
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/091185 Al
27 June 2013 (27.06.2013) W P O P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 12/10 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

PCT/CN201 1/084327 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

2 1 December 201 1 (21 .12.201 1) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College (84) Designated States (unless otherwise indicated, for every

Boulevard, Santa Clara, California 95052 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

(72) Inventors; and UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
(75) Inventors/Applicants (for US only): LIN, Yunbiao Ben TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[CN/CN]; Yindu 2nd Village, No. 3118 Yindu Road, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Shanghai 201 108 (CN). DU, Jianghong Julie [CN/CN]; LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
Room 901 No 11 Building, 1199 Lane, Xingmei Road, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Minhang District, Shanghai 201 100 (CN). GW, ML, MR, NE, SN, TD, TG).

(74) Agent: SHANGHAI PATENT & TRADEMARK LAW Published:
OFFICE, LLC; 435 Guiping Road, Shanghai 200233

— with international search report (Art. 21(3))(CN).

(54) Title: GPU ACCELERATED ADDRESS TRANSLATION FOR GRAPHICS VIRTUALIZATION

I

FIG. 1A

(57) Abstract: In accordance with embodiments disclosed herein, there are provided methods, systems, mechanisms, techniques, and
apparatuses for implementing GPU (Graphics Processing Unit) accelerated address translation for graphics virtualization. In one em
bodiment, such a system includes a main memory having a plurality of machine physical addresses; a graphics processor unit having
graphics memory therein; an address translation service integrated with the graphics processor unit; a hypervisor to manage one or
more guest machines; wherein the hypervisor is to configure a lookup table within the graphics memory of the graphics processor
unit; and further wherein the address translation service of the graphics processor unit is to translate a guest physical address for one
of the one or more guest machines to a corresponding machine physical address within the main memory. Such a graphics processor
unit may be implemented separate from a system, for example, embodied within a silicon integrated circuit.

GPU ACCELERATED ADDRESS TRANSLATION FOR GRAPHICS
VIRTUALIZATION

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains

material which is subject to copyright protection. The copyright owner has no

objection to the facsimile reproduction by anyone of the patent document or the

patent disclosure, as it appears in the Patent and Trademark Office patent file or

records, but otherwise reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0002] The subject matter described herein relates generally to the field of

computing, and more particularly, to systems and methods for implementing GPU

(Graphics Processing Unit) accelerated address translation for graphics

virtualization.

BACKGROUND

[0003] The subject matter discussed in the background section should not

be assumed to be prior art merely as a result of its mention in the background

section. Similarly, a problem mentioned in the background section or associated

with the subject matter of the background section should not be assumed to have

been previously recognized in the prior art. The subject matter in the background

section merely represents different approaches, which in and of themselves may

also correspond to embodiments of the claimed subject matter.

[0004] A GPU or graphics processing unit provides special circuitry

designed to rapidly manipulate and alter memory in such a way so as to accelerate

the building of images in a frame buffer intended for output to a display. GPUs are

used in embedded systems, mobile phones, personal computers, workstations, and

game consoles and are very efficient at manipulating computer graphics, and their

highly parallel structure makes them more effective than general-purpose CPUs for

algorithms where processing of large blocks of data is done in parallel.

[0005] Virtualization provides the capability for multiple operating

systems to simultaneously share processor resources in a secure and efficient

manner. When implementing virtualization, it is necessary to translate addresses

between a guest physical address of a virtualized guest machine (e.g., a virtual

machine or a "VM") into the corresponding machine physical address of the

underlying physical hardware upon which the resources for the guest machine are

virtualized.

[0006] For example, when an operating system (OS) is running inside a

virtual machine, the operating system does not usually know the corresponding

machine physical addresses of memory that it accesses. Direct access to the

computer hardware is therefore complicated because if the guest operating system

attempts to instruct the underlying hardware to perform a direct memory access

(DMA) using the virtual machine's guest-physical addresses the instruction would

likely corrupt the memory as the underlying hardware is unaware of the mapping

or required translation between the guest physical address and the machine

physical address for the virtual machine. A hypervisor managing the virtual

machine can prevent such corruption, but the problem of address translation

nevertheless remains.

[0007] An input/output memory management unit (IOMMU) can solve the

problem of translation by re-mapping the addresses accessed by the underlying

hardware according to a translation table that is used to map guest physical

addresses to machine physical addresses. IOMMU technology such as VT-d or

"Virtualization Technology for Directed I/O" can be leveraged to provide the

necessary translation capability on behalf of the virtual machine and the hypervisor

when the requisite circuitry and chipset is available. VT-d is a type of an IOMMU

may be included with some chipsets to accompany a CPU.

[0008] Unfortunately, not all chipsets include the IOMMU or VT-d

technology. For example, some Atom based platforms, tablets, handheld

smartphones, and notebook computers lack the necessary circuitry to provide a

conventional VT-d capability.

[0009] Device drivers within virtual machines do not function properly

without DMA address translation. Software solutions to perform address

translation for DMA operations have been attempted, for example, implemented

within a hypervisor. However, performance of software based address translation

is very poor. For example, 3D performance has been measured to be

approximately 40% of a native VT-d type solution. Worse yet, software based

solutions were measured to contribute about 90% of the total overhead when

software within a hypervisor was utilized to perform the address translation.

[0010] Such an inefficient use of resources is unacceptable with today's

mobile computing devices which strive for energy efficiency over pure

computational processing horsepower. A more efficient solution is therefore

necessary.

[0011] The present state of the art may therefore benefit from systems and

methods for implementing GPU (Graphics Processing Unit) accelerated address

translation for graphics virtualization as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Embodiments are illustrated by way of example, and not by way of

limitation, and will be more fully understood with reference to the following

detailed description when considered in connection with the figures in which:

[0013] Figure 1A illustrates an exemplary architecture of graphics

processor unit (GPU) in accordance with which embodiments may operate;

[0014] Figure IB illustrates an alternative exemplary architecture in

which embodiments may operate;

[0015] Figure 2A depicts interactions between a hypervisor and a GPU

which implements address translation services in accordance with the disclosed

embodiments;

[0016] Figure 2B depicts logical memory address to guest physical

address translation 201 in accordance with the disclosed embodiments;

[0017] Figure 2C depicts Guest physical Frame Number (GFN) to

Machine Frame Number (MFN) mapping in accordance with the disclosed

embodiments;

[0018] Figure 3 illustrates an exemplary system into which a graphics

processor unit which implements address translation services may be integrated,

installed, or configured, in accordance with one embodiment;

[0019] Figure 4 is a flow diagram illustrating a method for implementing

GPU (Graphics Processing Unit) accelerated address translation for graphics

virtualization in accordance with described embodiments;

[0020] Figure 5 illustrates a diagrammatic representation of a machine in

the exemplary form of a computer system, in accordance with one embodiment;

[0021] Figure 6 depicts a block diagram of a system in accordance with

one embodiment;

[0022] Figure 7 is a block diagram of a computer system in accordance

with one embodiment;

[0023] Figure 8 is a block diagram of a computer system in accordance

with one embodiment;

[0024] Figure 9 depicts a tablet computing device and a hand-held

smartphone each having a circuitry integrated therein as described in accordance

with the embodiments;

[0025] Figure 10 is a block diagram of an embodiment of tablet

computing device, a smart phone, or other mobile device in which touchscreen

interface connectors are used;

[0026] Figure 11 is a block diagram of an IP core development system in

accordance with one embodiment;

[0027] Figure 12 illustrates an architecture emulation system in

accordance with one embodiment; and

[0028] Figure 13 illustrates a system to translate instructions in

accordance with one embodiment;

DETAILED DESCRIPTION

[0029] Described herein are systems and methods for implementing GPU

(Graphics Processing Unit) accelerated address translation for graphics

virtualization. In one embodiment, such a system includes a main memory having

a plurality of machine physical addresses; a graphics processor unit having

graphics memory therein; an address translation service integrated with the

graphics processor unit; a hypervisor to manage one or more guest machines;

wherein the hypervisor is to configure a lookup table within the graphics memory

of the graphics processor unit; and further wherein the address translation service

of the graphics processor unit is to translate a guest physical address for one of the

one or more guest machines to a corresponding machine physical address within

the main memory. Such a graphics processor unit may be implemented separate

from a system, for example, embodied within a silicon integrated circuit.

[0030] Practice of the disclosed embodiments provides an efficient and

capable hardware based mechanism to implement necessary address translation

when an IOMMU chipset, such as a VT-d capability is not available. Moreover,

practice of the disclosed embodiments may be utilized even where an IOMMU

chipset, such as a VT-d capability is available, as practice of the disclosed

embodiments may yield improved results.

[0031] For example, in order to vastly reduce the address translation

overhead associated with a software-centric solution, and to potentially reduce the

overhead involved with an IOMMU chipset/VT-d based solution, the disclosed

embodiments teach a GPU based address translation service (ATS) to offload

address translation overhead from another entity directly onto the GPU.

[0032] Improved graphics performance may be realized in virtual

machines through practice of the disclosed embodiments in which GPU based

address translation is utilized for graphics pass-through in a non VT-d capable

platform including a GPU Based Address Translation Services for PCI device

pass-through, such as DMA address translation of GFN to MFN addresses (e.g.,

guest physical addresses to machine physical addresses). Graphics sharing among

and between different virtual machines may additionally be implemented utilizing

the disclosed embodiments.

[0033] Using an extension the GPU is enabled to perform translation of

addresses in a virtualization mode, thus allowing the GPUs hardware to perform

the translation without having to rely on inefficient software implementations and

without the necessity for a dedicated IOMMU in the CPU such as VT-d capability

or other special support from the CPU or chipset. For example, the VMM may

program registers to tell the GPU to use a pass-through mode and the VMM then

writes an address translation table into the GPU via the GPU's shared memory.

[0034] As the use of client virtualization becomes more commonplace,

performance of such virtualized machines will remain a key challenge. Although

VT-d has aided with performance on systems embodying the necessary CPU and

chipset circuitry, the newer mobile computing devices such as tablets, net-books,

and handheld smartphones very often do not incorporate VT-d capabilities, yet

nevertheless make use of virtual machines. The VT-d capabilities are often

dropped from designs to meet the demanding constraints of a small form factor

mobile device and additionally due to the emphasis placed upon energy efficiency

which translates directly to extended battery life.

[0035] Practice of the disclosed embodiments may therefore enable

efficient small form-factor devices such as tablets and smartphones to nevertheless

support GPU based address translation services so as to provide a high-

performance solution in the absence of VT-d capabilities and without having to

resort to inefficient software solutions.

[0036] Further still, practice of the disclosed embodiments requires no

special support or modification to the graphics driver stack and may achieve

similar or better performance when compared with VT-d solutions.

[0037] The following definitions are provided for acronyms used

throughout the disclosure that follows:

[0038] GFN: Guest physical Frame Number. For example, addresses the

Guest or virtual machine thinks are hardware addresses being used in guest page

tables.

[0039] MFN: Machine Frame Number. For example, the Actual hardware

addresses in the underlying hardware.

[0040] VM: Virtual Machine or Guest Machine.

[0041] VMM: A Virtual Machine Monitor or Hypervisor for VMs or

Guest Machines.

[0042] GTT: Graphics Translation Table for virtual memory.

[0043] GGTT: Global Graphics Translation Table. For example, a single

common translation table used for all processes.

[0044] PPGTT: Per-Process Graphics Translation Table.

[0045] DMA: Direct Memory Access. For example, a memory address

which is not facilitated by a host operating system.

[0046] GPU: Graphics Processing Unit.

[0047] IOMMU: Input/Output Memory Management Unit.

[0048] VT-d: "Virtualization Technology for Directed I/O" which is an

implementation of an IOMMU in some CPUs.

[0049] TLB: Translation Lookaside Buffer.

[0050] ATS: Address Translation Service.

[0051] In the following description, numerous specific details are set forth

such as examples of specific systems, languages, components, etc., in order to

provide a thorough understanding of the various embodiments. It will be apparent,

however, to one skilled in the art that these specific details need not be employed

to practice the disclosed embodiments. In other instances, well known materials or

methods have not been described in detail in order to avoid unnecessarily

obscuring the disclosed embodiments.

[0052] In addition to various hardware components depicted in the figures

and described herein, embodiments further include various operations which are

described below. The operations described in accordance with such embodiments

may be performed by hardware components or may be embodied in machine-

executable instructions, which may be used to cause a general-purpose or special-

purpose processor programmed with the instructions to perform the operations.

Alternatively, the operations may be performed by a combination of hardware and

software, including software instructions that perform the operations described

herein via memory and one or more processors of a computing platform.

[0053] Embodiments also relate to a system or apparatus for performing

the operations herein. The disclosed system or apparatus may be specially

constructed for the required purposes, or it may comprise a general purpose

computer selectively activated or reconfigured by a computer program stored in

the computer. Such a computer program may be stored in a non-transitory

computer readable storage medium, such as, but not limited to, any type of disk

including floppy disks, optical disks, flash, NA D, solid state drives (SSDs), CD-

ROMs, and magnetic-optical disks, read-only memories (ROMs), random access

memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type

of media suitable for storing non-transitory electronic instructions, each coupled to

a computer system bus. In one embodiment, a non-transitory computer readable

storage medium having instructions stored thereon, causes one or more processors

within a system to perform the methods and operations which are described herein.

In another embodiment, the instructions to perform such methods and operations

are stored upon a non-transitory computer readable medium for later execution.

[0054] The algorithms and displays presented herein are not inherently

related to any particular computer or other apparatus nor are embodiments

described with reference to any particular programming language. It will be

appreciated that a variety of programming languages may be used to implement

the teachings of the embodiments as described herein.

[0055] Figure 1A illustrates an exemplary architecture of graphics

processor unit (GPU) 100 in accordance with which embodiments may operate.

[0056] In one embodiment, the graphics processor unit 100 is embodied

within a silicon integrated circuit. In one embodiment, the graphics processor unit

100 includes a shared graphics memory interface 155 to receive a prepared lookup

table 156 from a hypervisor and a graphics memory 116 to store the prepared

lookup table 156 therein as a stored lookup table 117. In such an embodiment, the

prepared lookup table 156 provides a mapping of Guest physical Frame Numbers

(GFNs) 158 to Machine Frame Numbers (MFNs) 159.

[0057] In one embodiment, the graphics processor unit 100 further

includes an address translation service 115 unit to receive a Guest physical Frame

Number for translation. In one embodiment, the graphics processor unit 100

includes and utilizes a Translation Lookaside Buffer (TLB) 110B to retrieve a

Machine Frame Number corresponding to the received Guest physical Frame

Number from the prepared lookup table 156 to fulfill the translation. The address

translation service 115 may retrieve the GFN to MFN mappings through the

Translation Lookaside Buffer HOB integrated within the graphics processor unit

100. In one embodiment, the TLB provides an indexable cache on behalf of the

address translation service 115 of the graphics processor unit 100.

[0058] In one embodiment, the graphics processor unit 100 performs

address translation services 115 on behalf of one or more guest machines operating

within a tablet computing device or a smartphone.

[0059] In one embodiment, the graphics processor unit 100 further

includes one or more graphics virtualization registers 114. For example, the one or

more graphics virtualization registers 114 may inform the graphics processor unit

100 that a guest machine has been assigned to the graphics processor unit 100 by a

hypervisor. The one or more graphics virtualization registers 114 may further

identify where the prepared lookup table 156 is stored in the graphics memory 116

as a stored lookup table 117. For example, the one or more graphics virtualization

registers 114 may identify where the lookup table 117 is located for an assigned

guest machine.

[0060] In one embodiment, the graphics processor unit 100 further

includes a graphics virtualization determination 113 component integrated therein.

For example, the graphics virtualization determination 113 component may

determine whether or not the graphics processor unit 100 is operating within a

virtualization environment on behalf of one or more guest machines. In one

embodiment, the graphics processor unit 100 engages the address translation

service 115 when operating within the virtualization environment as determined by

the graphics virtualization determination 113 component, but otherwise, address

translation service 115 is bypassed.

[0061] Figure IB illustrates an alternative exemplary architecture 101 in

which embodiments may operate. The newly introduced GPU based address

translation service (ATS) extends the existing logical-to-physical mapping of the

GPU to support translating a guest physical address to a corresponding machine

physical address.

[0062] As depicted, an extension to the graphics device 105 is provided

which feeds into the graphics memory (GM) offset removal 106 component. As

shown, the graphics memory addresses are zero ("0") based, which is they begin at

zero and proceed to a maximum allocated region or space. Graphics memory-

capable internal functions and cache 107 is depicted as being communicably

interfaced between the GM range offset removal 106 component and the tiled

address determination 112 component. Fence registers surface parameters 108

feeds into the tiled address determination 112 component which in turn is

communicably interfaced to the logical memory mapping component 111 .

Intermediately interfaced is the address tiling logic 109.

[0063] Graphics virtualization registers 114 feeds into the graphics

virtualization determination 113 component which in turn is communicably

interfaced with the address translation service (ATS) noted above. Graphics

virtualization registers 114 are used to let the GPU know whether the graphics

adapter has been assigned to a VM and to inform it as to where the lookup table is

located. The graphics virtualization determination 113 component is used to

determine whether the graphics adapter is working in virtualization environment.

If the graphics adapter works in virtualization environment it will call address

translation service 115 to convert the guest physical address to a machine physical

address. The address translation service 115 retrieves the machine physical address

from the lookup table according to the guest physical address.

[0064] Translation lookaside buffers (TLBs) HOB are communicably

interfaced with both the address translation service 115 and also the lookup table

117 within the graphics memory 116 of the depicted architecture 101. In

accordance with one embodiment, the lookup table 117 is configured by a

hypervisor communicably interfaced with the architecture 101 of the GPU and can

cover zero to four gigabytes of guest memory space. The lookup table 117 maps

the GFN (Guest Physical frame number) to MFN (Machine Frame Number).

[0065] Translation lookaside buffers (TLBs) HOB perform a graphics

memory access on behalf of the address translation service 115. A translation

lookaside buffer or TLB as depicted at 110A and 110B is a processor cache used

to improve virtual address translation speed. TLBs 110A and HOB may be

implemented as content-addressable memory (CAM) in which the CAM search

key is the virtual address and the search result is a physical address, thus yielding

the desired GFN to MFN addresses translation (e.g., a guest physical address to a

machine physical address) in accordance with one embodiment.

[0066] Where the requested address is present in the TLB 11OA or HOB,

the CAM search yields a match quickly and the retrieved physical address can be

used to access memory, for example, the returned machine physical address may

then be utilized to access a physical address of the underlying hardware, despite

the original instruction providing a virtualized address associated with a guest

physical address. Alternatively, the address translation service 115 may conduct a

page walk where necessary or compute the address when feasible.

[0067] Once translated by the address translation service 115, a machine

physical address may be utilized to access main memory 118. Main memory 118 is

in communication with global translation table (GTT) 119 which is in turn

communicably interfaced with TLBs at 110A, for example, responsive to a PTE

fetch operation (e.g., a Page Table Entries fetch operation).

[0068] Figure 2A depicts interactions 200 between a hypervisor 205 and a

GPU 220 which implements address translation services in accordance with the

disclosed embodiments.

[0069] Graphics adapter pass-through is depicted in which a GPU is used

to perform address translation for the graphics pass-through. Practice of such an

embodiment may boost the overall graphics performance for virtual machines in a

non VT-d supported platform. In particular, a lookup table to perform address

translation within the GPU is used resulting in faster performance over VT-d based

solutions and in vastly superior performance over software based solutions.

[0070] The depicted interactions 200 show how to set-up lookup table in

graphics adapter in accordance with one embodiment. For example, when a user

wants to assign physical graphics adapter to a virtual machine, the hypervisor 205

will issue one set up lookup table session to transfer an entire 4k aligned Guest-to-

physical address mapping to the GPU 220.

[0071] In an IA32 architecture based machine, 1M*4 memory space (e.g.,

4 megabytes) is large enough to cover an entire 4G (4 gigabytes) of guest memory

space. Using the lookup table 117, the GPU 220 may calculate the final machine

address using the following formula:

MFN = *((unsigned int *)(pPhysicalGraphicsMemory + (GFN«2)))

[0072] Beginning from the hypervisor 205 on the left hand side, enable

virtualization at block 206 is initiated which communicates a configuration 225 to

the GPU 220. The GPU 220 on the right hand side configures virtualization

registers at block 207 (e.g., passing the configuration 225 to set "vReg.enable=l")

and a success 226 message is responsively communicated from GPU 220 to

hypervisor 205.

[0073] The hypervisor 205 then prepares the lookup table at block 208.

The hypervisor 205 at block 210 transfers the lookup table 117 to the GPU 220.

The GPU 220 at block 2 11 issues one DMA request to fetch the lookup table 117

and stores the lookup table 117 in graphics memory. Upon successful completion,

the GPU 220 communicates a response 228 back to hypervisor 205 indicating

completion.

[0074] Many hypervisors support advanced memory management

mechanisms. Implementation of the disclosed embodiments provides support for a

lookup table update transaction. Graphics sharing among VMs is also supported by

distinguishing among the virtual machines within the lookup table 117.

[0075] At block 212 the hypervisor 205 initiates a lookup table update (as

required) and communicates the update 229 to the GPU 220. At block 213, the

GPU 220 performs the lookup table update (as required) responsive to receiving

the update 229. The GPU 220 then communicates a response 230 back to the

hypervisor 205 indicating completion of the lookup table update.

[0076] Figure 2B depicts logical memory address to guest physical

address translation 201 in accordance with the disclosed embodiments. As noted

above, overhead in a software based address translation service has been found to

be significant (e.g., approximately 90% of total overhead) and performance suffers

dramatically (e.g., a 3D graphics rendering was found to be approximately 40%

the performance of a native hardware solution). Thus, practice of the disclosed

embodiments may offload overhead from a software based solution onto a GPU

which implements address translation services. In accordance with one

embodiment, address translation may utilize two distinct mechanisms.

[0077] In one embodiment, a first mechanism is translation of logical

memory addresses to guest physical addresses. Legacy mechanisms may be

utilized to achieve this translation. For example, if the GPU is not in a

virtualization environment, it may skip the GPU's address translation service and

access the main memory using MFN=GFN. However, if the GPU is operating in a

virtualization environment, then the GPU's address translation service is called to

perform an address translation according to the formula:

MFN = *((unsigned int *)(pPhysicalGraphicsMemory + (GFN«2)))

[0078] As depicted, an offset into a 4KB page 241 is provided at bits 0 to

11 and a logical page number 240 is provided at bits 12 to 31. The logical page

number 240 is communicated to TLB 243 which is interfaced with GTT/PPGTT

242 (e.g., global translation table and per-process global translation table). From

TLB 243 the 36-bit addressing extension 244 is formed at bits 32 to 35 and the

physical page number 245 is formed at bits 12 to 3 1 replacing the logical page

number 240. The offset into a 4KB page 246 is carried down replacing offset into a

4KB page 241 at bits 0 to 11, and thus completing the logical memory address to

guest physical address translation 201.

[0079] Extra cache operations may additionally be utilized to accelerate

the address translation operation.

[0080] Notably, the address translation service of the GPU need not be

engaged as the lack of a virtualization environment negates the need for

performing GFN to MFN mapping.

[0081] Figure 2C depicts Guest physical Frame Number (GFN) to

Machine Frame Number (MFN) mapping 202 in accordance with the disclosed

embodiments. For example, where the GPU is operating in a virtualization

environment.

[0082] As depicted, graphics memory 116 of a GPU holds the lookup table

117 in which the guest memory ranges from zero (0) to a maximum size of an

allocated region. A guest physical frame number 266 is passed in resulting in GFN

260 at bits 12 to 31. An offset into a 4KB page 261 is again depicted at bits 0 to 11 .

GFN 260 is passed to TLB 263 which is communicably interfaced with the lookup

table 117 in the graphics memory 116. MFN 264 is then responsively provided as

set forth at bits 12 to 31 and an offset into a 4KB page 265 is carried down

replacing offset into a 4KB page 264 at bits 0 to 11, and thus completing the GFN

to MFN mapping 202.

[0083] Figure 3 illustrates an exemplary system 300 into which a graphics

processor unit 100 which implements address translation services 115 may be

integrated, installed, or configured, in accordance with one embodiment. System

300 includes a main memory 118 and a central processor unit 396 without VT-d

integrated therein. System 300 includes communication bus(es) 315 to transfer

data within system 300 and a hypervisor 390 to manage one or more guest

machines (VMs) 338.

[0084] Depicted separately is graphics processor unit (GPU) 100 which

may be manufactured and sold separate from the system 300 but later configured

and integrated with such a system 300. In accordance with one embodiment, such

a system includes: main memory 118 having a plurality of machine physical

addresses; the graphics processor unit 100 having graphics memory 116 therein; an

address translation service 115 integrated with the graphics processor unit 100; and

the hypervisor 390 to manage one or more guest machines 338. In such an

embodiment, the hypervisor 390 configures a lookup table 117 within the graphics

memory 116 of the graphics processor unit 100. In such an embodiment, the

address translation service 115 of the graphics processor unit 100 translates a guest

physical address for one of the one or more guest machines 338 to a corresponding

machine physical address within the main memory 118 of the system.

[0085] In one embodiment, such a system 300 further includes one or

more graphics virtualization registers 114 within the GPU 100, in which one or

more graphics virtualization registers 114 inform the graphics processor unit 100

that one of the guest machines 338 has been assigned to the graphics processor unit

100 by the hypervisor 390. Such a system 300 may further include a graphics

virtualization determination 113 component integrated within the graphics

processor unit 100 to determine whether or not the graphics processor unit 100 is

operating within a virtualization environment on behalf of one of the guest

machines 338. When operating within the virtualization environment the address

translation service 115 is engaged as set forth above in Figure 2C depicting Guest

physical Frame Number (GFN) to Machine Frame Number (MFN) mapping 202.

However, when not operating within the virtualization environment, the system

300 implements logical memory address to guest physical address translation

without engaging the address translation service 115 of the graphics processor unit

100, as set forth above in Figure 2B depicting logical memory address to guest

physical address translation 201.

[0086] In one embodiment, the hypervisor 390 engages the address

translation service 115 of the graphics processor unit 100 by configuring one or

more graphics virtualization registers 114 to inform the graphics processor unit

100 that one of the guest machines 338 have been assigned to the graphics

processor unit 100 by the hypervisor 390. The hypervisor 390 may include or be

implemented via a virtual machine manager and the one or more guest machines

338 may include or be implemented via one or more virtual machines.

[0087] In one embodiment, the hypervisor 390 passes a Guest physical

Frame Number (GFN) to the graphics processor unit 100 for translation by the

address translation service 115 to a Machine Frame Number (MFN). In such an

embodiment, the GFN represents the guest physical address for one of the one or

more guest machines 338 and the MFN represents the machine physical addresses

within the main memory 118 of the system, corresponding to the guest physical

address. In one embodiment, the address translation service 115 retrieves Guest

physical Frame Number (GFN) to Machine Frame Number (MFN) mappings from

the lookup table 117 in the graphics memory 116.

[0088] In one embodiment, the system 300 includes a separate and distinct

central processor unit 396 communicably interfaced with the graphics processor

unit 100 via a system bus 315. In such an embodiment, the central processing unit

lacks dedicated hardware circuitry to perform address translation of guest physical

addresses to machine physical addresses and is thus forced to either rely upon the

GPU's 100 address translation services 115 or perform inefficient software

translation in the absence of a GPU 100 as is described herein.

[0089] In one embodiment, the system 300 utilizes the graphics processor

unit 100 as a microprocessor within a tablet computing device or a smart phone or

one of a plurality of microprocessors integrated within the tablet computing device

or the smartphone. For example, such a tablet computing device or smartphone

may include the central processor unit 396 which lacks an IOMMU or VT-d

capability.

[0090] In one embodiment, the graphics memory 116 includes shared

graphics memory 116; and the hypervisor 390 configures the lookup table 117

within the graphics memory by writing lookup table 117 directly into the shared

graphics memory 116 of the graphics processor unit 100, for example, via a shared

graphics memory interface 155. In an alternative embodiment, the hypervisor 390

configures the lookup table 117 within the graphics memory 116 by instructing the

graphics processor unit 100 to retrieve and store the lookup table 117 and the

graphics processor unit 100 responsively issues a Direct Memory Access (DMA)

request to fetch the lookup table 117 and then proceeds to store the lookup table

117 in the graphics memory 116.

[0091] In one embodiment, the hypervisor 390 issues a lookup table

update to the graphics processor unit 100 and the graphics processor unit 100

responsively updates the lookup table 117 in the graphics memory 116.

[0092] Figure 4 is a flow diagram 400 illustrating a method for

implementing GPU (Graphics Processing Unit) accelerated address translation for

graphics virtualization in accordance with described embodiments. Method 400

may be performed by processing logic that may include hardware (e.g., circuitry,

dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions

run on a processing device to perform the methodologies and operations described

herein. Some of the blocks and/or operations of method 400 are optional in

accordance with certain embodiments. The numbering of the blocks presented is

for the sake of clarity and is not intended to prescribe an order of operations in

which the various blocks must occur.

[0093] Method 400 begins with processing logic managing one or more

guest machines on a system (block 405).

[0094] At block 410, processing logic configures a lookup table with a

mapping of guest physical addresses for the one or more guest machines to

corresponding machine physical addresses.

[0095] At block 415, processing logic enables virtualization in the GPU by

communicating a configuration request from the hypervisor to the GPU.

[0096] At block 420, processing logic internal to the hypervisor prepares

the lookup table.

[0097] At block 425, processing logic transfers the prepared lookup table

to the GPU by writing the lookup table into shared graphics memory of the GPU

or instructing the GPU to retrieve and store the prepared lookup table via a DMA

request.

[0098] At block 430, processing logic receives an access request to a main

memory of the system from one of the guest machines.

[0099] At block 435, processing logic engages an address translation

service internal to the GPU by passing the guest physical address to the GPU.

[00100] At block 440, processing logic passes a GFN from the hypervisor

to the GPU requesting translation to an MFN.

[00101] At block 445, processing logic retrieves a GFN to MFN mapping

through a Translation Lookaside Buffer of the GPU.

[00102] At block 450, processing logic translates the guest physical

address to a corresponding machine physical address (e.g., the GPU performs the

requested GFN to MFN translation).

[00103] At block 455, processing logic issues a lookup table update to the

GPU causing the GPU to update the lookup table.

[00104] In accordance with one embodiment, a non-transitory computer

readable storage medium stores instructions that, when executed by processors

(e.g., such as a CPU and also a GPU) in a computing system, the instructions cause

the computing system to perform one or more of the operations set forth in the

flow diagram 400. For example, instructions may cause the processors of the

system to perform operations including: managing, via a hypervisor, one or more

guest machines on a system; configuring a lookup table with a mapping of guest

physical addresses for the one or more guest machines to corresponding machine

physical addresses; transferring the lookup table to a graphics memory of a

graphics processor unit; receiving an access request to a main memory of the

system from one of the guest machines. In one embodiment, the access request

specifies a guest physical address; engaging an address translation service internal

to the graphics processor unit by passing the guest physical address to the graphics

processor unit and translating, via the address translation service of the graphics

processor unit, the guest physical address to a corresponding machine physical

address.

[00105] Figure 5 illustrates a diagrammatic representation of a machine

500 in the exemplary form of a computer system, in accordance with one

embodiment, within which a set of instructions, for causing the machine/computer

system 500 to perform any one or more of the methodologies discussed herein,

may be executed. In alternative embodiments, the machine may be connected (e.g.,

networked) to other machines in a Local Area Network (LAN), an intranet, an

extranet, or the Internet. The machine may operate in the capacity of a server or a

client machine in a client-server network environment, as a peer machine in a peer-

to-peer (or distributed) network environment, as a server or series of servers within

an on-demand service environment. Certain embodiments of the machine may be

in the form of a personal computer (PC), a tablet PC, a smart phone, a set-top box

(STB), a Personal Digital Assistant (PDA), a cellular telephone, a web appliance, a

server, a network router, switch or bridge, computing system, or any machine

capable of executing a set of instructions (sequential or otherwise) that specify

actions to be taken by that machine. Further, while only a single machine is

illustrated, the term "machine" shall also be taken to include any collection of

machines (e.g., computers) that individually or jointly execute a set (or multiple

sets) of instructions to perform any one or more of the methodologies discussed

herein.

[00106] The exemplary computer system 500 includes a processor 502

without VT-d, a main memory 504 (e.g., read-only memory (ROM), flash memory,

dynamic random access memory (DRAM) such as synchronous DRAM (SDRAM)

or Rambus DRAM (RDRAM), etc., static memory such as flash memory, static

random access memory (SRAM), volatile but high-data rate RAM, etc.), and a

secondary memory 518 (e.g., a persistent storage device including hard disk

drives), which communicate with each other via a bus 530. Main memory 504

includes a hypervisor 524 to manage virtual machines which utilize GPU 501 and

processor 502. Processor 502 operates in conjunction with the processing logic 526

to perform the methodologies discussed herein. In one embodiment GPU 501

utilizes a graphics memory 525 and address translation 527, each internal GPU

501.

[00107] The computer system 500 may further include a network interface

card 508. The computer system 500 also may include a user interface 510 (such as

a video display unit, a liquid crystal display (LCD), or a cathode ray tube (CRT)),

an alphanumeric input device 512 (e.g., a keyboard), a cursor control device 514

(e.g., a mouse), and a signal generation device 516 (e.g., an integrated speaker).

The computer system 500 may further include peripheral 536 devices (e.g.,

wireless or wired communication devices, memory devices, storage devices, audio

processing devices, video processing devices, etc.).

[00108] The secondary memory 518 may include a non-transitory

machine-readable or computer readable storage medium 531 on which is stored

one or more sets of instructions (e.g., software 522) embodying any one or more of

the methodologies or functions described herein. The software 522 may also reside,

completely or at least partially, within the main memory 504 and/or within the

processor 502 without VT-d and/or GPU 501 during execution thereof by the

computer system 500. The software 522 may further be transmitted or received

over a network 520 via the network interface card 508.

[00109] Figure 6 depicts a block diagram of a system 600 in accordance

with one embodiment. The system 600 may include one or more processors 610,

615, which are coupled to graphics memory controller hub (GMCH) 620. The

optional nature of additional processors 615 is denoted in Figure 6 with broken

lines.

[00110] Each processor 610, 615 may be some version of the processor

502. However, it should be noted that it is unlikely that integrated graphics logic

and integrated memory control units would exist in the processors 610, 615. Figure

6 illustrates that the GMCH 620 may be coupled to a memory 640 that may be, for

example, a dynamic random access memory (DRAM). The DRAM may, for at

least one embodiment, be associated with a non-volatile cache.

[00111] The GMCH 620 may be a chipset, or a portion of a chipset. The

GMCH 620 may communicate with the processor(s) 610, 615 and control

interaction between the processor(s) 610, 615 and memory 640. The GMCH 620

may also act as an accelerated bus interface between the processor(s) 610, 615 and

other elements of the system 600. For at least one embodiment, the GMCH 620

communicates with the processor(s) 610, 615 via a multi-drop bus, such as a

frontside bus (FSB) 695.

[00112] Furthermore, GMCH 620 is coupled to a display 645 (such as a

flat panel or touchscreen display). GMCH 620 may include an integrated graphics

accelerator. GMCH 620 is further coupled to an input/output (I/O) controller hub

(ICH) 650, which may be used to couple various peripheral devices to system 600.

Shown for example in the embodiment of Figure 6 is an external graphics device

660, which may be a discrete graphics device coupled to ICH 650, along with

another peripheral device 670.

[00113] Alternatively, additional or different processors may also be

present in the system 600. For example, additional processor(s) 615 may include

additional processors(s) that are the same as processor 610, additional processor(s)

that are heterogeneous or asymmetric to processor 610, accelerators (such as, e.g.,

graphics accelerators or digital signal processing (DSP) units), field programmable

gate arrays, or any other processor. There can be a variety of differences between

the physical resources of processors 610, 615 in terms of a spectrum of metrics of

merit including architectural, micro-architectural, thermal, power consumption

characteristics, and the like. These differences may effectively manifest

themselves as asymmetry and heterogeneity amongst the processors 610, 615. For

at least one embodiment, the various processors 610, 615 may reside in the same

die package.

[00114] Figure 7 is a block diagram of a computer system 700 in

accordance with one embodiment. In particular, a block diagram of a second

system 700 is depicted in accordance with an embodiment in which multiprocessor

system 700 is a point-to-point interconnect system, and includes a first processor

770 and a second processor 780 coupled via a point-to-point interconnect 750.

Each of processors 770 and 780 may be some version of GPU 501 and/or

processor 502 or as one or more of the processors 610, 615.

[00115] While shown with only two processors 770, 780, it is to be

understood that the scope of the present disclosure is not so limited. In other

embodiments, one or more additional processors may be present in a given

processor.

[00116] Processors 770 and 780 are shown including integrated memory

controller units 772 and 782, respectively. Processor 770 also includes as part of

its bus controller units point-to-point (P-P) interfaces 776 and 778; similarly,

second processor 780 includes P-P interfaces 786 and 788. Processors 770, 780

may exchange information via a point-to-point (P-P) interface 750 using P-P

interface circuits 778, 788. As shown in Figure 7, EVICs 772 and 782 couple the

processors to respective memories, namely a memory 732 and a memory 734,

which may be portions of main memory locally attached to the respective

processors.

[00117] Processors 770, 780 may each exchange information with a

chipset 790 via individual P-P interfaces 752, 754 using point to point interface

circuits 776, 794, 786, 798. Chipset 790 may also exchange information with a

high-performance graphics circuit 738 via a high-performance graphics interface

739.

[00118] A shared cache (not shown) may be included in either processor

or outside of both processors, yet connected with the processors via P-P

interconnect, such that either or both processors' local cache information may be

stored in the shared cache if a processor is placed into a low power mode.

[00119] Chipset 790 may be coupled to a first bus 716 via an interface 796.

In one embodiment, first bus 716 may be a Peripheral Component Interconnect

(PCI) bus, or a bus such as a PCI Express bus or another third generation I/O

interconnect bus.

[00120] As shown in Figure 7, various I/O devices 714 may be coupled to

first bus 716, along with a bus bridge 718 which couples first bus 716 to a second

bus 720. In one embodiment, second bus 720 may be a low pin count (LPC) bus.

Various devices may be coupled to second bus 720 including, for example, a

keyboard and/or mouse 722, communication devices 727 and a storage unit 728

such as a disk drive or other mass storage device which may include

instructions/code and data 730, in one embodiment. Further, an audio I/O 724 may

be coupled to second bus 720. Note that other architectures are possible. For

example, instead of the point-to-point architecture of Figure 7, a system may

implement a multi-drop bus or other such architecture.

[00121] Figure 8 is a block diagram of a computer system in accordance

with one embodiment. In particular, a block diagram of a system 800 is depicted in

accordance with an embodiment in which processors 870, 880 may include

integrated memory and I/O control logic ("CL") 872 and 882, respectively and

intercommunicate with each other via point-to-point interconnect 850 between

point-to-point (P-P) interfaces 878 and 888 respectively. Processors 870, 880 each

communicate with chipset 890 via point-to-point interconnects 852 and 854

through the respective P-P interfaces 876 to 894 and 886 to 898 as shown. For at

least one embodiment, the CL 872, 882 may include integrated memory controller

units. CLs 872, 882 may include I/O control logic. As depicted, memories 832,

834 coupled to CLs 872, 882 and I/O devices 814 are also coupled to the control

logic 872, 882. Legacy I/O devices 815 are coupled to the chipset 890 via interface

896.

[00122] Figure 9 depicts a tablet computing device 901 and a hand-held

smartphone 902 each having a circuitry integrated therein as described in

accordance with the embodiments. As depicted, each of the tablet computing

device 901 and the hand-held smartphone 902 include a touch interface 903 and

one or more integrated processors 904 in accordance with disclosed embodiments.

[00123] In one embodiment, the GPU 100 is a Graphics Processor Unit

type microprocessor within a tablet computing device or a smart phone or one of a

plurality of integrated processors 904 within the tablet computing device 901 or a

hand-held smart phone 902. For example, the GPU 100 based integrated processor

904 of a tablet computing device 901 or a hand-held smartphone 902 may

implement a GPU based address translation service utilizing a lookup table within

graphics memory of the GPU as described herein.

[00124] In one embodiment, tablet computing device 901 or the hand-held

smartphone 902 includes a separate and distinct central processing unit

communicatively interfaced with the GPU 100 within tablet computing device 901

or a hand-held smartphone 902 in which the central processing unit lacks dedicated

hardware circuitry to perform address translation of guest physical addresses to

machine physical addresses and must therefore rely upon GPU 100 which

implements address translation services.

[00125] Figure 10 is a block diagram 1000 of an embodiment of tablet

computing device, a smart phone, or other mobile device in which touchscreen

interface connectors are used. Processor 1010 performs the primary processing

operations. Audio subsystem 1020 represents hardware (e.g., audio hardware and

audio circuits) and software (e.g., drivers, codecs) components associated with

providing audio functions to the computing device. In one embodiment, a user

interacts with the tablet computing device or smart phone by providing audio

commands that are received and processed by processor 1010.

[00126] Display subsystem 1030 represents hardware (e.g., display

devices) and software (e.g., drivers) components that provide a visual and/or tactile

display for a user to interact with the tablet computing device or smart phone.

Display subsystem 1030 includes display interface 1032, which includes the

particular screen or hardware device used to provide a display to a user. In one

embodiment, display subsystem 1030 includes a touchscreen device that provides

both output and input to a user.

[00127] I/O controller 1040 represents hardware devices and software

components related to interaction with a user. I/O controller 1040 can operate to

manage hardware that is part of audio subsystem 1020 and/or display subsystem

1030. Additionally, I/O controller 1040 illustrates a connection point for additional

devices that connect to the tablet computing device or smart phone through which

a user might interact. In one embodiment, I/O controller 1040 manages devices

such as accelerometers, cameras, light sensors or other environmental sensors, or

other hardware that can be included in the tablet computing device or smart phone.

The input can be part of direct user interaction, as well as providing environmental

input to the tablet computing device or smart phone.

[00128] In one embodiment, the tablet computing device or smart phone

includes power management 1050 that manages battery power usage, charging of

the battery, and features related to power saving operation. Memory subsystem

1060 includes memory devices for storing information in the tablet computing

device or smart phone. Connectivity 1070 includes hardware devices (e.g.,

wireless and/or wired connectors and communication hardware) and software

components (e.g., drivers, protocol stacks) to the tablet computing device or smart

phone to communicate with external devices. Cellular connectivity 1072 may

include, for example, wireless carriers such as GSM (global system for mobile

communications), CDMA (code division multiple access), TDM (time division

multiplexing), or other cellular service standards). Wireless connectivity 1074 may

include, for example, activity that is not cellular, such as personal area networks

(e.g., Bluetooth), local area networks (e.g., WiFi), and/or wide area networks (e.g.,

WiMax), or other wireless communication.

[00129] Peripheral connections 1080 include hardware interfaces and

connectors, as well as software components (e.g., drivers, protocol stacks) to make

peripheral connections as a peripheral device ("to" 1082) to other computing

devices, as well as have peripheral devices ("from" 1084) connected to the tablet

computing device or smart phone, including, for example, a "docking" connector

to connect with other computing devices. Peripheral connections 1080 include

common or standards-based connectors, such as a Universal Serial Bus (USB)

connector, DisplayPort including MiniDisplayPort (MDP), High Definition

Multimedia Interface (HDMI), Firewire, etc.

[00130] Figure 11 is a block diagram of an IP core development system in

accordance with one embodiment. In particular, a block diagram illustrates the

development of IP cores according to one embodiment in which storage medium

1130 includes simulation software 1120 and/or hardware or software model 1110.

In one embodiment, the data representing the IP core design can be provided to the

storage medium 1130 via memory 1140 (e.g., hard disk), wired connection (e.g.,

internet) 1150 or wireless connection 1160. The IP core information generated by

the simulation tool and model can then be transmitted to a fabrication facility 1165

where it can be fabricated by a 3rd party to perform at least one instruction in

accordance with at least one embodiment.

[00131] In some embodiments, one or more instructions may correspond

to a first type or architecture (e.g., x86) and be translated or emulated on a

processor of a different type or architecture (e.g., ARM). An instruction, according

to one embodiment, may therefore be performed on any processor or processor

type, including ARM, x86, MIPS, a GPU, or other processor type or architecture.

[00132] Figure 12 illustrates an architecture emulation system in

accordance with one embodiment. In particular, the architecture emulation system

illustrates how an instruction of a first type is emulated by a processor of a

different type, according to one embodiment in which program 1205 contains

some instructions that may perform the same or substantially the same function as

an instruction according to one embodiment. However the instructions of program

1205 may be of a type and/or format that is different or incompatible with

processor 1215, meaning the instructions of the type in program 1205 may not be

able to execute natively by the processor 1215. However, with the help of

emulation logic, 1210, the instructions of program 1205 are translated into

instructions that are natively capable of being executed by the processor 1215. In

one embodiment, the emulation logic is embodied in hardware. In another

embodiment, the emulation logic is embodied in a tangible, machine-readable

medium containing software to translate instructions of the type in the program

1205 into the type natively executable by the processor 1215. In other

embodiments, emulation logic is a combination of fixed-function or programmable

hardware and a program stored on a tangible, machine-readable medium. In one

embodiment, the processor contains the emulation logic, whereas in other

embodiments, the emulation logic exists outside of the processor and is provided

by a third party. In one embodiment, the processor is capable of loading the

emulation logic embodied in a tangible, machine-readable medium containing

software by executing microcode or firmware contained in or associated with the

processor.

[00133] Figure 13 illustrates a system to translate instructions in

accordance with one embodiment. In particular, a block diagram contrasting the

use of a software instruction converter to convert binary instructions in a source

instruction set to binary instructions in a target instruction set according to

embodiments in which the instruction converter is a software instruction converter,

although alternatively the instruction converter may be implemented in software,

firmware, hardware, or various combinations thereof. A program in a high level

language 1302 may be compiled using an x86 compiler 1304 to generate x86

binary code 1306 that may be natively executed by a processor with at least one

x86 instruction set core 1316. The processor with at least one x86 instruction set

core 1316 represents any processor that can perform substantially the same

functions as a Intel processor with at least one x86 instruction set core by

compatibly executing or otherwise processing (1) a substantial portion of the

instruction set of the Intel x86 instruction set core or (2) object code versions of

applications or other software targeted to run on an Intel processor with at least

one x86 instruction set core, in order to achieve substantially the same result as an

Intel processor with at least one x86 instruction set core. The x86 compiler 1304

represents a compiler that is operable to generate x86 binary code 1306 (e.g.,

object code) that can, with or without additional linkage processing, be executed

on the processor with at least one x86 instruction set core 1316. Similarly, the

program in the high level language 1302 may be compiled using an alternative

instruction set compiler 1308 to generate alternative instruction set binary code

1310 that may be natively executed by a processor without at least one x86

instruction set core 1314 (e.g., a processor with cores that execute the MIPS

instruction set and/or that execute the ARM instruction set). The instruction

converter 13 12 is used to convert the x86 binary code 1306 into code that may be

natively executed by the processor without an x86 instruction set core 1314. This

converted code is not likely to be the same as the alternative instruction set binary

code 1310 because an instruction converter capable of this is difficult to make;

however, the converted code will accomplish the general operation and be made

up of instructions from the alternative instruction set. Thus, the instruction

converter 1312 represents software, firmware, hardware, or a combination thereof

that, through emulation, simulation or any other process, allows a processor or

other electronic device that does not have an x86 instruction set processor or core

to execute the x86 binary code 1306.

[00134] While the subject matter disclosed herein has been described by

way of example and in terms of the specific embodiments, it is to be understood

that the claimed embodiments are not limited to the explicitly enumerated

embodiments disclosed. To the contrary, the disclosure is intended to cover

various modifications and similar arrangements as would be apparent to those

skilled in the art. Therefore, the scope of the appended claims should be accorded

the broadest interpretation so as to encompass all such modifications and similar

arrangements. It is to be understood that the above description is intended to be

illustrative, and not restrictive. Many other embodiments will be apparent to those

of skill in the art upon reading and understanding the above description. The scope

of the disclosed subject matter is therefore to be determined in reference to the

appended claims, along with the full scope of equivalents to which such claims are

entitled.

CLAIMS

What is claimed is:

1 . A system comprising:

a main memory having a plurality of machine physical addresses;

a graphics processor unit having graphics memory therein;

an address translation service integrated with the graphics processor unit;

a hypervisor to manage one or more guest machines;

wherein the hypervisor to configure a lookup table within the graphics memory of

the graphics processor unit; and

wherein the address translation service of the graphics processor unit to translate a

guest physical address for one of the one or more guest machines to a

corresponding machine physical address within the main memory.

2 . The system of claim 1, further comprising:

one or more graphics virtualization registers;

wherein the one or more graphics virtualization registers inform the graphics

processor unit that one of the guest machines have been assigned to the

graphics processor unit by the hypervisor.

3 . The system of claim 2, wherein the one or more graphics virtualization registers

further identify where the lookup table is located for the assigned guest

machine.

4 . The system of claim 1, further comprising:

a graphics virtualization determination component integrated within the graphics

processor unit;

wherein the graphics virtualization determination component is to determine

whether or not the graphics processor unit is operating within a virtualization

environment on behalf of one of the guest machines;

wherein the graphics processor unit to engage the address translation service when

operating within the virtualization environment; and

wherein the system to implement logical memory address to guest physical address

translation without engaging the address translation service of the graphics

processor unit when the graphics processor unit is not operating within the

virtualization environment.

5 . The system of claim 1, wherein the hypervisor to engage the address translation

service of the graphics processor unit by:

configuring one or more graphics virtualization registers to inform the graphics

processor unit that one of the guest machines have been assigned to the

graphics processor unit by the hypervisor; and

passing a Guest physical Frame Number (GFN) to the graphics processor unit for

translation by the address translation service to a Machine Frame Number

(MFN), wherein the GFN represents the guest physical address for one of

the one or more guest machines and wherein the MFN represents the

machine physical addresses within the main memory corresponding to the

guest physical address.

6 . The system of claim 1, wherein:

an address translation service integrated with the graphics processor unit retrieves

Guest physical Frame Number (GFN) to Machine Frame Number (MFN)

mappings from the lookup table in the graphics memory.

7 . The system of claim 6, wherein:

the address translation service retrieves the GFN to MFN mappings through a

Translation Lookaside Buffer (TLB) integrated within the graphics processor

unit; and

wherein the TLB provides an indexable cache on behalf of the address translation

service of the graphics processor unit.

8 . The system of claim 1 :

wherein the hypervisor comprises a virtual machine manager; and

wherein the one or more guest machines comprise one or more virtual machines.

9 . The system of claim 1, further comprising:

a separate and distinct central processor unit communicably interfaced with the

graphics processor unit via a system bus;

wherein the central processing unit lacks dedicated hardware circuitry to perform

address translation of guest physical addresses to machine physical

addresses.

10. The system of claim 1, wherein the graphics processor unit comprises a silicon

integrated circuit type graphics processor unit.

11 . The system of claim 1, wherein the graphics processor unit comprises a

microprocessor within a tablet computing device or a smart phone or one of

a plurality of microprocessors integrated within the tablet computing device

or the smartphone.

12. The system of claim 11, wherein the tablet computing device or the smartphone

comprises a separate and distinct central processing unit communicatively

interfaced with the graphics processor unit within the tablet computing

device or the smartphone; and

wherein the central processing unit lacks dedicated hardware circuitry to perform

address translation of guest physical addresses to machine physical

addresses.

13. The system of claim 1 :

wherein the graphics memory comprises shared graphics memory; and

wherein the hypervisor to configure the lookup table within the graphics memory of

the graphics processor unit comprises the hypervisor to write the lookup

table into the shared graphics memory of the graphics processor unit.

14. The system of claim 1 :

wherein the hypervisor to configure the lookup table within the graphics memory of

the graphics processor unit comprises the hypervisor to instruct the graphics

processor unit to retrieve and store the lookup table;

wherein the graphics processor unit to issue a Direct Memory Access (DMA)

request to fetch the lookup table; and

wherein the graphics processor unit to store the lookup table in the graphics memory.

15. The system of claim 1 :

wherein the hypervisor to issue a lookup table update to the graphics processor unit;

and

wherein the graphics processor unit to responsively update the lookup table in the

graphics memory.

16. A method comprising:

managing, via a hypervisor, one or more guest machines on a system;

configuring a lookup table with a mapping of guest physical addresses for the one or

more guest machines to corresponding machine physical addresses;

transferring the lookup table to a graphics memory of a graphics processor unit;

receiving an access request to a main memory of the system from one of the guest

machines, wherein the access request specifies a guest physical address;

engaging an address translation service internal to the graphics processor unit by

passing the guest physical address to the graphics processor unit; and

translating, via the address translation service of the graphics processor unit, the

guest physical address to a corresponding machine physical address.

17. The method of claim 16, wherein the graphics processor unit comprises one or

more graphics virtualization registers;

wherein the hypervisor configures the one or more graphics virtualization registers

to inform the graphics processor unit that one of the guest machines have

been assigned to the graphics processor unit by the hypervisor; and

wherein the one or more graphics virtualization registers further identify where the

lookup table is located for the assigned guest machine.

18. The method of claim 17, further comprising:

passing a Guest physical Frame Number (GFN) from the hypervisor to the graphics

processor unit requesting translation of the GFN by the address translation

service to a Machine Frame Number (MFN), wherein the GFN represents

the guest physical address for one of the one or more guest machines and

wherein the MFN represents the machine physical addresses within the main

memory corresponding to the guest physical address specified by the access

request.

19. The method of claim 16, wherein translating the guest physical address to a

corresponding machine physical address comprises the address translation

service of the graphics processor unit performing the translating based on a

Guest physical Frame Number (GFN) to Machine Frame Number (MFN)

mapping from the lookup table in the graphics memory.

20. The method of claim 19, wherein:

the address translation service retrieves the GFN to MFN mapping through a

Translation Lookaside Buffer (TLB) integrated within the graphics processor

unit; and

wherein the TLB provides an indexable cache on behalf of the address translation

service of the graphics processor unit.

21. The method of claim 16, wherein the graphics processor unit comprises a

graphics virtualization determination component;

determining, via the graphics virtualization determination component, whether or

not the graphics processor unit is operating within a virtualization

environment on behalf of one of the guest machines;

engaging the address translation service for guest physical addresses associated with

the graphics processor unit operating within the virtualization environment;

and

bypassing the address translation service for logical addresses which are not

associated with the graphics processor unit operating within the

virtualization environment, wherein the system to implement logical

memory address to guest physical address translation without engaging the

address translation service of the graphics processor unit to translate the

logical addresses.

22. The method of claim 16, further comprising:

enabling virtualization in the graphics processor unit by communicating a

configuration request from the hypervisor to the graphics processor unit;

preparing the lookup table internal to the hypervisor; and

wherein transferring the lookup table to the graphics memory of the graphics

processor unit comprises the hypervisor transferring the prepared lookup

table to the graphics processor unit.

23. The method of claim 22, wherein the hypervisor transferring the prepared

lookup table to the graphics processor unit comprises the hypervisor writing

the lookup table into shared graphics memory of the graphics processor unit.

24. The method of claim 22, wherein the hypervisor transferring the prepared

lookup table to the graphics processor unit comprises:

the hypervisor instructing the graphics processor unit to retrieve and store the

prepared lookup table;

the graphics processor unit responsively issuing a Direct Memory Access (DMA)

request to fetch the prepared lookup table; and

the graphics processor unit responsively storing the lookup table in graphics

memory internal to the graphics processor unit.

25. The method of claim 16, further comprising:

the hypervisor issuing a lookup table update to the graphics processor unit; and

the graphics processor unit responsively updating the lookup table in the graphics

memory.

26. The method of claim 16, wherein the graphics processor unit comprises a

microprocessor within a tablet computing device or a smart phone or one of

a plurality of microprocessors integrated within the tablet computing device

or the smartphone.

27. A graphics processor unit embodied within a silicon integrated circuit, the

graphics processor unit comprising:

a shared graphics memory interface to receive a prepared lookup table from a

hypervisor;

a graphics memory to store the prepared lookup table therein, wherein the prepared

lookup table to store a Guest physical Frame Number (GFN) to Machine

Frame Number (MFN) mapping;

an address translation service unit to receive a Guest physical Frame Number for

translation; and

a Translation Lookaside Buffer (TLB) to retrieve a Machine Frame Number

corresponding to the received Guest physical Frame Number from the

prepared lookup table to fulfill the translation.

28. The graphics processor unit of claim 27:

wherein the graphics processor unit to perform address translation services on

behalf of one or more guest machines operating within a tablet computing

device or a smartphone;

wherein the tablet computing device or the smartphone comprises a separate and

distinct central processing unit communicatively interfaced with the graphics

processor unit within the tablet computing device or the smartphone; and

wherein the central processing unit lacks dedicated hardware circuitry to perform

address translation of guest physical addresses to machine physical

addresses.

29. The graphics processor unit of claim 27, further comprising:

one or more graphics virtualization registers;

wherein the one or more graphics virtualization registers inform the graphics

processor unit that a guest machine has been assigned to the graphics

processor unit by the hypervisor.

30. The graphics processor unit of claim 29, wherein the one or more graphics

virtualization registers further identify where the lookup table is located for

the assigned guest machine.

31. The graphics processor unit of claim 27, further comprising:

a graphics virtualization determination component integrated within the graphics

processor unit;

wherein the graphics virtualization determination component is to determine

whether or not the graphics processor unit is operating within a virtualization

environment on behalf of one or more guest machines; and

wherein the graphics processor unit to engage the address translation service when

operating within the virtualization environment.

International application No.INTERNATIONAL SEARCH REPORT
PCT/CN201 1/084327

A . CLASSIFICATION OF SUBJECT MATTER

G06F 12/10 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IP C

B . FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F 12/-, G06F 91-, G06T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Database: CNABS, VEN, CNKI Keyword: address translation, graphic, graphics, convert, processor, processing, GPU, hypervisor,

manage, control, guest, physical, address, virtual machine, lookup table, LUT, map, mapping

DOCUMENTS CONSIDERED TO BE RELEVANT

Category' Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US2006139360Al(Panesar et al.) 29 Jun. 2006(29.06.2006) see the abstract, the description 1, 8, 10, 16
[paragraphs [0017],[0019],[0022],[0027],[0032],[0037],[0044],[0047], the figures 1,3-5

A 2-7, 9 , 11-15, 17-31

Y US201 1231630A1(ADVANCED MICRO DEVICES INC) 22 Sep. 201 1(22.09.2011) see the 1, 8, 10, 16
Idescription paragraphs [0009]-[0010],[0013]-[0014], Fig. 1

2-7, 9 , 11-15, 17-31

l~~l Further documents are listed in the continuation of Box C . See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date
or priority date and not in conflict with the application but

Ά " document defining the general state of the art which is not cited to understand the principle or theory underlying the
considered to be of particular relevance invention

Έ " earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention

international filing date cannot be considered novel or cannot be considered to involve
an inventive step when the document is taken alone

'L" document which may throw doubts on priority claim (S) or
"Y" document of particular relevance; the claimed invention

which is cited to establish the publication date of another
cannot be considered to involve an inventive step when the

citation or other special reason (as specified) document is combined with one or more other such
Ό " document referring to an oral disclosure, use, exhibition or documents, such combination being obvious to a person

other means skilled in the art

'P" document published prior to the international filing date " & "document member of the same patent family

but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

30 Aug. 2012(30.08.2012) 20 Sep. 2012 (20.09.2012)

Name and mailing address of the ISA/CN
Authorized officer

The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China LI Fang
100088 Telephone No. (86-10)62412078
Facsimile No. 86-10-62019451

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members

PCT/CN201 1/084327

Patent Documents referred Publication Date Patent Family Publication Date
in the Report

U S 2006139360 A l 29.06.2006 WO 2006072101 A2 06 .07.2006

EP 18391 58 A2 03 .10.2007

KR 20070086791 A 27 .08.2007

CN 101 088078 A 12 .12.2007

JP 2008527508 A 24 .07.2008

TW 300541 B l 0 1 .09.2008

KR 20090007494 A 16 .01 .2009

TW 200634662 A 0 1 .10.2006

KR 1009551 11 B l 28 .04.2010

CN 101088078 B 09 .06.2010

CN 101923520 A 22 .12.2010

WO 2006072101 A3 23 .11 .2006

U S 2011231630 A l 22.09.2011 WO 2011116070 A l 22 .09.2011

Form PCT ISA /210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

