WO 02/086698 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 02/086698 Al

31 October 2002 (31.10.2002) PCT
(51) International Patent Classification”: GO6F 9/00
(21) International Application Number: PCT/US01/47261

(22) International Filing Date:
11 December 2001 (11.12.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/838,057 19 April 2001 (19.04.2001) US

(71) Applicant: INTERNATIONAL BUSINESS MA-
CHINES CORPORATION [US/US]; New Orchard
Road, Armonk, NY 10504 (US).

(72) Inventors: ARMSTRONG, William, Joseph; 61303
234th Avenue, Mantorville, MN 55955 (US). MANGES,
Mark, Gregory; 4314 Camfield Court SE, Rochester,

(74)

@81

34

MN 55904 (US). NAYAR, Naresh; 5233 Belmoral Lane
N.W., Rochester, MN 55901 (US). SCHELL, Jeffrey,
Jay; 6610 Kristin Lane N.W., Rochester, MN 55901
(US). WILCOX, Craig, Alden; 2666 11th Avenue N.W.,
Rochester, MN 55901 (US).

Agent: NEFF, Daryl, K.; International Business Machines
Corporation, Dept. 18G/Bldg. 300-482, 2070 Route 52,
Hopewell Junction, NY 12533-6531 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR ALLOCATING PROCESSOR RESOURCES IN A LOGICALLY PARTITIONED

COMPUTER SYSTEM

I Define partitions I_,lml
i

I Define processor sets].»402

1\1403
Assign Dartltlon 404
to processor set

<'E=;.'>No

r Assign processors

(|

FOR
EACH Yes
PARTITION
Specify processing |-405
capacity
Specify capped/ 406
uncapped
Specify number of 407
virtual processors
l 408
Specify other resourcesF_,
or parameters

- I

l Store parameters]"“10

(57) Abstract: A processor allocation mechanism for a logically partitionable com-
puter system allows an administrator to specify processing capability allocable to
each partition as an equivalent number of processors (401), where the processing
capability may be specified as a non-integer value. This processing capability value
is unaffected by changes to the processing capability values of other partitions. The
administrator may designate multiple sets of processors (402), assigning each physi-
cal processor of the system to a respective processor set (403). Each logical partition
is constrained to execute in an assigned processor set (404), which may be shared
by more than one partition. Preferably, the administrator may designate a logical
partition as either capped, meaning that a partition can not use excess idle capacity
of the processors, or uncapped, meaning that it can.

w0 02/086698 A1 I I0I0E 00 OO 0

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:
— with international search report

10

15

20

WO 02/086698 PCT/US01/47261

METHOD AND APPARATUS FOR ALLOCATING PROCESSOR
RESOURCES IN A LOGICALLY PARTITIONED COMPUTER SYSTEM

Technical Field

The present invention relates generally to digital data processing, and more

particularly to the logical partitioning of components of a digital computer system.

Background Art

A modern computer system typically comprises a central processing unit (CPU)
and supporting hardware necessary to store, retrieve and transfer information, such as
communications busses and memory. It also includes hardware necessary to
communicate with the outside world, such as input/output controllers or storage
controllers, and devices attached thereto such as keyboards, monitors, tape drives, disk
dri.ves, communication lines coupled to a network, etc. The CPU is the heart of the
system. It executes the instructions which comprise a computer program and directs the

operation of the other system components.

From the standpoint of the computer’s hardware, most systems operate in
fundamentally the same manner. Processors are capable of performing a limited set of
very simple operations, such as arithmetic, logical comparisons, and movement of data
from one location to another. But each operation is performed very quickly. Programs
which direct a computer to perform massive numbers of these simple operations give the
illusion that the computer is doing something sophisticated. What is perceived by the
user as a new or improved capability of a ¢computer system is made possible by
performing essentially the same set of very simple operations, but doing it much faster.
Therefore continuing improvements to computer systems require that these systems be

made ever faster.

10

15

20

25

WO 02/086698 PCT/US01/47261

The overall speed of a computer system (also called the "throughput") may be
crudely measured as the number of operations performed per unit of time. Conceptually,
the simplest of all possible improvements to system speed is to increase the clock speeds
of the various components, and particularly the clock speed of the processor. E.g., if
everything runs twice as fast but otherwise works in exactly the same manner, the system
will perform a given task in half the time. Early computer processors, which were
constructed from many discrete components, were susceptible to significant speed
improvements by shrinking component size, reducing component number, and
eventually, packaging the entire processor as an integrated circuiton a single chip. The
reduced size made it possible to increase the clock speed of the processor, and

accordingly increase system speed.

Despite the enormous improvement in speed obtained from integrated circuitry,
the demand for ever faster computer systems has continued. Hardware designers have
been able to obtain still further improvements in speed by greater integration (i.e.,
increasing the number of circuits packed onto a single chip), by further reducing the size
of the circuits, and by various other techniques. However, designers can see that physical
size reductions can not continue indefinitely, and there are limits to their ability to
continue to increase clock speeds of processors. Attention has therefore been directed

to other approaches for further improvements in overall speed of the computer system.

Without changing the clock speed, it is possible to improve system throughput by
using multiple copies of certain components, and in particular, by using multiple
processors. The modest cost of individual processors and other components packaged
on integrated circuit chips has made this practical. As a result, many current large-scale
system designs include multiple processors, caches, buses, I/O drivers, storage devices

and so forth.

The proliferation of system components introduces various architectural issues
involved in managing these resources. For example, multiple processors typically share

the same main memory (although each processor may have it own cache). If two

2-

10

15

20

25

WO 02/086698 PCT/US01/47261

processors have the capability to concurrently read and update the same data, there must
be mechanisms to assure that each processor has authority to access the data, and that the
resulting data is not gibberish. Another architectural issue is the allocation of processing
resources to different tasks in an efficient and “fair” manner, i.e., one which allows all
tasks to obtain reasonable access to system resources. There are further architectural

issues, which need not be enumerated in great detail here.

One recent development in response to this increased system complexity is to
support logical partitioning of the various resources of a large computer system.
Conceptually, logical partitioning means that multiple discrete partitions are established,
and the system resources of certain types are assigned to respective partitions. Each task
executes within a logical partition, meaning that it can use only the resources assigned

to that partition, and not resources assigned to other partitions.

Logical partitions are generally allocated by a system administrator or user with
similar authority. Le., the allocation is performed by issuing commands to appropriate
management software resident on the system, rather than by physical reconfiguration of
hardware components. It is expected, and indeed one of the benefits of logical
partitioning is, that the authorized user can re-allocate system resources in response to

changing needs or improved understanding of system performance.

One of the resources commonly partitioned is the setof processors. In supporting
the allocation of resources, and particularly processor resources, it is desirable to provide
an easy to use interface which gives the authorized user predictable results. Current
partitioning support may cause unwanted side-effects when shared processor allocations
are changed. Changing processor allocation for one partition can affect the performance
of other partitions which are unchanged. A need exists for resource allocation methods
and apparatus which enable an administrator to more conveniently reallocate processor
resources and achieve greater isolation of the effects of reallocation to specific targeted

logical partitions.

10

15

20

25

WO 02/086698 PCT/US01/47261

Disclosure of Invention

A processor allocation mechanism for a logically partitionable computer system
supports the allocation of processor resources to different partitions. An authorized user .
(administrator) specifies processing capability allocable to each partition as a scalar
quantity representing a number of processors, where the processing capability may be
specified as a non-integer value. This processing capability value is unaffected by
changes to the processing capability values of other partitions. Preferably, the
administrator may designate multiple sets of processors, and assign each physical
processor of the system to a respective processor set. Each logical partition is constrained
to execute in an assigned processor set.

In the preferred embodiment, certain processor sets are referred to as “pools”,
while others are dedicated to respective single partitions. A processor pool may be

assigned to a single partition, or may be shared by more than one partition.

In the preferred embodiment, the administrator may designate a logical partition
in a processor pool as either capped or uncapped. A capped partition is constrained to
utilize no more than the specified processing capability allocable to the partition, even
if processors are idle due to lack of available work from other partitions. An uncapped
partition may utilize spare processing capability beyond its allocation, provided that it

may not execute its tasks on physical processors outside its assigned processor pool.

In the preferred embodiment, the administrator may further specify a number of
virtual processors for each partition in a processor pool. Such a specification will divide
the processing capability available to the partition into the specified number of virtual

processors.

The resource allocation mechanism described herein thus gives an administrator
an effective interface for regulating processor resources among multiple tasks running in

multiple logical partitions.

10

15

20

WO 02/086698 PCT/US01/47261

The details of the present invention, both as to its structure and operation, can best
be understood in reference to the accompanying drawings, in which like reference

numerals refer to like parts, and in which:

Brief Description of Drawings

Figure 1 is a high-level block diagram of the major hardware components of a
logically partitioned computer system having multiple CPUs, according to the preferred
embodiment of the invention described herein.

Fig.2 is a conceptual illustration showing the existence of logical partitions at
different hardware and software levels of abstraction in a computer system, according to
the preferred embodiment.

Fig. 3 shows an example logical partitioning processor allocation for a system
having eight physical processors, according to the preferred embodiment.

Fig. 4 is a high-level block diagram of the process of obtaining input to define the
characteristics of the logical partitions, according to the preferred embodiment.

Figs 5A-5D illustrate the operation of the various virtual processor dispatching
enforcement mechanisms, according to the preferred embodiment; Fig. SA illustrating
conceptually the overall time slice process; Fig. 5B illustrating the action taken when a
partition processor resource counter reaches its limit; Fig. 5C illustrating the action taken
to dispatch a new virtual processor when a physical processor becomes available; and
Fig. 5D illustrates the action taken when a virtual processor becomes available for

dispatch.

10

15

20

25

WO 02/086698 PCT/US01/47261

Best Mode for Carrying Out the Invention

Logical Partitioning Overview

Logical partitioning is a technique for dividing a single large computer system
into multiple partitions, each of which behaves in some respects as a separate computer
system. Certain resources of the system may be allocated into discrete sets, such that
there is no sharing of a single resource among different partitions, while other resources
may be shared on a time interleaved or other basis. Examples of resources which may
be partitioned are central processors, main memory, I/O processors and adapters, and I/O
devices. Each user task executing in a logically partitioned computer system is assigned
to one of the logical partitions (“executes in the partition”), meaning that it can use only
the system resources assigned to that partition, and not resources assigned to other

partitions.

Logical partitioning is indeed logical rather than physical. A general purpose
computer typically has physical data connections such as buses running between a
resource in one partition and one in a different partition, and from a physical
configuration standpoint, there is typically no distinction made with regard to logical
partitions. Generally, logical partitioning is enforced by low-level encoded data, which
is referred to as “licensed internal code”, although there may be a certain amount of
hardware support for logical partitioning, such as hardware registers which hold state
information. E.g., from a hardware standpoint, there is nothing which prevents a task
executing in partition A from writing to an I/O device in partition B. Low level licensed

internal code function and/or hardware prevent access to the resources in other partitions.

Code enforcement of logical partitioning constraints means that it is possible to
alter the logical configuration of a logically partitioned computer system, i.e., to change
the number of logical partitions or re-assign resources to different partitions, without
reconfiguring hardware. Generally, a logical partition management tool is provided for
this purpose. This management tool is intended for use by a single or a small group of

authorized users, who are herein designated the system administrator. In the preferred

-6-

10

15

20

25

30

WO 02/086698 PCT/US01/47261

embodiment described herein, this management tool is referred to as the “hypervisor”.
A portion of this management tool used for creating or altering a configuration executes

in one of the logical partitions, herein designated the “primary partition”.

Logical partitioning of a large computer system has several potential advantages.
As noted above, it is flexible in that reconfiguration and re-allocation of resources is
easily accomplished without changing hardware. It isolates tasks or groups of tasks,
helping to prevent any one task or group of tasks from monopolizing system resources.
It facilitates the regulation of resources provided to particular users; this is important
where the computer system is owned by a service provider which provides computer
service to different users on a fee-per-resource-used basis. Finally, it makes it possible
for a single computer system to concurrently support multiple operating systems, since

each logical partition can be executing in a different operating system.

Additional background information regarding logical partitioning can be found
in the following commonly owned patents and patent applications, which are herein
incorporatéd by reference: Serial No. 09/672,043, filed September 29, 2000, entitled
Technique for Configuring Processors in System With Logical Partitions; Serial No.
09/346,206, filed July 1, 1999, entitled Apparatus for Supporting a Logically Partitioned
Computer System (R0999-026); Serial No. 09/314,769, filed May 19, 1999, entitled
Processor Reset Generated Via Memory Access Interrupt; Serial No. 09/314,541, filed
May 19, 1999, entitled Apparatus and Method for Specifying Maximum Interactive
Performance in a Logical Partition of a Computer; Serial No. 09/314,324, filed May 19,
1999, entitled Management of a Concurrent Use License in a Logically Partitioned
Computer; Serial No. 09/314,214, filed May 19, 1999, entitled Logical Partition
Manager and Method, Serial No. 09/314,187, filed May 19, 1999, entitled Event-Driven
Communications Interface for Logically Partitioned Computer;, U.S. Patent 5,659,786
to George et al.; and U.S. Patent 4,843,541 to Bean et al. The latter two patents describe
implementations using the IBM S/360, S/370, S/390 and related architectures, while the
remaining applications describe implementations using the IBM AS/400 and related

architectures.

10

15

20

25

30

WO 02/086698 PCT/US01/47261

Detailed Description

The major hardware components of a multiprocessor computer system 100 for
utilizing a logical partitioning management tool according to the preferred embodiment
of the present invention are shown in Fig. 1. Multiple central processing units (CPUs)
101A-101H concurrently perform basic machine processing function on instructions and
data from main memory 102. Each processor contains or controls a respective cache.
These cache structures are shown conceptually in Fig. 1 as a single block 106 A-106G for
each respective processor; however, it should be understood that the a processor’s cache
may include multiple separate structures at multiple levels, such as an on-chip L1
instruction cache, an on-chip L1 data cache, an on-chip L2 cache directory/controller, and
an L2 cache memory on a separate chip. For purposes of this invention, the precise
implementation details of caching in each processor are not significant, and the caches

could be implemented differently.

A pair of memory buses 103A, 103B connect the various CPUs, main memory,
and I/O bus interface unit 105. /O bus interface unit 105 communicates with multiple
I/O processing units (I0Ps) 111-117 through respective system I/O buses 110A, 110B.
In the preferred embodiment, each system I/O bus is an industry standard PCI bus. The
IOPs support communication with a variety of storage and I/O devices, such as direct
access storage devices (DASD), tape drives, workstations, printers, and remote
communications lines for communication with remote devices or other computer
systems. While eight CPUs, two memory buses, two I/O buses, and various numbers of
IOPs and other devices are shown in Fig. 1, it should be understood that Fig. 1 is intended
only as an illustration of the possible types of devices that may be supported, and the
actual number and configuration of CPUs, buses, and various other units may vary. It
should also be understood that the buses are illustrated in a simplified form as providing
communications paths between various devices, and in fact the actual bus structure may
be more complex, and contain additional hierarchies or components not shown. For
simplicity, CPUs, memory buses and I/O buses are herein designated generically by

reference numbers 101, 103 and 110, respectively.

-8-

10

15

20

25

WO 02/086698 PCT/US01/47261

While various system components have been described and shown at a high level,
it should be understood that a typical computer system contains many other components
not shown, which are not essential to an understanding of the present invention. In the
preferred embodiment, computer system 100 is a multiprocessor computer system based
on the IBM AS/400 or I/Series architecture, it being understood that the present invention

could be implemented on other multiprocessor computer systems.

Fig.2 is a conceptual illustration showing the existence of logical partitions at
different hardware and software levels of abstraction in computer system 100. Fig. 2
represents a system having four logical partitions, it being understood that the number of
partitions may vary. As is well known, a computer system is a sequential state machine
which performs processes. These processes can be represented at varying levels of
abstraction. At a high level of abstraction, a user specifies a process and input, and
receives an output. As one progresses to lower levels, one finds that these processes are
sequences of instructions in some programming language, which continuing lower are
translated into lower level instruction sequences, and pass through licensed internal code
and ultimately to data bits which get put in machine registers to force certain actions.
Atavery low level, changing electrical potentials cause various transistors to turn on and
off. In Fig. 2, the “higher” levels of abstraction are represented toward the top of the

figure, while lower levels are represented toward the bottom.

As shown in Fig. 2 and explained earlier, logical partitioning is a code-enforced
concept. At the hardware level 201, logical partitioning does not exist. As used herein,
hardware level 201 represents the collection of physical devices (as opposed to data
stored in devices), such as processors, memory, buses, I/O devices, etc., shown in Fig. 1,
including other hardware not shown in Fig. 1. As far as a processor 101 is concerned, it
is merely executing machine language instructions. In the preferred embodiment, each
processor is identical and more or less interchangeable. While code can direct tasks in
certain partitions to execute on certain processors, there is nothing in the processor itself

which dictates this assignment, and in fact the assignment can be changed by the code.

10

15

20

25

WO 02/086698 PCT/US01/47261

Therefore the hardware level is represented in Fig. 2 as a single entity 201, which does

not distinguish between logical partitions.

Immediately above the hardware is a common low-level hypervisor base 202,
also called partitioning licensed internal code (PLIC), which enforces logical partitioning.
As represented in Fig. 2, there is no direct path between higher levels (levels above
hypervisor 202) and hardware level 201, meaning that commands or instructions
generated at higher levels must pass through hypervisor 202 before execution on the
hardware. Hypervisor 202 enforces logical partitioning of processor resources by
presenting a partitioned view of hardware to the task dispatchers at higher levels. lLe.,
task dispatchers at a higher level (the OS kernel) dispatch tasks to virtual processors
defined by the logical partitioning parameters, and the hypervisor in turn dispatches
virtual processors to physical processors at the hardware level 201 for execution of the.
underlying task, as described more fully herein. The hypervisor also enforces partitioning
of other resources, such as allocations of memory to partitions, and routing I/O to I/O
devices associated with the proper partition. Hypervisor 202 contains state data, some
of which may be stored in special purpose registers while other such state data is stored
in tables or other structures. Essentially, this state data defines the allocation of resources
in logical partitions, and the allocation is altered by changing the state data rather than

by physical reconfiguration of hardware.

Above hypervisor 202 is another level of machine management code herein
identified as the “OS kernel” 204A-204D. At the level of the OS kernel, each partition
behaves differently, and therefore Fig. 2 represents the OS Kernel as four different
entities 204A-204D corresponding to the four different partitions. In general, each OS
kernel 204A-204D performs roughly equivalent functions, and the OS kernel 1s herein
generically referred to as feature 204. However, it is not necessarily true that all OS
kernel 204A-204D are identical copies of licensed internal code, and they could be
different versions of architecturally equivalent licensed internal code, or could even be

architecturally different licensed internal code modules. OS kernel 204 performs a

-10-

10

15

20

25

WO 02/086698 PCT/US01/47261

variety of task management functions, and in particular, enforces data integrity and

security among multiple tasks.

Above the OS kernel are a set of high-level operating system functions 205A-
205D, and user application code and data 206A-206D. A user may create code in levels
206A-206D which irrvokes one of high level operating system functions 205A-205D to
access the OS kernel, or may directly access the OS kernel. This is represented in Fig.
2 by showing that both high level operating system functions 205A-205D and user
application levels 206 A-206D reach the OS kernel boundary. In the AS/400 architecture,
auser-accessible architecturally fixed “machine interface” 210 forms the upper boundary
of the OS kernel, (the OS kernel being referred to as “SLIC”), but it should be
understood that different operating system architectures may define this interface
differently, and that it would be possible to operate different operating systems on a

common hardware platform using logical partitioning.

One and only one of the logical partitions is designated the primary partition,
which is the partition used by the system administrator to manage logical partitioning..
The primary partition contains a special portion of hypervisor code 203 which shares the
level of OS kernel 204A. Hypervisor portion 203 contains code necessary to create or
alter logical partition definitions. Collectively, hypervisor ponion 203 and hypervisor
base 202 constitute the hypervisor. Additionally, a user-to-hypervisor interface 208 is
provided at the OS kernel level in the primary partition. Interface 208 provides functions
for interacting with a user (system administrator) to obtain user-specified partitioning
parameters. The functions available in interface 208 may be used directly in a direct-
attach terminal, or may be accessed through a set of APIs from other interface code (not
shown) in any device (such as an intelligent workstation) connected to computer system
100. The hypervisor is super-privileged code which is capable of accessing resources,
and specifically processor resources, in any partition. The hypervisor causes state values
to be written to various hardware registers and other structures, which define the

boundaries and behavior of the logical partitions.

-11-

10

15

20

25

WO 02/086698 PCT/US01/47261

In accordance with the preferred embodiment, the administrator defines multiple
logical partitions and the resources available to each. With respect to processing
resource, the administrator specifies four things: the number of virtual processors
available to each partition, the processing capacity available to the partition, whether the
assigned processing capacity is capped, and the assignment of physical processors to
partitions. Any or all of these parameters may be changed by the administrator, effecting
an altered configuration. These parameters are explained with reference to the examples

below.

Fig. 3 shows an example logical partitioning processor allocation for a system
having eight physical processors. As shown in Fig. 3, four logical partitions 301-304 are
defined. For each logical partition, there exists a respective virtual processor assignment
310, and a processing capacity allocation 311. Additionally, there exists an allocation
312 for physical processors. In the example of Fig. 3, logical partition 301 is assigned
one virtual processor and 0.5 processing unit of processing capacity; logical partition 302
is assigned four virtual processors and 3.5 processing units of processing capacity; and
partition 303 is assigned two virtual processors and 1.0 unit of processing capacity.
Partition 304 is assigned three dedicated processors (an actual processing capacity of 3.0
units). Virtual processors are always assigned in integer numbers. Processing capacity

1s expressed as a decimal.

In the example of Fig. 3, two sets of processors 315, 316 are defined. Set 315,
which is a “pool”, contains five physical processors, while set 316 contains three.

Logical partitions 301-303 execute in pool 315, while partition 304 executes in set 316.

A physical processor allocation constrains a task executing in an associated
partition to run on only the processors allocated to the processor set to which the partition
is assigned. In this embodiment, a set of one or more processors may be assigned to a
partition in dedicated mode, or may be assigned to a processor pool, to which one or

more partitions are in turn assigned. Dedicated mode means simply that the full capacity

-12-

10

15

20

25

WO 02/086698 PCT/US01/47261

of the set of physical processors is dedicated to a single partition. In a pooled mode, the
processors are assigned to a pool, which is typically (although not necessarily) shared
among more than one partition. Dedicated mode is functionally equivalent to a pool to
which only one logical partition is assigned, and in which the full capacity and number

of virtual processors of the pool are given to the one partition.

Thus, in the example of Fig. 3, set 315 is shared among multiple partitions and
is a processor pool, while set 316 is a set of processors dedicated to partition 304. A task
executing in partition 301 can be dispatched to any of the five physical processors
allocated to pool 315, but can not be dispatched to any of the three physical processors
allocated to set 316, even if those processors are idle. Since pool 315 is shared among
partitions 301-303, the tasks executing in these partitions share the five processors
assigned to pool 315.

The processing capacity allocation specifies the amount of equivalent processing
power allocated to a partition in processor units. Le., one processor unit is the equivalent
of a single physical processor executing 100% of the time. The sum of the processing
capacity allocations of all partitions assigned to a particular processor pool can not
exceed the number of physical processors in the pool, although it may be less than the
number of physical processors in the pool (in which case, there is unallocated processor
capacity). Thus, if the administrator changes the processing capacity allocation of a
single partition assigned to a pool, this change has no effect on the processing capacity
allocations to the remaining partitions assigned to the same pool. The unallocated

processor capacity is merely increased or decreased accordingly.

In the example of Fig. 3, logical partition 301 is allocated 0.5 units of processing
capacity, which means it is allocated a capacity equivalent to one physical processor
executing 50% of the time (or running at 50% of normal speed). However, this does not
mean that one of the processors in pool 315 will execute roughly half time on behalf of
tasks in partition 301. Work from any one partition assigned to a pool is distributed
among the processors in the pool, and it can be expected that on the average each of the

five processors in pool 315 will devote about 10% of its capacity to executing on behalf

-13-

10

IS5

20

25

WO 02/086698 PCT/US01/47261

of tasks from partition 301. In the preferred embodiment, processing units are assigned
in increments of 0.01 units, with a minimum value of 0.10 units assignable to any single
partition. The user specifies a processing capacity allocation only for partitions assigned
to pools; partitions having dedicated processors automatically receive the full capacity
of the dedicated processors. Fig. 3 therefore shows a processing capacity of 3.0 for
partition 304, this being an equivalent number, although in fact the user does not specify

a processing capacity.

The virtual processor assignment specifies the number of virtual processors seen
by each respective partition which is assigned to a pool of processors. To the partition,
the underlying hardware and dispatching code behaves like the number of virtual
processors specified, each of which is running at some fraction of the power of a single
physical processor, the fraction being the number of virtual processors divided by the
number processing units allocated to the partition. Thus, in the example of Fig. 3,
partition 302 sees four virtual processors, each operating at approximately 82.5% (3.5/4)
of the capacity of a single physical processor. Partition 303 sees two viﬁual processors,
each operating at 50% of the capacity of a single physical processor. Like processing
capacity, the user specifies a virtual processor allocation only for partitions assigned to
pools; partitions having dedicated processors automatically receive a number of virtual
processors equal to physical processors. Fig. 3 therefore shows three virtual processors

for partition 304.

A logical partition assigned to a pool may be designated either capped or
uncapped. A capped partition can not use more processing capacity than its allocation,
even if processors are idle due to lack of available work from other partitions in the same
pool. Capping assures that a particular logical partition will not exceed its allocated
usage, which is desirable in some circumstances. An uncapped partition may utilize
spare processing capability beyond its allocation, provided that it may not execute its
tasks on physical processors outside its assigned processor pool. Capping does not apply

to partitions having dedicated processors.

-14-

10

15

20

25

WO 02/086698 PCT/US01/47261

Referring to the example of Fig. 3, if partition 301 is uncapped and it has reached
its allocated processing capacity during a particular time interval, the tasks in partition
301 will wait in a deferred status for an available physical processor (i.e, tasks may be
dispatched to virtual processors by the OS kernel, but the hypervisor will not dispatch the
virtual processors to physical processors, and no execution will take place). As long as
each of the other processors in pool 315 has work to perform on behalf of logical
partition 302 or 303 (and these partitions have not yet reached their allocated processing
capacity), the tasks in partition 301 will wait. If any processor in pool 315 has no other
work to perform, it will begin executing a task from partition 301, allowing the actual
processor usage for partition 301 to exceed its allocation. In no case will a task in

partition 301 execute on a processor in set 316, even if these processors are idle.

Selective use of capping allows the administrator to configure different pools for
different environments. For example, a partition having large fluctuations in expected
workload might be configured to run in the same pool as a lower priority but more
constant work stream partition, allowing the latter to use the excess capacity of the
former. On the other hand, partitions which should be limited to a particular processor
capacity (e.g., because the end user is paying for a certain capacity) may run together in

a capped environment.

The configuration of Fig. 3 is merely a single example configuration, and many
variations are possible. The number of processor sets may vary. Since sets of processors
are disjoint and each set must have at least one physical processor, the number of such
sets is necessarily limited by the number of physical processors in the system. But in
other respects, the administrator is free to allocate sets as he wishes, and may allocate
zero, one or multiple sets which are pools, and zero, one or multiple sets which are
dedicated to a single respective logical partition. Additionally, while a processor pool is
usually used for sharing among multiple partitions, a processor pool could have only a
single partition assigned to it. For example, if for some reason it is desired to limit the

processor resources allocated to a single logical partition, a pool containing a single

-15-

10

15

20

25

WO 02/086698 PCT/US01/47261

processor could be defined, to which a single logical partition is assigned, the partition

being given a processing capacity of 0.5 processors and specified as capped.

In the preferred embodiment, the hypervisor enters state values in registers and
memory, which define the partitions and cause partitioning constraints to be enforced.
The hypervisor obtains this information from the administrator. Fig. 4 is a high-level
block diagram of the process of soliciting and saving user (administrator) input defining

the characteristics of the logical partitions.

As shown in Fig. 4, the administrator first defines the number of partitions
themselves (step 401), one of which is desighated the primary partition. The
administrator also defines the number of sets of processors, including any which are
pools (step 402), and assigns each individual physical processor to one of the defined sets
(step 403). A processor may be assigned, e.g., by address or physical location, but it is
significant that specific physical processors are assigned. A set of processors, whether
a pool or a dedicated set, is a collection of specific physical processors, not a virtual

capacity construct.

For each defined partition, the following steps 404 - 407 are performed. The
administrator assigns the partition to one and only one of the previously defined
processor sets (step 404), meaning that tasks within the partition will execute only in the
physical processors assigned to that processor set. If the assigned set is a pool, then steps
405-407 are performed,; if the assigned set is a set of dedicated processors, these steps are

unnecessary.

The administrator specifies the processing capacity value allocable to the partition
as a decimal number (step 405). The total processing capacity value of all partitions
assigned to a particular processor pool can not exceed the number of physical processors
in the pool. Input from the administrator can be solicited in any of various ways, but it

is appropriate to display, either graphically or numerically, the remaining unused

-16-

10

15

20

25

WO 02/086698 PCT/US01/47261

processor capacity of the pool to which the partition has been assigned. The system will

not accept a processor value which is too high.

~ The administrator designates the partition as either capped or uncapped (step
406), this designation having the meaning previously explained. Finally, the
administrator specifies the number of virtual processors for the partition (step 40;/), this
specification also being explained above. The number of virtual processors must be an

integer, and must be equal to or greater than the processor capacity value.

The administrator may specify additional parameters of each logical partition
(step408). For example, the administrator may specify the amount of memory allocation

for each partition, I/O devices to be used, and so forth.

When the partitions have been defined and characterized as explained above, the
hypervisor stores this information in various registers, tables and other constructs, which
effectively configures the system as a logically partitioned system. Hypervisor 202 and
hardware 201 thereafter enforce logical partitioning in accordance with these state values,

as explained in greater detail below.

The user interface presented to an administrator to obtain partitioning data as
described above may take any appropriate form, e.g., the interface may be textual or a
graphical user interface (GUI). It will be appreciated that certain steps depicted in Fig.
4 may be performed in a different order. Essentially the same process may be used for
reconfiguring or changing an existing logical configuration, although in the case of a
change, the administrator may omit steps for inputting parameters which are not to be

altered.

With state data entered in appropriate registers and tables to configure logical
partitioning, hypervisor 202 and hardware 201 enforce logical partitioning, and in
particular, enforces constraints on the use of processor resources. Figs 5A-5D illustrate

from a process viewpoint the operation of the various virtual processor dispatching

-17-

10

15

20

25

WO 02/086698 PCT/US01/47261

enforcement mechanisms for processor pools. It should be understood that the processes
shown in Figs. 5A-5D do not apply to partitions using dedicated processors; in the case
of dedicated processors, the hypervisor directly maps virtual processors seen by the OS
kernel to physical processors, and therefore directly passes through task dispatches
generated by the OS kernel to the appropriate physical processor. Although Figs. 5A-5D
illustrate various steps in a sequential manner, it should be understood that these
mechanisms are not necessarily sequentially executing code, and may be combinatorial
logic hardware or combinations of code and hardware which make decisions based on

various state inputs.

In operation, pooled processor constraints are enforced by taking time slices of
system operation, and setting timers for each of various processes in a time slice. When
the timers time out, some action is taken, such as limiting further execution of a task.
The various actions may be triggered, e.g., by interrupts or similar hardware signals

generated by a time-out, a task termination, a task becoming idle, etc.

Fig. 5A illustrates conceptually the overall time slice process. A time slice timer
is used to divide time into discrete slices. When the timer times out, a time out signal is
generated 501. The time slice timer is then reset to the nominal value of a time slice (step
502). Additionally, a respective partition processor resource counter is reset for each
partition (step 503); the partition processor resource counter tracks total processor time
available to executing virtual processors from the respective partition during the current
time slice. The counter may, e.g., be reset to an initial value corresponding to the
processor capacity allocated to a partition, and decremented as each task is executed in
a processor. When the counter reaches a limiting value (such as zero), the partition has

used up its allocation of processor resource for the current time slice.

Fig. 5B illustrates the action taken when a partition processor resource counter
reaches its limit (521). If the partition in question is designated a capped partition (the
“Y” branch from step 522), then all executing virtual processors in the partition are halted

and placed on the “eligible” queue, i.e., the queue of virtual processors available for

-18-

10

15

20

25

30

WO 02/086698 PCT/US01/47261

immediate dispatch to a physical processor (step 523). Virtual processors from other
partitions are dispatched to the physical processors made idle, if any such virtual
processors are available for dispatch (step 524). If the partition in question (first
partition) is designated uncapped (the “N” branch from step 522), then to the extent there
are any virtual processors waiting on the eligible queues of other partitions in the same
processor pool which could be started, the virtual processors from the partition in
question are halted. This is illustrated as steps 525-527. For purposes of step 525, an
eligible virtual processor is a virtual processor on the eligible queue of a second partition
in the same processor pool, where the partition processor resource counter of the second
partition has not yet reached its limit, and where the number of virtual processors from
the second partition cui’rently executing is less than the limit of virtual processors
assigned to the second partition. If such a virtual processor exists, the “Y” branch is
taken from step 525. A virtual processor from the first partition is halted and placed on
its eligible queue, and a virtual processor from the second partition is dispatched to a
physical processor (step 526). If there are more virtual processors in the first partition
still executing (step 527), the process repeats until either all potential virtual processors
from other partitions are dispatched or no virtual processors remain executing in the first
partition.

Fig. 5C illustrates the action taken to dispatch a new virtual processor when a
physical processor becomes available (e.g., because an executing task terminates, or is
temporarily halted to wait for some event). Upon a processor available event (541), if
there is a virtual processor eligible for dispatch from a partition which has not yet reached
its processor resource limit in the current time slice, the “Y” branch is taken from step
542, and the virtual processor is dispatched (step 543). For purposes of step 542, an
eligible virtual processor is a virtual processor on the eligible queue of a partition in the
same processor pool as the available processor, where the partition processor resource
counter of the partition has not yet reached its limit, and where the number of virtual
processors from the partition currently executing is less than the limit of virtual
processors assigned to the partition. If no such virtual processor is available, the “N”
branch is taken from step 542. In this case, if there 1s an eligible virtual processor from

an uncapped partition which has reached its limit, the “Y” branch is taken from step 544,

-19-

10

15

20

25

WO 02/086698 PCT/US01/47261

and the virtual processor is dispatched (step 545). For purposes of step 544, an eligible
virtual processor is a virtual processor on the eligible queue of an uncapped partition in
the same processor pool as the available processor, where the number of virtual
processors from the partition currently executing is less than the limit of virtual
processors assigned to the partition. If no such virtual processor is available, the “N”

branch is taken from step 544, and the processor must remain idle for awhile.

Finally, Fig. 5D illustrates the action taken when a virtual processor becomes
available for dispatch. This may occur when a virtual processor enters the eligible queue
(either because a the OS kernel dispatched a new task to the hypervisor, or because the
OS kernel dispatched a task which was previously halted and waiting on some event is
now available), or it may occur because the time slice expired and all partition processor
resource counters were reset, making a virtual processor in a capped partition which had
reached its limit now available for dispatch to a physical processor. When a virtual
processor becomes available (561), if any physical processor in the pool to which the
virtual processor’s logical partition is assigned is currently idle (step 562), then a virtual
processor is selected for dispatch in accordance with the actions of Fig. 5C (step 563).
If no physical processor is available (the “N” branch from step 562), then the hypervisor

dispatcher waits for a processor available event to initiate the dispatch actions of Fig. 5C.

It will be recognized that in steps 524, 526, 543 and 545, there could be multiple
virtual processors meeting the applicable criteria, and the virtual processor dispatcher in
the hypervisor may have various other priorities for selecting one from among multiple
potentially eligible virtual processors, such as length of time in queue, user assigned

priority of the underlying task, and so forth.

In general, the routines executed to implement the illustrated embodiments of the
invention, whether implemented as part of an operating system or a specific application,
program, object, module or sequence of instructions may be referred to herein as
“computer programs’ or simply “program”. The computer programs typically comprise

instructions which, when read and executed by one or more processors in the devices or

-20-

10

15

20

WO 02/086698 PCT/US01/47261

systems in a computer system consistent with the invention, cause those devices or
systems to perform the steps necessary to execute steps or generate elements embodying
the various aspects of the present invention. Moreover, while the invention has and
hereinafter will be described in the context of fully functioning computer systems, the
various embodiments of the invention are capable of being distributed as a program
product in a variety of forms, and the invention applies equally regardless of the
particular type of signal-bearing media used to actually carry out the distribution.
Examples of signal-bearing media include, but are not limited to, recordable type media
such as volatile and non-volatile memory devices, floppy disks, hard-disk drives, CD-
ROM’s, DVD’s, magnetic tape, and transmission-type media such as digital and analog
communications links, including wireless communications links. Examples of signal-
bearing media are illustrated in Fig. 1 as main memory 102 and as storage devices

attached to storage IOPs 111, 112 and 116.

In the preferred embodiment described above, the computer system utilizes an
IBM AS/400 or I/Series architecture. It will be understood that certain implementation
details above described are specific to this architecture, and that logical partitioning
management mechanisms in accordance with the present invention may be implemented

on different architectures, and certain implementation details may vary.

While the invention has been described in connection with what is currently
considered the most practical and preferred embodiments, it is to be understood that the
invention is not limited to the disclosed embodiments, but on the contrary, is intended to
cover various modifications and equivalent arrangements included within the spirit and

scope of the appended claims.

Industrial Applicability:

The present invention pertains to the efficient utilization of computing machinery.

21-

O 00 N9 N L A WN

|\ T N e - T S e R =)
-_— O O 0 NN N B W N = O

(O B S VS B \S

WO 02/086698 PCT/US01/47261

Claims
What is claimed is:

l. A method for allocating processor resources in a computer system having a
plurality of central processors, comprising the steps of:

defining a plurality of logical partitions of said computer system, wherein each
task executing in said computer system is assigned to a respective one of said logical
partitions;

defining a plurality of sets of processors;

assigning each central processor of said multi-processor system to a respective
set of said plurality of processor sets; |

assigning each logical partition of said plurality of logical partitions to a
respective set of said plurality of processor sets, wherein a first processor set of said
plurality of processor sets has a plurality of logical partitions assigned to it;

assigning a respective processing capacity value to each of said plurality of
logical partitions assigned to said first set, said capacity values representing
processing capacity in units equivalent to a fixed number of physical central
PIroCessors;

constraining tasks executing in a each logical partition to execute only in
central processors assigned to the processor set to which the respective logical
partition is assigned; and

constraining tasks executing in said each logical partition assigned to said first
processor set to execute for a combined length of time equivalent to the processing

capacity value assigned to the respective logical partition.

2. The method for allocating processor resources of claim 1, further comprising:
designating each respective logical partition assigned to said first processor set
as either capped or uncapped;
wherein, with respect to a logical partition which is designated capped, said

step of constraining tasks executing in the logical partition to execute for a combined

-22- .

O 0 9 O

10
11
12

E\DOO\IO\U\#UJN—'

EENN VS)

WO 02/086698 PCT/US01/47261

length of time equivalent to the processing capacity value comprises preventing tasks
in the partition from executing if the processing capacity value has been reached; and

wherein, with respect to a logical partition which is designated uncapped, said
step of constraining tasks executing in the logical partition to execute for a combined
length of time equivalent to the processing capacity value comprises preventing tasks
in the partition from executing if the processing capacity value has been reached,

unless there is unused processing capacity in the first processor set.

3. The method for allocating processor resources of claim 1, further comprising:
assigning a respective number of virtual processors to each of said plurality of

logical partitions assigned to said first processor set..

4. The method for allocating processor resources of claim 1, wherein a second
processor set of said plurality of processor sets has a plurality of logical partitions
assigned to it, said method further comprising:

assigning a respective processing capacity value to each of said plurality of
logical partitions assigned to said second set, said capacity values representing
processing capacity in units equivalent to a fixed number of physical central
processors; and |

constraining tasks executing in said each logical partition assigned to said
second processor set to execute for a combined length of time equivalent to the

processing capacity value assigned to the respective logical partition.

5. The method for allocating processor resources of claim 1, further comprising:
altering a processor capacity value of a first logical partition assigned to said
first set, while holding a processor capacity value of a second logical partition

assigned to said first set constant.

6. The method for allocating processor resources of claim 1, wherein at least one
processor set of said plurality of processor sets has only a single logical partition

assigned to it.

23-

O 00 9 N R WND

e e T e T e S S e S S S e S S S =Y
O 00 N N W AW = O

WO 02/086698 PCT/US01/47261

1. A computer program product including machine-readable media tangibly
embodying a computer program for allocating processor resources according to any of

claims 1-6

8. A computer system for performing a method for allocating processor resources

according to any of claims 1-6.

9. The computer system of claim 8, further comprising:

a plurality of central processing units;

a logical partitioning configuration function which receives a user definition of
a plurality of said logical partitions and a plurality of disjoint sets of said central
processing units, each logical partition being assigned to a respective one of said
plurality of disjoint sets of said central processing units, said logical partitioning
configuration function supporting the assignment of a plurality of multiple logical
partitions to a single central processing unit set;

wherein, with respect to multiple logical partitions assigned to a single central
processing unit set, said logical partitioning configuration function receives a user
definition of a respective processing capacity value for each of said multiple logical
partitions, said processing capacity values representing processing capacity in units
equivalent to a fixed number of said central processing units; and

a logical partitioning enforcement function which constrains tasks executing in
each logical partition to execute only in central processor units of the set of central
processing units to which the respective logical partition is assigned, and constrains
tasks executing in said each said multiple logical partition assigned to a single central
processing unit set to execute for a combined length of time equivalent to the

processing capacity value assigned to the respective logical partition.

.24

N N B W =

O 0 3 O v AW N =

e e
N = O

[y

O X NN N bW

WO 02/086698 PCT/US01/47261

10. The computer system of claim 9,
wherein each logical partition contains a respective task dispatching function;
wherein said logical partitioning enforcement function comprises a respective
low-level virtual processor dispatcher for each set of central processing units
operating below the level of said task dispatching functions, said task dispatching
functions dispatching tasks to virtual processors, said virtual processor dispatchers

dispatching said virtual processors to said central processing units.

11. The computer system of claim 9, wherein, with respect to multiple logical
partitions assigned to a single central processing unit set, said logical partitioning
configuration function further receives a user designation of each respective paritition
as capped or uncapped;

wherein, with respect to a logical partition which is designated capped, said
logical partitioning enforcement mechanism prevents tasks in the logical partition
from executing if the processing capacity value of the logical partition has been
reached; and

wherein, with respect to a logical partition which is designated uncapped, said
logical partitioning enforcement mechanism prevents tasks in the logical partition
from executing if the processing capacity value of the logical partition has been

reached, unless there is unused processing capacity in the first processor set.

12. The computer system of claim 9,

wherein, with respect to multiple logical partitions assigned to a single central
processing unit set, said logical partitioning configuration function further receives a
user designation of a respective number of virtual processors for each such logical
partitions; and

wherein said logical partitioning enforcement mechanism limits simultaneous
execution of tasks of a logical partition of multiple logical partitions assigned to a
single central processing unit set to the number of virtual processors assigned to the

logical partition.

25-

WO 02/086698

1/8

PCT/US01/47261

17|

1064
106B
T —~106C]
CPU | -
' 1106
o :
il 103A f
. - MEMORY
101E |
=== CPU1 F06E
HOIF oy,
— T ' 106F —
— —P1 E<1066 | [1038
| 1014 | — |/
CPU : ~106H
105
1/0 BUS INTERFACE
|) 110 N
L ul J—— 108
STORAGE |l STORAGE || comM™ || wRK STN | — 11 | [
10P 0P || 10P 10P 115 .
WRK STN NETWORK
@) (O l ‘ J I0P 10P__
Al a L W/S
2 2 116
@ @, | w/sH || STORAGE
© @ N/S 10P
=1 I] |
o W/S [— =
< | W/S
5 TAPE — |
, 2
| /M

FIG. |

102}

WO 02/086698

2/8

PCT/US01/47261

206A 206B 06C 206D
. USER ~ USER USER USER
. 205A 205B 205C 205D
HIGH-LEVEL HIGH-LEVEL| | HIGH-LEVEL HIGH-LEVEL
0S - 0S 0S 08
2103‘» .
204A 204B 204C 204D
208 | ' .
USER/
HYPVSR
1/F
0S- KERNEL 0S KERNEL | OS KERNEL 0S KERNEL
HYPER 203
VISOR
MGMT -
| | : 202
BASE HYPERVISOR (PLIC) ==
201

HARDWARE LEVEL

FIG. 2

PCT/US01/47261

WO 02/086698

3/8

¢ 914

_Y:m

zr¢ NOILVI0TIV 100d

s

9TE\ /SIS
}
® €K |
$1¢@
[“, |
| | |
| |
“ | g'g S0 |
o IR
| K |
_ | 7 |
| \ 7 _
_ _ \ , |
~] \ / |
J
o 7
oo 9

40SS3204d
TWIISAHd

ALIDJYdY)
INISS3II0Ud

INJFWNOISSY
40SS3204d
TYNLYIA

WO 02/086698

FOR
EACH
- PARTITION

4/8

Define partitions

__i01

Define processor sets

:

Assign processors
to sets

~1403

'

Assign partition
to processor set

404

1402 -

Specify processing
capacity

| 147 E

Specify capped/
uncapped

106

L .

Specify number of
virtual. processors

107

.

408

Specify other resources
or parameters

T

Store parameters

1410

PCT/US01/47261

FIG.4

WO 02/086698

5/8

L

' Time Slice Timer .
' (:: Time-out ‘::>’”501

‘Reset time
slice timer

l

Reset all partition

_~503

processor resource counters

(i Done/Return *:>

FIG. SA

PCT/US01/47261

PCT/US01/47261

WO 02/086698

6/8

¢
*20.4d
JI4TA BUTINO9X3

3JOY . S3A

*204d *1J4I1A
31qI6113 UdIedsiq

~ uoT1T3Jed sIul
'204d *1JTA B 1[EH

Nozs

So9A

¢
builiem

5

AMAcL:pmm\maom Mv

3[qIssod JI sJ0Ssadold
[EMIJTA 13430 ydiedsiq

il Ntzg

ansnbus pue UOT1TiJed Syl
$10Ss320Jd [EMJIIA 1B 1]eH

Nezg

*204d f3JIA
-31q16713

1¢s

1TWIT saydesd Ja3unod

'304N0S3aJ 10SS320.44 UOT1T3Jed

agold

WO 02/086698 PCT/US01/47261

7/8

Physical Processor 541 .
_ - Available Event |

542 543
4 _Z
Elg. virt. Dispatch
proc. in under-used virtual
partition processor
4
545
544 /4
Elg, virt. ° Dispatch
proc. in uncappe {virtual (—¥
- partition processor

(:7 Done/Return ‘:>¢.

FIG. 5C

WO 02/086698 PCT/US01/47261

- 8/8

" Virtual processor 561
-\ enaueued/Avail

563
\ . : /
Idle Yes Dispatch
physical proc. - » | virt. proc.
? 1 | (FIG. -5C)

(:*DonelReturn _:)4~

FIG..5D

International application No.

INTERNATIONAL SEARCH REPORT
PCT/USO1 47261

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) . GOG6F 9/00

USCL ;. 709/104
According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 709/104, 226; 711/153

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the international search (name of data base and, where praclicablé, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant o claim No.
Y US 5,325,525 A (SHAN et al) 28 June 1994 (28.06.1994), the whole document. 1-12
Y US 5,504,670 A (BARTH et al))2 April 1996 (02.04.1996), the whole document. 1-12

D Further documents are listed in the continuation of Box C. D Sece patent family annex.

= Special categories of cited documents: “T" Jater document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand the
«A" - document defining the gencral state of the ant which is not considered to be principle or theory underlying the invention
of particular relevance
X" document of particulur relevance: the claimed invention cinnat be
“E earlier application or patent published on or after the intemational fiting date considered novel or snot be considered o involve an inventive step

when the document is taken alone
«L* document which may throw doubts on priority claim(s) or which is cited 10

establish the publication date of another citation or other special reason (as “yn document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such cambination
«O" document referring to an oral disctosure, use, exhibition or other means being obvious 1o a person skilled in the art
«p» document published prior to the intemational filing date but later than the & document member of the same patent fumily

priority date claimed

Date of the actual completion of the international search Date of mail‘u} 3 uMiAvazﬁUzmch report

18 April 2002 (18.04.2002)

Name and mailing address of the ISA/US Authorized officer I
Cammissioner of Patents and Trademarks ST. JOHN COURTENAY 1l P l l
Box PCT . a_%,‘

Washington, D.C. 20231
Facsimile No. 703 305-3230 Telephone No. 703 305-3665

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

