wO 2005/066778 A2 || 0000 000 0 000 O 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

21 July 2005 (21.07.2005)

AT O O OO R

(10) International Publication Number

WO 2005/066778 A2

(51) International Patent Classification’”: GO6F 9/46, 9/30
(21) International Application Number:
PCT/US2004/043320

(22) International Filing Date:
22 December 2004 (22.12.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/750,589 31 December 2003 (31.12.2003) US
(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-

vard, Santa Clara, CA 95052 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): JIANG, Hong
[CN/US]J; 422 Camille Circle #12, San Jose, CA 95134
(US). PIAZZA, Thomas, A. [US/US]; 9005 Oak Leaf
Way, Granite Bay, CA 95746 (US).

(74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 7th Floor, 12400 Wilshire Boule-
vard, Los Angeles, CA 90025 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: VISUAL AND GRAPHICAL DATA PROCESSING USING A MULTI-THREADED ARCHITECTURE

(57) Abstract: Active and/or proactive semaphore mechanisms and thread synchronization techniques can be applied to various

visual and graphical processing techniques.

WO 2005/066778 PCT/US2004/043320

VISUAL AND GRAPHICAL DATA PROCESSING USING A
MULTI-THREADED ARCHITECTURE

TECHNICAL FIELD
[0001] The invention relates to visual and graphical data processing. More
particularly, the invention relates to use of active semaphore mechanisms to.

perform visual and graphical data processing operations.

BACKGROUND

[0002] A “semaphore” (also referred to as “critical sections” or “mutex”) is a
_hardware and software construct that allows coordination or synchronization of
operations in which multiple processes compete for shared resources (e.g.,
memory, files). In general, a semaphore is a value that is stored in a designated
location in operating system memory. that processes can check and change.
Based on the‘ value of the semaphore, a process can either. access the shared
resource or wait for a period of time and check the semaphore again.
[0003] Semaphores in conventional computer éyst;ems are typically
implemented as software routines using hardware support of atomic “test and set”
or similar types of instructions (e.g., lock, bit test, bit test and set, bit test and
reset). Using this semaphore implementation, a producer-consumer
communication relationship can be established through shared (e.g., global) data

and one or more semaphores. The semaphore allows shared data to be modified

WO 2005/066778 PCT/US2004/043320

by a selected one of multiple processes that are attempting to modify the data,
which provides data consistency.

[0004] This semaphore construct is “passive” because threads must perform
polling operations to acquire a semaphore. The polling requirement consumes
processor and system resources that could otherwise be used for other purposes.

Therefore, traditional semaphores can result in inefficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] The invention is illustrated by way. of example, and not by way of .
limitation, in the figures of the accompanying drawings in which like reference
numerals refer to similar elements.

[0006] Figure 1 is a block diagram of one embodiment of a massively multi-
threaded processor architecture. .

[0007] Figures 2a-2d are conceptual illustrations of dependencies in
which semaphores can be used to. synchronize thljead. execution.

[0008] Figure 3 is a simple example scene in which rays are traced from
a light source to a viewer.

[0009] Figure 4 is a flow diagram of one embodiment of ray tracing
using active semaphores. .

[0010] Figure 5 is a flow diagram of one embodiment of Z-buffer-based

three-dimensional graphics rendering using proactive ordered semaphores.

WO 2005/066778 PCT/US2004/043320

[0011] Figure 6 is a flow diagram of one embodiment of video. decoding

using active and/or proactive semaphores.

DETAILED DESCRIPTION

[0012] Methods and apparatuses for visual and/or graphical data processing
using active semaphores are described. In the following description, for purposes
of explanation, numerous specific details are set forth in order to provide a
thorough understanding of the invention. It will be apparent, however, to one
skilled in the art that the invention can be practiced without these specific details.
In other instances, structures and devices are shown in block diagram form in

order to avoid obscuring the invention.

Overview. of an Example Use of Active Semaphores

[0013] Described herein is an architecture and associated methods in which
multiple parallel passive threads of instructions (hereinafter referred to as
“threads”) coordinate access to shared resources using “active’” semaphores. The
semaphores are referred to as active because the semaphore entity sends messages
to. execution and/or control circuitry to cause the state of a thread to change. For
example, a thread can be placed in a sleep (or inactive) mode by a thread
scheduler in response to an unresolved dependency, which can be indicated by a
semaphore. A thread state variable corresponding to the dependency is used to

indicate that the thread is in sleep mode.

WO 2005/066778 PCT/US2004/043320

[0014) When the dependency is resolved a message is passed to control
circuitry (e.g., the thread scheduler) causing the dependency variable to be
cleared. Inresponse to the cleared dependency variable the thread is placed in an
active (or wake) state. . Execution can proceed on the threads in the active state.
[0015] Continuing with the example above, if a thread attempts to acquire a
semaphore and cannot, that thread is placed in an inactive state. Because the
thread is inactive, it cannot poll the semaphore to determine when the dependency.
indicated by the semaphore is resolved, as is required in the prior art. The thread
remains in the inactive state until a message is received (e.g., from the semaphore.
entity) indicating that the dependency has been resolved. In response to the
message, the thread is placed in the active state, which allows execution to
proceed. |

[0016] Figure 1 is a block diagram of one embodiment of a massively multi-
threaded processor architecture. As used herein, the label “massively multi-
threaded” architecture refers to. an architecture that includes multiple processors
that can support multi-threaded execution. In one embodiment, each processor
may support one or multiple threads. Multi-threading on a single processor
achieves high execution efficiency by allowing active threads to be executed
while other threads are in inactive state. A thread in the inactive state pending on
a semaphore does not consume/waste processor resources. Notwithstanding the

description with respect to a massively multi-threaded architecture, the

WO 2005/066778 PCT/US2004/043320

semaphore constructs and associated methods are applicable to any multi-
threaded architecture regardless of the number of threads supported.

[0017] Massively multi-threaded system 100 includes memory hierarchy 110
that stores data and instruction to be used during execution by one or more
processing cores. Memory hierarchy 110 may include dynamic random access
memory (DRAM), one or many levels of instruction caches, one or many levels
of data caches, and/or one or many levels of shared instruction and data caches in
any manner known in the art. Thread dispatcher 120 is coupled with memory
hierarchy 110, receives information such as instruction pointer and data and/or
data pointer associated with a new thread. . Thread dispatcher 120 also coupled
with the processing cores via message bus 125. In one embodiment, thread
dispatcher 120 is responsible of managing the thread resources of the processing
cores. Upon receiving a new pending thread, thread dispatcher 120 selects one
processing core that has the resource to. execute the pending thread and dispatches -
the thread onto the selected processing core.. Upon the completion of an existing
thread on a processing core, thread dispatcher 120 is informed, consequently,
making the thread resource on the processing core available for future pending
threads.

[0018] System 100 is illustrated with multiple processor cores (130, 131, 139,
150, 151 and 159), each of which include execution circuits with associated
control circuitry. The processor cores can be identical or the processor cores can

have varying functionality. Any number of processor cores can be included in
5

WO 2005/066778 PCT/US2004/043320

system 100. In one embodiment, the processor cores are configured in rows, each
row having a row controller. For example, row controller 140.can be coupled
with processor cores 130, 131 and 139 via row control bus 145. Similarly, row
controller 160 can be coupled with processor cores 150, 151 and 159 via row
control bus 165.

[0019] The processor cores are also coupled with ssmaphore entity 170 via
message bus 125. Semaphore entity 170 includes memory and control logic to
provide semaphore functionality as described herein. In one embodiment,
semaphore entity 170 interacts with the processor cores by transmitting and
receiving messages as described in greater detail below.

[0020] Thread dispatcher 120 is also.coupled with semaphore entity 170 via
message bus 125. In one embodiment, thread dispatcher interacts with
semaphore entity 170 on behalf of a thread by transmitting and receiving
messages as described .in greater detail below. .

[0021] ~ Control circuitry in each processing core may contain thread
scheduling circuitry to manage the state of multiple threads executing on the same
processing core and may also contain instruction scheduling circuitry to execute
an active thread of instructions. During instruction execution, one or more of the
processing cores will attempt to access shared system resources.. In order to gain
control of a shared system resource a thread, through the corresponding execution
core, must gain control of a semaphore corresponding to the shared system

resource to be accessed.

WO 2005/066778 PCT/US2004/043320

[0022] In one embodiment, in order to gain control of a semaphore, the
requesting processing core sends a semaphore request message to. semaphore
entity 170 over message bus 125. After sending the semaphore request message,
the requesting thread is placed in an inactive state in which execution and
associated operations (e.g., polling of semaphores) halts.

[0023] Inresponse to receiving the semaphore request message, semaphore
entity 170 determines whether to. grant control of the semaphore to the requesting
thread.. When the semaphore is granted, semaphore entity 170 sends a semaphore
acknowledge message to the requesting thread. In response to the semaphore
acknowledge message; the requesting thread is restored to an active state in which
execution using the requested resource continues. When the thread has
completed use of the shared resource, the thread sends a release semaphore
message to semaphore entity 170. In response to.the release semaphore message,
semaphore entity 170 releases the semaphore and allows other threads to. gain
access to the system resource.

[0024] In one embodiment, semaphores are supported by, instructions
(semaphore instructions) that are executed by a processing core as well as
messageé (semaphore messages) that are passed between processing cores and
semaphore entity over, for example, a message bus 125. In alternate
embodiments, different and/or additional messages or instructions can be

supported.

WO 2005/066778 PCT/US2004/043320

Semaphore Entity Based on a Linked List

[0025] In one embodiment, traditional per semaphore queues are replaced by,
a buffer pool ha@g entries that are used to form a linked list for ea.ch semaphore.
Thus, each semaphore can be a head pointer to a linked list formed from entries in
the buffer pool. The linked list can be either a bi-directional linked list or a2 uni-
directional linked list. |

[0026] In one embodiment, a semaphore table includes a pointer for each
semaphore supported. In one embodiment, the pointers in the semaphore table
are head pointers that indicate a head of a linked list to be used for the
corresponding semaphore. . A free pool pointer indicates the head of buffer pool
and unused semaphore entries include a NULL pointer.

[0027] Inone embodiment, each semaphore entry includes a released-state
field, an ack-suppression field, a thread identifier field, a previous pointer and a
next pointer. In alternate embodiments, other and/or different fields can be used,
for example, the previous pointer can be omitted. In one embodiment, each
semaphore can also include a single bit (or other indicator) to indicate whether

* the linked list corresponding to the semaphore is empty.

Semaphore Messages
[0028] An Acquire Semaphore Message (ACQ_MSG) is used for a thread, or

a thread dispatcher on behalf of a thread, to make a request to the semaphore:

entity for ownership of a semaphore. In one embodiment, the ACQ_MSG

WO 2005/066778 PCT/US2004/043320

contains a semaphore identifier field, a thread identifier field, an “auto-release”
field and an “acknowledge-suppression” (ack-suppression) field. The auto-
release field is used for a thread with only a head dependency. That is, the thread
depends on previous threads, but no subsequent threads depend on the thread.
The ack-suppression field is used for a thread with only a tail dependency. That
is, the thread does not depend on any previous threads, but the thread does have
subsequent threads depending on it.. The ACQ_MSG can be issued by a thread
dispatcher or other control circuitry associated with the thread.
[0029] In one embodiment, upon receiving the ACQ_MSG the semaphore
entity enqueues the semaphore entry. for the request thread to a linked list of the
target semaphore by removing the head entry from a free pool list and adding it to.
the tail of the selected semaphore. The fields of the semaphore entry are updated
based on the information in the ACQ_MSG: the thread identifier ﬁeld, the
release-state field and the ack-suppression field are replaced by the requester’s
thread identifier, the auto-release field and the ack-suppression field in the,
ACQ_MSG. If the semaphore linked list is not empty before the ACQ_MSG no
message is sent by the semaphore entity. Otherwise, if the semaphore linked list
is empty before the ACQ_MSG is received one of the following actions is taken.
[0030] If the ack-suppression field is not set an ACK__MSG with the thread
_identifier is sent from the semaphore entity on the message bus 125 to the
requesting thread. If the ack-suppression field is set no ACK_MSG is sent from

the semaphore entity. If the auto-release field is not set, the just-enqueued
9

WO 2005/066778 PCT/US2004/043320

semaphore entry is maintained in the semaphore linked list. If the auto-release
field is set the just-enqueued semaphore entry is removed from the semaphore
linked list.
[0031] A Release Semaphore Message (REL_MSG) is used for a thread to.
make a request to the semaphore entity to. free ownership of a semaphore. In one
embodiment, the REL._MSG includes a semaphore identifier field and a thread
identifier field. In one embodiment, the REL._MSG can only be issued by control
circuitry associated with a thread holding ownership of the semaphore, i.e., the
thread identifier is at the top of the semaphore linked list. Upon receiving the
REL MSG the semaphore entity removes the entry from the head of the
semaphore linked list.
[0032] In another embodiment, the REL, MSG can be issued by control
circuitry associated with any thread sharing the semaphore.. Upon receiving the
REL_MSG the semaphore entity unsets the release-state field to. the
corresponding entry in the semaphore linked list regardless of the position of the
entry in the linked list. If semaphore entry is at the head of the linked list, the
entry is removed from the head of the semaphore linked list. The next entry is
then becoming the head of the linked list.. If the next entry is not NULL, it will

- be examined. If the new head of the linked list has the release-state field set, it is
again removéd from the head of the semaphore linked list.
[0033] In one embodiment, this recursive process continues until either the

head of the linked list is NULL (the semaphore queue is empty) or the head of the
10

WO 2005/066778 PCT/US2004/043320

linked list has the released-state field unset (waiting for the release of the
semaphore from the thread corresponding to the entry). Ifthe head of the linked
list is not NULL and the ack—suppression field is not set, an ACK__MSG is sent by
the semaphore entity to the thread identified by the entry’s thread identifier field.
If the head of the linked list is not NULL and the ack-suppression field is set, no
ACK_MSQG is sent.

[0034] The Semaphore Acknowledgement Message (ACK_MSGQG) is
generated by the semaphore entity to notify a thread that the requested semaphore
has been acquired. In one embodiment, the ACK_MSG includes a semaphore
identifier field and a thread identifier field. The ACK_MSG is issued only by the
semaphore entity and received by the processing core executing the thread
identified by, in the thread identifier field.

[0035] Upon receiving the ACK_MSG the receiving processing core unsets
the wait-semaphore state variable of the thread identified by the thread identifier
field. If the thread is in an inactive state, the thread state is changed to an active

state..

Semaphore Instructions

[0036] An Acquire Semaphore (ACS) instruction causes an ACQ MSG
message to be sent to the semaphore entity with a semaphore identifier of the
requested semaphore, the thread identifier of the requesting thread and with the

auto-release field unset. The thread is put in an inactive state with the wait-

11

WO 2005/066778 PCT/US2004/043320

semaphore state field set. The ACS instruction is paired with (followed by) a
Release Semaphore (RLS) instruction (described below). The ACS-RLS.
instruction pair can be used for critical section applications.

[0037] An Acquire Semaphore with Auto-Release (ASR) instruction causes
an ACQ_MSG to be sent to the semaphore entity with a semaphore identifier for
the requested semaphore, a thread identifier of the requesting thread and with the
auto-release field set. The thread is put in an inactive state with the wait-
semaphore state ficld set. In one embodiment, the ASR instruction cannot be
paired with the RLS instruction. In one embodiment, the ASR instruction is used
for threads with only a head dependency.

[0038] A Wait Semaphore (WTS) instruction causes the wait-semaphore
thread state to be checked. . If the state is set the thread is put in the inactive state. .
If the state is not set the thread remains in the active state. No message is sent to
the semaphore entity in response to a WTS instruction. Use of the WTS,
instruction implies that the semaphore was acquired previously by the thread
dispatcher using the ACQ_MSG on behalf of the thread at the thread dispatch
time. The WTS instruction is not used if the ack-suppression field is set in the
ACQ_MSG previously issued by the thread dispatcher.

[0039] A Release Semaphore (RLS) instruction causes a REL, MSG to be
sent to the semaphore entity with a semaphore identifier for the semaphore being
released and a thread identifier for the releasing thread. The releasing thread

remains in the active state. If an ACS instruction has been previously issued for
12

WO 2005/066778 PCT/US2004/043320

the releasing thread only one RLS instruction is issued. If an ASR instruction has
been previously issued for the releasing thread no RLS instruction is issued. Ifa
WTS instruction has been issued for the releasing thread, the WTS instruction
may or may not be followed by a RLS instruction depending on the auto-release
field of the ACQ_MSG sent by the thread dispatcher. If the auto-release field is
unset, no RLS instruction is issued. If the auto-release field is set a RLS

instruction follows the WTS instruction.

Example Acquisition of an Active Semaphore

[0040] As athread of instructions is executed by a processor, the instructions
are executed when resources are available. When a resource having a semaphore
is required, for example, a shared memory location, ownership of a semaphore
may be required to access the resource. Thus, execution of the thread of
instructions is accomplished in any manner known in the art until a semaphore is
needed.
[0041] Inone embodiment, when a semaphore is.:needed, an Acquire
Semaphore (ACS) instruction is executed. . The ACS instruction can be executed
by the processor executing the thread of instructions requesting the semaphore.
As part of, orin resﬁonse. to, execution of the ACS instruction, an Acquire
Semaphore Message (ACQ_MSG) is transmitted to the semaphore entity by the
processing core executing the thread over the message bus. One format for the

ACQ _MSG is described above. . Other formats can also be used.

13

WO 2005/066778 PCT/US2004/043320

[0042] As part of, or in response to, execution of the ACS instruction, the
 thread requesting the semaphore is placed in an inactive state with the wait-
semaphore state field set. By placing the thread in the inactive state, instructions
in the thread are not executed, which includes polling of the requested semaphore
should the initial semaphore request be refused. By placing the thread in the
inactive state processor resources and system bandwidth are not consumed by the
thread polling the semaphore. For a processing core supporting multi-threading,
the processor resources and system bandwidth can be used by other active
threads.
[0043] The semaphore entity receives the ACQ_MSG and places the
requester information entry in the linked list of the target semaphore. Ifthe
semaphore is not owned or controlled by another thread, the semaphore entry is
placed at the head of the semaphore linked list because there are no. other entries.
If the semaphore is owned or controlled by another thread, the semaphore entry is
placed at the tail of the semaphore linked list.. In one embodiment, the tail of the
linked list is identified by traversing the linked list entries in the buffer pool from
ahead entry to a tail entry and the new entry becomes the new tail entry. In
another embodiment, the tail of the linked list is directly identified by the tail
pointer of the linked list stored in the semaphore table.
[0044] As threads complete use of the resource corresponding to the
semaphore the thread holding the semaphore releases control of the semaphore,

which is described in greater detail below. When a semaphore is released the
14

WO 2005/066778 PCT/US2004/043320

corresponding semaphore entry at the head of the semaphore linked list is ‘
removed and the subsequent semaphore entry in the linked list becomes the head
of the linked list.

[0045] When a semaphore entry becomes the head of the semaphore linked
list, its state fields are examined by the semaphore entity. If the ack-suppression
fieid is not set, an acknowledgement message (ACK_MSG) is transmitted from
the semaphore entity to the thread associated with the semaphore entry. One
format for the ACK_MSG is described above. Other formats can also be used.
The ACK_MSG indicates to the receiving entity that the receiving entity has been
granted control of the corresponding semaphore.

[0046] In response to the ACK_MSG the corresponding thread is activated.
When activated, processing of instructions in the thread resumes and the shared
resource corresponding to the semaphore can be accessed. When the thread has
completed access to the shared resource the semaphore is released, which is

described in greater detail below. .-

Example Release of an Active Semaphore

[0047] In one embodiment, a semaphore is released when a Release
Semaphore (RLS) instruction is executed. The RLS instruction can be executed
by the processor executing the thread of instructions requesting the semaphore.

As part of, or in response to, execution of the RLS instruction, a Release

15

WO 2005/066778 PCT/US2004/043320

Semaphore Message (REL_MSG) is transmitted to the semaphore entity. One
format for the REL._MSG is described above. Other formats can also be used.
[0048] In response to the REL_MSG, the semaphore entity matches the
thread identifier ﬁe}d of the REL, MSG with the semaphore linked list. If the
corresponding semaphore entry is at the head of the linked list, the semaphore
entity removes the thread entry from head of the linked list. The subsequent entry.
in the linked list becomes the head entry. The semaphore can then be granted to.
the thread corresponding to. the new head entry. If the éorresponding semaphore
entry is not at the head of the linked list, the semaphore entity set thé release-state

field of the semaphore entry.

Behavior Models

[0049] Based on the formation of the linked list used, semaphores can be ‘
classified as associaﬁve semaphores or ordered semaphores. Based on the,
transmission of the ACK_MSG from the semaphore entity, semaphores can be
classified as active semaphores or as proactive semapilores. Thus, four types of

semaphores can be supported.

Overview of One Embodiment of Associative Semaphores

[0050] An associative semaphore allows concurrent threads to access the
semaphore in any order. In one embodiment, a semaphore is initialized by the
thread dispatcher at the beginning of a session with a NULL linked list (or a

single bit to indicate an empty linked list). No other message is sent from the
16

WO 2005/066778 PCT/US2004/043320

thread dispatcher to the semaphore entity. The semaphore linked list is built on
the fly by the execution circuitry executing the multiple threads of instructions.
[0051] Inone embodiment, a thread makes a fequest for an associative
semaphore by executing an ACS or an ASR instruction. The thread réleases an
associative semaphore by executing a RLS instruction. In one embodiment, a
new ACQ_MSG will result in an entry corresponding to the requesting thread
being placed at the tail of the semaphore linked list. This provides a first-come,

first-served (FCFS) semaphore model.

QOverview of One Embodiment of Ordered Semaphores

[0052] An ordered semaphore allows concurrent threads to access the
semaphore in a predetermined order. The order is predetermined by the thread
dispatcher at the time of dispatching. The order can be application dependent.
As thread dispatching is sequential in nature, the thread dispatcher may send an
ACQ_MSG on behalf of each dispatched thread to. the semaphore entity to build
the semaphore linked list according to. that order.

[0053] A thread entering a critical section may. use the WTS instruction to
wait for ownersliip of the semaphore. The ACS and ASR instructions are not
used as the thread will have already been placed in the semaphore linked list. In
one embodiment, the semaphore entity can only provide control of the semaphore
according to the linked list order. . Threads waiting on the semaphore will receive

the ACQ_MSG in the linked list order.

17

WO 2005/066778 PCT/US2004/043320

Overview of One Embodiment of Active Semaphores
[0054] As described above, with an active semaphore the ACQ_MSG is used

to cause a transition of a thread from an inactive state to an active state. The
semaphore entity receives one or many ACQ_MSGs from execution circuitry
executing threads. The semaphore entity only transmits one ACK_MSG to the
execution circuitry corresponding to the thread at the head of the semaphore
linked list. Upon removing the head of the semaphore linked list, the semaphore
entity examines the state of the new head of the linked list, and may transmit
subsequent ACK._MSG to the execution circuitry corresponding to the thread of
the new head of semaphore linked list. An active semaphore can also be an

associative semaphore.

Overview of One Embodiment of Proactive Semaphores

[0055] A proactive semaphore transmits one and only one ACK_MSG to the
thread at the head of the semaphore linked list whether or not the thread is in the
inactive state. This applies to threads using ordered staxﬁaphores with ACQ MSG
sent previously by the thread dispatcher so. that only one ACK. MSG sent to a
thread. A thread using an ordered semaphore may contain a WTS and/or a RLS
instruction.

[0056] For a proactive semaphore, the ACK_MSG is sent automatically by,
the semaphore entity to the thread at the head of the semaphore linked list. In one

embodiment, there exists a possibility. of a “risk condition” that may exist if the

18

WO 2005/066778 PCT/US2004/043320

timing of an eniry from a thread is enqueued in the semaphore linked list by the
thread dispatcher and the time the thread is visible to the execution circuitry.
Because both actions are initiated by the thread dispatcher, but occur through
different data paths, the timing of these events must be considered.

[0057] If thread execution begins before semaphore configuration, there will
be no risk condition if there is a WTS instruction in the thread. Because the wait-
semaphore thread state variable is set by the thread dispatcher, even if the WTS.
instruction of the thread is reached before the thread is enqueued to the
semaphore linked list the risk condition will not occur. The WTS instruction
causes the thread to enter the inactive state without sending a message to. the
semaphore entity. When the semaphore entity sends an ACK_MSG to the thread,
the execution circuitry causes the thread to be active again.

[0058] If the semaphore is configured by the thread dispatcher with the ack-
suppression field set a risk condition may result. In this case, the thread will not
be placed in the inactive state. Instead, if the thread reaches the RLS instruction
and sends a REL, MSG to. the semaphore entity before the semaphore is
configured for the thread, the semaphore entity may not be in condition to process
the REL, MSG. .In order to avoid this risk condition, the thread execution and the
semaphore entity can ensure that the REL,_MSG does not pass the ACQ MSG
issued by the thread dispatcher.

[0059] Thus, in one embodiment, in order to avoid the risk condition, the

thread dispatcher completes thread configuration before completion of semaphore
19

WO 2005/066778 PCT/US2004/043320

configuration if the ack-suppression is not set. The thread dispatcher completes
semaphore configuration before completion of thread configuration if the ack-
suppression field is set. Because the thread dispatcher dispatches ready thread
serially, sequential operations can ensure the necessary orderings.

[0060] When thread cohﬁguration is completed before semaphore
configuration, the thread dispatcher can dispatch a thread and wait for a signal
that indicates that thread configuration is complete before sending a message to
cause configuration of the semaphore. When semaphore configuration is
completed before thread configuration, the thread dispatcher can send a message
to initiate configuration of the semaphore and wait for a signal that indicates that
the semaphore configuration is complete before dispatching the thread. Because
serial configurations can unnecessarily, limit the throughput from the dispatcher, -

the configuration operations can be pipelined.

Thread Synchronization

[0061] Figures 2a-2d are conceptual illm&atiom:of dependencies in which
semaphores can be used to. synchronize thread execution. Figure 2a illustrates a
1:1:1-(one on one) dependency. The dependency. of Figure 2a can be a strong
sequential order dependency or an associative dependency. For a strong
sequential order dependency, a single proactive, ordered semaphore can be used.
In one embodiment, in the ACQ_MSG sent from the thread dispatcher to the

semaphore entity to request the semaphore, the ack-suppression field and the

20

WO 2005/066778 PCT/US2004/043320

auto-release field are both unset. The thread of instructions includes a WTS-RLS
instruction pair to obtain and release the semaphore.

[0062] For an associative dependency, a single active, associative semaphore
can be used. In one embodiment, in the ACQ_MSG sent from execution circuitry
executing a thread to the semaphore entity. to request the semaphore, the ack-
suppression field and the auto-release field are both unset. The thread of
instructions includes an ACS-RLS instruction pair to. obtain and release the
semaphore.

[0063] Figure 2b illustrates a 1:N (one on many) dependency, where one
thread has head dependency on N other threads where the N other threads do not
depend on each other. Here N is a positive integer number that can be one or
greater than oné. .For a 1:N dependency, a single proactive, ordered semaphore
can be used. In one embodiment, for the N independent threads, ACQ_MSGs are
sent by the thread dispatcher on behave of the N threads. In the ACQ_MSG sent
from the thréad dispatcher to the semaphore entity to request the semaphore, the
ack-suppression field is set and the auto-release field is unset. For the single
thread, which has head dependency. on the other N threads, an ACQ_MSG is also
sent by the thread dispatcher. In the ‘AC(LMSG to request the semaphore, the
ack-suppression field is unset and the auto-release field is set. The N threads of
instructions include only an RLS instruction to release the semaphore. The single
thread of instructions includes a WTS-RLS instruction pair to obtain and release

the semaphore.
21

WO 2005/066778 PCT/US2004/043320

[0064] Figure 2c illustrates a N:1 (many on one) dependency, where N
threads have head dependency on a single thread but the N threads do.not depend
on each other. ForaN:1 dependency, a single proactive, ordered semaphore can
be used. In one embodiment, the thread dispatcher is responsible of sending
ACQ_MSG on behave of both the N depending threads and the one dependent
thread. . In one embodiment, for the single dependent thread, in the ACQ _MSGto
request the semaphore, the ack-suppression field is set and the auto-release field
is unset. For the N depending threads, in the ACQ_MSG to request the
semaphore, the ack-suppression field is unset and the auto-release field is set.
The single dependent thread of instructions includes only an RLS instruction to
release the semaphore. The N depending threads of instructions include a WTS-
RLS instruction pair to obtain and release the semaphore.

[0065] Figure 2d illustrates a N:M (many on many) dependency, where N
depending threads have head dependency on M dependent threads. In this case,
the N depending threads do not depend on each other,.and the M dependent
thread do. not depend on each other. The N:M dependency case is a more general
case comparing to the 1:1:1, 1:N and N:1 cases described above. For a N:M
dependency, a singlé proactive, ordered semaphore can be used. In one
embodiment, the thread dispatcher is responsible of sending ACQ_MSGs on
behave of both the N depending threads and the M dependent threads. In one
embodiment, for the M dependent threads, in the ACQ_MSG to request the

semaphore, the ack-suppression field is set and the auto-release field is unset. For
22

WO 2005/066778 PCT/US2004/043320

the N depending threads, in the ACQ_MSG to request the semaphore, the ack-
suppression field is unset and the auto-release field is set. The M dependent
threads of instructions include only an RLS instruction to release the semaphore.
The N depending threads of instructions include a WTS-RLS instruction pair to
obtain and release the semaphore.

[0066]) The dependencies of Figures 2a-2d can be used to support more
complex dependencies. . For example, for a N:1:N dependency, two proactive,
ordered semaphores are used. The N:1 dependency is processed as described
above with respect to Figure 2¢ and the 1:N dependency is processed as described
above with respect to Figure 2b.

[0067] As described in greater detail below, the semaphore mechanisms and
the thread synchronization techniques described above can be appﬁed to many.
operations performed in a computer or similar electronic system. In the examples
set forth below, various graphical processing techniques can be performed using
the semaphore constructs described herein. While the graphical processing
techniques provide useful examples for use of active and proactive semaphores,

use of these semaphore mechanisms is not limited to graphical data processing.

Semaphores and Ray Tracing

[0068] Ray tracing is a technique for rendering three-dimensional graphics
and can support complex light interactions such as mirrors, transparent surfaces,

shadows, efc. In general, ray tracing is based on modeling reflection and

23

WO 2005/066778 PCT/US2004/043320

refraction by recursively following (tracing) a path that a ray of light takes at the
ray bounces through a scene. A trace of a ray between two bounces (or between
the screen position to. the first bounce or between a screen position or a bounce to
the light source) is referred to as a ray segment. As the ray is traced from the
viewing perspective (e.g., a camera) to the light source, the color is determined
for each pixel. Various techniques for ray tracing are known in the art. See, for
example, Cook, R.L. and Torrance, K.E., “A Reflectance Model for Computer
Graphics,” ACM Trans. on Graphics 1, 1 (Jan. 1982) and Glassner, A. (ed), “An
Introduction to Ray Tracing,” Academic Press, New. York, 1989.
[0069) When rendering an image using ray tracing techniques, an image

" screen can be rendered by with starting the eye rays on éach screen position. A
screen position is also referred to as destination pixel. Each eye ray will traverse
the three-dimensional scene space and generate one or many ray segments due to
the reflection and refraction interaction with the objects in the scene. Ray
segments associated with different destination pixels -are independent of each
other. The processing of ray segments associated with different destination pixels
can be computed in parallel without modifying shared resource and therefore
without using semaphore mechanism.
[0070] As there are many destination pixels on a imnage screen, the ray tracing
problem can fit well on a massively multi-threaded computing architecture. Fora
single destination pixel there may be multiple ray segments. . As the contribution

for multiple ray segments to a single pixel are accumulated, the final color can be
24

WO 2005/066778 PCT/US2004/043320

determined as a weighted sum of each ray segment associated with the pixel. For
example, when the ray segments to a single pixel are processed using different
threads on a massively multi-threaded computing architecture, the update of a
pixel’s final color, which is a shared resource for the threads associated with the
same pixel, requires the use of a semaphore mechanism. . For example, a N:1
dependency mechanism described above can be used for ray. tracing.
[0071] Using active and/or proactive semaphores, operations for tracing ray
segments (including ray segments associated with a common pixel) can be
executed in parallel. In one embodiment, the semaphore identifier can be
determined by hashing the destination pixel address. . If there are fewer
semaphores available than independent pixels, some pixels may share a
semaphore. This is a performance issue but not a functional problem. In this

. embodiment, the semaphores. can be used dynamically without global
synchronization. Without using semaphores, operations for tracing ray segments
associated with a pixel are performed sequentially. Thus, use of semaphores with
ray tracing techniques allows for greater parallel processing.
[0072] Figure 3 is a simple example scene in which rays are traced from a
light source to a viewer. . A large number of rays travel between light source 300
and viewer 330; however, only a small number of rays are illustrated in Figure 3
for reasons of simplicity of description.
[0073] Ray 340 travels directly from light source 300 to viewer 330. Because

ray 340 is not reflected or refracted, the pixels corresponding to ray 340 are
25

WO 2005/066778 PCT/US2004/043320

represented by the color of light provided by light source 300. Ray tracing
computations for the light corresponding to ray segments 350, and 355 is more
complex because the light is reflected by object 310.

[0074] As discussed above, ray. tracing operations. for segments 350 and 355
can be performed in parallel. Thus, ray tracing operations for segments 350 and
355 can be performed as two. threads, the results of which are combined to
provide the pixel color resulting from the multiple ray tracing operations.
Coordination of the two threads can be accomplished using active semaphores as
described above.

[0075] Figure 4 is a flow diagram of one embodiment of ray tracing using
active semaphores. The ray paths are determined, 410. Determination of ray
paths can be accomplished in any manner known in the art. The components
(e.g., hardware components, software components, etc.) used in the ray tracing
operations determine whether multiple ray segments contribute to a single pixel,
420. |

[0076] If a single ray segment contributes to a single pixel, 420, the ray path
is traced, 425. For this single ray segment, ax.ly ray tracing technique known in
the art can be used. A pixel color is determined, 475, based on the results of the
ray tracing operations. The pixel can then be displayed, printed or otherwise
rendered for viewing.

[0077] If multiple ray segments contribute to a single pixel, 420, one or more

of the multiple ray segments can be traced in parallel. Ray tracing for multiple
26

WO 2005/066778 PCT/US2004/043320

ray segments in parallel can create a N:1 dependency where the pixel result is
dependent upon the results of the ray tracing operations for the N ray segments.
This N:1 dependency is handled as described above.

[0078] When the dependencies are resolved, 440, the results of the multiple
ray tracing operations are accumulated, 450. A pixel color is determined, 475,
based on the results of the accumulated ray tracing operations. The pixel can then

be displayed, printed or otherwise rendered for viewing.

Z-buffer-based Three-Dimensional Rendering Using Active Semaphores

[0079] In Z-buffer-based three-dimensional graphics rendering, rendered
objects are divided into render primitives such as points, lines, triangles, triangle
strips, etc. The render primitives are projected onto the viewing screen. Render
primitives projected onto different screen pixels can be rendered independently.
When multiple opaque primitives are projected onto the same screen pixel, only
the primitive in front of other primitives (with a smaller distance measure from
the destination pixel, the so called Z value) updatés the screen pixel color. .

[0080] The Z-buffer is a screen size buffer that, on a pixel-by-pixel basis,
stores the Z value of the most recent update to screen pixels. Obscurities are
resolved using Z-test. For any primitive that projects on a screen pixel, the
primitive’s Z-value is compared with the Z-value stored in the Z-buffer for screen
pixel. If the primitive’s Z-value is smaller than the Z-buffer value, the destination

pixel color is updated with the rendered color from the primitive, and the Z-buffer

27

WO 2005/066778 PCT/US2004/043320

value is updated as well. . If the primitive’s Z-value is equal to or greater than the
Z-buffer value, the destination pixel color as well as the corresponding Z-buffer
value is unchanged.

[0081] In order to produce consistent screen pictures, the primitives projected
onto the same screen pixel must be rendered in the strict order. The Z-buffer-
based three-dimensional rendering can be realized using multi-threaded
processing on a massively threaded architecture. For example, indepencient
primitives can be rendered by independent threads. Dependencies between the
primitives, for example the Z-buffer test and update on a common pixel by
multiple primitives, can be resolved using the semaphore mechanisms described
above.

[0082] Figure 5 is a flow diagram of one embodiment of Z-buffer-based
three-dimensional graphics rendering using proactive ordered semaphores. The
object(s) to be rendered are segmented into. primitives and portions of primitives
based on the projections to. the viewing screen, 510. The semaphores are
configured for the primitives or portions of primitives based on the projected
screen pixel locations, 520.

[0083] Rendering operations are performed on the primitives or portions of
primitives by multiple threads of instructions, 530. The threads can be executed
by one or more processors and can resolve dependencies using one or more of the
semaphore mechanisms described above. For example, three-dimensional

rendering for multiple primitives by different threads that are projected onto the
28

WO 2005/066778 PCT/US2004/043320

same screen pixel can create a 1:1:1 dependency where the Z-test and destination
color update of each thread is dependent upon the results of one or many threads
updating the same screen pixel preceding the thread. This 1:1:1 dependency is
handled as describe& above.

[0084]. When the dependencies are resolved, 540, the thread for the given
primitive or primitive segment performs Z-test and upon successful Z-test
updates the Z-value and color value for the projected pixel, 550. . A final rendered
picture is generated after the primitives are rendered, 560. The final rendered

picture can then be displayed, printed or otherwise presented for viewing.

Video. Decoding Using Active Semaphores

[0085] In some video coding standards, for example MPEG-2, groups of one
or more segments (such as macroblocks) within a picture (visual object plane, or
VOP) can be decoded by independent threads of instructions. In some video
coding standards, for example MPEG-4, decoding of a picture segment such as a
macroblock has dependency of decoding of other..picalre. segments. Therefore, a
picture can be decoded by multiple threads of instructions on a multi-threaded
architecture. Dependencies between the threads can be resolved using the
semaphore mechanisms described abové.

[0086] MPEG-2 is described, for example, in ISO/IEC 13818 “Generic
coding of moving pictures and associated audio information” published in

October 2000 and related standards. MPEG-4 is described, for example, in

29

WO 2005/066778 PCT/US2004/043320

ISO/IEC. 14496.“Coding of audio-visual objects” published in March 2002 and
related standards.

[0087] Figure 6 is a flow diagram of one embodiment of video decoding
using active and/or proactive semaphores. The flow diagram depicts the
decoding process of one picture of a video sequence. The same process can be
repeated to decode multiple pictures of a video sequence. The segments of a
picture to be decoded are determined, 610. The segments can be, for example,
blocks, groups of blocks, macroblocks or groups of macroblocks, or any other
segmentation of the frame to be decoded.

[0088] In one embodiment, before decoding operations are performed on the
segments by different threads of instructions, 640, inter-segment dependencies
are determined. If a segment has head dependency — decoding of the segment
depends on the decoding results of other segments, 620, — one or more
semaphores with head dependency are configured for the thread of instructions
that processes the segment, 625. If a segment has.tail dependency — decoding of
the subsequent segment(s) depends on the decoding results of this segment, 630,
—one or more semaphores with tail dependency are configured for the thread of
instructions that processes the segment, 635.

[0089] Decoding operations are performed on the segments by. multiple
threads of instructions, 640. The threads can be executed by one or more
processors and can resolve dependencies using one or more of the semaphore

mechanisms described above. For example, for a segment that has head
30

WO 2005/066778 PCT/US2004/043320

dependency on N segments, dependency of these segments can be resolved using
a semaphores configured in N:1 dependency mode. The threads of the N
dependent segments are configured with semaphores with tail dependencies and
the one depending segment is configured with semaphore with a head
dependency. This N:1 dependency is handled as described above.

[0090] When the dependencies of a segment are resolved, 630, the results of
the decoded segment are generated, 650. A final picture is generated ﬁom the
aggregated segment results, 660. The final decoded picture can then be

displayed, printed or otherwise presented for viewing.

Conclusion

[0091] Reference in the specification to “one embodiment” or “an
embodiment” means that a particular feature; structure, or characteristic described
in connection with the embodiment is included in at least one embodiment of the
invention.. The appearances of the phrase “in one embodiment” in various places
in the specification are not necessarily all referriné to the same embodiment.
[0092] Inthe foregoing specification, the invention has been described with
reference to specific embodiments thereof. It will, however, be evident that
various modifications and changes can be made thereto without departing from
the broader spirit and scope of the invention. The specification and drawings are,

accordingly, to be regarded in an illustrative rather than a restrictive sense.

31

WO 2005/066778 PCT/US2004/043320

CLAIMS
What is claimed is:

1. A method comprising:

executing a first thread of instructions to process a first graphical element
of an image to be displayed;

executing a second thread of instructions to process a second graphical
element of the image to be displayed,; |

placing the first thread of instructions in an inactive state in response to
detectién of at least one of a set of predetermined conditions related to a
relationship between the first graphical element and the second graphical element;

maintaining the first thread of instructions in the inactive state until a
message is received from a semaphore entity; and

resuming execution of the first thread of instructions in response to.

receiving the message from the semaphore entity.,

2. The method of claim 1 wherein the set of predetermined

conditions comprises an unresolved dependency.

3. The method of claim 1 wherein the set of predetermined
conditions comprises the lack of a response from the semaphore indicating that a

resource corresponding to. the semaphore is unavailable.

32

WO 2005/066778 PCT/US2004/043320

4. The method of claim 1 further comprising maintaining an
indication of a state for the first thread of instructions and for the second thread of

instructions.

5. The method of claim 4 wherein the indication of the state of each
thread comprises a state variable corresponding to a dependency, if any, of an

associated thread.

6. The method of claim 1 wherein the first thread comprises a first
set of ray tracing instructions and the first graphical element comprises a first ray
segment, and further wherein the second thread comprises a second set of ray
tracing instructions and the second graphical element comprises a second ray

segment.

7. The method of claim 1 wherein the first thread comprises a first
set of video decoding instructions and the first graphical element comprises a first
picture segment, and further wherein the second threa-d comprises a second set of

video. decoding instructions and the second graphical element comprises a second

picture segment.

8. The method of claim 7 wherein the first picture segment comprises
a first macroblock and the second picture segment comprises a second

macroblock.

33

WO 2005/066778 PCT/US2004/043320

9. The method of claim 1 wherein the first thread comprises a first
set of three-dimensional rendering instructions and the first graphical element
comprises a first render primitive, and further wherein the second thread
comprises a second set of three-dimensional rendering instructions and the

second graphical element comprises a second render primitive.

10. The method of claim 9 wherein the first render primitive
comprises one of a first point, a first line, a first triangle, and a first triangle strip,
and further wherein the second render primitive comprises one of a second point,

a second line, a second triangle, and a second triangle strip.

11. The method of claim 9 further comprising:

determining a distance value for the first render primitive;

determining a distance value for the second render primitive;

comparing the distance value for the first render primitive and the second
render primitive to. determine a relationship between the first render primitive and
the second render primitive; and

displaying a selected one of the first render primitive and the second
render primitive based on the relationship between the first render primitive and

the second render primitive.

34

WO 2005/066778 PCT/US2004/043320

12. Anapparatus comprising:

execution circuitry to receive and execute a first thread of instructions
corresponding to a first graphical element of an image and a second thread of
instructions corresponding to a second graphical element of the image, wherein
the execution circuit transmits a semaphore request message and places the first
thread in an inactive state in response to. the first thread requiring a resource
having an associated semaphore; and

a semaphore entity. coﬁpled with the execution circuitry. to receive the
semaphore request message from the execution circuitry and to selectively. grant
control of the semaphore in response to. the semaphore request message by,
transmitting a semaphore acknowledge message to the execution circuitry,
wherein the execution circuitry, in response to receiving the semaphore

acknowledge message, removes the thread of instructions from the inactive state.

13. The apparatus of claim 12 wherein the execution circuitry
comprises:.
a first execution circuit to. execute the first thread of instructions; and

a second execution circuit to execute the second thread of instructions.

14. The apparatus of claim 12 wherein the first thread comprises a first
set of ray tracing instructions and the first graphical element comprises a first ray

segment, and further wherein the second thread comprises a second set of ray

35

WO 2005/066778 PCT/US2004/043320

tracing instructions and the second graphical element comprises a second ray

segment.

15. The apparatus of claim 12 wherein the first thread comprises a first
set of video decoding instructions and the first graphical element comprises a first
picture segment, and further wherein the second thread comprises a second set of
video decoding instructions and the second graphical element comprises a second

picture segment.

16. The apparatus of claim 15 wherein the first picture segment
comprises a first macroblock and the second picture segment comprises a second

macroblock.

17. The apparatus of claim 12 wherein the first thread comprises a first
set of three-dimensional rendering instructions and the first graphical element
comprises a first render primitive, and further wherein the second thread
comprises a second set of three-dimensional rendéﬁné instructions and the

second graphical element comprises a second render primitive.

18. The apparatus of claim 17 wherein the first render primitive
comprises one of a first point, a first line, a first triangle, and a first triangle strip,
and further wherein the second render primitive comprises one of a second point,

a second line, a second triangle, and a second triangle strip.

36

WO 2005/066778 PCT/US2004/043320

19. The apparatus of claim 12 further comprising a memory coupled
with the execution circuitry to store the first thread of instructions and the second

thread of instructions.

20. The apparatus of claim 12 further comprising:

at least one additional execution circuit to execute threads of instructions;
and .

a thread dispatcher coupled with the execution circuitry and at least one

additional execution circuit to dispatch threads for execution.

21. The apparatus of claim 12 wherein when the first thread of
instructions is in the inactive state, execution of the instructions ceases and the
execution circuitry does not poll the semaphore entity to. determine a status of the

semaphore request message.

22. Anapparatus comprising:

means for executing a first thread of insm;ctic;ls to. process a first
graphical element in an image to be disi)layed;.

means for executing a second thread of instructions to process a second
graphical element in the image to be displayed;

means for placing the first thread of instructions in an inactive state in

response to. detection of at least one of a set of predetermined conditions related

37

WO 2005/066778 PCT/US2004/043320

to.a relationship between the first graphical element and the second graphical
element;

means for maintaining the first thread of instructions in the inactive state
until a message is received from a semaphore entity; and

means for resuming execution of the first thread of instructions in

response to receiving the message from the semaphore entity.

23. The apparatus of claim 22 wherein the first thread comprises a first
set of ray tracing instructions and the first graphical element comprises a first ray.
segment, and further wherein the second thread comprises a second set of ray
tracing instructions and the second graphical element comprises a second ray

segment.

24. The apparatus of claim 22 wherein the first thread comprises a first
set of video decoding instructions and the first graphical element comprises. a first
macroblock, and further wherein the second thread comprises a second set of
video decoding instructions and the second graphical element comprises a second

macroblock..

25. The apparatus of claim 22 wherein the first thread comprises a first
set of three-dimensional rendering instructions and the first graphical element

comprises a first render primitive, and further wherein the second thread

38

WO 2005/066778 PCT/US2004/043320

comprises a second set of three-dimensional rendering instructions and the

second graphical element comprises a second render primitive.

26. A system comprising:

amemory controller;

execution circuitry coupled with the memory controller to receive and
execute a first thread of instructions corresponding to a first graphical element of
an image and a second thread of instructions corresponding to a second graphical
element of the image, wherein the execution circuit transmits a semaphore request
message and places the first thread in an inactive state in response to the first
thread requiring a resource having an associated semaphore; and

a semaphore entity coupled with the execution circuitry to receive the
semaphore request message from the execution circuitry and to selectively grant
control of the semaphore in response to, the semaphofe request message by,
transmitting a semaphore acknowledge message to. the execution circuitry,
wherein the execution circuitry, in response to reéeiv{;lg the semaphore

acknowledge message, removes the thread of instructions from the inactive state.

27. The system of claim 26 wherein the execution circuitry comprises:
a first execution circuit to execute the first thread of instructions; and

a second execution circuit to execute the second thread of instructions.

39

WO 2005/066778 PCT/US2004/043320

28. The system of claim 26 wherein the first thread comprises a first
set of ray tracing instructions and the first graphical element comprises a first ray
segment, and further wherein the second thread comprises a second set of ray.
tracing instructions and the second graphical element comprises a second ray

segment.

29. The system of claim 26 wherein the first thread comprises a first
set of video decoding instructions and the first graphical element comprises a first
macroblock, anci further wherein the second thread comprises a second set of
video decoding instructions and the second graphical element comprises a second

macroblock.

30. The system of claim 29 wherein the first picture segment
comprises a first macroblock and the second picture segment comprises a second

macroblock.

31. The system of claim 26 wherein tﬁe ﬁrst thread comprises a first
set of three-dimensional rendering instructions and the first graphical element
comprises a first portion render primitive, and further wherein the second thread
comprises a second set of three-dimensional rendering instructions and the

second graphical element comprises a second render primitive.

32. The system of claim 31 wherein the first render primitive

comprises one of a first point, a first line, a first triangle, and a first triangle strip,
40

WO 2005/066778 PCT/US2004/043320

and further wherein the second render primitive comprises one of a second point,

a second line, a second triangle, and a second triangle strip.

33. The system of claim 26 further comprising a memory coupled with
the memory controller to store the first thread of instructions and the second

thread of instructions.

34. The system of claim 26 wherein when the first thread of
instructions is in the inactive state, execution of the instructions ceases and the
execution circuitry does not poll the semaphore entity to. determine a status of the

semaphore request message.

41

PCT/US2004/043320

WO 2005/066778

1/6

["DId

0LT
ALLINA
TIOHIVINAS
$91 o1
1 SN9 TOYINOD | YHTIOYINOD
A MOY E d MOd
Y Y A\ 4
65T ST 0ST
22:(08) TI0D TI0D
DONISSHDOUd DNISSHDOUd ONISSHDOUd
A A A —_
. 0zI
v v v STl .| YHHDLVJSIA
4 4 4 SN9 gDVSSHN avadL
A
Shl 0T
SN 9 TOYILNOD | YA TTIOYLNOD
A MOY A 4 MOd
v v L 4 4 N 4 4
6€T €1 0€T v
TI0D TI0D 22:(0)0) o1t
DONISSHOOUd DONISSHDOUd ONISSHDOUd AHDAVIAIH
KXIOWHN

WO 2005/066778 PCT/US2004/043320

FIG.2c FIG.2d

PCT/US2004/043320

WO 2005/066778

3/6

00€
HDY4NOS
IHOIT

¢ DI

WO 2005/066778 PCT/US2004/043320
4/6

C “BEGIN)
;

410

DETERMINE RAY PATHS

SEGMENTS TO
SINGLE PIXEL?

Y

Y

TRACERAYPATHTO | 425 “0— TRACEMULTIPLERAY
PIXEL i SEGMENTS

l 475

DETERMINE PIXEL COLOR |e——

440 __

DEPENDENCIES
RESOLVED?

NO

L
(ENDv 450

ACCUMULATE SEGMENT
CONTRIBUTIONS

FIG. 4

WO 2005/066778

5/6

Q BEGIN)
l

510

SEGMENT OBJECTS INTO
- PRIMITIVES

Y 520

CONFIGURE SEMAPHORES
FOR PRIMITIVES BASED ON

TARGET PIXELS

* _- 530

PERFORM RENDERING
OPERATIONS ON
PRIMITIVES USING
MULTIPLE THREADS

540
DEPENDENCIES

RESOLVED?

550

RESULTS FROM RENDERING

UDPATE DESTINATION
COLOR AND Z USING

THREADS

Y _ 560

GENERATE FINAL
RENDERED PICTURE

l
o)

PCT/US2004/043320

FIG. 5

WO 2005/066778 PCT/US2004/043320

Q BEGIN)
v

GENERATE SEGMENTS OF

610

625 N | A PICTURE
CONFIGURE 620
SEMAPHORE(S) WITH
HEAD DEPENDENCY DEPENDENCY?

635

AN

CONFIGURE
SEMAPHORE(S) WITH
TAIL DEPENDENCY

DEPENDENCY?

PERFORM DECODING
OPERATIONS ON
SEGMENTS USING
DIFFERENT THREADS

DEPENDENCIE
RESOLVED?

NO

GENERATE RESULTS
FROM DECODING
THREADS

¥ 670

GENERATE FINAL
PICTURE

i
FIG. 6 5

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

