(19) (19 DE 698 32 943 T2 2006.06.29

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 911 731 B1 s1yintct:: GO6F 9/46 (2006.01)

(21) Deutsches Aktenzeichen: 698 32 943.0
(96) Europaisches Aktenzeichen: 98 308 323.9
(96) Europaischer Anmeldetag: 12.10.1998
(97) Erstverdffentlichung durch das EPA: 28.04.1999
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 28.12.2005
(47) Veroffentlichungstag im Patentblatt: 29.06.2006

(30) Unionsprioritat: (84) Benannte Vertragsstaaten:
957298 24.10.1997 us DE, FR, GB

(73) Patentinhaber: (72) Erfinder:

Compaq Computer Corp., Houston, Tex., US Vandoren, Stephen R., Northborough,
Massachusetts 01532, US; Steely, Simon C.,

(74) Vertreter: Hudson, New Hampshire 03051, US; Sharma,
Griinecker, Kinkeldey, Stockmair & Madhumitra, Shrewsbury, Massachusetts 01545,
Schwanhéusser, 80538 Miinchen US; Fenwick, David M., Acton, Massachusetts

01545, US

(54) Bezeichnung: Sequenzsteuerungsmechanismus fiir ein switch-basiertes Mehrprozessorsystem

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 698 32 943 T2 2006.06.29

Beschreibung

[0001] Diese Erfindung betrifft im Allgemeinen das Gebiet der Computerarchitektur und im Besonderen ver-
teilte Mehrprozessorsysteme mit gemeinsamen Speichern.

[0002] Wie in der Technik bekannt, ermdéglichen symmetrische Mehrprozesssysteme Hochleistungs-Anwen-
dungsprozesse. Typische symmetrische Mehrprozess-Computersysteme enthalten eine Anzahl von Prozes-
soren, die Uber einen Bus miteinander gekoppelt sind. Eine Charakteristik eines Mehrprozesssystem ist, dass
Speicherraum von allen Prozessoren gemeinsam genutzt wird. In dem Speicher ist ein Betriebssystem oder
sind mehrere Betriebssysteme gespeichert und steuert bzw. steuern die Verteilung der Prozesse oder der
Threads zwischen den verschiedenen Prozessoren.

[0003] Die Ausfiuihrungsgeschwindigkeit einer gegebenen Anwendung kann dadurch, dass verschiedenen
Prozessoren ermoglicht wird, verschiedene Prozesse oder Threads gleichzeitig auszufiihren, wesentlich er-
héht werden. Theoretisch kdnnte die Leistung eines Systems dadurch verbessert werden, dass lediglich die
Anzahl der Prozessoren in dem Mehrprozesssystem erhoht wird. Das kontinuierliche Hinzufligen von Prozes-
soren Uber einen bestimmten Sattigungspunkt hinaus fihrt in der Realitat jedoch lediglich zum Vermehren von
Kommunikationsengpassen und dadurch zur Begrenzung der Gesamtleistung des Systems.

[0004] Bezug nehmend auf die Fig. 1A, wird beispielhaft ein typisches Mehrprozesssystem nach dem Stand
der Technik gezeigt, das acht miteinander gekoppelte Prozessoren enthalt. In Betrieb kommuniziert jeder der
Prozessoren 3a-3h lber den gemeinsam genutzten Verbindungsbus 5 mit den anderen Prozessoren und mit
einem gemeinsamen Speicher 4. Die symmetrische Mehrprozessoranordnung der Fig. 1A ist fir Mehrprozes-
soren, die bis dato hergestellt wurden, adaquat. Mit der Einfihrung schnellerer Mikroprozessoren ist jedoch
eine gemeinsam genutzte Verbindung nicht mehr in der Lage, von dem vollen Leistungspotenzial der gekop-
pelten Mikroprozessoren Gebrauch zu machen. Weil das einzige Verbindungsglied zwischen den Prozessoren
und dem Speicher der gemeinsam genutzte Bus ist, wird der Bus schnell mit Anforderungen der Prozessoren
gesattigt und vermehrt dadurch Verzégerungen, da jeder Prozessor versucht, Zugriff auf den Systembus zu
bekommen. Deshalb ist, obwohl die Prozessoren mit hdheren Geschwindigkeiten arbeiten kénnen, die verflg-
bare Bandbreite des Systembusses der in Bezug auf die Leistung beschrankende Faktor. Die Kommunikati-
onsbandbreite ist ein Schllisselfaktor fir die Leistung eines SMP-Systems. Da die Bandbreite zwischen Paa-
ren oder Untergruppen von Knoten in dem SMP-System ungleichmaRig sein kann, nutzt die Industrie zum Be-
stimmen der Kommunikationsbandbreite eines SMP-Systems eine ,Bisektionsbandbreitenmessung". Die Bi-
sektionsbandbreite wird in der folgenden Art und Weise bestimmt: Alle méglichen Arten der Teilung des Sys-
tems in zwei Teile gleicher Rechenleistung (gleiche Anzahl von Prozessoren) werden ermittelt. Fir jede Teilung
wird die Bandbreite, die zwischen den beiden Teilungen aufrechterhalten werden kann, festgestellt. Das Mini-
mum aller Bandbreiten, die aufrechterhalten werden kénnen, ist die Bisektionsbandbreite der Verbindungen
untereinander. Die Mindestbandbreite zwischen den beiden Teilungen zeigt die Bandbreite an, die durch das
Multiprozessorsystem in dem Fall von Worst-case-Kommunikationsmustern aufrechterhalten werden kann. In-
folgedessen ist eine grolie Bisektionsbandbreite erwilinscht.

[0005] Um die Sattigungsprobleme des Busses zu Uberwinden, wurden nach dem Stand der Technik ver-
schiedene Verbindungsarchitekturen oder , Topologien® genutzt. Diese Topologien enthalten Maschen, Tori,
Hyperkuben und erweiterte Hyperkuben.

[0006] Als ein Beispiel wird in der Fig. 1B eine Maschennetzwerkverbindung als System 7 gezeigt. Die Haupt-
vorteile des Maschennetzwerkes sind seine Einfachheit und das leichte Verdrahten. Jeder Knoten ist mit einer
geringen Anzahl von Nachbarknoten verbunden. Die Maschenverbindung weist jedoch drei wesentliche Nach-
teile auf. Erstens missen Nachrichten im Durchschnitt eine groRe Anzahl von Knoten durchqueren, um zu ihrer
Zieladresse zu kommen, was zu einer hohen Kommunikationslatenz flihrt. Zweitens vergréRert sich die Bisek-
tionsbandbreite fiir eine Maschentopologie nicht so gut, wie bei anderen Topologien. SchlieRlich sind, da jede
der Nachrichten verschiedene Pfade innerhalb des Maschennetzwerkes durchqueren kann, innerhalb des
SMP-Systems keine natirlichen Ordnungspunkte vorhanden und deshalb sind die Cache-Koharenz-Protokol-
le, deren Anwendung erforderlich ist, oft sehr komplex.

[0007] Die Torus- und Hyperkubus-Topologie und die Topologie des erweiterten Hyperkubus sind jeweils To-
pologien, in denen die Knoten in verschiedenen komplexen Anordnungen untereinander verbunden sind, bei-
spielsweise in einer Torus-Anordnung oder in einer Kubusanordnung. Die Torus- und Hyperkubus-Verbindun-
gen oder die Verbindungen des erweiterten Hyperkubus sind komplexer als die Verbindungen durch die Ma-
schennetzwerke, bieten jedoch eine bessere Latenz und Bandbreite als die Maschenverbindungen. Die Torus-

2/89

DE 698 32 943 T2 2006.06.29

und Hyperkubus-Topologie und die Topologie des erweiterten Hyperkubus stellen jedoch, wie auch die Ma-
schenverbindungen, keine naturlichen Ordnungspunkte bereit und infolgedessen muss fir jedes dieser Syste-
me ein komplexes Cache-Koharenz-Protokoll implementiert werden.

[0008] In Mehrprozesssystemen mit gemeinsamem Speicher verwenden die Prozessoren ublicherweise ei-
gene Caches, um Daten zu speichern, von denen als wahrscheinlich festgestellt ist, dass zukiinftig auf diese
zuzugreifen ist. Da die Prozessoren Daten aus ihrem eigenen Cache lesen kénnen und die Daten in dem ei-
genen Cache aktualisieren kdnnen, ohne diese zurlick in den Speicher zu schreiben, wird ein Mechanismus
gebraucht, der sicherstellt, dass der eigene Cache jedes Prozessors konsistent oder koharent bleibt. Der Me-
chanismus, der verwendet wird, um die Koharenz von Daten in dem SMP-System sicherzustellen, wird als das
Cache-Koharenz-Protokoll bezeichnet.

[0009] Das Cache-Koharenz-Protokoll ist neben der Topologie, der Bandbreite und der Latenz der physikali-
schen Verbindungen ein Schliisselfaktor der Systemleistung. Cache-Koharenz-Protokolle kénnen auf ver-
schiedene Arten Latenzen, Flaschenhalse, Leistungsschwéche oder Komplexitat einfiihren.

[0010] Die Latenz der Last und der Speichervorgange wird oft direkt von dem Aufbau des Protokolls beein-
flusst. Beispielsweise wird in einigen Protokollen der Speichervorgang nicht als ausgefuhrt betrachtet, bis alle
ungultigen Nachrichten bis zu ihren Zielprozessoren gekommen sind und die Bestatigungsnachrichten den
ganzen Weg zuriick zu dem Ursprungsprozessor verfolgt haben. Die Latenz des Gespeicherten ist hier sehr
viel hoher als bei dem Protokoll, in dem der Ursprungsprozessor nicht auf die Ungultigen warten muss, um an
seine Zieladresse zu kommen. Des Weiteren verbrauchen die Bestatigungen einen wesentlichen Anteil der
Systembandbreite.

[0011] Flaschenhalse werden oft auf Grund der starken Belegung der Controller verursacht. ,Belegung"” ist
ein Ausdruck der Technik, der den Zeitraum anzeigt, fur den ein Controller nicht verfiigbar ist, nachdem er eine
Anforderung empfangen hat. In einigen Protokollen ist ein Controller, wenn er eine Anforderung, die einem
Speicherort entspricht, empfangen hat, fir weitere Anforderungen fiir denselben Speicherort nicht verfligbar,
bis bestimmte Bestatigungen, die der ersten Anforderung entsprechen, in dem Verzeichnis ankommen. Wenn
der Controller miteinander in Konflikt stehende Anforderungen mit einer hdheren als der durchschnittlichen
Rate empfangt, kommt es zu einem Flaschenhals.

[0012] Der Aufbau des Cache-Kohéarenz-Protokolls beeinflusst auRerdem die Komplexitat. Einige Protokolle
fuhren beispielsweise zu Verklemmungen und Fairnessproblemen, denen dann mit zusatzlichen Mechanismen
zu begegnen ist. Dies resultiert in zusatzlichem Hardwareaufwand.

[0013] Es ist erwiinscht, ein symmetrisches Mehrprozessorsystem bereitzustellen, das die Latenz der Ope-
rationen minimiert, eine groRe Kommunikationsbandbreite und geringere Controller-Belegung bereitstellt und
das auf eine grof3e Anzahl von Prozessoren vergréfRert werden kann.

[0014] GB-A-2 1881 77 legt ein Computersystem fir das gemeinsame Nutzen einer Datenquelle offen. Das
System arbeitet durch das Senden einer Anforderungssperre fir die gemeinsame Datenquelle zu dem Sperr-
manager auf dem Host, der der Master der Datenquellengruppe ist, die zu sperren ist, und fir diese wird Ex-
klusivsteuerung ausgefuhrt.

[0015] US 5.060 144 legt eine Sperrsteuerungs-Statusanzeige fir ein Multi-Host-Prozessorsystem offen, das
fur jeden Host-Prozessor einen Datensatz-Sperrprozessor und einen Pufferspeicher verwendet.

[0016] EP-A-0 121 700 legt eine Mehrprozessor-Speicherungsserialisierungsvorrichtung offen, die mehreren
Prozessoren ermdglicht, Befehle auf Gespeichertes zuzugreifen, gleichzeitig auszufiihren, ohne die Leistung
materiell zu beeinflussen. Dies wird dadurch erreicht, dass die Menge des Gespeicherten auf ein Minimum,
beispielsweise eine Seite, gesperrt wird.

[0017] Die vorliegende Erfindung wird vorteilhaft in einem symmetrischen Mehrprozessorsystem angewen-
det, in dem mehrere Mehrprozessorknoten wenigstens einen Prozessor und einen Teil eines gemeinsamen
Speichers, die Uber einen Switch miteinander gekoppelt sind, enthalten. In jedem der Multiprozessorknoten
wird ein Transaktions-Tracking-Verzeichnis (TTT) unterhalten. Das TTT kann in einem globalen Port des Kno-
tens, der den Knoten mit dem Switch verbindet, vorhanden sein oder alternativ auf jedem der wenigstens einen
der Prozessoren des Multiprozessorknotens vorhanden sein.

3/89

DE 698 32 943 T2 2006.06.29

[0018] Das TTT wird verwendet, um eine Reihenfolge der Anforderungen, die von diesem Mehrprozessorkno-
ten ausgegeben und empfangen werden, zu bestimmen und durchzusetzen. Gemal einem Aspekt der Erfin-
dung wird das TTT verwendet, um die Reihenfolge der Anforderungen, die zu dem Mehrprozessorknoten zu-
rickgesendet werden, in der folgenden Art und Weise zu bestimmen. Jede der Anforderungen wird in eine An-
zahl von Transaktionen unterteilt, wobei jede der Transaktionen auf einem verschiedenen virtuellen Kanal aus-
geflhrt wird. Wenigstens einer der Kanale ist geordnet, jedoch kdnnen Return-Daten auf den anderen Kanalen
auflerhalb der Reihenfolge empfangen werden. Um die Koharenz aufrechtzuerhalten, ist erwiinscht, dass die
zu einer gemeinsamen Adresse ausgegebenen Transaktionen in Reihenfolge behandelt werden. GemaR ei-
nem Aspekt der Erfindung wird auf dem geordneten Kanal ein Marker-Paket zu dem TTT gesendet, um anzu-
zeigen, dass die mit einer Adresse verbundenen Daten noch immer weiterverarbeitet werden. Mit einer derar-
tigen Anordnung kann das TTT sicherstellen, dass die weiteren Anforderungen auf dem geordneten Kanal, die
dem Marker-Paket folgend empfangen wurden, entweder ignoriert oder verzégert werden, bis die Daten emp-
fangen werden.

[0019] Gemal einem Aspekt der vorliegenden Erfindung umfasst ein Computersystem eine Vielzahl von ge-
koppelten Multiprozessorknoten, jeder der Knoten umfasst wenigstens einen Prozessor und einen Teil eines
gemeinsamen Speichers, das Computersystem ist gekennzeichnet durch:

einen Tracking-Mechanismus, verbunden mit der Vielzahl von Prozessoren in jedem der Vielzahl von Multipro-
zessorknoten, zum Bestimmen einer Position einer Anforderung zu einer Adresse eines dezentralen Teils ei-
nes gemeinsamen Speichers, ausgegeben von wenigstens einem der Prozessoren in dem einen der Vielzahl
von Multiprozessorknoten,

relativ zu einer Vielzahl von anderen Anforderungen, die durch den wenigstens einen der Prozessoren in der
Vielzahl von gekoppelten Multiprozessorknoten zu der Adresse ausgegeben wurde.

[0020] Gemal einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Aufrechterhalten
der Reihenfolge zwischen einer Vielzahl von Anforderungen, die zu einer gemeinsamen Adresse in einem
Mehrprozessorcomputersystem ausgegeben werden, bereitgestellt.

[0021] Das Multiprozessorcomputersystem enthalt eine Vielzahl von Multiprozessorknoten, die Uber einen
Switch gekoppelt sind, wobei jeder der Multiprozessorknoten wenigstens einen Prozessor und einen Teil eines
gemeinsamen Speichers umfasst. Das Verfahren enthalt den Schritt des Fuhrens eines Adressverzeichnisses
von Anforderungen, die von jedem der Mehrfachprozessorknoten an den Switch weitergeleitet werden, um
eine relative Reihenfolge von Anforderungen zu den jeweiligen Adressen in einem Teil eines gemeinsamen
Speichers eines Mehrprozessorknotens zu identifizieren, wobei eine Adresse in dem Verzeichnis geflihrt wird,
bis die mit der Adresse verbundenen Anforderung erfiillt ist.

[0022] Die oben angeflihrten und weitere Merkmale der Erfindung werden durch Bezugnahme auf die folgen-
de Beschreibung, die in Verbindung mit den begleitenden Zeichnungen steht, offensichtlicher, wobei in den
Zeichnungen

[0023] Fig. 1A und Fig. 1B Blockdiagramme von zwei Mehrprozessorcomputersystemen nach dem Stand
der Technik sind,

[0024] Fig. 2 ein Blockdiagramm eines Ausfiihrungsbeispiels eines Mehrprozessorknotens eines Ausflh-
rungsbeispiels der Erfindung ist, das einen Switch umfasst,

[0025] Fig. 3 ein Blockdiagramm ist, das den Datenpfad des Switchs der Fig. 1 zeigt, der eine Anzahl von
Simultan-Eingabepuffern umfasst,

[0026] Fig. 4A ein Blockdiagramm eines Ausflhrungsbeispiels eines der Simultan-Eingabepuffer der Fig. 3
ist,

[0027] Fig. 4B ein Blockdiagramm einer Implementierung der Logik zum Steuern des Simultan-Eingabepuf-
fers der Fig. 4 ist,

[0028] Fig. 5 ein Blockdiagramm eines zweiten Ausflihrungsbeispiels des einen der Simultan-Eingabepuffer
der Fig. 3 ist,

[0029] Fig. 6 ein Blockdiagramm des Mehrprozessorknotens der Fig. 2 ist, der zum AnschlieRen in einem
grélReren Netzwerk von gleichartigen Knoten erweitert ist,

4/89

DE 698 32 943 T2 2006.06.29

[0030] Fig. 7A ein Ausfihrungsbeispiel eines SMP-Systems ist, das mehrere den Mehrprozessorknoten der
Fig. 6 gleichartige Mehrfachknoten verwendend implementiert ist,

[0031] Fig. 7B ein weiteres Ausfiihrungsbeispiel eines SMP-Systems ist, das mehrere den Mehrprozessor-
knoten der Fig. 6 gleichartige Mehrfachknoten verwendend implementiert ist,

[0032] Fig. 8 ein Blockdiagramm eines globalen Ports der Fig. 6 ist,
[0033] Fig. 9 einen Eintrag in einem Verzeichnis der Mehrprozessorknoten der Fig. 6 darstellt,

[0034] Fig. 10 ein Transaktions-Tracking-Verzeichnis (TTT) zur Verwendung in dem globalen Port der Fig. 8
darstellt,

[0035] Fig. 11 ein Blockdiagramm eines hierarchischen Schalters zum Koppeln der Mehrprozessorknoten in
der Fig. 7A ist,

[0036] Fig. 12A ein Blockdiagramm eines Ausflhrungsbeispiels einer Verbindungslogik fur den hierarchi-
schen Switch ist, der Verklemmung eliminiert,

[0037] Fig. 12B ein Flussdiagramm des Betriebs der Verbindungslogik der Fig. 12A ist,
[0038] Fig. 13 ein Flussdiagramm des in der Verbindungslogik der Fig. 11 verwendeten Verfahrens ist, um
Stromsteuerung zum Unterbinden, dass Daten von einem der Mehrprozessorknoten Ubertragen werden,

durchzusetzen,

[0039] Fig. 14 ein Zeitablaufdiagramm zum Darstellen der Ubertragung von Adressen und Datenpaketen auf
den Bussen von und zu dem hierarchischen Switch ist,

[0040] Fig. 15 ein Blockdiagramm eines Ausflihrungsbeispiels der Pufferlogik zum Aufrechterhalten der Rei-
henfolge in dem hierarchischen Switch ist,

[0041] FEiq. 16 ein Blockdiagramm eines weiteren Ausfiihrungsbeispiels der Pufferlogik zum Aufrechterhalten
der Reihenfolge fiir den hierarchischen Switch ist,

[0042] Fig. 17 ein Flussdiagramm zum Darstellen einer Methode des Betriebs der Pufferlogik der Fig. 16 ist,

[0043] FEiq. 18 ein Blockdiagramm eines weiteren Ausfiihrungsbeispiels der Pufferlogik zum Aufrechterhalten
der Reihenfolge in dem hierarchischen Switch ist,

[0044] Fig. 19 ein Verzeichnis ist, das die Translation der Prozessorbefehle in Netzwerkbefehle zur Verwen-
dung in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0045] Fig. 20A-Fig. 20H eine Anzahl von Kommunikationsstrémen zum Ubertragen von Paketen zwischen
Knoten in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0046] Fig. 21 ein Blockdiagramm ist, das das Layout eines Speichermoduls zur Verwendung in dem Mehr-
prozessorcomputersystem der Fig. 2 oder Fig. 6 darstellt,

[0047] Fig. 22 ein Zeitablaufdiagramm ist, das die Steuerlogik, die durch das Speichermodul der Fig. 21 flr
verzogerte Schreiboperationen verwendet wird, darstellt,

[0048] Fig. 23 ein Flussdiagramm ist, das die Verwendung von diskreten Transaktionen, die zum Aufrechter-
halten der Cache-Koharenz auf den Kanalen abgebildet werden, in einem Ausfiuhrungsbeispiel der Erfindung
darstellt,

[0049] Fig. 24 ein Blockdiagramm ist, das eine Implementierung einer gemeinsamen Warteschlangenstruktur
zum Verwalten der virtuellen Kanale in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0050] Fig. 25 ein Blockdiagramm ist, das eine Implementierung der einzelnen Kanalpufferung in den Knoten
und den hierarchischen Switchs des SMPs der Fig. 7A oder Fig. 7B darstellt,

5/89

DE 698 32 943 T2 2006.06.29

[0051] Fig. 26 ein Blockdiagramm zum Darstellen der Probleme ist, die entstehen kénnen, wenn ein Teil der
Reihenfolge zwischen den virtuellen Kanalen nicht eingehalten wird,

[0052] Fig. 27A-Fig. 27C Blockdiagramme sind, die die Strom- und die Reihenfolgebeschrankungen auf
dem Q1-Kanal zum Bereitstellen koharenter Kommunikation in dem SMP der Fig. 7A oder Fig. 7B darstellen,

[0053] Fig. 28A und Fig. 28B Blockdiagramme sind, die die Mehrdeutigkeitsprobleme, die entstehen kénnen,
weil der grobe Vektor Bits der Verzeichniseintrage des SMPs der Fig. 7A und Fig. 7B darstellt,

[0054] Fig. 29 ein Blockdiagramm ist, das das Verfahren darstellt, das verwendet wird, um zu verhindern,
dass im Ergebnis des in der Fig. 28 beschriebenen Problems Datenmehrdeutigkeit entsteht,

[0055] Fig. 30 ein Blockdiagramm zum Darstellen eines Koharenzproblems ist, das durch Pakete auf ver-
schiedenen Kanalen, die auRerhalb der Reihenfolge empfangen werden, entsteht,

[0056] Fig. 31 ein Blockdiagramm ist, das die Verwendung von Full-Markern zum Verhindern des in der
Fig. 29 beschriebenen Koharenzproblems darstellt,

[0057] Fig. 32 ein Eintrag in dem TTT ist, der den Status eines Befehls wahrend des in Bezug auf die Fig. 31
beschriebenen Stroms wiedergibt,

[0058] Fig. 33A und Fig. 33B Blockdiagramme sind, die den Arbeitsschritt des Anderns in dirty Befehle in
dem SMP-System darstellen,

[0059] Fig. 34 ein Blockdiagramm ist, das die Verwendung von Schattenbefehlen, um das in Bezug auf die
Fig. 33 beschriebene Problem zu beseitigen, darstellt,

[0060] Fig. 35 ein Eintrag in das TTT ist, der den Status eines Befehls wahrend des in Bezug auf die Fig. 34
beschriebenen Stroms darstellt, und

[0061] Fig. 36 ein Flussdiagramm ist, das die zulassige sequenzielle Ordnung von Befehlen in dem Beispiel,
das in der Fig. 35 beschrieben wird, darstellt.

[0062] Gemal einem Ausflihrungsbeispiel der Erfindung enthalt ein hierarchisches symmetrisches Mehrpro-
zessorsystem (SMP-System) eine Anzahl von SMP-Knoten, die tiber einen Hochleistungs-Switch miteinander
gekoppelt sind. Folglich wirkt jeder der SMP-Knoten als ein Baustein in dem SMP-System. Im Folgenden wer-
den zuerst die Komponenten und der Betrieb eines SMP-Knoten-Bausteins beschrieben, gefolgt von einer Be-
schreibung des Betriebs des SMP-Systems und einer anschliefenden Beschreibung eines Cache-Koha-
renz-Protokolls, das verwendet wird, um in dem groRen SMP-System Speicherkoharenz aufrechtzuerhalten.

SMP-Knoten-Baustein

[0063] Im Folgenden auf die Fig. 2 Bezug nehmend, enthalt ein Mehrprozessorknoten 10 vier Prozessormo-
dule 12a, 12b, 12c und 12d. Jedes Prozessormodul umfasst eine zentrale Recheneinheit (CPU). In einem be-
vorzugten Ausflihrungsbeispiel werden von der Digital Equipement Corporation® gefertigte Alpha® 21264 Pro-
zessorchips verwendet, obwohl alternativ andere Typen von Prozessorchips, die in der Lage sind, das unten
beschriebene Koharenzprotokoll zu unterstiitzen, verwendet werden kénnen.

[0064] Der Mehrprozessorknoten 10 enthalt einen Speicher 12, der eine Anzahl von Speichermodulen
13a-13d enthalten kann. Der Speicher kann eine Speicherkapazitat von 32 Gigabytes bereitstellen, wobei je-
des der vier Speichermodule 8 Gigabyte speichert. Jedes der Speichermodule ist in eine Anzahl von Speicher-
blécken aufgeteilt, wobei jeder Block beispielsweise 64 Bytes Daten enthalten kann. Die Daten werden gene-
rell in Blécken aus dem Speicher abgerufen.

[0065] Zusatzlich enthalt der Mehrprozessorknoten 10 ein I/O-Prozessormodul (IOP-Modul) zum Steuern der
Ubertragung von Daten zwischen externen Vorrichtungen (nicht gezeigt) und dem Mehrprozessorknoten 10
Uber einen gekoppelten I/O-Bus 14a. In einem Ausflihrungsbeispiel der Erfindung kann der 1/0-Bus geman
dem PCI-Protokoll (Peripheral Computer Interconnect protocol) betrieben werden. Das IOP-Modul 14 enthalt
einen IOP-Cache 14c¢ und einen IOP-Tag-Speicher 14b. Der IOP-Cache 14c stellt die Zwischenspeicherung
fur Daten aus dem Speicher 13 bereit, die auf dem PCI-Bus 14a zu den externen Vorrichtungen tbertragen

6/89

DE 698 32 943 T2 2006.06.29

werden. Der IOP-Tag-Speicher 14b ist ein 64-Eintrage-Tag-Speicher zum Speichern von Koharenzinformatio-
nen fir Daten, die zwischen den externen Vorrichtungen, den Prozessoren und dem Speicher bewegt werden.

[0066] Die Koharenz der in dem Speicher 13 des Mehrprozessorknotens gespeicherten Daten wird mittels
eines Duplikat-Tag-Speichers (DTAG) 20 aufrechterhalten. Der DTAG 20 wird von allen Prozessoren 12a-12d
gemeinsam genutzt und ist in vier abgegrenzte Teile des Speichers (im Folgenden als Speicherbanke bezeich-
net) unterteilt, wobei jede Speicherbank Statusinformationen speichert, die den Daten, die durch einen zuge-
hérigen der Prozessoren verwendet werden, entsprechen.

[0067] Der DTAG, der Speicher und das IOP werden mit einem Logikbus gekoppelt, der als der Verteilerbus
17 bezeichnet wird. Die durch den Prozessor ausgegebenen Speicherblockanforderungen werden lber den
lokalen Switch 15 zu dem Verteilerbus 17 geleitet. Der DTAG 20 und das IOP 14 schlagen den Status des
Blocks in den Caches des Prozessors und des IOPs nach und aktualisieren ihren Status flir den Speicherblock
atomar. Der Verteilerbus 17 wirkt als ein Serialisierungspunkt fur alle Speicherreferenzen. Die Reihenfolge in
der die Speicheranforderungen auf dem Verteilerbus erscheinen, ist die Reihenfolge, in der die Prozessoren
die Ergebnisse der Anforderung entgegennehmen.

[0068] Die Prozessormodule 12a-12d, die Speichermodule 13a-13d und die IOP-Module 14 sind tber einen
lokalen Port-Switch 15 miteinander gekoppelt. Jedes der Schnittstellenmodule 12a-12d, 13a-13d und 14 ist
mittels einer gleichen Anzahl von bidirektional taktweitergeleiteten Datenlinks 16a-16i verbunden. In einem
Ausfuhrungsbeispiel leitet jeder der Datenlinks 64 Bits Daten und 8 Bits Fehlerkorrekturcode (ECC), einen da-
von auf jeder Flanke des Systemtakts, der mit einer Rate von 150 MHz arbeitet, weitet. Infolgedessen ist die
Datenbandbreite jedes der Datenlinks 16a—16i 2,4 Gigabytes/sek.

[0069] Der lokale Switch 15 enthalt einen Quad-Switch-Adressensteuerungschip (QSA-Chip) 18 und einen
Quad-Switch-Daten-Slice-Chip (QSD-Chip) 19. Der QSA-Chip 18 enthalt einen Verteiler (QSA-Verteiler) 11
zum Steuern der Adressenpfade zwischen den Prozessormodulen, dem IOP und dem Speicher. Zusétzlich
stellt der QSA-Chip 18 Steuerung fir den QSD-Chip 19 bereit, um den Datenstrom durch den lokalen Switch
15 zu steuern, wie unten beschrieben wird.

[0070] Der QSD-Chip 19 stellt eine Switch-Verbindung fir alle Datenpfade zwischen den Prozessormodulen,
den Speichermodulen und dem IOP bereit. Obwohl in der Eig. 2 nicht gezeigt, wirden, wie unten beschrieben
wird, wenn der Mehrprozessorknoten 10 mit den anderen Mehrprozessorknoten tGber einen globalen Port ge-
koppelt ware, der QSD und der QSA zusatzlich fiir den globalen Port eine Switch-Verbindung bereitstellen. Je-
der der Prozessoren kann ber den globalen Port Daten von einer der verfiigbaren Ressourcen, wie den Spei-
chereinrichtungen 13a-13d, weiteren Prozessoren 12a-12d, dem IOP 14 oder alternativen Ressourcen in an-
deren Mehrprozessorknoten, anfordern. Infolgedessen sollte der lokale Switch 15 fahig sein, gleichzeitig Ein-
gange von einer Vielzahl von Ressourcen aufzunehmen, wahrend er die hohe Busbandbreite von 2,4 Giga-
bytes aufrechterhalt.

[0071] Der lokale Switch kann mehrere gleichzeitige Transaktionen behandeln. Da jede Transaktion tblicher-
weise mehrere Ressourcen verwendet (wie zum Beispiel Speicherbanke, Datenpfade, Warteschlangen), kon-
nen die Steuerfunktionen des lokalen Switchs sehr komplex sein. Beispielsweise kann eine Transaktion im Sta-
dium 0 der Transaktion eine verfiigbare Speicherbank, die Verfiigbarkeit des Datenpfades von der Speicher-
bank zu dem Prozessor in Stadium 1 und die Verfligbarkeit des Datenpfades zu dem Prozessorport in Stadium
2 erforderlich machen. Der lokale Switch-Verteiler (QSA-Verteiler 11 in dem QSA 18) vermittelt derartig zwi-
schen den Anforderungen, dass sobald eine Transaktion initiiert ist, die in jedem Stadium der Transaktion er-
forderlichen Ressourcen wie erforderlich verfiigbar sind.

[0072] Signifikanter, der Verteiler garantiert durch Sicherstellen, dass bestimmten Anforderungen nicht ver-
sagt wird, Uber einen langen Zeitraum Zugriffskontrolle zu gewinnen (potenziell idenfinit), wahrend andere Fort-
schritte machen, dass alle Anforderungen und Prozessoren fairen Zugriff auf die Ressourcen erhalten. Als Bei-
spiel wird eine Transaktion T, die drei Ressourcen A, B und C erfordert betrachtet.

[0073] Die Transaktion T kdnnte die Zugriffsverteilung nicht gewinnen, bis garantiert ware, dass alle drei Res-
sourcen in den adaquaten Stadien der Transaktion verfligbar sind. Wenn der Verteiler seine Entscheidung nur
auf der Verfligbarkeit von Ressourcen basiert, dann ist es moglich, dass T fiir einen langen Zeitraum nicht er-
folgreich ist, wahrend andere Transaktionen, die nur eine von A, B oder C (zusammen mit anderen Ressourcen
D, E usw.) erfordern; kontinuierlich die Zugriffsverteilung gewinnen.

7/89

DE 698 32 943 T2 2006.06.29

[0074] Das Garantieren fairer Zugriffsverteilung in einem Switch mit einer gro3en Anzahl von gleichzeitigen
Anforderungen, von denen jede, um fertig gestellt zu werden, mehrere Ressourcen verwendet, erfordert einen
komplexen Rechenaufwand und fihrt wahrscheinlich zur Vermehrung von Verzégerungen in dem Hochge-
schwindigkeits-Datenpfad. In der hierin offen gelegten Vorrichtung nimmt der QSA-Verteiler 11 vor der Ablauf-
planung einer bestimmten Transaktion die Verteilung nur einer Ressource (der Speicherbank) vor. Eine zweite
Ressource, die eine Warteschlange ist, die zu den Prozessoren fiihrt, muss zum Zeitpunkt der Verteilung durch
den QSA-Verteiler 11 fur die erste Ressource nicht auf Verfligbarkeit geprift werden. Dies deshalb, weil die
Architektur des QSDs garantiert, dass die Datenpfade und die Warteschlangenschlitze, die zu der Warte-
schlange flhren, immer verfugbar sind. In dem QSA-Verteiler 11 kann die faire Ressourcenverteilung ohne gro-
Ren Aufwand bereitgestellt werden.

[0075] Gemal einem Ausfuihrungsbeispiel der Erfindung ist der QSD fahig, simultan Eingaben aus allen
Quellen (Prozessoren, Speicher, IOP und globaler Port) zu empfangen, ohne Vorausverteilung der Puffer, die
zu den entsprechenden Zieladressen fiihren, erforderlich zu machen. Alle Datenquellen kdnnen dann unab-
hangig Daten zu dem Switch weiterleiten, ohne dass tber Zugriff auf den Datenpfad oder die Warteschlangen-
schlitze in dem Schalter entschieden werden musste, weil der QSD eine Anzahl von Simultan-Eingabepuffern
enthalt, die in der Lage sind, Daten aus allen Quellen im Wesentlichen simultan zu empfangen. Im Folgenden
werden zwei Ausfiihrungsbeispiele von Simultan-Eingabepuffern beschrieben.

Simultan-Eingabepuffer-Switch

[0076] Wie oben beschrieben, dienen die Prozessoren 12a-12d, das IOP 14 und die Speichereinrichtungen
13a-13d jeweils als Ressourcen zum Behandeln von Anforderungen aus den Prozessoren und dem IOP in
dem Mehrprozessorknoten. Die Daten werden zwischen jedem der Ressourcenelemente und den anfordern-
den Elementen in Form von Paketen Ubertragen. Jedes Paket enthalt 512 Bits Daten und 64 Bits ECC. Wie
oben beschrieben, tragt jeder der Datenlinks 64 Bits Daten und 8 Bits ECC auf jeder Flanke eines
150-MHz-Taktes. Infolgedessen sind QSD-extern acht Datenlbertragungszyklen pro Paket vorhanden.
QSD-intern werden die Daten jedoch nur auf einer Flanke des Taktes gesammelt. Infolgedessen werden von
den Datenlinks fur jeden Taktzyklus der QSD-internen Logik potenziell 128 Bits Daten empfangen. Da jedes
Paket 512 Bits Daten und 64 Bits ECC umfasst, sind QSD-intern vier Datenlibertragungszyklen fir jedes Paket
vorhanden, wobei mit jedem QSD-Taktzyklus 128 Bits Daten und 16 Bits ECC aus einem Prozessor, IOP oder
einer Speichereinrichtung zu dem QSD ubertragen werden.

[0077] Im Folgenden Bezug nehmend auf die Fig. 3, wird der QSD 19 detaillierter gezeigt und enthalt finf
Simultan-Eingabepuffer (SIBs) 25a-25e. Jeder SIB ist einem der anfordernden Elemente, beispielsweise den
Prozessoren 12a-12d oder dem IOP zugeordnet. Jeder SIB steuert den Datenpfad zum Ubertragen von Pa-
keten zwischen seinem zugehorigen anfordernden Element und den anderen Ressourcenelementen in dem
Knoten, d. h. den Prozessoren 12a-12d, den Speichern 13a-13d, dem IOP 14 und zweckmaRigerweise dem
globalen Port. Der globale Port wirkt als Verbindung zwischen allen weiteren Mehrprozessorknoten unterein-
ander und wird unten im Einzelnen beschrieben. Die SIBs ermdglichen simultanes Empfangen von Paketen
durch den Anfordernden von jeder Ressource, die mit dem Switch gekoppelt ist, ohne zwischen den Anfordern-
den die Verteilung des Switchs erforderlich zu machen.

[0078] Wie zuvor beschrieben, ist der QSA-Verteiler 11 gekoppelt, um die Steuerung fir den Switch 19 be-
reitzustellen. In dem QSA-Verteiler 11 ist ein Hauptverteiler 27 enthalten. Der Hauptverteiler 27 verwaltet die
Datenbewegung zwischen den Ressourcen (den Prozessoren 12a-12d, den Speichern 13a-13d, dem IOP 14)
und dem Switch 19. Jeder der Prozessoren 12a-12d und das IOP 14 gibt auf den Leitungen 28a-28e Anfor-
derungen auf Zugriff aus, die zu dem Hauptverteiler 27 weitergeleitet werden. Der Hauptverteiler wiederum lei-
tet die Anforderungen zu den zugehérigen Ressourcen weiter, wenn jede Ressource in der Lage ist, eine An-
forderung zu empfangen. Sobald eine Ressource die Anforderung empfangen hat, ist fir den Switch 19 keine
Zugriffsverteilung erforderlich, weil jeder der SIBs in der Lage ist, die Eingaben aller Eingdnge im Wesentlichen
simultan, d. h. innerhalb desselben Datenzyklus, zu empfangen.

[0079] In dem QSA-Verteiler 11 ist aulRerdem eine Anzahl von einzelnen Verteilern 23a-23d enthalten. Jeder
der Verteiler 23a-23d wird verwendet, um jeweils einen Datenpfad zwischen einem zugehdrigen der Prozes-
soren 12a-12d und dessen zugehoérigem SIB 25b-25e zu verwalten.

[0080] Ein gleichartiger Verteiler (nicht gezeigt) ist in dem IOP 14 zu Verwalten des Datenpfades zwischen

IOP 14 und SIB 25a enthalten. Da jeder Prozessor in der Lage ist, Daten aus seinem zugehdérigen SIB zu emp-
fangen, leitet der zugehorige Verteiler die Daten auf dem gekoppelten Datenpfad weiter.

8/89

DE 698 32 943 T2 2006.06.29

[0081] Dementsprechend kann durch das Verwenden von simultanen Eingabepuffern innerhalb des Switchs
19 der zwischen einem Anfordernden und einer Ressource verteilte Datenpfad in zwei unterschiedliche Ab-
schnitte unterteilt werden, einen ersten Zugriffsverteilungsabschnitt, in dem der Hauptverteiler eine Ressource
in Beantwortung einer Anforderung von einem Prozessor unabhangig von der Verfligbarkeit des anfordernden
Prozessors Daten von der gekoppelten Ressource zu empfangen verteilt, und einen zweiten Zugriffsvertei-
lungsabschnitt, in dem der dem Prozessor zugehorige Verteiler den Prozessor flir den Zugriff des Prozessors
auf von dem Switch weitergeleitete Daten verteilt. Mit einer derartigen Anordnung kann, weil die Zugriffsvertei-
lung abgetrennt ist, sichergestellt werden, dass auf jede der gekoppelten Ressourcen fairer Zugriff bereitge-
stellt wird.

[0082] Im Folgenden Bezug auf die Fig. 4A Bezug nehmend, wird ein ausfuhrlicheres Schaubild des SIBs
25a gezeigt, das einen Eingangsverteiler 36 gekoppelt enthalt, um MUX-Auswahlsignale<31:0> auf der Lei-
tung 36a zu acht gekoppelten Multiplexern 34a-34h bereitzustellen, wo vier der Mux-Auswahlsignale zu jedem
der acht Multiplexer weitergeleitete werden, um einen von neun Ausgangen an jedem Multiplexer auszuwah-
len. Alle SIBs 25a-25d sind gleichartig aufgebaut und infolgedessen wird nur einer davon ausfuhrlich beschrie-
ben. Wie oben beschrieben, sind mit dem SIB potenziell zehn Ressourcen gekoppelt. Eine der zehn Ressour-
cen ist eine Anforderungsvorrichtung, die den Ausgang des SIBs empfangt, wahrend die anderen neun Res-
sourcen Eingang in den SIB bereitstellen. Deshalb empfangt jeder der Multiplexer 34a-34h den Eingang von
neun mit dem SIB gekoppelten Ressourcen. Die Eingadnge von drei der gekoppelten Prozessoren werden auf
den Leitungen Px, Py und Pz empfangen. Weitere Eingdnge von entweder dem vierten Prozessor (wenn der
SIB der IOP-Vorrichtung zugehort) oder von dem der IOP-Vorrichtung (wenn der SIB einem der Prozessoren
zugehort) werden auf der Leitung PW/IOP empfangen. Die Eingange aus den Speicherbanken 13a-13d wer-
den jeweils auf den Leitungen mom0O, mem1, mem2 und mem3 empfangen und Eingang von dem globalen
Port wird auf der Leitung globaler Port empfangen.

[0083] Jeder Multiplexerausgang jedes der Multiplexer 34a-34h ist mit einer der acht Speicherbanke eines
Puffers 32 gekoppelt. Jede Speicherbank hat acht Eintrage, wobei jede 128 Bits Daten und 16 Bits ECC spei-
chert. Infolgedessen wird jedes Datenpaket, das in dem SIB empfangen wird, in vier verschiedene Speicher-
banke in dieselbe Zeile des Puffers 32 geschrieben. Wie unten beschrieben, erhalt der Eingangsverteiler 36
den Status der Bits, um die Speicherbanke des Puffers anzuzeigen, die zum Speichern von Daten verfiigbar
sind. Folglich wahlt der Eingangsverteiler 26 bei jedem Zyklus dieser von einer Ressource oder von mehreren
Ressourcen empfangenen 128 Bits Paketdaten einen der méglichen neun Ressourceneingange in jedem der
Multiplexer 34a-34d zum Weiterleiten des Zyklus von Paketdaten zu der zugehdrigen Speicherbank 32a-32h
in Abhangigkeit von dem Verfugbarkeitsstatus der Speicherbanke aus. Der Eingangsverteiler stellt aulerdem
auf der Leitung 36b eine Bypass-Datenleitung zu dem Multiplexer 30 bereit. Wenn die Statusbits in dem Ein-
gangsverteiler anzeigen, dass alle der Speicherbanke 32a-32h leer sind, kann eine der neun Ressourcen tber
den Eingangsverteiler direkt zu dem zugehérigen Anfordernden Uberbruckt werden.

[0084] Jede der Speicherbanke 32a-32h ist mit dem Multiplexer 30 gekoppelt. Der Multiplexer 30 wird durch
den Ausgangsverteiler 38 gesteuert. Wenn der mit dem SIB 25a verbundene Anfordernde bereit ist, die Daten
aus dem SIB zu empfangen und ein Teil eines Pakets in den SIB geschrieben worden ist, leitet der Ausgangs-
verteiler einen der acht Eingange aus den Speicherbanke 32a-32h zu dem Anfordernden. Alternativ leitet der
Ausgangsverteiler die Bypass-Daten auf der Leitung 36b zu dem Anfordernden weiter, wenn keine der
Speicherbanke zur Ubertragung anstehende Daten hat und auf der Leitung 36 von dem Eingangsverteiler Da-
ten verfugbar sind.

[0085] In Betrieb wird, wenn die ersten 128 Bits der Paketdaten auf der SIB-Seite empfangen werden, eine
der acht Speicherbanke zum Speichern der ersten 128 Bits der Paketdaten ausgewahlt.

[0086] Gemal einem Ausfuhrungsbeispiel der Erfindung wird wahrend der nachsten drei Zyklen, die diese
128 Bits Paketdaten empfangen werden, die Speicherbank, die an die Speicherbank, die zuvor zum Schreiben
ausgewahlt war, angrenzt, zum Schreiben der nachsten 128 Bits Paketdaten verwendet. Wenn beispielsweise
Speicherbank 32a als eine verfiigbare Speicherbank zum Schreiben des ersten Zyklus der Paketdaten aus der
Quelle memO verwendet werden wiirde, wirde der zweite Zyklus von Paketdaten in die Speicherbank 32b ge-
schrieben werden, der dritte in die Speicherbank 32c und der vierte in die Speicherbank 32d. Die Auswahl,
welche Speicherbank zum Schreiben von folgenden Zyklen von Paketdaten zu verwenden ist, wird folglich auf
einer Rotationsbasis, die mit der durch den Eingangsverteiler ausgewahlten Speicherbank beginnt und mit ei-
ner angrenzenden Speicherbank fur das sich daran anschlieBende Paketschreiben fortsetzt, erfolgen. Im Er-
gebnis wird das empfangene Paket Uber vier Speicherbanke in einer gewohnlichen Zeile des Puffers 32 ver-
teilt.

9/89

DE 698 32 943 T2 2006.06.29

[0087] Weil acht Speicherbanke bereitgestellt werden und weil in einem Ausflhrungsbeispiel der Erfindung
die Hochstanzahl von Ressourcenauslesungen, die an jedem der Anfordernden unerledigt sind, acht ist, kann
sichergestellt werden, dass wenigstens eine Speicherbank fiir jede Ressource fur jeden Schreibzyklus verfiig-
bar ist. Deshalb kdnnte jede der Speicherbanke 32a-32h, wenn zu einem gegebenen Zeitpunkt alle acht un-
erledigten Antworten durch den Switch empfangen werden wiirden, verwendet werden, um den ersten Paket-
datenzyklus des Schreibens mit der Auswahl der Speicherbanke, die fir die nachsten drei Zyklen rotieren, auf-
zunehmen.

[0088] In einem Ausfiihrungsbeispiel der Erfindung arbeitet jeder Puffer in einem SIB unter dem FIFO-Proto-
koll (First-In First-Out protocol). Weil zwei Teile des Pakets simultan empfangen werden kénnen, wird fir diese
eine Reihenfolge ausgewahlt, mit der sie in den Switch gelesen werden. Da die Logik in dem Anfordernden,
die die Ressourcen verteilt, nicht mit dem SIB kommuniziert und nicht mit anderen Anfordernden kommuniziert,
um den Zugriff zu verteilen, wird einer Standardregel gefolgt, um die Datenintegritat sicherzustellen: beispiels-
weise eine Regel wie ,Daten von einer niedrigeren Anzahl von Eingangsressourcen werden immer vor Daten
von einer héheren Anzahl von Eingangsressourcen in den Switch geschrieben", wobei den Ressourcen eine
feststehende Prioritdtsanzahl zugewiesen wird.

[0089] Wie oben erwahnt, wurde in dem Ausfiihrungsbeispiel des in der Fig. 4A gezeigten SIBs, die Verwen-
dung von acht Speicherbanken beschrieben, weil acht der Anzahl der unerledigten Speicherabfragen ent-
spricht, die ein Anfordernder zu jedem gegebenen Zeitpunkt haben kann. Wenn jedoch die Designbeschran-
kungen erfordern, dass weniger Speicherbanke bereitgestellt werden, kann das Design durch einen Fachmann
in dieser Technik einfach modifiziert werden, um zu erméglichen, dass mehrere Einheiten von Daten unter Ver-
wendung von Verschachtelung oder einer dhnlichen Technik simultan in verschiedene Speicherorte einer ge-
wohnlichen Speicherbank geschrieben werden. Deshalb ist die vorliegende Erfindung nicht auf das bestimmte,
in der Fig. 4A dargestellte Ausflihrungsbeispiel, beschrankt.

[0090] Wie oben beschrieben, unterhalt der Verteiler im Betrieb Statusinformationen in Bezug auf die Verfiig-
barkeit der Eintragungen in die Speicherbank, um eine adaquate Speicherbank fiir das Schreiben der Daten
aus einer Ressource auszuwahlen.

[0091] Eine exemplarische Ausfiihrung eines Eingangsverteilers 36 zum Steuern der Eingange in den SIB ist
in der Eig. 4B gezeigt. In der Eig. 4B wird, obwohl oben neun Eingange beschrieben wurden, aus Griinden der
Ubersichtlichkeit die Logik zum Steuern des Schreibens von nur zwei Ressourceneingaben gezeigt. Wenn die
eingegebenen Paketdaten auf den Leitungen 35 empfangen werden, wird ein Anzeigesignal, wie zum Beispiel
sEingang1", zu einer Signalspeicherkette 40 weitergeleitet, die vier Signalspeicher, Flip-Flops oder ahnliche
Statuseinrichtungen umfasst. Die Signalspeicherkette 40 wird als ein Zahimechanismus verwendet. Fir den
Zweck dieses Beispiels wird vorausgesetzt, dass die Daten in vier aufeinander folgenden Ubertragungszyklen
empfangen werden. Wahrend der vier Datenlibertragungszyklen propagiert das Eingang1-Signal durch die Si-
gnalspeicherkette. Mit der Signalspeicherkette ist ein ODER-Gatter 46 gekoppelt. Wahrend der Eingangsver-
teilerwert durch die Signalspeicherkette 40 propagiert, wird der Ausgang des ODER-Gatters 46 aktiviert.

[0092] Der Ausgang des ODER-Gatters 46 stellt zu einem Verschieberegister ein Wechselzeichen bereit. Das
Schieberegister umfasst acht Bit-Speicherstellen, eine fiir jede der Speicherbanke des SIBs. Das Schiebere-
gister 48 wird bei Eingangsempfang des Eingang1-Signal-Samples mit einem Vektor der Speicherbankaus-
wahllogik 44 geladen. Der von der Speicherbankauswahllogik 44 empfangene Bit-Vektor hat nur ein Bit-Set,
wobei die relative Speicherstelle des Bits innerhalb des Vektors der Speicherbank anzeigt, an welcher das
Schreiben der Paketdaten zu beginnen ist.

[0093] Die Speicherbankauswahllogik 44 steuert infolgedessen die Zieladresse des ersten Zyklus von Paket-
daten. Die Speicherbankauswahllogik 44 empfangt als einen Eingang einen verfligbaren Vektor 42 mit den re-
lativen Speicherstellen der Bits in dem verfligbaren Vektor, der die zugehdrigen Puffer, die nicht in der Lage
sind, die Schreibdaten zu empfangen, anzeigt.

[0094] Wenn die Speicherbankauswahllogik ein Bit zu dem Schieberegister 48 bereitstellt, wird der Wert des
Schieberegisters 48 zu einem Demultiplexer 49 weitergeleitet. Der Demultiplexer 49 empfangt aulerdem als
Eingang eine numerische Darstellung des Eingangs der Multiplexer 34a-34h, mit dem die Eingang1-Quelle
verbunden ist. Beispielsweise empfangt der Demultiplexer 49 einen Eingangswert ,1", anzeigend, dass die
Eingang1-Ressourcendaten durch den Multiplexer 3a, der einen Multiplexer-Auswahlwert von ,1" verwendet,
weitergeleitet werden wirden. In Abhangigkeit von der Speicherstelle des Bits in dem Schieberegister, das die
ausgewahlte Speicherbank anzeigt, wird der Wert 1 zu der adaquaten Speicherstelle des Mux-AUSWAHL-Si-

10/89

DE 698 32 943 T2 2006.06.29

gnals 36a, <31:0>, propagiert. Jeder der Demultiplexer fiir jede Eingangsressource treibt alle der Mux-AUS-
WAHL-Signale, wobei ihre Ausgange geodert sind, bevor die Signale die Multiplexer 34a—34h treiben.

[0095] Nach dem Schreiben der Speicherbankeintrage werden die Inhalte des Schieberegisters durch das
ODER-Gatter 50 zusammengeodert und als der VERFUGBARE SPEICHER-BANKVEKTOR 42 gespeichert.
Dieser wird wahrend des nachsten Zyklus zum Bestimmen durch die Speicherbankauswahllogik 44, welche
Speicherbanke fur eingehende Schreiben verfligbar sind, verwendet.

[0096] Jeder Zyklus, in dem der Zeichenwechsel auf der Leitung 46a aktiviert wird, resultiert darin, dass das
Bit des Schieberegisters 48 nach rechts verschoben wird. Wahrend das Bit nach rechts verschoben wird, wird
der Auswahlwert in dem Mux-Auswahlsignal<31:0> ebenso nach rechts verschoben, wodurch veranlasst wird,
dass die Eingangswertquelle fiir den nachsten Schreibvorgang zu der nachsten angrenzenden Speicherbank
verschoben wird.

[0097] Folglich wird durch das Verwenden eines SIBs innerhalb des lokalen QSD-Switchs ein unkomplizierter
und effizienter Verbindungsmechanismus bereitgestellt, der in Lage ist, sicherzustellen, dass mehrere gleich-
zeitig empfangene Eingange die Zieladressen ihrer Anfordernden erreichen. Mit einer derartigen Anordnung
ist, sobald eine Quelle den Zugriff auf eine Ressource verteilt hat, jede erforderliche Zugriffsverteilung, die
durch die Quelle durchgefihrt werden muss, ausgefiihrt. Die Quelle kann sich auf die Tatsache verlassen, dass
die Ressource immer in der Lage sein wird, Zugriff auf den Switch-Puffer 32 zu erhalten. Das Ermdglichen,
dass die Quellen-Verteiler zum Verwalten einer Ressource unabhangig voneinander arbeiten kdnnen, stellt ei-
nen Mechanismus bereit, der mit minimalem Aufwand eine faire Zugriffsverteilung bereitstellt. Weil der SIB in
der Lage ist, Daten fur die Hochstanzahl von ausstehenden Auslesungen des Anfordernden selbst dann zu
speichern, wenn die Daten gleichzeitig von allen der Ressourcen empfangen werden, besteht zusatzlich kein
Bedarf fir die Zugriffsverteilung zwischen den Ressourcen fir den Puffer 32 und die Gesamtkomplexitat der
Ressourcenlogik wird verringert.

[0098] Im Folgenden Bezug nehmend auf die Fig. 5, wird ein zweites Ausfiihrungsbeispiel eines Simul-
tan-Eingabepuffers (SIB) 61 beschrieben, der entweder mit einem Prozessor oder einer |IOP-Einrichtung (jede
Vorrichtung zum Anfordern, die einen Cache enthalt) gekoppelt werden kann, wie in der Fig. 3 gezeigt. Der
SIB 61 enthalt neun Multiplexer 60a—60i, von denen acht mit einem jeweiligen von acht Puffern 62a—62h ge-
koppelt sind.

[0099] Der neunte Multiplexer 60i wird verwendet, um einen Bypasspfad bereitzustellen, wie unten beschrie-
ben wird. Die Multiplexer 60a—60i empfangen neun Eingange einschliellich vier Eingange der gekoppelten
Speichereinrichtungen mem0O-mem3, eines Eingangs des globalen Ports und drei Eingange der gekoppelten
Prozessaren auf den Leitungen Px, Py und Pz und eines Eingangs entweder des IOPs (wenn die dem SIB zu-
gehdrige Einrichtung ein Prozessor ist) oder eines weiteren Prozessors (wenn die dem SIB zugehdrige Ein-
richtung das IOP ist) auf der Leitung PW/IOP.

[0100] Jeder der Puffer 62a—62h enthalt vier 128-Bit-Eintrage. Dementsprechend speichert jeder der Ein-
gangspuffer ein 512-Bit-Paket Information, das in vier 128-Bit-Teilen in aufeinander folgenden Zyklen an dem
SIB empfangen wird. An jeden der Puffer ist jeweils ein Multiplexer 64a—64h vier bis eins gekoppelt. Diese Mul-
tiplexer werden verwendet, um einen der vier Eintrage der zugehoérigen Puffer zum Weiterleiten durch einen
Multiplexer 66 zu dem Ausgang des SIBs auszuwahlen.

[0101] Wie oben in Bezug auf die Fig. 4A beschrieben, sind acht Puffer enthalten, weil in einem Ausfihrungs-
baispiel der Erfindung jeder Anfordernde zu jedem gegebenen Zeitpunkt héchstens acht ausstehende Lesere-
ferenzen fur verschiedene Ressourcen haben kann. Infolgedessen ist dies keine Beschrankung der Erfindung,
obwohl in der Fig. 5 acht Puffer gezeigt werden. Stattdessen ist die gewahlte Anzahl der Puffer von den Puf-
ferungseigenschaften des zugehoérigen Prozessors oder der IOP-Einrichtung abhangig.

[0102] In Betrieb wahlt der Eingangsverteiler 67, wahrend von jeder der gekoppelten Ressourcen Eingang
empfangen wird, eine der Eingangsleitungen jedes der Multiplexer zum Weiterleiten des Datenpakets zu einem
freien Puffer. Wahrend der Dauer eines Paketschreibens einer gegebenen Ressource wird derselbe Puffer ge-
wahlt, so dass alle Teile des Pakets in einem einzelnen Paket bleiben. Sobald wenigstens ein Teil des Pakets
in den Puffer geschrieben wurde, kann es an den Multiplexer 66 zum Weiterleiten zu dem zugehdrigen Anfor-
dernden, wenn der Anfordernde bereit ist, bereitgestellt werden. Alternativ, wenn keine Paketdaten in einem
der Puffer sind, kann zum Weiterleiten der Paketdaten direkt durch den Multiplexer 60i Gber den Multiplexer
66 ein Bypasspfad zu dem Ausgang verwendet werden.

11/89

DE 698 32 943 T2 2006.06.29

[0103] Weil acht Puffer bereitgestellt werden, ist die SIB-Vorrichtung 61 in der Lage, Daten von jeder der ge-
koppelten Ressourcen im Wesentlichen gleichzeitig (d. h. in demselben Zyklus) zu empfangen. Durch das Ver-
wenden eines SIBs in dem QSD, wie in dem vorhergehenden Ausfiihrungsbeispiel, ist keine Verteilung des
SIBs zwischen den Anfordernden erforderlich. Im Ergebnis ist die Verfligbarkeit des lokalen Switchs garantiert,
wenn die Ressource bereit ist, diesen zu verwenden. Zusatzlich wird ein Verteilungsschema bereitgestellt, das
inharent fair ist, weil im Ergebnis der Verteilung des Switchs keine Anforderung zu einer Ressource durch an-
dere Anforderungen zu anderen Ressourcen blockiert wird. Dementsprechend ist eine faire und relativ einfa-
che Struktur bereitgestellt, die ermdglicht, die maximale Busbandbreite aufrechtzuerhalten, wahrend der Ver-
teilungsaufwand minimiert wird.

[0104] Folglich wird der Multiprozessorknoten 10 bereitgestellt, der die Verarbeitungsressourcen durch das
Implementieren eines lokalen Switchs, der zum Unterstiitzen einer hohen Busbandbreite einen Simultan-Ein-
gabepuffer verwendet, optimal nutzt. Zusatzlich ist, weil in dem Verteilerbus 13 eine Reihenfolge von Referen-
zen serialisiert wird, ein zentraler Ordnungspunkt bereitgestellt, der das Aufrechterhalten der Koharenz des
Speichers des Multiprozessorknotens 10 vereinfacht. Wahrend die Méglichkeit zum Erhéhen der Rechenleis-
tung durch das Erhéhen der Annzahl von mit dem lokalen Switch gekoppelten Prozessormodulen vorhanden
ist, stellt die Anordnung mit vier Prozessoren pro lokalem Switch ein System mit hoher Leistung und geringer
Latenz zu geringen Kosten bereit.

Groltes symmetrisches Mehrprozessorsystem

[0105] Die Anzahl von Prozessoren, die in einem monolithischen Mehrprozessorknoten enthalten sein kon-
nen, ist durch zwei Faktoren begrenzt. Zum einen ist die Anzahl von Prozessoren, die ber einen lokalen
Switch zusammengekoppelt werden kdnnen, durch die Anzahl von Anschlussstiften begrenzt, die auf Chips,
die den lokalen Switch bilden, vorhanden sind. Zweitens ist die Datenbandbreite begrenzt, die durch einen ein-
zelnen, monolithischen Switch unterstitzt wird. Infolgedessen kann durch das Erhéhen der Anzahl von gekop-
pelten Prozessoren uber einen bestimmten Punkt hinaus kein Leistungsgewinn erzielt werden.

[0106] Gemal einem Ausflhrungsbeispiel der vorliegenden Erfindung kann ein groRes symmetrisches Mehr-
prozessorsystem durch das Verbinden einer Vielzahl von Multiprozessorknoten Uber einen hierarchischen
Switch bereitgestellt werden. Beispielsweise kénnen acht der Mehrprozessorknoten Gber den hierarchischen
Switch gekoppelt werden, um ein symmetrisches Mehrprozessorsystem (SMP) bereitzustellen, das 32 Prozes-
sormodule, acht IOP-Vorrichtungen und 256 Gigabytes Speicher enthalt. Fir den Zweck dieser Beschreibung
wird ein SMP, das wenigstens zwei Mehrprozessorknoten enthalt, als ein groRes SMP bezeichnet. Wie unten
ausflihrlicher beschrieben, kann durch das Koppeln einer kleinen Anzahl von Prozessoren, die einen lokalen
Switch an einem SMP-Knoten verwenden, und anschlielRendes Koppeln einer Anzahl von Knoten, die einen
hierarchischen Switch nutzen, zu einem grofen SMP ein skalierbares Hochleistungssystem realisiert werden.

[0107] Um die Mehrprozessorknoten in ein hierarchisch geschaltetes Netzwerk zu koppeln, wird der Mehr-
prozessorknoten erweitert, um eine Globalport-Schnittstelle zu enthalten. Beispielsweise, im Folgenden auf die
Fig. 2 Bezug nehmend, koppelt ein lokaler Switch 110 vier Prozessormodule, vier Speichermodule und ein
IOP-Modul. Gleiche Elemente in den Eig. 2 und Eig. 6 haben dieselben Bezugsnummern. Der lokale Switch
110 des Mehrprozessorknotens 100 ist ein 10-Port-Switch, der 9 Ports 116a-116i hat, die gleichartig wie die
Ports 16a—16i der Eig. 2 aufgebaut sind. Ein zusatzlicher Port 116j stellt Gber den globalen Link 132 einen voll-
duplex taktweitergeleiteten Datenlink 120 bereit.

[0108] Der globale Port koppelt einen Mehrprozessorknoten mit dem hierarchischen Switch und realisiert in-
folgedessen ein groltes SMP. Im Folgenden auf die Fig. 7A Bezug nehmend, wird in einem Ausflihrungsbei-
spiel der Erfindung beispielsweise ein groles SMP-System 150, das acht Knoten 100a—-100h, die Gber einen
hierarchischen 8 x 8-Switch 155 zusammengekoppelt sind, gezeigt. Jeder der Knoten 100a—100h ist im We-
sentlichen mit dem in der Fig. 6 gezeigten Knoten 100 identisch.

[0109] Jeder der Knoten 100a-100h ist durch einen jeweiligen hierarchischen Switch 170a—170h mit dem
Switch 155 gekoppelt. In einem Ausfihrungsbeispiel werden die Datenlinks 170a-170h mit einer Taktge-
schwindigkeit von 150 MHz betrieben und unterstiitzen folglich 2,4 GBytes/sek. Datenbandbreite zum Uber-
tragen von Daten zu und von dem Switch 155. Dies versieht den Switch mit einem Maximum von 38,4
GBytes/sek. Rohverbindungsdatenbandbreite und 19,2 GBytes/sek. Bisektionsdatenbandbreite.

[0110] Das groRe SMP-System ist ein verteiltes System mit gemeinsamem Speicher, wobei jeder der Mehr-
prozessorknoten 100a-100h entweder einen adressierbaren Teil des Gesamtsystemspeichers oder einen un-

12/89

DE 698 32 943 T2 2006.06.29

terteilten Teil des physikalischen Speichers enthalt. In einem Ausfiihrungsbeispiel der Erfindung sind in dem
Gesamtsystemspeicher 2* physikalische Speicherstellenadressen vorhanden. Ein Ausfiihrungsbeispiel des
SMP-Mehrprozessorsystems 100 unterstutzt zwei Adressenformate, die als ,groRes Format" und ,kleines For-
mat" bezeichnet werden. Das grofie Format bildet physikalische 43-Bit-Adressen ab, auf denen die Prozesso-
ren in jedem Knoten direkt in eine physikalische 43-Bit-Adresse zur Verwendung in dem Mehrprozessorsystem
arbeiten. Durch das Adressieren des grofien Formats konnen die Bits<38:36> der physikalischen Speichera-
dresse als eine Knotenidentifikationsnummer verwendet werden. Die Adressenbits 38:36 dekodieren den Ho-
me-Knoten eines 1/0-Adressraums. wobei ,Home" den physikalischen Mehrprozessorknoten bezeichnet, auf
dem die Speicher- und I/0O-Vorrichtungen, die dem Speicherraum oder dem 1/0-Raum zugehoérig sind, vorhan-
den sind.

[0111] Der Adressiermodus des kleinen Formats setzt voraus, dass nicht mehr als vier Knoten in dem Mehr-
prozessorsystem vorhanden sind. Das kleine Format ermdglicht den Prozessoren, in jedem Knoten in einem
physikalischen 36-Bit-adressierten System zu arbeiten. Bei einem kleinen Format identifizieren die Bits 34:33
der physikalischen Adresse die Home-Knotennummer von Daten oder einer I/O-Vorrichtung.

[0112] Obwohl die CPU unter Verwendung einer physikalischen 36-Bit-Adresse arbeitet, verwendet das
Mehrprozessorsystem jedoch konsistent physikalische 43-Bit-Adressen zum Bestimmen der Datenspeicheror-
te, wobei die Bits 37:36 der physikalischen Adresse die Home-Knotennummer von Daten oder eine 1/0-Vor-
richtung kennzeichnen. Dementsprechend wird zwischen den durch die CPU ausgegebenen Adressen des
kleinen Formats und denen, die Uiber die Datenleitungen 13a-13h zu dem hierarchischen Switch 155 Uibertra-
gen werden, Translation durchgeflhrt.

[0113] Die dargestellte Anordnung des Mehrprozessorsystems 150 ist in der Lage, den cachekoharenten ge-
meinsamen Speicher mit hoher Bandbreite zwischen 32 Prozessoren bereitzustellen.

[0114] Ein weiteres Ausflihrungsbeispiel eines grolen SMPs gemal der Erfindung wird in der Eig. 7B ge-
zeigt, in der zwei Mehrprozessorknoten 100a und 100b ohne Verwendung des hierarchischen Switchs zusam-
mengekoppelt sind. Stattdessen sind die beiden Mehrprozessorknoten durch das Zusammenkoppeln der Aus-
gange ihrer globalen Ports direkt gekoppelt.

[0115] Unabhangig davon, ob die Zwei-Knoten-Ausflhrung der Eig. 7B oder die Mehrknoten-Ausfiihrung der
Fig. 7A verwendet wird, ist das Ergebnis ein Mehrprozessorsystem mit einem groften Adressraum und einer
grolRen Verarbeitungsleistung.

[0116] In beiden Ausflhrungsbeispielen sind die Speicheradressraume und die 1/0-Adressraume physika-
lisch zwischen allen Knoten 100a-100h in Segmenten verteilt. Jeder Knoten in dem System enthalt einen Teil
des Hauptspeichers, auf den unter Verwendung der oberen drei Bits der physikalischen Adresse des Speicher-
raums zugegriffen wird. Infolgedessen bildet jede Speicher- oder I/O-Adresse in einer (und nur in einer) Spei-
cherstelle oder 1/O-Vorrichtung in nur einem der Knoten ab. Die oberen drei Adressbits stellen infolgedessen
eine Knotennummer zum Identifizieren des ,Home-Knotens" des Knotens, in den die Speicher- oder I/O-Adres-
se abbildet, dar.

[0117] Jeder Mehrprozessorknoten kann auf Teile des gemeinsamen Speichers, die in ihrem Home-Knoten
oder in anderen Mehrprozessorknoten gespeichert sind, zugreifen. Wenn ein Prozessor auf einen gemeinsa-
men Speicherblock, fur den der Home-Knoten der eigene Knoten des Prozessors ist, zugreift (Iadt oder spei-
chert), wird die Referenz als eine ,lokale" Speicherreferenz bezeichnet. Wenn die Referenz zu einem Block
verweist, fir den der Home-Knoten ein anderer als der eigene Knoten des Prozessors ist, wird die Referenz
als eine ,Remote"- oder ,globale" Speicherreferenz bezeichnet. Weil die Latenz eines lokalen Speicherzugriffs
verschieden von der eines Remote-Speicherzugriffs ist, wird Gber das SMP-System ausgesagt, dass es eine
NUMA-Architektur (Architektur des nicht gleichformigen Speicherzugriffs) hat. Da das System des Weiteren
koharente Caches bereitstellt, wird das System als eine cache-koharente NUMA-Architektur bezeichnet.

[0118] Die hierin offen gelegte cache-koharente NUMA-Architektur enthalt mehrere Aspekte, die zu ihrer ho-
hen Leistung und geringen Komplexitat beitragen. Ein Aspekt der Konstruktion ist das Einhalten der Reihen-
folge zwischen Nachrichten und die Ausnutzung dieser Reihenfolge. Durch das Sicherstellen, dass Nachrich-
ten in Ubereinstimmung mit bestimmten Reihenfolgeeigenschaften durch das System flieRen, kénnen die La-
tenzen der Operationen signifikant verringert werden. Beispielsweise erfordern Speichervorgange nicht, dass
Invalidate-Nachrichten an ihre ultimativen Zieladressenprozessoren geliefert werden, bevor das Speichern als
ausgefiihrt betrachtet wird, stattdessen wird die Speicherung als ausgefiihrt betrachtet, sobald die Invalida-

13/89

DE 698 32 943 T2 2006.06.29

te-Nachrichten zu bestimmten geordneten Warteschlangen, die zu dem Zieladressenprozessor fuhren, gesen-
det wurden.

[0119] Zuséatzlich eliminiert die Konstruktion durch das Garantieren, dass bestimmte Reihenfolgen eingehal-
ten werden, den Bedarf fir Bestatigungsmeldungen oder Erledigungsmeldungen. Fir die Nachrichten ist ga-
rantiert, dass sie ihre Zieladressen in der Reihenfolge, in der sie in bestimmte Warteschlangen eingereiht wur-
den, erreichen. Infolgedessen besteht kein Bedarf, mit einer Bestatigung zu antworten, die eliminiert wird,
wenn die Nachricht ihre Zieladresse erreicht. Dies verbessert die Bandbreite des Systems.

[0120] Zusatzlich werden das Ordnen von Ereignissen und das Ordnen von Nachrichten verwendet, um einen
,Hot-Potato-Betrieb" zu erreichen. Durch Ausnutzung der Reihenfolge in bestimmten Warteschlangen sind
Controller, wie zum Beispiel der Verzeichnis- oder DTAG-Controller, in der Lage, Anforderungen mit einer ein-
zigen Kontrolle zuriickzuziehen. Negativbestatigung und Wiederholung einer Anforderung auf Grund von Kon-
flikten mit anderen Anforderungen sind nicht erforderlich. Als eine Konsequenz des ,Hot-Potato-Betriebs" wer-
den Fairness- und Aushungerungsprobleme eliminiert.

[0121] Der zweite Aspekt der Konstruktion sind die verwendeten virtuellen Kanale. Virtuelle Kanéle sind ein
Schema zum Kategorisieren von Nachrichten in Kanalen", wobei die Kanale physikalische Ressourcen ge-
meinsam nutzen kénnen (und infolgedessen ,virtuell" sind), jedoch jeder Kanal unabhangig von den anderen
Kanalen flussgesteuert ist.

[0122] Virtuelle Kandle werden verwendet, um durch das Eliminieren von Flussbhangigkeits- und Ressour-
cenabhangigkeitszyklen zwischen den Nachrichten in dem System Systemblockade in dem Cache-Koha-
renz-Protokoll zu beseitigen. Dies steht im Gegensatz zu Cache-Koharenz-Protokollen in NUMA-Mehrprozes-
soren nach dem Stand der Technik, die Mechanismen zum Erfassen von Verklemmungen anwenden und an-
schlieRend Verklemmungssituation durch negativ bestatigende Auswahlnachrichten und das Wiederholen ent-
sprechender Befehle l16sen.

[0123] Obwohl spater hierin eine ausfuhrliche Beschreibung der Kanale erfolgt, wird im Folgenden die Ver-
wendung der Kanale kurz beschrieben. Wie oben erwahnt, werden die Nachrichten innerhalb des groRRen
SMP-Systems unter Verwendung von logischen Datenpfaden, die als ,Kanale" bezeichnet werden, gelenkt. In
einem Ausfuhrungsbeispiel der Erfindung sind die folgenden Kanale enthalten: ein Q0-Kanal zum Befordern
von Transaktionen von einem anfordernden Prozessor zu dem Verteilerbus auf dem Home-Knoten, der der
Adresse der Transaktion entspricht, ein Q1-Kanal zum Beférdern von Transaktionen von einem Home-Vertei-
lerbus zu einem Prozessor oder zu mehreren Prozessoren und dem IOP und ein Q2-Kanal zum Beférdern von
Datenfilltransaktionen von einem Besitzerprozessor zu dem anfordernden Prozessor. Ein Q0Vic-Kanal kann
zum Beférdern von Victim-Transaktionen von einem Prozessor zu einem Speicher zum Schreiben modifizierter
Daten bereitgestellt werden. Zusatzlich kann der QOVic-Kanal verwendet werden, um QO-Transaktionen zu be-
fordern, die hinter den Victim-Transaktionen bleiben missen. Schlief3lich wird ein QlO-Kanal bereitgestellt, um
die |IO-Raum-Transaktionen von einem Prozessor zu einem IOP zu transportieren.

[0124] Die Kanéle bilden eine Hierarchie, die unten gezeigt wird:
(niedrigster) QIO > Q = Vic - Q0 - Q1 - Q2 (héchster)

[0125] Wie im Folgenden noch beschrieben wird, sollten die Nachrichten, um Verklemmung zu vermeiden, in
jedem Kanal niemals auf Grund von Nachrichten in einem niedrigeren Kanal blockiert werden. Weitere Einzel-
heiten in Bezug auf die Konstruktion und die Implementierung von Mechanismen, die die Ordnungseigenschaf-
ten und die virtuellen Kanale bereitstellen und anwenden, werden spater hierin beschrieben.

[0126] Folglich kann, wie in den Fig. 7A und Fig. 7B gezeigt, durch das Zusammenkoppeln jeder Anzahl von
SMP-Knoten der Fig. 2 ein groRes SMP-System bereitgestellt werden. Der Betrieb eines grolten SMP-Sys-
tems, wie dem, das in den Fig. 7A und Fig. 7B gezeigt ist, wird unten bereitgestellt und in drei Teilen beschrie-
ben. Zuerst werden die Hardwarekomponenten, die in dem groflen SMP enthalten sein kdnnen, beschrieben.
AnschlieRend wird das Cache-Koharenz-Protokoll, das die koharente gemeinsame Datennutzung zwischen
den Prozessoren in dem SMP bereitstellt, beschrieben. Zusatzlich werden die Implementierung und die Ver-
wendung von virtuellen Kanalen einschlielich der Unterstitzungsmechanismen, die fir die virtuellen Kanale
in dem hierarchischen Switch bereitgestellt werden, beschrieben.

14/89

DE 698 32 943 T2 2006.06.29

Hardwarekomponenten des gro3en SMPs

[0127] In jedem der Mehrprozessorknoten werden mehrere Elemente zum Implementieren der koharenten
gemeinsamen Datennutzung bereitgestellt. Wiederum auf die Fig. 6 Bezug nehmend, enthalten diese Elemen-
te das Verzeichnis 140, den DTAG 20, den IOP-Tag 14b, den globalen Port 120 und zusatzlich eine Hierarchie
von Serialisierungspunkten, die ermoglicht, dass eine Reihenfolge von Referenzen aufrechterhalten wird, um
das Cache-Koharenz-Protokoll zu erleichtern. Jedes dieser Elemente wird im Folgenden ausflhrlicher be-
schrieben.

Der globale Port

[0128] Der globale Port ermdglicht, dass der Mehrprozessorknoten 100 tber einen hierarchischen Switch 170
direkt mit einem oder mit mehreren gleichartig aufgebauten Mehrprozessorknoten gekoppelt wird. Weil jeder
Mehrprozessorknoten 100 als ein symmetrisches Mehrprozessorsystem arbeitet, werden der verfligbare
Adressraum und die Verarbeitungsleistung erhoht, je mehr Knoten in das System eingefiigt werden.

[0129] Im Folgenden auf die Fig. 8 Bezug nehmend, wird ein erweitertes Blockdiagramm eines globalen
Ports 120 gezeigt. Der globale Port enthalt eine Transaktions-Tracking-Verzeichnis (TTT) 122, einen
Victim-Cache 124, die Paketwarteschlangen 127, 122, 123 und 125 zum Speichern von Paketen, die von dem
Mehrprozessorknoten zu dem hierarchischen Switch weitergeleitet wurden, und eine Paketwarteschlange 121
zum Speichern von Paketen, die aus dem hierarchischen Switch empfangen wurden. Der globale Port 120
kommuniziert Gber den Verteilerbus 130 und zwei zugewiesene Ports aus dem lokalen Switch, zum Beispiel
dem GP-Link-In 132b und dem GP-Link-Out 132a, mit der weiteren Logik in dem Knoten.

[0130] Das TTT verfolgt die ausstehenden Transaktionen in dem Mehrprozessorknoten, d. h. jene Transakti-
onen, die von dem Knoten ber den globalen Port ausgegeben wurden und die auf Beantwortung von einem
anderen Mehrprozessorknoten oder von dem hierarchischen Switch warten. Jedes Mal, wenn entsprechende
Antworten in dem Knoten empfangen wurden, wird der TTT-Eintrag geléscht. Das TTT besteht aus zwei Teilen:
dem QO-TTT und dem Q1-TTT, wobei Q0 und Q1 Pakete bezeichnen, die auf den QO0- und Q1-Kanalen wie
oben beschrieben unterwegs sind. Die Einzelheiten, wie dem TTT ein Eintrag zugeteilt wird und wann dieser
zurliickgezogen wird, werden im Folgenden ausflhrlicher beschrieben.

[0131] Der globale Port 120 enthalt ebenso den Victim-Cache 124. Der Victim-Cache 124 speichert aus je-
dem der Prozessoren des Mehrprozessorknotens empfangene und fiir den Speicher eines anderen Mehrpro-
zessorknotens bestimmte Victim-Daten. Victim-Daten sind Daten, die in einer Cache-Speicherstelle in dem
Prozessor gespeichert waren und durch diesen Prozessor modifiziert wurden. Wenn neue Daten in dem Pro-
zessor empfangen werden, die an der Speicherstelle, die die modifizierten Daten speichert, gespeichert wer-
den missen, werden die modifizierten Daten als Victim-Daten bezeichnet.

[0132] Der Victim-Cache 124 stellt voriibergehendes Speichern von Victim-Daten, die von einem Prozessor
zu einem Speicher auf einem Remote-Prozessorknoten zielen, bereit. Wenn die Gelegenheit des Ubertragens
der Victim-Daten Uber den globalen Port zu einem anderen Knoten zu tbertragen, vorhanden ist, wird ein Mul-
tiplexer 167 geschaltet, um die Daten aus dem Victim-Cache 124 auf dem Ausgangsteil des Busses 170 be-
reitzustellen. Das Bereitstellen eines Victim-Caches an dem globalen Port ermdglicht den Prozessoren, ihren
jeweiligen Victim-Datenpuffer zu leeren, ohne die einzelnen Prozessoren die Speicherschreiblatenz des Ge-
samtsystems abwarten zu lassen. Stattdessen kdnnen Victim-Schreibvorgange durch den globalen Port der-
artig gesteuert werden, dass das Schreiben immer dann durchgefiihrt wird, wenn ein verfliigbarer Datenzyklus
vorhanden ist. Es verbleiben einige Steuerprobleme, die die Angemessenheit des Freigebens von Daten aus
dem Victim-Cache betreffen, diese Probleme werden jedoch unten beschrieben.

DTAG und IOP-Tag

[0133] Der DTAG und der IOP-Tag sind ebenso in dem kleinen SMP-System enthalten, werden jedoch weiter
unten ausfuhrlicher beschrieben. Der DTAG 20 speichert Statusinformationen fur jeden der Datenbldcke, die
in den Caches der Prozessoren des Mehrprozessorknotens gespeichert sind. Gleichermal3en speichert der
IOP-Tag 14 Statusinformationen fiir jeden Datenblock, der in dem IOP gespeichert ist. Wahrend das Verzeich-
nis grobe Informationen bereitstellt, die identifizieren, welcher der Mehrprozessorknoten Kopien der Daten
speichert, kdnnen der DTAG und der IOP-Tag verwendet werden, um eine genauere Angabe dahingehend,
welcher der Prozessoren innerhalb eines Mehrprozessorknotens Kopien der Daten speichert, bereitstellen.
Deshalb werden, sobald eine Referenz den Mehrprozessorknoten erreicht hat, der DTAG und der IOP-Tag ver-

15/89

DE 698 32 943 T2 2006.06.29

wendet, um zu bestimmen, welche Prozessoren in dem Knoten adressiert werden sollten.

[0134] Wie in der Fig. 6 gezeigt, werden der DTAG 20 und der IOP-Tag 14b mit dem Verteilerbus 130 zum
Uberwachen der Adressen, die auf den mit dem QSA-Chip 18 gekoppelten Speicherbereich verweisen, gekop-
pelt. Der DTAG ist in vier Segmente unterteilt, die den vier Prozessoren 12a-12d entsprechen. Jeder der Pro-
zessoren enthalt einen Cache (nicht gezeigt) zum vorlaufigen Speichern einer Datenteilmenge aus dem Spei-
cher 13. Jedem Cache ist ein Tag-Speicher zum Speichern der oberen Adressbits (Tags) eines in dem Cache
jedes Prozessors gespeicherten Speicherblocks zugehorig. Jedes Segment des DTAGs 20 enthalt Daten, die
den Zustand der Cache-Tags des zugehdrigen Prozessors anzeigen. Das Speichern einer Kopie der Tags in
dem DTAG 20 extern zu den Verarbeitungseinheiten ermdglicht dem System, auf dem Verteilerbus empfange-
ne Befehle zu filtern und nur diejenigen Lese- und Befehle Invalidate, die mit den Daten in dem Cache des
Prozessors verbunden sind, zu dem jeweiligen Prozessor weiterzuleiten. Der IOP-Tag 14a speichert die obe-
ren Adressbits jeder der in dem IOP-Cache 14c¢ gespeicherten Datenblocke. Die IOP-Tag-Speicherung ist den
Tag-Speicherungen, die in jedem der Prozessoren 12a—12d unterhalten werden gleichartig.

[0135] Jeder Eintrag in den DTAG 20 und in den IOP-Tag 14a enthalt eine Anzahl von Statusbits, die einen
der vier folgenden Zustande anzeigen: Dirty, Clean, Dirty_Not_Probed, Dirty_Probed. Diese Statusbits eines
Eintrags in den IOP-Tag zeigen einen der folgenden Zustande an: Valid und Dirty. Ein Valid-Bit zeigt an, dass
die in dem entsprechenden Eintrag des zugehoérigen Caches gespeicherten Daten mit den im Speicher gespei-
cherten Daten Ubereinstimmen. Ein Dirty-Bit zeigt an, dass die in dem entsprechenden Eintrag des zugehori-
gen Caches gespeicherten Daten durch den zugehoérigen Prozessor modifiziert wurden und nicht mit den im
Speicher gespeicherten Daten ibereinstimmen.

[0136] Auf den DTAG 20 und auf den IOP-Tag 14b wird jedes Mal dann, wenn auf dem Verteilerbus eines
Mehrprozessorknotens 100 ein Befehl erscheint, zugegriffen. Wenn auf den DTAG-Zugriff flir Prozessor eins
mit einem Ungliltig-Status geantwortet wird, dann speichert der Prozessor eins aus dem Knoten keine giiltige
Kopie der Daten, die der Speicheradresse zugehdrig sind. Wenn mit einem Glultig-Status auf den Zugriff zu
dem |OP-Tag 14a geantwortet wird, dann speichert der IOP-Cache 14c eine gultige Kopie der Daten. Wenn in
Reaktion auf einen DTAG-Zugriff auf den Prozessor eins mit einem Clean-Status geantwortet wird, zeigt dies
an, dass der Prozessor eine nicht modifizierte Kopie der der Speicheradresse entsprechenden Daten hat, dass
jedoch keine Versuche von irgendeinem anderen Prozessor unternommen wurden, die Daten zu lesen. Wenn
in Reaktion auf den DTAG-Zugriff mit einem Status Dirty_Not_Probed geantwortet wird, zeigt dies an, dass der
Prozessor eine modifizierte Kopie der der Speicheradresse entsprechenden Daten hat und dass wenigstens
ein Prozessor versucht hat, die Daten zu lesen, seit der Prozessor die Daten zuletzt modifiziert hat.

Betrieb des Verzeichnisses

[0137] Im Allgemeinen wird das Verzeichnis verwendet, um Besitzerinformationen fiir jeden Speicherblock in
dem zugehdrigen Mehrprozessorknoten (dem Home-Knoten) bereitzustellen, wobei ein Speicherblock gene-
rell die kleinste Datenmenge ist, die zwischen dem Speicher und einem Prozessor in dem SMP-System tber-
tragen wird. In einem Ausfiihrungsbeispiel ist ein Block bis zu der Grélke eines Pakets, 512 Bits (64 Bytes) Da-
ten, entsprechend. Zusatzlich zeigt das Verzeichnis an, welcher Mehrprozessorknoten Kopien der Speicher-
blockdaten speichert. Infolgedessen identifiziert das Verzeichnis fur die Lesebefehlstypen die aktuellste Versi-
on der Daten. Fur die Victim-Befehlstypen, bei denen ein modifizierter Datenblock zurlick in den Speicher ge-
schrieben wird, wird das Verzeichnis geprift, um zu bestimmen, ob der modifizierte Datenblock aktuell ist und
in den Speicher geschrieben werden sollte. Deshalb ist das Verzeichnis der erste Zugriffspunkt fir jede Refe-
renz auf einen Speicherblock an dem zugehérigen Mehrprozessorknoten, unabhangig davon, ob die Referenz
durch einen Prozessor in einem Remote-Mehrprozessorknoten oder in einem lokalen Mehrprozessorknoten
ausgegeben wurde.

[0138] Das Verzeichnis speichert einen 14-Bit-Eintrag fur jeden 64-Byte-Datenblock (im Folgenden als eine
Cache-Zeile bezeichnet) des Speichers 13 in dem entsprechenden Knoten 100. Wie der Speicher 13 wird auch
das Verzeichnis physikalisch durch die Knoten in dem System verteilt, so dass sich, wenn sich eine Speicher-
adresse auf dem Knten N befindet, der entsprechende Verzeichniseintrag ebenso auf dem Knoten N befindet.

[0139] Im Folgenden Bezug nehmend auf die Fig. 9, wird ein Ausfiihrungsbeispiel eines Verzeichniseintrags
140a gezeigt, der ein Besitzer-ID-Feld 142 und ein Knotenprasenzfeld 144 enthalt. Das Besitzer-ID-Feld 142
umfasst 6 Bits Besitzerinformation fiir jeden 64-Byte-Block. Die Besitzer-ID spezifiziert den aktuellen Besitzer
des Blocks, wobei der Besitzer entweder einer der 32 Prozessoren in dem System, einer der acht I/O-Prozes-
soren oder der Speicher ist. Die acht Bits der Knotenprasenzinformation zeigen an, welcher der acht Knoten

16/89

DE 698 32 943 T2 2006.06.29

in dem System die aktuelle Version jeder Cache-Zeile erlangt hat. Die Knotenprasenz ist ein Grobvektor, wobei
eines der Bits den kumulativen Status von vier Prozessoren an demselben Knoten darstellt. In dem Fall von
gemeinsam genutzten Daten kann mehr als das Knotenprasenzbit eingerichtet werden, wenn mehr als ein
Knoten wenigstens einen Prozessor, der die Information speichert, hat.

[0140] Gelegentlich kénnen bestimmte Teile der Zustandsinformation von entweder dem DTAG oder dem
Verzeichnis erhalten werden. In derartigen Fallen ist die Statusinformation aus dem DTAG zu bevorzugen, da
sie wesentlich schneller abgerufen wird. Wenn beispielsweise der Besitzerprozessor eine Speicheradresse in
dem Home-Knoten fur die Adresse ist, muss der DTAG verwendet werden, um die Besitzer-ID bereitzustellen.

[0141] Fur Informationen Uber Referenzen, die aus Leistungsgrinden nicht durch den DTAG bedient werden,
ist das Verzeichnis 140 der zentrale Punkt fur alle Koharenzentscheidungen und fuhrt als solcher eine Anzahl
von Funktionen aus. Das Verzeichnis identifiziert den Besitzer eines Datenspeicherblocks. Der Besitzer kann
entweder ein Prozessor oder der Speicher sein. Die Besitzerinformation aus dem Verzeichnis wird von Lese-
typbefehlen (beispielsweise lesen, lesen — modifizieren) verwendet, um die Quelle der aktuellsten Version des
Datenblocks zu bestimmen. Die Besitzerinformation wird auRerdem verwendet, um zu bestimmen, ob die
Victim-Daten zuriick in den Speicher geschrieben werden sollten, wie unten ausfihrlicher beschrieben werden
wird.

[0142] Zusatzlich zum Identifizieren der Besitzer aller Daten fur alle Lesetypbefehle wird das Verzeichnis ver-
wendet, um Clean-to-Dirty- und Shared-to-Dirty-Befehle aus dem Prozessor zu klaren. Ein Clean-to-Dirty-Be-
fehl wird durch einen Prozessor ausgegeben, wenn er eine aktuelle Cache-Zeile in ihren Clean-Status modifi-
zieren will. Ein Shared-to-Dirty-Befehl wird ausgegeben, wenn er eine Cache-Zeile in den Dirty-Shared-Zu-
stand modifizieren will. Die Befehle werden zu dem Home-Verteilerbus weitergeleitet, wobei das Verzeichnis
bestimmt, ob der Prozessor eine aktuelle Version der Cache-Zeile hat. Falls ja, ist der Befehl erfolgreich und
dem Prozessor wird ermoglicht, die Cache-Zeile zu modifizieren. Andernfalls versagt der Befehl und der Pro-
zessor muss zuerst die aktuelle Version der Cache-Zeile erlangen. Diese Speichertyparbeitsschritte verwen-
den die Knotenprasenzinformation in dem Verzeichnis, um Erfolg oder Versagen festzustellen.

[0143] Wie oben erwahnt, identifizieren die Prasenzbits des Verzeichnisses den Mehrprozessorknoten mit
Kopien jedes Datenblocks, wenn die Speichertypbefehle ausgegeben werden. Speicherbefehle zeigen an,
dass die Inhalte der Cache-Zeile aktualisiert werden. Durch das Prifen des Prasenzbits 114 des zugehdrigen
Verzeichniseintrags, wenn ein Speicherbefehl in dem Verzeichnis 140 empfangen wird, werden die Knoten mit
ihren Prasenzbits verwendet, um die Mehrprozessorknoten mit Kopien der Cache-Zeile in dem Knoten zu iden-
tifizieren, so dass die Cache-Zeilen in jedem dieser Knoten ungultig gemacht werden kénnen.

[0144] Dementspechend arbeiten das Verzeichnis und der DTAG in Verbindung, um fir jeden der Datenbl6-
cke in dem Speicher des lokalen Multiprozessors und fir jeden der in den Caches des lokalen Prozessors ge-
speicherten Datenblécke Statusinformationen bereitzustellen. Das Verzeichnis in dem Home-Knoten stellt
Grobinformation Uber den Status der Kopie eines Cache-Blocks bereit. Anschlie3end gehen die Befehle Inva-
lidate zu denjenigen durch das Verzeichnis identifizierten Knoten, in denen auf den DTAG zugegriffen wird, um
die Kopieinformationen weiter zu verfeinern. Infolgedessen zeigt der DTAG in diesen Knoten an, welcher Pro-
zessor in den jeweiligen Knoten Kopien der Zeile in dem Cache speichert.

Das TTT

[0145] Das TTT wird verwendet, um die von einem Mehrprozessorknoten ausstehenden Transaktionen zu
verfolgen, d. h. Referenzen, die auf Reaktionen von anderen Mehrprozessorknoten oder dem hierarchischen
Switch warten. Informationen Gber ausstehende Transaktionen werden durch das Cache-Koharenz-Protokoll
bei der Weiterverarbeitung von anschlieRenden Befehlen zu in Beziehung stehenden Speicheradressen ver-
wendet.

[0146] Im Folgenden Bezug nehmend auf die Fig. 10, wird ein Ausfihrungsbeispiel des TTTs 122 gezeigt,
das ein Adressfeld 152, ein Befehlsfeld 154, ein Befehlsgeber-ID-Feld 156 und eine Anzahl von Statusbits 158,
einschliellich der Bits 158a—158c umfasst. Das Adressfeld 152 speichert die Adresse der Cache-Zeile fir eine
Transaktion, die aktuell in Gang ist, wahrend das Befehlsfeld den Befehl speichert, der der Cache-Zeile fur die
Transaktion, die aktuell in Gang ist, zugehdrig ist. Das Befehlsgeber-ID-Feld 156 speichert die Prozessornum-
mer des Prozessors, der den in dem Befehlsfeld gespeicherten Befehl initiiert hat. Die Statusbits 158 reflektie-
ren den Status des Befehls, der abgewickelt wird. Alternativ kdnnen die Statusbits verwendet werden, um ver-
schiedene Eigenschaften des Befehls, der aktuell abgewickelt wird, zu reflektieren.

17/89

DE 698 32 943 T2 2006.06.29

[0147] Beispielsweise wird ein Fillstatus-Bit 158a aktualisiert, wenn in Beantwortung eines Lesetypbefehls
Fulldaten empfangen werden. Ein Schattenstatus-Bit 158b wird eingerichtet, wenn der Befehl, der Gber den
globalen Port ausgegeben wird, ein Schattentypbefehl (der unten ausfiihrlicher beschrieben wird) ist. Das
ACK-Statusbit 158c wird eingerichtet, wenn als Reaktion eine Nachricht, die eine Beantwortung des Bestati-
gungstyps erwartet, empfangen wurde. Wenn die Antwort eintrifft, wird das Bit geléscht. Es ist zu beachten,
dass nicht alle der Statusbits, die in dem TTT enthalten sein kdnnen, gezeigt wurden. Stattdessen kénnen die-
jenigen Statusbits enthalten sein, die eine Relevanz flr spatere Beschreibungen haben. Zusatzlich ist vorge-
sehen, dass andere Statusbits alternativ bereitgestellt werden, wie zum Aufrechterhalten der Speicherkoha-
renz erforderlich, und die vorliegende Erfindung sollte nicht auf eine bestimmte Zuweisung von Bitsindem TTT
beschrankt sein.

[0148] Folglich werden das Verzeichnis, der DTAG, der IOP-Tag und das TTT jeweils verwendet, um die Ko-
harenz der Cache-Zeilen in dem SMP-System zu erhalten (im Folgenden als Cache-Kohéarenz bezeichnet).
Jede dieser Komponenten ist tGiber Schnittstellen mit dem globalen Port verbunden, um koharente Kommuni-
kation zwischen den Mehrprozessorknoten, die mit dem hierarchischen Switch 155 gekoppelt sind, bereitzu-
stellen.

Serialisierungspunkte

[0149] Zuséatzlich zu den obigen Elementen wird die Koharenz der gemeinsamen Datennutzung durch das
Bereitstellen eines Serialisierungspunktes in jedem Mehrprozessorknoten aufrechterhalten. In einem Ausfih-
rungsbeispiel der Erfindung ist der Serialisierungspunkt in jedem Mehrprozessorknoten der Verteilerbus 130.
Alle Q0-Referenzen, ob von einem lokalen Prozessor oder von einem Remote-Prozessor ausgegeben, werden
durch den QSA zu dem Verzeichnis 140 und dem DTAG 20 auf dem Verteilerbus 130 weitergeleitet. Sobald
die Referenzen auf das Verzeichnis und/oder den DTAG zugegriffen haben, werden die sich ergebenden
Q1-Kanalbefehle in strikter Reihenfolge auf dem Verteilerbus ausgegeben, wobei die Reihenfolge die Seriali-
sierungsordnung der Referenzen ist. Durch das Bereitstellen eines Serialisierungspunktes in jedem der Mehr-
prozessorknoten wird das Koharenzprotokoll zur gemeinsamen Datennutzung, das in dem SMP implementiert
ist, wesentlich vereinfacht.

[0150] Zusatzlich zu der Bereitstellung eines Serialisierungspunktes in jedem der Mehrprozessorknoten stellt
der hierarchische Switch 155 einen zweiten Serialisierungspunkt in dem SMP-System bereit. Wie unten noch
ausfuhrlicher beschrieben wird, stimmt der hierarchische Switch mit bestimmten Ordnungsregeln lberein, die
sicherstellen, dass die in dem ersten Serialisierungspunkt eingeflihrte Koharenz in dem groRen SMP-System
aufrechterhalten bleibt.

Globaler Port/Schnittstelle des hierarchischen Switchs

[0151] Im Folgenden Bezug nehmend auf die Eig. 11, ist ein Blockdiagramm des hierarchischen Switchs 155
gezeigt, der acht Eingangsports 155i0-155i7 und acht Ausgangsport 15500-15507 enthalt. Die Eingangsports
155i0-155i7 empfangen Pakete von den globalen Ports jeder der gekoppelten Mehrprozessorknoten. Die Aus-
gangsports 15500-15507 des hierarchischen Switchs leiten Pakete zu den globalen Ports jedes der gekoppel-
ten Mehrprozessorknoten weiter.

[0152] In einem Ausfiihrungsbeispiel der Erfindung ist jedem Eingangsport ein Puffer 160a—160h zur Puffe-
rung der empfangenen Pakete zugehorig. Obwohl das Ausflhrungsbeispiel in der Fig. 11 einen Puffer fir je-
den Eingang darstellt, kénnen die Puffer alternativ von jeder Anzahl von Eingangsports gemeinsam genutzt
werden. Wie oben erwahnt, kann jedes der Pakete jedem von funf Kanalen zugehdérig sein. In einem Ausfuh-
rungsbeispiel der Erfindung, das unten beschrieben wird, sind Teile jedes Eingangspuffers 160a-160h fir das
Speichern von Paketen von bestimmten Kanalen zugeordnet. Dementsprechend wird die Flusssteuerung von
den globalen Ports zu dem hierarchischen Switch 155 auf einer Kanalbasis durchgefiihrt. Durch Steuerung des
Datenflusses in den Schalter auf Kanalbasis und durch das Zuordnen von Teilen der Eingangspuffer zum Aus-
wahlen einer der Kanale, stellt der Switch die Kommunikation zwischen Mehrprozessorknoten in dem
SMP-System frei von Verklemmung bereit.

[0153] Zusatzlich zu dem Bereitstellen einer von Verklemmung freien Kommunikation ist der hierarchische
Switch 155 auRerdem ausgelegt, um die Ordnungszwange des SMP-Systems zu unterstitzen, um die Spei-
cherkoharenz sicherzustellen. Die Ordnungszwange werden durch das Steuern der Reihenfolge von Paketen,
die aus dem hierarchischen Switch 155 heraus zu den globalen Ports der zugehérigen Mehrprozessorknoten
weitergeleitet weiden, auferlegt. Pakete von jedem der Eingangspuffer 160a—160h kdnnen tber die Multiplexer

18/89

DE 698 32 943 T2 2006.06.29

182a-182h zu jedem der Ausgangsports weitergeleitet werden. Wie unten ausfihrlicher beschrieben wird, ist
der Switch 155 auRerdem zum Massenversenden der Pakete in der Lage. Dementsprechend kénnen Pakete
aus einem Eingangspuffer in jeder Anzahl von Ausgangsports weitergeleitet werden. Durch das Durchsetzen
der Reihenfolge an den globalen Ausgangsports kann die in jedem Mehrprozessorknoten erhaltene Serialisie-
rungsordnung aufrechterhalten werden, um in dem SMP-System eine gesamtkoharente gemeinsame Daten-
nutzung bereitzustellen.

Vermeidung von Blockierungen in dem hierarchischen Switch

[0154] Wie oben erwahnt, leitet jeder der acht Knoten der Fig. 7A Daten zu dem hierarchischen Switch weiter
und es kann der Fall eintreten, dass alle Knoten gleichzeitig Daten weiterleiten. Die Pakete werden in einer
Anzahl von verschiedene Kanaltypen (QO0, Q0Vic, Q1, Q2 und QIO) aufgeteilt, die auf virtuellen Kanalen wei-
tergeleitet wird, wobei ein virtueller Kanal im Wesentlichen ein Datenpfad ist, dem Pakete eines bestimmten
Typs zugeordnet sind, der eine gemeinsame Verbindung mit anderen Kanalen zusammen nutzen kann, jedoch
an beiden Enden der Verbindung unabhangig gepuffert ist. Weil zwischen dem globalen Port jeder der Knoten
und dem hierarchischen Switch nur ein Datenpfad vorhanden ist, werden alle Pakete von verschiedenen vir-
tuellen Kanalen unter Verwendung des einen Datenpfades in den hierarchischen Switch geschrieben.

[0155] Da jeder der acht Knoten 100a-100h in der Lage ist, Daten zu dem hierarchischen Switch zu senden,
ist eine Form der Steuerung erforderlich, um angemessen sicherzustellen, dass alle Nachrichten in dem Switch
empfangen werden und in einer adaquaten Reihenfolge aus dem Switch heraus weitergeleitet werden. Zusatz-
lich ist eine Aufgabe der vorliegenden Erfindung, sicherzustellen, dass Pakettypen héherer Ordnung nicht
durch Pakettypen niedriger Ordnung blockiert werden, um zu garantieren, dass in dem symmetrischen Mehr-
prozesssystem keine Verklemmung eintritt. In einem Ausflihrungsbeispiel der Erfindung ist die Reihenfolge der
Pakete von der hochsten Ordnung zu der niedrigsten Ordnung Q2, Q1, Q0, Q0Vic und QIO.

[0156] Gemal diesem Aspekt der Erfindung wird eine Flusssteuerung der Pakete, die an den Eingangsports
des Switchs ankommen, bereitgestellt, die sicherstellt, dass die oben aufgestellte Regel zum Verhindern der
Verklemmung immer erflllt wird. Des Weiteren missen die in dem Switch verfligbaren Puffer immer optimal
ausgenutzt werden und eine maximale Bandbreite muss aufrechterhalten werden.

[0157] GemalR einem Ausfuhrungsbeispiel der Erfindung wird eine Steuervorrichtung zum Steuern des
Schreibens von Daten in den hierarchischen Switch bereitgestellt, die durch das Bereitstellen von jedem Pa-
kettyp zugewiesenen Schlitzen in einem Puffer des hierarchischen Switchs implementiert wird. Der Puffer ent-
halt aulRerdem eine Anzahl von generischen Schlitzen, die zum Speichern von Paketen jedes Typs verwendet
werden kdnnen. Durch das Bereitstellen von zugewiesenen Pufferschlitzen in dem hierarchischen Switch kann
Systemblockade durch das Garantieren, dass Pakete hoherer Ordnung immer einen verfiigbaren Pfad durch
den Switch haben, vermieden werden. Zusétzlich kann durch das Uberwachen der Anzahl von generischen
Schlitzen und von zugewiesenen Schlitzen, die verfiigbar ist, und durch Uberwachen der Anzahl von verschie-
denen Pakettypen, die in dem Puffer gespeichert ist, ein einfaches Flusssteuerschema implementiert werden,
um Knoten vom Schreiben in den Puffer des hierarchischen Switchs abzuhalten, wenn der Puffer seine Kapa-
zitat erreicht.

[0158] Im Folgenden Bezug nehmend auf die Fig. 12A, wird als ein Beispiel der Steuerlogik zur Verwendung
beim Steuern des Schreibens durch mehrere Knotenquellen ein gemeinsamer Zieladressenpuffer bereitge-
stellt. In dem Blockdiagramm der Fig. 12A werden durch ein Beispiel die globalen Ports 120a und 120b von
zwei verschiedenen Knoten gezeigt.

[0159] In der Fig. 12A werden die Teile der globalen Ports 120a und 120b der Knoten 100a und 100b jeweils
detaillierter gezeigt und enthalten einen Puffer 135, der die Eintrage 135a und 135b zum jeweiligen Speichern
von QO0/Q0Vic, Q1, Q2 und der Pakete des generischen Typs (entweder Q0-, Q0Vic-, Q1-, Q2-Pakete oder
QIO-Pakete) zum Ubertragen zu dem hierarchischen Switch 155 enthalt. Ein Multiplexer 167a ist mit dem Puf-
fer 135 gekoppelt, um einen der Pakettypen zum Weiterleiten unter Verwendung eines Auswahlsignals von
dem GP-Verteiler 134 Uber den Link zu dem hierarchischen Switch auszuwahlen.

[0160] Zusatzlich enthalt jeder globale Port ein zugeordnetes Zahlregister 136. Das zugeordneten Zahlregis-
ter speichert eine Zahlung fir jeden Q0-/Q0Vic-, Q1- und Q2-Kanaltyp des Pakets der Anzahl der Pakete die-
ses Kanaltyps, die aktuell in dem hierarchischen Switch 155 anhangig ist. Die Zahlung wird inkrementiert, wenn
das Paket des jeweiligen Kanaltyps zu dem hierarchischen Switch tibertragen ist, und dekrementiert, wenn das
Paket aus dem hierarchischen Switch Ubertragen wird.

19/89

DE 698 32 943 T2 2006.06.29

[0161] In einem Ausflihrungsbeispiel der Erfindung enthalt der hierarchische Switch 155 einen Puffer fir jede
der acht Eingangsquellen. In der Fig. 12A wurden nur zwei Puffer 160a und 160b, die jeweils den zwei globa-
len Ports 120a und 120b entsprechen, gezeigt. In einem Ausfihrungsbeispiel der Erfindung sind wenigstens
(m = 1) x n zugewiesene Schlitze in jedem der Puffer 160a und 160b, wobei m der Anzahl von virtuellen Ka-
naltypen entspricht, die zugeordnete Eintrage in dem Puffer haben, und n der Anzahl von Knoten entspricht,
die den Puffer gemeinsam nutzen. In dem Ausfuhrungsbeispiel der Fig. 12A enthalt jeder der Puffer acht Ein-
trage. Funf der Eintrage sind generische Eintrage und kénnen jeden Pakettyp speichern, der von dem globalen
Port 135 weitergeleitet wird. Jeder der restlichen drei Eintrage wird dem Speichern eines bestimmten Paket-
typs zugeordnet, wobei ein Eintrag zum Speichern der Q0-/Q0Vic-Pakete zugeordnet ist, ein Eintrag zum Spei-
chern der Q1-Pakete zugeordnet ist und ein Eintrag dem Speichern von Q2-Pakettypen zugeordnet ist.

[0162] Obwohl diese zugeordneten Eintrage als sich an einem feststehenden Ort in den Puffern 160a und
160b befindend gezeigt wurden, kann in der Realitat jede Pufferstelle die zugewiesene Pufferstelle sein, d. h.,
dass unabhangig von der Stelle des Eintrags fur jeden bestimmten Pakettyp immer ein zugeordneter Eintrag
in dem Puffer vorhanden ist.

[0163] Der hierarchische Switch enthalt zusatzlich fiir jeden Puffer 160a und 160b jeweils einen zugeordneten
Zahler 162a und 162b und ein Flag-Register 163a und 163b. In dem Ausfihrungsbeispiel in der Fig. 12A ent-
halt der zugeordnete Zahler vier Eintrage, drei Eintrdge zum Speichern der Anzahl von Q0-/Q0Vic-, Q1- und
Q2-Paketen, die aktuell in dem Puffer 160a gespeichert sind, und einen Eintrag zum Speichern einer Zahlung
der Anzahl von verwendeten generischen Eintragen in dem Puffer. Das Flag-Register umfasst drei Bits, wobei
jedes Bit einem der Q0-/Q0Vic-, Q1- oder Q2-Pakettypen entspricht, und zeigt an, ob der zugehérige zugeord-
nete Zahler null ist (d. h., ob der zugeordnete Eintrag fur diesen Pakettyp verwendet wurde). Folglich sind die
Werte des Flag-Registers entweder eins, anzeigend, dass wenigstens ein Paket dieses Typs in dem Puffer ge-
speichert ist, oder null, anzeigend, dass keine Pakete dieses Typs in dem Puffer gespeichert sind.

[0164] Zusatzlich enthalt der hierarchische Switch 155 fur jeden Puffer 160a und 160b jeweils eine Transit-
zahlung 164a und 164b. Die Transitzahlung fihrt fir jede Quelle die Anzahl von ausstehenden Paketen jedes
Typs, die sich wahrend eines gegebenen Datenzyklus im Transit befinden kann.

[0165] Die Anzahl von Paketen, die sich in einem gegebenen Datenzyklus im Transit befinden kann, steht in
direkter Beziehung mit der Flusssteuerungslatenz des hierarchischen Switchs und des globalen Ports. Von
dem hierarchischen Switch wird ein Flusssteuersignal zu dem globalen Port weitergeleitet, um dem globalen
Port zu signalisieren, das Senden von Daten zu dem hierarchischen Switch einzustellen. Die Flusssteuerungs-
latenz (L) wird als die Anzahl der Datenubertragungszyklen gemessen, die zwischen der Aktivierung eines
Flusssteuersignals durch den hierarchischen Switch und dem Anhalten der Datensendungen durch den glo-
balen Port anwachst.

[0166] Der hierarchische Switch enthalt auRerdem eine Schreibsteuerlogik 166a und 166b zum Steuern des
Schreibens der jeweiligen Puffer 168a und 168b. Die Schreibsteuerlogik steuert den Datenfluss in den zuge-
hérigen Puffern durch das Aktivieren des Flusssteuersignals auf der Leitung 168a und der Bestatigungssignale
(ACK-Signale)<3:0> auf den Leitungen 168b. Das Flusssteuersignal und die ACK-Signale werden jeden Da-
tenzyklus gesendet. Wie oben erwahnt, wird das Flusssteuersignal verwendet, um das Ubertragen von Paket-
daten durch den gekoppelten globalen Port anzuhalten. Die ACK-Signale<3:0> auf den Leitungen 168b ent-
halten ein Bit fir jeden der zugewiesenen Pakettypen und werden verwendet, um dem gekoppelten globalen
Port zu signalisieren, dass ein Paket dieses Typs von dem zugehdrigen Puffer freigegeben wurde. Die ACK-Si-
gnale werden infolgedessen von der Zahlung des globalen Ports verwendet, um die Werte in dem zugeordne-
ten Zahler 136 zu inkrementieren.

[0167] Die Schreibsteuerlogik aktiviert die Flusssteuerung, wenn festgestellt ist, dass die Gesamtmenge der
verfugbaren generischen Eintrage in dem Puffer nicht ausreichend grof ist, um alle der mdglichen Pakete, die
im Transit zu dem hierarchischen Switch sind, unterzubringen. Die Anzahl der verfligbaren generischen Schlit-
ze kann durch die Gleichung 1 unten bestimmt werden.

Gleichung 1:

Generische Zahlung = PuffergrofRe —# der in dem Puffer verwendeten generischen Eintréage — # nicht aktivierter
Flags

[0168] Sobald die Anzahl der verfligbaren generischen Eintrage bestimmt wurde, wird das Flusssteuersignal

20/89

DE 698 32 943 T2 2006.06.29

aktiviert, wenn die Gleichung 2 gilt.
Gleichung 2:
Generische Zahlung >= Transitzahlung - Anzahl der den Knoten verwendenden Puffer

[0169] Dementsprechend Uberwacht die Schreibsteuerlogik 166 die Anzahl von generischen und zugewiese-
nen Schlitzen, die in Verwendung sind, die Transitzahlung und die PuffergesamtgréRe, um festzustellen, wann
ein Flusssteuersignal zu aktivieren ist.

[0170] Die Aktivierung des Flusssteuersignals stoppt nicht alle Sendungen durch einen globalen Port eines
Quellenknotens. Der globale Port kann immer zugeordnete Paketdaten zu dem hierarchischen Switch tbertra-
gen, wenn der zugewiesene Schlitz, der dem zugeordneten Pakettyp entspricht, in dem Puffer des hierarchi-
schen Switchs vertiigbar ist. Infolgedessen kann der globale Port, wenn die Werte einer der zugeordneten Zah-
lungen in dem zugeordneten Zahler gleich null sind, immer Paketdaten des entsprechenden zugeordneten Pa-
kettyps senden.

[0171] Dementsprechend garantiert das Bereitstellen von zugewiesenen Eintragen in dem Puffer effektiv,
dass der Forschritt der Pakete eines Typs durch den hierarchischen Switch nicht von dem Fortschritt eines an-
deren Pakets durch den hierarchischen Switch abhangig ist.

[0172] Die Verwendung von zugewiesenen und generischen Schlitzen in den Puffern 160a und 160b ermog-
licht, dass eine Mindestanzahl von Schlitzen fiir jeden Pakettyp reserviert ist. Durch das Verfolgen der Anzahl
von Paketen, die im Transit sind, kann die Flusssteuerung in einer prazisen Art und Weise erfolgen. Sowohl
die Pufferausnutzung als auch die Bandbreite werden maximiert. Wenn beispielsweise nur generische Schlitze
vertigbar sind, kann die Flusssteuerung fir einen Zyklus verlassen werden und dann in dem nachsten Zyklus
wieder durchgesetzt werden. Im Ergebnis kdnnen innerhalb des Zeitraums bis zu x mehr Nachrichten empfan-
gen werden.

[0173] Im Folgenden Bezug nehmend auf die Eig. 12B, wird ein Flussdiagramm gezeigt, das das durch den
globalen Port verwendete Verfahren zu Weiterleiten von Daten zu dem hierarchischen Switch darlegt. Der Pro-
zess wird unter Bezugnahme auf einen Pakettyp beschrieben, obwohl er gleichermalRen auf andere Paketty-
pen anwendbar ist. In dem Schritt 169 wird in dem GS-Verteiler 134 festgestellt, ob in einem der Puffer
135a-135d ein Paket vorhanden ist oder nicht, das zu dem hierarchischen Switch weiterzuleiten ist. Wenn ein
Paket vorhanden ist, wird in dem Schritt 171 der Status des Flusssteuersignals durch den Verteiler 134 bewer-
tet. Wenn das Flusssteuersignal aktiviert ist, wird in dem Schritt 172 die zugeordnete Zahlung fur den bestimm-
ten Pakettyp, der zu dem hierarchischen Switch zu senden ist, geprift, um festzustellen, ob sie gleich null ist
oder nicht. Wenn die zugeordnete Zahlung nicht gleich null ist, dann ist der zugeordnete Eintrag in dem Puffer
fur diesen Pakettyp bereits in Verwendung und der Prozess geht zu dem Schritt 170 zurlick, in dem er zwi-
schen den Schritten 169, 171 und 172 in einer Schleife bleibt, bis die zugeordnete Zahlung fir diesen Pakettyp
gleich null ist oder bis das Flusssteuersignal deaktiviert ist. Wenn in dem Schritt 172 festgestellt wird, dass die
zugeordnete Zahlung gleich null ist, dann aktiviert der GP-Verteiler 134 in dem Schritt 173 das adaquate Aus-
wahlsignal zu dem Multiplexer 167, um das erwiinschte Paket zu dem hierarchischen Switch 155 weiterzulei-
ten. In dem Schritt 174 wird die zugeordnete Zahlung, die dem ausgewahlten Pakettyp entspricht, in dem zu-
geordneten Zahlregister 136 in dem globalen Port und in dem zugeordneten Zahlregister 162a in dem hierar-
chischen Switch 155 inkrementiert und das zugehdrige Flag in dem Flag-Register 163a wird aktiviert.

[0174] Wie oben beschrieben, wird das Flag-Register 163a zusammen mit der generischen Zahlung und der
Transitzahlung verwendet, um den Status des Flusssteuersignals flir den nachsten Datenzyklus zu bestim-
men. Im Folgenden Bezug nehmend auf die Fig. 13, ist ein Ausflihrungsbeispiel zum Steuern der Aktivierung
des Flusssteuersignals durch den hierarchischen Switch gezeigt. In dem Schritt 175 wird das Flag-Register
163a geprift, um die Anzahl der zugeordneten Zahleintrage, die gleich null sind, zu z&hlen. Wie oben erwahnt,
zeigt die Anzahl von Nullen die Anzahl der potenziell zugeordneten Pakete an, die durch jeden der Knoten, die
mit dem Puffer gekoppelt sind, selbst dann weitergeleitet werden kdnnten, wenn das Flusssteuersignal aktiviert
ist.

[0175] Dementsprechend wirden, wenn einer der zugewiesenen Schlitze fir einen der Knoten in dem Bei-

spiel der Fig. 11 verwendet werden wiirde, alle Eintrage des Flag-Registers gleich null sein und infolgedessen
anzeigen, dass drei Pufferstellen vorhanden sind, die fir die zugewiesenen Pakete reserviert werden sollten.

21/89

DE 698 32 943 T2 2006.06.29

[0176] Nachdem die Werte in dem Flag-Register 163a geprift wurden, wird in dem Schritt 176 unter Verwen-
dung der oben dargestellten Gleichung 1 die Gesamtanzahl der verfligbaren generischen Schlitze festgestellt.
Als Nachstes wird in dem Schritt 177 die Transitzahlung fir jeden Knoten festgestellt. Wie oben erwahnt, zeigt
die Transitzahlung die Anzahl von Nachrichten an, die fur jeden gegebenen Datenzyklus im Transit zwischen
dem globalen Port und dem hierarchischen Switch sein kann. Die Worst-case-Transitzahlung ist gleich der
Flusssteuerungslatenz L mal der Anzahl von Knoten, die Puffer N nutzen. Jedoch berlcksichtigt die Feststel-
lung der Transitzahlung geman einem Ausfihrungsbeispiel der Erfindung, ob das Flusssteuersignal fiir vorher-
gehende Zyklen aktiviert war oder nicht. Wenn das Flusssteuersignal in einem vorhergehenden Zyklus aktiviert
war, sind keine Pakete im Transit zwischen dem globalen Port und dem hierarchischen Switch. Wenn die
Flusssteuerung beispielsweise fiir die vorhergehenden J Perioden null war, kdnnen bis zu J x n Nachrichten
im Transit sein. Wenn jedoch das Flusssteuersignal fir einen Zeitraum von J — 1 des vorhergehenden Daten-
zyklus null war, sind nur (J — 1) x n Nachrichten im Transit.

[0177] Infolgedessen bestimmt das Ausfluhrungsbeispiel der Erfindung durch das Prifen der Gesamtlatenz
zwischen der Quelle (globaler Port) und der Zieladresse (hierarchischer Switch) und durch das Prifen der
Wechselbeziehung zwischen der Quelle und der Zieladresse in den vorhergehenden Datenzyklen intelligent
die Anzahl von Paketen im Transit. Nachdem die Transitzahlung fiir jeden Knoten ausgefihrt ist, wird in dem
Schritt 178a unter Verwendung der oben dargestellten Gleichung 2 festgestellt, ob ausreichend verfigbare ge-
nerische Eintrage in dem Puffer vorhanden sind, um die ausstehenden zugeordneten Pakete und die Pakete,
die im Transit sind, unterzubringen. Wenn die Gesamtanzahl der verfiigbaren generischen Pakete kleiner als
die Anzahl von Paketen im Transit mal der Anzahl von Knoten, die den Puffer gemeinsam nutzen, ist, dann
wird in dem Schritt 178 das Flusssteuersignal zu dem globalen Port 120a aktiviert, um das Weiterleiten von
Daten zu dem hierarchischen Switch 155 auszuschlieRen. Wenn jedoch die Gesamtzahlung anzeigt, dass die
Anzahl der potenziell empfangenen Pakete durch den Puffer 160a untergebracht werden kann, dann wird das
Flusssteuersignal nicht aktiviert und der Prozess kehrt fur den nachsten Datenzyklus zu dem Schritt 175 zu-
ruck.

[0178] Dementsprechend wird durch das Verfolgen der Anzahl von Nachrichten, die im Transit sind, und der
Anzahl von vorhergehenden Zyklen, in denen das Flusssteuersignal aktiviert war, die Flusssteuerung fein ge-
regelt, um sicherzustellen, dass die Verwendung des Daten-Links, der den globalen Port mit dem hierarchi-
schen Switch koppelt, maximiert wird.

[0179] Obwohl die Pufferschreibsteuerlogik und das Verfahren, die in den Fig. 11-Fig. 13 in Bezug auf das
Ubertragen von Daten von den Knoten zu dem hierarchischen Switch beschrieben wurden, sollte beachtet
werden, dass die vorliegende Erfindung nicht auf ein derartiges Konstrukt beschrankt ist. Stattdessen kann ein
Ausfuhrungsbeispiel der Erfindung in jeder Umgebung verwendet weiden, in der mehrere Quellen zum Spei-
sen eines gemeinsamen Empfangers vorhanden sind und in der Verklemmung verhindert werden muss.

Mechanismen in dem hierarchischen Switch zum Unterstiitzen von Kanalordnungszwangen

[0180] Das Auslesen von Daten aus dem hierarchischen Switch involviert im Wesentlichen das Weiterleiten
von Daten aus einem Eingangspuffer in eine Anzahl von Ausgangsquellen, so dass sowohl die Ordnung der
Pakete als auch die Datenabhangigkeiten zwischen den Paketen erhalten bleiben. Wie oben erwahnt, werden
die Pakete auf einer Vielzahl von Kanalen geliefert. Den Paketen auf den verschiedenen Kanalen sind be-
stimmte Ordnungszwange oder Abhangigkeiten zugehdrig. In einem Ausflihrungsbeispiel der Erfindung ist ein
Ordnungszwang, dass alle Pakete auf dem Kanal in einer Reihenfolge gehalten werden. Eine weitere Paket-
ordnungszwangsabhangigkeit ist, dass Pakete, die auf Kanalen hoherer Prioritat unterwegs sind, nicht von Pa-
keten, die auf Kanalen niedrigerer Prioritat unterwegs sind, blockiert werden sollten, wobei die Prioritat der Ka-
néle von hochster zu niedrigster Q2, Q1, Q0, Q0Vic und QIO ist. Das Aufrechterhalten der Ordnung wird unter
Verwendung verschiedener Techniken, die unten beschrieben werden, durchgangig durch das SMP-System
erreicht. In dem hierarchischen Switch werden drei Grundrichtlinien befolgt, um sicherzustellen, dass die Da-
tenabhangigkeiten und die Q1-Kanalordnung eingehalten werden. Diese Grundrichtlinien sind folgende:

[0181] Richtlinie 1: Wenn mehrere Q1-Pakete an einem gegebenen Eingangsport eines hierarchischen
Switchs empfangen werden, die auf einen gemeinsamen Ausgangsport zielen, erscheinen die Q1-Pakete in
derselben Reihenfolge an dem Ausgangsport, in der sie an dem Eingangsport erschienen sind.

[0182] Richtlinie 2: Wenn Q1-Pakete von mehreren Eingangsports an dem hierarchischen Switch durch zu

gemeinsamen Ausgangsports massenversendet werden, erscheinen die Q1-Pakete in derselben Ordnung an
allen Ausgangsports, auf die sie zielen.

22/89

DE 698 32 943 T2 2006.06.29

[0183] Richtlinie 3: Wenn geordnete Verzeichnisse von Q1-Paketen von mehreren Eingangsports des hierar-
chischen Switchs auf mehrere Ausgangsports zielen, erscheinen die Q1-Pakete an den Ausgangsports in ei-
ner Art und Weise, die mit einer einzelnen gemeinsamen Ordnung aller eingehenden Q1-Pakete konsistent ist.
Jeder Ausgangsport kann einige oder alle der Pakete in der gemeinsamen geordneten Liste Ubertragen.

[0184] Zusatzlich zu dem Aufrechterhalten der Gesamtsystemordnung fir den Zweck der Koharenz ist aulRer-
dem erwiinscht, die Pakete, die von dem Switch ausgegeben werden, so zu ordnen, dass die Leistung des
Adress- und des Datenbusses vollstandig umgesetzt wird. Im Folgenden Bezug nehmend auf die Fig. 14, wird
ein exemplarisches Zeitablaufdiagramm gezeigt, das die Verwendung der Adress- und Datenbusstruktur des
HS-Links 170 zeigt.

[0185] Der HS-Link 170 ist durch zwei Paare von unidirektionalen Adress- und Datenbussen mit jedem der
Mehrprozessorknoten 100 gekoppelt. Der Datenbus beférdert 512 Bit Datenpakete und der Adressbus befor-
dert 80 Bit Adresspakete. Das Ubertragen von Datenpaketen erfordert das Zweifache der Anzahl von Zyklen
wie das Ubertragen der Adresspakete. Einige Befehle, wie zum Beispiel ein Schreibbefehl, enthalten sowohl
ein Adress- als auch ein Datenpaket. Beispielsweise entspricht in der Fig. 14 das Adresspaket 179a dem Da-
tenpaket 179d. Wenn jeder Befehl sowohl ein Adress- als auch ein Datenpaket enthalten wirde, ware jeder
zweite Adressschlitz auf dem Adressbus im Leerlauf. Jedoch enthalten viele Befehle, wie zum Beispiel ein Le-
sebefehl, nur Adresspakete und erfordern keinen Schlitz auf dem Datenbus zum Ubertragen von Datenpake-
ten. Dementsprechend ist erwlinscht, um die Gesamtsystemleistung zu verbessern, einen Switch zu haben,
der Pakete zum Weiterleiten aus dem Bus in einer solchen Reihenfolge aussucht, dass sowohl der Datenteil
als auch der Adressteil ,gepackt" werden, d. h., dass eine Adresse und Daten in jedem mdglichen Zeitschlitz
der Adress- und Datenteile des HS-Links vorhanden sind. Wenn die Adressen und Daten auf dem HS-Link ,ge-
packt" werden, wird der HS-Link optimal ausgenutzt.

[0186] Zum Implementieren eines hierarchischen Switchs, der in der Lage ist, Daten aus mehreren Quellen
Uber mehrere Eingangsports simultan zu empfangen und die Daten tiber mehrere Ausgangsports zu mehreren
Zieladressen weiterzuleiten, gleichzeitig die Datenabhangigkeiten einzuhalten, die Systemordnung aufrecht-
zuerhalten und die Datenubertragungsrate zu maximieren, wird eine Vielzahl von Ausfiihrungsbeispielen be-
reitgestellt. Die verschiedenen Ausfiihrungsbeispiele werden unter Bezugnahme auf die Fig. 15-Fig. 18 be-
schrieben.

[0187] Im Folgenden Bezug nehmend auf die Eig. 15, wird ein Ausfiihrungsbeispiel eines Switchs, der die
oben beschriebenen Ordnungszwange implementieren kann, gezeigt. Wie in der Eig. 11 dargestellt, enthalt
der Switch 155 eine Vielzahl von Puffern 160a-160h. Jeder der Eingangspuffer ist ein Puffer mit einem
Schreibport und acht Leseports und gekoppelt, um Pakete von acht jeweiligen Eingdngen zu empfangen. Der
Switch enthalt ebenso acht Ausgangsports, obwohl nur die Logik flr einen Ausgangsport, Ausgangsport<0>,
gezeigt ist. Die Logik der restlichen Ausgangsports ist gleichartig und wird aus Griinden der Ubersichtlichkeit
hier nicht weiter dargestellt.

[0188] In einem Ausfiihrungsbeispiel der Erfindung enthalt jeder Eintrag jedes Puffers ein Kanalfeld 185 zum
Identifizieren des Kanals eines Pakets, das in dem Eintrag des Puffers gespeichert ist. Zusatzlich enthalt jeder
Eintrag eine Reihe von Link-Indexen 186. Jeder Link-Index ist ein Index zu einem der Eintrage in den Ein-
gangspuffern 160a-160h. Die Link-Indexe werden verwendet, um eine Kettenliste-Adressierstruktur bereitzu-
stellen, um auf aufeinanderfolgende Pakete auf demselben Kanal aus dem Puffer 160a in Ubereinstimmung
mit den Paketordnungszwangen zuzugreifen. In jedem Eintrag sind drei verknupfte Indexe L1, L2 und L3 vor-
handen, wobei jeder Link-Index den Ort der Eintragung in ein bis drei geordneten Listen kennzeichnet.

[0189] Jeder Eintrag enthalt auRerdem Abhangigkeits-Flags 189. Die Abhangigkeits-Flags werden verwen-
det, um die Abhangigkeiten von zwei Kanalen zu markieren. Das Abhangigkeits-Flag F1 wird gesetzt, wenn
das Paket in dem entsprechenden Eintrag ein Paket ist, das entweder auf einem Q1-, einem QIO-Kanal oder
einem QOVic-Kanal unterwegs ist. Das Abhangigkeits-Flag F2 wird gesetzt, wenn das Paket in dem entspre-
chenden Eintrag ein Paket ist, das entweder auf einem Q0-Kanal oder einem QO0Vic-Kanal unterwegs ist. Die
Abhangigkeits-Flags unterstitzen eine Ordnung der Weiterverarbeitung von Paketen in der folgenden Art und
Weise.

[0190] Konzeptionell werden die empfangenen Pakete in finf geordnete Warteschlangen aufgeteilt, die eine
Q2-Kanalwarteschlange, eine kombinierte Q1-/QIO-/Q0Vic-Kanalwarteschlange, eine kombinierte
QO0-/Q0Vic-Kanalwarteschlange, eine Q0Vic-Kanalwarteschlange und eine QIO-Kanalwarteschlange enthal-
ten. Infolgedessen kann ein Paket in mehr als einer Warteschlange enthalten sein. Die Kopfzeiger enthalten

23/89

DE 698 32 943 T2 2006.06.29

einen Zeiger 187a-187e fir jede der Warteschlangen. Die Kopfzeiger werden verwendet, um in den Puffern
160a—160h einen Index zum Identifizieren des nachsten Pakets in dem Puffer, das dieser Warteschlange ent-
spricht, bereitzustellen. Die Kopfzeiger 187 enthalten infolgedessen einen Q2-Kopfzeiger 187a, einen
Q1-/QlIO0-/Q0Vic-Kopfzeiger 187b, einen Q0-/Q0Vic-Kopfzeiger 187¢, einen QO0Vic-Kopfzeiger 187d und einen
QIO-Kopfzeiger 187e. Wenn ein Paket zuerst in einen Eingangspuffer geschrieben wird, wird es in einer oder
in mehreren der geordneten Warteschlangen platziert. Wenn es in mehr als einer geordneten Warteschlange
platziert wird, dann wird ein Abhangigkeits-Flag aktiviert oder werden mehrere Abhangigkeits-Flags 189 akti-
viert. Der Kanaltyp und die Abhangigkeits-Flags werden geprift, um einen adaquaten Eintrag in dem Puffer zu
wahlen, um derartig auszugeben, dass die Kanalabhangigkeiten eingehalten werden.

[0191] Jeder der Eintrage jedes der acht Eingangspuffer 160a-160h wird zu dem Multiplexer 182 weiterge-
leitet. Der Multiplexer 182 wahlt in Reaktion auf ein Auswahlsignal von dem Manager 180 eines der Pakete von
einem der Eingangspuffer. Der Manager 180 wahlt Eintrdge aus den 64 mdglichen Leseports der Eingangs-
puffer 160a-160h als Ausgange fiir den zugehoérigen Ausgangsport. Der Manager 180 wahlt die Pakete so aus,
dass eine Gesamtsystemordnung und die Kanalabhangigkeiten eingehalten werden.

[0192] Wahrend auf einem der Eingangspuffer 160a—-160h ein Paket empfangen wird, wird der Kanaltyp in
das Kanalfeld des Eintrags geschrieben und jedes diesem Eintrag zugehdrige Flag wird in dem Flag-Feld 189
aktiviert. Wie oben erwahnt, sind fur jeden Eintrag in den Eingangspuffer drei Link-Indexe vorhanden, von de-
nen jeder einer der drei geordneten Warteschlangen entspricht. In einem Ausfluhrungsbeispiel der Erfindung
werden die mehreren Link-Indexe zum Massenversenden der Pakete zu drei verschiedenen Ausgangsports
verwendet. Wenn ein massenversendetes Paket in dem Puffer gespeichert wird, wird es auf mehr als einer der
verketteten Listen platziert, wobei die verketteten Listen jeweils den verschiedenen Ausgangsports entspre-
chen. Im Ergebnis kann jeder der den verschiedenen Ausgangsports zugehorige Ausgangsmanager unter Ver-
wendung von verschiedenen verketteten Listen-Indexen auf denselben Eingangspuffereintrag zugreifen.

[0193] Wie oben erwahnt, sind die Link-Indexwerte Pufferindexwerte zum Adressieren des nachsten Pakets
des entsprechenden Typs in den Puffern 160a—160h. Dementsprechend wird der Link-Indexwert nicht ge-
schrieben, bis ein nachfolgendes Paket des entsprechenden Typs in den Puffer geschrieben wird. Wenn das
nachfolgende Paket in den Puffer geschrieben wird, wird die Adresse des nachfolgenden Pakets in den ver-
ketteten Index des vorhergehenden Pakets geschrieben, wodurch in dem nachsten Paket dieses Kanaltyps
ein Listen-Index bereitgestellt wird. Weil jeder der Eintrage zusatzlich zu dem Schreiben der Adressen in dem
vorhergehenden Eintrag drei mégliche Link-Indexfelder enthalt, wird ein Zwei-Bit-Feld (nicht gezeigt) zusam-
men mit der Adresse gespeichert, um dem Eintrag zu ermdéglichen, den adaquaten der drei Link-Indexe zum
Konstruieren der geordneten Liste zu identifizieren.

[0194] Der Manager 180 wahlt eines der Pakete in den Puffern 160a—160h zum Weiterleiten zu dem Aus-
gangsport in der folgenden Art und Weise. Wie oben erwahnt, speichern die Kopfzeiger den Puffer-Index, der
der Oberseite jeder der Warteschlangen entspricht. Wenn Pakete fir einen gegebenen Kanal weiterverarbeitet
werden, wahlt der Manager den Eintrag, der durch den entsprechenden Kopfzeiger angezeigt wird. Wenn ein
Flag 189 gesetzt ist oder mehrere Flags 189 gesetzt sind und Pakete in dieser Warteschlange, die den Kanalen
mit héherer Prioritdt zugehorig ist, nicht weiterverarbeitet wurden, kann das Paket nicht weiterverarbeitet wer-
den, bis alle vorhergehenden Pakete in der Warteschlange, die eine hdhere Prioritat haben, weiterverarbeitet
worden sind.

[0195] Wenn der Ausgangsmanager beispielsweise Pakete des Q0-Typs weiterverarbeitet, priift er die Ein-
trage, die durch die Q1-, QIO-, Q0Vic- und QO0-/Q0Vic-Kopfzeiger angezeigt werden. Wenn das Paket ein
QO-Kanalpaket ist, jedoch das Verarbeiten von Q1-Paketen noch nicht ausgefiihrt ist, kann der Eintrag nicht
weiterverarbeitet werden. Die Weiterverarbeitung von Paketen kann durch das Bereitstellen von Verarbei-
tungs-Flags mit jedem der Flags F1 und F2 angezeigt werden, die anzeigen, dass entweder die Kanal-Q1-Pa-
kete oder die Kanal-QO0-Pakete bereits weiterverarbeitet wurden. Sobald die Weiterverarbeitung aller Pakete
in der Warteschlange, die die Kanale héherer Prioritat hat, eingetreten ist (wie durch die Verarbeitungs-Flags
angezeigt), ist das dem Eintrag zugehdrige Paket frei zur Weiterverarbeitung.

[0196] Wenn ein Eintrag zu Weiterverarbeitung gewahlt wird, wahlt der Manager den Kopfzeiger, der mit der
Warteschlange, in der der Eintrag ist, assoziiert ist, als den Puffer-Index. Der Puffer-Index wird zu dem Multi-
plexer 182 weitergeleitet und der Puffereintrag wird an den Ausgangsport weitergeleitet. Die Link-Indexe wer-
den zuriick zu dem Kopfzeiger geleitet und der Kopfzeiger wird mit dem Puffer-Listen-Index des nachsten Pa-
kets in dieser Warteschlange aktualisiert.

24/89

DE 698 32 943 T2 2006.06.29

[0197] Dementsprechend verwendet das Switch-Ausflihrungsbeispiel der Fig. 15 eine verkettete Verzeich-
nisdatenstruktur, geordnete Warteschlangen und Flags zum Bereitstellen der Pakete zu einem Ausgangsport,
so dass die Gesamtsystemordnung erhalten bleibt. Zusatzlich stellt die verkettete Verzeichnisdatenstruktur, die
die mehrfachen Link-Indexe enthalt, einen einfachen Mechanismus zum Massenversenden der Pakete bereit,
wahrend die Massenversendungs-Paketordnungsregeln eingehalten werden.

[0198] Das Ausfiihrungsbeispiel der Fig. 15 verwendet Flags und geordnete Warteschlangen, um sicherzu-
stellen, dass die Kanalordnung erhalten bleibt. Im Folgenden Bezug auf die Fig. 16 nehmend, wird ein zweites
Ausfuhrungsbeispiel eines Switchs gezeigt, der in der Lage ist, Ausgangsdaten entsprechend vorgegebenen
Ordnungsabhangigkeiten bereitzustellen. In dem Ausfiihrungsbeispiel der Fig. 16 ist fir jeden Ausgangsport
des Switchs ein Puffer 200 bereitgestellt. Der Puffer 200 kann gekoppelt sein, um Eingange von jedem der Puf-
fer 160a—160h (Fig. 11) auf einem Eingangspaket-Empfangspfad 201 zu empfangen, wobei die Pakete von
den Eingangspuffern zu dem adaquaten Puffer des Ausgangsports in Abhangigkeit von der Zieladresse der
Pakete weitergeleitet werden. In einem Ausflihrungsbeispiel der Erfindung ist der Puffer als ein kollabierender
FIFO implementiert, obwohl andere Pufferungsarchitekturen, die dem Fachmann in dieser Technik bekannt
sind, verwendet werden kénnen.

[0199] Der Puffer 220 wird als eine Vielzahl von Paketen speichernd gezeigt, die zu dem Switch weiterzuleiten
sind. Der Puffer 200 in dieser Beschreibung speichert Pakete, die auf flinf verschiedenen Kanalen zu Ubertra-
gen sind: QO0, Q1, Q2, Q3 und Q4. Es sollte beachtet werden, dass die Kanale Q0-Q4 den zuvor beschriebe-
nen Kanalen QO0, Q1, Q2, Q0Vic und QIO nicht analog sind. Stattdessen werden sie lediglich fir den Zweck
der Beschreibung des Ausgabevorgangs des Switchs verwendet. Die Pakete Q0—Q4 stellen infolgedessen ge-
nerische Pakete auf verschiedenen Kanalen dar, wobei die Kanalabhangigkeiten entsprechend den Pfeilen in
dem Flussdiagramm der Eig. 16A definiert sind. In dem Diagramm der Eig. 16A zeigt ein Pfeil, der von einem
Kanal auf einen anderen Kanal gerichtet ist, dass die Pakete in dem ersten Kanal nicht zu einem Ausgangsport
weitergeleitet werden dirfen, wahrend ein Paket in dem zweiten Kanal ist, das vor dem Paket in dem ersten
Kanal empfangen wurde, und zur Weiterverarbeitung durch den Switch anhangig ist. Beispielsweise werden
in der Fig. 16A die Pakete in dem Kanal QO gezeigt, um abhangig von der Weiterverarbeitung der Pakete in
dem Kanal Q3 zu sein, und folglich ist ausgesagt, dass die Pakete in dem Kanal Q0 Pakete in den Kanal Q3
,schoben". Die zusétzlichen durch das Flussdiagramm der Eig. 16A dargestellten Abhangigkeiten zeigen an,
dass die Pakete in Kanal Q1 Pakete in die Kanale Q2 und Q3 schoben. Wieder sollte beachtet werden, dass
die durch das Flussdiagramm der Eig. 16A dargestellten Abhangigkeiten nicht die Abhangigkeiten der zuvor
beschriebenen QO0-, Q1-, Q2-, Q0Vic- und QIO-Kanale darstellen. Wie hierin spater beschrieben wird, sind die
Abhangigkeiten der Pakete in den Q0-, Q1-, Q2-, Q0Vic- und QIO-Kanalen komplex und deshalb wurden fir
ein einfacheres Erklaren des Betriebs des Puffers 200 die generischen Pakete und Abhangigkeiten bereitge-
stellt.

[0200] Wie oben erwahnt, werden die Eingangspakete an jedem der Eingangspuffer 160a-160h des Switchs
in Reihenfolge empfangen und in der Reihenfolge, die von der durch das Paket angezeigten Zieladresse ab-
hangig ist, zu den Ausgangspuffern, wie dem Puffer 200, weitergeleitet. Jeder Eintrag in jedem Ausgangspuf-
fer, wie zum Beispiel der Eintrag 200a, enthalt ein Quellen- und ein Zieladressfeld, die die sendenden und emp-
fangenden Knoten fiir das Paket anzeigen, ein Kanalfeld, das den Kanal, auf dem das Paket Uibertragen wird,
anzeigt, und eine Reihe von Bits 206a—206e. Die Bitreihe 206a—-206e enthalt ein Bit fur jeden Kanal, der Pakete
durch den hierarchischen Switch weiterleitet. Beispielsweise enthalt die Bitreihe in dem Ausflihrungsbeispiel
der Fig. 16 ein Bit fiir jeden Kanal Q0, Q1, Q2, Q3 und Q4.

[0201] Die Schreiblogik 205, die mit dem Eingangspaket-Empfangspfad fir den Ausgangsport gekoppelt ist,
steuert die Einstellung jeder Bitreihe gemafl dem Kanal des empfangenen Pakets und gemaf den Abhangig-
keiten zwischen den Kanalen, die in dem Flussabhangigkeitsdiagramm der Fig. 16A gezeigt werden. Wie un-
ten detaillierter beschrieben, kann die Schreibsteuerlogik die Bits ebenso durch das entweder statische oder
dynamische Erkennen der Abhangigkeiten aktualisieren. Wenn die Abhangigkeiten statisch erkannt werden,
werden die fiir die Kanale definierten Abhangigkeiten ungeachtet weiterer Pakete, die in dem Puffer sind, an-
gewendet. Wenn die Abhangigkeiten dynamisch erkannt werden, werden die Abhangigkeiten fir die Kanale
unter Bericksichtigung der Kanal- und Adressziele der weiteren Pakete in dem Puffer 200 angewendet.

[0202] Mitjeder der Reihen von Bits ist eine entsprechende Suchmaschine 208a-208e gekoppelt. Jede Such-
maschine sucht die zugehdrige Spalte von Bits, um einen Eintrag in dem Puffer 200, der das entsprechende
Bit der Spaltengruppe hat, auszuwahlen. Der ausgewahlte Eintrag wird fir jede Spalte (oder jeden Kanal)
durch eine Reihe von Signalen S4-S0 zu einem Ausgangspuffer-Manager 202 angezeigt. Unter Verwendung
der Auswabhlsignale, die von jeder der Suchmaschinen empfangen werden, in Verbindung mit den bekannten

25/89

DE 698 32 943 T2 2006.06.29

Datenabhangigkeiten zwischen den Kanalen, wahlt der Ausgangspuffer-Manager eines der Pakete aus dem
Ausgangspuffer 200, um dieses zu dem Ausgang des globalen Ports bereitzustellen.

[0203] In Betrieb, wenn auf dem Eingangspaket-Empfangspfad 201 ein Paket empfangen wird, wird der Ka-
nal durch die Schreibsteuerlogik 205 bewertet und das Bit in der Reihe von Bits 206a—-206e, das diesem Kanal
entspricht, wird durchgesetzt. In der Fig. 15 wird das Bit, dass eingestellt wird, um den Typ des Pakets anzu-
zeigen durch ein ,®" angezeigt und wird als Kanalidentifizierungs-Flag bezeichnet. Demgemal ist in der
Fig. 16 das Paket1 ein Q3-Paket. GemaR dem Ausfihrungsbeispiel der Fig. 15 wird zusatzlich zum Aktivieren
des Bits, das den Kanal des Eintrags anzeigt, zusatzlich fir jeden der Kanale, die das Paket auf diesem Kanal
schieben, ein Bit aktiviert. Jedes dieser Bits wird als ein Abhangigkeits-Flag bezeichnet und durch ein ,x" in der
Fig. 16 angezeigt. Deshalb wird fiir Paket2, das ein Q0-Kanal-Paket ist, das dem Q3-Kanalpaket zugehdrige
Bit zusatzlich aktiviert, da, wie in dem Flussdiagramm der Fig. 16A gezeigt, die Q0-Pakete die Q3 Pakete
schieben.

[0204] Wahrend die Pakete in dem Puffer 200 gespeichert werden und die ihnen zugehdérige Reihe von Bits
206a-206e aktiviert wird, wahlt jede der Suchmaschinen 208a—208e, die mit jeder Spalte von Bits assoziiert
ist, den ersten Eintrag in dem Puffer, der ein Bitset aufweist. Deshalb wirde der fir die Suchmaschine 208a
ausgewahlte Wert auf Paket2 zeigen, der fiir die Suchmaschine 208b ausgewahlte Wert wirde auf Paket3 zei-
gen usw.

[0205] Die Signale S0-S4 werden zu dem Manager weitergeleitet. Der Manager 202 wahlt in Reaktion auf die
Aktivierung der Auswabhlsignale durch die Suchmaschinen und zuséatzlich zu den in dem System vorhandenen
Abhangigkeiten eines der Pakete aus. Gemal einem Ausfiuhrungsbeispiel der Erfindung wird beispielsweise
ein solches Paket wie Paket2, das auf dem Kanal QO ist, nicht zu dem Switch weitergeleitet, bis sowohl die
Suchmaschine fiir Kanal Q0 (208a) als auch die Suchmaschine fir Kanal Q3 (208d) dasselbe Paket auswah-
len. Dementsprechend wahlt der Manager 202, wann immer mehrere Flags fir ein gegebenes Paket gesetzt
sind, dieses Paket nicht flir die Ausgabe aus, bis die den Flags entsprechenden Suchmaschinen eingerichtet
sind, um beide das gegebene Paket auszuwahlen.

[0206] Gemal einem alterriativen Ausfiihrungsbeispiel der Erfindung kénnte die Suchmaschine, wenn die
Suchmaschine einen Eintrag auswahlt, weil ihr Abhangigkeits-Flag gesetzt war, das Abhangigkeits-Flag 16-
schen, und den Puffer weiter durchsuchen, um den nachsten Eintrag zu wahlen, in dem entweder das Abhan-
gigkeits-Flag oder das Identitats-Flag gesetzt ist. Mit einer derartigen Anordnung wird die Weiterverarbeitung
der Pakete verbessert, weil die Suchmaschinen nicht abgewitirgt werden, wenn sie zur Weiterverarbeitung
durch andere Kanale anstehen.

[0207] Der Effekt des Aktivierens der mehreren Flags zum Kennzeichnen der Abhangigkeiten unterstitzt die
Aufrechterhaltung einer Gesamtsystemordnung von Paketen, die durch den Switch propagieren. Beispielswei-
se ist in der Eig. 16 die Beziehung zwischen den QO-Paketen und den Q3-Paketen so, dass die Q0-Pakete
jedes vorhergehende Q3-Kanalpaket vor der Ausfihrung schieben. Folglich sollte ein Q0-Kanalpaket, das
nach einem Q3-Kanalpaket empfangen wurde, nicht vor dem Q3-Paket ausgefiihrt werden. Paket1 ist ein
Q3-Kanalpaket, das vor dem Paket2 (Q0-Kanalpaket) empfangen wurde. Durch Einstellen des Bits 206d fur
Paket2 kann sichergestellt werden, dass das Paket2 (Q0-Kanalpaket,) nicht vor dem Paket1 (Q3-Kanalpaket)
Uber den Ausgangsport ausgegeben wird, da der Manager 208 das Q0-Paket solange nicht auswahlen wird,
bis das S3- als auch das S0-Signal Paket2 auswahlen. Im Ergebnis wird durch das Aktivieren von Bits fiur jedes
Paket, das durch ein Paket auf einen gegebenen Kanal geschoben wird, der Kanal effektiv blockiert, bis die
Pakete, die durch den gegebenen Kanal geschoben werden, weiterverarbeitet sind. Im Ergebnis wird die Ge-
samtsystemordnung aufrechterhalten.

[0208] Wie oben erwahnt, kann die Puffersteuerlogik der Fig. 16 betrieben werden, um die Abhangigkeiten
entweder statisch oder dynamisch zu erkennen. Statische Abhangigkeiten sind jene Abhangigkeiten, die von
dem Flussdiagramm der Fig. 16A gezeigt werden. Dynamische Abhangigkeiten werden durch das Bewerten
der Inhalte der Puffer, um zu bestimmen, ob aktuell zwischen Paketen in dem Puffer statische Abhangigkeit
vorhanden ist, erkannt. Die statischen Abhangigkeiten werden verwendet, um Ordnungsregeln bereitzustellen,
die sicherstellen, dass die Speicherdaten in dem SMP nicht die Koharenz verlieren. Jedoch ist die Datenkoha-
renz nur dann betroffen, wenn die Pakete auf denselben Block von Speicherdaten zugreifen. Deshalb unter-
suchen die dynamischen Abhangigkeiten die Inhalte des Puffers mit grof3erer Detailtiefe durch das Prifen der
Adresse der Pakete, die bereits in dem Puffer sind, um festzustellen, ob bereits eine Abhangigkeit zwischen
zwei Paketen auf verschiedenen Kanalen besteht oder nicht.

26/89

DE 698 32 943 T2 2006.06.29

[0209] Ein Vorteil des dynamischen Erkennens der Abhangigkeiten zwischen Paketen in dem Puffer 200 ist,
dass dies die Zeit, die erforderlich ist, um die Pakete in dem Puffer weiterzuverarbeiten, verringert. Als ein Bei-
spiel die Beschreibung des Betriebs mit Paket1 und Paket1 oben verwendend, besteht, wenn das QO0-Paket2
und das Q3-Paket1 nicht in dieselbe Adresse abbilden, kein Problem zuzulassen, dass das Q0-Paket vor dem
Q3-Paket weiterverarbeitet wird. Die Verzdgerungszeit, die beim Warten auf die Weiterverarbeitung des vor-
hergehenden Q3-Pakets anfallt, ist eliminiert, wodurch die Gesamtleistung des SMP-Systems verbessert wird.

[0210] Im Folgenden Bezug nehmend auf die Fig. 17, stellt ein Flussdiagramm exemplarisch den Arbeitsvor-
gang der Auswahl eines Pakets zur Weiterverarbeitung durch das Erkennen der dynamischen Abhangigkeiten
dar. In dem Schritt 220 wird ein Paket an dem Puffer 200 empfangen. In dem Schritt 222 wird das Bit fiir den
Kanal des Pakets durch die Schreibsteuerlogik 205 in die Reihe der Bits 206 gesetzt. In dem Schritt 224 wer-
den die vorhergehend in dem Puffer 200 gespeicherten Pakete geprift, um zu bestimmen, ab andere Pakete
auf dem Kanal, der das Paket schiebt, an demselben Speicherblock sind. Wenn sie an demselben Speicher-
block sind, dann werden in dem Schritt 226 die Bits, die den Paketen auf dem Kanal, der das Paket schiebt,
entsprechen und die sich in demselben Speicherblock befinden, aktiviert. Dementsprechend, das Beispiel der
Fig. 16 fir Paket2 verwendend, wird das Bit fur Pakettyp Q3 nur aktiviert, wenn das Paket1 auf denselben
Speicherblock wie Paket2 zugreift. Dementsprechend kann durch das dynamische Erkennen der Abhangig-
keiten die Speicherkoharenz aufrechterhalten werden, wahrend die Gesamtsystemleistung verbessert wird.

[0211] Im Folgenden Bezug nehmend auf die Fig. 18, wird ein weiteres Ausflihrungsbeispiel eines Verfah-
rens zum Ausgeben von Daten, die von mehreren Eingangsquellen empfangen wurden, zu mehreren Aus-
gangsquellen unter Aufrechterhaltung der Gesamtsystemordnung gezeigt. Das Ausfihrungsbeispiel der
Fig. 18 enthalt dieselben Elemente, wie jene der Fig. 16. Jedoch aktualisiert die Schreibsteuerlogik der
Fig. 209 der Fig. 18 jede Bitreihe 206a—-206e durch das Analysieren der Abhangigkeiten von Paketen auf eine
unterschiedliche Art und Weise. Wie in der Fig. 16 wird fur jedes Paket eines der Reihe von Bits gesetzt, um
anzuzeigen, dass das Paket von dem zugehdrigen Kanal ist. Anstatt jedoch zusatzliche Bits fir alle Pakete der
Kanale, die der Kanal schiebt, einzurichten, werden die Bits fir die Pakete in dem Kanal, der Pakete dieses
Kanals schiebt, gesetzt.

[0212] Dementsprechend werden in dem Ausfiihrungsbeispiel der Eig. 18 zusatzlich zum Setzen des Kana-
lidentifikations-Flags zusatzliche Bits fur alle Kanale, die durch das Paket maskiert oder blockiert sind, gesetzt.
Beispielsweise ist in dem Beispiel der Eig. 18 Paket1 ein Q3-Kanalpaket. Pakete auf dem Kanal Q3 blockieren
die Ausfiihrung von Q1- und QO0-Paketen, bis das Q3-Paket ausgefiihrt ist, wie durch das Abhangigkeitsfluss-
diagramm der Eig. 18A gezeigt. Dementsprechend werden fir das Paket1 die Bits 206d, 206b und 206a ge-
setzt. Das Paket2 ist jedoch ein Q0-Paket, das die Ausfiihrung eines anderen Pakets nicht blockiert. Im Ergeb-
nis wird fir das Paket2 nur das Bit 206 gesetzt.

[0213] Die Switch-Implementierung der Eig. 18 stellt infolgedessen ein abgeandertes Verfahren zum Weiter-
leiten von Daten zu einem Ausgangsport bereit, wahrend die Systemordnung durch statisches Erkennen von
Abhangigkeiten aufrechterhalten bleibt. Es sollte beachtet werden, dass die Pufferimplementierung der Eig. 18
nicht verwendet werden kann, um dynamische Abhangigkeiten zu erkennen, da ein solches Vorgehen das
Kennen der Adressen von Daten, bevor diese Daten in den Puffer 200 geschrieben werden, erfordern wiirde.
Jedoch kénnen alle beschriebenen statischen und dynamischen Methoden verwendet werden, um sicherzu-
stellen, dass die Abhangigkeiten zwischen Paketen eingehalten werden.

[0214] Demnach wurden drei Ausfuhrungsbeispiele eines Switchs beschrieben, der in der Lage ist, Daten aus
mehreren Quellen Uber mehrere Eingangsports simultan zu empfangen und die Daten tiber mehrere Aus-
gangsports zu mehreren Zieladressen weiterzuleiten, gleichzeitig die Datenabhangigkeiten einzuhalten, die
Systemordnung aufrechtzuerhalten und die Datenibertragungsrate zu maximieren. In einem Ausfiihrungsbei-
spiel wurde ein Pufferschema mit verketteter Liste beschrieben, in dem die Ordnungsabhangigkeiten durch die
Verwendung von mehreren Warteschlangen, die Flags speichern, untergebracht werden und in dem die War-
teschlangen ausgewahlt werden, um die Abhangigkeiten zu identifizieren. In einem zweiten und in einem drit-
ten Ausfuhrungsbeispiel enthalt ein Ausgangspuffer, der Daten in Reihenfolge von einem Eingangspuffer des
Switchs empfangt, eine Bitreihe, die verwendet wird, um Pakete eines bestimmten Typs zu blockieren, um si-
cherzustellen, dass die Abhangigkeits- und Koharenzzwange durchgesetzt werden. In allen Ausfiihrungsbei-
spielen werden die Ordnungsabhangigkeiten durch die Verwendung von geordneten Warteschlangen, die
Flags enthalten, die gesetzt werden, um potenzielle Abhangigkeitskonflikte zu markieren, verfolgt. Durch das
Verwenden einer geordneten Liste von Flags zum Identifizieren der Abhangigkeiten wird die Komplexitat der
Operationen, die durch den Manager durchzufiihren sind, um die Ordnung aufrechtzuerhalten und die Koha-
renz sicherzustellen, vereinfacht, wahrend gleichzeitig die Busausnutzung maximiert wird.

27/89

DE 698 32 943 T2 2006.06.29

Cache-Koharenz-Protokoll

[0215] Das Cache-Koharenz-Protokoll eines Ausflihrungsbeispiels der Erfindung ist ein Write-Invalidate-Pro-
tokoll, das auf Besitz basiert. ,Write-Invaldate" impliziert, dass, wenn ein Prozessor eine Cache-Zeile modifi-
ziert, er alte Kopien in den Caches anderer Prozessoren annulliert, anstatt diese mit neuen Werten zu aktua-
lisieren. Das Protokoll wird als ein ,Besitzprotokoll" bezeichnet, weil fur jede Cache-Zeile immer, ob es der
Speicher oder einer der Prozessoren oder IOPs in dem System ist, ein identifizierbarer Besitzer vorhanden ist.
Der Besitzer der Cache-Zeile ist, wenn angefordert, fir das Liefern des aktuellen Wertes der Cache-Zeile ver-
antwortlich. Ein Prozessor/ein IOP kénnen eine Cache-Zeile ,exklusiv" oder gemeinsam besitzen. Wenn ein
Prozessor exklusiver Besitzer einer Cache-Zeile ist, kann er diese aktualisieren, ohne das System zu informie-
ren. Andernfalls muss er das System informieren und potenziell die Kopien in den Caches anderer Prozesso-
ren/IOPs annullieren.

[0216] Vor einer ausfihrlichen Beschreibung wird das Cache-Koharenz-Protokoll beschrieben und eine Ein-
fuhrung in den gesamten Kommunikationsablauf, der in dem hierarchischen Netzwerk verwendet wird, wird be-
reitgestellt.

[0217] Wie in Bezug auf die Fig. 7A beschrieben, enthalt das groRe SMP-System 150 eine Anzahl von Kno-
ten, die Uber einen Switch 155 gekoppelt sind. Jeder der Prozessoren in jedem der Knoten generiert Befehle,
um auf Daten in einem Speicher zuzugreifen. Die Befehle kdnnen zur Ganze innerhalb des Quellenknotens
behandelt werden oder kénnen basierend auf der Adresse und dem Anforderungstyp zu anderen Knoten in
dem System Ubertragen werden.

[0218] Der Adressraum ist in den Speicherraum und den 10-Raum unterteilt. Die Prozessoren und das IOP
verwenden eigene Caches, um nur Daten flir Speicherraumadressen zu speichern und 10-Raumdaten werden
in den eigenen Caches nicht zwischengespeichert. Infolgedessen ist das Cache-Koharenz-Protokoll nur von
den Speicherraumbefehlen betroffen.

[0219] Eine Schliisselkomponente jedes Cache-Koharenz-Protokolls ist ein Ansatz zur Serialisierung von
Lasten und Speicherungen. Ein Cache-Kohéarenz-Protokoll muss allen Lasten eine Ordnung auferlegen und in
jeder Speicheradresse X speichern. Die Ordnung ist derartig, dass alle ,Speicherungen"” in X geordnet sind, es
sollten eine erste Speicherung, eine zweite Speicherung, eine dritte Speicherung usw. vorhanden sein. Die i-te
Speicherung aktualisiert die Cache-Zeile wie durch die (I — 1)-te Speicherung bestimmt. Des Weiteren ist mit
jeder Last eine aktuellste Speicherung assoziiert, aus der die Last den Wert der Cache-Zeile bekommt. Im Fol-
genden wird dies als Lastspeicherungs-Serialisierungsordnung bezeichnet.

[0220] Es ist eine Eigenschaft des hierin beschriebenen Protokolls, dass der Verteilerbus flr eine Adresse X
der ,Serialisierungspunkt" fir alle Lasten ist und X speichert. Das bedeutet, dass die Reihenfolge, in der An-
forderungen zu X an dem Home-Verteilerbus fir X ankommen, die Reihenfolge ist, in der die entsprechenden
Lasten und Speicherungen serialisiert werden. Die meisten Protokolle fir groRe SMP-Systeme nach dem
Stand der Technik weisen diese Eigenschaft nicht auf und sind infolgedessen weniger effizient und komplexer.

[0221] In dem in der Eig. 2 gezeigten kleinen SMP-Knotensystem ist ein Verteilerbus vorhanden. Dieser Ver-
teilerbus ist der Serialisierungspunkt fir alle Speicherlasten und Speicherungen in dem kleinen SMP. Der mit
dem Verteilerbus gekoppelte DTAG erfasst alle Zusténde, die durch das kleine SMP-Protokoll erforderlich wer-
den. In dem groRen SMP-System erfasst das DIR auf dem Home-Verteilerbus den Grobzustand fur das Pro-
tokoll und die TTTs und DTAGs erfassen die Zustandsinformationen auf einer detailtieferen Ebene.

[0222] Wenn an dem Home-Verteilerbus eine Anforderung R ankommt, werden der DIR-, der DTAG- und der
TTT-Zustand gepruft, Probe-Befehle zu anderen Prozessoren und/oder Antwortbefehle zu dem Quellenpro-
zessor kdnnen generiert werden. Des Weiteren werden die Zustdnde des DIRs, des DTAGs und des TTTs ato-
mar aktualisiert, um die ,Serialisierung" der Anforderung R zu reflektieren. infolgedessen wird eine Anforde-
rung Q mit der angeforderten Adresse, die der des Rs gleich ist und die an dem Home-Verteilerbus nach der
Anforderung R eingeht, in dem hierarchischen Switch nach R erscheinen.

[0223] Demnach ist der Home-Verteilerbus definiert, um der ,Serialisierungspunkt” fur alle Anforderungen zu
einer Speicheradresse zu sein. Fur jede Speicheradresse X werden Speicherungen erscheinen, die in der Rei-
henfolge ausgefiihrt werden mussen, in der die entsprechenden Anforderungen (RdMods oder CDTs) in dem
Home-Verteilerbus ankommen. Die Lasten zu der Adresse X werden die Version X, die der Speicherung X ent-
spricht, die zuletzt von dem Home-Verteilerbus serialisiert wurde, sein.

28/89

DE 698 32 943 T2 2006.06.29

[0224] In der folgenden Einfuhrung in das Cache-Koharenz-Protokoll bezeichnet der Ausdruck ,System" alle
Komponenten des groRen SMP-Systems, einschlieRlich der Prozessoren und der IOPs. Die Prozessoren und
das System interagieren durch das Senden von ,Befehlspaketen" oder einfach von ,Befehlen". Befehle kénnen
in drei Typen unterteilt werden:

Anforderungen, Probes und Antworten.

[0225] Die Befehle, die von dem Prozessor zu dem System ausgegeben werden, und jene, die von dem Sys-
tem zu den Prozessoren ausgegeben werden, sind eine Funktion der Speichersystemschnittstelle des gege-
benen Prozessors. Fir den Zweck der Beschreibung des Betriebs des SMPs werden Anforderungen und Be-
fehle geman der Alpha®-System-Schnittstellendefinition der Digital Equipment Corporation beschrieben, ob-
wohl selbstverstandlich ebenso andere Typen von Prozessoren verwendet werden kénnen.

[0226] Anforderungen sind Befehle, die von einem Prozessor ausgegeben werden, wenn er im Ergebnis des
Ausfihrens eines Lade- oder Speichervorgangs eine Kopie von Daten erhalten muss. Anforderungen werden
auflerdem verwendet, um den exklusiven Besitz eines Datenelements aus dem System zu gewinnen. Anfor-
derungen enthalten Lesebefehle, Lese-/Modifizierbefehle (RdMod-Befehle), Change-to-Dirty-Befehle,
Victim-Befehle und Evict-Befehle (bei denen eine Cache-Zei1e aus dem jeweiligen Cache entfernt wird). Pro-
be-Befehle sind Befehle, die von dem System zu einem Prozessor oder zu mehreren Prozessoren ausgege-
ben werden, die Daten- und/oder Cache-Tag-Status Aktualisierungen anfordern. Probe-Befehle enthalten wei-
tergeleitete Lesebefehle (FRd-Befehle), weitergeleitete Lese-/Modifizierbefehle (FRdMod-Befehle) und Befeh-
le Invalidate. Wenn ein Prozessor P eine Anforderung zu dem System ausgibt, kdnnte das System einen Probe
oder mehr Probes zu anderen Prozessoren auszugeben haben. Wenn P eine Kopie einer Cache-Zeile (mit ei-
ner Leseanforderung) anfordert, wird das System einen Probe zu dem Besitzerprozessor (falls vorhanden)
senden. Wenn P einen exklusiven Besitz einer Cache-Zeile anfordert (mit einer CDT-Anforderung) sendet das
System Invalidate-Probes zu einem Prozessor oder zu mehreren Prozessoren mit Kopien der Cache-Zeile.
Wenn P sowohl eine Kopie der Cache-Zeile als auch den exklusiven Besitz der Cache-Zeile anfordert (mit ei-
ner RdMod-Anforderung), sendet das System einen FRd-Befehl zu einem Prozessor, der aktuell eine Dirty-Ko-
pie der Cache-Zeile von Daten speichert. Als Antwort auf den FRd-Befehl wird die Dirty-Kopie der Cache-Zeile
an das System zurtckgesendet. Ebenso wird durch das System ein FRdMod-Befehl zu einem Prozessor, der
eine Dirty-Kopie einer Cache-Zeile speichert, ausgegeben. Als Antwort auf den FRdMod-Befehl wird die dirty
Cache-Zeile zu dem System zurtickgesendet und die in dem Cache gespeicherte Dirty-Kopie wird annulliert.
Durch das System kann ein Befehl Invalidate zu einem Prozessor, der eine Kopie der Cache-Zeile in seinem
Cache speichert, ausgegeben werden, wenn die Cache-Zeile durch einen anderen Prozessor zu aktualisieren
ist.

[0227] Antworten sind Befehle von dem System zu den Prozessoren/IOPs, die die durch den Prozessor an-
geforderte Daten oder eine der Anforderung entsprechende Bestatigung tragen. Fir Lese- und RdMod-Befeh-
le, ist die Antwort jeweils ein Flill- oder FillMod-Befehl, von denen jeder die angeforderten Daten tragt. Fir die
CDT-Befehle ist die Antwort ein CDT-Success- oder ein CDT-Failure-Befehl, der den Erfolg oder das Versagen
des CDTs anzeigt. Fur Victim-Befehle ist die Antwort ein Victim-Release-Befehl.

[0228] Im Folgenden Bezug nehmend auf die Fig. 19, wird eine Tabelle zum Darstellen der Beziehung zwi-
schen Anforderungen und dem Status der jeweiligen Cache-Zeile in den einzelnen Prozessoren gezeigt.

[0229] Die Fig. 19 stellt auRerdem die sich ergebenden Befehle des Probe-Typs flir jede der Anforderungen
und jeden der Zustéande der Cache-Zeile dar. Die Spalten 300 und 300a zeigen die durch den Prozessor aus-
gegebenen Anforderungen, die Spalten 305 und 305a zeigen den Status der Cache-Zeile in anderen Prozes-
soren in dem System und die Spalten 320 und 320a zeigen die sich ergebenden Probe-Befehle, die durch das
System generiert werden.

[0230] Die Tabelle der Fig. 19 geht davon aus, dass ein Prozessor, der als Prozessor A bezeichnet wird, eine
Anforderung an das System ausgibt. Der Befehl des Prozessors A interagiert anschlieRend mit einem Prozes-
sor oder mit mehreren Prozessoren, als Prozessor B bezeichnet. Wenn eine durch den Prozessor A adressier-
te Cache-Zeile in dem Cache des Prozessors B gespeichert ist, wie unter Verwendung des DTAGs und/oder
der Verzeichnisinformation festgestellt, dann wird der Cache-Status des Prozessors B bestimmen, ob ein Pro-
be-Befehl zu dem Prozessor B ausgegeben werden muss und welcher Typ von Probe-Befehl ausgegeben wer-
den sollte.

[0231] Im Folgenden werden das Cache-Kohéarenz-Protokoll und die Mechanismen detaillierter beschrieben.
Die von den Befehlspaketen genommenen Pfade, die Quellen der Statusinformation fiir jeden Befehlstyp und

29/89

DE 698 32 943 T2 2006.06.29

die sich ergebenden Operationen sind in der Beschreibung enthalten. Alle Befehle stammen entweder von ei-
nem Prozessor oder einem IOP, wobei der ausgebende Prozessor des IOPs als ,Quellenprozessor" bezeich-
net wird. Die Adresse, die in der Anforderung enthalten ist, wird als die angeforderte Adresse bezeichnet. Der
-Home-Knoten" der Adresse ist der Knoten, dessen Adressraum die angeforderte Adresse abbildet. Die Anfor-
derung wird als ,lokal" bezeichnet, wenn der Quellenprozessor in einem der Home-Knoten der angeforderten
Adresse ist, andernfalls wird sie als ,globale" Anforderung bezeichnet. Der Verteilerbus auf dem Home-Knoten
wird als der Home-Verteilerbus bezeichnet. Das ,Home-Verzeichnis" ist das der angeforderten Adresse ent-
sprechende Verzeichnis. Das Home-Verzeichnis und der Speicher sind folglich mit dem Home-Verteilerbus fur
die angeforderte Adresse gekoppelt.

[0232] Eine aus einem Prozessor oder einem IOP entstammende Speicheranforderung wird zuerst auf den
Home-Verteilerbus geleitet. Die Anforderung wird tber den lokalen Switch geleitet, wenn die Anforderung lokal
ist, sie geht Gber den hierarchischen Switch, wenn sie global ist. In dem letzteren Fall durchquert sie den loka-
len Switch und den GP-Link, um zu dem GP zu kommen, anschlief3end geht sie tiber den HS-Link zu dem hie-
rarchischen Switch, dann ber den GP und den lokalen Switch in dem Home-Knoten zu dem Home-Verteiler-
bus.

[0233] Es ist zu beachten, dass die globale Anforderungen nicht zuerst auf dem Verteilerbus des Home-Kno-
tens erscheinen, sondern stattdessen uber den GP-Link direkt zu dem HS-Link geleitet werden. Bei Protokol-
len nach dem Stand der Technik greift eine globale Anforderung auf den Status des Home-Knotens zu, bevor
sie zu einem anderen Knoten ausgesendet wird. Die vorliegende Erfindung verringert die Durchschnittslatenz
der globalen Anforderungen durch das Ausgeben von globalen Anforderungen direkt zu dem HS.

[0234] Im Folgenden Bezug nehmend auf die Fig. 20A-Fig. 20J, werden exemplarische Flussdiagramme ei-
ner Anzahl von grundlegenden Speichertransaktionen bereitgestellt.

Lokales Lesen

[0235] In der Eig. 20A wird eine Anforderung von einem Quellenprozessor 320 zu dem Home-Verteilerbus
weitergeleitet. Das Verzeichnis 322 bestimmt, welcher Prozessor den Speicherblock besitzt. Wenn der lokale
Speicher 323 der Besitzer ist, wird von dem Home-Verteilerbus ein kurzer Full-Befehl zu dem Quellenprozes-
sor 320 ausgegeben.

Globales Lesen

[0236] Inder Fig. 20B ist vorausgesetzt, dass der Prozessor 320 des Knotens 325 einen Lese-Befehl zu einer
Cache-Zeile des Speichers ausgibt, dessen Home ein Knoten 326 ist. Der globale Lesebefehl wird durch den
Schalter 324 zu dem Home-Verteilerbus und zu dem Verzeichnis 321 ber den Pfadweg, der durch die Linie
327 angezeigt wird, geleitet. Wenn der Speicher 330 des Knotens 326 der Besitzer der Cache-Zeile ist, dann
werden die Daten von dem Knoten 326 durch den Knoten 326, eine Shortfill-Antwort ausgebend, zu dem Kno-
ten 325 zuriickgesendet.

[0237] Wenn ein anderer Prozessor/anderes IOP aktuell die Cache-Zeile besitzt, werden verschiedene
Schritte unternommen, um die angeforderte Cache-Zeile zu erhalten. Im Folgenden Bezug nehmend auf die
Fig. 20C, wird der Lesebefehl, wenn der Prozessor 320 einen Lesebefehl zu einer Cache-Zeile in dem Spei-
cher des Homes des Knotens 326 ausgibt, wieder tiber den Pfadweg 327 zu dem Home-Verteilerbus und dem
Verzeichnis geleitet. Der Eintrag des Verzeichnisses 321 enthalt, wie oben erwahnt, fur jede Cache-Zeile des
Speichers 14 Bits Statusinformation, die die Besitzerinformation enthalt. In diesem Fall identifiziert die Besit-
zerinformation als den Besitzer den Prozessor 342 in dem Knoten 328.

[0238] Als Antwort auf die Anzeige des Verzeichnisses, dass der Knoten 328 die erforderliche Cache-Zeile
besitzt, treten zwei Ereignisse ein. Zuerst gibt der Home-Knoten, Knoten 326, einen FR-Probe zu dem Besit-
zerprozessor 342 aus, wie durch die Linie 329 angezeigt wird. Gleichzeitig damit sendet der Home-Knoten 326
eine Fill-Marker-Antwort zu dem Prozessor 320; wie durch die Linie 331 angezeigt. Die Rolle der Fill-Mar-
ker-Antwort wird in einem spateren Abschnitt beschrieben.

[0239] Als Antwort auf den weitergeleiteten Lesebefehl gibt der Prozessor 342 einen Flllbefehl zu dem Pro-
zessor 320 aus, wobei der Fillbefehl die betreffende Cache-Zeile enthalt. Dieser Typ der Antwort auf eine Le-
seabforderung wird als Long Fill bezeichnet, weil eine Abfolge von drei Befehlen erforderlich ist, um die Daten
zurickzusenden. Infolgedessen kénnen die Lesetransaktionen in zwei Typen unterteilt werden: Einen Short

30/89

DE 698 32 943 T2 2006.06.29

Fill, der eine Antwort von dem Speicher ist, und einen Long Fill, der eine Antwort von dem Besitzer eines Pro-
zessors ist.

Lokaler RdMod

[0240] Im Folgenden Bezug nehmend auf die Fig. 20D, kann dieser entnommen werden, dass eine lokale Le-
se-Mad(difiziere-Transaktion gleichartig wie eine lokale Lese-Transaktion arbeitet, mit der Ausnahme, dass (1)
zu allen Prozessoren, die eine Kopie der aktuellen Version der Cache-Zeile erhalten haben, Invalidate Probes
gesendet werden und (2) FRMod und FillMod anstelle von Frds und Fills zu dem Besitzer gesendet werden.

[0241] In der Fig. 20D zeigt das Verzeichnis in dem Home-Knoten an, dass ein lokaler Prozessor oder Spei-
cher den Block besitzt. In dem Home-Verteilerbus identifiziert das Verzeichnis 322 alle externen Knoten, die
die aktuelle Version des Blocks erhalten haben. Ein Befehl Invalidate mit allen in einem Multi-Cast-Vektor iden-
tifizierten entsprechenden Knoten wird zu dem HS 324 gesendet. Der HS massenversendet die Invalida-
te-Nachrichten zu allen in dem Vektor identifizierten Knoten. Die Invalidate-Nachrichten gehen zu dem Vertei-
lerbus in jedem der Knoten, wo der DTAG diese weiter filtert und Invalidate-Probes nur zu jenen Prozessoren
oder IOPs sendet, die als die aktuelle Version der Cache-Zeile aufweisend identifiziert sind.

Globaler RdMod

[0242] Im Folgenden Bezug nehmend auf die Fig. 20E, kann dieser entnommen werden, dass eine Lese-Mo-
difiziere-Transaktion gleichartig wie die Lesetransaktionen, die in Bezug auf die Fig. 20A und Fig. 20B be-
schrieben wurden, arbeitet. Ein Befehl Lesen/Modifizieren (RdMod) wird zuerst von dem Prozessor 320 zu
dem Home-Verteilerbus und dem Home-Verzeichnis 321 der Cache-Zeile geleitet. Wenn der Speicher in dem
Knoten 326 die Cache-Zeile speichert, dann wird von dem Prozessor 326 ein Befehl Short Fill Modify, der die
Reset-Daten enthalt, zu dem Prozessor 320 weitergeleitet. Im Ergebnis dieser Transaktion wird das Verzeich-
nis 321 aktualisiert. Der Lese-Modifizier-Befehl zeigt an, dass der Prozessor 320 exklusiven Besitz der Ca-
che-Zeile erfordert, so dass er die Inhalte der Cache-Zeile modifizieren kann. Deshalb gibt der Knoten 326 zu-
satzlich zu dem Befehl Short Fill Modify auRerdem Befehle Invalidate zu allen Prozessoren aus, die eine aktu-
elle Kopie der Cache-Zeile erhalten haben. Das DIR identifiziert die Knoten, auf denen ein Prozessor oder
mehrere Prozessoren eine Kopie der aktuellen Version der Cache-Zeile erhalten hat bzw. haben. Die Prasenz-
bits des DIRs enthalten diese Informationen. Der DTAG identifiziert alle Home-Knoten-Prozessoren, die eine
Kopie der Cache-Zeile erhalten haben. Befehle invalidate, dass diese ihr jeweiliges DIR-Prasenzbit zu setzen
haben, werden zu allen Knoten gesendet. In jedem der Knoten, der einen Befehl Invalidate empfangt, wird der
DTAG aktiviert, um festzustellen, welche Prozessoren aktuell eine Kopie der Cache-Zeile speichern. Die Be-
fehle Invalidate werden nur an diese Prozessoren gesendet. Der IOP-Tag wird verwendet, um zu bestimmen,
ob das IOP eine Kopie hat, falls ja, empfangt das IOP ebenso einen Invalidate-Probe-Befehl.

[0243] In dem Fall, in dem ein anderer als der anfordernde Prozessor der Besitzer ist, generiert der Ho-
me-Knoten einen Fullen/Modifizieren Marker, einen weitergeleiteten Befehl Lesen/Modifizieren und null oder
mehr Befehle Invalidate als einen Befehl. An dem Knoten wird der Befehl zu allen Zieladressenknoten mas-
senversendet. An jedem Zieladressenknoten wird der Befehl in seine Komponenten getrennt und der globale
Port jedes Knotens bestimmt, welche Handlung an dem jeweiligen Knoten ausgefihrt werden sollte. In dem
Beispiel oben wird ein weitergeleiteter RdMod-Befehl durch den Prozessor 342 weiterverarbeitet und ein Mar-
ker Fullen/Modifizieren wird durch den Prozessor 320 weiterverarbeitet. Zusatzlich werden Befehle Invalidate
an dem Home-Knoten, an dem Knoten, der den Marker Fullen/Moditfizieren und an dem Knoten, der den wei-
tergeleiteten Befehl Modifizieren empfangt, in Ubereinstimmung mit ihren DTAG-Eintragen durchgefiihrt. In
Reaktion auf den weitergeleiteten RdMod-Befehl werden die dirty Daten von dem Prozessor 342 (iber den Be-
fehl langes Fillen/Modifizieren zu dem Prozessor 320 weitergeleitet.

[0244] Infolgedessen kann der Befehl RdMod entweder zwei oder drei Knotenverbindungen oder Hops durch-
fuhren. In einem Ausflihrungsbeispiel der Erfindung resultieren nur die Befehle des Lesetyps (Lesen und Le-
sen/Modifizieren) in drei Hops, wobei der dritte Hop ein Befehl des Fulltyps ist (entweder Fillen oder Ful-
len/Modifizieren). Jedoch kann die Erfindung durch adaquates Zuordnen von den zugefligten Befehlen in den
virtuellen Kanalwarteschlangen, die unten beschrieben werden, leicht modifiziert werden, um andere Transak-
tionen zu enthalten, die drei oder mehr Hops erforderlich machen.

CTDs

[0245] Im Folgenden Bezug nehmend auf die Fig. 20G und Fig. 20H, wird jeweils der Basisfluss flr

31/89

DE 698 32 943 T2 2006.06.29

Clean-to-Dirty (CTD) und Invalidate-to-Dirty (ITD) gezeigt. In der Fig. 20G wird ein Clean-to-Dirty von dem Pro-
zessor 320 zu dem Verzeichnis 321 in dem Home-Knoten ausgegeben. Entweder wird ein Bestatigungsbefehl
(ACK) oder eine Nichtbestatigungsbefehl (NACK) zu dem Prozessor 320 zurtickgesendet, abhangig davon, ob
die saubere Cache-Zeile, die der Prozessor 320 aktualisieren will, aktuell oder veraltet ist. Dementsprechend
wird Uber den CTD ausgesagt, dass er erfolgreich ist oder versagt. Zusatzlich werden Befehle Invalidate zu
allen Knoten, die durch das Vorhandensein des Bits des Verzeichnisses 321 als eine Kopie der Cache-Zeile
aufweisend angezeigt werden, gesendet, wenn der CTD erfolgreich ist.

[0246] Wie in der Fig. 20H gezeigt, arbeitet der Befehl ITD im Wesentlichen gleichartig wie der CTD. Jedoch
versagt der ITD nie. Ein ACK wird immer zu dem Prozessor 320 zuriickgesendet und Befehle Invalidate wer-
den zu anderen Knoten in dem System gesendet, die eine Kopie der Cache-Zeile von Daten speichern.

Lokale und globale Write Victims

[0247] Wie oben beschrieben, leitet der Befehl Write Victim dirty Daten von dem Cache des Prozessors zu-
ruck in den adaquaten Home-Speicher weiter. Im Folgenden Bezug nehmend auf die Fig. 20l bis Fig. 20J,
kann diesen entnommen werden, dass der Fluss fir die Write Victims in Abhangigkeit davon, ob der Ho-
me-Speicher in demselben Knoten wie der Prozessor ist, der den Befehl Write Victim ausgibt, oder nicht, ge-
ringflgig verschieden ist. Wie in der Fig. 201 gezeigt, gibt der Prozessor 320, wenn der Home-Knoten der Kno-
ten des Prozessors ist, den Befehl Write Victim aus und die Daten werden direkt zu dem Speicher desselben
Knotens weitergeleitet.

[0248] Wie in der Fig. 20J gezeigt, werden die Daten jedoch, wenn die Victim-Daten in einem anderen Home
als der Prozessor sind, in zwei Stufen Ubertragen. Zuerst wird die Cache-Zeile aus dem Cache (oder
Victim-Puffer) heraus weitergeleitet und in dem Victim-Cache (Fig. 6, Element 124) an dem globalen Port des
Knotens des Prozessors gespeichert. Der Victim-Cache antwortet dem Prozessor mit einem Victim-Freigabe-
signal, das anzeigt, dass der Prozessor den Victim-Puffereintrag erneut nutzen kann. Dann, wenn die verfug-
bare Bandbreite auf dem Switch vorhanden ist, werden die Victim-Daten von dem Victim-Cache Uber einen
Befehl Write Victim zu dem Speicher des Home-Prozessors weitergeleitet.

[0249] Es sollte beachtet werden, dass die Victim-Daten, die durch den Quellenprozessor P zu dem Ho-
me-Speicher gesendet werden, zu dem Zeitpunkt, zu dem sie zu dem Speicher gelangen, veraltet sein kénnen.
In einem solchen Fall wird Giber den Victim-Befehl aus- gesagt, dass er versagt hat, und der Home-Speicher
wird nicht aktualisiert. Dieses Szenario tritt ein, wenn sich ein anderer Prozessor in dem Intervall zwischen dem
Aneignen des Besitzes der Cache-Zeile durch P und dem Erreichen des Home-Verzeichnisses durch Ps Victim
den Besitz der Cache-Zeile aneignet. In einem derartigen Fall muss ein Befehl Invalidate oder ein Befehl Frd-
MOd Probe fiir die Cache-Zeile zu dem Prozessor P gesendet worden sein, bevor Ps Victim den Home-Ver-
teilerbus erreicht hat.

[0250] Um zu bestimmen, welche Victim-Daten in den Speicher geschrieben werden sollten, wird der Ver-
zeichniseintrag fir die anfordernde Adresse nachgeschlagen, wenn ein Befehl Write Victim auf dem Ho-
me-Verteilerbus erscheint. Wenn das Verzeichnis anzeigt, dass der Quellenprozessor noch immer der Besitzer
der Cache-Zeile ist, dann ist der Victim-Befehl erfolgreich und aktualisiert den Speicher. Andernfalls versagt er
und aktualisiert den Speicher nicht. In beiden Fallen wird, sobald die Entscheidung fur ein Victim in dem Ver-
zeichnis 321 getroffen ist, ein Victim-Ack-Befehl zu dem globalen Port des Knotens 325 zuriickgesendet, um
dem Victim-Cache zu ermoglichen, den zugehérigen Eintrag zu I6schen.

[0251] In einem Ausfihrungsbeispiel der Anordnung wird der DTAG verwendet, um in dem Fall, in dem der
Befehl Write Victim lokal ist, Uber den Erfolg oder das Versagen eines Befehls Write Victim zu entscheiden. In
diesem besonderen Fall (dem einer lokalen Anforderung Write Victim) sind sowohl der DTAG als auch das DIR
in der Lage, die Informationen bereitzustellen, die gebraucht werden, um den Erfolg oder das Versagen des
Befehls Write Victim festzustellen. Der DTAG wird deshalb anstelle des DIRs verwendet, weil der DTAG-ba-
sierte Mechanismus bereits in der Hardware des kleinen SMP-Knotens bereitgestellt ist.

[0252] Bei der Beschreibung des Cache-Koharenz-Protokolls wurden die gebrauchlichsten Operationen und
Befehlstypen beschrieben. Die Mechanismen werden in den folgenden Abschnitten ausfiihrlicher beschrieben.

[0253] Wie oben erwahnt, kdnnen in einem Ausfihrungsbeispiel der Erfindung fir die Effizienz zwei oder

mehr in Beziehung stehende Pakete kombiniert werden. Das kombinierte Paket wird dann an dem HS oder
dem Verteilerbus an einem Knoten in seine Komponenten geteilt. Beispielsweise teilt sich eine FrdMod-Nach-

32/89

DE 698 32 943 T2 2006.06.29

richt zu dem HS in eine FrdMod-Nachricht zu dem Knoten mit dem Besitzerprozessor, in Invalidate-Nachrich-
ten zu Knoten mit Kopien der Cache-Zeile und eine FillMarkerMod-Nachricht zu dem Quellenknoten. Die Frd-
Mod-Nachricht zu dem Besitzer des Prozessorsknotens teilt sich des Weiteren an dem Verteilerbus des Kno-
tens in eine FrdMod-Nachricht zu dem Besitzerprozessor und null oder mehr Invalidate-Nachrichten zu ande-
ren Prozessoren in dem Knoten.

Verzégerte Schreibpufferung zum Aufrechterhalten der Victim-Koharenz

[0254] Wie oben in Bezug auf die Fig. 20l und Fig. 20J beschrieben, kdnnen die Victim-Daten, die zu dem
Home-Speicher gesendet werden, zum Zeitpunkt ihres Eintreffens auf Grund eines dazwischenkommenden
Befehls invalidate oder FrdMod-Probe-Befehls fir die Cache-Zeile, bevor der Write-Victim-Befehl den Ho-
me-Verteilerbus erreicht hat, veraltet sein. Ein Verfahren zum Bestimmen, ob die Victim-Daten in den Speicher
geschrieben werden sollten, ist ist dem Verzeichniseintrag fir jeden Victim-Schreibbefehl nachzuschlagen.
Wenn das Verzeichnis anzeigt, dass der Prozessor, der der Victim-Schreibbefehl ausgibt, der Dirty-Besitzer ist,
dann sollte der Victim-Befehl zugelassen werden, um durchgesetzt zu werden. Andernfalls sollte er versagen.
Dieses Vorgehen ist erwiinscht, weil der Bedarf fiir aufwendiges Vergleichen der Logikstrukturen zum Uber-
einstimmen der Victim-Schreibbefehle zwischen dem Prozessor und dem Serialisierungspunkt mit Probe-Be-
fehlen zwischen dem Serialisierungspunkt und dem Prozessor umgangen wird.

[0255] Wahrend dieser Ansatz das Aufrechterhalten der Datenkohéarenz vereinfacht, kann er Leistungsnach-
teile in Form von verringerter Speicherbandbreite verursachen. Gemal diesem Schema muss das System je-
des Mal, wenn es einen Victim-Schreibbefehl ausfihrt, zuerst auf den Verzeichnisstatus zugreifen, dann den
Status evaluieren und schlieBlich, basierend auf dem Status, einen DRAM-Schreibbefehl der Victim-Daten
ausflihren. Da auf den Speicher und das Verzeichnis automatisch zugegriffen wird, wirde der gesamte
Victim-Schreibzyklus, wenn das System gemal der Methode nach dem Stand der Technik ausgefiihrt wiirde,
gleich der Summe der Verzeichnis-Nachschlagezeit, der Statusbewertungszeit und der DRAM-Schreibzeit
sein. Ein derartiges System wirde in Bezug auf jene Systeme, deren gesamter Victim-Zyklus nur aus einem
DRAM-Schreiben besteht, schwere Leistungseinbul3en erleiden.

[0256] Ein Ausfuhrungsbeispiel der Erfindung Uberwindet das Problem der Verschlechterung der Speicher-
bankausnutzung durch das Bereitstellen eines Schreibverzégerungspuffers an jeder Speicherbank. Jedes Mal,
wenn zu dem Speichersystem ein Victim-Schreibbefehl ausgegeben wird, antwortet das Speichersystem
durch das parallele Ausflihren der folgenden Funktionen: Speichern der Victim-Schreibdaten in einem Schreib-
verzogerungspuffer in der Zielspeicherbank und Markieren der Blocks als ,nicht schreibbar" oder ,ungiiltig",
Zugreifen auf den mit dem Victim-Schreibbefehl assoziierten Verzeichnisstatus und Ausfiuihren, anstelle des
aktuellen Victim-Schreibbefehls, eines DRAM-Schreibbefehls eines zuvor gepufferten Victim-Schreibbefehls,
der als ,schreibbar" oder ,glltig" markiert ist. Dann, wenn der Zugriff auf das Verzeichnis ausgefiihrt ist, zeigt
der dem Victim-Schreibbefehl zugehorige Status an, dass der Victim-Schreibbefehl erfolgreich sein soll und
der Schreib-Verzégerungspuffer, in dem sich die Victim-Datenl befinden, geht in den ,schreibbaren” oder ,giil-
tigen" Status Uber. Der ,schreibbare" oder ,glltige" Status eines Datenblocks in dem Schreibverzégerungspuf-
fer zeigt an, dass die Daten in dem Puffer eine aktuellere Version der Cache-Zeile sind, als die Version, die in
den DRAMSs des Speichers gespeichert sind. Wenn der Puffer als ,schreibbar" oder ,guiltig" markiert ist, werden
seine Daten im Ergebnis der anschlielenden Ausgabe eines Victim-Schreibbefehls zu dem Speichersystem
in den DRAM geschrieben.

[0257] Durch das Ausfuhren des Verzeichnisnachschlagens parallel zu dem DRAM-Schreiben eines zuvor
ausgegebenen Victim-Schreibbefehls verringert dieses Ausfiuhrungsbeispiel die Victim-Gesamtzykluszeit auf
die einer DRAM-Schreibzeit. Da dieses Ausfuhrungsbeispiel ,schreibbare" oder ,gtiltige" Datenbldcke fir viele
Zyklen in den Schreibverzégerungspuffern halt, in denen nachfolgende Referenzen zu dem Pufferblock zu
dem Speicherblock ausgegeben werden kdnnen, enthalt der Schreibverzdgerungspuffer ein assoziatives
Adressregister. Die Adresse des Victim-Schreibblocks wird gleichzeitig mit dem Speichern der zugehorigen
Daten in dem Schreibverzégerungspuffer in dem assoziativen Adressregister gespeichert. Wenn nachfolgende
Referenzen zu dem Speichersystem ausgegeben werden, identifiziert das Speichersystem durch das Mittel ei-
nes Adressabgleichens mit dem Adressregister jene, die in dem Schreibverzégerungspuffer Adressen blockie-
ren. Durch diese Einrichtung wird das Speichersystem alle Referenzen zu Blocks in den Schreibverzdégerungs-
puffern mit den aktuelleren Daten aus den Puffern, anstatt mit den veralteten Daten in dem Speicher der
DRAMSs, bedienen.

[0258] Die oben beschriebene Technik des Bereitstellens von Schreibverzdgerungspufferung der Victim-Da-
ten kann ebenso in auf einem Snoopy-Bus basierenden Systemen, die keinen direkten DTAG-Status enthalten,

33/89

DE 698 32 943 T2 2006.06.29

diesen jedoch verwenden, um die Giiltigkeit eines Datenblocks zu bestimmen, verwendet werden.

[0259] Im Folgenden Bezug nehmend auf die Fig. 21, wird ein Ausfihrungsbeispiel eines Speichersteuersys-
tems zum Bereitstellen von verzégerten Schreiboperationen gezeigt, das einen Speicher-Kontroller 332, der
gekoppelt ist, um ein Signal Owner_Match auf der Leitung 140 von dem Verzeichnis 140 zu empfangen, ent-
halt. Zusatzlich empfangt der Speicher-Kontroller 332 einen Eingang von dem QS-Verteiler 11 (der ebenso das
Verzeichnis 140 speist) zum Verfolgen der Befehle, die in das Verzeichnis eingegeben werden.

[0260] Der Speicher-Kontroller 332 enthalt einen Schreibverzdgerungspuffer 336. Jeder Eintrag in den
Schreibverzdégerungspuffer 336 enthalt einen Datenteil 336a, einen Flag-Teil 336b und einen Adressteil 336c¢.
In einem Ausfiihrungsbeispiel der Erfindung enthalt der Schreibverzégerungspuffer, um die Komplexitat der
Ausfuhrung zu verringern, nur jeweils einen Adress-, Daten- und Flag-Eintrag, obwohl die Erfindung nicht auf
eine derartige Konfiguration beschrankt ist.

[0261] Der Schreibverzégerungspuffer arbeitet wie folgt. In Betrieb, wahrend ein Befehl, eine Adresse und
Daten in dem Verteilerbus 130 empfangen werden, werden diese zu dem Verzeichnis 140 und auch zu dem
Kontroller 332 weitergeleitet. Der Speicher-Kontroller 332 speichert den Befehl, die Adresse und die Daten in
dem Schreibverzdgerungspuffer 336 fir eine Transaktionsperiode (hier 18 Taktzyklen). Wahrend der Transak-
tionsperiode wird auf das Verzeichnis 140 zugegriffen und die Ergebnisse des Zugriffs werden auf der Leitung
Owner_Match 140a durchgesetzt. Die Leitung Owner_Match wird aktiviert, wenn der Verzeichniseintrag an-
zeigt, dass die Prozessor-ID des Prozessors, der versucht, den Speicher zu aktualisieren, tatsachlich die Be-
sitzerin der Cache-Zeile der Daten ist. Das Signal Owner_Match wird verwendet, um das Flag 336b des
Schreibverzdgerungspuffereintrags 336 zu setzen. in der darauf folgenden Transaktionsperiode werden, wenn
der Speicherbus verflgbar ist und wenn das Flag 336b gesetzt ist, die gespeicherten Daten in den Speicher
geschrieben. In einem Ausfuhrungsbeispiel der Erfindung werden nur Schreibvorgange gepuffert und ein ein-
gehender Lesevorgang wird zugelassen, um auf den Speicherbus zuzugreifen, ohne verzogert zu werden.
Darauf folgende Leseoperationen an Victim-Daten, die in dem Schreibverzégerungspuffer gespeichert sind,
werden von dem Schreibverzégerungspuffer bedient.

[0262] Im Folgenden Bezug nehmend auf die Eig. 22, wird ein Zeitablaufdiagramm des Betriebs einer
Schreibverzégerungsoperation gezeigt. Zu der Zeit TO wird auf dem Verteilerbus ein Vorgang Read0 empfan-
gen. Diese Leseoperation wird sofort in dem Speicher propagiert, um auf den DRAM 334 zuzugreifen. Zu der
Zeit T1 wird eine Operation Write1 auf dem Verteilerbus empfangen. Wahrend dieses T1-Zyklus wird auf das
Verzeichnis 140 zugegriffen und bei Abschluss des T1-Zyklus wird das Signal Owner_Match, eine Uberein-
stimmung der WRITE1-Adresse anzeigend, aktiviert. Im Ergebnis wird das Flag 336b des Schreibverzége-
rungspuffereintrags gesetzt. Zu der Zeit T2 wird ein Lesevorgang empfangen und zu dem Speicher vor der
Operation WRITE1 weitergeleitet. Wahrend der Zeit T3 wird das der Operation WRITE1 entsprechende Flag
aktiviert und wenn die nachste Operation WRITE3 in dem Schreibverzégerungspuffer empfangen wird, wird
die Operation WRITE1 zum Speicher fir Behandlung durch den DRAM 334 weitergeleitet.

[0263] Es sollte beachtet werden, dass zum Auslesen des lokalen Speichers alternativ die DTAGs verwendet
werden kénnen, um das Flag-Bit in dem Schreibverzégerungspuffer zu setzen. Eine der Cache-Zeilen von ei-
nem lokalen Speicher kann in einem der Caches der Prozessoren in dem lokalen Knoten gespeichert werden.
Wenn einer der Prozessoren eine Cache-Zeile zu einem Victim macht und die Cache-Zeile in den Schreibver-
zoégerungspuffer geschrieben wird, kdnnen die DTAG-Eintrage fir jede Cache-Zeile gepruft werden, um zu be-
stimmen, ob die Cache-Zeile in einem der Prozessoren vorhanden war oder nicht. Wenn die Cache-Zeile in
einem der Prozessoren anwesend war, wird das Gultigkeits-Bit des DTAG-Eintrags geprift, um sicherzustel-
len, dass die Kopie, die der Prozessor zu einem Victim macht gultig war. Wenn in dem DTAG ein Treffer ist und
die Cache-Zeile gltig war, kann der DTAG das Flag in dem Schreibverzégerungspuffer setzen, um zu veran-
lassen, dass die Cache-Zeile in den lokalen Speicher geschrieben wird. Dies ermdglicht einfachen snoo-
py-bus-basierten Systemen (d. h. ohne Verzeichnis) denselben Vereinfachungsalgorithmus anzuwenden.

[0264] Die Speichersteuerlogik der Fig. 21 ermdglicht infolgedessen, dass READ-Operationen sofort in ei-
nem READ-Zyklus ausgefihrt werden und dass eine WRITE-Operation fir jeden WRITE-Zyklus ausgefiihrt
wird (selbst, wenn es ein verzégertes Schreiben ist). Im Ergebnis wird ein gleichférmiger Datenstrom zu den
DRAMs weitergeleitet, ohne dass Verzdgerungen im Ergebnis der Zugriffe auf das Verzeichnis eintreten und
die Leistung wird erhdht, wahrend die Koharenz aufrechterhalten bleibt. Obwohl die Schreibverzégerungspuf-
fer-Technik hierin in Bezug auf Victim-Schreibvorgange beschrieben wurde, kann sie in jedem System verwen-
det werden, in dem der Koharenzzustand zentralisiert und stationar ist, um die Speicherleistung zu verbessern.

34/89

DE 698 32 943 T2 2006.06.29

Virtuelle Kanale

[0265] Danach kann festgestellt werden, dass viele Speicherreferenzen zwischen den Prozessoren, den Ver-
zeichnissen, den Speichern und den DTAGs Ubertragen werden, um das Cache-Koharenz-Protokoll zu imple-
mentieren. Zusatzlich kann jede Speicherreferenz eine Anzahl von Transaktionen oder Hops zwischen den
Knoten, in denen Nachrichten fir die Speicherreferenz tbertragen werden, bevor die gesamte Referenz aus-
gefuhrt ist, enthalten. Wenn die Abhangigkeiten zwischen den Nachrichten verursachen, dass eine Referenz
indefinit blockiert wird, verklemmt das Mehrprozessorsystem.

[0266] Wie zuvor kurz beschrieben, bewerkstelligt ein Ausfihrungsbeispiel der Erfindung den Verkehr zwi-
schen den Knoten und halt durch die Verwendung einer virtuellen Kanalflusssteuerung die Datenkoharenz
ohne Verklemmung aufrecht. Virtuelle Kanale wurden zuerst zum Bereitstellen von verklemmungsfreiem Rou-
ting in Verbindungssysteme eingefiihrt. Gemal dem Ausfiihrungsbeispiel der Erfindung kénnen die virtuellen
Kanale zusatzlich verwendet werden, um Ressourcenverklemmungen in einem Cache-Koharenz-Protokoll fur
Computersysteme mit gemeinsamen Speichern zu verhindern.

[0267] Nach dem Stand der Technik werden in Bezug auf Cache-Koharenz-Protokolle zwei Losungswege be-
reitgestellt. FUr Systeme, die eine kleine Anzahl von Prozessoren und eine kleine Anzahl von aktuell ausste-
henden Anforderungen haben, werden Warteschlangen und Puffer bereitgestellt, die grol3 genug sind, um die
gréRtmagliche Anzahl von Antworten, die zu einem Zeitpunkt wahrend der Ausflihrung vorhanden sein kon-
nen, zu enthalten. Das Bereitstellen von ausreichend vielen Warteschlangen und geniigend Pufferraum garan-
tiert, dass Nachrichten, um Fortschritt zu machen, nie von anderen Nachrichten abhangig sind.

[0268] In groleren Systemen mit einer grofien Anzahl von ausstehenden Anforderungen, ist es nicht prak-
tisch, Puffer und Warteschlangen bereitzustellen, die groR® genug sind, um die maximale Anzahl von moéglichen
Antworten zu enthalten. Dementsprechend wurde das Problem durch die Verwendung von Zweikanal-Inter-
connects, die Uber einen Verklemmungserfassungs- und Verklemmungsaufldésungsmechanismus gekoppelt
waren, geldst. Zuerst verwendet die Interconnect-Verbindung (logische Pfade, die verwendet werden, um zwei
Nachrichten zwischen Systemkomponenten, wie zum Beispiel Prozessor und Speicher, zu bewegen) zwei Ka-
nale, einen Anforderungskanal (oder Kanal niedrigerer Ordnung) und einen Antwortkanal (oder Kanal héherer
Ordnung). Die Kanale sind typischerweise physikalisch, das bedeutet, sie verwenden verschiedene Puffer und
Warteschlangen. Zweitens wird typischerweise eine Heuristik angewendet, um eine potenzielle Verklemmung
zu erfassen. Beispielsweise kann ein Kontroller eine potenzielle Verklemmung signalisieren, wenn eine War-
teschlange voll ist und flr einige Zeit keine Nachricht aus der Warteschlange entfernt wurde. Drittens wird ein
Verklemmungsaufldsungsmechanismus angewendet, bei dem Auswahlnachrichten negativ bestatigt werden,
um so Ressourcen freizumachen und infolgedessen zu ermdglichen, dass andere Nachrichten Fortschritte ma-
chen. Negative Bestatigungsnachrichten verursachen, dass der entsprechendene Befehl zurtickgezogen wird.

[0269] Die oben beschriebene Lésung fur das grofle System hat zwei grundsatzliche Probleme: ein Fair-
ness-/Aushungerungsproblem und ein Problem der LeistungseinbulRe. Weil einige der Nachrichten negativ be-
statigt werden, ist es méglich, dass einige Befehle fir eine lange Zeit nicht ausgefiihrt werden (potenziell inde-
finit). Wenn nicht garantiert ist, dass ein Befehl innerhalb eines gegebenen Zeitraums ausgefiihrt wird, erhalt
die Ressource, die den Befehl ausgibt, keinen fairen Zugriff auf die Systemdaten. Auferdem kann die Res-
source, weil sie keinen fairen Zugriff auf die Systemdaten bekommt, nach Daten aushungern und potenziell
das System verklemmen. Da die meisten Nachrichten negativ bestatigt sein kdnnten und infolgedessen darin
versagen, zu ihren Zieladressen zu kommen, missen Protokollmeldungen, wie zum Beispiel Invalidate-Nach-
richten, eine Bestatigung erzeugen, um anzuzeigen, dass sie ihre Zieladresse erfolgreich erreichen. Des Wei-
teren muss der Kontroller warten, bis alle Bestatigungen empfangen wurden, bevor er die entsprechende Be-
fehlsausfihrung berlcksichtigen kann. Dieser Nichtdeterminismus fuhrt sowohl zu einem Nachrichten-Over-
head als auch zu, untypischer Latenz, die die Gesamtleistung des Cache-Koharenz-Protokolls verringert.

[0270] GemaR einem Ausfuhrungsbeispiel der Erfindung wird ein Cache-Koharenz-Protokoll verwendet, das
einen systematischen und deterministischen Ansatz zur Vermeidung von Verklemmung verwendet. Anstatt
eine potenzielle Verklemmung zu erfassen und dann korrigierend einzugreifen, wird die Verklemmung durch
die Ausfihrung eliminiert. Dementsprechend besteht kein Bedarf fur einen Verklemmungserfassungs- und Ver-
klemmungsaufldsungsmechanismus. Zweitens werden, da die Nachrichten nie negativ bestéatigt werden, Be-
statigungen fur Protokollmeldungen, wie Invalidate-Nachrichten, nicht erforderlich und deshalb werden die
Bandbreite und die Latenz verbessert.

[0271] Fur den Zweck des Erklarens der Verwendung von virtuellen Kanalen wird zuerst eine dienliche Ter-

35/89

DE 698 32 943 T2 2006.06.29

minologie bereitgestellt.

[0272] Abhangigkeit: Eine Nachricht M1 ist als ,abhangig" von Nachricht M2 definiert, wenn M1 keinen Fort-
schritt machen kann, ohne dass M2 Fortschritt macht. Des Weiteren wird Abhangigkeit als transitiv definiert.
Fir die Implementierung des Cache-Koharenz-Protokolls der vorliegenden Erfindung sind wenigstens zwei
Klassen von Abhangigkeiten vorhanden: Ressourcenabhangigkeiten und Flussabhangigkeiten. M1 wird als
Lressourcenabhangig" von M2 definiert, wenn M1 keinen Fortschritt machen kann, bis M2 eine Ressource, wie
zum Beispiel einen Warteschlangenschlitz, freimacht. M1 wird als ,flussabhangig" von M2 definiert, wenn das
Cache-Koharenz-Protokoll erfordert, dass M1 keinen Fortschritt macht, bis M2 Fortschritt macht. Beispielswei-
se kann das Cache-Koharenz-Protokoll erfordern, dass M1 blockiert, bis das Verzeichnis einen bestimmten
Status erreicht, und es ist M2, die den Verzeichnisstatus auf den erwtinschten Wert setzt. M1 wird als abhangig
von M2 definiert, wenn eine Kette von entweder Ressourcen- oder Flussabhangigkeiten von M1 zu M2 vorhan-
den ist.

[0273] Abhangigkeitszyklus: Ein ,Abhangigkeitszyklus" ist definiert, zwischen einer Reihe von Nachrichten
M1, M2 (= 2) vorhanden zu sein. Wenn der Fortschritt von M1 von dem Fortschritt von M2 abhangig ist, hangt
der von M2 von dem von M3 ab, der von Mk-1 hangt von dem von Mk ab und schlief3lich hangt der von Mk von
dem von M1 ab. Ein System von Nachrichten verklemmt, wenn irgendeine Teilmenge der Nachrichten einen
Abhangigkeitszyklus bildet. Da M1 von Mk abhangig ist, die wiederum von M1 abhangig ist, kann keine der
Nachrichten in dem Zyklus Fortschritt machen.

[0274] Das hierin offen gelegte Verfahren und die hierin offen gelegte Vorrichtung verwenden virtuelle Kanale,
um Verklemmungen in dem Cache-Koharenz-Protokoll deterministisch zu vermeiden. Im Folgenden werden
sowohl die bendtigten Hardwaremechanismen als auch die Reihe von Regeln, die bei der Ausfiihrung des Ca-
che-Koharenz-Protokolls befolgt wird, beschrieben.

[0275] In einem Ausfiihrungsbeispiel definiert das Cache-Koharenz-Protokoll, dass alle Speichervorgange in
hdchstens drei Phasen ausgeflihrt sein missen. In der ersten Phase wird eine Nachricht oder werden mehrere
Nachrichten zwischen den Komponenten des Systems ubertragen. Deshalb wird jede Phase ebenso als ein
,Hop" bezeichnet. Die Hops werden mit 0, 1 und 2 nummeriert. In Hop-0 wird eine Anforderung von einem Pro-
zessor oder einem 10-Prozessor zu dem Home-Verzeichnis geleitet. In Hop-1 werden die Nachrichten, die
durch das Home-Verzeichnis generiert wurden, zu einem Prozessor oder |0-Prozessor oder zu mehreren Pro-
zessoren oder 10-Prozessoren geleitet. In Hop-2 bewegen Sich die Nachrichten von einem Besitzerprozessor
zu dem Quellenprozessor. Die Hops werden in der Fig. 23 dargestellt.

[0276] Es ist eine gewollte Eigenschaft des Cache-Koharenz-Protokolls, dass alle Operationen in einer vor-
bestimmten Anzahl von Hops ausgefuhrt werden. In einem hierin beschriebenen Ausfihrungsbeispiel ist die
vorbestimmte Anzahl drei, obwohl die Erfindung nicht auf eine bestimmte Anzahl von Hops beschrankt ist, so-
lange die Anzahl, die ausgewahlt wird, relativ gering und konsistent ist. Diese Eigenschaft ist der Schlussel,
der garantiert, dass alle Nachrichten ohne jeden Mechanismus zum Erfassen von Verklemmungen und versa-
genden und wiederholt gesendeten Nachrichten zum Lésen der Verklemmung zu ihren Zieladressen geleitet
werden kénnen.

[0277] Wie oben erwahnt, ist die Hochstanzahl von Hops in diesem Ausflhrungsbeispiel drei. Das System
stellt folglich drei Kanale bereit, die jeweils mit Q0, Q1 und Q2 gekennzeichnet werden. Die Kanéle sind logisch
unabhangige Datenpfade durch die System-Interconnect-Verbindung. Die Kanale kénnen physikalisch oder
virtuell sein (oder teilweise physikalisch und teilweise virtuell). Wenn sie physikalisch sind, hat jeder Kanal
durchgangig durch das System eine verschiedene Warteschlange und verschiedene Pufferressourcen. Wenn
sie virtuell sind, nutzen die Kanéale die Warteschlangen und Pufferressourcen unter den unten genannten Ein-
schrankungen und Regeln.

[0278] Die drei Kanéle bilden eine Hierarchie. QO ist der Kanal niedrigster Ordnung, gefolgt von Q1, und Q2
ist der Kanal héchster Ordnung. Eine Nachricht in Kanal Qi kann nie von einer Nachricht in einem Kanal, der
geringer als Qi ist, abhangig sein.

[0279] Einem Ausfihrungsbeispiel der Erfindung ist zusatzlich ein QlO-Kanal hinzugefligt, um Flussabhan-
gigkeitszyklen zwischen den Antwortnachrichten von dem 10-System und Speicherraumbefehlen von dem
[O-System zu eliminieren.

[0280] SchlieBlich wird in einem Ausflihrungsbeispiel der Erfindung ein Q0Vic-Kanal fiir Victim-Nachrichten

36/89

DE 698 32 943 T2 2006.06.29

und darauf folgende abhangige Nachrichten, ausgegeben wahrend Victim-Nachrichten ausstehend sind, an-
gewendet.

[0281] Wie zuvor in Verbindung mit den Fig. 10A-Fig. 20H beschrieben, kann ein gegebenes Befehlspaket,
das zu dem Switch ausgegeben wird, eine Zahlenreihe von diskreten Transaktionen generieren. In einem Aus-
fuhrungsbeispiel der Erfindung wird jede diskrete Transaktion fiir ein gegebenes Befehlspaket einem Kanal zu-
geordnet. Die Kanéle stellen essentiell eine geordnete Struktur zum Definieren der Ausfiihrungsphasen und
der Abhangigkeiten eines gegebenen Befehlspakets bereit.

[0282] Im Folgenden Bezug nehmend auf die Fig. 22, stellt ein Flussdiagramm beispielsweise die Zuordnung
von Kanélen fir die diskreten Transaktionen, die in den Fig. 10A-Fig. 20J gezeigt werden, dar. Die diskreten
Transaktionen werden durch die folgende Nomenklatur beschrieben: die erste Transaktion in einer Reihe von
Transaktionen, die aus einer Referenz resultiert, wird als Q0- oder QOVic-Transaktion bezeichnet, die zweite
Transaktion der Reihe von Transaktionen ist eine Q1-Transaktion und die dritte Transaktion in der Reihe von
Transaktionen ist eine Q2-Transaktion.

[0283] Ein QO- oder Q0Vic-Kanal tragt Anfangsbefehle von Prozessoren und IOPs, die das Verzeichnis noch
nicht ausgesucht haben. Infolgedessen ist die Zieladresse eines Q0-/Q0Vic-Pakets immer das Verzeichnis.
Der QOVic-Kanal ist speziell fur Write-Victim-Befehle reserviert, wahrend der Q0-Kanal alle anderen durch den
Prozessor oder den IOP initiierten Befehle transportiert.

[0284] Ein in dem Schritt 380 ausgegebener Befehl kann versuchen, Daten oder den Aktualisierungsstatus
zu erhalten. Der Status ist immer in dem Home-Verzeichnis, das der Adresse der Daten entspricht, verflgbar.
In dem Schritt 382 wird auf das Home-Verzeichnis zugegriffen und es wird festgestellt, ob die verfigbare Ca-
che-Zeile im Besitz des Speichers (relativ zu dem Verzeichnis) oder in dem eines anderen Prozessors ist. In
beiden Fallen wird Uber den Q1-Kanal eine Antwort ausgegeben. Wenn in dem Schritt 382 festgestellt ist, dass
der Status oder die Daten in dem zweiten Knoten verfigbar sind, dann ist in dem Schritt 384 die Antwort auf
dem Q1-Kanal zuriick zu dem ersten Knoten gerichtet. Die Q1-Transaktionen umfassen ShortFill, Short Fill
Mod, VicACK, CTD-ACK/NACK usw.

[0285] Wenn in dem Schritt 382 festgestellt ist, dass der Home-Knoten die Daten nicht besitzt, dass die Daten
jedoch dirty sind und im Besitz eines anderen Prozessors sind, dann wird in dem Schritt 386 auf dem Q1-Kanal
eine Q1-Typ-Transaktion entweder eines weitergeleiteten Lesens oder eines weitergeleiteten Lesens/Modifi-
zierens zu einem Remote-Knoten ausgegeben.

[0286] Wenn als Antwort auf eine Statusprifung in dem Home-Knoten oder als Antwort auf ein Lesen/Modi-
fizieren angezeigt ist, dass andere Knoten Daten, die ihren Status zu dirty geandert haben, gemeinsam nutzen,
wird in dem Schritt 388 eine Q1-Typ-Transaktion Invalidate zu den anderen betroffenen Knoten weitergeleitet.

[0287] Infolgedessen dient der Q1-Kanal zum Transportieren von Paketen, die in ihrem zweiten ,Hop" sind,
wobei der erste ,Hop" das Verzeichnis ist. Die Zieladresse des zweiten ,Hops" ist immer ein Prozessor, wobei
der Prozessor entweder in einem Knoten, der den urspriinglichen Befehl initiiert, ist oder in einem anderen Re-
mote-Knoten in dem System ist.

[0288] Ein Q2-Kanal transportiert entweder eine Transaktion Long Fill oder eine Transaktion Long Fill Mod.
Der Q2-Kanal transportiert die Daten aus dem dritten Knoten durch einen dritten ,Hop" zurlick zu dem Knoten,
der den urspriinglichen Befehl initiiert hat. Die Zuordnung der Befehle in Befehle des Q0-/Q0Vic-, Q1- und
Q2-Typs kann in einem SMP-System verwendet werden, um verklemmungsfreie Nachrichtentibermittlung in
der folgenden Art und Weise bereitzustellen. Obwohl das Flussdiagramm der Fig. 23 die Wechselwirkung zwi-
schen vier virtuellen Kanalen darstellt, kdnnen in einem Ausfihrungsbeispiel der Erfindung fir den Zweck der
Aufrechterhaltung der Cache-Koharenz funf virtuelle Kanale verwendet werden. Der zusatzliche Kanal enthalt
einen QIO-Kanal. Generell tragt der QlIO-Kanal alle Lese- und Schreibvorgange, einschlieflich des Steuersta-
tusregisterzugriffs (CRS-Zugriff), zu |O-Adressraumen.

[0289] Im Folgenden auf die Tabelle 2 Bezug nehmend, wird eine Liste von exemplarischen Befehls-Map-
pings in Kanalpfade bereitgestellt:

37/89

DE 698 32 943 T2 2006.06.29

e L S — == -
QIo Alle lO-Ra‘pm-Anfc?rderungen zu CPU RdBytelO. RdWordlO, WrBytelO.WeWordlO tl
Alle Speicherraum-Anforderungen . .
Qo von CPU oder 10P Rd. RdMg:d, Fetch, CTD, ITD, Vic, RdVie, !
' RdModVic
QOVic Alle Speicherraum-Anforderungen von WrVic, Full Cache line Write, QV R4, “
|l CPU oder IOP die Daten iibertragen QV_RdMod, QV _Fetch =
Ql Alle weitergeleiteten Befehie FRd, FRAMed, Ffetch
Alle Schattenbefehie SFR. SFRAMod. SFEtch, Sinval, Ssnap
Short Fills SFill. StiiMod
Alle Arten von Fill Marker FM, FMMod, Pseudo-FM, PSeudo-DMMod,
FRdMod with FM
Andere CTD-ACK,CTD-NACK.ITD-ACK, Vic-A.
VicRel - :
I0-Raum-Antworten JOFiltMarker, I0WriteAck H
; Consi.g, die in Beziehung stehen Invi- Ack, LoopComSig j
Q Leng Fills Fil), FillMod
I0-Raum-Fills 10Fill B H
{ S Sl - Ll

[0290] Eine Implementierung von virtuellen Kandlen in einem switchbasierten System involviert die Verwen-
dung von physikalisch verschiedenen Warteschlangen, Puffern oder Pfaden flir jeden Kanal. Alternativ kbnnen
die Warteschlangen, Puffer und Pfade gemeinsam von den Kanalen genutzt werden und sind infolgedessen
wirklich ,virtuell". In einem Ausfihrungsbeispiel der Erfindung wird eine Kombination dieser Techniken verwen-
det, um die Hardware optimal auszunutzen.

[0291] Im Folgenden Bezug nehmend auf die Eig. 24, wird ein Beispiel gezeigt, wie ein Puffer von mehr als
einem virtuellen Kanal genutzt werden kann. Der gezeigte Puffer 400 enthalt eine Anzahl von Schlitzen". Jeder
der Schlitze ist zur Verwendung durch nur einen der Kanale zugeordnet. Beispielsweise umfasst der Schlitz
402 eine Anzahl von Puffereintragen, die den Befehlen des Q2-Typs zugeordnet sind, Schlitz 404 umfasst eine
Anzahl von Puffereintragen, die den Befehlen des Q1-Typs zugeordnet sind, usw.

[0292] Die restlichen Schlitze 410 kénnen durch Nachrichten fir jeden der Kanale verwendet werden und
werden deshalb als gemeinsam genutzte oder generische" Schlitze bezeichnet. Fiir jeden Kanal ist ein Belegt-
signal bereitgestellt. Das Belegtsignal zeigt an, dass ein Puffer nicht in der Lage ist, weitere Nachrichten zu
speichern und deshalb nichts zu diesem Puffer tibertragen werden sollte.

[0293] Zwischen dem Zeitpunkt, zu dem das Belegtsignal in einer gegebenen Ressource flir einen gegebe-
nen Kanal aktiviert wird, und dem Zeitpunkt, zu dem die Vorrichtung, die Befehle zu dieser Ressource ausgibt,
als Antwort auf das Belegtsignal das Ausgeben einstellt, ist eine Latenzperiode. Wahrend dieser Wartezeit ist
es maoglich, dass ein Befehlspaket oder mehrere Befehlspakete zu der Ressource ausgegeben werden kénn-
ten und deshalb sollte die Ressource so ausgelegt sein, dass keiner dieser Befehle fallengelassen wird.

[0294] Deshalb kdnnte der Empfanger, nachdem er das Belegt-Flusssteuersignal aktiviert, noch immer M
Nachrichten annehmen, wobei M in der Gleichung 3 unten definiert ist:

Gleichung 3:
M = (Flusssteuerungslatenz in Frame-Takten)/(Paketlange in Frame-Takten)
[0295] Der Wert von ,M" definiert dabei die Anzahl von pro Kanal zugeordneten Schlitzen, die verflgbar ist.
[0296] Im Folgenden Bezug nehmend auf die Fig. 25, wird ein Ausfihrungsbeispiel bereitgestellt, in dem vir-

tuelle Kanale implementiert werden, die fir jeden Kanal separate Ressourcen nutzen. Teile der zwei Knoten

38/89

DE 698 32 943 T2 2006.06.29

420 und 424 werden Uber einen hierarchischen Switch (HS) 422 zusammengekoppelt gezeigt.

[0297] Der globale Port 420 ist gekoppelt, um auf dem Bus 421a Eingangsdaten von dem hierarchischen
Switch 422 zu empfangen und um auf dem Bus 421 Daten zu dem Switch 422 zu tbertragen. Gleichermalien
ist der globale Port 424 gekoppelt, um auf dem Bus 423a Daten zu dem Switch 422 zu tbertragen und auf dem
Bus 423b Daten von dem Switch 422 zu empfangen.

[0298] Die Datenbusse 421a, 421b, 423a und 423b Ubertragen jeder alle Kanalbefehlstypen. Ein Warte-
schlangenmechanismus, wie der Warteschlangenmechanismus 425, ist an jedem Eingangs- und Ausgangs-
anschluss jeder Ressource bereitgestellt. Der Warteschlangenmechanismus umfasst eine Anzahl von einzel-
gesteuerten Puffern 425a—-425e, wobei jeder Puffer zugeordnet ist, um nur einen Typ von Kanalbefehl zu spei-
chern. Der Puffer 425a speichert nur Q0-Kanalbefehle, der Puffer 425b speichert nur Q0Vic-Kanalbefehle usw.

[0299] Wahrend die Befehlspakete an der Schnittstelle jeder Ressource empfangen werden, wird der Befehl-
styp analysiert und das Paket wird zu dem adaquaten Puffer weitergeleitet.

[0300] Wenn die Befehlspakete bereit sind, um zu dem adaquaten Prozessor oder IOP des Knotens weiter-
geleitet zu werden, werden sie von dem adaquaten Puffer ausgewahlt und tber den Verteilerbus und den QSA
(Fig. 6) weitergeleitet. Fiinf Suchmaschinen, eine fir jeden Kanal, sind vorhanden, um die nachste Nachricht
fur den jeweiligen Kanal zu lokalisieren.

[0301] In dem oben beschriebenen Schema wird jeder Kanal einzeln flussgesteuert und systemdurchgéangig
ist auf3er fur den niedrigsten Kanal ein Schlitz fiir jeden Kanal in der Hierarchie reserviert. Dies garantiert, dass
ein Kanal nie auf Grund von Ressourcenabhangigkeiten durch einen niedrigeren Kanal blockiert werden kann.
Die Bewegung der hdheren Kanalnachrichten wird nicht auf Grund von Belegung von Ressourcen durch nied-
rigere Kanalnachrichten blockiert.

[0302] Das oben beschriebene Schema zum gemeinsamen Nutzen eines physikalischen Puffers zwischen
virtuellen Kanalen ist ein einfacheres. Ein fortgeschritteneres Schema wurde zuvor im Zusammenhang mit
dem hierarchischen Switch beschrieben.

Virtuelle Kanale: Regeln fir die Zugriffsverteilung und das Koharenz-Protokoll-Design

[0303] Die Hardwaremechanismen allein sind nicht adaquat, um verklemmungsfreie Nachrichtenibermittiung
in dem Koharenzprotokoll zu garantieren, weil sie sich nur dem Ressourcenabhangigkeitsteil des Problems zu-
wenden. Um alle ressourcen- und flussabhangige Zyklen zu eliminieren, wird eine Anzahl von zusatzlichen Zu-
griffsverteilungs- und Koharenz-Protokoll-Designregeln festgelegt.

[0304] Zuerst sollte der Fortschritt einer Nachricht nicht von dem Fortschritt einer niedrigeren Kanalnachricht
abhangig sein, wobei Q2 ein Kanal héherer Ordnung ist und QO ein Kanal niedriger Ordnung ist. Die Verteiler
sollten die Flusssteuerung jedes Kanals unabhangig von den anderen steuern. Wenn beispielsweise fir Q1
ein Belegt-Flusssteuersignal aktiviert ist, jedoch fiir Q2 nicht, sollten die Verteiler Q2 Fortschritt machen lassen.
Alle Suchmaschinen, die verwendet werden, um eine Ressource fiir ausstehende Befehlspakete zu suchen,
missen dieselbe Eigenschaft sicherstellen.

[0305] Zweitens, jede Ressource, die von zwei oder mehr Kanalen gemeinsam genutzt wird, muss einige zu-
geordnete Schlitze fiir jeden der héheren Kanale inkorporieren und sollte den Kanalen héherer Ordnung er-
mdglichen, Fortschritt zu machen, wenn Kanale niedriger Ordnung blockiert sind.

[0306] Drittens, alle Kanalbefehle missen konsistent arbeiten. Der Endpunkt eines QO0-Befehls ist immer ein
Verzeichnis. Der Endpunkt eines Q1-Befehls und eines Q2-Befehls ist immer ein Prozessor. Wenn Transakti-
onen an einem Endpunkt fortsetzen wollen, mussen Sie sich zu einem héheren Kanal bewegen. Wenn bei-
spielsweise eine QO0-Nachricht ein Verzeichnis erreicht, kann sie keine Q0-Nachrichten generieren, sondern
muss Q1- oder Q2-Nachrichten generieren. Deshalb kann eine Nachricht nicht verzweigen oder in eine nied-
rigere Kanalnachricht konvertieren.

[0307] Fur Transaktionen, die sich an anderen Punkten verzweigen, kénnen nur Nachrichten desselben oder
eines héheren Kanals erzeugt werden. Wenn beispielsweise eine weitergeleitete Lesen-Modifizieren-Nach-
richt (eine Q1-Nachricht) eine weitergeleitete Lesen-Modifizieren-, eine Invalidate- und eine Fillen-Modifizie-
ren-Markierungsnachricht erzeugt, sind alle diese Nachrichten Q1-Nachrichten.

39/89

DE 698 32 943 T2 2006.06.29

[0308] Folglich werden eine Vorrichtung und ein Verfahren zum Bereitstellen von virtuellen Kanalen in entwe-
der einem busbasierten oder einem switchbasierten System bereitgestellt. Durch das Verwenden der virtuellen
Kanale und der oben beschriebenen Ordnungszwange kann garantiert werden, dass Referenzen, sobald sie
durch das Verzeichnis bedient werden, ausgefiihrt werden. Im Ergebnis werden die aufwendigen Protokolle
nach dem Stand der Technik, die NACKS (in denen ein Prozessor dem anderen anzeigt, dass ein Prozess nicht
ausgefihrt wurde) und wiederholt ausgefihrte Operationen eliminiert.

[0309] Obwohl Ausfihrungsbeispiele mit bis zu finf unabhangigen Kanalen gezeigt wurden, sollte verstan-
den werden, dass ein Ausfuhrungsbeispiel der vorliegenden Erfindung nicht auf eine gegebene Anzahl von Ka-
nalen und nicht auf ein symmetrisches Mehrprozesssystem beschrankt ist. Stattdessen sollte die ausgewahlte
Anzahl von Kanalen die Anzahl sein, die zum Absichern einer kohadrenten Kommunikation, die jedem Kanal
inharenten Steuer- und Hardware-Overheads gegeben, erforderlich ist. Das Steuerverfahren fir die virtuellen
Kanale und die zugehdrige Vorrichtung ermdglichen deshalb in jedem Mehrprozesssystem Hochleistungskom-
munikation ohne Verklemmung.

Betrieb der Verzeichnisse beim Aufrechterhalten der Koharenz

[0310] Bis hierhin wurde eine Basiskommunikationsfabrik dargestellt und eine Basissteuerungsstruktur zum
Ermdglichen des freien Kommunikationsflusses zwischen Knoten in dem SMP-System wurde bereitgestellt.
Der Schlissel fur die Koharenz ist jedoch das Sicherstellen, dass die frei flieRenden Befehle von jedem der
Prozessoren in dem System in der richtigen Ordnung ,behandelt" werden. Der Mechanismus, der den Seriali-
sierungspunkt fur alle Befehle in dem SMP-System bereitstellt, ist das Verzeichnis in jedem Knoten.

[0311] Wie oben beschrieben, greifen alle Q0-Typ-Befehle zuerst auf das Home-Verzeichnis der bestreffen-
den Speicheradresse zu. Das Sicherstellen, dass flr jeden Befehl zuerst auf das Verzeichnis zugegriffen wird,
ermoglicht, dass jeder Befehl von einer gemeinsamen Quelle in Reihenfolge gesichtet wird.

[0312] In einem Ausfiihrungsbeispiel der Erfindung ist die Serialisierungsordnung die Ordnung, in der die
QO0-Befehle fir X auf dem Verteilerbus erscheinen, nachdem sie aus dem Verzeichnis die Zugriffsverteilung fur
die Adresse X gewonnen haben. Ein Befehl des Ladetyps wird festgelegt, wenn der entsprechende Lesebefehl
auf das Home-Verzeichnis zugreift. Ein Befehl des Speichertyps wird festgelegt, wenn entweder der entspre-
chende Befehl Lesen/Modifizieren auf das Verzeichnis zugreift oder wenn der entsprechende Befehl
Clean-to-Dirty auf das Verzeichnis zugreift und auf dem Verteilerbus erscheint.

[0313] Als Beispiel sei vorausgesetzt, das die unten gezeigte Sequenz von zehn Befehlen durch verschiede-
ne Prozessoren (#P) zu einem gemeinsamen Home-Verzeichnis ausgegeben wird, wobei X; der Teil der Ca-
che-Zeile X ist.

Tabelle 4

P1: Speichere X, (1)
P2: Lade X,
P3: Lade X,
P5: Lade X,
P1: Speichere X, (2)
P2: Speichere X, (3)
P4: Lade X,
P5: Lade X,
P6: Lade X,

0 P2: Speichere X, (4)

2 OO NOOOOPAWN -

[0314] Die Version der Cache-Zeile wird im Ergebnis jedes Speichervorgangs aktualisiert. Infolgedessen er-
zeugt der Befehl eins die Version eins, der Befehl funf erzeugt die Version zwei, der Befehl sechs erzeugt die
Version drei und der Befehl zehn erzeugt die Version vier.

[0315] Die Serialisierungsordnung stellt sicher, dass jede Sequenz von Ereignissen, die das Verzeichnis er-
reicht; die richtige Version jeder Cache-Zeile X erhalt. Beispielsweise sollten die Befehle zwei bis einschliel3lich
vier die Version eins erhalten. Wenn der Befehl fiinf des Prozessors P1 die Speicherung durchfiihrt, sollte er
alle Invalidate-Nachrichten zu allen Versionen einer Cache-Zeile (in den Prozessoren P2, P3 und P5) senden.
Gleichermalien sollte er, wenn der Befehl sechs des Prozessors P2 X mit den Daten der Version drei aktuali-

40/89

DE 698 32 943 T2 2006.06.29

siert, die Daten der Version zwei des Prozessors P1 Invalidate unterziehen. Die Prozessoren P4, P6 und P7
erhalten die Daten der Version drei, die spater durch die Speicherung des Prozessors P8 der Daten der Version
vier Invalidate unterzogen werden.

[0316] Es genugt festzustellen, dass in einem System zu jeder gegebenen Zeit eine Anzahl von Last- und
Speichervorgangen fir eine gemeinsame Cache-Zeile X im Gang sein kann. Das System behandelt diese Be-
fehle in einer solchen Art und Weise, dass die Lasten und Speicherungen durch das Verzeichnis in einer seri-
alisierten Ordnung weiterverarbeitet werden.

[0317] Zum Sichern der Aufrechterhaltung der System-Serialisierungsordnung und gleichzeitig der Aufrecht-
erhaltung der Datenkoharenz wird eine Anzahl von Techniken verwendet. Diese Techniken umfassen das strik-
te Ordnen von Q1-Kanalbefehlen, von CTD-Eindeutigkeiten, von Shadow-Befehlen, von Fill Markern und von
Victim-Schreibverzégerungspufferung. Im Folgenden wird jede Technik detailliert beschrieben.

Q1-Kanalordnung

[0318] Die erste MaBRnahme, die ergriffen wird, um die Koharenz aufrechtzuerhalten, ist sicherzustellen, dass
sich alle Nachrichten, die sich auf dem Q1-Kanal bewegen, d. h. jene, die von dem Verzeichnis gesendet wer-
den, in einer FIFO-Ordnung bewegen. Das bedeutet, dass die Nachrichten des Q1-Typs, die von dem Ver-
zeichnis zu einem anderen Prozessor oder dem IOP weitergeleitet werden, in der Ordnung weitergeleitet wer-
den, in der die Befehle in dem Verzeichnis serialisiert wurden.

[0319] Als Beispiel wird in dem exemplarischen Teilsystem der Fig. 26 vorausgesetzt, dass der erste Prozes-
sor P1 (431) in dem Knoten 430 eine Cache-Zeile X dirty in seinem Cache speichert. Der Prozessor P16 (433)
in dem Knoten 432 gibt einen Befehl X Lesen auf dem QO0-Kanal aus, der zu dem Home-Verzeichnis 437 in
dem Knoten 436 weitergeleitet wird. Ebenso gibt der Prozessor P17 in dem Knoten 432 einen Inaval-to-Dir-
ty-Befehl auf dem Kanal QO aus, der ebenso zu dem Home-Verzeichnis 437 von X in dem Knoten 436 weiter-
geleitet wird. Als Antwort auf das Empfangen des Befehls X Lesen wird in Uberseinstimmung mit dem Ver-
zeichniseintrag auf dem Q1-Kanal ein weitergeleiteter Befehl X Lesen zu dem Prozessor P1 (431) gesendet.
Als Antwort auf das Empfangen des IDTs wird in Ubereinstimmung mit dem Status des Verzeichniseintrages
ein Invalidate-Befehl zu dem hierarchischen Switch 435 gesendet, der die weitergeleiteten Invalidate-Befehle
auf dem Kanal Q1 zu dem Prozessor P1 und Prozessor P16 weiterleitet.

[0320] Infolgedessen werden gleichzeitig ein Inval-X-Befehl und ein weitergeleiteter Befehl X Lesen als
Q1-Kanalbefehle zu dem P1 gesendet.

[0321] Wenn den Befehlen auf dem Kanal Q1 ermdglicht wirde, auferhalb der Reihenfolge ausgefiihrt zu
werden, kénnte eintreten, dass Invalidate vor dem Read erfolgt. Als Folge dessen wirden die Fill-Daten nicht
zu dem Prozessor 16 gesendet werden und alle weiteren Vorgange wirden unberechenbar sein.

[0322] Durch das Halten der Befehle auf dem Q1-Kanal in Ordnung, wird der Read-Befehl durch den P1 vor
dem Empfang des Invalidate-Befehls behandelt und die Koharenz bleibt aufrechterhalten.

[0323] In einem Ausflihrungsbeispiel der Erfindung wird die FIFO-Ordnung nur fir einen Kanal Q1 aufrecht-
erhalten, wobei die FIFO-Ordnung bedeutet, dass alle Nachrichten, die derselben Speicheradresse entspre-
chen, in der FIFO-Ordnung bleiben. Die vorliegende Erfindung ist jedoch nicht darauf beschrankt, lediglich die
Ordnung fiir den Q1-Kanal aufrechtzuerhalten, sondern kann erweitert werden, um das Aufrechterhalten von
Ordnung fir jede Kombination von Kanalen zu umfassen.

[0324] Eine Methode zum Implementieren der oben beschriebenen Ordnungsprozedur wird durch den
QS-Verteiler 11 in dem QSA-Chip (Fig. 6) durchgefiihrt. Der QS-Verteiler serialisiert alle Q0-Transaktionen zu
dem Speicherraum des Knotens. Im Ergebnis wird ein serieller Fluss von Q1-Paketen erzeugt, der tber den
globalen Port und den hierarchischen Switch sowohl zu dem lokalen Prozessor in dem Knoten als auch zu Pro-
zessoren, die dezentral zu dem Knoten sind, gerichtet ist.

[0325] Die erste Ordnungsregel sagt Folgendes aus: Alle Q1-Pakete, die durch einen gegebenen QS-Vertei-
ler erzeugt werden, werden in serieller Ordnung erzeugt. Alle Prozessoren, auf die einige oder alle der Q1-Pa-
kete von einem gegebenen QS-Verteiler zielen, empfangen diese Q1-Pakete in der Reihenfolge, in der diese
durch den QS-Verteiler generiert wurden.

41/89

DE 698 32 943 T2 2006.06.29

[0326] Um diese Regel zu abzusichern, halt der QSA-Chip die Ordnung bei allen Q1-Paketen aufrecht, die
zu und von einem gekoppelten Prozessor in dem Knoten Ubertragen werden. Die Logik in dem globalen Port
halt die FIFO-Ordnung bei allen Paketen aufrecht, die zwischen dem hierarchischen Switch und dem
QSA-Chip ubertragen werden. Zusatzlich halt der hierarchische Switch Ordnung bei allen Q1-Paketen von je-
dem gegebenen Eingang zu jedem gegebenen Ausgang aufrecht.

[0327] Es ist zu beachten, dass diese Regel keine bestimmte Ordnung zwischen Q1-Paketen von einem
QS-Verteiler und Q1-Paketen von dem QS-Verteiler eines anderen Knotens zuweist. Die Q1-Pakete, die von
anderen Knoten empfangen werden, werden tber den hierarchischen Switch mit den Q1-Paketen die durch
den Home-Knoten erzeugt werden, wie folgt serialisiert: Alle Q1-Pakete, die auf Prozessoren in Remote-Kno-
ten zielen, werden durch den QS-Verteiler der Remote-Knoten weiterverarbeitet. Diese Q1-Pakete werden
durch den hierarchischen Switch mit durch den Remote-Knoten erzeugten Q1-Paketen serialisiert. Alle Emp-
fanger von Q1-Paketen von einem gegebenen QS-Verteiler missen die Q1-Pakete in derselben Ordnung, in
der sie in dem QS-Verteiler serialisiert wurden, empfangen.

[0328] Im Folgenden Bezug nehmend auf die Fig. 27A, wird ein Blockdiagramm gezeigt, dass das Ordnen
einer Anzahl von QO- und Q1-Befehlen, die durch das SMP gemaf den oben beschriebenen Ordnungsrichtli-
nien weiterverarbeitet werden, dargestellt. Es sei vorausgesetzt, dass der Px in Knoten 440 einen Befehl Q0a
ausgibt, Prozessor Py einen Befehl Q0b ausgibt und Prozessor Pz einen Befehl QOc ausgibt. Gleichzeitig da-
mit empfangt der QS-Verteiler 441 von dem globalen Port 443 Q1-Nachrichten von den Prozessoren Pr und
Pq.

[0329] Diese Nachrichten werden wie folgt geordnet: Der QS-Verteiler 441 verarbeitet den Q0a, den QOb und
den QOc weiter, um Q1a-, Q1b- und Q1c-Antworten zu erzeugen. Diese Erzeugten Q1-Befehle werden mit den
eingehenden Q1-Befehlen kombiniert, um einen geordneten Fluss von Befehlen zu dem FIFO 442 zum Wei-
terleiten zu den lokalen Prozessoren bereitzustellen. Die Ordnung der FIFO-Befehle reflektiert die Ordnung der
durch den QS-Verteiler weiterverarbeiteten Befehle.

[0330] Die Q1a-, Q1b- und Q1c-Befehle werden zu dem globalen Port 443 zur Ubertragung zu einem Remo-
te-Knoten weitergeleitet. Der Ausgangspuffer 444 des globalen Ports speichert diese Befehle in derselben Ord-
nung, in der sie durch den QS-Verteiler weiterverarbeitet wurden. Diese Ordnung wird durch den hierarchi-
schen Switch 446 unter Verwendung der Methoden, die oben in Bezug auf die Eig. 14-Fig. 19 beschrieben
wurden, aufrechterhalten, wahlend die Nachrichten zu der Remote-CPU 454 weitergeleitet werden.

[0331] Die Fig. 27A stellt auRerdem weitere Ordnungsrichtlinien, die in dem hierarchischen Switch gelten,
dar. Wie zuvor erwahnt, erhalt der hierarchische Switch die Ordnung durch das Sicherstellen aufrecht, dass
mehreren Paketen, die an einem gegebenen Eingangsport des hierarchischen Switchs erscheinen und die auf
einen gemeinsamen Ausgangsport des hierarchischen Switchs zielen, in derselben Ordnung an dem Aus-
gangsport erscheinen, in der sie an dem Eingangsport erschienen sind.

[0332] Im Folgenden Bezug nehmend auf die Eig. 27B, ist der hierarchische Switch, wie oben beschrieben,
fur das Multicasting von Eingangsnachrichten, d. h. das Senden eines empfangenen Q1-Pakets zu mehr als
einem Zieladressenknoten, verantwortlich. Ein Beispiel eines Pakets, dass durch den Switch massenversen-
det wird, ist das Invalidate-Paket. Wenn mehrere Pakete, die von verschiedenen hierarchischen Switch-Ports
eingegeben werden, zu gemeinsamen Ausgangsports massenversendet werden, sollten die Q1-Pakete in der-
selben Ordnung an allen Ausgangsports erscheinen. Wenn beispielsweise sowohl Paket eins als auch Paket
zwei an dem hierarchischen Switch 460 empfangen wurden, dann ist eine zulassige Methode des Multicastings
der zwei Nachrichten zu den Prozessoren 464 und 466, dass die Nachricht zwei beide Prozessoren vor der
Nachricht eins erreicht. Eine weitere zuldssige Methode ware, beide Nachrichtenpakete eins beide Prozesso-
ren vor den Nachrichtpaketen zwei erreichen zu lassen. Jedoch sollten beide Prozessoren die Nachrichten
nicht in einer verschiedenen Ordnung empfangen.

[0333] Eine weitere Ordnungsregel, die der hierarchische Switch zu befolgen hat, ist sicherzustellen, dass,
wenn geordnete Listen von Q1-Paketen von mehreren Eingangsports auf gemeinsame Ausgangsports zielen,
die Q1-Pakete an den Ausgangsports in einer Art und Weise erscheinen, die mit einer einzelnen gemeinsamen
Ordnung aller eingehenden Q1-Pakete konsistent ist.

[0334] Beispielsweise wird in der Eig. 27C in dem Eingangsport 461 Paket zwei vor Paket vier empfangen.

Gleichermallen wird in dem Eingangsport 462 Paket eins vor Paket drei empfangen. Die Gesamtordnung die-
ser Befehle muss zur Vermeidung von Verklemmung aufrechterhalten werden. Eine zuldssige Ordnung die

42/89

DE 698 32 943 T2 2006.06.29

Ausgangspakete bereitzustellen, ist, das Paket drei zuerst zu dem Knoten 464 tbertragen zu lassen und Paket
eins zuerst zu dem Knoten 466 (ibertragen zu lassen. Diese Ubertragung wird in der Fig. 27C dargestellt. Eine
weitere zulassige Ausgabe ware, die Pakete zwei und vier zuerst durch den Empfangerprozessor empfangen
zu lassen. Wenn jedoch ein Prozessor das Paket drei zuerst empfangt und ein weiterer Prozessor zuerst das
Paket vier empfangt, dann kann Verklemmung eintreten, wahrend die blockierten Prozessoren den Empfang
ihrer weiteren Pakete ihrer Originalsequenz erwarten.

[0335] Deshalb werden Regeln bereitgestellt, die sicherstellen, dass die Ordnung in dem Q1-Kanal aufrecht-
erhalten bleibt. In einem Ausfuhrungsbeispiel der Erfindung ist aus Leistungsgriinden erwiinscht, zu ermogli-
chen, die QO0- und Q2-Pakete auRerhalb der Ordnung weiterzuverarbeiten. Um Datenkoharenz sicherzustel-
len, werden mehrere Koharenzmechanismen bereitgestellt, die im Folgenden beschrieben werden.

Change to Dirty Eindeutigkeit

[0336] Wie oben erwahnt, werden nur die Befehle des Q1-Typs in einer Serialisierungsordnung in dem Ver-
zeichnis definiert. In einem Ausfuhrungsbeispiel der Erfindung sind die Q0- und Q2-Befehle nicht geordnet. Da-
her werden SicherheitsmalRnahmen ergriffen, um sicherzustellen, dass in dem Verzeichnis im Ergebnis des
relativen Timings der empfangenen QO0- und Q2-Befehle keine Koharenzprobleme entstehen.

[0337] Ein Koharenzproblem, das entsteht, resultiert aus der Struktur der Verzeichniseintrage. Wie in der
Fig. 9 gezeigt, enthalt jeder Verzeichniseintrag ein Besitzerfeld und ein Prasenzbit fir jeden Knoten. Das Pra-
senzbit ist ein Grobvektor, der das Vorhandensein von Daten in einem der vier Prozessoren des zugehdrigen
Knotens darstellt. Arbeitsschritte durch jeden der vier Prozessoren kénnen dazu flhren, dass das Prasenzbit
gesetzt wird. Infolgedessen besteht eine bestimmte Mehrdeutigkeit, in welchem Prozessor in dem Knoten das
Prasenzbit gesetzt ist. Diese Mehrdeutigkeit kann in bestimmten Fallen zu Koharenzproblemen flihren.

[0338] Im Folgenden als Beispiel Bezug nehmend auf die Fig. 28A und Fig. 28B, wird ein Blockdiagramm
von zwei Knoten 470 und 472 gezeigt. Der Knoten 470 (Knoten-ID drei des globalen Systems) enthéalt die Pro-
zessoren P12, P13, P14 und P15, wahrend der Knoten 472 (Knoten-ID sieben des globalen Systems) die Kno-
ten P28, P29, P30 und P31 enthalt.

[0339] Der Status des Verzeichniseintrags flir eine gegebene Cache-Zeile X in verschiedenen Zeitperioden
TO-T3 istin der Verzeichnisstatustabelle 455 in der Fig. 28B angegeben. in diesem Beispiel ist der Home-Kno-
ten jeder Cache-Zeile X ein anderer Knoten als der Knoten 470 oder 472.

[0340] Zu der Zeit TO ist der Speicher der Besitzer der Cache-Zeile X, wie durch die Besitzer-ID 80 angezeigt.
Auflerdem speichert zu der Zeit TO der Prozessor 30 an der Knoten-ID sieben eine Clean-Kopie der Ca-
che-Zeile X.

[0341] Zu der Zeit T1 sendet Prozessor 14 einen Speicherbefehl, der in den Block Read X Mod translatiert ist
und zu dem Home-Verzeichnis der Cache-Zeile X weitergeleitet wird. Weil der Speicher Besitzer ist, kann der
Prozessor 14 die Daten aus dem Speicher erhalten und wird Besitzer der Cache-Zeile. Zu Knoten sieben wird
eine Invalidate-Nachricht tibertragen, um die altere Version der Cache-Zeile X ungiltig zu machen, und das
Prasenzbit von Knoten sieben wird geldscht. Zusatzlich setzt Prozessor P14 sein Knotenprasenzbit 456 (Bit
drei). Die Cache-Zeile X wird von dem Home-Speicher zum Speichern und zum Modifizieren an den Prozessor
14 gesendet.

[0342] Zu der Zeit T2 gibt ein weiterer Prozessor, wie zum Beispiel der Prozessor 31, einen Read-Befehl fir
Cache-Zeile X aus. Der Lesebefehl erhalt die Daten Uber einen Fill von dem Prozessor P14. Infolgedessen
zeigt das Verzeichnis zu der Zeit T2 an, dass sowohl die Knoten-ID drei (Prozessor 14) als auch die Knoten-ID
sieben (Prozessor 31) eine Kopie der Cache-Zeile X speichern, wie durch die Knotenprasenzbits 458 und 456
angezeigt.

[0343] Wenn zu einer Zeit T3 durch den Prozessor P30 ein CTD ausgegeben wird, ist der Status der Ca-
che-Zeile X, von verschiedenen Prozessoren in dem System aus gesehen, aus dem folgenden Grund nicht
koharent. Wenn der CTD das Verzeichnis erreicht, liest er den Verzeichniseintrag fur X und bestimmt, dass das
Prasenzbit 458 fir seinen Knoten, Knoten-ID sieben, bereits eingerichtet ist. Im Ergebnis setzt der Prozessor
P30 anschlieBend voraus, dass seine CTD-Anforderung erfolgreich war. Der Prozessor 30 annulliert die Kopie
der Cache-Zeile X des Prozessors 14 und aktualisiert das Besitzerfeld in dem Verzeichnis. Diese Handlung
kann zu unberechenbaren Ergebnissen fuhren, da der Prozessor P14 eine aktuellere Version der Daten als

43/89

DE 698 32 943 T2 2006.06.29

der Prozessor P30 speichert.

[0344] Ein Problem ist, dass der Prozessor 30 noch immer eine veraltete Version der durch den Prozessor 14
erzeugten Cache-Zeile speichert und dass Prozessor 14 mitgeteilt wurde, die aktuellste Version der Daten zu
annullieren. Eine derartige Situation kénnte ernsthafte Koharenzprobleme innerhalb des SMP-Systems verur-
sachen.

[0345] Zum Korrigieren des oben beschriebenen Problems sind einige Methoden dienlich. Eine Methode ist,
das Prasenzfeld des Verzeichniseintrags zu erweitern, um ein Bit fiir jeden Prozessor in dem System bereitzu-
stellen. Infolgedessen wird die Auflésung von der Knotenebene in die Prozessorebene geandert. Diese Auflo-
sung wurde jedoch die GréRRe des Verzeichnisses unerwiinscht vergrof3ern.

[0346] Ein Ausflhrungsbeispiel der Erfindung stellt eine einfachere Methode zum Verhindern des oben be-
schriebenen Eindeutigkeitsproblems durch das Verlangsamen der CTD-Befehle, wenn eine ausstehende Re-
ferenz zu derselben Adresse im Transit fur diesen Knoten ist, bereit. Wenn eine ausstehende Anforderung fir
dieselbe Adresse vorhanden ist, wird der CTD zuruckgehalten, bis diese vorhergehende Anforderung zurtck-
gezogen wird. Das Transaktions-Tracking-Verzeichnis (TTT) der Fig. 10 eines gegebenen Knotens wird ver-
wendet, um ausstehende Globalreferenzen fir diesen Knoten zu tberwachen. Zuséatzlich sind Anforderungen,
die empfangen werden, nachdem der CTD empfangen wurde, fehlgeschlagen.

[0347] Wie unter Bezugnahme auf die Fig. 10 beschrieben, ist das TTT eine vollstandig assoziative, mehr-
funktionale Steuerstruktur. Das TTT flhrt zwei Hauptaufgaben aus. Es speichert die Adressen aller Remo-
te-Referenzen, die durch den ihnen zugehdérigen Knoten ausgegeben werden. Infolgedessen speichert das
TTT einen Informationseintrag fir jeden Remote-Zugriff, der durch einen Knoten ausgegeben wird, bis die
Transaktion als ausgefuhrt betrachtet wird. Zusatzlich stellt das TTT in Reaktion auf Anforderungen zu lokalen
Adressen Koharenzinformationen in Bezug auf die transitiven Koharenzzustande bereit. Folglich ist das TTT
ein Verzeichnis zum Verfolgen des Status der Zugriffe, wahrend diese im Transit sind.

[0348] Andere Prozesssysteme ermoglichen einer Referenz zu jeder gegebenen Cache-Zeile, zu jedem Zeit-
moment im Transit zu sein. Darauf folgende Referenzen zu einer Cache-Zeile im Transit werden blockiert, bis
die Referenz im Transit ausgefiihrt ist.

[0349] Im Gegensatz dazu ermoglicht das SMP der vorliegenden Erfindung, auf Grund der Serialisierung der
Befehle in dem Verzeichnis und der Kanalordnungsregeln; dass zu jedem gegebenen Zeitpunkt mehrere Re-
ferenzen zu derselben Cache-Zeile im Umlauf sind. Im Ergebnis wird die Gesamtleistung des SMP-Systems
verbessert.

[0350] Das TTT 522 wird durch die Logik in dem QSA-Chip verwendet, um den Status der Transaktionen fest-
zustellen, die Uber den globalen Port ausgegeben wurden. Bevor er die Antwort zu dem globalen Port ausgibt,
greift der QSA erst auf das TTT zu, um festzustellen, welche Referenzen zu derselben Cache-Zeile ausste-
hend sind. Eine Referenz steht aus, wenn sie in Reaktion auf die letzte empfangene Transaktion nicht aus dem
TTT zuriickgezogen wurde.

[0351] Wie eine Referenz aus dem TTT zurlickgezogen wird, ist von dem Typ der Referenz, der in dem Be-
fehlsfeld 584 angezeigt wird, abhangig. Beispielsweise erfordern Referenzen Read X, die bis zu dem globalen
Port zur Speicherung in dem TTT gekommen sind, dass sowohl das Statusbit Fill Here 588a als auch das Sta-
tusbit Fill Marker Here 588b zu empfangen sind. (Fill Marker werden unten ausfiihrlicher beschrieben.) Fir Re-
ferenzen des Statustyps, wie zum Beispiel CTD oder ITD, ist das Setzen des ACK/NACK-Bits 588c indas TTT
ausreichend, um diesen Eintrag zurlickzuziehen.

[0352] Im Folgenden Bezug nehmend auf die Fig. 29, stellt ein Flussdiagramm die Verwendung des TTTs
zum Eliminieren von mehrdeutigen Verzeichniseintradgen dar. In dem Schritt 500 wird eine Cache-Zeile in dem
Speicher in ihrem Home-Knoten gespeichert und der Prozessor 30 des Knotens sieben speichert eine Kopie
der Daten. In dem Schritt 502 wird durch den Prozessor P14 ein ReadMod X ausgegeben. Im Ergebnis wird
Invalidate zu dem Knoten sieben weitergeleitet. In dem Schritt 504 gibt der Prozessor P31 einen Befehl Rd X
aus, der einen Eintrag in dem TTT in dem Knoten sieben mit dem folgenden Status erzeugt.

Adresse Befehis-ID Status

44/89

DE 698 32 943 T2 2006.06.29

Fill

Fmark

Shadow

ACK/NACK

X

Lese 31

[0353] In dem Schritt 506 gibt der Prozessor P30 einen CTD X aus. Der QSA-Chip prift die Adresse der
CTD-Anweisung, bestimmt, dass er ein Remote-CTD ist, und leitet ihn zu dem globalen Port und lber den

GP-Link zu dem TTT weiter. Der Inhalt des TTTs ist dann wie unten gezeigt.

Adresse Befehls-ID Status
Fill Fmark Shadow ACK/NACK
X Lese 30
X Lese 31

[0354] Wie in Bezug auf die Fig. 6 erwahnt, nutzt der globale Port die Informationen aus dem TTT, um fest-
zustellen, welche Befehle zum Senden aus dem hierarchischen Switch heraus zugelassen sind. In einem Aus-
fihrungsbeispiel der Erfindung wird der globale Port, wenn das TTT bestimmt, dass ein hangiges Read im
Transit ist, vom Weiterleiten der CTD zu dem Switch ausgeschlossen, bis die Leseergebnisse zuriickgesendet
wurden.

[0355] In dem in dem Flussdiagramm der Fig. 29 beschriebenen Beispiel wird durch das TTT eine ausste-
hende Leseanforderung zu der Adresse X identifiziert. Im Ergebnis wird in dem Schritt 508 der CTD aufgehal-
ten, bis der Read-Befehl nicht langer ausstehend ist.

[0356] Der Read steht aus, bis sowohl ein Fill als auch ein Fill Marker zu dem Knoten sieben zurlickgesendet
sind. Wahrend dieser Zeitperiode erreicht die durch den ReadMod in dem Schritt 502 ausgegebene Invalida-
te-Nachricht den Knoten sieben und aktualisiert die DTAGs des jeweiligen Knotens. Wenn die Invalidate-Nach-
richt fir X das TTT erreicht, markiert das TTT jeden CTD, der in der TTT gehalten wird, als fehlgeschlagen und
er wird sofort freigegeben. Wenn in dem Schritt 510 der CTD noch immer in dem TTT ist, wird er iber den
globalen Port gesendet.

[0357] Dementsprechend kénnen durch das Verwenden des TTTs zum angemessenen Aufhalten von fehige-
schlagenen CTD-Befehlen durch Mehrdeutigkeit der Prasenzbits in dem Verzeichnis verursachte Koharenz-
probleme eliminiert werden.

Fill Marker

[0358] Die meisten Antworten zu einem Prozessor sind in dem Q1-Kanal und werden infolgedessen gemaf
den oben beschriebenen Regeln in Ordnung gehalten. Jedoch unterliegen Nachrichten, die auf dem Q2-Kanal
empfangen werden, diesem Ordnungszwang nicht. Die Nachrichten des Q2-Typs enthalten Fills und Fill Mo-
difies.

[0359] Weil die Ankunft von Nachrichten des Q2-Typs nicht die Serialisierungsordnung, die im Verzeichnis
vorhanden ist, reflektiert, ist in den Antwortdaten eine potenzielle Mehrdeutigkeit vorhanden. Wenn beispiels-
weise ein Invalidate auf dem Kanal Q1 unterwegs ist und ein FillMod auf dem Q2, sollte es eine Methode zum
Bestimmen geben, welcher Arbeitsschritt zuerst zu erfolgen hat, damit die Koharenz aufrechterhalten werden
kann.

[0360] Im Folgenden Bezug nehmend auf die Fig. 30, werden beispielsweise zwei Knoten, 520 und 530, ge-
zeigt. Es werden nur die Teile der Knoten gezeigt, die fir den Zweck der Erklarung gebraucht werden.

[0361] Es sei vorausgesetzt, dass der Prozessor P2 (524) und der Prozessor P4 (534) eine Kopie der Ca-
che-Zeile X speichern. Der Home-Knoten der Cache-Zeile X ist der Knoten 532.

[0362] In der folgenden Beschreibung werden die Kanéale, die durch die folgenden Pakete verwendet werden,
durch das Verwenden verschiedener Linien angezeigt. Die QO-Befehle sind durch einfache Pfeillinien ange-

45/89

DE 698 32 943 T2 2006.06.29

zeigt, Q1-Befehle sind durch doppelte Pfeillinien angezeigt und Q2-Befehle sind durch gestrichelte Pfeillinien
angezeigt.

[0363] Vorausgesetzt, der Prozessor P4 gibt einen CTD X aus, um den exklusiven Besitz der Cache-Zeile X
zu erhalten. Als Antwort gibt das Verzeichnis 542, gemaf den Verzeichnisprasenzbits und dem DTAG (nicht
gezeigt), einen Invalidate-Befehl zu Knoten 520 aus. Dieser Invalidate wird den DTAG in dem Knoten 520 auf
dem Kanal Q1 aktualisieren und einen Invalidate-Probe zu allen Prozessoren (hier Prozessor P2), die eine Ko-
pie haben, senden.

[0364] Der Prozessor P1 gibt dann einen ReadMod X zu dem Home-Verzeichnis 542 von X aus. Wie oben
erwahnt, ist X aktuell im Besitz des Prozessors P4 und deshalb wird gemaR dem Koharenz-Protokoll ein wei-
tergeleiteter ReadMod X zu dem Prozessor P4 weitergeleitet. Als Antwort gibt Prozessor P4 einen FillMod zu
Prozessor P1 auf dem Q2-Kanal aus.

[0365] Weil die Kommunikation auf dem Q2-Kanal nicht mit der Q1-Kommunikation serialisiert ist, besteht
eine Mdglichkeit, dass der Q2-FiflMod den Prozessor P1 vor dem Invalidate von CTD X den Knoten 520 er-
reicht. Der Effekt wirde sein, dass gultige Daten in den Cache des P1 geschrieben werden wiirden, jedoch
bald danach die DTAGs eingerichtet werden wiirden, um jede Kopie von X in dem Knoten zu annullieren, und
ein Invalidate wurde zu P2 und zu P1 gesendet werden. Der Invalidate entspricht jedoch nur der Version in P2
und nicht der spateren in P1. Das System wiirde jetzt in einem nicht koharenten Zustand sein. Das Verzeichnis
544 zeichnet P1 als den Besitzer auf, obwohl P1 Invalidate unterzogen wurde.

[0366] Ein Ausfluihrungsbeispiel der Erfindung tiberwindet dieses Problem durch Verwenden von Fill Markern
und des TTTs (Eig. 10) in dem globalen Port jedes Knotens.

[0367] Ein Fill Marker oder ein Fill Marker Mod ist ein Paket, das in Reaktion auf eine Anforderung Read oder
ReadMod fur Daten, die aktuell nicht in dem Speicher in dem Home-Knoten gespeichert sind, erzeugt wird.
Das bedeutet, der Fill Marker oder der Fill Marker Mod wird gleichzeitig wie der weitergeleitete Read oder der
weitergeleitete Read Mod erzeugt. Infolgedessen sind Fill Marker und Fill Marker Mods Q1-Kanalbefehle.
Wahrend der weitergeleitete Read oder weitergeleitete Read Mod zu dem Prozessor, der eine Cache-Zeile
speichert, weitergeleitet werden, ist die Zieladresse des Fill Markers oder Fill Marker Mods der Prozessor, von
dem der urspriingliche Read oder Read Mod stammt.

[0368] Die Fill Marker ermdglichen dem Absenderprozessor, die Serialisierungsordnung, die in dem Verzeich-
nis eintritt, festzustellen. Im Folgenden Bezug nehmend auf die Eig. 31, hilft die Anwendung von Fill Markern
dem oben dargestellten Problem wie folgt ab. Wie zuvor sei angenommen, dass der Prozessor 53A einen CTD
X zu dem Home-Verzeichnis von X ausgibt, was dazu fihrt, dass ein Invalidate 550 auf dem Q1-Kanal zu dem
Knoten 520 gesendet wird.

[0369] Wenn der Prozessor P1 (522) den Read Mod X zu dem Remote-Verzeichnis ausgibt, wird fir diese
Anforderung ein TTT-Eintrag generiert. Ein beispielhafter TTT-Eintrg fir diese Anforderung ist in der Fig. 32
gezeigt. Es ist zu beachten, dass der TTT-Eintrag kein Statusbit Fill Here und Fill Marker Here enthalt. Jedes
dieser Bits wird in Reaktion auf das reprasentative Paket, das an dem globalen Port des Knotens 520 empfan-
gen wird, gesetzt. Der TTT-Eintrag wird nicht geldscht, bis sowohl der Fill als auch der Fill Marker zurlickge-
sendet sind.

[0370] Wieder Bezug auf die Fig. 31 nehmend, wird der Read Mod X von dem Prozessor 522 in einem Frd-
Mod X zu dem Prozessor 53A resultieren. Gleichzeitig wird auf dem Kanal Q1 ein Fill Marker Mod X 552 zuriick
zu dem Prozessor P1 weitergeleitet. Sowohl der Invalidate als auch der Fill Mod Marker sind auf demselben
Q1-Kanal.

[0371] Vorausgesetzt, der Fill Mod 554 auf dem Kanal Q2 erreicht den Knoten 520 vor dem Invalidate. In Re-
aktion auf das Zurticksenden entweder des Fill Mods oder des Fill Mod Markers wird der Duplicate-Tag-Status
in globalen Referenzen aktualisiert. Infolgedessen veranlasst der Fill Mod, dass der DTAG-Status fur X aktua-
lisiert wird, um den Besitz von X durch den Prozessor 1 zu reflektieren.

[0372] Angenommen, der Invalidate 550 ist der nachste Befehl, der den Knoten 520 erreicht. Auf das TTT
wird zugegriffen, um den Status des weitergeleiteten Befehls Read festzustellen. An diesem Punkthatdas TTT
das Bit Fill Here gesetzt, das Bit Fill Marker ist jedoch nicht gesetzt. Infolgedessen stellt das TTT eine Anzeige
in Bezug auf das relative Timing des Invalidate-Vorgangs und den Vorgang des Remote Reads bereit. Auf

46/89

DE 698 32 943 T2 2006.06.29

Grund der Serialisierung der Q1-Befehle kann abgeleitet werden, dass der Invalidate zeitlich vor dem RdMod
X von dem Prozessor 522 in dem Verzeichnis erzeugt wurde und infolgedessen der Fill Mod eine neuere Ver-
sion ist und der Invalidate nicht fir die Kopie der Daten des Prozessors 522 gilt. Im Ergebnis wird der
DTAG-Eintrag fir den Prozessor 1 nicht annulliert.

[0373] Obwohl das Ausflihrungsbeispiel oben das TTT als in dem globalen Port vorhanden zeigt, kénnte ge-
mal einem anderen Ausflihrungsbeispiel jeder der Prozessoren jeder der Knoten den Status von Remote-An-
forderungen zu gemeinsamen Adressen durch das Uberwachen der Anforderungen in dem Verzeichnis verfol-
gen. Danach wirden die Fill Marker durch das Verzeichnis zu den zugehdérigen Prozessoren weitergeleitet wer-
den, anstatt lediglich zu dem TTT weitergeleitet zu werden.

[0374] Folglich ist klar, dass das TTT zwei Zwecken dienen kann. Durch das Uberwachen der Befehlstypen,
die aus den Mehrprozessorknoten gesendet werden, kann das TTT das Weiterleiten bestimmter Befehle (wie
zum Beispiel des CTDs) verbieten, bis weitere Befehle zu derselben Adresse ausgeflihrt sind. Zusatzlich kann
das TTT, durch das Bereitstellen eines Markierungsmechanismus, der dem TTT anzeigt, wann eine Anforde-
rung in den Q2-Kanal ibergegangen ist (wie der Fill Marker), verwendet werden, um eine Anzeige des relativen
Timings zwischen Befehlen, die auf verschiedenen Kanalen zuriickgesendet wurden (d. h. Q2-Fill- und Q1-Be-
fehle), bereitzustellen, und kann dementsprechend Befehle ausschlief3en, die den Speicher beim Weiterleiten
zu einem Prozessor korrumpieren kénnten.

Shadow-Befehle

[0375] Wie aus der bisherigen Beschreibung offensichtlich, sind lokale Zugriffe typischerweise wesentlich
schneller als Remote-Zugriffe. Infolgedessen wird in dem SMP-System sowohl das Erfolgen lokaler Zugriffe
als auch von Remote-Zugriffen gleichzeitig zugelassen. Jedoch kann in einigen Fallen der Vorgang eines lo-
kalen Zugriffs Verklemmungsprobleme fur einen Remote-Zugriff verursachen. Im Folgenden Bezug nehmend
auf die Fig. 33A, sei beispielsweise vorausgesetzt, dass ein Prozessor 562 einen Rd X zu einer Cache-Zeile
X ausgibt. Der Home-Knoten der Cache-Zeile X ist der Knoten 560. Das Verzeichnis in dem Knoten 560 zeigt
an, dass der Prozessor 582 aktuell die Cache-Zeile X besitzt. Infolgedessen wird der weitergeleitete Rd X zu
dem Prozessor 582 gesendet.

[0376] Danach sei vorausgesetzt, dass der Prozessor 564 in dem Knoten 560 einen CTD X ausgibt. Wie zu-
vor erwahnt, ist die Cache-Zeile X zu dem Knoten 560 lokal und wenn der CTD erfolgreich ist, leitet er einen
Invalidate zu dem Prozessor P1 (und auRerdem zu dem gezeigten Prozessor P5). Unter kurzer Bezugnahme
auf die Eig. 33B enthalt, wie im Einzelnen in der mitanhangigen Anmeldung mit dem Titel Distributed Data De-
pendency Stall Mechanism, Anwaltnummer PD96-0149, von VanDoren u. a., mit demselben Datum wie die
vorliegende beantragt und hierin durch Bezugnahme einbezogen, jeder der Prozessoren, wie der Prozessor
P1, Logik zum Abwirgen von Probes zu einem Cache, wenn fur denselben Cache-Ort ein ausstehender Le-
sebefehl vorhanden ist. Das Beispiel oben gegeben, wiirde der Effekt des Reads X sein, die Adresse X in der
MAF (Miss Address File) 574 zu speichern. Die Inhalte der MAF werden mit eingehenden Probes verglichen
und wenn eine Ubereinstimmung zwischen der Adresse eines eingehenden Probes und der MAF vorhanden
ist, wird die Probe-Warteschlange abgewiirgt.

[0377] Die Probe-Warteschlange wird freigegeben, wenn die Fill-Daten von dem Prozessor 582 zuriickgesen-
det werden. Wenn jedoch Transaktionen desselben Typs (d. h. Durchfihren eines Remote-Reads Y und Aus-
geben eines VTDs Y durch P6) in dem Knoten 580 erfolgen, kann die Probe-Warteschlange des Prozessors
P5 hangig der Erfillung der Anforderung Read Y abgewurgt werden.

[0378] Wenn die P5-Probe-Warteschlange mit dem weitergeleiteten Read X von Prozessor P1 hinter dem
durch P6 erzeugten Invalidate zu derselben Zeit abgewtirgt wird, zu der die P1-Probe-Warteschlange mit dem
weitergeleiteten Read Y von P5 hinter dem durch P2 erzeugten Invalidate abgewurgt wird, kann Verklemmung
eintreten.

[0379] Es sind einige Strategien vorhandenen, die dazu dienen, um dieses Verklemmungsproblem zu verhin-
dern. Erstens kénnen alle Referenzen dezentral gemacht werden, d. h., alle Referenzen (selbst die des Ho-
me-Knotens) kdnnen zu dem Switch weitergeleitet werden, bevor sie zu dem Home-Knoten weitergeleitet wer-
den. Wenn alle Referenzen dezentral gemacht werden, dann wiirde, den oben dargelegten zentralen Ord-
nungsregeln entsprechend, keine Verklemmungssituation eintreten. Eine zweite Ldsung ist, alle Referenzen
zu einer gegebenen Cache-Zeile abzuwiirgen, sobald eine Referenz zu dieser Cache-Zeile dezentral gesendet
wird. Diese Lésungen wirken sich jedoch drastisch auf die Leistung von vorhergehenden lokalen Operationen

47/89

DE 698 32 943 T2 2006.06.29

aus und werden deshalb nicht bevorzugt.

[0380] Ein Ausflihrungsbeispiel der Erfindung iberwindet das Verklemmungsproblem, das durch die Vermi-
schung von lokalen Referenzen und Remote-Referenzen aufgeworfen wird, durch das Verwenden von Be-
fehls-Shadowing. Sobald eine lokale Referenz zu einer Cache-Zeile X zu einem Remote-Prozessor weiterge-
leitet ist, werden anschlief3end alle folgenden Referenzen zu dieser Cache-Zeile dezentral zu dem hierarchi-
schen Switch weitergeleitet, um zentral geordnet zu werden, bis die lokalen Referenzen und alle darauf folgen-
den Referenzen dieser Cache-Zeile ausgefiihrt wurden. Infolgedessen veranlasst jede friihere Referenz zu ei-
ner Cache-Zeile, die noch immer beschattet wird, dass die gegenwartige Referenz zu der Cache-Zeile ebenso
beschattet wird.

[0381] Im Folgenden Bezug nehmend auf die Fig. 34 und Fig. 35, wird das Beispiel oben mit der Verwendung
von Shadow-Befehlen beschrieben. Die Fig. 35 stellt die Inhalte des TTTs fir dieses Beispiel dar. Zuerst gibt
der Prozessor P1 einen Rd X zu dem Verteiler aus. Dies resultiert, wie zuvor, in einen Frd X zu Prozessor P5,
der in der TTT aufgezeichnet wird. Darauf folgend gibt Prozessor P2 einen CTD X zu dem Verteiler aus. Der
Verteiler untersucht das TTT, stellt fest, dass ein ausstehender lokaler Read zu einem Remote-Prozessor wei-
tergeleitet ist und leitet den Invalidate X aus dem globalen Port zu dem Prozessor P5 weiter. Um diesen Vor-
gang zu reflektieren, wird aulerdem ein Eintrag in dem TTT erzeugt, wobei ein Shadow-Bit gesetzt wird.

[0382] Gleichzeitig findet in dem Knoten 580 eine gleichartige Serie von Transaktionen statt. Der Prozessor
P5 gibt einen Rd Y aus, der zu dem Knoten 560 weitergeleitet wird und durch Enthalten der P5-Adresse in dem
TTT angemeldet wird. Der Prozessor P6 gibt darauf folgend einen CTD Y aus. Der Verteiler in dem Knoten 580
vergleicht die CTD-Adresse mit dem ausstehenden Read in dem TTT und ,beschattet" den CTD Y uber den
globalen Port. Fir den CTD Y wird in dem TTT ein Eintrag erzeugt, wobei der Eintrag sein Shadow-Bit in dem
TTT setzt, anzeigend, dass der CTD Y eine lokale Referenz war, die dezentral weitergeleitet wurde, um die
richtige Ordnung der Anforderungen zu Y sicherzustellen.

[0383] Wie oben beschrieben, ist dann ein Problem vorhanden, wenn in beiden Knoten der Frd in der Pro-
be-Warteschlange hinter dem Invalidate ist. Weil die Invalidate-Befehle jetzt zentral geordnet sind, weil sie an
einem gemeinsamen Punkt serialisiert werden, d. h. in dem hierarchischen Switch, kann nicht eintreten, dass
beide invalidate-Befehle nicht vor den beiden weitergeleiteten Read-Befehlen zu ihren Probe-Warteschlangen
weitergeleitet werden kénnen. Im Folgenden Bezug nehmend auf die Eig. 36, wird die Eingangssequenz von
Befehlen, die in den hierarchischen Switch 568 eingegeben werden, gezeigt. Die zulassigen Ausgangsseriali-
sierungsordnungen sind als die Ordnungen a—f definiert. Es ist zu beachten, dass gemaf den Ordnungsregeln
des Q1-Kanals die Serialisierungsordnung des Eingangs der Pakete in den hierarchischen Switch an dem Aus-
gang des hierarchischen Switchs aufrechterhalten bleibt. Deshalb geht in dem obigen Fall der Frd dem zuge-
hérigen Invalidate-Befehl voraus, wahrend sie zu dem Zieladressknoten ubertragen werden.

[0384] Einer der Knoten kann noch immer einen Invalidate, gefolgt von dem weitergeleiteten Read-Befehl, in
der Probe-Warteschlange empfangen. Beispielsweise kann unter Verwendung der Serialisierungsordnung die
Probe-Warteschlange des Prozessors P5 durch den Invalidate Y abgewirgt werden und der Frd X kann
Fill-hangig abgewlrgt werden.

[0385] Es istjedoch zu beachten, dass in diesem Beispiel der Frd Y nicht hinter dem Invalidate X ist und des-
halb in der Lage ist, Fill-Daten zum Freimachen der Probe-Warteschlange des P5 bereitzustellen.

[0386] Wenn Daten fiir eine Remote-Referenz zuriickgesendet werden, wird der der Referenz entsprechende
TTT-Eintrag fallen gelassen. Es kénnen andere Referenzen in dem TTT, das die Originalreferenz beschattet,
sein. Wahrend diese Befehle von dem hierarchischen Switch empfangen werden, werden die TTT-Eintrage fur
jeden der beschatteten Befehle ebenso fallen gelassen. Schlielilich, wenn alle Remote-Zugriffe und alle be-
schatteten Zugriffe ausgefiihrt sind, missen alle darauf folgenden lokalen Referenzen zu dieser Cache-Zeile
nicht mehr beschattet werden.

[0387] Dementsprechend kénnen durch die Verwendung von Shadow-Befehlen ressourcenabhangige Ver-
klemmungen, die aus der Koexistenz von lokalen Befehlen und Remote-Befehlen resultieren, ohne eine we-
sentliche VergroRerung des Hardwareaufwands eliminiert werden. Es sollte beachtet werden, dass, obwohl
das obige Beispiel die Verwendung von weitergeleiteten Read- und CTD-Befehlen involviert, die Shadow-Be-
fehlsmethode gleichermallen auf andere Befehlstypen anwendbar ist. Wann immer eine Referenz zu einer lo-
kalen Adresse X und eine friihere Nachricht zu der Adresse X zu einem Remote-Prozessor weitergeleitet wur-
de (wie durch das TTT angezeigt) oder eine friihere Referenz zu X noch immer beschattet wird, wird die ge-

48/89

DE 698 32 943 T2 2006.06.29

genwartige Referenz ebenso beschattet.

[0388] Zusatzlich kann die Methode in anderen Architekturtypen angewendet werden, die sogar mehr Hier-
archiestufen enthalten, als die einfache Mehrprozessoren-Switch-Hierarchie, die oben beschrieben wurde.
Beispielsweise kann die Methode oben flir Computersysteme, die mehrere Hierarchieebenen enthalten, ver-
wendet werden, wobei die Befehle in Abhangigkeit von der Hierarchieebene einer vorhergehenden ausstehen-
den Referenz zu der Cache-Zeile zu der adaquaten Hierarchiestufe weitergeleitet werden.

[0389] Somit wurden eine Architektur und ein Koharenzprotokoll zur Verwendung in einem gro3en SMP-Sys-
tem beschrieben. Die Architektur des SMP-Systems enthalt eine hierarchische Switch-Struktur, die ermoglicht,
dass eine Anzahl von Mehrprozessorknoten mit dem Switch gekoppelt wird, um mit einer optimalen Leistung
zu arbeiten. In jedem Mehrprozessorknoten wird ein Simultanpufferungssystem bereitgestellt, das allen Pro-
zessoren des Mehrprozessorknotens ermoglicht, mit Spitzenleistung zu arbeiten. Die Knoten nutzen einen
Speicher gemeinsam, wobei sich ein Teil des Speichers in jedem der Mehrprozessorknoten befindet.

[0390] Jeder der Mehrprozessorknoten enthalt eine Anzahl von Elementen zum Aufrechterhalten der Spei-
cherkoharenz, einschliellich eines Victim-Caches, eines Verzeichnisses und einer Transaktions-Tracking-Ta-
belle. Der Victim-Cache ermdglicht das selektive Aktualisieren von Victim-Daten, die fir Speicher, die in einem
dezentralen Mehrprozessorknoten gespeichert sind, bestimmt sind, und verbessert dadurch die Gesamtleis-
tung des Speichers. Ebenso wird die Speicherleistung dadurch zusatzlich verbessert, dass jeder Speicher ei-
nen Schreibverzégerungspuffer enthalt, der in Verbindung mit dem Verzeichnis verwendet wird, um Victims,
die in den Speicher zu schreiben sind, zu identifizieren.

[0391] Ein mit dem Verzeichnis jedes Knotens gekoppelter Verteilerbus stellt einen zentralen Ordnungspunkt
fur alle Nachrichten dar, die durch das SMP-System Ubertragen werden.

[0392] Gemal einem Ausflihrungsbeispiel der Erfindung umfassen die Nachrichten eine Anzahl von Trans-
aktionen und jede Transaktion wird abhangig von der Weiterverarbeitungsphase der Nachricht einer Anzahl
von verschiedenen virtuellen Kanalen zugewiesen. Die Verwendung der virtuellen Kanale sichert infolgedes-
sen, durch das Bereitstellen einer einfachen Methode zum Aufrechterhalten der Systemordnung, das Aufrecht-
erhalten der Datenkoharenz. Durch die Verwendung der virtuellen Kanale und der Verzeichnisstruktur werden
Cache-Koharenzprobleme, die friiher zu Verklemmung fihrten, vermieden.

Patentanspriiche

1. Computersystem, umfassend eine Vielzahl von gekoppelten Multiprozessorknoten (10), jeder der Kno-
ten umfasst wenigstens einen Prozessor (12a) und einen Teil eines gemeinsamen Speichers (13), das Com-
putersystem ist gekennzeichnet durch:
einen Tracking-Mechanismus (122), verbunden mit der Vielzahl von Prozessoren in jedem der Vielzahl von
Multiprozessorknoten (10), zum Bestimmen einer Position einer Anforderung zu einer Adresse eines dezent-
ralen Teils eines gemeinsamen Speichers (13), ausgegeben von wenigstens einem der Prozessoren (12a) in
dem einen der Vielzahl von Multiprozessorknoten (10), relativ zu einer Vielzahl von anderen Anforderungen,
die durch den wenigstens einen der Prozessoren (12a) in der Vielzahl von gekoppelten Multiprozessorknoten
(10) zu der Adresse ausgegeben wurde.

2. Computersystem nach Anspruch 1, des Weiteren an jedem der Vielzahl von Multiprozessorknoten (10)
umfassend:
einen Serialisierungspunkt (130), gekoppelt an den Tracking-Mechanismus (122), zum Bereitstellen einer Ein-
gangsreihenfolge von Anforderungen zu dem Teil des gemeinsamen Speichers (13) an dem entsprechenden
Multiprozessorknoten (10).

3. Computersystem nach Anspruch 2, wobei jeder der Prozessoren (12a) von jeder der Vielzahl von Mul-
tiprozessorknoten eine Vielzahl von Anforderungen ausgibt, jede der Anforderungen eine Vielzahl von Trans-
aktionen umfasst, wobei ein entsprechender einer Vielzahl von Kanalen (Q2, Q1, Q0, Q0Vic und QIO) jeder
der Vielzahl von Transaktionen jeder der Vielzahl von Anforderungen zugewiesen ist und wobei ein erster der
Kanale zum Ubertragen von Transaktionen zu dem Serialisierungspunkt (130) ist.

4. Computersystem nach Anspruch 3, wobei ein zweiter der Kanale zum Ubertragen der von dem Seriali-

sierungspunkt (130) ausgegebenen Anforderungen ist und wobei Transaktionen zu gemeinsamen Adressen
auf wenigstens dem zweiten der Kanale streng geordnet sind.

49/89

DE 698 32 943 T2 2006.06.29

5. Computersystem nach Anspruch 4, wobei der Tracking-Mechanismus (122) eine Referenzreihenfolge
bestimmt, wie durch die zugehdrige Transaktion auf dem wenigstens einen geordneten Kanal angezeigt, so
dass die Reihenfolge fiir Transaktionen auf anderen der Kanale (Q2, Q1, Q0, Q0Vic und QIO) rekonstruiert
werden kann.

6. Computersystem nach Anspruch 5, umfassend des Weiteren fiir jede der Anforderungen, die eine dritte
Transaktion enthalt, eine Einrichtung, die dem Tracking-Mechanismus (122) des mit dem gemeinsamen Teil
des Speichers (13) verbundenen Multiprozessorknotens, der der Anforderung entspricht, anzeigt, dass die An-
forderung eine dritte Transaktion aufweist.

7. Computersystem nach Anspruch 6, wobei die Einrichtung zum Anzeigen einen Befehl umfasst, der auf
dem wenigstens einen geordneten Kanal zu dem Tracking-Mechanismus (122) ausgegeben wird.

8. Computersystem nach Anspruch 7, wobei der Tracking-Mechanismus (122) des Weiteren eine Vielzahl
von Eintragungen enthalt, jede der Eintragungen zum Speichern einer Adresse einer Referenz, die einen Spei-
cherort auf einem anderen der Multiprozessorknoten adressiert, und jeder der Eintrage des Weiteren eine Viel-
zahl von Statusbits (158) zum Anzeigen des Status der zugehdrigen Anforderung enthalt.

9. Computersystem nach Anspruch 8, wobei die Statusbits (158) des Weiteren umfassen:
ein erstes Bitset zum Anzeigen, ob der Befehl auf dem geordneten Kanal, der anzeigt, dass die Anforderung
eine dritte Transaktion hat, zu dem Multiprozessorknoten (10) zuriickgesendet wurde.

10. Computersystem nach Anspruch 9, wobei die Statusbits (158) des Weiteren enthalten:
ein zweites Bitset zum Anzeigen, ob die dritte Transaktion zu dem Multiprozessorknoten zuriickgesendet ist,
eine Einrichtung zum Beseitigen eines Eintrags, der sowohl das erste Bit als auch das zweite Bit des Status-
bitsets aufweist, aus dem Transaktionsverzeichnis.

11. Computersystem nach Anspruch 10, des Weiteren umfassend:
eine Einrichtung zum Ignorieren einer Anforderung, die zu einer in dem Tracking-Mechanismus (122) gespei-
cherten Adresse ausgegeben wird, die empfangen wird, bevor das erste Bit in dem Tracking-Mechanismus
(122), das der Adresse entspricht, eingerichtet ist, um den Empfang des Befehls auf dem geordneten Kanal
anzuzeigen.

12. Computersystem nach Anspruch 11, wobei die ignorierte Anforderung eine ungiiltige Anforderung ist.

13. Computersystem nach Anspruch 11, wobei die Einrichtung zum Ignorieren der zu der Adresse ausge-
gebenen Anforderung die Anforderung nur dann ignoriert, wenn der Prozessor (12a), der die Anforderung aus-
gegeben hat, dem Prozessor (12a) entspricht, der veranlasst hat, dass die Adresse in den Tracking-Mechanis-
mus (122) eingegeben wurde.

14. Computersystem nach Anspruch 10, des Weiteren umfassend:
eine Einrichtung zum Verzdgern einer Referenz, die zu einer in dem Tracking-Mechanismus (122) gespeicher-
ten Adresse ausgegeben wurde, bis der Befehl auf dem geordneten Kanal empfangen wird, wobei die Refe-
renz vor dem ersten Bit in dem Tracking-Mechanismus (122), das der Adresse entspricht, eingerichtet ist.

15. Computersystem nach Anspruch 14, wobei die Referenz ferner verzégert wird, bis eine erwiinschte
Version der Daten, die der Adresse zugehdrig sind, zu dem Multiprozessorknoten zurtickgesendet ist.

16. Computersystem nach Anspruch 13, wobei die Referenz ferner verzégert wird, bis eine erwiinschte
Version der Daten, die der Adresse zugehérig sind, zu einem der Vielzahl der Prozessoren (12a), der veran-
lasst hat, dass die Adresse in den Tracking-Mechanismus (122) eingetragen wurde, zuriickgesendet ist.

17. Verfahren zum Ordnen der Reihenfolge zwischen einer Vielzahl von Anforderungen, die zu einer ge-
meinsamen Adresse in einem Multiprozessor-Computersystem ausgegeben werden, das Multiprozes-
sor-Computersystem umfasst eine Vielzahl von Multiprozessorknoten (10), die Uber einen Switch gekoppelt
sind, jeder der Multiprozessorknoten (10) umfasst wenigstens einen Prozessor (12a) und einen Teil eines ge-
meinsamen Speichers (13), das Verfahren ist durch den folgenden Schritt gekennzeichnet:

Flhren eines Verzeichnisses von Adressen der Anforderungen, die von jedem der Multiprozessorknoten (10)
zu dem Switch weitergeleitet wurden, um eine relative Reihenfolge der Anforderungen zu den jeweiligen
Adressen in einem Teil des gemeinsamen Speichers (13) eines dezentralen Multiprozessorknotens zu bestim-

50/89

DE 698 32 943 T2 2006.06.29

men, wobei eine Adresse in dem Verzeichnis geflhrt wird, bis die mit der Adresse verbundene Anforderung
erflllt ist.

18. Verfahren nach Anspruch 17, wobei jeder der Vielzahl von Multiprozessorknoten einen Serialisierungs-
punkt (130) zum Bereitstellen einer Eingangsreihenfolge von Anforderungen zu dem Teil des gemeinsamen
Speichers (13) an dem entsprechenden Multiprozessorknoten umfasst.

19. Verfahren nach Anspruch 18, des Weiteren die folgenden Schritte umfassend: jeder wenigstens einer
der Prozessoren (12a) jeder der Vielzahl von Multiprozessorknoten gibt eine Vielzahl von Anforderungen aus,
jede der Anforderungen umfasst eine Vielzahl von Transaktionen, jede der Vielzahl der Transaktionen wird auf
einem entsprechenden einer Vielzahl von Kanalen (Q2, Q1, Q0, Q0Vic und QIO) Gbertragen, wobei ein erster
der Vielzahl von Kanalen (Q2, Q1, Q0, Q0Vic und QIO) die Transaktionen zu dem Serialisierungspunkt (130)
Ubertragt.

20. Verfahren nach Anspruch 19, wobei ein zweiter der Vielzahl von Kanalen (Q2, Q1, Q0, Q0Vic und QIO)
Transaktionen, die von dem Serialisierungspunkt (130) ausgegeben wurden, Gbertragt und wobei die Transak-
tionen zu gemeinsamen Adressen auf dem zweiten der Vielzahl von Kanalen (Q2, Q1, Q0, Q0Vic und QIO)
streng geordnet sind.

21. Verfahren nach Anspruch 20, wobei das Adressenverzeichnis der Anforderungen eine Referenzreihen-
folge bestimmt, wie durch die zugehérigen Transaktionen auf dem wenigstens einen geordneten Kanal ange-
geben, so dass die Reihenfolge fir Transaktionen in den anderen der Kanale (Q2, Q1, Q0, Q0Vic und QIO)
rekonstruiert werden kann.

22. Verfahren nach Anspruch 21, des Weiteren den folgenden Schritt enthaltend:
fur jede der Anforderungen, die eine dritte Transaktion enthalt, dem Adressenverzeichnis in dem Multiprozes-
sorknoten, der mit dem gemeinsamen Teil des Speichers (13), der der Anforderung entspricht, verbunden ist,
anzeigen, dass die Anforderung eine dritte Transaktion hat.

23. Verfahren nach Anspruch 22, wobei der Schritt des Anzeigens des Weiteren einen Schritt des Ausge-
bens eines Befehls, der auf dem wenigstens einen geordneten Kanal zu dem Adressenverzeichnis ausgege-
ben wird, umfasst.

24. Verfahren nach Anspruch 23, wobei das Adressenverzeichnis eine Vielzahl von Eintragungen, jede der
Eintragungen zum Speichern einer Adresse einer Referenz, die einen Speicherort auf einem anderen der Mul-
tiprozessorknoten adressiert, und eine Vielzahl von Statusbits (158) zum Anzeigen des Status der zugehorigen
Anforderung enthalt.

25. Verfahren nach Anspruch 24, wobei die Statusbits (158) des Weiteren umfassen:
ein erstes Bitset zum Anzeigen, ob der Befehl auf dem geordneten Kanal, der anzeigt, dass die Anforderung
eine dritte Transaktion hat, zu dem Multiprozessorknoten zurtickgesendet wurde.

26. Verfahren nach Anspruch 25, wobei die Statusbits (158) des Weiteren umfassen:
ein zweites Bitset zum Anzeigen, ob die dritte Transaktion zu dem Multiprozessorknoten zuriickgesendet ist,
und wobei das Verfahren den Schritt des Beseitigens eines Eintrags, der sowohl das erste Bit als auch das
zweite Bit des Statusbitsets aufweist, aus dem Transaktionsverzeichnis enthalt.

27. Verfahren nach Anspruch 26, des Weiteren die folgenden Schritte umfassend:
Ignorieren einer Anforderung, die zu einer in dem Adressenverzeichnis gespeicherten Adresse ausgegeben
wird, die empfangen wird, bevor das erste Bit in dem Adressenverzeichnis, das der Adresse entspricht, einge-
richtet ist, um den Empfang des Befehls auf dem geordneten Kanal anzuzeigen.

28. Verfahren nach Anspruch 27, wobei die ignorierte Anforderung eine ungultige Anforderung ist.

29. Verfahren nach Anspruch 28, wobei der Schritt des Ignorierens der zu der Adresse ausgegebenen An-
forderung die Anforderung nur dann ignoriert, wenn der Prozessor (12a), der die Anforderung ausgegeben hat,
dem Prozessor (12a) entspricht, der veranlasst hat, dass die Adresse in das Adressenverzeichnis eingegeben

wurde.

30. Verfahren nach Anspruch 29, des Weiteren den folgenden Schritt umfassend:

51/89

DE 698 32 943 T2 2006.06.29

Verzdgern einer Referenz, die zu einer in dem Adressenverzeichnis gespeicherten Adresse ausgegeben wur-
de, die empfangen wird, bevor das erste Bit in dem Tracking-Mechanismus (122), das der Adresse entspricht,
eingerichtet ist, bis der Befehl auf dem geordneten Kanal empfangen wird.

31. Verfahren nach Anspruch 30, wobei die Referenz ferner verzdgert wird, bis eine erwlinschte Version
der Daten, die der Adresse zugehdrig sind, zu dem Multiprozessorknoten zuriickgesendet ist.

32. Verfahren nach Anspruch 31, wobei die Referenz ferner verzogert wird, bis eine erwiinschte Version
der Daten, die der Adresse zugehorig sind, zu einem der Vielzahl der Prozessoren (21a), der veranlasst hat,
dass die Adresse in das Adressenverzeichnis eingetragen wurde, zuriickgesendet ist.

Es folgen 37 Blatt Zeichnungen

52/89

DE 698 32 943 T2 2006.06.29

Anhangende Zeichnungen

[z

r4

SPEICHER

7 3a »3b ,3¢c »3d
P1 P2 P3 P4
r3e r 3f 730 »3h
PS5 P6 P? P8
(STAND DER TECHNIK)
. '/7
6a 6b 6c
. .- . .
P1 P2 P3
L | : L _J
— 9 . — 1
6d 6e " of
- . : \
P4 P5 Pé
- —t .
L - 1 y
6g L—6h ——18
4 . . \4 MASCHEN
P? P8 ROUTER

(

STAND DER TECHNIK)

FIG. 1B

53/89

DE 698 32 943 T2 2006.06.29

) |
12a 12b 12¢ 12d
P 1P 1PV eV
16a 16b 16¢c 1éd
L/ L/ L/ r./
14 : ~15
0P 16§ 18
14a vac '*LT’ osa | 19
 — - . chp QSD-CHIP
!CACHEI 11 =
GSA
14b Ab
TAG I A
16e |16t |16g |16h
I |/ L/ L/ L/
17 13
L/
20 13a| |a3b] [13c| {134
- M M M M
Otag ==
VERTEILERBUS

FIG. 2

54/89

DE 698 32 943 T2 2006.06.29

130d
¥3ITvE01D

€ Old

pel 561 acl
gwaw Jwew jwew owew
88z
=
R\ purew - Zuw - Jusw - Quew A A L 03uzd
- — 034Ld
‘ |— D304
T2
{ | K { { Y {
86¢ (14 36 14 74
8IS T 8IS aIs)
24Adxd 14Adxd 2ghdxd- || - 2dhdxd
T T =
wy||av|{ov]| oy
) LY)Y
PEZ O€T 4T e
guv vso
; Nt
P8z 03uLd
o8z 03uid
<48z 03uld
Y vyl Tegz 03804
Pzt 3 W@ =5
£d d Id 0d

55/89

DE 698 32 943 T2 2006.06.29

. vy 9Id

d0iimd

upe

P¥e

A

eyt

gx

yce

)

o

ice

Gx

aze

2]

pee

£x

Te

<0iE>

X

jyemsny xnw

qce

Lx

{ece

HINILYUIA
-SONVONI3

~
\
a9¢e

ssedig

g€

A

HITFLAUIA
-SONVOSNV

ge~

56/89

DE 698 32 943 T2 2006.06.29

< Qi€ > 18jes xmy |
eoc

gy ‘9Ol

b X EEE
=
o~
-

'

0s

| . =

b1

2 wnduy

\Qv

ege \

o
AQuPn V uT jyemsny

I'I-:—..

xnw

n

j—— | Indy

gy~ Q “Cop
e pepgEl |z onovnig
1 ONVONI3

HOLMIANNVENIHOITIS
¥IHVEONINIA

57/89

DE 698 32 943 T2 2006.06.29

G 'Ol

uoo Bag

~Ues

109

r 6z9

r 329

P09

q09

- 929

929

€09

—

- ERIEVRETY
“SONVONI3

°
™
w0

fe
)
©

£9

/ \

/ \
. /

4

T

ONVOSNY

A

r

d0iliMd
4

/9

. 29

UINILYIA
“SONVOSNY

89/

58/89

DE 698 32 943 T2 2006.06.29

9 'Ol | -
| e " OBk~ O%L \ﬂﬂ

59/89

1
~ 3 QY
——— . ——— 'J .
beig
W W W]
PEL| |5Er| |GET| }®ET 0z
4 -t

won || uor| Bar| | egy -Ldo)

-’a — llllllllll J llllll A

—tde \ | ‘ t _
WASH) | vor | = |-
Vi . ye “ ov1
Y I siy3-q vsSo ' -1dOl
oLt 241 7 H I | opr”

fobt au vt

\ [“1 vso :
! | gl]
ozt--1]| w o2 A" - ~-HHHHH-! e
POl 39} qQol egi 4ol

Mod 13jeqo|o) : Ve d d d d

—

00l

P R T

DE 698 32 943 T2 2006.06.29

150\

FIG. 7A

60/89

100a 100b . 100c
170a , 170¢
\ ‘_1-)7% / !
100d Y 100e
) ' HIERARCHISCHER
170d SIWTCH 170e
\ 185
] R e B umma—
17 ’ . 1‘
f____ d] 7& 170h
100g “100h

DE 698 32 943 T2 2006.06.29

100a : 100b
|/ /)
170
f }
FIG. 7B

61/89

DE 698 32 943 T2 2006.06.29

120 | Globaler Port

2
132a ao, a1, a2, N Hs.LINK-EINGANG
AY : aovicao” | &
GP-LINK-EINGANG : rombiiert : |
' {
— 172]
= T 135\ 167! 1
: ' 1170
_ 130-\ Verteilerieitung) L
BEFEHLVERTEILERBUS Q1-Befehlverz. | § a1 H ! '
127
132b i
N\ 1 Q0-Befehisverz. [~ ol
GP-LINK-AUSGANG : !
136 122 : aovie[| |
i
TP T
l:p'gt Qz'Bef;ge FIFO 2 ‘=~:>HS-LINK-AUSGANG
FLUSSSTEUERUNG %] I "
QIO-Befehle
! FFO —s] a0 H
124
1245
Bt st —————t—]
VICTIM-
CACHE

. 134 1
ZUGEORDNETE ZAHLUNG
I_ GP ogereenteeFLUSSS TEUERUNG

A fea——yd— ACK

" FIG. 8

62/89

140a

\

DE 698 32 943 T2 2006.06.29

BESITZER-ID
5 4 3 2

142

o 7

144

6 5 4 3

KNOTENPRASENZ
2,71 0O

FIG. 9

TRANSAKTIONS-TRACKING-VERZEICHNIS (TTT)

122 (FIGUR 6)
152 154 156 158
\ \ \ \
Adresse| Befehl " Befehls- . Status-Bits
ID Fill | Fill Marker | Shadow] AckiNack|Fetch|Loop
here | Here here Consig
4 / 7 7
158a] 158d | 158b | 158¢c

FIG. 10

63/89

DE 698 32 943 T2 2006.06.29

%m

T_mmt-h

|etsss

b Ol

piSsl

£iss1

lossr * fusss

_oﬁmv

h

h

h

:

h

h

oSt

6091

Joor

°
f=
©
-

9091

B091

—.

yesel

\

A

Bzl

281

41

pz8i

ozsl

qzsi

ezsl

« L0SGL h %oggt | gossi h $0GG1 @ €05S1 h Zossi ﬁ 105G} _‘ 005G+

SG1

64/89

DE 698 32 943 T2 2006.06.29

el "Old

Bunjyegisuesy

a9l

qeol

azolL

ONNTHYZ
313INaQ¥03ONZ
a13d

Bunjyezjisuesy

eygl

Bg9l

BZ9l

ONNTHYZ
313NO¥O039NZ
134

) el

o9l

6unyez
. ajaupsoabng
. W et
| <OGE>MV H 43 susu wla.__lc 300
m.“-_..m._oh.%mw {Bunienaysssnia § . ' Yosuaued 100
Yyos8uag)
yosuauan 4]
-
0 aysuproshng —c
1D 9joupioabng
S00I0D . J00/00
o)oupioabnz
Z 1/ynd
Bunianays Bunjye?
-qlalyos ajaupioabng
qy
<OESRV | | 4 AREPN
yasuauao Bunsenaysssniy Y <0 10300
J 00
20 ajaupiosbnz vel yosiauag
LD 8j8uploafinz - I ~ Bﬂ b
A 20 »
mﬁw.www.w%:N 10 ~O5el
™ —_
2001 +omna INODID | B
191 -8sel

\-gg1

sev A

65/89

DE 698 32 943 T2 2006.06.29

169

Pakete bereit zum
Senden zu HS
?

Flusssteuerung
?

Zugeordnete
Zihlung =0
?

f173

Paket zum Senden
zu .HS
auswihien

J r174

Zugeordnete
Zihlung
inkrementieren

FiIG. 128

66/89

I175

Anzahl nicht
verwendeter
zugeordneter
Eintriage
feststelien

v 176

Verfiigbare
generische Zihlung
feststellen

{ f177

Transitzahlung
bestimmen

178

Generische Zih-
lung 2 Transit-
zdhlung +
Knotenanzahi ?

[Neinf 179

Flusssteuerung in
jedem Modus
aktivieren

FIG. 13

187a.

187b
187¢

187d |

187e

DE 698 32 943 T2 2006.06.29

ADRESSEN-
17985 reuErUNG

N
179b L
T=1 T=0
: DATEN-

rf179d STEUERUNG

7
FIG. 14

’/1 87 181 \‘
02 KOPFZEIGER '

Q1/00/00VIC KOPFZEIGER | 180
Q0/G0VIC KOPFZEIGER
OOVIC KOPFZEIGER MANAGER | _index

I

DIOKOPEZEIGER
. 189

Q/
186~ oy (o

160a"UFFER 1 Q0Vic Qovie

\Jhda]helUJOIFH T R

amm
— o 182
S ad

185/J \ S 86e

188a

]
R
—

1

186b
160b PUFFER 2 ' Z

VE]

L

FiVRibee.

FIG. 15

67/89

= AUSGANG <0>

DE 698 32 943 T2 2006.06.29

AUSGANGSPAKETE

Ausgangspuffermanager |~ 202

ERERERERE 201

208a|208b|208¢{2084/208¢] /
204a] PACKETT | TvR | aueiie | zeC i Qt) L | ja
204b| PACKET2 | TYP | quewe| ze X ®| -
204c| PACKET3 | - TYp | QUELLE [ZEL x | x |®
204d| PACKET4 | TYp | QUELLE] ZIEL ®

206a 206b 206¢ 206d 2068

4 0 02 0 oao

201 | SCHREIBSTEUER- I

LOGIK L

\ 205

EINGANGSPAKETE

68/89

DE 698 32 943 T2 2006.06.29

{-'220

NEUES PAKET
EMPFANGEN

V222

FLAG FUR PAKET-
TYP SETZEN

Durch Nachricht
geschobene Nach-
richt verhindert?

Vs 226

FLAG VON AKTUELLER
NACHRICHT SETZEN
UM VORHERIGEN
NACHRICHT AUF DIE-
SELBE CACHE-ZEILE
ZU SCHIEBEN

FIG. 17

69/89

DE 698 32 943 T2 2006.06.29

AUSGANGSPAKETE , 202
Ausgangspuffermanager
§s4 $s53 452 §s1 §s0
2083‘208b‘ 208c|208d 208§|
L FTrTrt o,
204a| PACKET1 |- TYP | QUELLE | 2ZIEL ® X | x| o/
204b] PACKET 2 TYP QUELLE | ZIEL @
.204c| PACKET3 | TV |Quewe | zEL ®
204d| PACKET4 | TYP | QUELLE | ZIEL ® X xJ
' 206a 206b 206¢ 206d 206e
04 0 @ o1 @
201 SCHREIBSTEUER- ’
LOGIK :
.Tzog
EINGANGSPAKETE

(AN

® B3 2 0 o

FiG. 18A

70/89

DE 698 32 943 T2 2006.06.29

320a

FIG.

71/89

19

300 305 320 300a 305a
BLOCK Invalid Clean-to- |Invalid
LESEN . -
Clean Dirty Clean Invalidate
Dirty [Weitergeleitet Read Dirty N/A
Dirty-Shared | Weitergeleitet Read Dirty-Shared | Invalidate
- E'éts)g: Invalid Shared-to- | Invalid '
mobiFizieren | Clean Invalidate Dirty Clean Invalidate
Dirty Weitergeleitet Read Mod . Dirty NIA
Dirty-Shared [Weitergeleitet Read Mod Dirty-Shared | NJA
ABRUFEN |lnvalid STC Change| Invatid
Clean - -to-Dirty |Clean- Invalidate
Dinty Weitergeleitet Read Dirty NIA ‘
Dirty-Shared |Weitergeleitet Read Disty-Shared | Invslidate
BLOCK 1
LESEN Invalid ln‘val-to- Invalid :
VICTIM Clean Dirty Clean Invalidats
Dirty . Weitergeleitet Read Oirty Invalidate
Disty-Shared {Weitergeleitet Read Dirty-Shared | Invalidats
CEsEn Invalid Full-Block |Invalid
' Fg;‘lgzmeu Clean Invalidate Schreiben | (Clean Invalidata
Diny Weitergeleitet Read Mod Dll‘tv Invalidate
Diny-Shared eitergeleitet Read Mod Dirty-Shared | Invalidate
CBRUFEN Invalid
BLOCK
ICTIM Clean
Diﬂy Weitergeleitet Read
mny.smmd Weitergeleitet Read
Victim Any State
Clean Victimj Any State

DE 698 32 943 T2 2006.06.29

320

. 5 324
320
0 X Short
Fil S
nd Speicher ‘?
T
, C
/ "
Verz. }~ 322
324 '
325 4 3%
327
P1 i — Rdx Speicher 3’30
S \
w
|
T 321
g Verz. -/
Short Fil

FIG. 20B

72/89

DE 698 32 943 T2 2006.06.29

324
Vs 325 Ve 326
P1 { Speicher |_/
320
' \ Verz, -J
Fill Marker
Fill X
329
328
Vs 330 FRdx
342 ° y
’ Ve 325 Ve 324
320P1)
. s
Fill |
Mod T
c
Speicher H
\323 Inval
Verz. —
T \
322 Inval

FIG. 20D

73/89

DE 698 32 943 T2 2006.06.29

324
325 L 326
327
, 330
P1 { - RdModx Speicher L J
320 K l\
nval \
' g verz. |/
. Short Fill Mod
‘nva‘ “
» 24
/325 324 326
' - 327
; 330
° i 1 RiModx SpelcherJ
S
320 W \\
. \ T 321
g Verz. r-/
Fill Marker Mod
Fill ModX
329
3% 330 FRdModx /A
/
342 “"‘

FIG. 20F

74/89

DE 698 32 943 T2 2006.06.29

7 324

£325 /326
327
P1 l Speicher 330
320
\L ’ '1 | 321
\ Verz. ~/
CTD-Ack/Nack
] /
inval)
324
325 4/ | 326
327
330
P1 l 11D x Speicher L./
320 \

$ 3
W
| -~
‘ - T - 1321
| g | Verz. LJ
lTD—Ad(

Wi

/

Inval

FIG. 20H

75/89

DE 698 32 943 T2 2006.06.29

7 325

320

327

Speicher

FIG. 201

]

7 324

Write
Vic x

L Vic Ack

Speicher »;

N——

Verz. ./

FIG. 20J

76/89

DE 698 32 943 T2 2006.06.29

140
S VERZEICHNIS ‘1403
11 : Owner_Match
as
ARB
Anforderungen § SPEICHERSTEUERUNG L~ 332
336 Y
DATEN | FLAG | ADR. 334
ORAM
336aJ§ é\asgtsssc
. =2
0 T T2 13 14 715
Arb_Bus Read0 | Wiitel | Read2 | Wide3 | Reodd | WiteS | Readé | Recd7 | Wided Whited
Owner_Match match! match3 mismatch
Memory_Bus| Read0 ReodZ | Writel | Read0 | Wiited | Reads | Read7 | Nowrie Write8
exeasted

FIG. 22

77/89

DE 698 32 943 T2 2006.06.29

380

QUELLEN-
PROZESSOR

Gibt eine Referenz iu
Adresse X aus

HOP 0=

ao
Q0vic

Y

ZUGRIFFS-
VERZEICHNIS

. |

HOME-SPEICHER
Kann '

halten Halt fiir X relevante

Information

I

HOME-VERZEICHNIS

Lm

DIRTY-PROZESSOR

Wenn X dirty ist, hat
384 dieser Prozessor die
k_ aktuellste Kopie von X

GEMEINSAM
GENUTZTER-
PROZESSOR
Dieser Prozessor hat
eine Kopie von X

386 a

388 0

78/89

DE 698 32 943 T2 2006.06.29

Ausgabe nichstes Paket

Gemeinsame
400 Warteschlange
Q2 zugeordnete Schlitze 402 : = Q2-belegt
Q1 zugeordnete Schlize 404 - = Q1-belegt
Q0 zugeordnete Schlitze 406 : == Q0-belegt
QIO zugeordnete Schlize 408 B . —=3m QIO-belegt
QOVic zugeordnete Schlitze 409 - S Q0Vic-belegt
410 :

79/89

DE 698 32 943 T2 2006.06.29

420 ~424
426 ~ 422
425N _______
1 ~425a |
i I Q0
(HeLi I BIGE
i —425b| .
i 0Vic E 00vic Yy
! 425c| ! | 1421a
1 V.
423
e a1 *,L o J<oa " +
! 1
: —~425d ; P
ek , z
t 7 425e \ .
! i (1]
AN L | N L2
| PRI -4 1. HIERARCHISCHER
SWITCH
GLOBALER PORT GLOBALER PORT
0 N\ . a N . - \
Q0Vic 00Vie Q0Vie
423b
a2 0 12
0) ae / w

FIG. 25

80/89

DE 698 32 943 T2 2006.06.29

G

AN

430

~

ReadX ITDX

e

j
1

432
L/

X<

o of [

435
HS

0=
O\ '\

[/
7 e

InvalX Verzeic

81/89

DE 698 32 943 T2 2006.06.29

Px

Py

P2

Q0s " | QCb .

Q0¢c .
Ve 443

Globaler Port

Q1dPr, QlePq

HS
Ve 444

Q1aPx Q1bPy Q1Pz 01aPxj01bPy 01Pz2

Q1aPx
Q1dPr
Q1bPy
Q1cPz
QlePq

01aPx
Q1bPy
QicP2

Zu den lokalen CPUs)

454

Remote-
CPU

FIG. 27A

82/89

DE 698 32 943 T2 2006.06.29

FIG. 27B

OO - 6

e o

FIG. 27C

83/89

DE 698 32 943 T2 2006.06.29

470

Tag

1]

{

i

472
pa]lria]|ria]rma]
Dup 1o |]
™
';wxfmmm 00czu dirty X von P30
: ooooooon 1
FIG. 28A
455\

- =@ 0000EO00
@ H000E00C
@ 0000000

KnotendD 76543210

zn@®) [00000CC

14

14

30

FIG. 28B

84/89

DE 698 32943 T2 2006.06.29
506 PRASENZ-BITS
] P30 speichert clean | - _
¥opie | (0000000
502 t |
P14 gibt
— ReadMocgi'X aus [DDDD@DDD
I, Invalidate zu P30
SOC_ P30 gibt ‘
Read X aus > EDDDEDDD
508 . { i
- P31 gibt
. CTD X aus

Read zu X
héangig?

Invalidate
zu X?

85/89

514

BESITZER

80

14

14

DE 698 32 943 T2 2006.06.29

0€ 9OId4

- w— —

¥eS
Be1q
0SS
fenu]
TN
X powpy ||
N
i |
- w—— “l]ll .
82s || 525 % @

02s

86/89

DE 698 32 943 T2 2006.06.29

Sﬂ... X PONIT

LE "OId

X ey
PO

¥ss

feauy

0SS

i

X POWNPY

r

¥2s
255

| E /

9¢s

0SS

‘ZI9A

87/89

DE 698 32 943 T2 2006.06.29

Adresse Befehl

_ BefehlsiD | Status-Bits

Fill | Fill Marker { Shadow | Ack/Nack| Fetch] Loop
here | Here here Consig
X RdMod Pl _
Ve 560 I 580

Verteiler

Verteiler

FIG. 33A

P1

wae | |ED
574
RDx

Cache

570

562

INVxX
Probe-
Warte-

schlange

572

FIG. 33B

88/89

DE 698 32 943 T2 2006.06.29

Verteiler

Adresse| Befehl | Befehisip | Status-Bits
Fill | Fill Marker | Shadow | Ack/Nack| Fetch] Loop
here | Here here Consig
X FRd | PI
X INVAL P2 X
FRd X FRd Y
Inval X Inval Y
* 568
HIERARCHISCHER]/
SWITCH
1
-
a b c 8 I
FRAX FRAY FRdX FRAY FRAY FRd X
FRAY FRd X Inval xinval Y FRdX FRA Y
Inval XInval Y FRA Y FRd X Inval X Inval Y
Inval y Inval X Inval y Inval X Inval y Inval X

FIG. 36

89/89

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

