PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 17/50 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/09498

25 February 1999 (25.02.99)

(21) International Application Number: PCT/US98/13040

(22) International Filing Date: 22 June 1998 (22.06.98)

(30) Priority Data:

08/912,427 18 August 1997 (18.08.97) uUs

(71) Applicant: NATIONAL INSTRUMENTS CORPORATION
[US/US]; 6504 Bridge Point Parkway, Austin, TX
78730-5039 (US).

(72) Inventors: KODOSKY, Jeffrey, L.; 22 Cousteau Lane, Austin,
TX 78746 (US). ANDRADE, Hugo; 13223 Darwin Lane,
Austin, TX 78729 (US). ODOM, Brian, K.; 16915
Simsbrook, Pflugerville, TX 78660 (US). BUTLER, Cary,
P.; 6333 Yaupon Drive, Austin, TX 78759 (US).

(74) Agent: CONLEY, ROSE & TAYON, P.C.; P.O. Box 398,
Austin, TX 78767-0398 (US).

(81) Designated States: CA, JP, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM AND METHOD FOR CONVERTING GRAPHICAL PROGRAMS INTO HARDWARE IMPLEMENTATIONS

(57) Abstract

Create graphical
A computer-implemented system and method for generating a program (block
hardware implementation of graphical code. The method comprises first diageam)
creating a graphical program. A first portion of the graphical program n
may optionally be compiled into machine code for execution by a CPU.
A second portion of the graphical program is converted into a hardware v ¥
implementation according to the present invention. The opertion Complle supervisory
of converting the graphical program into a hardware implementation control and dispiay Export at loast 8
comprises exporting the second portion of the graphical program into porion of the graphical | | porion of the graphical
a hardware description, wherein the hardware description describes a "m’gmﬂm program 10 a hardiere
hardware implementation of the second portion of the graphical program, ” deeggﬂon
and then configuring a programmable hardware element utilizing the 2
hardware description to produce a configured hardware element. The T
configured hardware element thus implements a hardware implementation Convert e hard
of the second portion of the graphical program. Library of pre-compiled descripton toan Hardware target
funclion blocks |81 o "mlu-spsdlchbmﬂm
208 30
X6
v
Complle the net list
info an FPGA program
o
N2
)
Transfer FPGA
program file o
hardware (FPGA) fo
produce programmed
hardware equivalent fo
graphical program
ikl

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
I8
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™
TG
TJ
™
TR
TT
UA
UG
Us
vz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

40

WO 99/09498 ' PCT/US98/13040

Title: System and Method for Converting Graphical Programs into Hardware Implementations

Reservation of Copyright

A portion of the disclosure of this patent document contains material to which a claim of copyright
protection is made. The copyright owner has no objection to the facsimile reproduction by anyone of the patent
document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but

reserves all other rights whatsoever.

Field of the Invention
The present invention relates to graphical programming, and in particular to a system and method for

converting a graphical program into a programmable hardware implementation.

Description of the Related Art

Traditionally, high level text-based programming languages have been used by programmers in writing
applications programs. Many different high level programming languages exist, including BASIC, C, FORTRAN,
Pascal, COBOL, ADA, APL, etc. Programs written in these high level languages are translated to the machine
language level by translators known as compilers. The high level programming languages in this level, as well as
the assembly language level, are referred to as text-based programming environments.

Increasingly computers are required to be used and programmed by those who are not highly trained in
computer programming techniques. When traditional text-based programming environments are used, the user's
programming skills and ability to interact with the computer system often become a limiting factor in the
achievement of optimal utilization of the computer system.

There are numerous subtle complexities which a user must master before he can efficiently program a
computer system in a text-based environment. The task of programming a computer system to model a process
often is further complicated by the fact that a sequence of mathematical formulas, mathematical steps or other
procedures customarily used to conceptually model a process often does not closely correspond to the traditional
text-based programming techniques used to program a computer system to model such a process. In other words,
the requirement that a user program in a text-based programming environment places a level of abstraction between
the user's conceptualization of the solution and the implementation of a method that accomplishes this solution in a
computer program. Thus, a user often must substantially master different skills in order to both conceptually model
a system and then to program a computer to model that system. Since a user often is not fully proficient in
techniques for programming a computer system in a text-based environment to implement his model, the efficiency
with which the computer system can be utilized to perform such modeling often is reduced.

Examples of fields in which computer systems are employed to model and/or control physical systems are
the fields of instrumentation, process control, and industrial automation. Computer modeling or control of devices
such as instruments or industrial automation hardware has become increasingly desirable in view of the increasing
complexity and variety of instruments and devices available for use. However, due to the wide variety of possible

testing/control situations and environments, and also the wide array of instruments or devices available, it is often

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
necessary for a user to develop a program to control a desired system. As discussed above, computer programs
used to control such systems had to be written in conventional text-based programming languages such as, for
example, assembly language, C, FORTRAN, BASIC, or Pascal. Traditional users of these systems, however, often
were not highly trained in programming techniques and, in addition, traditional text-based programming languages
were not sufficiently intuitive to allow users to use these languages without training. Therefore, implementation of
such systems frequently required the involvement of a programmer to write software for control and analysis of
instrumentation or industrial automation data. Thus, development and maintenance of the software elements in
these systems often proved to be difficult.

U.S. Patent Number 4,901,221 to Kodosky et al discloses a graphical system and method for modeling a
process, i.e. a graphical programming environment which enables a user to easily and intuitively model a process.
The graphical programming environment disclosed in Kodosky et al can be considered the highest and most
intuitive way in which to interact with a computer. A graphically based programming environment can be
represented at level above text-based high level programming languages such as C, Pascal, etc. The method
disclosed in Kodosky et al allows a user to construct a diagram using a block diagram editor, such that the diagram
created graphically displays a procedure or method for accomplishing a certain result, such as manipulating one or
more input variables to produce one or more output variables. In response to the user constructing a data flow
diagram or graphical program using the block diagram editor, machine language instructions are automatically
constructed which characterize an execution procedure which corresponds to the displayed procedure. Therefore, a
user can create a computer program solely by using a graphically based programming environment. This
graphically based programming environment may be used for creating virtual instrumentation systems, industrial
automation systems and modeling processes, as well as for any type of general programming.

Therefore, Kodosky et al teaches a graphical programming environment wherein a user places on
manipulates-icons in a block diagram using a block diagram editor to create a data flow "program.” A graphical
program for controliing or modeling devices, such as instruments, processes or industrial automation hardware, is
referred to as a virtual instrument (VI). In creating a virtual instrument, a user preferably creates a front panel or
user interface panel. The front panel includes various front panel objects, such as controls or indicators that
represent the respective input and output that will be used by the graphical program or VI, and may include other
icons which represent devices being controlled. When the controls and indicators are created in the front panel,
corresponding icons or terminals are automatically created in the block diagram by the block diagram editor.
Alternatively, the user can first place terminal icons in the block diagram which cause the display of corresponding
front panel objects in the front panel. The user then chooses various functions that accomplish his desired result,
connecting the corresponding function icons between the terminals of the respective controls and indicators. In
other words, the user creates a data flow program, referred to as a block diagram, representing the graphical data
flow which accomplishes his desired function. This is done by wiring up the various function icons between the
control icons and indicator icons. The manipulation and orgaaization of icons in turn produces machine language
that accomplishes the desired method or process as shown in the block diagram.

A user inputs data to a virtual instrument using front panel controls. This input data propagates through

the data flow block diagram or graphical program and appears as changes on the output indicators. In an

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
instrumentation application, the front panel can be analogized to the front panel of an instrument. In an industrial
automation application the front panel can be analogized to the MMI (Man Machine Interface) of a device. The
user adjusts the controls on the front panel to affect the input and views the output on the respective indicators.

Thus, graphical programming has become a powerful tool available to programmers. Graphical
programming environments such as iie National Instruments LabVIEW product have become very popular. Tools
such as LabVIEW have greatly increased the productivity of programmers, and increasing numbers of
programmers are using graphical programming environments to develop their software applications. In particuiar,
graphical programming tools are being used for test and measurement, data acquisition, process control, man
machine interface (MMI), and supervisory control and data acquisition (SCADA) applications, among others.

A primary goal of virtual insirumentation is to provide the user the maximum amount of flexibility to
create his/her own applications and/or define his/her own instrument functionality. In this regard, it is desirable to
extend the level at which the user of instrumentation or industrial automation hardware is able to program

instrument. “The evolution of the levels at which the user has been able to program an instrument is essentially as

follows.
1. User level software (LabVIEW, LabWindows CVI, Visual Basic, etc.)
2. Kernel level software
3. Auxiliary kernel level software (a second kernel running along side the main OS, e.g., InTime,

VentureCom, etc.)
4, Embedded kernel level software

5. Hardware level sottware (FPGA - the present patent application)

In general, going down the above list, the user is able to create software applications which provide a more
deterministic real-time response. Currently, most programming development tools for instrumentation or industrial
automation provide an interface at level 1 above. In general, most users are unable and/or not allowed to program
at the kernel level or auxiliary kernel ievel. The user level software typically takes the form of software tools that
can be used to create software which operates at levels 1 and/or 4.

Current instrumentation solutions at level 5 primarily exist as vendor-defined solutions, i.e., vendor
created modules. However, it would be highly desirable to provide the user with the ability to develop user level
software which operates at the hardware level. More particularly, it would be desirable to provide the user with the
ability to develop high level software, such as graphical programs, which can then be readily converted into
hardware level instrument functionality. This would provide the user with the dual benefits of being able to
program instrument functionality at the highest level possible (text-based or graphical programs), while also

providing the ability to have the created program operate directly in hardware for increased speed and efficiency.

Summary of the Invention
The present invention comprises a computer-implemented system and method for automatically generating

hardware level functionality, e.g., programmable hardware or FPGAs, in response to a graphical program created

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
by a user. This provides the user the ability to develop or define instrument functionality using graphical
programming techniques, while enabling the resulting program to operate directly in hardware.

The user first creates a graphical program which performs or represents the desired functionality. The
graphical program will typically include one or more modules or a hierarchy of sub-VIs. In the preferred
embodiment, the user places various constructs in portions of the graphical program to aid in conversion of these
portions into hardware form.

The user then selects an option to convert the graphical program into executable form, wherein at least a
portion of the graphical program is converted into a hardware implementation. According to one embodiment of the
present invention, the user can select which portions of modules are to be translated into hardware form, either
during creation of the graphical program or when selecting the option to convert the graphical program into
executable form. Thus the user can select a first portion of the graphical program, preferably comprising the
supervisory control and display portion of the program, to be compiled into machine language for execution on a
CPU. According to the present invention, the user can select a second portion of the graphical program which is
desired for hardware implementation.

The portion of the graphical program selected for hardware implementation is first exported into a
hardware description, such as a VHDL description. The hardware description is then converted into a net list,
preferably an FPGA-specific net list. The hardware description is converted into a net list by a synthesis tool. The
net list is thén compiled into a FPGA program file, also called a software bit stream. In the preferred embodiment,
the hardware description is directly converted into an FPGA program file.

The step of compiling the resulting net list into an FPGA program file preferably uses a library of pre-
compiled function blocks to aid in the compilation, as well as hardware target specific information. The library of
pre-compiled function blocks includes net list libraries for structure nodes, such as for/next loops, while/do loops,
case structures, and sequence structures, among others. This allows the user to program with high level
programming constructs, such as iteration, looping, and case structures, while allowing the resulting program to
execute directly in hardware.

The resulting bit stream is then transferred to an FPGA to produce a programmed FPGA equivalent to the
graphical program or block diagram.

The preferred embodiment of the invention comprises a general purpose computer system which includes
a CPU and memory, and an interface card or device coupled to the computer system which includes programmable
hardware or logic, such as an FPGA. The computer system includes a graphical programming system which is
used to develop the graphical program. The computer system also includes software according to the present
invention wbich is operable to convert the graphical program into a hardware description. The computer system
further includes a synthesis tool which is used to compile the hardware description into an FPGA-specific net list,
as well as other tools for converting the net list into an FPGA program file for downloading into the FPGA. The
computer system further includes a library of pre-compiled function blocks according to the present invention
which are used by the synthesis tool to aid in compiling the net list into the software bit stream.

In one embodiment, the target device including the reconfigurable hardware or FPGA being programmed

comprises an interface card in the computer system, such as a data acquisition card, a GPIB interface card, or a VXI

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
interface card. In an alternate embodiment, the target device being programmed comprises an instrument or device
connected to the computer, such as through a serial connection. It is noted that the target instrument or device
being programmed, which includes an FPGA or other configurable hardware element, can take any of various

forms, as desired.

Brief Description of the Drawings

A better understanding of the present invention can be obtained when the following detailed description of
the preferred embodiment is considered in conjunction with the following drawings, in which:

Figure 1 illustrates an instrumentation control system;

Figure 1A illustrates an industrial automation system;

Figure 2 is a block diagram of the instrumentation control system of Figure 1;

Figures 3, 3A and 3B are block diagrams illustrating an interface card configured with programmable
hardware according to various embodiments of the present invention;

Figure 4 is a flowchart diagram illustrating operation of the present invention;

Figure 4A is a more detailed flowchart diagram illustrating operation of the preferred embodiment of the
invention, including compiling a first portion of the graphical program into machine language and converting a
second portion of the graphical program into a hardware implementation;

Figure 5 is a more detailed flowchart diagram illustrating creation of a graphical program according to the
preferred embodiment:

Figure 6 is a more detailed flowchart diagram illustrating operation of exporting at least a portion of a
graphical program to a hardware description;

Figure 7 is a flowchart diagram illustrating operation where the method exports an input terminal into a
hardware description;

Figure 8 is a flowchart diagram illustrating operation where the method exports a function node into a
hardware description;

Figure 9 is a flowchart diagram illustrating operation where the method exports an output terminal into a
hardware description;

Figure 10 is a flowchart diagram illustrating operation where the method exports a structure node into a
hardware description;

Figure 11 illustrates converting a node hardware description to a net list;

Figure 12 illustrates converting a structure node hardware description to a net list;

Figure 13 illustrates the function block for a structure node;

Figure 14 is a state diagram illustrating operation of the structure node function block of Figure 13;

Figures 15 and 16 illustrate a simple example of operation of the present invention, wherein Figure 15
illustrates a simple graphical program and Figure 16 is a conceptual diagram of the hardware description of the
graphical program of Figure 15;

Figures 17 - 19 illustrate another example of operation of the present invention, wherein Figure 17

illustrates a graphical program, Figure 18 illustrates a tree of data structures created in response to the graphical

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
program of Figure 17, and Figure 18 is a conceptual diagram of the hardware description of the graphical program
of Figure 17; and

Figures 20 - 21 illustrate a graphical program called examplel.vi.

While the invention is susceptible to various modifications and alternative forms specific embodiments are
shown by way of example in the drawings and will herein be described in detail. It should be understood however,
that drawings and detailed description thereto are not intended to limit the invention to the particular form
disclosed. But on the contrary the invention is to cover all modifications, equivalents and alternative following

within the spirit and scope of the present invention as defined by the appended claims.

Detailed Description of the Preferred Embodiment

Figures 1 and 1A - Instrumentation and Industrial Automation Systems

Referring now to Figure 1, an instrumentation control system 100 is shown. The system 100 comprises a
computer 102 which connects to one or more instruments. The computer 102 comprises a CPU, a display screen,
memory, and one or more input devices such as a mouse or keyboard as shown. The computer 102 connects through
the one or more instruments to analyze, measure or control a unit under test (UUT) or process 130.

The one or more instruments may include a GPIB instrument 112, a data acquisition board 114, and/or a VXI
instrument 116. The GPIB instrument 112 is coupled to the computer 102 via a GPIB interface card 122 provided by
the computer 102. The cata acquisiticis board 114 is coupled to the computer 102, and preferably interfaces through
signal conditioning circuitry 124 to the UUT. The signal conditioning circuitry 124 preferably comprises an SCXI
(Signal Conditioning eXtensions for Instrumentation) chassis comprising one or more SCXI modules 126. Both the
GPIB card 122 and the DAQ card 114 are typically plugged in to an I/O slot in the computer 102, such as a PCI bus
slot, a PC Card slot, or an ISA, EISA or MicroChannel bus slot provided by the computer 102. However, these cards
122 and 114 are shown external to computer 102 for illustrative purposes. The VXTI instrument 116 is coupled to the
computer 102 via a VXI bus, MXI bus, or other serial or parallel bus provided by the computer 102. The computer
102 preferably includes VX1 interface logic, such as a VXI, MXI or GPIB interface card (not shown) comprised in the
computer. A serial instrument (not shown) may also be coupled to the computer 102 through a serial port, such as an
RS-232 port, USB (Universal Serial bus) or IEEE 1394 or 1394.2 bus, provided by the computer 102. In typical
instrumentation control systems an instrument will not be present of each interface type, and in fact many systems may
only have one or more instruments of a single interface type, such as only GPIB instruments.

In the embodiment of Figure 1, one or more of the devices connected to the computer 102 include
programmable or reconfigurable hardware according to the present invention. For example, one or more of the GPIB
card 122, the DAQ card 114, or the VXI card include programmable hardware according to the present invention.
Alternatively, or in addiiion, one or more of the GPIB instrument 112, the VXI instrument 116, or the serial instrument
include programmable hardware according to the present invention. In the preferred embodiment, the programmable

hardware comprises an FPGA (field programmable gate array).

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

The instruments are coupled to the unit under test (UUT) or process 130, or are coupled to receive field
signals, typically generated by transducers. The system 100 may be used in a data acquisition and control application,
in a test and measurement application, a process control application, or a man-machine interface application.

Referring now to Figure 1A, an industrial automation system 140 is shown. The industrial automation system
140 is similar to the instrumentation or test and measurement system 100 shown in Figure 1. Elements which are
similar or identical to elements in Figure 1 have the same reference numerals for convenience. The system 140
comprises a computer 102 which connects to one or more devices or instruments. The computer 102 comprises a
CPU, a display screen, memory, and one or more input devices such as a mouse or keyboard as shown. The computer
102 connects through the one or more devices to a process or device 160 to perform an automation function, such as
MMI (Man Machine Interface), SCADA (Supervisory Control and Data Acquisition), portable or distributed
acquisition, advanced analysis, or control.

The one or more devices may include a data acquisition board 114, a serial instrument 142, a PLC
(Programmable Logic Controller) 144, or a fieldbus network card 156. The data acquisition board 114 is coupled to or
comprised in the computer 102, and preferably interfaces through signal conditioning circuitry 124 to the process 160.
The signal conditioning circuitry 124 preferably comprises an SCXI (Signal Conditioning extensions for
Instrumentation) chassis comprising one or more SCXI modules 126. The serial instrument 142 is coupled to the
computer 102 through a serial interface card 152, or through a serial port, such as an RS-232 port, provided by the
computer 102. The PLC 144 couples to the computer 102 through a serial port, Ethernet port, or a proprietary
interface. The fieldbus interface card 156 is preferably comprised in the computer 102 and interfaces through a
fieldbus network to one or more fieldbus devices, such as valve 146. Each of the DAQ card 114, the serial card 152
and the fieldbus card 156 are typically plugged in to an I/O slot in the computer 102 as described above. However,
these cards 114, 12 and 156 are shown external to computer 102 for illustrative purposes. In typical industrial
automation systems a device will not be present of each interface type, and in fact many systems may only have one or
more devices of a single interface type, such as only PLCs. The devices are coupled to the device or process 160.

In the embodiment of Figure 1A, one or more of the devices connected to the computer 102 include
programmable hardware according to the present invention. For example, one or more of the data acquisition board
114, the serial instrument 142, the serial interface card 152, the PLC 144, or the fieldbus network card 156 include
programmable hardware according to the present invention. In the preferred embodiment, the programmable hardware
comprises an FPGA (field programmable gate array).

Referring again to Figures 1 and 1A, the computer 102 preferably includes a memory media, such as a non-
volatile media, e.g., a magnetic media, CD-ROM, or floppy disks 104, or a volatile media, such as computer system
memory, e.g., random access memory (RAM). The memory media preferably stores a graphical programming
development system for developing graphical programs. The memory media also stores computer programs according
to the present invention which are executable to convert at least a portion of a graphical program into a form for
configuring or programming the programmable hardware or FPGA. The present invention includes a software
program stored on a memory and/or hard drive of the computer 102 and executed by a CPU of the computer 102.
The CPU executing code and data from the memory thus comprises a means for converting graphical code into a

hardware implementation according to the steps described below.

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

The instruments or devices in Figures 1 and 1A are controlled by graphical software programs, optionally a
portion of which execute on the CPU of the computer 102, and at least a portion of which are downloaded to the
programmable hardware for hardware execution. The graphical software programs which perform data acquisition,
analysis and/or presentation, e.g., for instrumentation control or industrial automation, are referred to as virtual
instruments.

In the preferred embodiment, the present invention is comprised in the LabVIEW or BridgeVIEW graphical
programminé systems, hereafter collectively referred to as LabVIEW, available from National Instruments. Also, in
the preferred embodiment, the term “LabVIEW?” is intended to include graphical programming systems which include
G programming functionality, i.e., which include at least a portion of LabVIEW graphical programming functionality,
including the BridgeVIEW graphical programming system.

Also, the term “graphical programming system” is intended to include any of various types of systems which
are used to develop or create graphical code or graphical programs, including LabVIEW and BridgeVIEW from
National Instruments, Visual Designer from Intelligent Instrumentation, Hewlett-Packard’s VEE (Visual
Engineering Environment), Snap-Master by HEM Data Corporation, DASYLab by DasyTec, GFS DiaDem, and
ObjectBench by SES (Scientific and Engineering Software), among others.

Although in the preferred embodiment the graphical programs and programmable hardware are involved with
data acquisition/generation, analysis, and/or display, and for controlling or modeling instrumentation or industrial
automation hardware, it is noted that the present invention can be used to create hardware implementations of graphical
programs for a plethora of applications and are not limited to instrumentation or industrial automation applications. In
other words, Figures 1 and 1A are exemplary only, and the present invention may be used in any of various types of
systems. Thus, the system and method of the present invention is operable for automatically creating hardware
implementat'ions of graphical programs or graphical code for any of various types of applications, including general

purpose software applications such as word processing, spreadsheets, network control, games, etc.

Computer Block Diagram

Referring now to Figure 2, a block diagram of the computer 102 (of Figure 1) is shown. The elements of a
computer not necessary to understand the operation of the present invention have been omitted for simplicity. The
computer 102 includes at least one central processing unit or CPU 160 which is coupled to a processor or host bus
162. The CPU 160 may be any of various types, including an x86 processor, a PowerPC processor, a CPU from the
Motorola family of processors, a CPU from the SPARC family of RISC processors, as well as others. Main
memory 166 is coupled to the host bus 162 by means of memory controller 164. The main memory 166 stores a
graphical programming system, and also stores software for converting at least a portion of a graphical program
into a hardware implementation. This software will be discussed in more detail below. The main memory 166 also
stores operating system software as well as the software for operation of the computer system, as well known to
those skilled in the art.

The host bus 162 is coupled to an expansion or input/output bus 170 by means of a bus controller 168 or
bus bridge logic. The expansion bus 170 is preferably the PCI (Peripheral Component Interconnect) expansion bus,

although other bus types can be used. The expansion bus 170 includes slots for various devices such as the data

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
acquisition board 114 (of Figure 1), a GPIB interface card 122 which provides a GPIB bus interface to the GPIB
instrument 112 (of Figure 1), and a VXI or MXI bus card 230 coupled to the VXI chassis 116 for receiving VXI
instruments. The computer 102 further comprises a video display subsystem 180 and hard drive 182 coupled to the
expansion bus 170.

One or more of the interface cards or devices coupled to the expansion bus, such as the DAQ card 114, the
GPIB interface card 122, the GPIB instrument 112, or the VXI or MXI bus card 230 comprises an embedded

system comprising an embedded CPU and embedded memory.

Programmable Hardware Diagram

Referring now to Figure 3, a block diagram illustrating an interface card configured with programmable
hardware according to the present invention is shown. It is noted that Figure 3 is exemplary only, and an interface
card or device configured with programmable hardware according to the present invention may have various
architectures or forms, as desired. The interface card illustrated in Figure 3 is the DAQ interface card 114 shown in
either of Figures 1 or IA. However, as noted above, the programmable hardware may be included on any of the
various devices shown in Figures 1 or 1A, or on other devices, as desired.

As shown, the interface card 114 includes an 1/0 connector 202 which is coupled for receiving signals. In
the embodiments of Figures 1 and 1A, the 1/O connector 202 presents analog and/or digital connections for
receiving/providing anzlog or digita! signals. The 1/0O connector 202 is adapted for coupling to SCXI conditioning
logic 124 and 126, or is adapted to be coupled directly to a unit under test 130 or process 160.

The interface card 114 also includes data acquisition (DAQ) logic 204. As shown, the data acquisition
logic 204 comprises analog to digital (A/D) converters, digital to analog (D/A) converters, timer counters (TC) and
signal conditioning (SC) logic as shown. The DAQ logic 204 provides the data acquisition functionality of the
DAQ card 114.

According to the preferred embodiment of the invention, the interface card 114 includes a programmable
hardware element or programmable processor 206. In the preferred embodiment, the programmable hardware 206
comprises a-field programmable gate array (FPGA) such as those available from Xilinx, Altera, etc. The
programmable hardware element 206 is coupled to the DAQ logic 204 and is also coupled to the local bus interface
208. Thus a graphical program can be created on the computer 102, or on another computer in a networked system,
and at least a portion of the graphical program can be converted into a hardware implementation form for execution
in the FPGA 206. The portion of the graphical program converted into a hardware implementation form is
preferably a portion which requires fast and/or real-time execution

In the embodiment of Figure 3, the interface card 114 further includes a dedicated on-board
microprocessor 212 and memory 214. This enables a portion of the graphical program to be compiled into machine
language for storage in the memory 214 and execution by the microprocessor 212. This is in addition to a portion
of the graphical program being converted into a hardware implementation form in the FPGA 206. Thus, in one
embodiment, after a graphical program has been created, a portion of the graphical program is compiled for

execution on the embedded CPU 212 and executes locally on the interface card 114 via the CPU 212 and memory

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
214, and a sécond portion of the graphical program is translated or conVerted into a hardware executable format and
downloaded to the FPGA 206 for hardware implementation.

As shown, the interface card 114 further includes bus interface logic 216 and a control/data bus 218. In
the preferred embodiment, the interface card 114 is a PCI bus-compliant interface card adapted for coupling to the
PCI bus of the host computer 102, or adapted for coupling to a PX1 (PCI eXtensions for Instrumentation) bus. The
bus interface logic 216 and the control/data bus 218 thus present a PCI or PXI interface.

The interface card 114 also includes local bus interface logic 208. In the preferred embodiment, the local
bus interface logic 208 presents a RTS]I (Real Time System Integration) bus for routing timing and trigger signals
between the interface card 114 and one or more other devices or cards.

In one embodiment, the interface card 114 also includes a non-volatile memory 215 coupled to the
programmable hardware element 206. The non-volatile memory is operable to store the hardware description
received from the host computer system to enable execution of the hardware description in the programmable
hardware element 206 prior to or during booting of the computer system 102.

In the embodiment of Figure 3A, the CPU 212 and memory 214 are not included on the interface card 114,
and thus only the portion of the graphical program which is converted into hardware implementation form is
downloaded to the FPGA 206. Thus in the embodiment of Figure 3A, any supervisory control portion of the
graphical program which is necessary or desired to execute in machine language on a programmable CPU is
executed by the host CPU in the computer system 102, and is not executed locally by a CPU on the interface card
114.

In the embodiment of Figure 3B, the CPU 212 is not included on the interface card 114, i.e., the interface
card 114 includes the FPGA 206 and the memory 214. In this embodiment, the memory 214 is used for storing

FPGA state information. Figure 3B is the currently preferred embodiment of the present invention.

Figure 4 - Conversion of Graphical Code into a Hardware Implementation

Referring now to Figure 4, a flowchart diagram is shown illustrating operation of the preferred
embodiment of the present invention. The present invention comprises a computer-implemented method for
generating hardware implementations of graphical programs or graphical code. It is noted that various of the steps in
the flowcharts below can occur concurrently or in different orders.

The method below presumes that a graphical programming development system is stored in the memory of
the computer system for creation of graphical programs. In the preferred embodiment, the graphical programming
system is the LabVIEW graphical programming system available from National Instruments. In this system, the
user creates the graphical program in a graphical program panel, referred to as a block diagram window and also
creates a user interface in a graphical front panel. The graphical program is sometimes referred to as a virtual
instrument (VI). The graphical program or VI will typically have a hierarchy of sub-graphical programs or sub-
Vis.

As shown, in step 302 the user first creates a graphical program, also sometimes referred to as a block

diagram. In the preferred embodiment, the graphical program comprises a graphical data flow diagram which

10

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
specifies functionality of the program to be performed. This graphical data flow diagram is preferably directly
compilable into machine language code for execution on a computer system.

In step 304 the method operates to export at least a portion of the graphical program to a hardware
description. Thus, after the user has created a graphical program in step 302, the user selects an option to export a
portion of the graphical program to a hardware description. The hardware description is preferably a VHDL
description, 'e.g., a VHDL source file, or alternatively is a high level net list description. The hardware description
comprises a high level hardware description of function blocks, logic, inputs, and outputs which perform the
operation indicated by the graphical program. The operation of exporting at least a portion of a the graphical
program to a hardware description is discussed in more detail with the flowchart of Figure 6.

In one embodiment, during creation of the graphical program in step 302 the user specifies portions, e.g.
sub VIs, which are to be exported to the hardware description format for conversion into hardware implementation.
In another embodiment, when the user selects the option to export a portion of the graphical program to the
hardware description format, the user selects which modules or sub-VIs at that time which are to be exported to the
hardware description.

In step 306 the method operates to convert the hardware description into an FPGA-specific net list. The
net list describes the components required to be present in the hardware as well as their interconnections.
Conversion of the hardware description into the FPGA-specific net list is preferably performed by any of various
types of commercially available synthesis tools, such as those available from Xilinx, Altera, etc.

In the preferred embodiment, the converting step 306 may utilize one or more pre-compiled function
blocks from a library of pre-compiled function blocks 308. Thus, for certain function blocks which are difficult to
compile, or iess efficient to compile, from a hardware description into a net list format, the hardware description
created in step 304 includes a reference to a pre-compiled function block from the library 308. Alternatively,
hardware implementations for all of the function blocks are included in the function library. The respective pre-
compiled function blocks are simply inserted into the net list in place of these references in step 306. The preferred
embodiment of the invention thus includes the library 308 of pre-compiled function blocks, also referred to as the
component library, which are used in creating the net list. The preferred embodiment also includes hardware target
specific information 310 which is used by step 306 in converting the hardware description into a net list which is
specific to a certain type or class of FPGA.

In step 312 the method operates to compile the net list into an FPGA program file, also referred to as a
software bit stream. The FPGA program file is a file that can be readily downloaded to program an FPGA.

After the net list has been compiled into an FPGA program file in step 312, then in step 314 the method
operates to transfer the FPGA program file to the programmable hardware, e.g., the FPGA, to produce a
programmed hardware equivalent to the graphical program. Thus, upon completion of step 314, the portion of a
graphical program referenced in step 304 is comprised as a hardware implementation in an FPGA or other
programmat?le hardware element.

It is noted that various of the above steps can be combined and/or can be made to appear invisible to the
user. For example, steps 306 and 312 can be combined into a single step, as can steps 304 and 306. In the

preferred embodiment, after the user creates the graphical program in step 302, the user simply selects a hardware

11

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
export option and indicates the hardware target or destination, causing steps 304 - 314 to be automatically

performed.

Figure 4A - Conversion of a Graphical Program into Machine Language and Hardware Implementations

Figure 4A is a more detailed flowchart diagram illustrating operation of the preferred embodiment of the
invention, including compiling a first portion of the graphical program into machine language and converting a
second portion of the graphical program into a hardware implementation.

As shown in Figure 4A, after the user has created a graphical program in step 302, the user can optionally
select a first portion to be compiled into machine code for CPU execution as is normally done. In the preferred
embodiment, the user preferably selects a supervisory control and display portion of the graphical program to be
compiled into machine code for a CPU execution. The first portion comprising supervisory control and display
portions is compiled for execution on a CPU, such as the host CPU in the computer 102 or the CPU 212 comprised
on the interface card 114. This enables the supervisory control and display portions to execute on the host CPU,
which is optimal for these elements of the program.

The user selects a second portion for conversion to hardware implementation, which is performed as
described above in steps 304-314 of Figure 4. The portion of the graphical program which is desired for hardware
implementation preferably comprises modules or VIs which require a fast or deterministic implementation and/or
are desired to execute in a stand-alone hardware unit. In general, portions of the graphical program which are
desired to have a faster or more deterministic execution are converted into the hardware implementation. In one
embodiment, the entire graphical program is selected for conversion to a hardware implementation, and thus step

322 is not performed.

Figure 5 - Creation of a Graphical Program

Figure 5 is a more detailed flowchart diagram of step 302 of Figures 4 and 4A, illustrating creation of a
graphical program according to the preferred embodiment of the invention. As shown, in step 342 the user
arranges on the screen a graphical program or block diagram. This includes the user placing and connecting, e.g.,
wiring, various icons or nodes on the display screen in order to configure a graphical program. More specifically,
the user selects various function icons or other icons and places or drops the icons in a block diagram panel, and
then connects or “wires up” the icons to assemble the graphical program. The user also preferably assembles a user
interface, referred to as a front panel, comprising controls and indicators which indicate or represent input/output
to/from the graphical program. For more information on creating a graphical program in the LabVIEW graphical
programming system, please refer tc the LabVIEW system available from National Instruments as well as the
above patent applications incorporated by reference.

In response to the user arranging on the screen a graphical program, the method operates to develop and
store a tree of data structures which represent the graphical program. Thus, as the user places and arranges on the
screen function nodes, structure nodes, input/output terminals, and connections or wires, etc., the graphical
programming system operates to develop and store a tree of data structures which represent the graphical program.

More specifically, as the user assembles each individual node and wire, the graphical programming system operates

12

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
to develop and store a corresponding data structure in the tree of data structures which represents the individual
portion of the graphical program that was assembled. Thus, steps 342 and 344 are an iterative process which are

repetitively performed as the user creates the graphical program.

Figure 6 - Exporting a Portion of the Graphical Program to a Hardware Description

Figure 6 is a flowchart diagram of step 304 of Figures 4 and 4A, illustrating operation when the method
exports a portion of the graphical prcgram into a hardware description. The tree of data structures created and
stored in step 344 preferably comprises a hierarchical tree of data structures based on the hierarchy and
connectivity of the graphical program. As shown, in step 362 the method traverses the tree of data structures and in
step 364 the method operates to translate each data structure into a hardware description format. In one
embodiment, the method first flattens the tree of data structures prior to traversing the tree in step 362.

In the present embodiment, 2 number of different function icons and/or primitives can be placed in a
diagram or graphical program for conversion into a hardware implementation. These primitives include, but are
not limited to, function nodes, constants, global variables, control and indicator terminals, structure nodes, and sub-
VIs, etc. Function icons or primitives can be any data type, but in the current embodiment are limited to Integer or
Boolean data types. Also, global variables are preferably comprised on a single global panel for convenience. If a
V1 appears multiple times, then the VI is preferably re-entrant and may have state information. If a VI is not re-
entrant, then preferably multiple copies of the VI are created in hardware if the VI has no state information,
otherwise it would be an error.

In the preferred embodiment, each node which is converted to a hardware description includes an Enable
input, a Clear_Enable signal input, a master clock signal input and an Enable Out or Done signal. The Enable
input guarantees that the node execuics at the proper time, i.e., when all of its inputs have been received. The
Clear_Enable signal input is used to reset the node if state information remembers that the node was done. The
Enable_Out or Done signal is generated when the node completes and is used to enable operation of subsequent
nodes which receive an output from the node. Each node which is converted to a hardware description also
includes the data paths depicted in the graphical program.

For While loop structures, Iteration structures, Sequence structures, and Case Structures, the respective
structure is essentially abstracted to a control circuit or control block. The control block includes a diagram enable
out for each sub-diagram and a diagram done input for each sub-diagram.

In addition to the above signals, e.g., the Enable input, the Clear_Enable signal input, the master clock
signal input, and the Enable_Out or Done signal, all global variables have numerous additional signals, including
CPU interface signals which are specific to the type of CPU and bus, but typicaily include data lines, address lines,
clock, reset and device select signals. All VIs and sub-VIs also include CPU interface signals if they contain a
global variable.

In the preferred embodiment, when an icon is defined for a VI used solely to represent a hardware
resource connected to the FPGA, e.g., an A/D converter, with a number of inputs and outputs, a string control is
preferably placed on the front panel iabeled VHDL. In this case, the default text of the string control is placed in
the text file created for the VHDL of the VI. Thus, in one embodiment, a library of Vls are provided each

13

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
representing a physical component or resource available in or to the FPGA. As these VHDL files representing
these Vls are used, the method of the present invention monitors their usage to ensure that each hardware resource
is used only once in the hierarchy of Vls being exported to the FPGA. When the VHDL file is written, the contents

of the string control are used to define the access method of that hardware resource.

The following is pseudo-code which describes the operations performed in the flowchart of Figure 6:

GenCircuit (vi)

send GenCircuit to top level diagram of vi

Diagram:GenCircuit(d)
send GenCircuit to each constant in d
send GenCircuit to each node in d

send GenCircuit to each signal in d

Signal: GenCircuit(s)

declare type of signal s

BasicNode:GenCircuit(n)
declare type of component needed for n
declare AND-gate for enabling n (if needed)
list connections for all node inputs

list connections for all inputs to enabling AND-gate (if needed)

Constant:GenCircuit(c)

declare type and value of constant ¢

WhileLoopNode:GenCircuit(n)
declare while loop controller component
declare AND-gate for enabling n (if needed)
list connections for all node inputs
list connections for all inputs to enabling AND-gate (if needed)
declare type of each shift register component
list connections for all inputs to all shift registers
declare type of each tunnel component

list connections for all inputs to all tunnels

CaseSelectNode:GenCircuit (n)

14

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
declare case select controller component
declare AND-gate for enabling n (if needed)
list connections for all node inputs
list connections for all inputs to enabling AND-gate (if needed)
declare type of each tunnel component

list connections for all inputs to all tunnels

SequenceNode:GenCircuit (n)
declare sequence controller component
declare AND-gate for enabling n (if needed)
list connections for all node inputs
list connections for all inputs to enabling AND-gate (if needed)
declare type of each tunnel component

list connections for all inputs to all tunnels

SubVINode:GenCircuit (n)
' send GenCircuit to the subVI of n
associate inputs & outputs of subVI with those of n
declare AND-gate for enabling n (if needed)
list connections for all node inputs

list connections for all inputs to enabling AND-gate (if needed)

Referring to the above pseudo code listing, the method starts at the VI level (the top level) and begins
generation of VHDL by sending a message to the top level diagram. The method in turn effectively provides a
message from the diagram to each constant, each node, and each signal in the diagram.

For signals, the method then declares the signal type.

For basic nodes, the method declares a type of the component needed, and also declare an AND-gate with
the proper number of inputs needed in order to enable itself. In other words, basic nodes declare an AND-gate with
a number of inputs corresponding to the number of inputs received by the node. Here, optimization is preferably
performed to minimize the number of inputs actually needed. For example, if a node has three inputs, the node
does not necessarily need a three input AND-gate if two of those inputs are coming from a single node. As another
example, if one input comes from node A and another input comes from node B, but node A also feeds node B,
then the input from node A is not needed in the AND gate. Thus various types of optimization are performed to
reduce the number of inputs to each AND gate. For the basic node, the method also lists the connections for all of
its inputs as well as the connections for all inputs to the enabling AND-gate.

For a constant, the method simply declares the type and the value of the constant.

For a While loop, the method declares a While loop controller component. The method also declares an

AND-gate, lists AND-gate inputs, and lists node inputs in a similar manner to the basic node described above. The

5

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

method then declares the type for each shift register and includes a component for the shift register, and lists all the
connections for the shift register inputs. If any tunnels are present on the While loop, the method declares the type
of each tunnel component and list the connections for the inputs to the tunnels. For most tunnels, the method simply
equivalences the signals for the inside and outside, without any effect.

The method proceeds in a similar manner for Case and Sequence structures. For Case and Sequence
structures, the method declares a case select controller component or a sequence controller component,
respectively. For both Case and Sequence structures, the method also declares an AND-gate, lists AND-gate
inputs, and lists node inputs in a similar manner to the basic node described above. The method then declares the
component needed for any tunnels and list the connections for the inputs to the tunnels.

For a sub-VI, the method sends a message to the sub-VI and associates inputs and outputs of the sub-VI
with those of n. The method then declares an AND-gate, lists AND-gate inputs, and lists node inputs in a similar

manner to the basic node described above.

Figure 7 - Exporting an Input Terminal into a Hardware Description

Figure 7 is a flowchart diagram illustrating operation when the method exports an input terminal into the
hardware description format. As shown, in step 402 the method determines if the data provided to the input
terminal is input from a portion of the graphical program which will be executing on the CPU, i.e., the portion of
the graphical program which is to be compiled into machine language for execution on the CPU, or whether the
data is input from another portion of the graphical program that is also being transformed into a hardware
implementation.

As shown, if the data input tn the input terminal is determined in step 402 to be input from a portion of the
graphical program being compiled for execution on the CPU, in step 406 the method creates a hardware description
of a write register with a data input and data and control outputs. The write register is operable to receive data
transferred by the host computer, i.e., generated by the compiled portion executing on the CPU. In step 408 the
data output of the write register is connected for providing data output to other elements in the graphical program
portion. In step 408 the control output of the write register is connected to other elements in the graphical program
portion for controlling sequencing of execution, in order to enable the hardware description to have the same or
similar execution order as the graphical program.

If the data is determined to not be input from a portion being compiled for execution on the CPU step in
402, i.e., the data is from another node in the portion being converted into a hardware implementation, then in step
404 the method ties the data output from the prior node into this portion of the hardware description, e.g., ties the
data output from the prior node into the input of dependent sub-modules as well as control path logic to maintain

the semantics of the original graphical program.

Figure 8 - Exporting a Function Node into a Hardware Description

Figure 8 is a flowchart diagram illustrating operation where the method exports a function node into the
hardware description format. In the preferred embodiment, the term “function node” refers to any various types of

icons or items which represent a function being performed. Thus, a function node icon represents a function being

16

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
performed in the graptical program. Examples of function nodes include arithmetic function nodes, e.g., add,
subtract, multiply, and divide nodes, trigonometric and logarithmic function nodes, comparison function nodes,
conversion function nodes, string function nodes, array and cluster function nodes, file 1/O function nodes, etc.

As shown in Figure 8, in step 422 the method determines the inputs and outputs of the function node. In
step 424 the method creates a hardware description of the function block corresponding to the function node with
the proper number of inputs and outputs as determined in step 422. Alternatively, in step 424 the method includes
a reference in the hardware description to a pre-compiled function block from the library 308. In this case, the
method also includes the determined number of inputs and outputs of the function node.

In step 426 the method traverses the input dependencies of the node to determine which other nodes
provide outputs that are provided as inputs to the function node being converted. In step 428 the method creates a
hardware description of an N input AND gate, wherein N is the number of inputs to the node, with each of the N
inputs connected to control outputs of nodes which provide inputs to the function node. The output of the AND
gate is connected to a control input of the function block corresponding to the function node.

In the data flow diagramming model of the preferred embodiment, a function node can only execute when
all of its inputs have been received. The AND gate created in step 428 emulates this function by receiving all
control outputs of nodes which provide inputs to the function node. Thus the AND gate operates to effectively
receive all of the dependent inputs that are connected to the function node and AND them together to provide an
output control signal which is determinative of whether the function node has received all of its inputs. The output
of the AND gate is connected to the control input of the function block and operates to control execution of the
function block. Thus, the function block does not execute until the AND gate output provided to the control input
of the function block provides a logic signal indicating that all dependent inputs which are input to the function

node have been received.

Figure 9 - Exporting an Output Terminal into a Hardware Description

Figure 9 is a flowchart diagram illustrating operation where the method exports an output terminal into the
hardware description. As shown, in step 440 the method determines if the data provided from the output terminal is
output to a portion of the graphical program which will be executing on the CPU, i.e., the portion of the graphical
program which is to be compiled into machine language for execution on the CPU, or whether the data is output to
another portion of the graphical program that is also being transformed into a hardware implementation.

As shown, if the data output from the output terminal is determined in step 440 to be output to a portion of
the graphical program being compiled for execution on the CPU, then in step 442 the method creates a hardware
description of a read register with a data input and data and control outputs. The read register is operable to receive
data generated by logic representing a prior node in the graphical program.

In step 444 the method connects the data output of a prior node to the data input of the read register. In
step 444 the control input of the read register is also connected to control sequencing of execution, i.e., to guarantee
that the read register receives data at the proper time. This enables the hardware description to have the same or

similar execution order as the graphical program.

17

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

If the data is determined to not be output to a portion being compiled for execution on the CPU step in
440, i.e., the data is to another node in the portion being converted into a hardware implementation, then in step 446
the method ties the data output from the output terminal into a subsequent node in this portion of the hardware
description, e.g., ties the data output from the output terminal into the input of subsequent sub-modules as well as

control path logic to maintain the semantics of the original graphical program.

Figure 10 - Exporting a Structure Node into a Hardware Description

Figure 10 is a flowchart diagram illustrating operation where the method exports a structure node into the
hardware description. In the preferred embodiment, the term “structure node” refers to a node which represents
control flow of data, including iteration, looping, sequencing, and conditional branching. Examples of structure
nodes include For/Next loops, While/Do loops, Case or Conditional structures, and Sequence structures. For more
information on structure nodes, please see the above LabVIEW patents referenced above.

The flowchart of Figure 10 illustrates exporting a loop structure node into a hardware description. As
shown, in step 462 the method examines the structure node parameters, e.g., the iteration number, loop condition,
period, phase delay, etc. As discussed above, the graphical programming system preferably allows the user to
insert certain parameters into a structure node to facilitate exporting the structure node into a hardware description.
Iteration and looping structure nodes have previously included an iteration number and loop condition,
respectively. According to the preferred embodiment of the invention, these structure nodes further include period
and phase delay parameters, which are inserted into or assigned to the structure node. These provide information
on the period of execution and the phase delay of the structure node. As discussed below, the period and phase
delay parameters, as well as the iteration number or loop condition, are used to facilitate exporting the structure
node into a hardware description.

In step 464, the method inserts the structure node parameters into the hardware description. In step 466
the method inserts a reference to a pre-compiled function block corresponding to the type of structure node. In the
case of a looping structure node, the method inserts a reference to a pre-compiled function block which implements
the looping function indicated by the structure node. The method also connects controls to the diagram enclosed by

the structure node.

Figure 11 - Converting a Node into a Hardware Description

Figure 11 is a flowchart diagram or"a portion of step 306 of Figures 4 and 4A, illustrating operation where
the method converts the hardware description for a node into a net list. Figure 11 illustrates operation of converting
a hardware description of a node, wherein the hardware description comprises a reference to a function block and
may include node parameters. It is noted that where the hardware description of a node comprises a description of
the actual registers, gates, etc. which perform the operation of the node, then conversion of this hardware
description to a net list is readily performed using any of various types of synthesis tools.

As shown, in step 502 the method examines the function block reference and any node parameters present
in the hardware description. In step 504, the method selects the referenced pre-compiled function block from the

library 308, which essentially comprises a net list describing the function block. In step 506 the method then

18

10

15

20

25

30

35

WO 99/09498 ‘ PCT/US98/13040
configures the pre-compiled function block net list with any parameters determined in step 502. In step 508 the

method then inserts the configured pre-compiled function block into the net list which is being assembled.

Figure 12 - Converting a Structure Node into a Hardware Description

Figure 12 is a flowchart diagram illustrating operation of the flowchart of Figure 11, where the method
converts the hardware description for a structure node into a net list. Figure 12 illustrates operation of converting a
hardware description of a structure node, wherein the hardware description comprises a reference to a structure
node function block and includes structure node parameters.

As shown, in step 502A the method examines the function block reference and the structure node
parameters present in the hardware description. The structure node parameters may include parameters such as the
iteration number, loop condition, period, phase delay, etc. In step 504A the method selects the referenced pre-
compiled function block from the library 308, which essentially is a net list describing the structure node function
block. In step S06A the method then configures the pre-compiled function block net list with the structure node
parameters determined in step 502A. This involves setting the period and phase delay of execution of the structure
node as well as any other parameters such as iteration number, loop condition, etc. In step S08A the method then

inserts the configured pre-compiled function block into the net list which is being assembled.

Figure 13 - Function Block for a Structure Node

Figure 13 is a block diagram illustrating a While loop function block. As shown, the While loop function
block includes enabling period and piiase inputs as well as a loop control input. The While loop function block
provides an index output which is provided to and adder. The adder operates to increment each time the index
signals provided to monitor the number of times the While loop is executed. The While loop further outputs Clear
and Enable Out signals to control the program within the While loop and further receives a Loop Done signal input

which is used to indicate whether the loop has completed.

Figure 14 - Operation of Structure Node Function Block

Figure 14 is a state diagram illustrating operation of the while loop function block shown in Figure 13. As
shown, a diagram start operation precedes to state A. When Phase Done is true indicating that the phase has
completed, then the state machine advances to state B. The state machine remains in state B until the Loop Enable
signal is true, indicating that the loop has been enabled to begin execution. When the Loop Enable signal is
asserted, the state machine advances from state B to state C. In state C the Clear Output signal is asserted, clearing
the loop output prior to execution of the loop.

The state machine then advances from state C to state D. In state D the computation is performed, and the
Set Enable out signal is asserted. If the period is done and the loop is not yet completed, signified by the equation:

Period Done and /Loop Done
then the state machine proceeds to an error state and operation completes. Thus, the period set for execution for the
loop was not sufficiently long to allow the loop to complete. In other words, the loop took more time to complete

than the period set for execution of the loop.

19

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

The state machine advances from state D to state E when the Loop Done signal is asserted prior to the
Period Done signal being asserted, indicating that the loop has completed prior to the period allotted for the loop
execution béing over.

The state machine then advances from state E to a wait state, as shown. If the period is done and the loop
is not re-enabled, signified by the condition:

Period Done & /L.oop Enabled
then the state machine advances from the Wait to the Done state. If the period has completed and the loop is still
enabled, indicating that another execution of the loop is necessary, then the state machine advances from the Wait
state back to the C state. Thus, the state machine advances through state C, D, E, and Wait to perform looping

operations.

Downloading a Hardware Implementation to the Programmable Logic

There are various possibilities or methods for downloading a hardware implementation to the
programmable logic. In one instance, the host CPU merely downloads the configuration to the programmable logic
as described above. This could occur by the driver at boot up time or when the user presses the run button on the
graphical program that was created. Alternatively, the host CPU provides the hardware implementation to a non-
volatile memory comprised on the board, and during boot up of the board this hardware implementation is loaded
from the non-volatile memory on the board into the programmable logic.

Thus the reconfigurable board can be designed so that the hardware diagram is written to non-volatile
memory instead of directly to the FPGA. This allow a hardware implementation of a diagram to begin execution at
power-on (long before the operating system has finished booting). In this case, the diagram preferably has top-
level enable_in and abort signals which can be configured at compile time to either allow immediate execution or to

require a supervisory program to enable hardware execution.

Default Configuration for Hardware Simulation

As discussed above, in the preferred embodiment the system of the present invention comprises a
computer system which includes an add-in card. The add-in card preferably performs a data acquisition/generation
function, e.g., is a data acquisition card. The DAQ card includes D/A and A/D converters as well as various other
data acquisition logic, and includes a programmable logic device such as an FPGA which is operable to receive a
hardware implementation created in response to a graphical program created on the computer system.

In one embodiment of the invention, the programmable logic or FPGA is operable to receive a default
configuration, whereby the default configuration operates to configure the data acquisition board with a standard
interface for execution of the graphical program in software. Thus, for example, the host CPU may download a
hardware implementation to the FPGA which programs the FPGA with a default configuration of a board to
provide a desired interface for the board. This configuration would provide the host computer with direct access to
the 1/0 of the board. This is useful, for example in hardware simulation, to allow the host CPU to execute the
graphical program or diagram in software during algorithm development to determine feasibility and perform

debugging etc. The graphical program behaves the same as it normally would in hardware, except the program

20

10

15

20

25

30

35

WO 99/09498 ' PCT/US98/13040

runs slower due to software execution. However, software debugging tools available in the graphical programming
system are available in order to more easily debug the program. This implementation also provides a faster compile
time thus allowing a quicker turnaround for user bug ﬁxes. Thus, it is anticipated that the user will download a
default configuration to the programmable logic and execute the graphical program being created in software one
or more times to facilitate debugging. Once the graphical program has been constructed to a satisfactory
performance, then the user may download the actual hardware implementation of the graphical program to the
programmable logic as described above.

As discussed above, there are various possibilities or methods for downloading a default configuration to
the programmable logic. In one instance, the host CPU merely downloads the configuration to the programmable
logic as described above. This could occur by the driver at boot up time or when the user presses the run button on
the graphical program that was created. Alternatively, the host CPU provides the default configuration to a non-
volatile memory comprised on the board, and during boot up of the board this default configuration is loaded from

the non-volatile memory on the board into the programmable logic.

Estimation of the Size and Cost of a Hardware Implementation

In one embodiment of the invention, the graphical programming system includes a data structure which
includes a listing of each of the elements or components comprised in the component library, as well as the
corresponding cost of each component in terms of gates and time of execution. Thus, in this embodiment when a
graphical program is created, the graphical programming system operates to reference the data structure to obtain
the associated gate and time costs associated with each component being used from the component library in the
graphical program being constructed. For example, the graphical programming system totals the amount of gates
utilized with regard to each component being used in the graphical program being constructed, and then determines
if the progrefmmable logic or FPGA being used has sufficient capacity to implement that graphical program. Also,
the graphical programming system can use this data structure to determine at or prior to compile time how fast the
graphical program will execute in hardware, i.e., how fast the hardware implementation will execute in the FPGA.

Alternatively, the graphical programming system receives user input regarding desired execution time and

" utilizes the execution times of each of the elements to provide feedback to the user as to whether the graphical

program satisfies the users requirements regarding time of execution.

In addition, in one embodiment the component library includes multiple versions of respective
components. For example, the component library includes a fast multiplier that is large and a small multiplier that
is slow. The graphical programming system can be configured to select the appropriate version of component
based on how much of the FPGA is consumed by the rest of the diagram and based on the loop times indicated in
the diagram, or other input from the user and/or information in the diagram. Thus, in one embodiment, the user
inputs both the number of gates comprised in the programmable logic being used as well as the desired time of
execution, and the graphical programming system automatically selects among various versions of components in
the component library, e.g., a slower and less complex adder vs. a faster but more complex adder, in order to

develop a hardware implementation which is suitable for the user’s application.

21

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

Manipulation of Non-reuseable Hardware Resources

When a user creates a graphical program which manipulates one or more hardware resources, such as one
or more hardware resources comprised on an add-in board, e.g., a data acquisition board, in general the hardware
device or board will have a limited number of hardware elements that are useable by the graphical program. For
example, a given data acquisition board may only have one analog input channel. At least a subset of these
hardware elements may only be used once, i.e., are not re-useable.

In one embodiment of the invention, the non-reusable components comprised on the hardware being
controlled appear on a palette during configuration or construction of the graphical program. These non-reusable
components disappear as they are used by the diagram to indicate to the user that these components have been used
and thus cannot be reused. In one embodiment, the user simply drags these non-reusable components from the
palette into the graphical program. Once these components are dragged from the palette into the graphical
program, the component disappears from the palette, and thus the user knows that the component has been used in
the graphical program and is thus not available for reuse.

Where two or more hardware elements are comprised on the board which can be used, a corresponding
two or more components appear in the palette. In this instance, as each component is used in the graphical
program, the corresponding picture in the palette disappears to alert the user as to the number of remaining
hardware components which can be used. This provides a convenient mechanism for providing information to the
user regarding the hardware components used and prevents reuse of a non-reusable component.

In some graphical programs, it is often convenient for a single graphical program to access a single
hardware element from several locations in the graphical program or diagram. This would technically violate the
single instance or non re-useability concept discussed above, whereby a non-reusable component can be used only
once in a graphical program. However, where the user desires to access a single non-reusable hardware element in
several places in a single graphical program, the user preferably constructs sequencing or implements sequencing in
the graphical program which prevents this hardware element from being used simultaneously within the same
graphical program. For example, in the LabVIEW program the user constructs sequencing using a sequence
structure. In one embodiment, references to hardware elements in the graphical program provide a “handle” to the
hardware which is provided to the graphical program which can be used in multiple locations within the graphical
program. This reference or “handle” to the hardware can then be used to provide simultaneous accesses to a single
device in the graphical program.

In general, there are three different ways a graphical program or diagram can be constructed to access
unique hardware resources. In a first instance (a) a single reference to the hardware appears in the diagram as
discussed above. In a second instance (b) multiple references to the hardware appear in the graphical program, but
no two of these references occur simultaneously. For example, the user can figure these multiple references in
different frames of a sequence structure. In a third instance (c) the graphical program includes multiple references
to the hardware, and the way in which the graphical program is constructed indicates that these multiple references
may be executed simultaneously.

In the preferred embodiment, the graphical programming system preferably detects which of the above

cases exist and performs any necessary type of configuration to accommodate these situations. In the first instance

22

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
of case (a), a single reference to the hardware appears in the graphical program, and thus the graphical
programming system is not required to perform any special processing in generating the hardware implementation.
In the second case (b) mentioned above, the graphical program, when converting the sequence structure to a
hardware implementation, utilizes multiplexers to muitiplex the control and data inputs to the hardware in question
with the same signals to guarantee that simultaneous accesses are impossible, as indicated by the sequence
structure. In case (c) above, the graphical programming system preferably automatically detects an instance where
multiple references in the hardware appear, wherein they may be executed simultaneously, and configures the
hardware implementation to prevent these multiple accesses, and thus thereby preventing possible erroneous
operation. In this instance, the graphical programming system, during the conversion process to the hardware
implementation, detects the multiple references to the hardware which can be executed simultaneously, and
instantiates one or more multiplexers and a full arbitration circuit to control the multiplexers. The multiplexers are
provided in the hardware implementation to prevent or avoid the possibility of simultaneous execution of these
multiple references to the non-reusable hardware.

In cases (b) and (c), the hardware implementations use similar multiplexers. The difference between cases
(b) and (c) is that in case (c) the hardware implementation includes a control circuit. In case (b) the control signals
are the same control signals that control which frame of the sequence is executing, and in (c) the control signals
come from an arbitration circuit. Also, in item (b), the multiplexers that configure and implement the sequence
structure are set or defined at compile time. Alternatively, in case (c) the arbitration unit is not necessarily defined

as far as ordering at compile time, but the order of execution is actually defined at run time.

Probe Insertion

In one embodiment, during creation of the graphical program, a user may insert one or more probes into
the graphical program which operate to display data on the respective wire where the probe is located during
execution of the graphical program. When the user inserts a probe in one or more locations in the graphical
program, the corresponding hardware implementation directs the use of a time stamp generation circuit. The time
stamp generation circuit may be included inside the programmable logic or FPGA, or the time stamp generation
circuit is configured in a separate chip or logic block included on the board which is coupled to the FPGA. This
time stamp generation circuit allows the graphical programming system to insert probes into the hardware
implementation of the graphical program or diagram. The timé stamp generation circuit thus comprises a hardware
implementation of the probe which was inserted in the software graphical program. This enable the hardware

debugging environment to look and feel the same as it does in the graphical programming system.

Data Path Optimization

In one embodiment, the graphical programming system is operable to detect graphical programs or
diagrams that are streaming data to/from the host computer, and the graphical programming system inserts special
circuits in the hardware implementation to handle DMA for high speed transfers without special consideration from

the user. These circuits include FIFOs and circuits to generate DMA requests (DRQ) or the equivalent.

23

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

This method enables the graphical programming system to automatically generate a DMA circuit for the
graphical program or diagram created by the user. In the usual case, all communication to the graphical program or
diagram from the CPU passes through global variables. According to this embodiment, the diagram would include
an icon which looks similar to a “write global” in the sense that it is a data sink and when the icon is executed, the
icon would assert a DMA request (DRQ)that goes back to the DMA controller and triggers a DMA transfer. The
FIFO and DRQ generation circuitry are built inside the FPGA when the DMA icon is used.

Occurrences

The LabVIEW graphical programming system includes an occurrence capability which allows a first
function to "go to sleep" while waiting for a second function to produce a result. In this manner, the first function
does not consume any CPU time while waiting for the second function. Three icons are provided with associated
control software which implement the occurrence function. A Wait on Occurrence function icon is associated with
the first function that is waiting on the result from the second function. A Set Occurrence function icon is typically
associated with the second function icon and triggers an occurrence when the second function produces the desired
result. A Generate Occurrence function icon is used to pass identifier values linking multiple sources and
destinations having Set Occurrence and Wait on Occurrence function icons, respectively.

Occurrences share some of the properties of global variables in that their implementation depends greatly
on whether they are "written" and "read" within a single environment (all in software, all in hardware, or crossing
the software/hardware boundary). An occurrence that is set and detected within hardware involves set and detect
occurrence components from the library. An occurrence that is set in hardware and detected by the host CPU can
be mapped automatically to an interrupt. The graphical programming system, e.g., LabVIEW, would then generate

the interrupt handling code to run on the host computer.

Automatic Generation of the Programmatic Interface

In one embodiment, the hardware implementation generated by the graphical programming system, can be
configured to be controlled by other software environments or other protocols, e.g., C, C++, Java, Visual Basic,
Visual C++, LabWindows CVI, other types of graphical programming systems, etc. In this embodiment, the
graphical programming system can automatically generate a description of the hardware necessary including a
register map, interrupt map, DMA abilities, etc. to enable other software environments to control the hardware
implementation. For example, in the preferred embodiment using the LabVIEW Graphical Programming System
from National Instruments Corporation, the graphical program constructed in LabVIEW is converted into a
hardware implementation, wherein the hardware implementation also includes the above hardware information

necessary to allow another software development environment to control or execute the hardware implementation.

Compensating for Poor Place and Route Results

As discussed above, the present invention preferably uses a third party tool which converts the net list
created from the graphical program into a hardware implementation or FPGA configuration. In one embodiment, if

this third party tool reports that the maximum clock speed is less than expected by the graphical programming

24

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
system, then the graphical programming system can optionally reduce the clock speed and adjust one or more
counter values and timers to compensate for this new clock speed. This is preferably performed in cases where
overall performance goals are still met.

This may be necessary in instances, for example, where the user has configured timing within the
graphical programming on the assumption of a certain clock speed, e.g., a timing loop which assume a 20 MHz
clock and a loop constructed based on this 20 MHz clock that loops for two milliseconds. In cases where the clock
speed is less than expected, the hardware implementation may actually work differently than expected by the user
due to this different clock speed. In this instance, the graphical programming system can automatically reduce the
clock speed and adjust the counter values and respective timers to compensate for this new clock speed and thus
provide the user with the expected performance that the user expected when he/she created the graphical program.

This embodiment utilizes a configurable oscillator on the data acquisition board.

Figure 15 - Simple Graphical Program Example

Figure 15 illustrates a simple example of a graphical program. In Figure 15 the graphical program
includes three input terminals and one output terminal. The graphical program simply comprises a first 2-input Add
function node which receives input from two inputs terminals, and a second 2-input Add function node which
receives the output from the first Add function node and receives an output from the third input terminal. The

second 2-input Add function node provides an output to output terminal as shown.

Figure 16 - Hardware Result

Figure 16 is a conceptual diagram of the resulting hardware after the graphical program example of Figure
15 is converted into a hardware description. As shown, the hardware diagram inciudes three write registers 522 -
526 corresponding to each of the three input terminals. The data outputs of the first two write registers 522 and 524
are provided as inputs to a first two-input adder 532, which corresponds to the first adder in the block diagram of
Figure 15. The hardware description also involves creating an AND gate 534 which receives control outputs from
each of the first two write registers 522 and 524 and provides a single output to the control input of the adder 532.
The purpose of the AND gate 534 is to prevent the adder 532 from executing until both inputs have been received.

The Adder 532 provides a data output to a second two-input Adder 542, which corresponds to the second
adder in the block diagram of Figure 15. The first Adder 532 also generates an enable out signal which is provided
to an input of a second AND gate 536. The other input of the AND gate 536 receives an output from the third write
register 526, corresponding to the third input terminal. The AND gate 536 provides an output to a control input of
the second adder 542. Thus, the AND gate 536 operates to ensure that the second adder 542 does not execute until
all inputs have been received by the adder 542. The second adder 542 provides a data output to a read register 546
associated with the output terminal. The second adder 542 also provides an enable out signal to the read register
546, which notifies the read register 546 when valid data has been provided.

Thus, as shown, to create a hardware description for each of the input terminals, the flowchart diagram of
Figure 6 is executed, which operates to create a hardware description of a write register 522, 524, and 526, each

with data and control outputs. For each adder function node, the flowchart diagram of Figure 7 is executed, which

25

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040

operates to create a hardware description of an adder 532 or 542, and further creates an associated N input AND
gate 534 or 536, with inputs connected to the dependent inputs of the adder function node to ensure execution at the
proper time. Finally, the flowchart diagram of Figure 8 is executed for the output terminal of the graphical

program, which operates to generate a hardware description of a read register with data and control inputs.

Figures 17 - 19: Example of Converting a Graphical Program into a Hardware Implementation

Figures 17 - 19 comprise a more detailed example illustrating operation of the present invention.

Figure 17 illustrates an example graphical program (a LabVIEW diagram) which is converted into an
FPGA implementation using the present invention. As shown, the graphical program comprises a plurality of
interconnected nodes comprised in a While loop. As shown, the While loop includes shift register icons,
represented by the down and up arrows at the left and right edges, respectively, of the While loop. A 0 constant
positioned outside of the While loop is connected to the down arrow of the shift register at the left edge of the
While loop.

The While loop includes a timer icon representing or signifying timing for the While loop. The timer icon
includes inputs for period and phase. As shown, the timer icon receives a constant of 1000 for the period and
receives a constant of 0 for the phase. In an alternate embodiment, the While loop includes input terminals which
are conﬁgur;ad to receive timing information, such as period and phase.

Figure 18 illustrates the LabVIEW data structures created in response to or representing the diagram or
graphical program of Figure 17. The data structure diagram of Figure 17 comprises a hierarchy of data structures
corresponding to the diagram of Figure 17. As shown, the LabVIEW data structure representation includes a top
level diagram which includes a single signal connecting the 0 constant to the left hand shift register of the While
loop. Thus the top level diagram inciudes only the constant (0) and the While loop.

The While loop includes a sub-diagram which further includes left and right shift register terms, the
continue flag of the While loop, a plurality of constants, a timer including period and phase inputs, global variables
setpoint and gain, sub-VIs a/d read and d/a write, and various function icons, e.g., scale, add, subtract, and multiply.
Further, each of the objects in the diagram have terminals, and signals connect between these terminals.

Figure 19 illustrates a circuit diagram representing the hardware description which is created in response
to the data structures of Figure 18. The circuit diagram of Figure 19 implements the graphical program of Figure
17. As shown, the CPU interface signals are bussed to the global variables. Although not shown in Figure 19, the
CPU interface signals are also provided to the sub-VIs a/d read and d/a write.

The While loop is essentially abstracted to a control circuit which receives the period and phase, and
includes an ;:xtemal enable directing the top level diagram to execute, which starts the loop. The loop then
provides a diagram enable(diag_enab) signal to start the loop and waits for a diagram done (diag_done) signal to
signify completion of the loop, or the period to expire. Based on the value of the Continue flag, the loop provides a
subsequent diag_enab signal or determines that the loop has finished and provides a Done signal to the top level
diagram. Although not shown in Figure 19, the loop control block also provides a diagram clear enable out
(diag_clear_enab_out) signal to every node in the sub-diagram of the While loop. Thus the loop control block

outputs a diagram enable (diag_enab) signal that is fed to all of the starting nodes in the diagram within the While

26

10

15

20

25

30

35

40

45

50

WO 99/09498 PCT/US98/13040
loop. The Done signals from these items are fed into an AND gate, whose output is provided to enable subsequent
nodes.

The shift register includes a data in, a data out and an enable input which clocks the data in (din) to the
data out (dout), and a load which clocks the initial value into the shift register.

The following is the VHDL description corresponding to the example of Figures 17 - 19, wherein the

VHDL description was created using the present invention:

library ieee;
use ieee.std_logic_1164.all;

entity example0 is
port (

clk : in std_logic;
enable_in : in std_logic;
clr_enable out: in std_logic;
da_clk : in std_logic;
cpu_clk : in std_logic;
cpu_reset : in std_logic;
cpu_iord : in std_logic;
cpu_iowt : in std_logic;
cpu_devsel : in std_logic;
cpu_ioaddr : in std_logic_vector(31 downto 0);
cpu_iodata : in std_logic vector(3! downto 0);
ad_clk : in std_logic;
enable_out : out std_logic
)i

end example0;

architecture Structural of exampleO is
signal sCLK : std_logic;
signal sda_clk : std_logic;
signal scpu_clk : std_logic;
signal scpu_reset : std_logic;
signal scpu_iord : std_logic;
signal scpu_iowt : std_logic;
signal scpu_devsel : std_logic;
signal scpu_ioaddr : std_logic_vector(31 downto 0);
signai scpu_iodata . std_logic_vector(31 downto 0);
signal sad_clk : std_logic;
signal s1AC : std_logic_vector(15 downto 0);

signal s115 : std_logic; -- node 114 enable_out
constant cE8C : std_logic_vector(15 downto 0) := "0000000000000000"; -- 0
signal s114 : std_logic; -- diagram done
signal s116 : std_logic; -- diagram clr_enable out
signal s278D : std_logic; -- node 278C enable_out
signal s145 : std_logic; -- node 144 enable_out
component shift16
port (
clk : in std_logic;
enable_in, load : in std_logic;
initval : in std_logic_vector(15 downto 0);
din : in std_logic_vector(15 downto 0);
dout : out std_logic_vector(15 downto 0)

27

10

15

20

25

30

35

40

45

50

55

WO 99/09498

1000

PCT/US98/13040
);

end component;

signai s1310 : std_logic_vector(15 downto 0};
signal s209C : std_logic_vector(15 downto 0);
signal s1344 : std_logic_vector(15 downto 0);
signal s1628 : std_logic_vector(15 downto 0);
signal s1270 : std_logic vector(15 downto 0);
signal s1684 : std_logic_vector(15 downto 0);
signal s19CC : std_logic_vector(15 downto 0);
signal s1504 : std_logic_vector(15 downto 0);
signal s149C : std_logic_vector(15 downto 0);
signal sC44 : std_logic_vector(31 downto 0);
signal s974 : std_logic_vector(31 downto 0);
signal s4D8 : std_logic;

signal s2A1 : std_logic; -- node 2A0 enable_out
constant c470 : std_logic :="'1";

constant ¢948 : std_logic_vector(31 downto 0) := "00000000000000000000001111101000"; --

constant ¢cC04 : std_logic_vector(31 downto 0) := "00000000000000000000000000000000"; -- 0

constant ¢1960 : std_logic_vector(15 downto 0) :="1111111111111111"; ---1
signal s2A0 : std_logic; -- diagram done
signal s2A2 : std_logic; -- diagram clr_enable_out
component write_reg
port
clk : in std_logic;
enable_in : in std_logic;
clr_enable out : in std logic;
cpu_clk : in std_logic;
cpu_reset : in std_logic;
cpu_iord : in std_logic;
cpu_iowt : in std_logic;
cpu_devsel : in std_logic;
cpu_ioaddr : in std_logic_vector(31 downto 0);
cpu_iodata : in std_logic_vector(31 downto 0);
decodeaddr : in std_logic vector(3 downto 0);
data : out std_logic_vector(15 downto 0);
enable_out : out std_logic
)

end component;

signal s5BA : std_logic_vector(3 downto 0);

constant c5B8 : std_logic_vector(3 downto 0) :="00";
signal s1A7E : std_logic_vector(3 downto 0);

constant c1A7C : std_logic_vector(3 downto 0) := "10";
signal s641 : std_logic; -- node 640 enable_out

signal s39D : std_logic; -- node 39C enable_out
component a_d read

port (
clk : in std_logic;
enable_in, clr_enable out: in std_logic;
ai_read_val : out std_logic_vector(15 downto 0);
ad_clk : in std_logic;
enable_out : out std_logic

)

end component;

28

10

15

20

25

30

35

40

45

50

55

WO 99/09498

signal s13A1 : std_logic; -- node 13A0 enable_out
component prim_Scale_By Power Of 2 16

port (

);

end component;

clk : in std_logic;

enable_in, clr_enable out : in std_logic;
X_2_n:outstd logic vector(15 downto 0);
x : in std_logic_vector(15 downto 0);

n: in std_logic_vector(15 downto 0);
enable_out : oui std_logic

signal s10E9 : std_logic; -- node 10E8 enable_out
component prim_Subtract 16

port (

)

end component;

clk : in std_logic;

enable_in, clr_enable out : in std_logic;
x_y : out std_logic vector(15 downto 0);
y :in std_logic_vector(15 downto 0);

x :in std_logic_vector(15 downto 0);
enable out : out std_logic

signal s14D1 : std_logic; -- node 14D0 enable_out
component prim_Add_16

port (

)

end component;

clk : in std_logic;

enable_in, clr_enable out : in std_logic;
x_y : out std_logic_vector(15 downto 0);
y @ in std_logic_vector(15 downto 0);

x @ in std_logic_vector(15 downto 0);
enable out : out std_logic

signal s1A01 : std_logic; -- node 1A00 enable_out
component prim_Multiply 16

port

);

end component;

cik : in std_logic;

enable_in, clr_enable_out : in std_logic;
x_y : out std_logic_vector(15 downto 0);
y : in std_logic_vector(15 downto 0);

x : in std_logic_vector(15 downto 0);
enable_out : out std_logic

signal s1725 : std_logic; -- node 1724 enable_out
component d_a_write

port (

clk : in std_logic;
enable_in, clr_enable out : in std_logic;

a0_write_val : in std_logic_vector(15 downto 0);

da_clk : in std_logic;
enable_out : out std_logic

29

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

begin

);

end component;

component whileloop_timed

port (

)

end component;

clk : in std_logic;

enable in, cir_enable out : in std_logic;
diag_enable, diag_clr_enable_out : out std_logic;

diag_done : in std_logic;

period : in std_logic_vector(15 downto 0);
phase : in std_logic_vector(15 downto 0);

continue : in std_logic;

enable out : out std_logic

s114 <=s278D AND s145;

s1AC <=cE8C;
nDF8: shift16
port map(
clk => sCLK,

s2A0 <=51725;
s4D8 <= c470;
§974 <= c948,;
sC44 <= cC04;
s1684 <= c1960;

-- setpoint
n5B8: write_reg

load =>s115,
enable_in => s2A0,
initval => s1AC,
din => s1344,

dout =>s19CC

port map(

)

s5BA <= ¢5BS;

clk => sCLK,
enable_in => s2A1,

clr_enable_out => s2A2,

enable_out => s5B9,
cpu_clk => scpu_clk,

cpu_reset => scpu_reset,

cpu_iord => scpu_iord,

cpu_iowt => scpu_iowt,

cpu_devsel => scpu_devsel,
cpu_ioaddr => scpu_ioaddr,
cpu_iodata => scpu_iodata,

decodeaddr => s5BA,
data =>s149C

30

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

-- gain
nlA7C: write_reg
port map(

clk => sCLK,
enable_in => s2A1,
clr_enable_out =>s2A2,
enable_out =>s1A7D,
cpu_clk => scpu_clk,
cpu_reset => scpu_reset,
cpu_iord => scpu_iord,
cpu_iowt => scpu_iowt,
cpu_devsel => scpu_devsel,
cpu_ioaddr => scpu_ioaddr,
cpu_iodata => scpu_iodata,
decodeaddr => s1A7E,
data => 51628

);

s1A7E <=clA7C;
n39C: a_d read
port map(

clk => sCLK,
enable_in => s2A1,
clr_enable_out => s2A2,
ai_read_val => 51504,
ad_clk =>sad_clk,
enable_out => s39D

);

nl13A0: prim_Scale By Power Of 2 16
port map(

clk =>sCLK,
enable_in =>s2A1,
clr_enable_out => s2A2,
X_2 n=>51270,
x =>s19CC,
n=>s1684,
enable_out =>s13A1

)

s10E8 <= 539D AND s5B9;
n10ES8: prim_Subtract_16
port map(
clk =>sCLK,
enable_in => s10ES$,
clr_enable_out => s2A2,
x_y=>s1310,
y => 51504,
X =>s149C,
enable_out => s10E9
);

s14D0 <= s13A1 AND s10E9;
n14D0: prim_Add_16
port map(
clk =>sCLK,
enable_in => s14D0,

31

PCT/US98/13040

15

20

25

30

35

40

45

50

55

WO 99/09498

clr_enable out =>s2A2,
X_y =>s51344,

y =>51270,

x =>s1310,

enable_out => s14D1

);

s1A00 <=514D1 AND s1A7D;
nl1AOQQ: prim_Multiply 16
port map(
clk => sCLK,
enable_in => s1A00,
clr_enable out =>s2A2,
X_y =>s5209C,
y =>s1344,
X =>s1628,
eiiable_out =>s1A01

);

nl1724:d_a_write
port map(

clk => sCLK,
enable in =>s1A0Q1,
clr_enable_out => s2A2,
a0_write_val => s209C,
da_clk => sda_clk,
enable out => 51725

);

n144: whileloop_timed
port map(

cik => sCLK,
enable_in =>s115,
clr_enable_out => 5116,
period => sC44,
phase => 5974,
diag_enable => s2A1,
diag_clr_enable out =>s2A2,
diag_done => s2A0,
continue => s4D§,
enable_out =>s145

);

sCLK <=clk;

s115 <=enable_in;

s116 <=clr_enable out;
s114 <= enable_out;
sda_clk <=da_clk;
scpu_clk <= cpu_clk;
scpu_reset <= cpu_reset;
scpu_iord <= cpu_iord,
scpu_iowt <= cpu_iowt;
scpu_devsel <= cpu_devsel;
scpu_ioaddr <= cpu_ioaddr;
scpu_iodata <= cpu_iodata;
sad_clk <=ad_clk;

32

PCT/US98/13040

10

15

20

25

30

35

40

45

50

WO 99/09498 PCT/US98/13040

end Structural;

Component Library

The preferred embodiment of the present invention includes a component library that is used to aid in
converting various primitives or nodes in a graphical program into a hardware description, such as a VHDL source
file. The following provides two examples of VHDL components in this component library, these being

components for a While loop and a multiplier primitive.

1. While Loop Component

The following comprises a VHDL component referred to as whileloop.vhd that the present invention uses
when a While loop appears on a graphical program or diagram. Whileloop.vhd shows how a While loop in a
graphical program is mapped to a state machine in hardware. It is noted that other control structures such as a "For

loop" are similar. Whileloop.vhd is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity whileloop is

port(
clk,
enable_in, -- start loop execution
¢lr_enable_out -- reset loop execution
:in std_logic;
diag_enable, -- start contained diagram execution

diag_clr_enable_out -- reset contained diagram execution
:out std_logic;

diag_done, -- contained diagram finished
continue -- iteration enabled
:in std_logic;
enable out -- looping complete
:out std_logic
);

end whileloop;
architecture rtl of whileloop is

type state_t is (idle_st, -- reset state
test_st, -- check for loop completion
calc_st, -- enable diagram execution
end_st -- assert enable_out

);

signal nstate,state : state t;
begin

process(state,enable_in,clr_enable_out,diag_done,continue)
begin

diag_clr_enable out <='0";

diag_enable <="'0";

enable out <='0";

33

10

15

20

25

30

35

40

45

50

WO 99/09498

case state is
when idle st =>
diag_cir_enable out <="'1";

if enable_in='1" then
nstate <= test_st;
else
nstate <=idle_st;
end if;

when test_st =>
diag_clr_enable out <="'1"

if continue='1" then
nstate <= calc_st;
else
nstate <= end_st;
end if;

when calc_st =>
diag_enable <="1;

if diag_done="1" then
nstate <= test_st;
else
nstate <= calc_st;
end if;

when end_st=>
enable out <="'1";

nstate <= end_st;

end case;

-- Because it appears at the end of the process, this test
-- overrides any previous assignments to nstate

if clr_enable_out="1' then
nstate <= idle_st;
end if;
end process;

process(clk)
begin
if clk'event and clk="1' then
state <= nstate;
end if;
end process;

end rtl;

2. Multiplier Primitive Component

PCT/US98/13040

The following comprises a VHDL component referred to as prim_multiply 16.vhd that the present
invention uses when a multiplier primitive appears on a graphical program or diagram. By following the path from

enable_in to enable_out, it can be seen how the self-timed logic works - each component asserts enable_out when

34

10

20

25

30

35

40

45

50

55

WO 99/09498 ’ PCT/US98/13040
the data output is valid. Other primitives like "add" or "less than" operate in a similar manner.

Prim_multiply 16.vhd is as follows:

library ieee;
use ieee.std_logic_1164.all;

entity prim_multiply 196 is
port(

clk : in std_logic;
enable_in : in std_logic;
clr_enable out : in std_logic;
x_y : out std_logic_vector(15 downto 0);
x :in std_logic_vector(15 downto 0);
y :instd_logic vector(15 downto 0);
enable out : out std_logic
);

end prim_multiply_16;

architecture altera of prim_multiply 16 is

COMPONENT lpm_mult

GENERIC (LPM_WIDTHA: POSITIVE;

LPM_WIDTHB: POSITIVE,

LPM_WIDTHS: POSITIVE;

LPM_WIDTHP: POSITIVE;
LPM_REPRESENTATION: STRING := "UNSIGNED";
LPM_PIPELINE: INTEGER := 0;

LPM_TYPE: STRING :="L. MULT"

);

PORT (dataa: IN STD_LOGIC VECTOR(LPM_WIDTHA-1 DOWNTO 0);
datab: IN STD_LOGIC VECTOR(LPM_WIDTHB-1 DOWNTO 0);
aclr: IN STD_LOGIC :="'0';
clock: IN STD_LOGIC :="'0";

sum: IN STD_LOGIC_VECTOR(LPM_WIDTHS-1 DOWNTO 0) := (OTHERS =>'0");
result: OUT STD_LOGIC_VECTOR(LPM_WIDTHP-1 DOWNTO 0));
END COMPONENT;

signal 1 x,1 y : std_logic_vector(15 downto 0);
signal 1_xy : std_logic_vector(31 downto 0);
signal |_enable _in : std_logic;

begin

-- synchronize the incoming and outgoing data to guarantee
-- aregistered path on data through the multiplier
-- register enable_out so it won't assert before data is
-- available.
process(clk)
begin
if clk'event and clk="1' then
if clr_enable out='1" then
enable out <="'0";
1 enable_in <="0";
else
enable_out <=1_enable in;

35

10

15

20

25

30

35

40

45

50

WO 99/09498

PCT/US98/13040

1 _enable_in <= enable_in;

end if}

] x <=Xx;
L y<=y;.

x_y <=1_xy(15 downto 0);

end if;
end process;

gainx: lpm_mult

GENERIC map(
LPM_WIDTHA => 16,
LPM_WIDTHB => 16,
LPM_WIDTHS => 1,
LPM_WIDTHP => 32,
LPM_REPRESENTATION =>"UNSIGNED",
LPM_PIPELINE => 0

)
PORT map(

dataa =>1 x,
datab =>1 vy,

result =>1_xy

)

end altera;

Figures 20 - 21

Figures 20 and 21 illustrate the graphical source code of a graphical program or VI called examplel.vi.

The following comprises a VHDL hardware description created from the graphical program examplel.vi

shown in Figures 20 and 21, wherein the VHDL hardware description set out below was directly generated from the

LabVIEW program examplel.vi using the present invention.

library ieee;

use ieee.std_logic_1164.all;

entity examplel is

port (

address : out std_logic_vector(1 downto 0); -- address to DAC
wr : out std_logic; -- control to DAC

cs : out std_logic; -- control to DAC

Idac : out std_logic; -- control to DAC

dac_data : out std_logic_vector(7 downto 0); -- data to DAC
cclk : in std_logic;

CAout : in std_logic_vector(11 downto 0);

CDin : out std_logic_vector(CFG_DRWIDTH downto 0);
CDout : in std_logic_vector(CFG_DRWIDTH downto 0);
dreset : in std_logic;

ioupdate : in std_logic;

rc : out std_logic; -- convert signal to ADC

stat : in std_logic; -- convert "done" signal from ADC
adc_data : in std_logic_vector(11 downto 0); -- data from ADC
osc : in std_logic

36

WO 99/09498 PCT/US98/13040
)

end examplel;

architecture Structural of examplel is

10

15

20

25

30

35

40

45

50

55

signal sCLK : std_logic;

signal saddress : std_logic_vector(1 downto 0);

signal swr : std_logic;

signal scs : std_logic;

signal sldac : std_logic;

signal sdac_data : std_logic_vector(7 downto 0);

signal scclk : std_logic;

signal sCAout : std_logic_vector(11 downto 0);

signal sCDin : std_logic_vector(CFG_DRWIDTH downto 0);
signal sCDout : std_logic vector(CFG_DRWIDTH downto 0);
signal sdreset : std_logic;

signal sioupdate : std_logic;

signal src : std_logic;

signal sstat : std_logic;

signal sadc_data : std_logic vector(11 downto 0);

signal s198 : std_logic vector(15 downto 0);

signal s101 : std_logic, -- node 10G enable_out
signal s100 : std_logic; -- nude 100 enable_in

constant cB8C : std_logic vector(15 downto 0) := "0000000000000000"; -- 0

signal s100 : std_logic; -- diagram done

signal s102 : std_logic; -- diagram clr_enable out
signal s1305 : std_logic; -- node 1304 enable_out
signal s131 : std_logic; -- node 130 enable_out
component shift16

port (
clk : in std_logic;
enable_in, load : in std_logic;
initval : in std_logic_vector(15 downto 0);
din : in std_logic_vector(15 downto 0);
dout : out std_logic_vector(15 downto 0)
);

end component;

signal s11AQ : std_logic_vector(15 downto 0);
signal s1984 : std_logic vector(15 downto 0);
signal s3F60 : std_logic_vector(7 downto 0);
signal s3EEOQ : std_logic_vector(15 downto 0);
signal s3DOC : std_logic_vector(15 downto 0);
signal SA98 : std_logic_vector(15 downto 0);
signal s880 : std_logic_vector(15 downto 0);
signal s4C0 : std_logic;

signal s28D : std_logic; -- node 28C enable out
constant c458 : std_logic :="'1";

constant ¢854 : std_logic_vector(15 downto 0) := "0000001111101000"; -- 1000

constant cA58 : std_logic_vector(15 downto 0) := "0000000000000000"; -- 0

signal s28E : std_logic; -- diagram cir_enable out
component write_reg8
port (
clk : in std_logic;
enable_in : in std_logic;
clr_enable out : in std_logic;

37

10

15

20

25

30

35

40

45

50

55

WO 99/09498

cclk : in std_logic;
CAout : in std_logic_vector(11 downto 0);
CDin : out std_logic_vector(CFG_DRWIDTH downto 0);
CDout : in std_logic_vector(CFG_DRWIDTH downto 0);
dreset : in std_logic;
ioupdate : in std_logic;
decode : in std_logic;
data : out std_logic_vector(7 downto 0);
enable out : out std_logic
)

end component;

signal s4C1A : std_logic; -- decode_sig
signal s4C19 : std_logic; -- node 4C18 enable out
signal s561 : std_logic; -- node 560 enable_out
signal s389 : std_logic; -- node 388 enable_out
component ADC_read
port (
clk : in std_logic;
enable in, clr_enable_out : in std_logic;
ai_read_val : out std_logic_vector(15 downto 0);
rc : out std_logic; -- convert signal to ADC
stat : in std_logic; -- convert "done" signal from ADC
adc data: in std_logic_vector(11 downto 0); -- data from ADC
enable out : out std_logic
)

end component;

signal s14CD : std_logic; -- node 14CC enable_out
signal s14CC : std_logic; -- node 14CC enable_in

signal sIA1D : std_logic; -- node 1A1C enable_out
signal s1A1E : std_logic; -- diagram cir_enable_out
signal s3FCO : std_logic_vector(15 downto 0);
signal s24F0 : std_logic_vector(15 downto 0);
signal s22F8 : std logic vector(15 downto 0);
signal s237C : std_logic_vector(15 downto 0);
signal s2524 : std_logic_vector(15 downto 0);
signal s241C : std_logic;

signal s246C : std_logic;

signal s24A0 : std_logic;

signal s1BDS : std_logic; -- node 1BD4 enable_out
constant c1A6C : std_logic_vector(15 downto 0) := "0000000010010110"; -- 150
constant c1C04 : std_logic_vector(15 downto 0) := "0000000000110010"; -- 50
signal s1BD6 : std_logic; -- diagram clr_enable_out
component write_regl6
port (
clk : in std_logic;
enable_in : in std_logic;
clr_enable_out : in std_logic;
cclk : in std_logic;
CAout : in std_logic_vector(11 downto 0);
CDin : out std_logic_vector(CFG_DRWIDTH downto 0);
CDout : in std_logic_vector(CFG_DRWIDTH downto 0);
dreset : in std_logic;
ioupdate : in std_logic;

38

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

decode : in std_logic;

data : out std_logic_vector(15 downto 0);

enable out : out std_logic
)

end component;

signal s4322 : std_logic; -- decode_sig
signal s4321 : std_logic; -- node 4320 enable out
signal s446E : std_logic; -- decode_sig
signal s446D : std_logic; -- node 446C enable out
signal s41E1 : std_logic; -- node 41EQ enable_out
signal s41E0 : std_logic; -- node 41E0 enable_in
component prim_Less Or_Equal 16
port
clk : in std_logic;
enable_in, clr_enable_out : in std_logic;
x_LE y:outstd logic;
y :in std_logic_vector(15 downto 0);
X :in std_logic_vector(15 downto 0);
enable out : out std_logic
)

end component;

signal s1D7D : std_logic; -- node 1D7C enable out
signal s1D7C : std_logic; -- node 1D7C enable_in
component prim_Less 16

port (
clk : in std_logic;
enable_in, cir_enable out : in std_logic;
. X LT y:outstd logic;
y : in std_logic_vector(15 downto 0);
x :in std_logic_vector(15 downto 0);
enable out : out std_logic
)

end component;

signal s225D : std_logic; -- node 225C enable_out
signal s225C : std_logic; -- node 225C enable_in
component prim_Or
port (
clk : in std_logic;
enable_in, cir_enable out : in std_logic;
x_or_y : out std_logic;
y : in std_logic;
X : in std_logic;
enable_out : out std_logic
);

end component;

signal s2089 : std_logic; -- node 2088 enable_out
signal s2088 : std_logic; -- node 2088 enable_in
component prim_Select 16
port (
clk : in std_logic;
enable_in, clr_enable_out : in std_logic;

s_t f:outstd logic vector(15 downto 0)

f:in std_logic_vector(15 downto 0);

39

>

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

s :in std_logic;

t:in std_logic_vector(15 downto 0);
. enable_out : out std_logic

)

end component;

signal s2C08 : std_logic_vector(15 downto 0);

signal s2728

signal s2585
signal s2586
signal sSFCA

:std_logic_vector(15 downto 0);

: std_logic; -- node 2584 enable_out
: std_logic; -- diagram clr_enable_out
: std_logic; -- decode_sig

signal sFC9 : std_logic; -- node FC8 enable out
signal s25B5 : std_logic; -- node 25B4 enable_out
signal s25B4 : std_logic; -- node 25B4 enable_in
component prim_Multiply 16

port (

);

clk : in std_logic;

enable_in, clr_enable out : in std_logic;
xTIMESy : out std_logic_vector(15 downto 0);
y : in std_logic_vector(15 downto 0);

x :in std_logic vector(15 downto 0);
enable_out : out std_logic

end component;

signal s3964

: std_logic_vector(15 downto 0);

signal s3A58 : std_logic_vector(15 downto 0);
signal s3AA8 : std_logic vector(15 downto 0);
signal s3AF8 : std_logic_vector(15 downto 0);

signal s3B48 :
signal s3B98 :

std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0);

signal s3BES : std_logic_vector(15 downto 0),

sighal s3C38 :
signal s3C88 :

std_logic_vector(15 downto 0);
std_logic_vector(15 downto 0);

signal s3CD8

: std_logic_vector(15 downto 0);

signal s2881 : std_logic; -- node 2880 enable_out

constant ¢28D0 : std_logic_vector(15 downto 0) := "0000000000000100"; -- 4
constant c2A68 : std_logic_vector(15 downto 0) := "0000000000000001"; -- 1
constant ¢32B4 : std_logic_vector(15 downto 0) := "0000000000001001"; -- 9

PCT/US98/13040

constant c2DAS : std logic_vector(15 downto 0) := "0000000000010000"; -- 16

signal 52882 : std_logic; -- diagram cir_erable_out
signal s2F35 : std_logic; -- node 2F34 enable_out
signal s3245 : std_logic; -- node 3244 enable_out
signal s30BD : std_logic; -- node 30BC enable_out
signal s33CS5 : std_logic; -- node 33C4 enable_out
signal s33C4 : std_logic; -- node 33C4 enable_in
component prim_Add_16
port (
clk : in std_logic;
enable_in, clr_enable out : in std_logic;

xPLUSy : out std_logic_vector(15 downto 0)

y : in std_logic vector(15 downto 0);
x :in std_logic_vector(15 downto 0);
enable_out : out std_logic

)

40

10

15

20

25

30

35

40

45

50

55

WO 99/09498 PCT/US98/13040

begin

end component;

signal s3581 : std_logic; -- node 3580 enable_out
signal s3580 : std_logic; -- node 3580 enable_in
signal s3709 : std_logic; -- node 3708 enable_out
signal s3708 : std_logic; -- node 3708 enable in
component prim_Quotient Remainder_16
port (
clk : in std_logic;
enable_in, clr_enable_out : in std_logic;
floor xDIVBYYy : out std_logic_vector(15 downto 0);
xMINUSyTIMESfloor xDIVBYYy : out std_logic_vector(15 downto 0);
y :in std_logic_vector(15 downto 0);
x :in std_logic_vector(15 downto 0);
enable out : out std_logic
)

end component;

signal sF35 : std_logic; -- node F34 enable_out
component DAC_write
port (
clk : in std_logic;
enable_in, clr_enable out : in std_logic;
ao_data : in std_logic_vector(15 downto 0);
address : out std_logic_vector(1 downto 0); -- address to DAC
wr : out std_logic; -- control to DAC
cs : out std_logic; -- control to DAC
Idac : out std_logic; -- control to DAC
dac_data : out std_logic_vector(7 downto 0); -- data to DAC
enable_out : out std_logic
);

end component;

component whileloop_timed

port (
clk : in std_logic;
enable in, clr_enable out: in std_logic;
diag_enable, diag_clr_enable out : out std_logic;
diag_done : in std_logic;
period : in std_logic_vector(15 downto 0);
phase : in std_logic_vector(15 downto 0);
continue : in std_logic;
enable_out : out std_logic

);

end component;

s100 <=s1305 AND s131;

s198 <= ¢B8C;
n22C4: shiftlé
port map(
clk =>sCLK,
load => 5101,

enable in => sF35,
initval => 5198,
din => 51984,

41

10

15

20

25

30

35

40

45

50

55

WO 99/09498

dout => s3D0C

)
n510: shift16
port map(
clk => sCLK,
load =>s101,

s4C0 <= c458;
s880 <= c854;

SA98 <= cASS;

-- function

enable_in => sF35,
initval => 5198,
din => s3D0C,
dout =>s11A0

n4C18: write_reg8
port map(

);

clk => sCLK,
enable_in => 528D,
clr_enable out => s28E,
enable_out => s4C19,
cclk => scclk,

CAout => sCAout,
CDin => sCDin,
CDout => sCDout,
dreset => sdreset,
ioupdate => sioupdate,
decode => s4Cl1A,
data => s3F60

s4C1A <="'1' whzn CAout="000000010000" else '0";

n388: ADC read

port map(

)

clk => sCLK,

enable_in => s28D,
clr_enable_out => s28E,
ai_read_val => 51984,
TC => SIC,

stat => sstat,

adc_data => sadc_data,
enable_out => 5389

$14CC <= s4C19 AND 5389 AND s28D;
S3EE0 <= 51984 when s3F60(3 downto 0)="000" else

s22F8 when s3F60(3 downto 0)="001" else
$2728 when s3F60(3 downto 0)="010" else
53964,

§2524 <= c1A6C;
s237C <= ¢1C04;

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

-- hi limit

n4320: write_regl6
port map(

)

clk => sCLK,
enable_in => s1BDS,
clr_enable _out => s1BD6,
enable_out => s4321,
cclk => scclk,

CAout => sCAout,
CDin => sCDin,
CDout => sCDout,
dreset => sdreset,
ioupdate => sioupdate,
decode => 54322,

data => s3FC0O

$4322 <="1" when CAout="000000001000" else '0';

-- lo limit

n446C: write_regl6
port map(

);

clk => sCLK,
enable_in => s1BDS,
clr_enable out => s1BD6,
enable_out => s446D,
cclk => scclk,

CAout => sCAout,
CDin => sCDin,
CDout => sCDout,
dreset => sdreset,
ioupdate => sioupdate,
decode => s446E,

data => s24F0

s446E <="1' when CAout="000000001100" else '0';

s41E0 <= s1BDS5 AND s4321;

n41E0: prim_Less_Or_Equal_16
port map(

);

clk => sCLK,

enable_in => s41EOQ,
clr_enable_out =>s1BD6,
x_LE y=>5246C,

y => 51984,

x => s3FCQ0,

enable_out =>s41E1

s1D7C <=s446D AND s1BDS5;
n1D7C: prim_Less_16
port map(

clk => sCLK,

enable_in => s1D7C,
clr_enable_out => s1BD6,
x_LT_y=>524A0,

43

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

y => s24F0,

X => 51984,

enable_out => s1D7D
);

§225C <=s1D7D AND s41El;
n225C: prim_Or
port map(
clk => sCLK,
enable_in => §225C,
clr_enable_out => s1BD6,
X_or_y =>s241C,
y => $24A0,
x =>5246C,
enable_out => s225D
)

s2088 <=s1BDS AND s225D;
n2088: prim_Select 16
port map(

clk => sCLK,
enable_in => s2088,
clr_enable out =>s1BD6,
s t f=>g22F8§,
f=>5s237C,
s =>s241C,
t => 52524,
enable_out => 52089

-- gain
nFC8: write reglé
port map(

clk => sCLK,
enable_in ==> 52585,
clr_enable_out => 52586,
enable_out => sFC9,
cclk => scclk,
CAout => sCAout,
CDin => sCDin,
CDout => sCDout,
dreset => sdreset,
ioupdate => sioupdate,
decode => sFCA,
data =>s2C08

);

sFCA <="'1" when CAout="000000000100" else '0";

$25B4 <= sFC9 AND s2585;

n25B4: prim_Multiply 16

port map(

clk => sCLK,
enable_in => s25B4,
clr_enable_out => 52586,
xTIMESy => 52728,

44

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

y =>s2C08,
x =>s1984,
enable_out => s25B5

s3CD8 <= c28D0;
s3C88 <= c2A68;
s3C38 <= c32B4;
s3AA8 <= c2DAS;
n2F34: prim_Multiply 16
port map(
clk => sCLK,
enable_in => 52881,
clr_enable out =>s2882,
xTIMESy => s3BES,
y =>s3CD8,
x =>s3D0C,
enable_out => s2F35
);

n3244: prim_Multiply 16

port map(
clk =>sCLK,
enable_in => 52881,
cir_enable_out => 52882,
xTIMESy => s3B48,
y =>s3C38,
X => 51984,
enable_out => 53245

);

n30BC: prim_Multiply 16

port map(
clk => sCLK,
enable_in => 52881,
clr_enable out =>s2882,
xTIMESy => s3B98,
y =>s3C88,
X =>s11A0,
enable_out => s30BD

);

s33C4 <=s30BD AND s2F35;
n33C4: prim_Add_16
port map(
clk =>sCLK,
enable_in => s33C4,
clr_enable out =>s2882,
xPLUSy => s3AFS,
y => s3B98,
x => s3BES,
enable_out =>s33C5
);

53580 <=53245 AND s33CS5;
n3580: prim_Add_16

45

PCT/US98/13040

10

15

20

25

30

35

40

45

50

55

WO 99/09498

port map(
clk =>sCLK,
enable_in => s3580,
clr_enable_out => 52882,
xPLUSy => s3A58,
y =>s3B48,
x => s3AFS8,
enable_out => s3581

);

$3708 <=s2881 AND s3581;
n3708: prim_Quotient Remainder 16
port map(
clk => sCLK,
enable_in => 53708,
cir_enable_out => 52882,
floor_ xDIVBYy => 53964,
xMINUSyTIMESfloor xDIVBYy => OPEN,
y =>s3AAS,
X =>s3A58,
enable_out => 53709
)

s1A1D <= s14CC when s3F60(3 downto 0)="000" else '0’;
s1A1E <=s28E;
s1BDS5 <= s14CC when s3F60(3 downto 0)="001" else '0";
s1BD6 <= s28E,;
$2585 <= s14CC when s3F60(3 downto 0)="010" else '0";
$2586 <=s28E;
52881 <= s14CC when s3F60(3 downto 0)="011" else '0';
s2882 <=s28E;
s14CD <= s1A1D when s3F60(3 downto 0)="000" else
52089 when s3F60(3 downto 0)="001" else
s25BS when s3F60(3 downto 0)="010" else
$3709;
nF34: DAC_write
port map(
clk => sCLK,
enable_in => s14CD,
cir_enable_out => s28E,
ao_data => s3EEQ,
address => saddress,
WI => SWI,
cs => scs,
ldac => sldac,
dac_data => sdac_data,
enable_out => sF35

);

n130: whileloop_timed
port map(

clk => sCLK,
enable_in =>s101,
clr_enable_out => 5102,
period => sA98,
phase => 5880,
diag_enable => 528D,

46

PCT/US98/13040

10

15

20

25

30

WO 99/09498 PCT/US98/13040

diag cir enable out => s28E,
diag done => sF35,

continue => s4C0,

enable_out =>s131

);

sCLK <= osc;

s0 <="'1",

s0 <= dreset;

address <= saddress;
Wr <= SWT;

cs <= scs;

Idac <= sldac;
dac_data <= sdac_data;
scclk <= cclk;

sCAout <= CAout;
CDin <= sCDin;
sCDout <= CDout;
sdreset <= dreset;
sioupdate <= ioupdate;
rc <= §IC;

sstat <= stat;

sadc_data <= adc_data;

end Structural;

Although the system and method of the present invention has been described in connection with the
preferred embodiment, it is not intended to be limited to the specific form set forth herein, but on the contrary, it is
intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit

and scope of the invention as defined by the appended claims.

47

10

15

20

25

30

35

WO 99/09498 ' PCT/US98/13040
Claims

1. A computer-implemented method for generating a hardware implementation of graphical code,
the method (.:omprising:

creating a graphical program;

exporting at least a portion of the graphical program into a hardware description, wherein the hardware
description describes a hardware implementation of the at least a portion of the graphical program;

configuring a programmable hardware element utilizing the hardware description to produce a configured
hardware element, wherein the configured hardware element implements a hardware implementation of the at least

a portion of the graphical program.

2. The method of claim 1, further comprising:
converting the hardware description into a net list;

wherein said configuring the programmable hardware element utilizes the net list.

3. The method of claim 2, further comprising:
compiling the net list format into a hardware program file; and
wherein said configuring the programmable hardware element includes downloading the hardware

program file to the programmable hardware element to configure the programmable hardware element.

4, The method of claim 2, wherein said converting the hardware description into a net list includes:
utilizing at least one function block from a library of pre-compiled function blocks; and

utilizing hardware target specific information.

5. The method of claim 1, wherein said creating the graphical program includes:
arranging on the screen a plurality of nodes comprising the graphical program;
creating and storing a tree of data structures which represent the graphical program in response to said

arranging.

6. The method of claim 5, wherein said exporting the at least a portion of the graphical program into
the hardware description comprises:

traversing the tree of data structures;

converting each data structure in the tree of data structures into a hardware description format in response

to said traversing.
7. The method of claim 1, wherein the graphical program includes a plurality of nodes;

wherein said exporting at least a portion of the graphical program into a hardware description comprises

converting each of said nodes into a hardware description format.

48

10

15

20

25

30

35

WO 99/09498 ' PCT/US98/13040

8. The method of claim 7, wherein each of said nodes is converted into a hardware description
format including an enable input, a clock signal input, and an enable output;

wherein, for a respective node, said enable input receives an enable signal generated from enable out

signals from one or more nodes which provide inputs to the respective node.

9. The method of claim 7, wherein the graphical program includes an input terminal;
wherein, for said input terminal, said converting comprises:
determining if data input to the input terminal is from a supervisory portion executing on the
computer system;
creating a hardware description of a write register, wherein the write register includes one or

more data outputs and at least control output.

10. The method of claim 7, wherein the graphical program includes a function node;
wherein, for said function node, said converting comprises:
determining inputs and outputs to/from the function node;
creating a hardware description of logic which performs the function indicated by the function
node;
traversing input dependencies of the node;
creating a hardware description of an AND gate, including listing connections of said input

dependencies of the node to said AND gate.

11. The method of claim 7, wherein the graphical program includes a structure node;
wherein, for said structure node, said converting comprises:
determining inputs and outputs to/from the structure node;
creating a hardware description of a control block which performs the control function indicated
by the structure node;
traversing input dependencies of the node;
creating a hardware description of an AND gate, including listing connections of said input

dependencies of the node to said AND gate.

12. The method of claim 7, wherein the graphical program includes a function node;
wherein, for said function node, said converting comprises:
determining inputs and outputs to/from the function node;
accessing a hardware description of logic which performs the function indicated by the function
node from a library of function node hardware descriptions;
traversing input dependencies of the node;
creating a hardware description of an AND gate, including listing connections of said input

dependencies of the node to said AND gate.

49

10

15

20

25

30

35

WO 99/09498 PCT/US98/13040
13. The method of claim 7, wherein the graphical program includes a structure node;
wherein, for said structure node, said converting comprises:
determining inputs and outputs to/from the structure node;
accessing a hardwzre description of a control block which performs the control function indicated
by the structure node from a library of hardware descriptions;
traversing input dependencies of the node;
creating a hardware description of an AND gate, including listing connections of said input

dependencies of the node to said AND gate.

14. The method of claim 7, wherein the graphical program includes an output terminal;
wherein, for said output terminal, said converting comprises:
determining if data output from the output terminal is to a supervisory portion executing on the
computer system;
creating a hardware description of a read register, wherein the read register includes one or more

data inputs and at least control input.
15. The method of claim 7, wherein the graphical program comprises a data flow diagram.

16. The miethod of claiin 1, wherein the programmable hardware element comprises a field

programmable gate array (FPGA).

17. The method of claim 1, wherein a first portion of the graphical program is converted into a
hardware description;
the method further comprisirg:

compiling a second portion of the graphical program into machine code for execution by a CPU.

18.. The method of claim 17, further comprising:

executing the machine code to perform functionality indicated by the second portion of the graphical
progx;am;

the configured hardware element performing functionality indicated by the first portion of the graphical
program;

wherein said executing the machine code and the configured hardware element performing functionality

operate to perform functionality indicated by the graphical program.
19. The method of claim 1, wherein the method operates in a system comprising a computer system

and a device coupled to or comprised in the computer system, wherein the programmable hardware element is

comprised on the device, wherein the device performs data acquisition / generation functions.

50

15

20

25

30

35

WO 99/09498 ' PCT/US98/13040
20. The method of claim 19, wherein the device includes a non-volatile memory coupled to the
programmable hardware element, the method further comprising:
storing the hardware description into the non-volatile memory;
wherein said configuring the programmable hardware element comprises transferring the hardware
description from the non-volatile memory to the programmable hardware element to produce the configured

hardware element.

21. A system which generates a hardware implementation of graphical code, the system comprising:

a computer system comprising a CPU and memory, wherein the memory stores a graphical program,
wherein the memory also stores a software program which is executable to export at least a portion of the graphical
program into a hardware description, wherein the hardware description describes a hardware implementation of the
at least a portion of the graphical program;

a device coupled to the computer system, wherein the device includes a programmable hardware element;

wherein the computer system is operable to configure the programmable hardware element utilizing the
hardware description to produce a configured hardware element, wherein the configured hardware element

implements a hardware implementation of the at least a portion of the graphical program.

22. The system of claim 21, wherein the software program stored in the memory of the computer
system is further operable to convert the hardware description into a net list;
wherein the computer system is operable to configure the programmable hardware element utilizing the

net list.

23. The system of claim 21, wherein the software program stored in the memory of the computer
system is further operable to compile the net list format into a hardware program file; and
wherein the computer system is operable to download the hardware program file to the programmable

hardware element to configure the programmable hardware element.

24. The system of claim 21, wherein the programmable hardware element comprises a field

programmable gate array (FPGA).

25. The system of claim 21, wherein the computer system includes a bus and also includes one or
more expanéion slots coupled to the bus adapted for receiving expansion cards

wherein the device comprises an expansion card inserted into an expansion slot of the bus.

26. The system of claim 21, wherein the memory of the computer system stores a graphical
programming system for creation of the graphical program;
wherein the graphical programming system is executable to arrange on the screen a plurality of nodes

comprising the graphical program in response to user input;

51

10

15

20

25

WO 99/09498 PCT/US98/13040
wherein the graphical programming system is further executable to create and store a tree of data
structures which represent the graphical program in response to said arranging; -
wherein the software program is executable to traverse the tree of data structures and convert each data

structure in the tree of data structures into a hardware description format in respouse to said traversing.

27. The system of claim 21, wherein a first portion of the graphical program is converted into a
hardware description;
wherein the computer system is operable to compile a second portion of the graphical program into

machine code for execution by the CPU.

28. The system of claim 27,

wherein the configured hardware element is operable to perform functionality indicated by the first portion
of the graphical program;

wherein the computer systen: is operable to execute the machine code to perform functionality indicated
by the second portion of the graphical program;

wherein said executing the machine code and the configured hardware element performing functionality

operate to perform functionality indicated by the graphical program.

29. The system of claim 21, wherein the device performs data acquisition / generation functions.

30. The system of claim 21, wherein the device includes a non-volatile memory coupled to the
programmable hardware element;

wherein the non-volatile memory is operable to store the hardware description;
wherein the non-volatile memory is operable to transfer the hardware description to the programmable hardware

element to produce the configured hardware element.

52

WO 99/09498 PCT/US98/13040

1125

VXI

Conditioning

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

2/25

VI Old L
-,

MO|4
$88201

9398% Ry Ry

|o5U0)

vwz_ss_ﬂw

M_ 9z
o %
[euasg
vzl
Bujuonipuon

951
snqpjal4

leubis

spieog
uonisinboy
ejeq-uj-bnig

/I ovl

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

3/25

¢ 9ld
SIS %|;
ISSey) IXA 5= (
| Zhrsngaide |
—— H — —— D e
0€¢ cmmo el 8l 08l
IXW] co_u_w_mumm Pied 8idoO SAlIQ pleH O3PIA
f 0.1 sng uoisuedx3 \/
891
Jajjonuo) sng
/\ Z9] sng 1soH /\
g —
Jajjonuon 09}
Aiowsy Ndo
[
991 [40)%
Kowspy uepy

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

4/25

€ Old

¢0¢ 10J08uuog Q|

80¢ sng [eo01] 812 sng ejeq/joauo)
1 9le
90¢ 8deysjuj sng
(vod4)
10ss3001d
Blyuoos
via 4000 L
oS ol | Nmm
an Alowapy
S|liejOA UON
v0C vic
e Aowap

1/VZ‘

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040

¢0¢ 10103uuo) Q|
(@)
w0 ©
o
'Y
72
= O < S
& < a @
©
&1
o
O —d
|—
<
™
b ®
E85w L
I O @ o
UOD—NI o0
O O L. ‘_l
Cﬁn_" N
)
-]
m
5
©
(]
=
Q £
8 &
D © O
EX
o
>
as]

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

6/25

d¢€ Old

¢0¢ 10303uUU0d Q]

80C sng [e007] 81 sng eleq/ionuo)
— 91T
90¢ 8delBU] sh
(vOd4) HoVll Shd
108$3001d
v/d Byuoosy
S ol _
an
v0C vic

Aiowapy

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 ‘ PCT/US98/13040

7/25

Create graphical
program (block
diagram)
302

v

Export at least a

portion of the graphical
program to a hardware
description
304
v
compisduncton | | dosclontoan | | "erovere e
dlocks || FPGA-specific NetList [PeCMe Jormater
308 306 310

v

Compile the net list
into an FPGA program
file
312

v

Transfer FPGA
program file to
programmable
hardware (FPGA) to
produce programmed
hardware equivalent to
graphical program
314

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040
8/25
Create graphical
program (block
diagram)
302
v v
Compile supervisory
control and display Export at least a
portion of the graphical portion of the graphical
program into machine program to a hardware
code for CPU description
execution 304
322
v
Library of pre-compiled Convert.thg hardware Hardware target
function blocks descrlptlgn toan , specific information
308 FPGA-specific Net-List 310
306
v
Compile the net list
into an FPGA program
file
312
v
Transfer FPGA
program file to
programmable
hardware (FPGA) to
produce programmed
hardware equivalent to
graphical program
314
FIG. 4A

SUBSTITUTE SHEET (RULE 26)

WO 99/09498

9/25

Create graphical
program
(Step 302)

Arrange on the screen
a graphical program
(block diagram)
342

I

Develop and store tree
of data structures
which represent the
graphical program in
response to graphical
program creation
344

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498 PCT/US98/13040

10/25

Export at least a portion
of the graphical program to a
hardware description
(Step 304)

I

Traverse the tree of data
structures
362

:

Translate each data structure
into a hardware description
364

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040

11/25

Export input terminal to
hardware description

s data
input from Yes
supervisory portion
gxecuting on CPU?
402
Tie into data output Create a hardware description

) of a write register with data
from prior node and control outputs
404 406

I

Connect data and control
outputs of write register to
graphical program

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 99/09498

12/25

Export function node to
hardware descnptlon

Determine mputs and outputs of
function node
422

I

Create a hardware description of
a function block, or insert a
reference to a pre-compiled
function block from library,

corresponding to function node,

with proper number of inputs and
outputs
424

I

Traverse input dependencies of
the node
426

I

Create a hardware description of
an N input AND gate with inputs
connected to dependent inputs of
the function node and output of
AND gate connected to control
input of the function block
428

FIG. 8

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498 PCT/US98/13040

13/25

Export output terminal to
hardware description

Is data

output to Yes
supervisory portion
gxecuting on CPU?
440
Tie into data input on Create a hardware description
of a read register with data
subsequent node and control inputs
445 442

I

Connect outputs of prior
node(s) to data and control
inputs of read register
444

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 99/09498

14/25

Export structure node
(iteration or loop structure) to
hardware description

Examine structure node parameters,
e.g., iteration number, loop condition,
period, phase delay, etc.

462

I

Insert structure node parameters in
hardware description
464

I

Insert reference to pre-compiled
function block corresponding to
structure node
466

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

15/25

Convert node hardware
description to a net list
(Step 306)

I

Examine function block reference
and any node parameters in
hardware description
502

I

Select pre-compiled function block
net list referenced in hardware
description
504

I

Configure pre-compiled function
block net list with any node
parameters
506

Insert net list of configured pre-
compiled function block into net list
being assembled
508

FIG. 11

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

16/25

Convert structure node
(iteration or loop structure)
hardware description to
net list

I

Examine function block reference
and any structure node parameters
in hardware description
202A

I

Select pre-compiled function block
net list referenced in hardware
description (corresponding to

structure node)
204A

I

Configure pre-compiled function
block net list with structure node
parameters
506A

I

Insert net list of configured pre-
compiled function block into net list
S08A

FIG. 12

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

PCT/US98/13040

WO 99/09498

17/25

19ppy

¢l oOld

auo(doon

IO d|qBu]j ¢————

Jes|) ¢———

Xapuj

< josuo) doon

<«—aseyd

4———polad

«——U| 9|qeu]y

doo sjiym

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040

18/25
Diagram
Start
Loop
Enabled

Clear Output

Computation
Done

Period Done AND Loop
Enabled

Set Enable
Output

Period Done AND
/Loop Done

Period Done AND
/Loop Enabled

Output

FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 99/09498

oog

Connector Pane

Untitled 1

19/25

PCT/US98/13040

SUBSTITUTE SHEET (RULE 26)

-
om
(=)
[am)
—
N
5
ASIREIREE = = =
a o
= S
e k!
) m

FIG. 15

PCT/US98/13040

WO 99/09498

20/25

Poy
pesy

eled

s
19ppy

9€g

91 OId

(a

aNv

z€s
13ppy

veS

Eled

9¢s
Boy alum

T Eed]|

¥es
Boy ajum

eled

¢es
Bay ajum

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

21/25

Ll Old

ojum e/p

peal pje

od JosO

A" 1Ly

weibeig m3Inge]

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040

22/25

LabView Data Structures

signals

&

QO
«©

cnst0

nodes/terms ©

— While
172}

2]
& Et1sr
S| S rsr

Dig SIS ©-0-0-0-0-0-O-O-O-O-
—1Sr
— rsr

—continue ®
—cnst-1 —9
—cnst)————e
—cnst1000——————e
—cnstT ®
— timer
tperiod —®
phase ——e
— setpoint 9
— gain)
— ald read
L out ®
— d/a write
Lin ®
—scale2n
wnr—X .

nodes/terms

- subtract i
—a

~b ®

—out ®

— multiply

ol 4 o
b . l
—out

FIG. 18

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

23/25

...

ojum e/p

.....................

(& 0} $}08UU0D 200 Ja)sew

Soejojul
ndo

.......................

qeus Belp

QQn_tin.u_e..

dag.done ..

JOAJU0D auop
dooj

period

phase

welbeig ynon

;e e e e e e e e e e e - ———

SUBSTITUTE SHEET (RULE 26)

PCT/US98/13040

WO 99/09498

24/25

0¢ 9Oid

o O

W

|

SjLM e/p

peai pfe

i yo

CEF
juswiuoliAue

weibelq yoo|g
SI0)e2IpU| pue S|ou0D

joued juoi

aued Jojoauuo)
IA" | BjdWEX8ye

SUBSTITUTE SHEET (RULE 26)

WO 99/09498 PCT/US98/13040

25/25
IL.OD]
7
W T D
L Ohi limit
I P 150
- D=
u M |
“““ 50
’2’ Olo limit
Iglz EI
e X |
| Ogain
i
} 3 |
- Y
[H* |
] R a
- @_ X —:-IQ _‘_
?
example1.vi
example1_vi
example1.vi

FIG. 21

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internati« Application No

PCT/US 98/13040

A.
IPC 6

CLASSIFICATION OF SUBJECT MATTER

G06F17/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 6

Minimum documantation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the reievant passages

Relevant to claim No.

XIAO-YU CHEN ET AL: "Software environment
for WASMII: a data driven machine with a
virtual hardware”

FIELD-PROGRAMMABLE LOGIC ARCHITECTURES,
SYNTHESIS AND APPLICATIONS. 4TH
INTERNATIONAL WORKSHOP ON
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS,
FPL '94. PROCEEDINGS, FIELD-PROGRAMMABLE
LOGIC. ARCHITECTURES, SYNTHESIS AND
APPLICATIONS. 4TH INTERNATIONAL , pages
208-219, XP002087124

ISBN 3-540-58419-6, 1994, Berlin, Germany,
Springer-Verlag, Germany

see abstract

see paragraph 3

see figures 3-7

-/

8-14

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

"A" document defining the general state of the art which is not
considerad to be of particular retevance

citation or other special reason (as specified)

"Q" document referring to an orai disclosure, use, exhibition or
other means

"P" document published prior to the intemational filing date but
later than the priority date claimed "&" document member of the same patent family

° Special categories of cited documents :

"T" later document published after the international filing date

invention
"E" earlier document but published on or after the international g
filing date
"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another wy

in the art.

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

Date of the actual completion of the international search

8 December 1998

22/12/1998

Date of mailing of the international search report

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Authorized officer

Fax: (+31-70) 340-3016 Guingale, A

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Internatic Application No

PCT/US 98/13040

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Retevant to claim No.

WO 94 10627 A (GIGA OPERATIONS CORP

; TAYLOR BRAD (US); DOWLING ROBERT (US))
11 May 1994

see page 8, line 5 - line 11

see page 35, line 6 — page 43, line 2;
figures 17-30

EDWARDS M D ET AL: "SOFTWARE ACCELERATION
USING PROGRAMMABLE HARDWARE DEVICES"

IEE PROCEEDINGS: COMPUTERS AND DIGITAL
TECHNIQUES,

vol. 143, no. 1, 1 January 1996, pages
55-63, XP000554820

see page 58, column 1, line 2 - page 59,
column 2, line 8; figures 2-5

LEESER M ET AL: "HIGH LEVEL SYNTHESIS AND
GENERATING FPGAS WITH THE BEDROC SYSTEM"
JOURNAL OF VLSI SIGNAL PROCESSING,

vol. 6, no. 2, 1 August 1993, pages
191-214, XP000380758

see paragraph 2

see page 196, column 1, Tine 25 - line 34
see page 198, column 1, line 14 - line 51
see page 199, column 1, line 21 - column
2, line 6; figures 5,7

WO 94 15311 A (XILINX INC) 7 July 1994

see page 7, line 27 - page 9, line 21;
figure 5

1-4,
16-25,
27-30

1-4,
16-24,
27-30

1-5,16,
19-24,
26,29,30

1-5,
10-16,

21-24,
26,29

Form PCT/ISA/210 (continuation of second sheet) (July 1992}

page 2 of 2

INTERNATIONAL SEARCH REPORT

infc....ation on patent family members

Internatic

PCT/US 98/13040

Appiication No

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9410627 A 11-05-1994 us 5535342 A 09-07-1996
AU 5458194 A 24-05-1994
CA 2148813 A 11-05-1994
EP 0746812 A 11-12-1996
JP 8504285 T 07-05-1996
AU 5593594 A 24-05-1994
CA 2148814 A 11-05-1994
EP 0667010 A 16-08-1995
JP 8504514 T 14-05-1996
WO 9410624 A 11-05-1994
us 5497498 A 05-03-1996
us 5603043 A 11-02-1997

WO 9415311 A 07-07-1994 us 5617327 A 01-04-1997
us 5691912 A 25-11-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

