricket powder with 6 mL of DI water. A template of uniform spacing is used to apply the stain on the coating surface. The cricket stains are dried at 40° C. for 5 min followed by placing the coating panels into a glass dish and rinsing with 200 mL of DI water under 300 rpm shaking at RT for various times. The time of the stain removal is recorded. In order to reduce random error, the time of the first and last drop removed are not included. The average rinsing time of eight stain spots is averaged for stain removal time.

Example 3

[0085] Drying time affects stain removal time. Stained coated substrate panels prepared with coatings as in Example 1 and insect stains as in Example 2 are subjected to drying at 40 ° C. for various times. The rinsing time of stain drops strongly depends on the drying time. The control protease free coating, after being dried for 5 min, produces firmly adhered stain drops that are not removed by rinsing for 3 hr (Table 1).

TABLE 1

_	Dı	ying Time (r	nin)	
	3	3.2	5	
Average washing time (min)	2.8	4.9	>180	

[0086] For the *B. sterothermophilus* TLP containing coated panes, the rinsing time increases with longer drying time yet at equivalent drying times relative to control the protease containing coating promotes dramatically improved stain removal. (Table 2).

TABLE 2

	Dryii	ng Time (min)
	5	10
Average washing time (min)	28.7	79.3

EXAMPLE 4

[0087] Increased rinsing intensity reduces stain removal time. The panels prepared as in Examples 1 and 2 are subjected to various rinsing intensities. Reduced rinsing

time is achieved by increasing rinsing intensity for *B. sterothermophilus* TLP containing coatings on substrates (Table 3).

TABLE 3

_	Sha	king speed (rpm)
	200	250	300
Average washing time (min)	56.5	44.4	28.7

EXAMPLE 5

[0088] Coatings containing various enzymes are prepared as in Example 1. Each coating is analyzed for performance by measurement of average rinsing time using a standard protocol of applying a cricket stain to a coated substrate, drying for 5 min at 40° C. and rinsing in water at an intensity of 300 RPM. The control and various protease containing coatings are also evaluated for roughness, contact angle, and gloss. The results are depicted in Table 4.

TABLE 4

Coatings	Average Washing time	Roughness (µm)	Contact Angle	Gloss (60°)
SB control coating	>3 hr	0.053	76.2	163.0
Lipase PS based SB coating	>3 hr	0.063	88.0	147.9
α-Amylase based SB coating	>3 hr	0.078	80.5	148.4
Thermoase C160 based	28 min	0.078	86.4	148.4
SB coating				

[0089] B. sterothermophilus TLP based coatings have an improved self-cleaning function against insect body stains compared with other coatings (no enzyme, Lipase PS, and α -amylase). In addition, the coating surface properties are insignificant different between the B. sterothermophilus TLP based coating and the control, Lipase PS, or α -amylase based coatings. These results indicate that physical characteristics of the coatings are not differentially affecting the coating performance.

[0090] The rinsing times of each enzyme containing coating is compared. FIG. 3 demonstrates comparison of a control SB coating (enzyme free, left panel) with a *B. sterothermophilus* TLP based coating (right panel). After 30 minutes of rinsing the *B. sterothermophilus* TLP based coating shows significant stain removal. The control shows no significant stain removal out to 3 hours of rinsing.

[0091] Similar results are observed comparing a *B. sterothermophilus* TLP based coating with a lipase and a-amylase based coating. In FIGS. 4 and 5 respectively, lipase and a-amylase (left panels) show significant adherence of insect stains remaining for the entire three hour rinsing period. In contrast the *B. sterothermophilus* TLP based coatings show dramatic stain removal after an initial 30 min rinsing period with essentially complete stain removal by three hours.

EXAMPLE 6

[0092] Affect of surface heating on protease function. Panels coated with *B. sterothermophilus* TLP based coatings as in Example 1 are subjected to baking temperatures of 100° C. ,for 10 days followed by determination of change in surface enzyme activity. Proteolytic surface activity of pro-

tease containing coatings is determined following the method of Folin and Ciocalteau, J Biol. Chem., 1927; 73: 627-50, incorporated herein by reference. Briefly, 1mL of 2% (w/v) casein in sodium phosphate (0.05 M; pH 7.5) buffer solution is used as substrate together with 200 µl of sodium acetate, 5 mM calcium acetate (10 mM; pH 7.5). The substrate solution is pre-incubated in a water bath for 3 min to reach 37° C. The reaction is started by adding one piece of sample plate coated with B. sterothermophilus TLP based coating (1.2×1.9 cm²) followed by shaking for 10 min at 200 rpm at which time the reaction is stopped by adding 1 ml of 110 mM tricholoroacetic acid (TCA) solution. The mixture is incubated for 30 min at 37° C. prior to centrifugation. The equivalent of tyrosine in 400 µl of the TCA-soluble fraction is determined at 660 nm using 200 μL of 25% (v/v) Folin-Ciocalteau reagent and 1 mL 0.5 M sodium carbonate. One unit of activity is defined as the amount of enzyme hydrolyzing casein to produce absorbance equivalent to 1.0 μmol of tyrosine per minute at 37° C. This result is converted to Units/cm². FIG. 6 illustrates that B. sterothermophilus TLP surface activity is reduced by approximately 50% after long term high temperature baking (FIG. 6A). Coincidently, the time of stain cleaning is increased (FIG. 6B).

EXAMPLE 7

[0093] Enzyme loading is titered in coatings prepared and coated onto substrate panels as in Example 1 and with insect stains applied as in Example 2 at loading concentrations of enzyme of 0.2% (A), 2.0% (B), 4.0% (C), 6.0% (D), and 8.0% (E) of thermolysin, and the thermolysin-like-proteins from Bacillis cereus, Lactobacillis sp., Bacillis megaterium, Alicyclobacillis acidocaldarious, Bacillis caldolyticus, Bacillus subtilis, Bacillus amyloliquefaciens), and Lysteria monocytogenes. The panels are baked for 5 min at 40° C. and washed at 300 RPM for three hours. Increased protease loading correlates with increased rinsing performance (FIG. 7A-E depicting results for B. sterothermophilus TLP).

EXAMPLE 8

[0094] Comparison of various protease types on insect stain removal. Coatings are prepared as in Example 1 using protease N (bacillolysin) as a putative cysteine protease, Protin SD AY10 (subtilisin from *Bacillus licheniformis*) as a putative serine protease, protease A as an exemplary metalloprotease, and thermolysin and thermolysin-like-proteins of Example 7, and coated onto substrates as in Example 1 with insect staining as in Example 2. The different enzyme containing coatings are compared after baking for 5 min at 40° C. and rinsing at 300 RPM for 3 hours. Surprisingly, only the thermolysin based coatings show the dramatically improved self-cleaning function which is not observed by coatings including, a serine protease, a cysteine protease, or another metalloprotease. (Table 5 and FIG. 8.)

TABLE 5

Coatings	Protease Group	Average Washing time	Rough- ness (µm)	Contact Angle	Gloss (60°)
Protease N based SB coating	Cysterine protease (150 kU/mg)	>3 hr	0.044	76.6	158.3

TABLE 5-continued

Coatings	Protease Group	Average Washing time	Rough- ness (µm)	Contact Angle	Gloss (60°)
Protin SD AY-10	Serine protease	>3 hr	0.040	76.9	159.5
based SB coating Protease A based SB coating	(90 kU/mg) Metalloprotease (20 kU/mg)	>3 hr	0.040	75.7	162.4
Thermoase C160 based SB coating	Metalloprotease (1600 kU/mg)	12 min	0.043	76.0	163.0

EXAMPLE 9

[0095] Test panels are prepared as in Example 1 and are mounted onto the front bumpers of test vehicles. A schematic of a road-test protocol is illustrated in FIG. 9. Real-life insects are collected from the road by driving. The vehicle is driven during summer evenings for ~500 miles to collect insect bodies. The average speed of driving is 65 mph.

[0096] Within three days of insect collection the panels are rinsed either in natural rain (driving condition) or in lab on a water bath at a rate of shaking rate of 200 rpm. Photos are taken prior to and after the rinsing procedure. Panels are visually checked and counted prior to, during, and after rinsing to identify differences in stain removal from test and control panels.

[0097] A clear increase in stain-removal effectiveness under mild rinsing is observed on enzyme-containing coatings relative to control coatings without enzyme as is illustrated in FIGS. 10 and 11. The insect stain counts for enzyme containing coated panels at before, after 5 min, and after 120 min of rinsing are 18, 13, and 10 respectively. The insect stain counts for enzyme control coated panels at before, after 5 min, and after 120 min of rinsing are 18, 17,

and 15 respectively. The road test is repeated three times and the average percent remaining insect stains in enzyme containing and control coatings after rinsing for various times are plotted in FIG. 12. The enzyme containing coatings promote active insect stain removal using environmentally obtained insects under normal road driving conditions.

EXAMPLE 10

[0098] Enzyme containing coatings are prepared as in Example 1 using buffers of pH 6.4 and pH 11. Coated aluminum plates are subjected to insect staining as in Example 9. Enzyme containing coatings prepared at both pH levels are superior to control (FIG. 13).

[0099] Various modifications of the present invention, in addition to those shown and described herein, will be apparent to those skilled in the art of the above description. Such modifications are also intended to fall within the scope of the appended claims.

[0100] It is appreciated that all reagents are obtainable by sources known in the art unless otherwise specified or synthesized by one of ordinary skill in the art without undue experimentation. Methods of nucleotide amplification, cell transfection, and protein expression and purification are similarly within the level of skill in the art.

[0101] Patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains. These patents and publications are incorporated herein by reference to the same extent as if each individual application or publication was specifically and individually incorporated herein by reference.

[0102] The foregoing description is illustrative of particular embodiments of the invention, but is not meant to be a limitation upon the practice thereof. The following claims, including all equivalents thereof, are intended to define the scope of the invention.

SEQUENCE LISTING

-continued

His	Val	Lys 115	Asp	Gly	Glu	Leu	Ile 120	Ala	Leu	Ser	Gly	Ser 125	Leu	Ile	Pro
Asn	Leu 130	Asp	Gly	Gln	Pro	Arg 135	Leu	Lys	Lys	Ala	Lys 140	Thr	Val	Thr	Val
Gln 145	Gln	Ala	Glu	Ala	Ile 150	Ala	Glu	Gln	Asp	Val 155	Thr	Glu	Thr	Val	Thr 160
Lys	Glu	Arg	Pro	Thr 165	Thr	Glu	Asn	Gly	Glu 170	Arg	Thr	Arg	Leu	Val 175	Ile
Tyr	Pro	Thr	Asp 180	Gly	Thr	Ala	Arg	Leu 185	Ala	Tyr	Glu	Val	Asn 190	Val	Arg
Phe	Leu	Thr 195	Pro	Val	Pro	Gly	Asn 200	Trp	Val	Tyr	Ile	Ile 205	Asp	Ala	Thr
Asp	Gly 210	Ala	Ile	Leu	Asn	Lys 215	Phe	Asn	Gln	Ile	Asp 220	Ser	Arg	Gln	Pro
Gly 225	Gly	Gly	Gln	Pro	Val 230	Ala	Gly	Ala	Ser	Thr 235	Val	Gly	Val	Gly	Arg 240
Gly	Val	Leu	Gly	Asp 245	Gln	ГÀа	Tyr	Ile	Asn 250	Thr	Thr	Tyr	Ser	Ser 255	Tyr
Tyr	Gly	Tyr	Tyr 260	Tyr	Leu	Gln	Asp	Asn 265	Thr	Arg	Gly	Ser	Gly 270	Ile	Phe
Thr	Tyr	Asp 275	Gly	Arg	Asn	Arg	Thr 280	Val	Leu	Pro	Gly	Ser 285	Leu	Trp	Thr
Asp	Gly 290	Asp	Asn	Gln	Phe	Thr 295	Ala	Ser	Tyr	Asp	Ala 300	Ala	Ala	Val	Asp
Ala 305	His	Tyr	Tyr	Ala	Gly 310	Val	Val	Tyr	Asp	Tyr 315	Tyr	Lys	Asn	Val	His 320
Gly	Arg	Leu	Ser	Tyr 325	Asp	Gly	Ser	Asn	Ala 330	Ala	Ile	Arg	Ser	Thr 335	Val
His	Tyr	Gly	Arg 340	Gly	Tyr	Asn	Asn	Ala 345	Phe	Trp	Asn	Gly	Ser 350	Gln	Met
Val	Tyr	Gly 355	Asp	Gly	Asp	Gly	Gln 360	Thr	Phe	Leu	Pro	Phe 365	Ser	Gly	Gly
Ile	Asp 370	Val	Val	Gly	His	Glu 375	Leu	Thr	His	Ala	Val 380	Thr	Asp	Tyr	Thr
Ala 385	Gly	Leu	Val	Tyr	Gln 390	Asn	Glu	Ser	Gly	Ala 395	Ile	Asn	Glu	Ala	Met 400
Ser	Asp	Ile	Phe	Gly 405	Thr	Leu	Val	Glu	Phe 410	Tyr	Ala	Asn	Arg	Asn 415	Pro
Asp	Trp	Glu	Ile 420	Gly	Glu	Asp	Ile	Tyr 425	Thr	Pro	Gly	Val	Ala 430	Gly	Asp
Ala	Leu	Arg 435	Ser	Met	Ser	Asp	Pro 440	Ala	Lys	Tyr	Gly	Asp 445	Pro	Asp	His
Tyr	Ser 450	Lys	Arg	Tyr	Thr	Gly 455	Thr	Gln	Asp	Asn	Gly 460	Gly	Val	His	Thr
Asn 465	Ser	Gly	Ile	Ile	Asn 470	Lys	Ala	Ala	Tyr	Leu 475	Leu	Ser	Gln	Gly	Gly 480
Val	His	Tyr	Gly	Val 485	Ser	Val	Asn	Gly	Ile 490	Gly	Arg	Asp	Lys	Met 495	Gly
ГÀв	Ile	Phe	Tyr 500	Arg	Ala	Leu	Val	Tyr 505	Tyr	Leu	Thr	Pro	Thr 510	Ser	Asn
Phe	Ser	Gln	Leu	Arg	Ala	Ala	CÀa	Val	Gln	Ala	Ala	Ala	Asp	Leu	Tyr

-continued

	00110111404	
515 520	525	
Gly Ser Thr Ser Gln Glu Val Asn Ser Val Ly 530 535	s Gln Ala Phe Asn Ala 540	
Val Gly Val Tyr	-	
545		
210. CEO ID NO 2		
<210> SEQ ID NO 2 <211> LENGTH: 1881		
<pre><212> TYPE: DNA <213> ORGANISM: Geobacillus stearothermoph</pre>	ilus	
<400> SEQUENCE: 2		
gatcaggaag cattgcgcta tggacgaagt gagcctcct	t tegttetegg gatatageeg	60
aaaagaacca ggggaggaaa aacgaaagtc cgggccgtg	c acggagggcg tgtcattgcc	120
gttcattttc ccaatacaat aaggatgact attttggta	a aattcagaat gtgaggaatc	180
atcaaataca tattcaagaa aggggaagag gagaatgaa	c aaacgggcga tgctcggggc	240
gategggetg gegtteggee tgetggegge geegategg		300
gatogtotgg aacgaacaat ggaagacgcc gtcattcgt		360
aggggaacaa gcgctggaag agctcgttta tcaatacgt		420
cogcetogge ggacgegece gegacegttt ggegetgat		480
tggccatace gtgatgeggt ttgaacageg gcatcacgg		540
		600
gctggctgcc catgtgaaag atggcgagct gatcgcgct		
tttagacggc cagccgcggt tgaaaaaggc gaaaacggt		660
tattgccgag caagacgtaa cggagacagt gacgaagga		720
cgagcggacg cggctcgtca tttacccgac tgatggcac		780
gaacgtccgc tttttaacac cggttcccgg caactgggt	g tatatcattg atgcaaccga	840
tggggccatt ttgaataagt tcaaccaaat cgacagccg	c cageceggeg gegggeagee	900
ggtcgccggc gcgtcgacgg tcggcgtggg ccggggtgt	g ttgggggatc agaaatatat	960
caatacgacg tattcctcgt attacggcta ctactattt	g caagacaata cgcgcggcag	1020
cggcattttt acgtatgacg gacgaaaccg caccgtttt	g cccggcagct tgtggaccga	1080
tggcgacaac caatttaccg ccagctatga cgcggcggc	c gtggacgccc attattacgc	1140
cggcgtcgtg tatgattact acaaaaatgt gcacggccg	g ctgagctatg acggcagcaa	1200
cgccgccatc cgttcgaccg tccattatgg ccgcggcta	c aacaacgcgt tttggaacgg	1260
ttegeaaatg gtgtaeggeg atggegaegg acagaegtt	t ttgccgtttt ccggcggcat	1320
tgacgtcgtg gggcatgagt tgacccatgc ggtgacgga	t tatacggccg ggcttgttta	1380
ccaaaacgaa tctggcgcca tcaatgaagc gatgtccga	t attttcggca cgctcgtgga	1440
gttctacgcc aaccgcaacc cggactggga gattggcga	a gacatttaca cgcctggggt	1500
cgccggcgat gcgctccgct cgatgtccga cccggcgaa	a tacggcgatc cggatcatta	1560
ttccaaacgg tacaccggca cgcaagacaa cggcggcgt		1620
		1680
caataaagcg gcgtacttgc tcagccaagg cggcgtcca		
categgeege gacaaaatgg ggaaaatttt etaeeggge	g cttgtctact atttgacgcc	1740
gaegtegaae tteageeage tgegtgeege etgegtgea	a geggeegetg atttgtaegg	1800

-continued

gtcgacaagc caagaagtca actcggtgaa acaggcgttc aatgcggttg gagtgtatta 1860
agacgatgag gtcgtacgcg t 1881

1. A method of facilitating the removal of a biological stain on a substrate or a coating comprising:

providing a substrate or a coating;

- associating a protease with said substrate or said coating such that said substrate or said coating is capable of enzymatically degrading a component of a biological stain.
- 2. The method of claim 1 wherein said protease is a bacterial neutral thermolysin-like-protease from *Bacillus stearothermophilus*.
- 3. The method of claim 1 wherein the surface activity of the substrate or coating is 0.0075 units/cm² or greater.
- **4**. The method of claim **1** wherein said protease is covalently attached to said substrate or to said coating.

- **5**. The method of claim **1** wherein said protease is non-covalently adhered to or admixed into said substrate or said coating.
- **6**. The method of claim **1** wherein said substrate or said coating comprises an organic crosslinkable polymer resin.
- 7. The method of claim 6 wherein said organic crosslinkable polymer resin comprises a functional group of acetoacetate, acid, amine, carboxyl, epoxy, hydroxyl, isocyanate, silane, vinyl, or combinations thereof.
- 8. The method of claim 7 wherein said organic crosslinkable polymer resin is aminoplasts, melamine formaldehydes, carbamates, polyurethanes, polyacrylates, epoxies, polycarbonates, alkyds, vinyls, polyamides, polyolefins, phenolic resins, polyesters, polysiloxanes, or combinations thereof.
- 9. The method of claim 7 wherein said organic crosslinkable polymer is a hydroxyl-functionalized acrylate resin.

* * * * *