A catheter insertion device for inserting a catheter into a body of a patient is disclosed. The catheter insertion device includes a retractable needle for establishing access to a subcutaneous vessel of the patient and a manually extensible guidewire for guiding the initially attached catheter into the vessel. In one embodiment, the catheter insertion device comprises a housing, a hollow needle retractably extending from the housing, a catheter initially disposed on a portion of the needle, a guidewire including a portion initially disposed within the needle, a guidewire advancement feature configured to selectively advance a distal end of the guidewire distally past a distal end of the needle, and a needle retention component configured to selectively enable retraction of the needle into the housing. The needle retention component is configured to be actuated by the guidewire advancement feature. In one embodiment, one-handed operation of the device is possible.
CATHETER INSERTION DEVICE INCLUDING RETRACTABLE NEEDLE

CROSS-REFERENCE TO RELATED APPLICATIONS

BRIEF SUMMARY

[0002] Briefly summarized, embodiments of the present invention are directed to a catheter insertion device for inserting a peripheral IV ("PIV") or other suitable catheter into a body of a patient. The catheter insertion device includes a retractable needle for establishing access to a subcutaneous vessel of the patient and a manually extensible guidewire for guiding the catheter, initially attached to the catheter insertion device, into the vessel. In one embodiment, one-handed operation of the device is possible.

[0003] In one embodiment, therefore, the catheter insertion device comprises a housing, a hollow needle retractably extending from the housing, a catheter initially disposed on a portion of the needle, a guidewire including a portion initially disposed within the needle, a guidewire advancement feature configured to selectively advance a distal end of the guidewire distally past a distal end of the needle, and a needle retention component configured to selectively enable retraction of the needle into the housing. The needle retention component is configured to be actuated by the guidewire advancement feature.

[0004] These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
FIGS. 1A-1F show various views of a catheter insertion device according to one embodiment;

FIG. 2 is a perspective view of a needle hub assembly of the catheter insertion device of FIGS. 1A-1F;

FIG. 3 is a side view of a plate of the catheter insertion device of FIGS. 1A-1F;

FIGS. 4A and 4B are side views of the catheter insertion device of FIGS. 1A-1F;

FIG. 5 is a perspective view of a distal portion of the catheter insertion device of FIGS. 1A-1F;

FIGS. 6A-6E shows various views of a catheter insertion device according to one embodiment;

FIGS. 7A and 7B are various cutaway views of the catheter insertion device of FIGS. 6A-6E;

FIG. 8 is a top cutaway view of the catheter insertion device of FIGS. 6A-6E;

FIGS. 9A and 9B are various views of a catheter assembly according to one embodiment;

FIG. 10 is an end view of a catheter assembly according to one embodiment; and

FIG. 11 is a side view of a catheter assembly according to one embodiment.

DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.

For clarity it is to be understood that the word "proximal" refers to a direction relatively closer to a clinician using the device to be described herein, while the word "distal" refers to a direction relatively further from the clinician. For example, the end of a catheter placed within the body of a patient is considered a distal end of the catheter, while the
catheter end remaining outside the body is a proximal end of the catheter. Also, the words "including," "has," and "having," as used herein, including the claims, shall have the same meaning as the word "comprising."

[00019] Embodiments of the present invention are generally directed to a catheter insertion device for inserting a peripheral IV ("PIV") or other suitable catheter into a body of a patient. The catheter insertion device includes a retractable needle for establishing access to a subcutaneous vessel of the patient, for instance, and a manually extensible guidewire for guiding the catheter, initially attached to the catheter insertion device, into the vessel. In one embodiment, one-handed operation of the device is possible.

[00020] FIGS. 1A-1F depict various views of a catheter insertion device ("device") 10 according to one embodiment. As shown, the device 10 includes a housing 12 defined by a top housing portion 12A and a bottom housing portion 12B, though it is appreciated that the housing can be integrally formed as a single piece or include more than two portions, in other embodiments.

[00021] A hollow needle 14 initially and distally extends from a distal portion of the housing 12 and includes a distal end 14B that is configured to establish an insertion site for a catheter through the skin and vessel of the patient, in the present embodiment. A needle hub 16 is disposed in the housing 12 and secures the needle. A flash chamber 17 is included in the needle hub 16 and a proximal end 14A of the needle 14 is disposed therein so as to allow blood to enter the flash chamber when needle access to a vessel of the patient is established. The flash chamber 17 and adjacent portions of the housing 12 are translucent in one embodiment to enable clinician observation of blood when present in the flash chamber.

[00022] FIG. 2 gives additional details of the needle hub 16. As shown, the needle hub 16 further includes a distal, conical nose portion 19 that initially extends from the distal end of the housing 12 (FIG. 1C). A reduced-diameter neck 52 is included between the nose portion 19 and a more proximal, cylindrical portion of the needle hub 16.

[00023] A spring 18 is interposed between the flash chamber 17 and a distal portion of the housing 12 to enable selective retraction of the needle 14 fully into the housing so as to prevent accidental needle sticks after use of the device 10. Note that the size, type, position, and orientation of the spring is but one of various possible spring configurations. In addition,
other resilient features or retraction mechanisms can be employed to selectively retract the needle into the housing.

[00024] A catheter assembly 60, including an elongate catheter tube 62 defining one or more lumens and a hub 64, is initially disposed over the needle 14 such that needle is received into the lumen of the catheter tube, as shown in FIG. 1A. Note that the catheter assembly 60 has been removed from various of the figures to be discussed herein, for clarity.

[00025] The device 10 in the present embodiment includes a guidewire advancement assembly for selectively advancing a guidewire 22 that is initially disposed both within the housing 12 and within a lumen defined by the hollow needle 14. As best seen in FIG. IF, a proximal end of the guidewire 22 is attached to a guidewire hub 28 such that the guidewire extends distally into the flash chamber 17, through the proximal end 14A of the hollow needle 14, and into the lumen defined by the needle. The guidewire hub 28 includes two fins 30 that extend in opposite directions from one another and are configured to be slidably received in corresponding tracks 32 that are defined in a guidewire advancement handle 20, best seen in FIGS. 1C and ID. The arrangement of the fins 30 and tracks 32 enable the guidewire hub 28 to separate from the guidewire advancement handle 20, as will be described further below.

[00026] In greater detail, the guidewire advancement handle 20 is slidably attached to the housing 12 so as to selectively advance or retract the guidewire 22. The guidewire advancement handle 20 includes a rail 26 that is disposed in a slot 24 of the top portion 12A of the housing 12 so as to enable the guidewire advancement handle to slide proximally and distally along the slot. A finger pad 21 is included on the guidewire advancement handle 20 to enable a user of the device 10 to selectively slide the guidewire advancement handle. Note that the size, shape, position, and configuration of the guidewire advancement handle 20 and finger pad 21 can vary from what is explicitly shown and described herein.

[00027] So configured, distal advancement of the guidewire 22 is accomplished by a user placing a finger on the finger pad 21 of the guidewire advancement handle 20 and sliding it from an initial proximal position to a more distal position with respect to the housing 12. This distal advancement of the guidewire advancement handle 20 also advances both the guidewire hub 28, which is removably attached to the guidewire advancement handle via the tracks 32 that receive the guidewire hub fins 30, as already described, and the guidewire 22
itself such that a distal portion thereof extends out of and distally past the distal end 14B of the needle 14. Note that other guidewire advancement handle and finger pad designs and configurations are possible in addition to those described herein.

[00028] A needle retention assembly is also included and in the present embodiment includes a needle retention component 40 to selectively enable retraction of the needle 14 into the housing after use of the device 10 so as to protect the user from an accidental needle stick. In the present embodiment, the needle retention component 40 includes a plate 42 that is movably disposed in a slot 46 defined at the distal end of the housing 12, as seen in FIGS. 1B-1F.

[00029] In greater detail and as seen in FIG. 3, the plate 42 defines a keyhole 44 that includes a semicircular portion 44A and a circular portion 44B, as shown. As seen in FIG. IB, the plate 42 is initially placed in the slot 46 of the housing 12 in an un-depressed position such that the needle hub 16 extends through the keyhole 44. Specifically, the semicircular portion 44A of the keyhole 44 receives the neck 52 of the needle hub 16 such that the needle hub seats in the keyhole. Note that, in one embodiment, a spring or other component can be employed to maintain the plate 42 in the un-depressed position shown in FIG. IB.

[00030] The plate 42 further includes an angled surface 48 (also referred to herein as a second angled surface) on a top edge thereof such that the angled face faces proximally. The angled surface 48 is configured to interact with a distally-facing angled surface 34 (also referred to herein as a first angled surface) disposed on the distal end of the guidewire advancement handle 20 when the guidewire advancement handle is distally advanced to distally extend the guidewire 22 out the distal end 14B of the needle 14, as will be further detailed below. Note that the angle, direction, shape, and other configuration of the first and second angled faces can vary from what is shown and described herein. For instance, in one embodiment the direction of the angled faces could be reversed from what is shown here. In another embodiment, the first and second angled surfaces can be replaced with engagement surfaces that interact to cause retraction of the needle into the housing.

[00031] The selective retraction of the needle 14 via actuation of the needle retention assembly described above is described here in connection with use of the device 10 to insert a catheter or other suitable tubular device the body of a patient, according to one embodiment and as depicted in FIGS. 4A and 4B. During operation, the needle 14 is first used to pierce
through an insertion site on the skin surface of the patient and extend the distal end 14B of
the needle into a subcutaneous vessel (or other intended destination). The guidewire
advancement handle 20 is then slid distally from its proximal position with respect to the
housing 12 so as to extend the guidewire 22 out the open distal end of the needle 14 and into
the vessel. The guidewire 22 distally advances in this manner until the guidewire hub 28
contacts a proximal end 17A of the flash chamber 17, which ceases further distal guidewire
movement. This is generally shown in FIG. 4A. The catheter assembly 60 can then be
manually and distally advanced from the device 10 and inserted into the vessel, guided by the
needle 14 and the guidewire 22.

[00032] The device 10 can then be retracted away from the patient. At this time, the
guidewire advancement handle 20 is slid further distally along the slot 24 in the top housing
portion 12A. As the guidewire advancement handle 20 slides distally, the guidewire hub 28 -
abutting the proximal end 17A of the flash chamber 17 as described above - separates from
the guidewire advancement handle via its fins 30 sliding out of the tracks 32 (FIG. ID) as the
guidewire advancement handle distally advances. The guidewire advancement handle 20
continues to slide distally until its first angled surface 34 engages and pushes down on the
second angled surface 48 of the plate 42 - the needle retention component 40 of the present
embodiment. This causes the plate 42 to move from the un-depressed position shown in FIG.
IB, 4A, and 5 to the depressed position shown in FIG. 4B. In turn, this causes the neck 52 of
the needle hub 16 to unseat from the semicircular portion 44A of the plate keyhole 44 and to
align with the circular portion 44A thereof.

[00033] No longer constrained by the plate 42, the needle hub 16 can now retract
proximally within the housing, urged by the force of the spring 18, which can now expand
from a compressed state (FIG. 5) to an expanded state (FIG. 4B). Retraction of the needle
hub 16 causes the corresponding retraction of the needle 14 into the housing 12 until the
distal end 14B thereof is disposed within the housing so as to prevent accidental needle sticks
to the user. The proximal retraction of the needle hub 16 and connected flash chamber 17
correspondingly causes the guidewire hub 28 to also retract, given its abutment against the
proximal end 17A of the flash chamber. This will correspondingly cause retraction of the
guidewire 22 a predetermined amount. In one embodiment, the guidewire can be fully
retracted into the housing. The now-placed catheter assembly 60 can then be dressed and the
device 10 disposed of or otherwise safely handled.
In one embodiment, it is appreciated that detents or other features can be used to provide an aural and/or tactile cue when the guidewire advancement handle has advanced the guidewire to its full distal distance, when the guidewire advancement handle itself has advanced its full distal distance, and/or when other points along the travel path have been reached by the guidewire advancement handle. It is further appreciated that the device 10 of the present embodiment can be operated by only one hand of the user, thus facilitating ease-of-use.

FIGS. 6A-6E depict various views of the catheter insertion device ("device") 10 according to another embodiment. As shown, the device 10 includes a housing 112 defined by a top housing portion 112A and a bottom housing portion 112B, though it is appreciated that the housing can be integrally formed as a single piece or include more than two portions, in other embodiments.

A hollow needle 114 initially and distally extends from a distal portion of the housing 112 and includes a distal end 114B that is configured to establish an insertion site for a catheter through the skin and vessel of the patient, in the present embodiment. A needle hub 116 is disposed in the housing 112 and secures the needle. A flash chamber 117 is included in the needle hub 116 and a proximal end 114A of the needle 114 is disposed therein so as to allow blood to enter the flash chamber when needle access to a vessel of the patient is established. As before, the flash chamber and adjacent portions of the housing 112 are translucent in one embodiment to enable clinician observation of blood when present in the flash chamber.

A spring 118 is interposed between the flash chamber 117 and a distal portion of the housing 112 to enable selective retraction of the needle 114 fully into the housing so as to prevent accidental needle sticks after use of the device 10. Note that the size, type, position, and orientation of the spring is but one of various possible spring configurations. In addition, other resilient features or retraction mechanisms can be employed to selectively retract the needle into the housing.

The catheter assembly 60, including the elongate catheter tube 62 and the hub 64, is initially disposed over the needle 114 such that needle is received into the lumen of the catheter tube, as shown in FIG. 6A. The catheter assembly 60 is removably attached to the
device 10 in a manner to be described further below. Note that the catheter assembly 60 has been removed from various of the figures to be discussed herein, for clarity.

[00039] The device 10 in the present embodiment includes a guidewire advancement assembly for selectively advancing a guidewire 122 that initially extends from within the housing 12 and into a lumen defined by the hollow needle 114. As best seen in FIGS. 6C and 7A, a proximal end of the guidewire 122 is attached to a guidewire hub 128 such that the guidewire extends distally into the flash chamber 117 and through the proximal end 114A of the needle 114 and into the lumen define by the hollow needle.

[00040] The guidewire hub 128 is attached to a guidewire advancement handle 120, best seen in FIGS. 6A and 7A. In greater detail, the guidewire advancement handle 120 is slidably attached to the housing 112 via a slot 124 defined in the top housing portion 112A so as to selectively advance or retract the guidewire 122 when the guidewire advancement handle is slid distally or proximally, respectively, along the slot. A finger pad 121 is included on the guidewire advancement handle 120 to enable a user of the device 10 to selectively slide the guidewire advancement handle. As shown, the guidewire advancement handle includes an elongate body 170 that includes on its proximal end a raised portion 172, configured here as a block that assists in preventing the elongate body from falling through the slot 124. The guidewire hub 128 is also disposed on a proximal portion of the guidewire advancement handle body 170 so as to be disposed within the housing 112, as best seen in FIG. 6C. Note that the size, shape, position, and configuration of the guidewire advancement handle and finger pad can vary from what is explicitly shown and described herein.

[00041] So configured, distal advancement of the guidewire 122 is accomplished by a user placing a finger on the finger pad 121 of the guidewire advancement handle 120 and sliding it from an initial proximal position to a more distal position with respect to the housing 112. This distal advancement of the guidewire advancement handle 120 also advances both the guidewire hub 28, which is attached to the guidewire advancement handle body 170, and the guidewire 122 itself such that a distal end 122B thereof extends out of and distally past the distal end 114B of the needle 114. Note that other guidewire advancement handle and finger pad designs and configurations are possible in addition to those described herein.

[00042] A needle retention assembly is also included and in the present embodiment includes a needle retention component 40 to selectively enable retraction of the needle 114
into the housing after use of the device 10 so as to protect the user from an accidental needle stick. In the present embodiment, the needle retention component 40 includes two retention arms 180 that extend radially outward and distally from the flash chamber 117 of the needle hub 116, as best seen in FIG. 8. The length of each of the retention arms 180 is such that they terminate distal to the distal end of the housing 112. A hook 182 is included on each retention arm 180. The hooks 182 are configured to engage with threads 66 included on the hub 64 of the catheter assembly 60 so as to retain the catheter assembly in engagement with the device 10 during the initial phases of the catheter insertion procedure. It is appreciated that the shape, size, and configuration of the retention arms and the manner of engagement with the catheter assembly and its hub can vary from what is shown and described herein.

[00043] The selective retraction of the needle 114 via actuation of the needle retention assembly described above is described here in connection with use of the device 10 to insert a catheter or other suitable tubular device the body of a patient, according to one embodiment and as depicted in FIGS. 7A and 7B. During operation, the needle 114 is first used to pierce through an insertion site on the skin surface of the patient and extend the distal end 114B of the needle into a subcutaneous vessel (or other intended destination). The guidewire advancement handle 120 is then slid distally from its proximal position with respect to the housing 112 so as to extend the guidewire 122 out the open distal end of the needle 114 and into the vessel. The guidewire 122 distally advances in this manner until a distal portion of guidewire advancement handle 120 impinges on a distal portion of the housing 112 and/or the distal end of the slot 124. Note that, in other embodiments, a locking mechanism can be included so as to lock the guidewire advancement handle after distal advancement so as to prevent inadvertent movement thereof.

[00044] The catheter assembly 60 can then be manually removed from the device 10 and distally advanced from the device 10 and inserted into the vessel, guided by the needle 14 and the guidewire 22. The catheter is removed by the user by manually twisting the catheter hub 64 so as to release the threads 66 thereof from engagement with the hooks 182 of the retention arms 180. A finger tab 190 included on the catheter hub 64, seen in FIGS. 6A and 7A, can be employed to assist the user in twisting the catheter hub. The finger tab 190 can assist the user in twisting the catheter hub 64 with the same hand that is grasping the device 10, in one embodiment. Once released in this manner, the catheter tube 62 can be distally advanced into the vessel, as just described.
Engagement of the catheter hub threads 66 with the hooks 182 of the retention arms 180 prevents retraction of the retraction arms and, correspondingly, the needle hub 116 and attached needle 114. Upon detachment of the catheter assembly 60 from the retraction arms 180, as described above, the needle hub 116 can now retract proximally within the housing, urged by the force of the spring 118, which can now expand from a compressed state (FIG. 7A) to an expanded state (FIG. 7B). Retraction of the needle hub 116 causes the corresponding retraction of the needle 114 into the housing 112 until the distal end 114B thereof is disposed within the housing so as to prevent accidental needle sticks to the user.

Despite retraction of the needle 114, the guidewire 122 remains in its distally extended state within the vessel. The catheter assembly 60 is distally advanced into the vessel as desired, after which the device 10 can be withdrawn from the patient, which causes removal of the guidewire 122 from the vessel and insertion site. The catheter assembly 60 can be dressed as needed and the device 10 disposed of or otherwise safely handled.

FIGS. 9A and 9B depict various details of the catheter assembly 60 for use with the catheter insertion device 10 described herein in connection with FIGS. 6A-8 or with other suitable catheter insertion devices. As shown, the catheter hub 64 includes the finger tab 190, described further above as a component to assist with twisting of the catheter hub by the user in order to separate the catheter assembly 60 from the device 10. As best seen in FIG. 9B, the finger tab 190 can include a profile 192, such as rounded, as shown here. Other profiles are also possible, including squared, as shown in FIG. 10, or elongated as shown in FIG. 11. Of course, various other finger tab profiles are also possible.

In light of the above, in one embodiment, a catheter insertion device, such as the devices 10 described herein, can be manufactured in one embodiment by providing a housing with a guidewire and a guidewire advancement feature, such as the guidewire advancement assemblies discussed herein, including the guidewire advancement handles 20, 120 and associated components. A needle is also provided so as to retractably extend from the housing, and a catheter assembly is removably disposed on the needle. A needle retention assembly is also included with the catheter insertion device, such as the needle retention component 40 described above, for enabling selective retraction of the needle into the housing to prevent accidental needle sticks.
Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
CLAIMS

1. A catheter insertion device, comprising:
 a housing;
 a hollow needle retractably extending from the housing;
 a catheter initially disposed on a portion of the needle;
 a guidewire, at least a portion of the guidewire initially disposed within the
 needle;
 a guidewire advancement feature configured to selectively advance a distal
 end of the guidewire distally past a distal end of the needle; and
 a needle retention component configured to selectively enable retraction of the
 needle into the housing, the needle retention component configured to be
 actuated by the guidewire advancement feature.

2. The catheter insertion device as defined in claim 1, wherein the guidewire
 advancement feature includes a guidewire advancement handle slidably included with the
 housing.

3. The catheter insertion device as defined in claim 1, wherein the needle
 retention component includes a spring configured to retract the needle.

4. The catheter insertion device as defined in claim 1, wherein the guidewire
 includes a guidewire hub attached to a proximal end of the guidewire, the guidewire hub
 removably attached to the guidewire advancement handle.

5. The catheter insertion device as defined in claim 4, wherein the guidewire hub
 separates from the guidewire advancement handle when the guidewire advancement handle is
 distally advanced a predetermined amount.

6. The catheter insertion device as defined in claim 5, wherein the needle is
 attached to a needle hub, the needle hub including a flash chamber.

7. The catheter insertion device as defined in claim 6, wherein the guidewire hub
 impinges on the flash chamber so as to separate from the guidewire advancement handle
 when the guidewire advancement handle is distally advanced the predetermined amount.
8. The catheter insertion device as defined in claim 7, wherein retraction of the needle causes retraction of the flash chamber, the flash chamber causing retraction of the guidewire hub.

9. The catheter insertion device as defined in claim 1, wherein the needle retention component is configured to be actuated by full distal advancement of the guidewire advancement feature.

10. The catheter insertion device as defined in claim 9, wherein the needle retention component is movable by the distal advancement of the guidewire advancement feature from a first position wherein the needle retention component engages a portion of the needle hub to prevent the retraction of the needle to a second position wherein the needle retention component enables the retraction of the needle into the housing.

11. The catheter insertion device as defined in claim 10, wherein the needle retention component includes a plate disposed in a distal portion of the housing, the plate movable between the first and second positions.

12. The catheter insertion device as defined in claim 11, wherein the guidewire advancement feature includes a first angled surface, wherein the plate includes a second angled surface, and wherein engagement between the first and second angled surfaces causes the plate to move from the first position to the second position.

13. The catheter insertion device as defined in claim 12, wherein the plate defines a keyhole including a semicircular portion and a circular portion, wherein a portion of the needle hub is disposed in the semicircular portion when the plate is in the first position and wherein the portion of the needle hub moves to the circular portion when the plate moves from the first position to the second position.
14. A catheter insertion device, comprising:
 a housing;
 a hollow needle extending from the housing;
 a catheter assembly initially disposed on a portion of the needle and removably connected to a portion of the catheter insertion device;
 a guidewire, at least a portion of the guidewire initially disposed within the needle;
 a guidewire advancement feature configured to selectively advance a distal end of the guidewire distally past a distal end of the needle; and
 a needle retention component configured to selectively enable retraction of the needle into the housing, the needle retention component configured to retract the needle when the catheter assembly is detached from the catheter insertion device.

15. The catheter insertion device as defined in claim 14, wherein the needle retention component is actuated to retract the needle when the catheter is rotatably detached from the housing of the catheter insertion device.

16. The catheter insertion device as defined in claim 14, wherein the needle retention component is operably connected to a needle hub, the needle hub attached to the needle.

17. The catheter insertion device as defined in claim 16, wherein the needle retention component includes first and second retention arms that extend from a portion of the needle hub, the first and second retention arms each including a distal portion that extends beyond a distal end of the housing.

18. The catheter insertion device as defined in claim 17, wherein a distal end of each of the first and second retention arms includes a hook, the hook configured to engage threads of a hub of the catheter assembly to removably attach the catheter assembly to the housing.

19. The catheter insertion device as defined in claim 18, wherein the catheter assembly is detached from the hooks of the first and second arms when the hub is rotated by a user, the rotation of the hub causing the threads of the hub to detach from the hooks.
20. The catheter insertion device as defined in claim 19, wherein the hub of the catheter assembly includes a finger tab to enable a user to rotate the hub.

21. The catheter insertion device as defined in claim 20, wherein a profile of the finger tab includes at least one of a square profile, a round profile, and an elongated profile.

22. The catheter insertion device as defined in claim 14, wherein the catheter insertion device is configured for one-handed use by a user.

23. A method of making a catheter insertion device, the method comprising:
removably disposing a catheter assembly on a portion of a needle, the needle extending from a housing;
disposing a portion of a guidewire in a lumen defined by the needle;
movably including a guidewire advancement feature with the housing so as to enable selective movement of a distal end of the guidewire distally past a distal end of the needle; and
including with the needle a needle retention component configured to enable retraction of the needle into the housing, the needle retraction component configured to be actuated by full distal movement of the guidewire advancement feature with respect to the housing.
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT
International application No. PCT/US 15/48676

A. CLASSIFICATION OF SUBJECT MATTER

| IPC(8) | A61B 17/34; A61M 5/32, 25/01 (2015.01) |
| CPC | A61M 5/322, 25/09, 25/0606 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC(8) Classification(s): | A61B 17/34; A61M 5/31, 5/32, 25/01, 29/00, 31/00 (2015.01) |
| CPC Classification(s): | A61B 17/34; A61M 5/322, 5/3202, 5/3273,25/09, 25/06, 25/0606 |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, Other Countries (INPADOC), RU, AT, CH, TH, BR, PH); ProQuest; Google/Google Scholar; PubMed/Embase: retract, needle, guide wire, catheter, insert, introduce, retention, hold, catch, plate, simultaneous, actuate, rotate, detach, remove, advance, single-handed, one-handed, full, distal, movement, hub, fins, arms, etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2014/0049774 A1 (C.R. BARD, INC.) April 3, 2014; figures 1, 32, 39; paragraphs [0003], [0053], [0056], [01 11]-[0116], [0133]</td>
<td>1-3, 9-11, 14, 16-17, 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15, 22</td>
</tr>
<tr>
<td>Y</td>
<td>US 2014/0088509 A1 (SONDEREGGER, RL et al.) March 27, 2014; figures 47-48; paragraphs [0041], [0086]-[0089]</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>US 5487734 A (THORNE, GH et al.) January 30, 1996; abstract; figure 4; column 9, lines 53-60</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>WO 2010/132908 A2 (ACCESS SCIENTIFIC, INC.) November 18, 2010; figure 5a; paragraphs [0145], [0148]</td>
<td>4, 18</td>
</tr>
<tr>
<td>A</td>
<td>US 6558355 B1 (METZGER, AE et al.) May 6, 2003; figure 1; column 2, lines 38-58</td>
<td>4</td>
</tr>
</tbody>
</table>

- Further documents are listed in the continuation of Box C.

- See patent family annex.

*	Special categories of cited documents:
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed

T	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
X	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
A	document member of the same patent family

Date of the actual completion of the international search: 29 October 2015 (29.10.2015)

Date of mailing of the international search report: 04 DEC 2015

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents

P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer: Shane Thomas

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5078696 A (NEDBALUK, MS) January 7, 1992; figure 3; column 4, lines 38-49</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>US 6913595 B2 (MASTORAKIS) July 5, 2005; figure 1a-c; column 6, lines 44-54</td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>AU 199654630 B2 (JOHNSON AND JOHNSON MEDICAL, INC.) December 19, 1996; figure 7; page 14, lines 13-26</td>
<td>18</td>
</tr>
</tbody>
</table>