实用新型名称
曳引电梯钢丝绳组的均力机构

摘要
一种用于曳引电梯悬挂提升系统中，电梯用钢丝绳组的均力机构，是由多个杠杆、摆杆和转轴组成，利用摆杆和杠杆原理，在电梯曳引钢丝绳组的两端连接处，或仅在一个端接处，设置杠杆摆杆组合均力机构，将每根独立的曳引钢丝绳，通过这一组合机构，使每个独立的钢丝绳具有了与其它钢丝绳具有了相互关联的力学关系。通过这一组合机构，使这一组曳引钢丝绳在受力的情况下，其中任何一根的受力发生改变，利用杠杆原理，都会使其相邻的钢丝绳或钢丝绳组进行与之力的平衡，使这一组里的钢丝绳的每根受力都相等，达到了电梯曳引钢丝绳组中每根曳引绳在曳引轮槽内缠绕而产生的摩擦力一致的目的。
1. 一种用于曳引电梯钢丝绳组的均力机构，是由电梯轿厢、均力机构、通过钢丝绳，并经过曳引轮与平衡重连接组成的。

2. 根据权利要求1所述的电梯用钢丝绳组的均力机构，其特征是：均力机构是由杠杆、连杆和绳头组合构成的。
曳引电梯钢丝绳组的均力机构

技术领域
[0001] 本实用新型涉及一种曳引电梯钢丝绳组的均力机构。

背景技术
[0002] 在电梯驱动技术不断发展的条件下，电梯的提升高度以及行驶速度有了很大的提高，但也因此对电梯自身的安全性和可靠性提出了更高的要求。目前国内外电梯均采用曳引机驱动电梯，曳引电梯悬挂系统由曳引轮、钢丝绳、轿厢/平衡重系统等主要部件组成的，在这种系统中，通过一组曳引绳在曳引轮槽内缠绕而产生的摩擦力提供提升的直接动力，由柔性的曳引绳（主要是钢丝绳）来引导轿厢/平衡重的运动。曳引钢丝绳通常是多根钢丝绳组成的（国家标准GB7588-2003要求电梯用钢丝绳大于两根以上），而在一组钢丝绳中，每根钢丝绳所受的拉力应相等，这样才能使提升系统的曳引力达到要求，保证提升的力。目前为了保证一组钢丝绳中每根钢丝绳所受的拉力都相等，均采用弹簧紧钢丝绳的均力方式，依靠弹簧的弹力调整来保证每根钢丝绳所受的拉力都相等，弹簧的弹力一致性的调整是由人为进行调整。但这种方案的不足是：1）存在弹力调整的误差。2）由于弹簧处在长期可变的工作状态，每个弹簧的弹性特性发生了不一致变化。

[0003] 基于上述的不足，会出现一组曳引钢丝绳中每根曳引钢丝绳所受的拉力都不相等，从而带来了曳引绳在曳引轮槽内缠绕而产生的摩擦力不一致，拉力相对小的曳引钢丝绳，在曳引轮槽内缠绕产生的摩擦力由于相对过小，曳引钢丝绳和曳引轮槽产生相对打滑现象，增加曳引钢丝绳和曳引轮槽的磨损，这样严重影响了曳引轮槽和曳引钢丝绳使用寿命，降低了安全性和可靠性。

发明内容
[0004] 为了解决一组曳引钢丝绳中每根曳引钢丝绳所受的拉力都不相等的问题，本实用新型提供一种电梯曳引钢丝绳的均力机构，不论这一组是由几根曳引钢丝绳组成的，均可以保证每根钢丝绳受力一致，来提高曳引轮槽和曳引钢丝绳使用寿命，增加电梯的安全性和可靠性。

[0005] 为达到上述目的，本实用新型采用的技术方案是：由电梯轿厢，均力机构，通过钢丝绳，并经过曳引轮与平衡重连接组成的。

[0006] 均力机构是由杠杆，连杆和绳头组合构成的。

[0007] 利用摆杆和杠杆原理，在电梯曳引钢丝绳组的两端连接处，或仅在一个端接处，设置杠杆摆杆组合均力机构，将每根独立的曳引钢丝绳，通过这一组合机构，使每个独立的钢丝绳具备了与其他钢绳具有了相关联的力学关系。通过这一组合机构，使这一组曳引钢丝绳在受力的情况下，其中任何一根的受力发生变化，利用杠杆原理（力矩=力x距离），都会使其相邻的钢丝绳或钢丝绳组进行与之力的平衡，使这一组里的钢丝绳的每根受力都相等。同理，每组钢丝绳和每组钢丝绳之间亦可以通过杠杆原理进行平衡，这样通过一组相关联的杠杆摆杆组成的平衡机构，将每根曳引钢丝绳均关联起来，并且使每根钢丝绳在
这一整组曳引钢丝绳中具有固定比例的分力，使每根曳引钢丝绳受力达到相等，达到了电梯曳引钢丝绳组中每根曳引在曳引轮槽内缠绕而产生的摩擦力一致的目的。

[0008] 本实用新型的有益效果是，电梯在运行过程中，由于每根曳引钢丝绳受力相等，曳引绳在曳引轮槽内缠绕而产生的摩擦力一致，曳引钢丝绳和曳引轮槽不会产生相对滑动现象，减少了曳引钢丝绳和曳引轮槽的磨损，提高了曳引轮槽和曳引钢丝绳使用寿命，同时也提高了电梯的安全性和可靠性。

[0009] 下面结合附图和实施例对本实用新型进一步说明。

附图说明

[0010] 图 1 是本实用新型的结构原理图。

[0011] 图 2 是本实用新型均力机构原理图。


具体实施方式

[0013] 图 1 是电梯的基本原理图，以曳引比为 1：1，曳引钢丝绳 4 根一组为例。曳引轮（9）的旋转，通过一组曳引绳在曳引轮槽内缠绕而产生的摩擦力提供电梯轿厢或平衡重提升的直接动力。钢丝绳组经过钢丝绳的均力机构带动电梯轿厢（1）和平衡重（10）上下运动。

[0014] 如图所示钢丝绳均力机构是由杠杆一（2），杠杆二（3）和杠杆三（4）和连杆组成的。

[0015] 杠杆一（2）的中心与电梯轿厢（1）相连，并且杠杆一（2）以其中心为轴可做摆动运动，杠杆一（2）的两端分别为杠杆一（3）和杠杆三（4）中心相连接，杠杆二（3）的两端分别与钢丝绳一（5）和钢丝绳二（6）相连接，杠杆三（4）的两端分别与钢丝绳三（7）和钢丝绳四（8）相连接，杠杆和连杆，杠杆和钢丝绳的连接点均可摆动运动。杠杆一（2）通过中心的摆动平衡两端的力，使杠杆二（3）和杠杆三（4）的中心受力相等，也就是钢丝绳一（5）和钢丝绳二（6）的合力等于钢丝绳三（7）和钢丝绳四（8）的合力，而杠杆一（2）以中心为摆动点，是平衡了钢丝绳一（5）和钢丝绳二（6）的拉力，使钢丝绳一（5）和钢丝绳二（6）受力相等，杠杆三（4）以中心为摆动点，是平衡了钢丝绳三（7）和钢丝绳四（8）的拉力，使钢丝绳三（7）和钢丝绳四（8）受力相等，由于这一整组曳引钢丝绳中，钢丝绳一（5）和钢丝绳二（6）受力相等，钢丝绳三（7）和钢丝绳四（8）受力相等，而钢丝绳一（5）钢丝绳二（6）的合力和钢丝绳三（7）钢丝绳四（8）的合力也相等，所以每根钢丝绳的受力都相等，从而达到了电梯曳引钢丝绳组中每根曳引钢丝绳在曳引轮（9）槽内缠绕而产生的摩擦力一致的目的。

[0016] 运用这一原理的钢丝绳均力机构，适合任意根钢丝绳组成的钢丝绳组。

[0017] 见如图 2 所示钢丝绳组为 3 根的均力机构原理图，杠杆一（2）的两端点一端通过连杆（11）与杠杆二（3）连接，另一端通过绳头组合三（14）与钢丝绳三（7）连接，杠杆二（3）的两端点分别通过绳头组合一（12）和绳头组合二（13）连接钢丝绳一（5）和钢丝绳二（6），
杠杆二 (3) 摆动点在中心，平衡了钢丝绳一 (5) 和钢丝绳二 (6) 的拉力，使钢丝绳一 (5) 和钢丝绳二 (6) 受力相等。杠杆一 (2) 的另一端与钢丝绳三 (7) 连接，只有一根钢丝绳。将杠杆一 (2) 的摆动点定在到只有一根钢丝绳三 (7) 一端的距离为杠杆一 (2) 两端中心连线长度 L 的 2/3 处，那么杠杆一 (2) 另一端距摆动点为总长度 L 的 1/3，通过杠杆原理得知，平衡状态下力矩相等，也就是 2/3 乘以钢丝绳三 (7) 的受力等于 1/3 乘以丝绳一 (5) 和钢丝绳二 (6) 的合力，由于钢丝绳一 (5) 和钢丝绳二 (6) 受力相等，所以，丝绳一 (5) 和钢丝绳二 (6) 与钢丝绳三 (7) 的受力相等。

[0018] 通过实例说明了钢丝绳均力机构，适合任意根钢丝绳组成的钢丝绳组，并且适用任何曳引比的曳引电梯，在此就不一一叙述。
图 2