Abstract:
The invention relates to an apparatus for cyclone separation of a fluid flow into essentially a gas phase fraction and a liquid phase fraction, by bringing the fluid flow into rotation so that said fluid flow is separated into a central zone essentially containing the gas phase fraction, and an outer annular zone essentially containing the liquid phase fraction, comprising: a housing (2); a swirl element (6) for rotation of the fluid; a gas phase outlet (5); and a liquid phase outlet (4); whereby the gas phase outlet and the liquid phase outlet both connect to a common collecting chamber outside the housing. The invention also relates to a vessel provided with at least one such apparatus.
Apparatus for cyclone separation of a fluid flow into a gas phase and a liquid phase and vessel provided with such an apparatus

The invention relates to an apparatus for cyclone separation of a fluid flow into essentially a gas phase fraction and a liquid phase fraction, by bringing the fluid flow into rotation so that the fluid flow is separated into a central zone essentially containing the gas phase fraction, and an outer annular zone essentially containing the liquid phase fraction, comprising: a housing having an upstream fluid inlet; a swirl element for rotation of the fluid flow being located in the housing downstream of the fluid inlet; a gas phase outlet opened to the central zone of the housing downstream of the swirl element; and a liquid phase outlet connecting to the outer zone of the housing downstream of the swirl element, whereby the gas phase outlet and the liquid phase outlet both connect to a common collecting chamber outside the housing. The invention also relates to a vessel provided with at least one apparatus.

Cyclone separators are known in the technology field of extraction of hydrocarbons (oil and gas). The produced fluids usually consists of liquid (oil and water) in which gas is dissolved whereby during transportation gas bubble formation and two-phase flow arises leading to undesired pulsatory flow and vibrations in pipelines. A fluid is thus defined as containing a liquid and/or a gas; a liquid may solely consist of a fluid or solely consist of a gas, or as a third alternative may consist of a mixture of a liquid and a gas. To solve these problems in extracting of hydrocarbons cyclone separation of a fluid flowing through a pipeline is realised by in line apparatuses bringing the fluid in rotation so that the fluid is separated into a central zone containing a light fraction, essentially a gas phase fraction, and an outer annular zone containing a heavier fraction, essentially a liquid phase fraction. The gas phase fraction in the central zone and the liquid phase fraction in the outer zone are discharged via respective liquid phase outlet means and gas phase outlet means. The liquid phase outlet means and gas phase outlet means both end up in a common chamber (vessel) wherein the both fractions are thus introduced in pre-separated condition thus resulting in a better and faster separation of the fractions then when introduced in such a vessel without per-separation in one or more apparatuses for cyclone separation.
A general object of the invention is to provide an apparatus and a method able to effectively separate a fluid flow by rotation (centrifugal separation) in essentially a light gas fraction and a heavier liquid fraction with higher efficiency than the prior art cyclone separation technique.

The present invention provides an apparatus of the introductory stated type characterised in that such apparatus also comprises at last one permeable flow guide located centrally in the housing, which permeable flow guide connects to the gas phase outlet. The permeable flow guide is to be understood as at least permeable for the light gas fraction, however the flow guide may alternatively also be permeable for both the fractions; the light gas fraction as well as the heavier liquid phase fraction. Such a separating cyclone has improved properties compared to the prior art separating cyclones. This is understood to mean that the cyclone according the present invention realises a higher separating efficiency at a given composition and pressure of the fluid for admitting and/or a lower pressure drop over the cyclone. This is a result of the fact that the rotation of the fluid is longer maintained after passing the swirl element in the situation that a flow guide is installed than in the conventional situation wherein the flow guides is missing (conventional separators and gas scrubbers). A further advantage is that the flow guide limits the change of re-entering of liquid phase parts (droplets) in the gas flow near the entrance of the gas phase outlet as the flow guide results in a more gradual turn of the gas flow thus limiting the turbulence in the area downstream the swirl element. Another positive effect from the presence of the permeable flow guide is that it leads to a lower pressure drop over the separator. All these advantages lead to a higher primary separation efficiency. The apparatus according the invention may also simply be installed in any existing equipment without the need for any substantial modifications on other construction elements.

A relevant application of the apparatus according to the invention will be to separate hydrocarbon gas from produced water on an oil production platform, so that a serious two phase flow (slugging) in the produced water-pipeline is eliminated. The apparatus enables the gas to be separated from the water in a simple and compact manner in addition, the separated gas may be recovered instead of being burnt off in the flare of the platform.
The gas phase outlet preferably comprises a gas discharge channel extending through
the swirl element, whereby the inlet opening of the gas discharge channel is positioned
at the distal end of the swirl element. Thereby the opening of the gas phase outlet may
be positioned at the distal end of the swirl element (or on a short distance before or after
the swirl element) and the flow guide connects to the swirl element. For enabling such
through feed of the gas discharge channel the swirl element preferably comprises swirl
blades connected to a core body. Through this core body of the swirl element the gas
phase outlet may be fed such that the upstream end of the gas phase outlet ends at the
downstream side of the core body of the swirl element. The gas phase outlet further then
further extends through the core body thus feeding the gas backwards in relation to the
flow of the fluid feed. Preferably the outlet for the liquid fraction is connecting in axial
direction to the housing.

In a specific embodiment the flow guide is substantially cone shaped, the cone shaped
flow guide connects to the opening of the gas phase outlet, and the tip of the cone
shaped flow guide is directed downstream. A variation on the cone shaped flow guide is
that the cone shaped flow guide is undercut, bullet shaped or is provided with helical
grooves or any other profile.

As the flow guide is permeable it may be partially opened. Such is possible if the flow
guide is provided with apertures, such as holes (e.g. circular holes), slots, grooves on
any other type. Another option is to construct a partially opened flow guide out of mesh
material. A further alternative for a permeable flow guide is a guide that is exclusive
permeable for a gas fraction or a flow guide that is hardly permeable for liquids.
Options for such flow guides that are not or limited permeable for liquid are e.g. flow
guides made out of ceramics or consists of a membrane material.

The separating cyclone may relates to a tangential, radial or axial separating cyclone. In
a tangential separating cyclone the fluid inlet debouches tangentially relative in the
housing. However the fluid inlet may also debouche radial or axial in the housing as a
swirl element is provided creating the rotation of the fluid.

The housing is essentially tubular, however to enhance the efficiency by bringing about
a further increase in the tangential speed of the fluid, the housing has in a further
preferred embodiment a decreasing diameter at the position of the distal part of the housing.

The liquid phase outlet preferably comprise a liquid discharge pipe extending coaxially with the housing, so that the relative heavy liquid is discharged with a minimum pressure drop.

In yet an other alternative embodiment the permeable flow guide located centrally in the housing connecting to the gas phase outlet comprises a secondary gas extraction device that is coaxially located in the liquid phase outlet on a distance of the opening of the gas phase outlet, and which secondary gas extraction device connects to the gas phase outlet with a coaxial gas retrieval pipe, the surface of he cross-section of the gas retrieval pipe being smaller than the surface of the cross-section of the secondary gas extraction device. In case both the gas retrieval pipe and the secondary gas extraction device are in axial direction rotational symmetrical than the diameter of the gas retrieval pipe is smaller than the (average) diameter of the secondary gas extraction device. Apart from the advantages already listed before this embodiment enables the separation of entrained gas from the liquid phase fraction; thus further enhancing the separation efficiency of the apparatus for cyclone separation. The primary separation has already taken place before close to the swirl element where a first gas volume is removed via the opening of the gas phase outlet; now the secondary gas extraction device enables to remove a second gas phase fraction that was still not removed from the liquid during the first separation step.

Preferably such secondary gas extraction device has a decreasing diameter downstream from the connection to the gas retrieval pipe. This implies that the distal part of the secondary gas extraction has a smaller diameter than its diameter further upstream. Due to the constriction of the secondary gas extraction device the speed of the liquid phase fraction flow will decrease and the pressure of the liquid will as a result rise. The higher liquid pressure downstream the secondary gas extraction device will further support the drainage of any gas remains in the liquid phase fraction flow; which further diminishes the gas content of the liquid that leaves the apparatus for cyclone separation. For the drainage of remaining gas the secondary gas extraction device is preferably provided with apertures (or is at least permeable as already discloses in relation to the cone that
directly connects to the gas discharge) to let a remaining light gas fraction in the already pre-separated liquid in the liquid phase outlet enter the secondary gas extraction device. From there the gas is lead through the coaxial gas retrieval pipe to the gas phase outlet. To prevent the gas leaving the secondary gas extraction device uncontrolled the secondary gas extraction device can be closed at its distal end. An further additional feature to the secondary gas extraction device can be at least one helical blade to be located on the perimeter (outside) thus influencing the liquid phase flow in the liquid phase outlet and enabling a better control of the liquid pressure.

The invention also provides an apparatus for cyclone separation wherein the permeable flow guide comprises: a cone shaped permeable flow guide that connects to the opening of the gas phase outlet, and a secondary gas extraction device that is coaxially located in the liquid phase outlet on a distance of the opening of the gas phase outlet, whereby the coaxial gas retrieval pipe of the secondary gas extraction device connects to the distal side of the cone shaped permeable flow guide. In this embodiment the combination of two different embodiments of the apparatus for cyclone separation as previously are combined.

The invention also relates to a vessel provided with at least one apparatus for cyclone separation according the present invention, wherein the gas phase outlet and the liquid phase outlet of the apparatus for cyclone separation both end in a single communicating space. In a preferred embodiment more than one apparatus for cyclone separation are located in a single vessel and the fluid inlets of these plural apparatuses for cyclone separation are preferably connected to a common distribution chamber, which distribution chamber connects to a central external fluid feed for the fluid to be processed.

Seabed installations in flow lines and transport pipes will also be a possibility for this technology, thus to separate an (oil) well flow directly in the flow line from the oil well, either on a platform, under water or down in the oil well. The substantial axial feed flow in the housing enables reduced constructional dimensions and limits the pressure drop in the apparatuses for cyclone separation according the present invention. The application of the invention in the technology field of extraction of hydrocarbons makes it possible to relieve the gas separation process on the platform. Oil well production is
often limited because of the gas capacity of conventional separators. By separating the

gas from the oil well flow upstream of the conventional separator train, the resulting gas

quantity to be processed will decrease, and the bottleneck is taken away. The gas may

be conducted outside of the separator train directly and/or reinjected in the well.

5

The invention is further elucidated on the basis of the non-limitative exemplary

embodiments shown in the following figures. Herein:

figure 1 shows a perspective side view of an embodiment of an apparatus for cyclone

separation according the present invention including a cone shaped flow guide that
directly connects to the gas phase outlet;

figure 2 shows a perspective side view of an alternative embodiment of an apparatus for

cyclone separation according the present invention including a flow guide comprising a

secondary gas extraction device on a distance of the gas phase outlet;

figure 3 shows a perspective side view of a second alternative embodiment of an

apparatus for cyclone separation according the present invention combining the two

embodiments as presented in figures 1 and 2; and

figure 4 a vessel provided with at four apparatuses for cyclone separation as shown in

figure 3.

20 The apparatus 1 according to the invention as shown in figure 1 is intended for

separation of a gas phase fraction from a liquid phase fraction (e.g. water/oil), for

example from a fluid in a pipeline leading to an oil platform that is fed to the apparatus

1 according arrow Pi. The apparatus 1 comprises a housing 2 having an inlet 3 for the

supply of the fluid to be degassed, a liquid phase fraction outlet 4 where the heavier

liquid phase leaves the housing 2 according arrow P2, and a gas phase fraction outlet 5

where the lighter gas phase fraction leaves the housing 2 according arrow P3. The

supply of the fluid to be degassed according arrow Pi and the discharge of the heavier

liquid phase fraction according arrow P2 in both cases takes place in the axial direction

of the housing 2. The housing 2 here shown is conical (decreasing in axial direction to

the distal end of the housing 2) but could also have another shape, for example

cylindrical shape with a fixed diameter. In the housing 2 is mounted an co-axial swirl

element 6 comprising curved swirl blades 7 connected to a core body 8. The swirl

element 6 sets the fluid to be degassed into rotation for achieving the desired separation

of the two-phase mixture downstream of the swirl element 6 into a gas phase fraction in
a central zone of the housing 2, and liquid phase fraction in an annular outer zone of the
housing 2. The separation of the two fractions is to be understood as a separation in
essence; the gas phase fraction will likely still contain vapours and liquid fractions
(droplets).

The separation is a result of the tangential speed of the fluid to be degassed, the
relatively heavier liquid phase fraction of the fluid will fling outward due to centrifugal
forces while the light gas phase fraction of fluid will migrate to the core of the housing
2. The heavier liquid phase fraction is then discharged according arrow P2 via liquid
phase fraction outlet 4, while the gas phase fraction is fed backwards through an inlet
opening 9 of a gas discharge channel 10. The inlet opening 9 is located in the core body
8 of the swirl element 6. The gas phase fraction finally leaves the apparatus 2 according
arrow P3.

Centrally in the housing 2 is also provided a permeable flow guide 11 provided with
holes 12. The permeable flow guide 11 connects to the inlet opening 9 of the discharge
channel 10 and is as shown positioned at the distal end of the swirl element 6 such that
it directly connects to (is linked to) the swirl element 6. The flow guide 11 shown here
is cone shaped, the tip 13 of the cone 11 directed downstream. The flow guide 11 makes
that the rotation of the fluid provided by the swirl element 6 longer continues. The flow
guide 11 also limits the turbulence downstream of the inlet opening 9 thus limiting the
remixing of already the separated liquid and gas phase fractions. The flow guide 11
provides a gradual turn of the separated gas fraction flow.

Figure 2 shows an alternative embodiment of an apparatus 20 for cyclone separation
according the present invention. Corresponding components with the embodiment
shown in figures 1 are designated with the same reference numerals. Housing 21 of the
apparatus 20 as shown has a more cylindrical shape that the housing 2 shown in figure
1. A further, and more relevant difference in relation to the present invention is that the
apparatus 20 comprises a flow guide 22 with a secondary gas extraction device 23 on a
distance of the inlet opening 9 of the gas discharge channel 10. The secondary gas
extraction device 23 connects to the inlet opening 9 of the discharge channel 10 with a
coaxial gas retrieval pipe 24 feeding the separated gas fraction back (according arrow
P4) to the inlet opening 9 of the discharge channel 10 and then further back through the
discharge channel (according arrow P₃). The gas retrieval pipe 24 connects to the inlet opening 9 of the discharge channel 10 such that there is still an opening left between them to allow the first gas fraction separated from the fluid shortly after the swirl element 6 to flow into the gas discharge channel 10 according arrow P₅. This can be realised e.g. by using a gas retrieval pipe 24 that has a smaller diameter than the diameter of the opening 9 of the gas discharge channel 10. This may even result in a lower pressure in the gas retrieval pipe 24 due to a venturi effect. The gas retrieval pipe 24 also has a smaller diameter than the diameter of the secondary gas extraction device 22. The secondary gas extraction device 22 has a truncate cone shaped body 25 provided with apertures 26 to enable the gas phase fraction to enter the truncate cone shaped body 25. The truncate cone shaped body 25 is closed at its distal end 27. Also the embodiment as shown in figure 2 leads to a higher separating efficiency.

Not shown in the figures 1 and 2 is a guide body that may be provided in the housing 2, 21 upstream of the swirl element 6 to guide the supplied fluid in an annular axial flow to the swirl element 6. Another remark is that all dimensions and configurations of the apparatus 1, 20 have to be adapted to the typical application conditions. An example of such geometry a the apertures 12, 26; these may vary or even lack as long as the flow guide 11 and the truncate cone shaped body 25 are permeable for the separated gas phase fraction.

Figure 3 shows a second alternative embodiment of an apparatus 30 for cyclone separation according the present invention combining some features of the two apparatuses 1, 20 shown in figures 1 and 2. Again corresponding components with the embodiments shown before are designated with the same reference numerals. The apparatus for cyclone separation 30 is provided with a substantially cylindrical housing 31 having an inlet 3' for the fluid to be degassed, a liquid phase fraction outlet 4, and a gas phase fraction outlet 5'. The inlet 3' and the gas phase outlet 5' are changed of position in relation to the comparable items in the figures 1 and 2. Here the fluid fed via inlet 3' is making a turn before entering the swirl element 6 while the separated gas phase fraction coaxially leaves the gas phase outlet 5'. The apparatus 30 furthermore also comprises a permeable flow guide 32 directly connecting to the inlet opening 9 of the discharge channel 10 (not disclosed in this figure). The flow guide 32 is composed out of helical strips and is on its distal tip side it is connected to a retrieval pipe 24.
further downstream leading to a secondary gas extraction device 33 having cone shaped body 25 with apertures. The outside of the secondary gas extraction device 33 is provided with a helical guiding blade 34 for guiding the liquid along the cone shaped body 25.

Figure 4 a partially cut-away vessel 40 holding four vertically oriented apparatuses 30 for cyclone separation as shown in figure 3. Via a feed pipe 41 on the side of the vessel the fluid to be separated is entering the vessel 40 to enter a distribution chamber 42. From the distribution chamber 42 the fluid to be separated enters the four apparatuses 30 for cyclone separation. On the underside (there where the liquid phase fraction outlets 4 are located) of the apparatuses 30 for cyclone separation the housings 31 are surrounded by a partially opened casing 43 for reducing flow speeds and turbulence of the liquid leaving the apparatuses 30 for cyclone separation. The gas phase fraction leaves the vertically oriented apparatuses 30 for cyclone separation via gas phase outlet 5'. The fluid entering the vessel 40 via feed pipe 41 is thus after passing the four vertically oriented apparatuses 30 for cyclone separation fast, simple and effectively divided in a gas phase fraction in the top of the vessel 40 and a liquid phase fraction at the bottom of the vessel 40.

It has been found that the apparatus 30 and the vessel 40 as shown in figures 3 and 4 are particularly suitable for enabling a high separating efficiency in the technology field of extraction of hydrocarbons.
Claims

1. Apparatus for cyclone separation of a fluid flow into essentially a gas phase fraction and a liquid phase fraction, by bringing the fluid flow into rotation so that said fluid flow is separated into a central zone essentially containing the gas phase fraction, and an outer annular zone essentially containing the liquid phase fraction, comprising:

 - a housing having an upstream fluid inlet;
 - a swirl element for rotation of the fluid flow being located in the housing downstream of the fluid inlet;
 - a gas phase outlet opened to the central zone of the housing downstream of the swirl element; and
 - a liquid phase outlet connecting to the outer zone of the housing downstream of the swirl element;

 whereby the gas phase outlet and the liquid phase outlet both connect to a common collecting chamber outside the housing,

 characterised in that the apparatus further comprises at least one permeable flow guide located centrally in the housing, which permeable flow guide connects to the gas phase outlet.

2. Apparatus according to claim 1, characterised in that the gas phase outlet comprises a gas discharge channel extending through the swirl element,

3. Apparatus according to claim 1 or 2, characterised in that the opening of the gas phase outlet is positioned at the distal end of the swirl element and the flow guide connects to the swirl element.

4. Apparatus according to any of the preceding claims, characterised in that the flow guide is substantially cone shaped, the cone shaped flow guide connects to the opening of the gas phase outlet, and the tip of the cone shaped flow guide is directed downstream.
5. Apparatus according to claim 4, characterised in that the cone shaped flow guide is undercut.

6. Apparatus according to any of the preceding claims, characterised in that the flow guide is provided with apertures.

7. Apparatus according to any of the preceding claims, characterised in that the housing is essentially tubular.

8. Apparatus according to any of the preceding claims, characterised in that the permeable flow guide located centrally in the housing connecting to the gas phase outlet comprises a secondary gas extraction device that is coaxially located in the liquid phase outlet on a distance of the opening of the gas phase outlet and which secondary gas extraction device connects to the gas phase outlet with a coaxial gas retrieval pipe, the surface of the cross-section of the gas retrieval pipe being smaller than the surface of the cross-section of the secondary gas extraction device.

9. Apparatus according to claim 8, characterised in that the secondary gas extraction device has a decreasing diameter downstream from the gas retrieval pipe.

10. Apparatus according to claim 8 or 9, characterised in that the secondary gas extraction device is provided with apertures to let a remaining gas fraction in the already pre-separated liquid in the liquid phase outlet enter the secondary gas extraction device.

11. Apparatus according to any of claims 8 - 10, characterised in that the secondary gas extraction device is closed at its distal end.

12. Apparatus according to any of claims 8 - 11, characterised in that the secondary gas extraction device is on the perimeter provided with at least one helical blade that is located in the liquid phase outlet.

13. Apparatus according any of claims 4 - 12, characterised in that the permeable flow guide comprises:
- a cone shaped permeable flow guide connecting to the opening of the gas
 phase outlet according any of the claims 4 - 7, and
- a secondary gas extraction device that is coaxially located in the liquid phase
 outlet on a distance of the opening of the gas phase outlet according any of the
 claims 8 - 12, whereby the coaxial gas retrieval pipe of the secondary gas extraction device connects
to the distal side of the cone shaped permeable flow guide.

14. Vessel provided with at least one apparatus for cyclone separation according to
 any of the previous claims, wherein the gas phase outlet and the liquid phase outlet of
 the apparatus for cyclone separation both end in a single communicating space.

15. Vessel according claim 14, characterised in that the vessel comprises plural
apparatuses for cyclone separation of which all fluid inlets are connected to a common
distribution chamber, which distribution chamber connects to a central fluid feed.
INTERNATIONAL SEARCH REPORT

PCT/NL2013/05Q584

A. CLASSIFICATION OF SUBJECT MATTER

INV. B04C5/13 B01D19/0Q

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

B04C B01D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>WO 95/03868 AI (Kvaerner Paladon Limited [GB]; Forsyth Donald Fraser [GB]; Chamberlain) 9 February 1995 (1995-02-09) page 3, last paragraph - page 6, paragraph 1; figures 1-3</td>
<td>1-6, 8, 10, 13-15</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/048439 AI (FMC Technologies [NL]; Akdim Mohamed Reda [NL]; Abdalla Tarig Muk) 28 April 1 2011 (2011-04-28) the whole document</td>
<td>1-7, 14, 15</td>
</tr>
</tbody>
</table>

*Special categories of cited documents:

"X" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"K" document member of the same patent family

Date of the actual completion of the international search: 21 October 2013

Date of mailing of the international search report: 28/10/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Lei tner, Josef

Form PCT/ISA/210 (second sheet) (April 2006)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 38 26 454 Al (LOREY MANFRED [DE]) 8 February 1990 (1990-02-08) column 3, line 56 - column 4, line 60; figures</td>
<td>1, 2, 7</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 180 400 Al (UNIV NEWCASTLE VENTURES LTD [GB]) 20 February 2002 (2002-02-20) paragraph [0042]; figure 3</td>
<td>1-4</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>BR PIQ612495 A2</td>
<td>23-11-2010</td>
<td>CA 2613306 A1</td>
</tr>
<tr>
<td>NL 1029352 C2</td>
<td>02-01-2007</td>
<td>US 2009084714 A1</td>
</tr>
<tr>
<td>WO 2007001174 A1</td>
<td>04-01-2007</td>
<td></td>
</tr>
<tr>
<td>WO 9503868 A1</td>
<td>09-02-1995</td>
<td>NONE</td>
</tr>
<tr>
<td>CA 2777839 A1</td>
<td>28-04-2011</td>
<td>CN 102712Q03 A</td>
</tr>
<tr>
<td>WO 2011048439 A1</td>
<td>28-04-2011</td>
<td></td>
</tr>
<tr>
<td>DE 3826454 A1</td>
<td>08-02-1990</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 1180400 A1</td>
<td>20-02-2002</td>
<td>NONE</td>
</tr>
</tbody>
</table>