
DE69832943T220060629
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 698 32 943 T2 2006.06.29

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 911 731 B1
(21) Deutsches Aktenzeichen: 698 32 943.0
(96) Europäisches Aktenzeichen: 98 308 323.9
(96) Europäischer Anmeldetag: 12.10.1998
(97) Erstveröffentlichung durch das EPA: 28.04.1999
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 28.12.2005
(47) Veröffentlichungstag im Patentblatt: 29.06.2006

(51) Int Cl.8: G06F 9/46 (2006.01)

(54) Bezeichnung: Sequenzsteuerungsmechanismus für ein switch-basiertes Mehrprozessorsystem

(30) Unionspriorität:
957298 24.10.1997 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Vandoren, Stephen R., Northborough,
Massachusetts 01532, US; Steely, Simon C.,
Hudson, New Hampshire 03051, US; Sharma,
Madhumitra, Shrewsbury, Massachusetts 01545,
US; Fenwick, David M., Acton, Massachusetts
01545, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/89

DE 698 32 943 T2 2006.06.29
Beschreibung

[0001] Diese Erfindung betrifft im Allgemeinen das Gebiet der Computerarchitektur und im Besonderen ver-
teilte Mehrprozessorsysteme mit gemeinsamen Speichern.

[0002] Wie in der Technik bekannt, ermöglichen symmetrische Mehrprozesssysteme Hochleistungs-Anwen-
dungsprozesse. Typische symmetrische Mehrprozess-Computersysteme enthalten eine Anzahl von Prozes-
soren, die über einen Bus miteinander gekoppelt sind. Eine Charakteristik eines Mehrprozesssystem ist, dass
Speicherraum von allen Prozessoren gemeinsam genutzt wird. In dem Speicher ist ein Betriebssystem oder
sind mehrere Betriebssysteme gespeichert und steuert bzw. steuern die Verteilung der Prozesse oder der
Threads zwischen den verschiedenen Prozessoren.

[0003] Die Ausführungsgeschwindigkeit einer gegebenen Anwendung kann dadurch, dass verschiedenen
Prozessoren ermöglicht wird, verschiedene Prozesse oder Threads gleichzeitig auszuführen, wesentlich er-
höht werden. Theoretisch könnte die Leistung eines Systems dadurch verbessert werden, dass lediglich die
Anzahl der Prozessoren in dem Mehrprozesssystem erhöht wird. Das kontinuierliche Hinzufügen von Prozes-
soren über einen bestimmten Sättigungspunkt hinaus führt in der Realität jedoch lediglich zum Vermehren von
Kommunikationsengpässen und dadurch zur Begrenzung der Gesamtleistung des Systems.

[0004] Bezug nehmend auf die Fig. 1A, wird beispielhaft ein typisches Mehrprozesssystem nach dem Stand
der Technik gezeigt, das acht miteinander gekoppelte Prozessoren enthält. In Betrieb kommuniziert jeder der
Prozessoren 3a–3h über den gemeinsam genutzten Verbindungsbus 5 mit den anderen Prozessoren und mit
einem gemeinsamen Speicher 4. Die symmetrische Mehrprozessoranordnung der Fig. 1A ist für Mehrprozes-
soren, die bis dato hergestellt wurden, adäquat. Mit der Einführung schnellerer Mikroprozessoren ist jedoch
eine gemeinsam genutzte Verbindung nicht mehr in der Lage, von dem vollen Leistungspotenzial der gekop-
pelten Mikroprozessoren Gebrauch zu machen. Weil das einzige Verbindungsglied zwischen den Prozessoren
und dem Speicher der gemeinsam genutzte Bus ist, wird der Bus schnell mit Anforderungen der Prozessoren
gesättigt und vermehrt dadurch Verzögerungen, da jeder Prozessor versucht, Zugriff auf den Systembus zu
bekommen. Deshalb ist, obwohl die Prozessoren mit höheren Geschwindigkeiten arbeiten können, die verfüg-
bare Bandbreite des Systembusses der in Bezug auf die Leistung beschränkende Faktor. Die Kommunikati-
onsbandbreite ist ein Schlüsselfaktor für die Leistung eines SMP-Systems. Da die Bandbreite zwischen Paa-
ren oder Untergruppen von Knoten in dem SMP-System ungleichmäßig sein kann, nutzt die Industrie zum Be-
stimmen der Kommunikationsbandbreite eines SMP-Systems eine „Bisektionsbandbreitenmessung". Die Bi-
sektionsbandbreite wird in der folgenden Art und Weise bestimmt: Alle möglichen Arten der Teilung des Sys-
tems in zwei Teile gleicher Rechenleistung (gleiche Anzahl von Prozessoren) werden ermittelt. Für jede Teilung
wird die Bandbreite, die zwischen den beiden Teilungen aufrechterhalten werden kann, festgestellt. Das Mini-
mum aller Bandbreiten, die aufrechterhalten werden können, ist die Bisektionsbandbreite der Verbindungen
untereinander. Die Mindestbandbreite zwischen den beiden Teilungen zeigt die Bandbreite an, die durch das
Multiprozessorsystem in dem Fall von Worst-case-Kommunikationsmustern aufrechterhalten werden kann. In-
folgedessen ist eine große Bisektionsbandbreite erwünscht.

[0005] Um die Sättigungsprobleme des Busses zu überwinden, wurden nach dem Stand der Technik ver-
schiedene Verbindungsarchitekturen oder „Topologien° genutzt. Diese Topologien enthalten Maschen, Tori,
Hyperkuben und erweiterte Hyperkuben.

[0006] Als ein Beispiel wird in der Fig. 1B eine Maschennetzwerkverbindung als System 7 gezeigt. Die Haupt-
vorteile des Maschennetzwerkes sind seine Einfachheit und das leichte Verdrahten. Jeder Knoten ist mit einer
geringen Anzahl von Nachbarknoten verbunden. Die Maschenverbindung weist jedoch drei wesentliche Nach-
teile auf. Erstens müssen Nachrichten im Durchschnitt eine große Anzahl von Knoten durchqueren, um zu ihrer
Zieladresse zu kommen, was zu einer hohen Kommunikationslatenz führt. Zweitens vergrößert sich die Bisek-
tionsbandbreite für eine Maschentopologie nicht so gut, wie bei anderen Topologien. Schließlich sind, da jede
der Nachrichten verschiedene Pfade innerhalb des Maschennetzwerkes durchqueren kann, innerhalb des
SMP-Systems keine natürlichen Ordnungspunkte vorhanden und deshalb sind die Cache-Kohärenz-Protokol-
le, deren Anwendung erforderlich ist, oft sehr komplex.

[0007] Die Torus- und Hyperkubus-Topologie und die Topologie des erweiterten Hyperkubus sind jeweils To-
pologien, in denen die Knoten in verschiedenen komplexen Anordnungen untereinander verbunden sind, bei-
spielsweise in einer Torus-Anordnung oder in einer Kubusanordnung. Die Torus- und Hyperkubus-Verbindun-
gen oder die Verbindungen des erweiterten Hyperkubus sind komplexer als die Verbindungen durch die Ma-
schennetzwerke, bieten jedoch eine bessere Latenz und Bandbreite als die Maschenverbindungen. Die Torus-
2/89

DE 698 32 943 T2 2006.06.29
und Hyperkubus-Topologie und die Topologie des erweiterten Hyperkubus stellen jedoch, wie auch die Ma-
schenverbindungen, keine natürlichen Ordnungspunkte bereit und infolgedessen muss für jedes dieser Syste-
me ein komplexes Cache-Kohärenz-Protokoll implementiert werden.

[0008] In Mehrprozesssystemen mit gemeinsamem Speicher verwenden die Prozessoren üblicherweise ei-
gene Caches, um Daten zu speichern, von denen als wahrscheinlich festgestellt ist, dass zukünftig auf diese
zuzugreifen ist. Da die Prozessoren Daten aus ihrem eigenen Cache lesen können und die Daten in dem ei-
genen Cache aktualisieren können, ohne diese zurück in den Speicher zu schreiben, wird ein Mechanismus
gebraucht, der sicherstellt, dass der eigene Cache jedes Prozessors konsistent oder kohärent bleibt. Der Me-
chanismus, der verwendet wird, um die Kohärenz von Daten in dem SMP-System sicherzustellen, wird als das
Cache-Kohärenz-Protokoll bezeichnet.

[0009] Das Cache-Kohärenz-Protokoll ist neben der Topologie, der Bandbreite und der Latenz der physikali-
schen Verbindungen ein Schlüsselfaktor der Systemleistung. Cache-Kohärenz-Protokolle können auf ver-
schiedene Arten Latenzen, Flaschenhälse, Leistungsschwäche oder Komplexität einführen.

[0010] Die Latenz der Last und der Speichervorgänge wird oft direkt von dem Aufbau des Protokolls beein-
flusst. Beispielsweise wird in einigen Protokollen der Speichervorgang nicht als ausgeführt betrachtet, bis alle
ungültigen Nachrichten bis zu ihren Zielprozessoren gekommen sind und die Bestätigungsnachrichten den
ganzen Weg zurück zu dem Ursprungsprozessor verfolgt haben. Die Latenz des Gespeicherten ist hier sehr
viel höher als bei dem Protokoll, in dem der Ursprungsprozessor nicht auf die Ungültigen warten muss, um an
seine Zieladresse zu kommen. Des Weiteren verbrauchen die Bestätigungen einen wesentlichen Anteil der
Systembandbreite.

[0011] Flaschenhälse werden oft auf Grund der starken Belegung der Controller verursacht. „Belegung" ist
ein Ausdruck der Technik, der den Zeitraum anzeigt, für den ein Controller nicht verfügbar ist, nachdem er eine
Anforderung empfangen hat. In einigen Protokollen ist ein Controller, wenn er eine Anforderung, die einem
Speicherort entspricht, empfangen hat, für weitere Anforderungen für denselben Speicherort nicht verfügbar,
bis bestimmte Bestätigungen, die der ersten Anforderung entsprechen, in dem Verzeichnis ankommen. Wenn
der Controller miteinander in Konflikt stehende Anforderungen mit einer höheren als der durchschnittlichen
Rate empfängt, kommt es zu einem Flaschenhals.

[0012] Der Aufbau des Cache-Kohärenz-Protokolls beeinflusst außerdem die Komplexität. Einige Protokolle
führen beispielsweise zu Verklemmungen und Fairnessproblemen, denen dann mit zusätzlichen Mechanismen
zu begegnen ist. Dies resultiert in zusätzlichem Hardwareaufwand.

[0013] Es ist erwünscht, ein symmetrisches Mehrprozessorsystem bereitzustellen, das die Latenz der Ope-
rationen minimiert, eine große Kommunikationsbandbreite und geringere Controller-Belegung bereitstellt und
das auf eine große Anzahl von Prozessoren vergrößert werden kann.

[0014] GB-A-2 1881 77 legt ein Computersystem für das gemeinsame Nutzen einer Datenquelle offen. Das
System arbeitet durch das Senden einer Anforderungssperre für die gemeinsame Datenquelle zu dem Sperr-
manager auf dem Host, der der Master der Datenquellengruppe ist, die zu sperren ist, und für diese wird Ex-
klusivsteuerung ausgeführt.

[0015] US 5.060 144 legt eine Sperrsteuerungs-Statusanzeige für ein Multi-Host-Prozessorsystem offen, das
für jeden Host-Prozessor einen Datensatz-Sperrprozessor und einen Pufferspeicher verwendet.

[0016] EP-A-0 121 700 legt eine Mehrprozessor-Speicherungsserialisierungsvorrichtung offen, die mehreren
Prozessoren ermöglicht, Befehle auf Gespeichertes zuzugreifen, gleichzeitig auszuführen, ohne die Leistung
materiell zu beeinflussen. Dies wird dadurch erreicht, dass die Menge des Gespeicherten auf ein Minimum,
beispielsweise eine Seite, gesperrt wird.

[0017] Die vorliegende Erfindung wird vorteilhaft in einem symmetrischen Mehrprozessorsystem angewen-
det, in dem mehrere Mehrprozessorknoten wenigstens einen Prozessor und einen Teil eines gemeinsamen
Speichers, die über einen Switch miteinander gekoppelt sind, enthalten. In jedem der Multiprozessorknoten
wird ein Transaktions-Tracking-Verzeichnis (TTT) unterhalten. Das TTT kann in einem globalen Port des Kno-
tens, der den Knoten mit dem Switch verbindet, vorhanden sein oder alternativ auf jedem der wenigstens einen
der Prozessoren des Multiprozessorknotens vorhanden sein.
3/89

DE 698 32 943 T2 2006.06.29
[0018] Das TTT wird verwendet, um eine Reihenfolge der Anforderungen, die von diesem Mehrprozessorkno-
ten ausgegeben und empfangen werden, zu bestimmen und durchzusetzen. Gemäß einem Aspekt der Erfin-
dung wird das TTT verwendet, um die Reihenfolge der Anforderungen, die zu dem Mehrprozessorknoten zu-
rückgesendet werden, in der folgenden Art und Weise zu bestimmen. Jede der Anforderungen wird in eine An-
zahl von Transaktionen unterteilt, wobei jede der Transaktionen auf einem verschiedenen virtuellen Kanal aus-
geführt wird. Wenigstens einer der Kanäle ist geordnet, jedoch können Return-Daten auf den anderen Kanälen
außerhalb der Reihenfolge empfangen werden. Um die Kohärenz aufrechtzuerhalten, ist erwünscht, dass die
zu einer gemeinsamen Adresse ausgegebenen Transaktionen in Reihenfolge behandelt werden. Gemäß ei-
nem Aspekt der Erfindung wird auf dem geordneten Kanal ein Marker-Paket zu dem TTT gesendet, um anzu-
zeigen, dass die mit einer Adresse verbundenen Daten noch immer weiterverarbeitet werden. Mit einer derar-
tigen Anordnung kann das TTT sicherstellen, dass die weiteren Anforderungen auf dem geordneten Kanal, die
dem Marker-Paket folgend empfangen wurden, entweder ignoriert oder verzögert werden, bis die Daten emp-
fangen werden.

[0019] Gemäß einem Aspekt der vorliegenden Erfindung umfasst ein Computersystem eine Vielzahl von ge-
koppelten Multiprozessorknoten, jeder der Knoten umfasst wenigstens einen Prozessor und einen Teil eines
gemeinsamen Speichers, das Computersystem ist gekennzeichnet durch:
einen Tracking-Mechanismus, verbunden mit der Vielzahl von Prozessoren in jedem der Vielzahl von Multipro-
zessorknoten, zum Bestimmen einer Position einer Anforderung zu einer Adresse eines dezentralen Teils ei-
nes gemeinsamen Speichers, ausgegeben von wenigstens einem der Prozessoren in dem einen der Vielzahl
von Multiprozessorknoten,
relativ zu einer Vielzahl von anderen Anforderungen, die durch den wenigstens einen der Prozessoren in der
Vielzahl von gekoppelten Multiprozessorknoten zu der Adresse ausgegeben wurde.

[0020] Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zum Aufrechterhalten
der Reihenfolge zwischen einer Vielzahl von Anforderungen, die zu einer gemeinsamen Adresse in einem
Mehrprozessorcomputersystem ausgegeben werden, bereitgestellt.

[0021] Das Multiprozessorcomputersystem enthält eine Vielzahl von Multiprozessorknoten, die über einen
Switch gekoppelt sind, wobei jeder der Multiprozessorknoten wenigstens einen Prozessor und einen Teil eines
gemeinsamen Speichers umfasst. Das Verfahren enthält den Schritt des Führens eines Adressverzeichnisses
von Anforderungen, die von jedem der Mehrfachprozessorknoten an den Switch weitergeleitet werden, um
eine relative Reihenfolge von Anforderungen zu den jeweiligen Adressen in einem Teil eines gemeinsamen
Speichers eines Mehrprozessorknotens zu identifizieren, wobei eine Adresse in dem Verzeichnis geführt wird,
bis die mit der Adresse verbundenen Anforderung erfüllt ist.

[0022] Die oben angeführten und weitere Merkmale der Erfindung werden durch Bezugnahme auf die folgen-
de Beschreibung, die in Verbindung mit den begleitenden Zeichnungen steht, offensichtlicher, wobei in den
Zeichnungen

[0023] Fig. 1A und Fig. 1B Blockdiagramme von zwei Mehrprozessorcomputersystemen nach dem Stand
der Technik sind,

[0024] Fig. 2 ein Blockdiagramm eines Ausführungsbeispiels eines Mehrprozessorknotens eines Ausfüh-
rungsbeispiels der Erfindung ist, das einen Switch umfasst,

[0025] Fig. 3 ein Blockdiagramm ist, das den Datenpfad des Switchs der Fig. 1 zeigt, der eine Anzahl von
Simultan-Eingabepuffern umfasst,

[0026] Fig. 4A ein Blockdiagramm eines Ausführungsbeispiels eines der Simultan-Eingabepuffer der Fig. 3
ist,

[0027] Fig. 4B ein Blockdiagramm einer Implementierung der Logik zum Steuern des Simultan-Eingabepuf-
fers der Fig. 4 ist,

[0028] Fig. 5 ein Blockdiagramm eines zweiten Ausführungsbeispiels des einen der Simultan-Eingabepuffer
der Fig. 3 ist,

[0029] Fig. 6 ein Blockdiagramm des Mehrprozessorknotens der Fig. 2 ist, der zum Anschließen in einem
größeren Netzwerk von gleichartigen Knoten erweitert ist,
4/89

DE 698 32 943 T2 2006.06.29
[0030] Fig. 7A ein Ausführungsbeispiel eines SMP-Systems ist, das mehrere den Mehrprozessorknoten der
Fig. 6 gleichartige Mehrfachknoten verwendend implementiert ist,

[0031] Fig. 7B ein weiteres Ausführungsbeispiel eines SMP-Systems ist, das mehrere den Mehrprozessor-
knoten der Fig. 6 gleichartige Mehrfachknoten verwendend implementiert ist,

[0032] Fig. 8 ein Blockdiagramm eines globalen Ports der Fig. 6 ist,

[0033] Fig. 9 einen Eintrag in einem Verzeichnis der Mehrprozessorknoten der Fig. 6 darstellt,

[0034] Fig. 10 ein Transaktions-Tracking-Verzeichnis (TTT) zur Verwendung in dem globalen Port der Fig. 8
darstellt,

[0035] Fig. 11 ein Blockdiagramm eines hierarchischen Schalters zum Koppeln der Mehrprozessorknoten in
der Fig. 7A ist,

[0036] Fig. 12A ein Blockdiagramm eines Ausführungsbeispiels einer Verbindungslogik für den hierarchi-
schen Switch ist, der Verklemmung eliminiert,

[0037] Fig. 12B ein Flussdiagramm des Betriebs der Verbindungslogik der Fig. 12A ist,

[0038] Fig. 13 ein Flussdiagramm des in der Verbindungslogik der Fig. 11 verwendeten Verfahrens ist, um
Stromsteuerung zum Unterbinden, dass Daten von einem der Mehrprozessorknoten übertragen werden,
durchzusetzen,

[0039] Fig. 14 ein Zeitablaufdiagramm zum Darstellen der Übertragung von Adressen und Datenpaketen auf
den Bussen von und zu dem hierarchischen Switch ist,

[0040] Fig. 15 ein Blockdiagramm eines Ausführungsbeispiels der Pufferlogik zum Aufrechterhalten der Rei-
henfolge in dem hierarchischen Switch ist,

[0041] Fig. 16 ein Blockdiagramm eines weiteren Ausführungsbeispiels der Pufferlogik zum Aufrechterhalten
der Reihenfolge für den hierarchischen Switch ist,

[0042] Fig. 17 ein Flussdiagramm zum Darstellen einer Methode des Betriebs der Pufferlogik der Fig. 16 ist,

[0043] Fig. 18 ein Blockdiagramm eines weiteren Ausführungsbeispiels der Pufferlogik zum Aufrechterhalten
der Reihenfolge in dem hierarchischen Switch ist,

[0044] Fig. 19 ein Verzeichnis ist, das die Translation der Prozessorbefehle in Netzwerkbefehle zur Verwen-
dung in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0045] Fig. 20A–Fig. 20H eine Anzahl von Kommunikationsströmen zum Übertragen von Paketen zwischen
Knoten in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0046] Fig. 21 ein Blockdiagramm ist, das das Layout eines Speichermoduls zur Verwendung in dem Mehr-
prozessorcomputersystem der Fig. 2 oder Fig. 6 darstellt,

[0047] Fig. 22 ein Zeitablaufdiagramm ist, das die Steuerlogik, die durch das Speichermodul der Fig. 21 für
verzögerte Schreiboperationen verwendet wird, darstellt,

[0048] Fig. 23 ein Flussdiagramm ist, das die Verwendung von diskreten Transaktionen, die zum Aufrechter-
halten der Cache-Kohärenz auf den Kanälen abgebildet werden, in einem Ausführungsbeispiel der Erfindung
darstellt,

[0049] Fig. 24 ein Blockdiagramm ist, das eine Implementierung einer gemeinsamen Warteschlangenstruktur
zum Verwalten der virtuellen Kanäle in dem SMP der Fig. 7A oder Fig. 7B darstellt,

[0050] Fig. 25 ein Blockdiagramm ist, das eine Implementierung der einzelnen Kanalpufferung in den Knoten
und den hierarchischen Switchs des SMPs der Fig. 7A oder Fig. 7B darstellt,
5/89

DE 698 32 943 T2 2006.06.29
[0051] Fig. 26 ein Blockdiagramm zum Darstellen der Probleme ist, die entstehen können, wenn ein Teil der
Reihenfolge zwischen den virtuellen Kanälen nicht eingehalten wird,

[0052] Fig. 27A–Fig. 27C Blockdiagramme sind, die die Strom- und die Reihenfolgebeschränkungen auf
dem Q1-Kanal zum Bereitstellen kohärenter Kommunikation in dem SMP der Fig. 7A oder Fig. 7B darstellen,

[0053] Fig. 28A und Fig. 28B Blockdiagramme sind, die die Mehrdeutigkeitsprobleme, die entstehen können,
weil der grobe Vektor Bits der Verzeichniseinträge des SMPs der Fig. 7A und Fig. 7B darstellt,

[0054] Fig. 29 ein Blockdiagramm ist, das das Verfahren darstellt, das verwendet wird, um zu verhindern,
dass im Ergebnis des in der Fig. 28 beschriebenen Problems Datenmehrdeutigkeit entsteht,

[0055] Fig. 30 ein Blockdiagramm zum Darstellen eines Kohärenzproblems ist, das durch Pakete auf ver-
schiedenen Kanälen, die außerhalb der Reihenfolge empfangen werden, entsteht,

[0056] Fig. 31 ein Blockdiagramm ist, das die Verwendung von Füll-Markern zum Verhindern des in der
Fig. 29 beschriebenen Kohärenzproblems darstellt,

[0057] Fig. 32 ein Eintrag in dem TTT ist, der den Status eines Befehls während des in Bezug auf die Fig. 31
beschriebenen Stroms wiedergibt,

[0058] Fig. 33A und Fig. 33B Blockdiagramme sind, die den Arbeitsschritt des Änderns in dirty Befehle in
dem SMP-System darstellen,

[0059] Fig. 34 ein Blockdiagramm ist, das die Verwendung von Schattenbefehlen, um das in Bezug auf die
Fig. 33 beschriebene Problem zu beseitigen, darstellt,

[0060] Fig. 35 ein Eintrag in das TTT ist, der den Status eines Befehls während des in Bezug auf die Fig. 34
beschriebenen Stroms darstellt, und

[0061] Fig. 36 ein Flussdiagramm ist, das die zulässige sequenzielle Ordnung von Befehlen in dem Beispiel,
das in der Fig. 35 beschrieben wird, darstellt.

[0062] Gemäß einem Ausführungsbeispiel der Erfindung enthält ein hierarchisches symmetrisches Mehrpro-
zessorsystem (SMP-System) eine Anzahl von SMP-Knoten, die über einen Hochleistungs-Switch miteinander
gekoppelt sind. Folglich wirkt jeder der SMP-Knoten als ein Baustein in dem SMP-System. Im Folgenden wer-
den zuerst die Komponenten und der Betrieb eines SMP-Knoten-Bausteins beschrieben, gefolgt von einer Be-
schreibung des Betriebs des SMP-Systems und einer anschließenden Beschreibung eines Cache-Kohä-
renz-Protokolls, das verwendet wird, um in dem großen SMP-System Speicherkohärenz aufrechtzuerhalten.

SMP-Knoten-Baustein

[0063] Im Folgenden auf die Fig. 2 Bezug nehmend, enthält ein Mehrprozessorknoten 10 vier Prozessormo-
dule 12a, 12b, 12c und 12d. Jedes Prozessormodul umfasst eine zentrale Recheneinheit (CPU). In einem be-
vorzugten Ausführungsbeispiel werden von der Digital Equipement Corporation® gefertigte Alpha® 21264 Pro-
zessorchips verwendet, obwohl alternativ andere Typen von Prozessorchips, die in der Lage sind, das unten
beschriebene Kohärenzprotokoll zu unterstützen, verwendet werden können.

[0064] Der Mehrprozessorknoten 10 enthält einen Speicher 12, der eine Anzahl von Speichermodulen
13a–13d enthalten kann. Der Speicher kann eine Speicherkapazität von 32 Gigabytes bereitstellen, wobei je-
des der vier Speichermodule 8 Gigabyte speichert. Jedes der Speichermodule ist in eine Anzahl von Speicher-
blöcken aufgeteilt, wobei jeder Block beispielsweise 64 Bytes Daten enthalten kann. Die Daten werden gene-
rell in Blöcken aus dem Speicher abgerufen.

[0065] Zusätzlich enthält der Mehrprozessorknoten 10 ein I/O-Prozessormodul (IOP-Modul) zum Steuern der
Übertragung von Daten zwischen externen Vorrichtungen (nicht gezeigt) und dem Mehrprozessorknoten 10
über einen gekoppelten I/O-Bus 14a. In einem Ausführungsbeispiel der Erfindung kann der I/O-Bus gemäß
dem PCI-Protokoll (Peripheral Computer Interconnect protocol) betrieben werden. Das IOP-Modul 14 enthält
einen IOP-Cache 14c und einen IOP-Tag-Speicher 14b. Der IOP-Cache 14c stellt die Zwischenspeicherung
für Daten aus dem Speicher 13 bereit, die auf dem PCI-Bus 14a zu den externen Vorrichtungen übertragen
6/89

DE 698 32 943 T2 2006.06.29
werden. Der IOP-Tag-Speicher 14b ist ein 64-Einträge-Tag-Speicher zum Speichern von Kohärenzinformatio-
nen für Daten, die zwischen den externen Vorrichtungen, den Prozessoren und dem Speicher bewegt werden.

[0066] Die Kohärenz der in dem Speicher 13 des Mehrprozessorknotens gespeicherten Daten wird mittels
eines Duplikat-Tag-Speichers (DTAG) 20 aufrechterhalten. Der DTAG 20 wird von allen Prozessoren 12a–12d
gemeinsam genutzt und ist in vier abgegrenzte Teile des Speichers (im Folgenden als Speicherbänke bezeich-
net) unterteilt, wobei jede Speicherbank Statusinformationen speichert, die den Daten, die durch einen zuge-
hörigen der Prozessoren verwendet werden, entsprechen.

[0067] Der DTAG, der Speicher und das IOP werden mit einem Logikbus gekoppelt, der als der Verteilerbus
17 bezeichnet wird. Die durch den Prozessor ausgegebenen Speicherblockanforderungen werden über den
lokalen Switch 15 zu dem Verteilerbus 17 geleitet. Der DTAG 20 und das IOP 14 schlagen den Status des
Blocks in den Caches des Prozessors und des IOPs nach und aktualisieren ihren Status für den Speicherblock
atomar. Der Verteilerbus 17 wirkt als ein Serialisierungspunkt für alle Speicherreferenzen. Die Reihenfolge in
der die Speicheranforderungen auf dem Verteilerbus erscheinen, ist die Reihenfolge, in der die Prozessoren
die Ergebnisse der Anforderung entgegennehmen.

[0068] Die Prozessormodule 12a–12d, die Speichermodule 13a–13d und die IOP-Module 14 sind über einen
lokalen Port-Switch 15 miteinander gekoppelt. Jedes der Schnittstellenmodule 12a–12d, 13a–13d und 14 ist
mittels einer gleichen Anzahl von bidirektional taktweitergeleiteten Datenlinks 16a–16i verbunden. In einem
Ausführungsbeispiel leitet jeder der Datenlinks 64 Bits Daten und 8 Bits Fehlerkorrekturcode (ECC), einen da-
von auf jeder Flanke des Systemtakts, der mit einer Rate von 150 MHz arbeitet, weitet. Infolgedessen ist die
Datenbandbreite jedes der Datenlinks 16a–16i 2,4 Gigabytes/sek.

[0069] Der lokale Switch 15 enthält einen Quad-Switch-Adressensteuerungschip (QSA-Chip) 18 und einen
Quad-Switch-Daten-Slice-Chip (QSD-Chip) 19. Der QSA-Chip 18 enthält einen Verteiler (QSA-Verteiler) 11
zum Steuern der Adressenpfade zwischen den Prozessormodulen, dem IOP und dem Speicher. Zusätzlich
stellt der QSA-Chip 18 Steuerung für den QSD-Chip 19 bereit, um den Datenstrom durch den lokalen Switch
15 zu steuern, wie unten beschrieben wird.

[0070] Der QSD-Chip 19 stellt eine Switch-Verbindung für alle Datenpfade zwischen den Prozessormodulen,
den Speichermodulen und dem IOP bereit. Obwohl in der Fig. 2 nicht gezeigt, würden, wie unten beschrieben
wird, wenn der Mehrprozessorknoten 10 mit den anderen Mehrprozessorknoten über einen globalen Port ge-
koppelt wäre, der QSD und der QSA zusätzlich für den globalen Port eine Switch-Verbindung bereitstellen. Je-
der der Prozessoren kann über den globalen Port Daten von einer der verfügbaren Ressourcen, wie den Spei-
chereinrichtungen 13a–13d, weiteren Prozessoren 12a–12d, dem IOP 14 oder alternativen Ressourcen in an-
deren Mehrprozessorknoten, anfordern. Infolgedessen sollte der lokale Switch 15 fähig sein, gleichzeitig Ein-
gänge von einer Vielzahl von Ressourcen aufzunehmen, während er die hohe Busbandbreite von 2,4 Giga-
bytes aufrechterhält.

[0071] Der lokale Switch kann mehrere gleichzeitige Transaktionen behandeln. Da jede Transaktion üblicher-
weise mehrere Ressourcen verwendet (wie zum Beispiel Speicherbänke, Datenpfade, Warteschlangen), kön-
nen die Steuerfunktionen des lokalen Switchs sehr komplex sein. Beispielsweise kann eine Transaktion im Sta-
dium 0 der Transaktion eine verfügbare Speicherbank, die Verfügbarkeit des Datenpfades von der Speicher-
bank zu dem Prozessor in Stadium 1 und die Verfügbarkeit des Datenpfades zu dem Prozessorport in Stadium
2 erforderlich machen. Der lokale Switch-Verteiler (QSA-Verteiler 11 in dem QSA 18) vermittelt derartig zwi-
schen den Anforderungen, dass sobald eine Transaktion initiiert ist, die in jedem Stadium der Transaktion er-
forderlichen Ressourcen wie erforderlich verfügbar sind.

[0072] Signifikanter, der Verteiler garantiert durch Sicherstellen, dass bestimmten Anforderungen nicht ver-
sagt wird, über einen langen Zeitraum Zugriffskontrolle zu gewinnen (potenziell idenfinit), während andere Fort-
schritte machen, dass alle Anforderungen und Prozessoren fairen Zugriff auf die Ressourcen erhalten. Als Bei-
spiel wird eine Transaktion T, die drei Ressourcen A, B und C erfordert betrachtet.

[0073] Die Transaktion T könnte die Zugriffsverteilung nicht gewinnen, bis garantiert wäre, dass alle drei Res-
sourcen in den adäquaten Stadien der Transaktion verfügbar sind. Wenn der Verteiler seine Entscheidung nur
auf der Verfügbarkeit von Ressourcen basiert, dann ist es möglich, dass T für einen langen Zeitraum nicht er-
folgreich ist, während andere Transaktionen, die nur eine von A, B oder C (zusammen mit anderen Ressourcen
D, E usw.) erfordern; kontinuierlich die Zugriffsverteilung gewinnen.
7/89

DE 698 32 943 T2 2006.06.29
[0074] Das Garantieren fairer Zugriffsverteilung in einem Switch mit einer großen Anzahl von gleichzeitigen
Anforderungen, von denen jede, um fertig gestellt zu werden, mehrere Ressourcen verwendet, erfordert einen
komplexen Rechenaufwand und führt wahrscheinlich zur Vermehrung von Verzögerungen in dem Hochge-
schwindigkeits-Datenpfad. In der hierin offen gelegten Vorrichtung nimmt der QSA-Verteiler 11 vor der Ablauf-
planung einer bestimmten Transaktion die Verteilung nur einer Ressource (der Speicherbank) vor. Eine zweite
Ressource, die eine Warteschlange ist, die zu den Prozessoren führt, muss zum Zeitpunkt der Verteilung durch
den QSA-Verteiler 11 für die erste Ressource nicht auf Verfügbarkeit geprüft werden. Dies deshalb, weil die
Architektur des QSDs garantiert, dass die Datenpfade und die Warteschlangenschlitze, die zu der Warte-
schlange führen, immer verfügbar sind. In dem QSA-Verteiler 11 kann die faire Ressourcenverteilung ohne gro-
ßen Aufwand bereitgestellt werden.

[0075] Gemäß einem Ausführungsbeispiel der Erfindung ist der QSD fähig, simultan Eingaben aus allen
Quellen (Prozessoren, Speicher, IOP und globaler Port) zu empfangen, ohne Vorausverteilung der Puffer, die
zu den entsprechenden Zieladressen führen, erforderlich zu machen. Alle Datenquellen können dann unab-
hängig Daten zu dem Switch weiterleiten, ohne dass über Zugriff auf den Datenpfad oder die Warteschlangen-
schlitze in dem Schalter entschieden werden müsste, weil der QSD eine Anzahl von Simultan-Eingabepuffern
enthält, die in der Lage sind, Daten aus allen Quellen im Wesentlichen simultan zu empfangen. Im Folgenden
werden zwei Ausführungsbeispiele von Simultan-Eingabepuffern beschrieben.

Simultan-Eingabepuffer-Switch

[0076] Wie oben beschrieben, dienen die Prozessoren 12a–12d, das IOP 14 und die Speichereinrichtungen
13a–13d jeweils als Ressourcen zum Behandeln von Anforderungen aus den Prozessoren und dem IOP in
dem Mehrprozessorknoten. Die Daten werden zwischen jedem der Ressourcenelemente und den anfordern-
den Elementen in Form von Paketen übertragen. Jedes Paket enthält 512 Bits Daten und 64 Bits ECC. Wie
oben beschrieben, trägt jeder der Datenlinks 64 Bits Daten und 8 Bits ECC auf jeder Flanke eines
150-MHz-Taktes. Infolgedessen sind QSD-extern acht Datenübertragungszyklen pro Paket vorhanden.
QSD-intern werden die Daten jedoch nur auf einer Flanke des Taktes gesammelt. Infolgedessen werden von
den Datenlinks für jeden Taktzyklus der QSD-internen Logik potenziell 128 Bits Daten empfangen. Da jedes
Paket 512 Bits Daten und 64 Bits ECC umfasst, sind QSD-intern vier Datenübertragungszyklen für jedes Paket
vorhanden, wobei mit jedem QSD-Taktzyklus 128 Bits Daten und 16 Bits ECC aus einem Prozessor, IOP oder
einer Speichereinrichtung zu dem QSD übertragen werden.

[0077] Im Folgenden Bezug nehmend auf die Fig. 3, wird der QSD 19 detaillierter gezeigt und enthält fünf
Simultan-Eingabepuffer (SIBs) 25a–25e. Jeder SIB ist einem der anfordernden Elemente, beispielsweise den
Prozessoren 12a–12d oder dem IOP zugeordnet. Jeder SIB steuert den Datenpfad zum Übertragen von Pa-
keten zwischen seinem zugehörigen anfordernden Element und den anderen Ressourcenelementen in dem
Knoten, d. h. den Prozessoren 12a–12d, den Speichern 13a–13d, dem IOP 14 und zweckmäßigerweise dem
globalen Port. Der globale Port wirkt als Verbindung zwischen allen weiteren Mehrprozessorknoten unterein-
ander und wird unten im Einzelnen beschrieben. Die SIBs ermöglichen simultanes Empfangen von Paketen
durch den Anfordernden von jeder Ressource, die mit dem Switch gekoppelt ist, ohne zwischen den Anfordern-
den die Verteilung des Switchs erforderlich zu machen.

[0078] Wie zuvor beschrieben, ist der QSA-Verteiler 11 gekoppelt, um die Steuerung für den Switch 19 be-
reitzustellen. In dem QSA-Verteiler 11 ist ein Hauptverteiler 27 enthalten. Der Hauptverteiler 27 verwaltet die
Datenbewegung zwischen den Ressourcen (den Prozessoren 12a–12d, den Speichern 13a–13d, dem IOP 14)
und dem Switch 19. Jeder der Prozessoren 12a–12d und das IOP 14 gibt auf den Leitungen 28a–28e Anfor-
derungen auf Zugriff aus, die zu dem Hauptverteiler 27 weitergeleitet werden. Der Hauptverteiler wiederum lei-
tet die Anforderungen zu den zugehörigen Ressourcen weiter, wenn jede Ressource in der Lage ist, eine An-
forderung zu empfangen. Sobald eine Ressource die Anforderung empfangen hat, ist für den Switch 19 keine
Zugriffsverteilung erforderlich, weil jeder der SIBs in der Lage ist, die Eingaben aller Eingänge im Wesentlichen
simultan, d. h. innerhalb desselben Datenzyklus, zu empfangen.

[0079] In dem QSA-Verteiler 11 ist außerdem eine Anzahl von einzelnen Verteilern 23a–23d enthalten. Jeder
der Verteiler 23a–23d wird verwendet, um jeweils einen Datenpfad zwischen einem zugehörigen der Prozes-
soren 12a–12d und dessen zugehörigem SIB 25b–25e zu verwalten.

[0080] Ein gleichartiger Verteiler (nicht gezeigt) ist in dem IOP 14 zu Verwalten des Datenpfades zwischen
IOP 14 und SIB 25a enthalten. Da jeder Prozessor in der Lage ist, Daten aus seinem zugehörigen SIB zu emp-
fangen, leitet der zugehörige Verteiler die Daten auf dem gekoppelten Datenpfad weiter.
8/89

DE 698 32 943 T2 2006.06.29
[0081] Dementsprechend kann durch das Verwenden von simultanen Eingabepuffern innerhalb des Switchs
19 der zwischen einem Anfordernden und einer Ressource verteilte Datenpfad in zwei unterschiedliche Ab-
schnitte unterteilt werden, einen ersten Zugriffsverteilungsabschnitt, in dem der Hauptverteiler eine Ressource
in Beantwortung einer Anforderung von einem Prozessor unabhängig von der Verfügbarkeit des anfordernden
Prozessors Daten von der gekoppelten Ressource zu empfangen verteilt, und einen zweiten Zugriffsvertei-
lungsabschnitt, in dem der dem Prozessor zugehörige Verteiler den Prozessor für den Zugriff des Prozessors
auf von dem Switch weitergeleitete Daten verteilt. Mit einer derartigen Anordnung kann, weil die Zugriffsvertei-
lung abgetrennt ist, sichergestellt werden, dass auf jede der gekoppelten Ressourcen fairer Zugriff bereitge-
stellt wird.

[0082] Im Folgenden Bezug auf die Fig. 4A Bezug nehmend, wird ein ausführlicheres Schaubild des SIBs
25a gezeigt, das einen Eingangsverteiler 36 gekoppelt enthält, um MUX-Auswahlsignale<31:0> auf der Lei-
tung 36a zu acht gekoppelten Multiplexern 34a–34h bereitzustellen, wo vier der Mux-Auswahlsignale zu jedem
der acht Multiplexer weitergeleitete werden, um einen von neun Ausgängen an jedem Multiplexer auszuwäh-
len. Alle SIBs 25a–25d sind gleichartig aufgebaut und infolgedessen wird nur einer davon ausführlich beschrie-
ben. Wie oben beschrieben, sind mit dem SIB potenziell zehn Ressourcen gekoppelt. Eine der zehn Ressour-
cen ist eine Anforderungsvorrichtung, die den Ausgang des SIBs empfängt, während die anderen neun Res-
sourcen Eingang in den SIB bereitstellen. Deshalb empfängt jeder der Multiplexer 34a–34h den Eingang von
neun mit dem SIB gekoppelten Ressourcen. Die Eingänge von drei der gekoppelten Prozessoren werden auf
den Leitungen Px, Py und Pz empfangen. Weitere Eingänge von entweder dem vierten Prozessor (wenn der
SIB der IOP-Vorrichtung zugehört) oder von dem der IOP-Vorrichtung (wenn der SIB einem der Prozessoren
zugehört) werden auf der Leitung PW/IOP empfangen. Die Eingänge aus den Speicherbänken 13a–13d wer-
den jeweils auf den Leitungen mom0, mem1, mem2 und mem3 empfangen und Eingang von dem globalen
Port wird auf der Leitung globaler Port empfangen.

[0083] Jeder Multiplexerausgang jedes der Multiplexer 34a–34h ist mit einer der acht Speicherbänke eines
Puffers 32 gekoppelt. Jede Speicherbank hat acht Einträge, wobei jede 128 Bits Daten und 16 Bits ECC spei-
chert. Infolgedessen wird jedes Datenpaket, das in dem SIB empfangen wird, in vier verschiedene Speicher-
bänke in dieselbe Zeile des Puffers 32 geschrieben. Wie unten beschrieben, erhält der Eingangsverteiler 36
den Status der Bits, um die Speicherbänke des Puffers anzuzeigen, die zum Speichern von Daten verfügbar
sind. Folglich wählt der Eingangsverteiler 26 bei jedem Zyklus dieser von einer Ressource oder von mehreren
Ressourcen empfangenen 128 Bits Paketdaten einen der möglichen neun Ressourceneingänge in jedem der
Multiplexer 34a–34d zum Weiterleiten des Zyklus von Paketdaten zu der zugehörigen Speicherbank 32a–32h
in Abhängigkeit von dem Verfügbarkeitsstatus der Speicherbänke aus. Der Eingangsverteiler stellt außerdem
auf der Leitung 36b eine Bypass-Datenleitung zu dem Multiplexer 30 bereit. Wenn die Statusbits in dem Ein-
gangsverteiler anzeigen, dass alle der Speicherbänke 32a–32h leer sind, kann eine der neun Ressourcen über
den Eingangsverteiler direkt zu dem zugehörigen Anfordernden überbrückt werden.

[0084] Jede der Speicherbänke 32a–32h ist mit dem Multiplexer 30 gekoppelt. Der Multiplexer 30 wird durch
den Ausgangsverteiler 38 gesteuert. Wenn der mit dem SIB 25a verbundene Anfordernde bereit ist, die Daten
aus dem SIB zu empfangen und ein Teil eines Pakets in den SIB geschrieben worden ist, leitet der Ausgangs-
verteiler einen der acht Eingänge aus den Speicherbänke 32a–32h zu dem Anfordernden. Alternativ leitet der
Ausgangsverteiler die Bypass-Daten auf der Leitung 36b zu dem Anfordernden weiter, wenn keine der
Speicherbänke zur Übertragung anstehende Daten hat und auf der Leitung 36 von dem Eingangsverteiler Da-
ten verfügbar sind.

[0085] In Betrieb wird, wenn die ersten 128 Bits der Paketdaten auf der SIB-Seite empfangen werden, eine
der acht Speicherbänke zum Speichern der ersten 128 Bits der Paketdaten ausgewählt.

[0086] Gemäß einem Ausführungsbeispiel der Erfindung wird während der nächsten drei Zyklen, die diese
128 Bits Paketdaten empfangen werden, die Speicherbank, die an die Speicherbank, die zuvor zum Schreiben
ausgewählt war, angrenzt, zum Schreiben der nächsten 128 Bits Paketdaten verwendet. Wenn beispielsweise
Speicherbank 32a als eine verfügbare Speicherbank zum Schreiben des ersten Zyklus der Paketdaten aus der
Quelle mem0 verwendet werden würde, würde der zweite Zyklus von Paketdaten in die Speicherbank 32b ge-
schrieben werden, der dritte in die Speicherbank 32c und der vierte in die Speicherbank 32d. Die Auswahl,
welche Speicherbank zum Schreiben von folgenden Zyklen von Paketdaten zu verwenden ist, wird folglich auf
einer Rotationsbasis, die mit der durch den Eingangsverteiler ausgewählten Speicherbank beginnt und mit ei-
ner angrenzenden Speicherbank für das sich daran anschließende Paketschreiben fortsetzt, erfolgen. Im Er-
gebnis wird das empfangene Paket über vier Speicherbänke in einer gewöhnlichen Zeile des Puffers 32 ver-
teilt.
9/89

DE 698 32 943 T2 2006.06.29
[0087] Weil acht Speicherbänke bereitgestellt werden und weil in einem Ausführungsbeispiel der Erfindung
die Höchstanzahl von Ressourcenauslesungen, die an jedem der Anfordernden unerledigt sind, acht ist, kann
sichergestellt werden, dass wenigstens eine Speicherbank für jede Ressource für jeden Schreibzyklus verfüg-
bar ist. Deshalb könnte jede der Speicherbänke 32a–32h, wenn zu einem gegebenen Zeitpunkt alle acht un-
erledigten Antworten durch den Switch empfangen werden würden, verwendet werden, um den ersten Paket-
datenzyklus des Schreibens mit der Auswahl der Speicherbänke, die für die nächsten drei Zyklen rotieren, auf-
zunehmen.

[0088] In einem Ausführungsbeispiel der Erfindung arbeitet jeder Puffer in einem SIB unter dem FIFO-Proto-
koll (First-In First-Out protocol). Weil zwei Teile des Pakets simultan empfangen werden können, wird für diese
eine Reihenfolge ausgewählt, mit der sie in den Switch gelesen werden. Da die Logik in dem Anfordernden,
die die Ressourcen verteilt, nicht mit dem SIB kommuniziert und nicht mit anderen Anfordernden kommuniziert,
um den Zugriff zu verteilen, wird einer Standardregel gefolgt, um die Datenintegrität sicherzustellen: beispiels-
weise eine Regel wie „Daten von einer niedrigeren Anzahl von Eingangsressourcen werden immer vor Daten
von einer höheren Anzahl von Eingangsressourcen in den Switch geschrieben", wobei den Ressourcen eine
feststehende Prioritätsanzahl zugewiesen wird.

[0089] Wie oben erwähnt, wurde in dem Ausführungsbeispiel des in der Fig. 4A gezeigten SIBs, die Verwen-
dung von acht Speicherbänken beschrieben, weil acht der Anzahl der unerledigten Speicherabfragen ent-
spricht, die ein Anfordernder zu jedem gegebenen Zeitpunkt haben kann. Wenn jedoch die Designbeschrän-
kungen erfordern, dass weniger Speicherbänke bereitgestellt werden, kann das Design durch einen Fachmann
in dieser Technik einfach modifiziert werden, um zu ermöglichen, dass mehrere Einheiten von Daten unter Ver-
wendung von Verschachtelung oder einer ähnlichen Technik simultan in verschiedene Speicherorte einer ge-
wöhnlichen Speicherbank geschrieben werden. Deshalb ist die vorliegende Erfindung nicht auf das bestimmte,
in der Fig. 4A dargestellte Ausführungsbeispiel, beschränkt.

[0090] Wie oben beschrieben, unterhält der Verteiler im Betrieb Statusinformationen in Bezug auf die Verfüg-
barkeit der Eintragungen in die Speicherbank, um eine adäquate Speicherbank für das Schreiben der Daten
aus einer Ressource auszuwählen.

[0091] Eine exemplarische Ausführung eines Eingangsverteilers 36 zum Steuern der Eingänge in den SIB ist
in der Fig. 4B gezeigt. In der Fig. 4B wird, obwohl oben neun Eingänge beschrieben wurden, aus Gründen der
Übersichtlichkeit die Logik zum Steuern des Schreibens von nur zwei Ressourceneingaben gezeigt. Wenn die
eingegebenen Paketdaten auf den Leitungen 35 empfangen werden, wird ein Anzeigesignal, wie zum Beispiel
„Eingang1", zu einer Signalspeicherkette 40 weitergeleitet, die vier Signalspeicher, Flip-Flops oder ähnliche
Statuseinrichtungen umfasst. Die Signalspeicherkette 40 wird als ein Zählmechanismus verwendet. Für den
Zweck dieses Beispiels wird vorausgesetzt, dass die Daten in vier aufeinander folgenden Übertragungszyklen
empfangen werden. Während der vier Datenübertragungszyklen propagiert das Eingang1-Signal durch die Si-
gnalspeicherkette. Mit der Signalspeicherkette ist ein ODER-Gatter 46 gekoppelt. Während der Eingangsver-
teilerwert durch die Signalspeicherkette 40 propagiert, wird der Ausgang des ODER-Gatters 46 aktiviert.

[0092] Der Ausgang des ODER-Gatters 46 stellt zu einem Verschieberegister ein Wechselzeichen bereit. Das
Schieberegister umfasst acht Bit-Speicherstellen, eine für jede der Speicherbänke des SIBs. Das Schiebere-
gister 48 wird bei Eingangsempfang des Eingang1-Signal-Samples mit einem Vektor der Speicherbankaus-
wahllogik 44 geladen. Der von der Speicherbankauswahllogik 44 empfangene Bit-Vektor hat nur ein Bit-Set,
wobei die relative Speicherstelle des Bits innerhalb des Vektors der Speicherbank anzeigt, an welcher das
Schreiben der Paketdaten zu beginnen ist.

[0093] Die Speicherbankauswahllogik 44 steuert infolgedessen die Zieladresse des ersten Zyklus von Paket-
daten. Die Speicherbankauswahllogik 44 empfängt als einen Eingang einen verfügbaren Vektor 42 mit den re-
lativen Speicherstellen der Bits in dem verfügbaren Vektor, der die zugehörigen Puffer, die nicht in der Lage
sind, die Schreibdaten zu empfangen, anzeigt.

[0094] Wenn die Speicherbankauswahllogik ein Bit zu dem Schieberegister 48 bereitstellt, wird der Wert des
Schieberegisters 48 zu einem Demultiplexer 49 weitergeleitet. Der Demultiplexer 49 empfängt außerdem als
Eingang eine numerische Darstellung des Eingangs der Multiplexer 34a–34h, mit dem die Eingang1-Quelle
verbunden ist. Beispielsweise empfängt der Demultiplexer 49 einen Eingangswert „1", anzeigend, dass die
Eingang1-Ressourcendaten durch den Multiplexer 3a, der einen Multiplexer-Auswahlwert von „1" verwendet,
weitergeleitet werden würden. In Abhängigkeit von der Speicherstelle des Bits in dem Schieberegister, das die
ausgewählte Speicherbank anzeigt, wird der Wert 1 zu der adäquaten Speicherstelle des Mux-AUSWAHL-Si-
10/89

DE 698 32 943 T2 2006.06.29
gnals 36a, <31:0>, propagiert. Jeder der Demultiplexer für jede Eingangsressource treibt alle der Mux-AUS-
WAHL-Signale, wobei ihre Ausgänge geodert sind, bevor die Signale die Multiplexer 34a–34h treiben.

[0095] Nach dem Schreiben der Speicherbankeinträge werden die Inhalte des Schieberegisters durch das
ODER-Gatter 50 zusammengeodert und als der VERFÜGBARE SPEICHER-BANKVEKTOR 42 gespeichert.
Dieser wird während des nächsten Zyklus zum Bestimmen durch die Speicherbankauswahllogik 44, welche
Speicherbänke für eingehende Schreiben verfügbar sind, verwendet.

[0096] Jeder Zyklus, in dem der Zeichenwechsel auf der Leitung 46a aktiviert wird, resultiert darin, dass das
Bit des Schieberegisters 48 nach rechts verschoben wird. Während das Bit nach rechts verschoben wird, wird
der Auswahlwert in dem Mux-Auswahlsignal<31:0> ebenso nach rechts verschoben, wodurch veranlasst wird,
dass die Eingangswertquelle für den nächsten Schreibvorgang zu der nächsten angrenzenden Speicherbank
verschoben wird.

[0097] Folglich wird durch das Verwenden eines SIBs innerhalb des lokalen QSD-Switchs ein unkomplizierter
und effizienter Verbindungsmechanismus bereitgestellt, der in Lage ist, sicherzustellen, dass mehrere gleich-
zeitig empfangene Eingänge die Zieladressen ihrer Anfordernden erreichen. Mit einer derartigen Anordnung
ist, sobald eine Quelle den Zugriff auf eine Ressource verteilt hat, jede erforderliche Zugriffsverteilung, die
durch die Quelle durchgeführt werden muss, ausgeführt. Die Quelle kann sich auf die Tatsache verlassen, dass
die Ressource immer in der Lage sein wird, Zugriff auf den Switch-Puffer 32 zu erhalten. Das Ermöglichen,
dass die Quellen-Verteiler zum Verwalten einer Ressource unabhängig voneinander arbeiten können, stellt ei-
nen Mechanismus bereit, der mit minimalem Aufwand eine faire Zugriffsverteilung bereitstellt. Weil der SIB in
der Lage ist, Daten für die Höchstanzahl von ausstehenden Auslesungen des Anfordernden selbst dann zu
speichern, wenn die Daten gleichzeitig von allen der Ressourcen empfangen werden, besteht zusätzlich kein
Bedarf für die Zugriffsverteilung zwischen den Ressourcen für den Puffer 32 und die Gesamtkomplexität der
Ressourcenlogik wird verringert.

[0098] Im Folgenden Bezug nehmend auf die Fig. 5, wird ein zweites Ausführungsbeispiel eines Simul-
tan-Eingabepuffers (SIB) 61 beschrieben, der entweder mit einem Prozessor oder einer IOP-Einrichtung (jede
Vorrichtung zum Anfordern, die einen Cache enthält) gekoppelt werden kann, wie in der Fig. 3 gezeigt. Der
SIB 61 enthält neun Multiplexer 60a–60i, von denen acht mit einem jeweiligen von acht Puffern 62a–62h ge-
koppelt sind.

[0099] Der neunte Multiplexer 60i wird verwendet, um einen Bypasspfad bereitzustellen, wie unten beschrie-
ben wird. Die Multiplexer 60a–60i empfangen neun Eingänge einschließlich vier Eingänge der gekoppelten
Speichereinrichtungen mem0–mem3, eines Eingangs des globalen Ports und drei Eingänge der gekoppelten
Prozessaren auf den Leitungen Px, Py und Pz und eines Eingangs entweder des IOPs (wenn die dem SIB zu-
gehörige Einrichtung ein Prozessor ist) oder eines weiteren Prozessors (wenn die dem SIB zugehörige Ein-
richtung das IOP ist) auf der Leitung PW/IOP.

[0100] Jeder der Puffer 62a–62h enthält vier 128-Bit-Einträge. Dementsprechend speichert jeder der Ein-
gangspuffer ein 512-Bit-Paket Information, das in vier 128-Bit-Teilen in aufeinander folgenden Zyklen an dem
SIB empfangen wird. An jeden der Puffer ist jeweils ein Multiplexer 64a–64h vier bis eins gekoppelt. Diese Mul-
tiplexer werden verwendet, um einen der vier Einträge der zugehörigen Puffer zum Weiterleiten durch einen
Multiplexer 66 zu dem Ausgang des SIBs auszuwählen.

[0101] Wie oben in Bezug auf die Fig. 4A beschrieben, sind acht Puffer enthalten, weil in einem Ausführungs-
baispiel der Erfindung jeder Anfordernde zu jedem gegebenen Zeitpunkt höchstens acht ausstehende Lesere-
ferenzen für verschiedene Ressourcen haben kann. Infolgedessen ist dies keine Beschränkung der Erfindung,
obwohl in der Fig. 5 acht Puffer gezeigt werden. Stattdessen ist die gewählte Anzahl der Puffer von den Puf-
ferungseigenschaften des zugehörigen Prozessors oder der IOP-Einrichtung abhängig.

[0102] In Betrieb wählt der Eingangsverteiler 67, während von jeder der gekoppelten Ressourcen Eingang
empfangen wird, eine der Eingangsleitungen jedes der Multiplexer zum Weiterleiten des Datenpakets zu einem
freien Puffer. Während der Dauer eines Paketschreibens einer gegebenen Ressource wird derselbe Puffer ge-
wählt, so dass alle Teile des Pakets in einem einzelnen Paket bleiben. Sobald wenigstens ein Teil des Pakets
in den Puffer geschrieben wurde, kann es an den Multiplexer 66 zum Weiterleiten zu dem zugehörigen Anfor-
dernden, wenn der Anfordernde bereit ist, bereitgestellt werden. Alternativ, wenn keine Paketdaten in einem
der Puffer sind, kann zum Weiterleiten der Paketdaten direkt durch den Multiplexer 60i über den Multiplexer
66 ein Bypasspfad zu dem Ausgang verwendet werden.
11/89

DE 698 32 943 T2 2006.06.29
[0103] Weil acht Puffer bereitgestellt werden, ist die SIB-Vorrichtung 61 in der Lage, Daten von jeder der ge-
koppelten Ressourcen im Wesentlichen gleichzeitig (d. h. in demselben Zyklus) zu empfangen. Durch das Ver-
wenden eines SIBs in dem QSD, wie in dem vorhergehenden Ausführungsbeispiel, ist keine Verteilung des
SIBs zwischen den Anfordernden erforderlich. Im Ergebnis ist die Verfügbarkeit des lokalen Switchs garantiert,
wenn die Ressource bereit ist, diesen zu verwenden. Zusätzlich wird ein Verteilungsschema bereitgestellt, das
inhärent fair ist, weil im Ergebnis der Verteilung des Switchs keine Anforderung zu einer Ressource durch an-
dere Anforderungen zu anderen Ressourcen blockiert wird. Dementsprechend ist eine faire und relativ einfa-
che Struktur bereitgestellt, die ermöglicht, die maximale Busbandbreite aufrechtzuerhalten, während der Ver-
teilungsaufwand minimiert wird.

[0104] Folglich wird der Multiprozessorknoten 10 bereitgestellt, der die Verarbeitungsressourcen durch das
Implementieren eines lokalen Switchs, der zum Unterstützen einer hohen Busbandbreite einen Simultan-Ein-
gabepuffer verwendet, optimal nutzt. Zusätzlich ist, weil in dem Verteilerbus 13 eine Reihenfolge von Referen-
zen serialisiert wird, ein zentraler Ordnungspunkt bereitgestellt, der das Aufrechterhalten der Kohärenz des
Speichers des Multiprozessorknotens 10 vereinfacht. Während die Möglichkeit zum Erhöhen der Rechenleis-
tung durch das Erhöhen der Annzahl von mit dem lokalen Switch gekoppelten Prozessormodulen vorhanden
ist, stellt die Anordnung mit vier Prozessoren pro lokalem Switch ein System mit hoher Leistung und geringer
Latenz zu geringen Kosten bereit.

Großes symmetrisches Mehrprozessorsystem

[0105] Die Anzahl von Prozessoren, die in einem monolithischen Mehrprozessorknoten enthalten sein kön-
nen, ist durch zwei Faktoren begrenzt. Zum einen ist die Anzahl von Prozessoren, die über einen lokalen
Switch zusammengekoppelt werden können, durch die Anzahl von Anschlussstiften begrenzt, die auf Chips,
die den lokalen Switch bilden, vorhanden sind. Zweitens ist die Datenbandbreite begrenzt, die durch einen ein-
zelnen, monolithischen Switch unterstützt wird. Infolgedessen kann durch das Erhöhen der Anzahl von gekop-
pelten Prozessoren über einen bestimmten Punkt hinaus kein Leistungsgewinn erzielt werden.

[0106] Gemäß einem Ausführungsbeispiel der vorliegenden Erfindung kann ein großes symmetrisches Mehr-
prozessorsystem durch das Verbinden einer Vielzahl von Multiprozessorknoten über einen hierarchischen
Switch bereitgestellt werden. Beispielsweise können acht der Mehrprozessorknoten über den hierarchischen
Switch gekoppelt werden, um ein symmetrisches Mehrprozessorsystem (SMP) bereitzustellen, das 32 Prozes-
sormodule, acht IOP-Vorrichtungen und 256 Gigabytes Speicher enthält. Für den Zweck dieser Beschreibung
wird ein SMP, das wenigstens zwei Mehrprozessorknoten enthält, als ein großes SMP bezeichnet. Wie unten
ausführlicher beschrieben, kann durch das Koppeln einer kleinen Anzahl von Prozessoren, die einen lokalen
Switch an einem SMP-Knoten verwenden, und anschließendes Koppeln einer Anzahl von Knoten, die einen
hierarchischen Switch nutzen, zu einem großen SMP ein skalierbares Hochleistungssystem realisiert werden.

[0107] Um die Mehrprozessorknoten in ein hierarchisch geschaltetes Netzwerk zu koppeln, wird der Mehr-
prozessorknoten erweitert, um eine Globalport-Schnittstelle zu enthalten. Beispielsweise, im Folgenden auf die
Fig. 2 Bezug nehmend, koppelt ein lokaler Switch 110 vier Prozessormodule, vier Speichermodule und ein
IOP-Modul. Gleiche Elemente in den Fig. 2 und Fig. 6 haben dieselben Bezugsnummern. Der lokale Switch
110 des Mehrprozessorknotens 100 ist ein 10-Port-Switch, der 9 Ports 116a–116i hat, die gleichartig wie die
Ports 16a–16i der Fig. 2 aufgebaut sind. Ein zusätzlicher Port 116j stellt über den globalen Link 132 einen voll-
duplex taktweitergeleiteten Datenlink 120 bereit.

[0108] Der globale Port koppelt einen Mehrprozessorknoten mit dem hierarchischen Switch und realisiert in-
folgedessen ein großes SMP. Im Folgenden auf die Fig. 7A Bezug nehmend, wird in einem Ausführungsbei-
spiel der Erfindung beispielsweise ein großes SMP-System 150, das acht Knoten 100a–100h, die über einen
hierarchischen 8 × 8-Switch 155 zusammengekoppelt sind, gezeigt. Jeder der Knoten 100a–100h ist im We-
sentlichen mit dem in der Fig. 6 gezeigten Knoten 100 identisch.

[0109] Jeder der Knoten 100a–100h ist durch einen jeweiligen hierarchischen Switch 170a–170h mit dem
Switch 155 gekoppelt. In einem Ausführungsbeispiel werden die Datenlinks 170a–170h mit einer Taktge-
schwindigkeit von 150 MHz betrieben und unterstützen folglich 2,4 GBytes/sek. Datenbandbreite zum Über-
tragen von Daten zu und von dem Switch 155. Dies versieht den Switch mit einem Maximum von 38,4
GBytes/sek. Rohverbindungsdatenbandbreite und 19,2 GBytes/sek. Bisektionsdatenbandbreite.

[0110] Das große SMP-System ist ein verteiltes System mit gemeinsamem Speicher, wobei jeder der Mehr-
prozessorknoten 100a–100h entweder einen adressierbaren Teil des Gesamtsystemspeichers oder einen un-
12/89

DE 698 32 943 T2 2006.06.29
terteilten Teil des physikalischen Speichers enthält. In einem Ausführungsbeispiel der Erfindung sind in dem
Gesamtsystemspeicher 243 physikalische Speicherstellenadressen vorhanden. Ein Ausführungsbeispiel des
SMP-Mehrprozessorsystems 100 unterstützt zwei Adressenformate, die als „großes Format" und „kleines For-
mat" bezeichnet werden. Das große Format bildet physikalische 43-Bit-Adressen ab, auf denen die Prozesso-
ren in jedem Knoten direkt in eine physikalische 43-Bit-Adresse zur Verwendung in dem Mehrprozessorsystem
arbeiten. Durch das Adressieren des großen Formats können die Bits<38:36> der physikalischen Speichera-
dresse als eine Knotenidentifikationsnummer verwendet werden. Die Adressenbits 38:36 dekodieren den Ho-
me-Knoten eines I/O-Adressraums. wobei „Home" den physikalischen Mehrprozessorknoten bezeichnet, auf
dem die Speicher- und I/O-Vorrichtungen, die dem Speicherraum oder dem I/O-Raum zugehörig sind, vorhan-
den sind.

[0111] Der Adressiermodus des kleinen Formats setzt voraus, dass nicht mehr als vier Knoten in dem Mehr-
prozessorsystem vorhanden sind. Das kleine Format ermöglicht den Prozessoren, in jedem Knoten in einem
physikalischen 36-Bit-adressierten System zu arbeiten. Bei einem kleinen Format identifizieren die Bits 34:33
der physikalischen Adresse die Home-Knotennummer von Daten oder einer I/O-Vorrichtung.

[0112] Obwohl die CPU unter Verwendung einer physikalischen 36-Bit-Adresse arbeitet, verwendet das
Mehrprozessorsystem jedoch konsistent physikalische 43-Bit-Adressen zum Bestimmen der Datenspeicheror-
te, wobei die Bits 37:36 der physikalischen Adresse die Home-Knotennummer von Daten oder eine I/O-Vor-
richtung kennzeichnen. Dementsprechend wird zwischen den durch die CPU ausgegebenen Adressen des
kleinen Formats und denen, die über die Datenleitungen 13a–13h zu dem hierarchischen Switch 155 übertra-
gen werden, Translation durchgeführt.

[0113] Die dargestellte Anordnung des Mehrprozessorsystems 150 ist in der Lage, den cachekohärenten ge-
meinsamen Speicher mit hoher Bandbreite zwischen 32 Prozessoren bereitzustellen.

[0114] Ein weiteres Ausführungsbeispiel eines großen SMPs gemäß der Erfindung wird in der Fig. 7B ge-
zeigt, in der zwei Mehrprozessorknoten 100a und 100b ohne Verwendung des hierarchischen Switchs zusam-
mengekoppelt sind. Stattdessen sind die beiden Mehrprozessorknoten durch das Zusammenkoppeln der Aus-
gänge ihrer globalen Ports direkt gekoppelt.

[0115] Unabhängig davon, ob die Zwei-Knoten-Ausführung der Fig. 7B oder die Mehrknoten-Ausführung der
Fig. 7A verwendet wird, ist das Ergebnis ein Mehrprozessorsystem mit einem großen Adressraum und einer
großen Verarbeitungsleistung.

[0116] In beiden Ausführungsbeispielen sind die Speicheradressräume und die I/O-Adressräume physika-
lisch zwischen allen Knoten 100a–100h in Segmenten verteilt. Jeder Knoten in dem System enthält einen Teil
des Hauptspeichers, auf den unter Verwendung der oberen drei Bits der physikalischen Adresse des Speicher-
raums zugegriffen wird. Infolgedessen bildet jede Speicher- oder I/O-Adresse in einer (und nur in einer) Spei-
cherstelle oder I/O-Vorrichtung in nur einem der Knoten ab. Die oberen drei Adressbits stellen infolgedessen
eine Knotennummer zum Identifizieren des „Home-Knotens" des Knotens, in den die Speicher- oder I/O-Adres-
se abbildet, dar.

[0117] Jeder Mehrprozessorknoten kann auf Teile des gemeinsamen Speichers, die in ihrem Home-Knoten
oder in anderen Mehrprozessorknoten gespeichert sind, zugreifen. Wenn ein Prozessor auf einen gemeinsa-
men Speicherblock, für den der Home-Knoten der eigene Knoten des Prozessors ist, zugreift (lädt oder spei-
chert), wird die Referenz als eine „lokale" Speicherreferenz bezeichnet. Wenn die Referenz zu einem Block
verweist, für den der Home-Knoten ein anderer als der eigene Knoten des Prozessors ist, wird die Referenz
als eine „Remote"- oder „globale" Speicherreferenz bezeichnet. Weil die Latenz eines lokalen Speicherzugriffs
verschieden von der eines Remote-Speicherzugriffs ist, wird über das SMP-System ausgesagt, dass es eine
NUMA-Architektur (Architektur des nicht gleichförmigen Speicherzugriffs) hat. Da das System des Weiteren
kohärente Caches bereitstellt, wird das System als eine cache-kohärente NUMA-Architektur bezeichnet.

[0118] Die hierin offen gelegte cache-kohärente NUMA-Architektur enthält mehrere Aspekte, die zu ihrer ho-
hen Leistung und geringen Komplexität beitragen. Ein Aspekt der Konstruktion ist das Einhalten der Reihen-
folge zwischen Nachrichten und die Ausnutzung dieser Reihenfolge. Durch das Sicherstellen, dass Nachrich-
ten in Übereinstimmung mit bestimmten Reihenfolgeeigenschaften durch das System fließen, können die La-
tenzen der Operationen signifikant verringert werden. Beispielsweise erfordern Speichervorgänge nicht, dass
Invalidate-Nachrichten an ihre ultimativen Zieladressenprozessoren geliefert werden, bevor das Speichern als
ausgeführt betrachtet wird, stattdessen wird die Speicherung als ausgeführt betrachtet, sobald die Invalida-
13/89

DE 698 32 943 T2 2006.06.29
te-Nachrichten zu bestimmten geordneten Warteschlangen, die zu dem Zieladressenprozessor führen, gesen-
det wurden.

[0119] Zusätzlich eliminiert die Konstruktion durch das Garantieren, dass bestimmte Reihenfolgen eingehal-
ten werden, den Bedarf für Bestätigungsmeldungen oder Erledigungsmeldungen. Für die Nachrichten ist ga-
rantiert, dass sie ihre Zieladressen in der Reihenfolge, in der sie in bestimmte Warteschlangen eingereiht wur-
den, erreichen. Infolgedessen besteht kein Bedarf, mit einer Bestätigung zu antworten, die eliminiert wird,
wenn die Nachricht ihre Zieladresse erreicht. Dies verbessert die Bandbreite des Systems.

[0120] Zusätzlich werden das Ordnen von Ereignissen und das Ordnen von Nachrichten verwendet, um einen
„Hot-Potato-Betrieb" zu erreichen. Durch Ausnutzung der Reihenfolge in bestimmten Warteschlangen sind
Controller, wie zum Beispiel der Verzeichnis- oder DTAG-Controller, in der Lage, Anforderungen mit einer ein-
zigen Kontrolle zurückzuziehen. Negativbestätigung und Wiederholung einer Anforderung auf Grund von Kon-
flikten mit anderen Anforderungen sind nicht erforderlich. Als eine Konsequenz des „Hot-Potato-Betriebs" wer-
den Fairness- und Aushungerungsprobleme eliminiert.

[0121] Der zweite Aspekt der Konstruktion sind die verwendeten virtuellen Kanäle. Virtuelle Kanäle sind ein
Schema zum Kategorisieren von Nachrichten in Kanälen", wobei die Kanäle physikalische Ressourcen ge-
meinsam nutzen können (und infolgedessen „virtuell" sind), jedoch jeder Kanal unabhängig von den anderen
Kanälen flussgesteuert ist.

[0122] Virtuelle Kanäle werden verwendet, um durch das Eliminieren von Flussbhängigkeits- und Ressour-
cenabhängigkeitszyklen zwischen den Nachrichten in dem System Systemblockade in dem Cache-Kohä-
renz-Protokoll zu beseitigen. Dies steht im Gegensatz zu Cache-Kohärenz-Protokollen in NUMA-Mehrprozes-
soren nach dem Stand der Technik, die Mechanismen zum Erfassen von Verklemmungen anwenden und an-
schließend Verklemmungssituation durch negativ bestätigende Auswahlnachrichten und das Wiederholen ent-
sprechender Befehle lösen.

[0123] Obwohl später hierin eine ausführliche Beschreibung der Kanäle erfolgt, wird im Folgenden die Ver-
wendung der Kanäle kurz beschrieben. Wie oben erwähnt, werden die Nachrichten innerhalb des großen
SMP-Systems unter Verwendung von logischen Datenpfaden, die als „Kanäle" bezeichnet werden, gelenkt. In
einem Ausführungsbeispiel der Erfindung sind die folgenden Kanäle enthalten: ein Q0-Kanal zum Befördern
von Transaktionen von einem anfordernden Prozessor zu dem Verteilerbus auf dem Home-Knoten, der der
Adresse der Transaktion entspricht, ein Q1-Kanal zum Befördern von Transaktionen von einem Home-Vertei-
lerbus zu einem Prozessor oder zu mehreren Prozessoren und dem IOP und ein Q2-Kanal zum Befördern von
Datenfülltransaktionen von einem Besitzerprozessor zu dem anfordernden Prozessor. Ein Q0Vic-Kanal kann
zum Befördern von Victim-Transaktionen von einem Prozessor zu einem Speicher zum Schreiben modifizierter
Daten bereitgestellt werden. Zusätzlich kann der Q0Vic-Kanal verwendet werden, um Q0-Transaktionen zu be-
fördern, die hinter den Victim-Transaktionen bleiben müssen. Schließlich wird ein QIO-Kanal bereitgestellt, um
die IO-Raum-Transaktionen von einem Prozessor zu einem IOP zu transportieren.

[0124] Die Kanäle bilden eine Hierarchie, die unten gezeigt wird:
(niedrigster) QIO > Q = Vic → Q0 → Q1 – Q2 (höchster)

[0125] Wie im Folgenden noch beschrieben wird, sollten die Nachrichten, um Verklemmung zu vermeiden, in
jedem Kanal niemals auf Grund von Nachrichten in einem niedrigeren Kanal blockiert werden. Weitere Einzel-
heiten in Bezug auf die Konstruktion und die Implementierung von Mechanismen, die die Ordnungseigenschaf-
ten und die virtuellen Kanäle bereitstellen und anwenden, werden später hierin beschrieben.

[0126] Folglich kann, wie in den Fig. 7A und Fig. 7B gezeigt, durch das Zusammenkoppeln jeder Anzahl von
SMP-Knoten der Fig. 2 ein großes SMP-System bereitgestellt werden. Der Betrieb eines großen SMP-Sys-
tems, wie dem, das in den Fig. 7A und Fig. 7B gezeigt ist, wird unten bereitgestellt und in drei Teilen beschrie-
ben. Zuerst werden die Hardwarekomponenten, die in dem großen SMP enthalten sein können, beschrieben.
Anschließend wird das Cache-Kohärenz-Protokoll, das die kohärente gemeinsame Datennutzung zwischen
den Prozessoren in dem SMP bereitstellt, beschrieben. Zusätzlich werden die Implementierung und die Ver-
wendung von virtuellen Kanälen einschließlich der Unterstützungsmechanismen, die für die virtuellen Kanäle
in dem hierarchischen Switch bereitgestellt werden, beschrieben.
14/89

DE 698 32 943 T2 2006.06.29
Hardwarekomponenten des großen SMPs

[0127] In jedem der Mehrprozessorknoten werden mehrere Elemente zum Implementieren der kohärenten
gemeinsamen Datennutzung bereitgestellt. Wiederum auf die Fig. 6 Bezug nehmend, enthalten diese Elemen-
te das Verzeichnis 140, den DTAG 20, den IOP-Tag 14b, den globalen Port 120 und zusätzlich eine Hierarchie
von Serialisierungspunkten, die ermöglicht, dass eine Reihenfolge von Referenzen aufrechterhalten wird, um
das Cache-Kohärenz-Protokoll zu erleichtern. Jedes dieser Elemente wird im Folgenden ausführlicher be-
schrieben.

Der globale Port

[0128] Der globale Port ermöglicht, dass der Mehrprozessorknoten 100 über einen hierarchischen Switch 170
direkt mit einem oder mit mehreren gleichartig aufgebauten Mehrprozessorknoten gekoppelt wird. Weil jeder
Mehrprozessorknoten 100 als ein symmetrisches Mehrprozessorsystem arbeitet, werden der verfügbare
Adressraum und die Verarbeitungsleistung erhöht, je mehr Knoten in das System eingefügt werden.

[0129] Im Folgenden auf die Fig. 8 Bezug nehmend, wird ein erweitertes Blockdiagramm eines globalen
Ports 120 gezeigt. Der globale Port enthält eine Transaktions-Tracking-Verzeichnis (TTT) 122, einen
Victim-Cache 124, die Paketwarteschlangen 127, 122, 123 und 125 zum Speichern von Paketen, die von dem
Mehrprozessorknoten zu dem hierarchischen Switch weitergeleitet wurden, und eine Paketwarteschlange 121
zum Speichern von Paketen, die aus dem hierarchischen Switch empfangen wurden. Der globale Port 120
kommuniziert über den Verteilerbus 130 und zwei zugewiesene Ports aus dem lokalen Switch, zum Beispiel
dem GP-Link-In 132b und dem GP-Link-Out 132a, mit der weiteren Logik in dem Knoten.

[0130] Das TTT verfolgt die ausstehenden Transaktionen in dem Mehrprozessorknoten, d. h. jene Transakti-
onen, die von dem Knoten über den globalen Port ausgegeben wurden und die auf Beantwortung von einem
anderen Mehrprozessorknoten oder von dem hierarchischen Switch warten. Jedes Mal, wenn entsprechende
Antworten in dem Knoten empfangen wurden, wird der TTT-Eintrag gelöscht. Das TTT besteht aus zwei Teilen:
dem Q0-TTT und dem Q1-TTT, wobei Q0 und Q1 Pakete bezeichnen, die auf den Q0- und Q1-Kanälen wie
oben beschrieben unterwegs sind. Die Einzelheiten, wie dem TTT ein Eintrag zugeteilt wird und wann dieser
zurückgezogen wird, werden im Folgenden ausführlicher beschrieben.

[0131] Der globale Port 120 enthält ebenso den Victim-Cache 124. Der Victim-Cache 124 speichert aus je-
dem der Prozessoren des Mehrprozessorknotens empfangene und für den Speicher eines anderen Mehrpro-
zessorknotens bestimmte Victim-Daten. Victim-Daten sind Daten, die in einer Cache-Speicherstelle in dem
Prozessor gespeichert waren und durch diesen Prozessor modifiziert wurden. Wenn neue Daten in dem Pro-
zessor empfangen werden, die an der Speicherstelle, die die modifizierten Daten speichert, gespeichert wer-
den müssen, werden die modifizierten Daten als Victim-Daten bezeichnet.

[0132] Der Victim-Cache 124 stellt vorübergehendes Speichern von Victim-Daten, die von einem Prozessor
zu einem Speicher auf einem Remote-Prozessorknoten zielen, bereit. Wenn die Gelegenheit des Übertragens
der Victim-Daten über den globalen Port zu einem anderen Knoten zu übertragen, vorhanden ist, wird ein Mul-
tiplexer 167 geschaltet, um die Daten aus dem Victim-Cache 124 auf dem Ausgangsteil des Busses 170 be-
reitzustellen. Das Bereitstellen eines Victim-Caches an dem globalen Port ermöglicht den Prozessoren, ihren
jeweiligen Victim-Datenpuffer zu leeren, ohne die einzelnen Prozessoren die Speicherschreiblatenz des Ge-
samtsystems abwarten zu lassen. Stattdessen können Victim-Schreibvorgänge durch den globalen Port der-
artig gesteuert werden, dass das Schreiben immer dann durchgeführt wird, wenn ein verfügbarer Datenzyklus
vorhanden ist. Es verbleiben einige Steuerprobleme, die die Angemessenheit des Freigebens von Daten aus
dem Victim-Cache betreffen, diese Probleme werden jedoch unten beschrieben.

DTAG und IOP-Tag

[0133] Der DTAG und der IOP-Tag sind ebenso in dem kleinen SMP-System enthalten, werden jedoch weiter
unten ausführlicher beschrieben. Der DTAG 20 speichert Statusinformationen für jeden der Datenblöcke, die
in den Caches der Prozessoren des Mehrprozessorknotens gespeichert sind. Gleichermaßen speichert der
IOP-Tag 14 Statusinformationen für jeden Datenblock, der in dem IOP gespeichert ist. Während das Verzeich-
nis grobe Informationen bereitstellt, die identifizieren, welcher der Mehrprozessorknoten Kopien der Daten
speichert, können der DTAG und der IOP-Tag verwendet werden, um eine genauere Angabe dahingehend,
welcher der Prozessoren innerhalb eines Mehrprozessorknotens Kopien der Daten speichert, bereitstellen.
Deshalb werden, sobald eine Referenz den Mehrprozessorknoten erreicht hat, der DTAG und der IOP-Tag ver-
15/89

DE 698 32 943 T2 2006.06.29
wendet, um zu bestimmen, welche Prozessoren in dem Knoten adressiert werden sollten.

[0134] Wie in der Fig. 6 gezeigt, werden der DTAG 20 und der IOP-Tag 14b mit dem Verteilerbus 130 zum
Überwachen der Adressen, die auf den mit dem QSA-Chip 18 gekoppelten Speicherbereich verweisen, gekop-
pelt. Der DTAG ist in vier Segmente unterteilt, die den vier Prozessoren 12a–12d entsprechen. Jeder der Pro-
zessoren enthält einen Cache (nicht gezeigt) zum vorläufigen Speichern einer Datenteilmenge aus dem Spei-
cher 13. Jedem Cache ist ein Tag-Speicher zum Speichern der oberen Adressbits (Tags) eines in dem Cache
jedes Prozessors gespeicherten Speicherblocks zugehörig. Jedes Segment des DTAGs 20 enthält Daten, die
den Zustand der Cache-Tags des zugehörigen Prozessors anzeigen. Das Speichern einer Kopie der Tags in
dem DTAG 20 extern zu den Verarbeitungseinheiten ermöglicht dem System, auf dem Verteilerbus empfange-
ne Befehle zu filtern und nur diejenigen Lese- und Befehle Invalidate, die mit den Daten in dem Cache des
Prozessors verbunden sind, zu dem jeweiligen Prozessor weiterzuleiten. Der IOP-Tag 14a speichert die obe-
ren Adressbits jeder der in dem IOP-Cache 14c gespeicherten Datenblöcke. Die IOP-Tag-Speicherung ist den
Tag-Speicherungen, die in jedem der Prozessoren 12a–12d unterhalten werden gleichartig.

[0135] Jeder Eintrag in den DTAG 20 und in den IOP-Tag 14a enthält eine Anzahl von Statusbits, die einen
der vier folgenden Zustände anzeigen: Dirty, Clean, Dirty_Not_Probed, Dirty_Probed. Diese Statusbits eines
Eintrags in den IOP-Tag zeigen einen der folgenden Zustände an: Valid und Dirty. Ein Valid-Bit zeigt an, dass
die in dem entsprechenden Eintrag des zugehörigen Caches gespeicherten Daten mit den im Speicher gespei-
cherten Daten übereinstimmen. Ein Dirty-Bit zeigt an, dass die in dem entsprechenden Eintrag des zugehöri-
gen Caches gespeicherten Daten durch den zugehörigen Prozessor modifiziert wurden und nicht mit den im
Speicher gespeicherten Daten übereinstimmen.

[0136] Auf den DTAG 20 und auf den IOP-Tag 14b wird jedes Mal dann, wenn auf dem Verteilerbus eines
Mehrprozessorknotens 100 ein Befehl erscheint, zugegriffen. Wenn auf den DTAG-Zugriff für Prozessor eins
mit einem Ungültig-Status geantwortet wird, dann speichert der Prozessor eins aus dem Knoten keine gültige
Kopie der Daten, die der Speicheradresse zugehörig sind. Wenn mit einem Gültig-Status auf den Zugriff zu
dem IOP-Tag 14a geantwortet wird, dann speichert der IOP-Cache 14c eine gültige Kopie der Daten. Wenn in
Reaktion auf einen DTAG-Zugriff auf den Prozessor eins mit einem Clean-Status geantwortet wird, zeigt dies
an, dass der Prozessor eine nicht modifizierte Kopie der der Speicheradresse entsprechenden Daten hat, dass
jedoch keine Versuche von irgendeinem anderen Prozessor unternommen wurden, die Daten zu lesen. Wenn
in Reaktion auf den DTAG-Zugriff mit einem Status Dirty_Not_Probed geantwortet wird, zeigt dies an, dass der
Prozessor eine modifizierte Kopie der der Speicheradresse entsprechenden Daten hat und dass wenigstens
ein Prozessor versucht hat, die Daten zu lesen, seit der Prozessor die Daten zuletzt modifiziert hat.

Betrieb des Verzeichnisses

[0137] Im Allgemeinen wird das Verzeichnis verwendet, um Besitzerinformationen für jeden Speicherblock in
dem zugehörigen Mehrprozessorknoten (dem Home-Knoten) bereitzustellen, wobei ein Speicherblock gene-
rell die kleinste Datenmenge ist, die zwischen dem Speicher und einem Prozessor in dem SMP-System über-
tragen wird. In einem Ausführungsbeispiel ist ein Block bis zu der Größe eines Pakets, 512 Bits (64 Bytes) Da-
ten, entsprechend. Zusätzlich zeigt das Verzeichnis an, welcher Mehrprozessorknoten Kopien der Speicher-
blockdaten speichert. Infolgedessen identifiziert das Verzeichnis für die Lesebefehlstypen die aktuellste Versi-
on der Daten. Für die Victim-Befehlstypen, bei denen ein modifizierter Datenblock zurück in den Speicher ge-
schrieben wird, wird das Verzeichnis geprüft, um zu bestimmen, ob der modifizierte Datenblock aktuell ist und
in den Speicher geschrieben werden sollte. Deshalb ist das Verzeichnis der erste Zugriffspunkt für jede Refe-
renz auf einen Speicherblock an dem zugehörigen Mehrprozessorknoten, unabhängig davon, ob die Referenz
durch einen Prozessor in einem Remote-Mehrprozessorknoten oder in einem lokalen Mehrprozessorknoten
ausgegeben wurde.

[0138] Das Verzeichnis speichert einen 14-Bit-Eintrag für jeden 64-Byte-Datenblock (im Folgenden als eine
Cache-Zeile bezeichnet) des Speichers 13 in dem entsprechenden Knoten 100. Wie der Speicher 13 wird auch
das Verzeichnis physikalisch durch die Knoten in dem System verteilt, so dass sich, wenn sich eine Speicher-
adresse auf dem Knten N befindet, der entsprechende Verzeichniseintrag ebenso auf dem Knoten N befindet.

[0139] Im Folgenden Bezug nehmend auf die Fig. 9, wird ein Ausführungsbeispiel eines Verzeichniseintrags
140a gezeigt, der ein Besitzer-ID-Feld 142 und ein Knotenpräsenzfeld 144 enthält. Das Besitzer-ID-Feld 142
umfasst 6 Bits Besitzerinformation für jeden 64-Byte-Block. Die Besitzer-ID spezifiziert den aktuellen Besitzer
des Blocks, wobei der Besitzer entweder einer der 32 Prozessoren in dem System, einer der acht I/O-Prozes-
soren oder der Speicher ist. Die acht Bits der Knotenpräsenzinformation zeigen an, welcher der acht Knoten
16/89

DE 698 32 943 T2 2006.06.29
in dem System die aktuelle Version jeder Cache-Zeile erlangt hat. Die Knotenpräsenz ist ein Grobvektor, wobei
eines der Bits den kumulativen Status von vier Prozessoren an demselben Knoten darstellt. In dem Fall von
gemeinsam genutzten Daten kann mehr als das Knotenpräsenzbit eingerichtet werden, wenn mehr als ein
Knoten wenigstens einen Prozessor, der die Information speichert, hat.

[0140] Gelegentlich können bestimmte Teile der Zustandsinformation von entweder dem DTAG oder dem
Verzeichnis erhalten werden. In derartigen Fällen ist die Statusinformation aus dem DTAG zu bevorzugen, da
sie wesentlich schneller abgerufen wird. Wenn beispielsweise der Besitzerprozessor eine Speicheradresse in
dem Home-Knoten für die Adresse ist, muss der DTAG verwendet werden, um die Besitzer-ID bereitzustellen.

[0141] Für Informationen über Referenzen, die aus Leistungsgründen nicht durch den DTAG bedient werden,
ist das Verzeichnis 140 der zentrale Punkt für alle Kohärenzentscheidungen und führt als solcher eine Anzahl
von Funktionen aus. Das Verzeichnis identifiziert den Besitzer eines Datenspeicherblocks. Der Besitzer kann
entweder ein Prozessor oder der Speicher sein. Die Besitzerinformation aus dem Verzeichnis wird von Lese-
typbefehlen (beispielsweise lesen, lesen – modifizieren) verwendet, um die Quelle der aktuellsten Version des
Datenblocks zu bestimmen. Die Besitzerinformation wird außerdem verwendet, um zu bestimmen, ob die
Victim-Daten zurück in den Speicher geschrieben werden sollten, wie unten ausführlicher beschrieben werden
wird.

[0142] Zusätzlich zum Identifizieren der Besitzer aller Daten für alle Lesetypbefehle wird das Verzeichnis ver-
wendet, um Clean-to-Dirty- und Shared-to-Dirty-Befehle aus dem Prozessor zu klären. Ein Clean-to-Dirty-Be-
fehl wird durch einen Prozessor ausgegeben, wenn er eine aktuelle Cache-Zeile in ihren Clean-Status modifi-
zieren will. Ein Shared-to-Dirty-Befehl wird ausgegeben, wenn er eine Cache-Zeile in den Dirty-Shared-Zu-
stand modifizieren will. Die Befehle werden zu dem Home-Verteilerbus weitergeleitet, wobei das Verzeichnis
bestimmt, ob der Prozessor eine aktuelle Version der Cache-Zeile hat. Falls ja, ist der Befehl erfolgreich und
dem Prozessor wird ermöglicht, die Cache-Zeile zu modifizieren. Andernfalls versagt der Befehl und der Pro-
zessor muss zuerst die aktuelle Version der Cache-Zeile erlangen. Diese Speichertyparbeitsschritte verwen-
den die Knotenpräsenzinformation in dem Verzeichnis, um Erfolg oder Versagen festzustellen.

[0143] Wie oben erwähnt, identifizieren die Präsenzbits des Verzeichnisses den Mehrprozessorknoten mit
Kopien jedes Datenblocks, wenn die Speichertypbefehle ausgegeben werden. Speicherbefehle zeigen an,
dass die Inhalte der Cache-Zeile aktualisiert werden. Durch das Prüfen des Präsenzbits 114 des zugehörigen
Verzeichniseintrags, wenn ein Speicherbefehl in dem Verzeichnis 140 empfangen wird, werden die Knoten mit
ihren Präsenzbits verwendet, um die Mehrprozessorknoten mit Kopien der Cache-Zeile in dem Knoten zu iden-
tifizieren, so dass die Cache-Zeilen in jedem dieser Knoten ungültig gemacht werden können.

[0144] Dementspechend arbeiten das Verzeichnis und der DTAG in Verbindung, um für jeden der Datenblö-
cke in dem Speicher des lokalen Multiprozessors und für jeden der in den Caches des lokalen Prozessors ge-
speicherten Datenblöcke Statusinformationen bereitzustellen. Das Verzeichnis in dem Home-Knoten stellt
Grobinformation über den Status der Kopie eines Cache-Blocks bereit. Anschließend gehen die Befehle Inva-
lidate zu denjenigen durch das Verzeichnis identifizierten Knoten, in denen auf den DTAG zugegriffen wird, um
die Kopieinformationen weiter zu verfeinern. Infolgedessen zeigt der DTAG in diesen Knoten an, welcher Pro-
zessor in den jeweiligen Knoten Kopien der Zeile in dem Cache speichert.

Das TTT

[0145] Das TTT wird verwendet, um die von einem Mehrprozessorknoten ausstehenden Transaktionen zu
verfolgen, d. h. Referenzen, die auf Reaktionen von anderen Mehrprozessorknoten oder dem hierarchischen
Switch warten. Informationen über ausstehende Transaktionen werden durch das Cache-Kohärenz-Protokoll
bei der Weiterverarbeitung von anschließenden Befehlen zu in Beziehung stehenden Speicheradressen ver-
wendet.

[0146] Im Folgenden Bezug nehmend auf die Fig. 10, wird ein Ausführungsbeispiel des TTTs 122 gezeigt,
das ein Adressfeld 152, ein Befehlsfeld 154, ein Befehlsgeber-ID-Feld 156 und eine Anzahl von Statusbits 158,
einschließlich der Bits 158a–158c umfasst. Das Adressfeld 152 speichert die Adresse der Cache-Zeile für eine
Transaktion, die aktuell in Gang ist, während das Befehlsfeld den Befehl speichert, der der Cache-Zeile für die
Transaktion, die aktuell in Gang ist, zugehörig ist. Das Befehlsgeber-ID-Feld 156 speichert die Prozessornum-
mer des Prozessors, der den in dem Befehlsfeld gespeicherten Befehl initiiert hat. Die Statusbits 158 reflektie-
ren den Status des Befehls, der abgewickelt wird. Alternativ können die Statusbits verwendet werden, um ver-
schiedene Eigenschaften des Befehls, der aktuell abgewickelt wird, zu reflektieren.
17/89

DE 698 32 943 T2 2006.06.29
[0147] Beispielsweise wird ein Füllstatus-Bit 158a aktualisiert, wenn in Beantwortung eines Lesetypbefehls
Fülldaten empfangen werden. Ein Schattenstatus-Bit 158b wird eingerichtet, wenn der Befehl, der über den
globalen Port ausgegeben wird, ein Schattentypbefehl (der unten ausführlicher beschrieben wird) ist. Das
ACK-Statusbit 158c wird eingerichtet, wenn als Reaktion eine Nachricht, die eine Beantwortung des Bestäti-
gungstyps erwartet, empfangen wurde. Wenn die Antwort eintrifft, wird das Bit gelöscht. Es ist zu beachten,
dass nicht alle der Statusbits, die in dem TTT enthalten sein können, gezeigt wurden. Stattdessen können die-
jenigen Statusbits enthalten sein, die eine Relevanz für spätere Beschreibungen haben. Zusätzlich ist vorge-
sehen, dass andere Statusbits alternativ bereitgestellt werden, wie zum Aufrechterhalten der Speicherkohä-
renz erforderlich, und die vorliegende Erfindung sollte nicht auf eine bestimmte Zuweisung von Bits in dem TTT
beschränkt sein.

[0148] Folglich werden das Verzeichnis, der DTAG, der IOP-Tag und das TTT jeweils verwendet, um die Ko-
härenz der Cache-Zeilen in dem SMP-System zu erhalten (im Folgenden als Cache-Kohärenz bezeichnet).
Jede dieser Komponenten ist über Schnittstellen mit dem globalen Port verbunden, um kohärente Kommuni-
kation zwischen den Mehrprozessorknoten, die mit dem hierarchischen Switch 155 gekoppelt sind, bereitzu-
stellen.

Serialisierungspunkte

[0149] Zusätzlich zu den obigen Elementen wird die Kohärenz der gemeinsamen Datennutzung durch das
Bereitstellen eines Serialisierungspunktes in jedem Mehrprozessorknoten aufrechterhalten. In einem Ausfüh-
rungsbeispiel der Erfindung ist der Serialisierungspunkt in jedem Mehrprozessorknoten der Verteilerbus 130.
Alle Q0-Referenzen, ob von einem lokalen Prozessor oder von einem Remote-Prozessor ausgegeben, werden
durch den QSA zu dem Verzeichnis 140 und dem DTAG 20 auf dem Verteilerbus 130 weitergeleitet. Sobald
die Referenzen auf das Verzeichnis und/oder den DTAG zugegriffen haben, werden die sich ergebenden
Q1-Kanalbefehle in strikter Reihenfolge auf dem Verteilerbus ausgegeben, wobei die Reihenfolge die Seriali-
sierungsordnung der Referenzen ist. Durch das Bereitstellen eines Serialisierungspunktes in jedem der Mehr-
prozessorknoten wird das Kohärenzprotokoll zur gemeinsamen Datennutzung, das in dem SMP implementiert
ist, wesentlich vereinfacht.

[0150] Zusätzlich zu der Bereitstellung eines Serialisierungspunktes in jedem der Mehrprozessorknoten stellt
der hierarchische Switch 155 einen zweiten Serialisierungspunkt in dem SMP-System bereit. Wie unten noch
ausführlicher beschrieben wird, stimmt der hierarchische Switch mit bestimmten Ordnungsregeln überein, die
sicherstellen, dass die in dem ersten Serialisierungspunkt eingeführte Kohärenz in dem großen SMP-System
aufrechterhalten bleibt.

Globaler Port/Schnittstelle des hierarchischen Switchs

[0151] Im Folgenden Bezug nehmend auf die Fig. 11, ist ein Blockdiagramm des hierarchischen Switchs 155
gezeigt, der acht Eingangsports 155i0–155i7 und acht Ausgangsport 155o0–155o7 enthält. Die Eingangsports
155i0–155i7 empfangen Pakete von den globalen Ports jeder der gekoppelten Mehrprozessorknoten. Die Aus-
gangsports 155o0–155o7 des hierarchischen Switchs leiten Pakete zu den globalen Ports jedes der gekoppel-
ten Mehrprozessorknoten weiter.

[0152] In einem Ausführungsbeispiel der Erfindung ist jedem Eingangsport ein Puffer 160a–160h zur Puffe-
rung der empfangenen Pakete zugehörig. Obwohl das Ausführungsbeispiel in der Fig. 11 einen Puffer für je-
den Eingang darstellt, können die Puffer alternativ von jeder Anzahl von Eingangsports gemeinsam genutzt
werden. Wie oben erwähnt, kann jedes der Pakete jedem von fünf Kanälen zugehörig sein. In einem Ausfüh-
rungsbeispiel der Erfindung, das unten beschrieben wird, sind Teile jedes Eingangspuffers 160a–160h für das
Speichern von Paketen von bestimmten Kanälen zugeordnet. Dementsprechend wird die Flusssteuerung von
den globalen Ports zu dem hierarchischen Switch 155 auf einer Kanalbasis durchgeführt. Durch Steuerung des
Datenflusses in den Schalter auf Kanalbasis und durch das Zuordnen von Teilen der Eingangspuffer zum Aus-
wählen einer der Kanäle, stellt der Switch die Kommunikation zwischen Mehrprozessorknoten in dem
SMP-System frei von Verklemmung bereit.

[0153] Zusätzlich zu dem Bereitstellen einer von Verklemmung freien Kommunikation ist der hierarchische
Switch 155 außerdem ausgelegt, um die Ordnungszwänge des SMP-Systems zu unterstützen, um die Spei-
cherkohärenz sicherzustellen. Die Ordnungszwänge werden durch das Steuern der Reihenfolge von Paketen,
die aus dem hierarchischen Switch 155 heraus zu den globalen Ports der zugehörigen Mehrprozessorknoten
weitergeleitet weiden, auferlegt. Pakete von jedem der Eingangspuffer 160a–160h können über die Multiplexer
18/89

DE 698 32 943 T2 2006.06.29
182a–182h zu jedem der Ausgangsports weitergeleitet werden. Wie unten ausführlicher beschrieben wird, ist
der Switch 155 außerdem zum Massenversenden der Pakete in der Lage. Dementsprechend können Pakete
aus einem Eingangspuffer in jeder Anzahl von Ausgangsports weitergeleitet werden. Durch das Durchsetzen
der Reihenfolge an den globalen Ausgangsports kann die in jedem Mehrprozessorknoten erhaltene Serialisie-
rungsordnung aufrechterhalten werden, um in dem SMP-System eine gesamtkohärente gemeinsame Daten-
nutzung bereitzustellen.

Vermeidung von Blockierungen in dem hierarchischen Switch

[0154] Wie oben erwähnt, leitet jeder der acht Knoten der Fig. 7A Daten zu dem hierarchischen Switch weiter
und es kann der Fall eintreten, dass alle Knoten gleichzeitig Daten weiterleiten. Die Pakete werden in einer
Anzahl von verschiedene Kanaltypen (Q0, Q0Vic, Q1, Q2 und QIO) aufgeteilt, die auf virtuellen Kanälen wei-
tergeleitet wird, wobei ein virtueller Kanal im Wesentlichen ein Datenpfad ist, dem Pakete eines bestimmten
Typs zugeordnet sind, der eine gemeinsame Verbindung mit anderen Kanälen zusammen nutzen kann, jedoch
an beiden Enden der Verbindung unabhängig gepuffert ist. Weil zwischen dem globalen Port jeder der Knoten
und dem hierarchischen Switch nur ein Datenpfad vorhanden ist, werden alle Pakete von verschiedenen vir-
tuellen Kanälen unter Verwendung des einen Datenpfades in den hierarchischen Switch geschrieben.

[0155] Da jeder der acht Knoten 100a–100h in der Lage ist, Daten zu dem hierarchischen Switch zu senden,
ist eine Form der Steuerung erforderlich, um angemessen sicherzustellen, dass alle Nachrichten in dem Switch
empfangen werden und in einer adäquaten Reihenfolge aus dem Switch heraus weitergeleitet werden. Zusätz-
lich ist eine Aufgabe der vorliegenden Erfindung, sicherzustellen, dass Pakettypen höherer Ordnung nicht
durch Pakettypen niedriger Ordnung blockiert werden, um zu garantieren, dass in dem symmetrischen Mehr-
prozesssystem keine Verklemmung eintritt. In einem Ausführungsbeispiel der Erfindung ist die Reihenfolge der
Pakete von der höchsten Ordnung zu der niedrigsten Ordnung Q2, Q1, Q0, Q0Vic und QIO.

[0156] Gemäß diesem Aspekt der Erfindung wird eine Flusssteuerung der Pakete, die an den Eingangsports
des Switchs ankommen, bereitgestellt, die sicherstellt, dass die oben aufgestellte Regel zum Verhindern der
Verklemmung immer erfüllt wird. Des Weiteren müssen die in dem Switch verfügbaren Puffer immer optimal
ausgenutzt werden und eine maximale Bandbreite muss aufrechterhalten werden.

[0157] Gemäß einem Ausführungsbeispiel der Erfindung wird eine Steuervorrichtung zum Steuern des
Schreibens von Daten in den hierarchischen Switch bereitgestellt, die durch das Bereitstellen von jedem Pa-
kettyp zugewiesenen Schlitzen in einem Puffer des hierarchischen Switchs implementiert wird. Der Puffer ent-
hält außerdem eine Anzahl von generischen Schlitzen, die zum Speichern von Paketen jedes Typs verwendet
werden können. Durch das Bereitstellen von zugewiesenen Pufferschlitzen in dem hierarchischen Switch kann
Systemblockade durch das Garantieren, dass Pakete höherer Ordnung immer einen verfügbaren Pfad durch
den Switch haben, vermieden werden. Zusätzlich kann durch das Überwachen der Anzahl von generischen
Schlitzen und von zugewiesenen Schlitzen, die verfügbar ist, und durch Überwachen der Anzahl von verschie-
denen Pakettypen, die in dem Puffer gespeichert ist, ein einfaches Flusssteuerschema implementiert werden,
um Knoten vom Schreiben in den Puffer des hierarchischen Switchs abzuhalten, wenn der Puffer seine Kapa-
zität erreicht.

[0158] Im Folgenden Bezug nehmend auf die Fig. 12A, wird als ein Beispiel der Steuerlogik zur Verwendung
beim Steuern des Schreibens durch mehrere Knotenquellen ein gemeinsamer Zieladressenpuffer bereitge-
stellt. In dem Blockdiagramm der Fig. 12A werden durch ein Beispiel die globalen Ports 120a und 120b von
zwei verschiedenen Knoten gezeigt.

[0159] In der Fig. 12A werden die Teile der globalen Ports 120a und 120b der Knoten 100a und 100b jeweils
detaillierter gezeigt und enthalten einen Puffer 135, der die Einträge 135a und 135b zum jeweiligen Speichern
von Q0/Q0Vic, Q1, Q2 und der Pakete des generischen Typs (entweder Q0-, Q0Vic-, Q1-, Q2-Pakete oder
QIO-Pakete) zum Übertragen zu dem hierarchischen Switch 155 enthält. Ein Multiplexer 167a ist mit dem Puf-
fer 135 gekoppelt, um einen der Pakettypen zum Weiterleiten unter Verwendung eines Auswahlsignals von
dem GP-Verteiler 134 über den Link zu dem hierarchischen Switch auszuwählen.

[0160] Zusätzlich enthält jeder globale Port ein zugeordnetes Zählregister 136. Das zugeordneten Zählregis-
ter speichert eine Zählung für jeden Q0-/Q0Vic-, Q1- und Q2-Kanaltyp des Pakets der Anzahl der Pakete die-
ses Kanaltyps, die aktuell in dem hierarchischen Switch 155 anhängig ist. Die Zählung wird inkrementiert, wenn
das Paket des jeweiligen Kanaltyps zu dem hierarchischen Switch übertragen ist, und dekrementiert, wenn das
Paket aus dem hierarchischen Switch übertragen wird.
19/89

DE 698 32 943 T2 2006.06.29
[0161] In einem Ausführungsbeispiel der Erfindung enthält der hierarchische Switch 155 einen Puffer für jede
der acht Eingangsquellen. In der Fig. 12A wurden nur zwei Puffer 160a und 160b, die jeweils den zwei globa-
len Ports 120a und 120b entsprechen, gezeigt. In einem Ausführungsbeispiel der Erfindung sind wenigstens
(m – 1) × n zugewiesene Schlitze in jedem der Puffer 160a und 160b, wobei m der Anzahl von virtuellen Ka-
naltypen entspricht, die zugeordnete Einträge in dem Puffer haben, und n der Anzahl von Knoten entspricht,
die den Puffer gemeinsam nutzen. In dem Ausführungsbeispiel der Fig. 12A enthält jeder der Puffer acht Ein-
träge. Fünf der Einträge sind generische Einträge und können jeden Pakettyp speichern, der von dem globalen
Port 135 weitergeleitet wird. Jeder der restlichen drei Einträge wird dem Speichern eines bestimmten Paket-
typs zugeordnet, wobei ein Eintrag zum Speichern der Q0-/Q0Vic-Pakete zugeordnet ist, ein Eintrag zum Spei-
chern der Q1-Pakete zugeordnet ist und ein Eintrag dem Speichern von Q2-Pakettypen zugeordnet ist.

[0162] Obwohl diese zugeordneten Einträge als sich an einem feststehenden Ort in den Puffern 160a und
160b befindend gezeigt wurden, kann in der Realität jede Pufferstelle die zugewiesene Pufferstelle sein, d. h.,
dass unabhängig von der Stelle des Eintrags für jeden bestimmten Pakettyp immer ein zugeordneter Eintrag
in dem Puffer vorhanden ist.

[0163] Der hierarchische Switch enthält zusätzlich für jeden Puffer 160a und 160b jeweils einen zugeordneten
Zähler 162a und 162b und ein Flag-Register 163a und 163b. In dem Ausführungsbeispiel in der Fig. 12A ent-
hält der zugeordnete Zähler vier Einträge, drei Einträge zum Speichern der Anzahl von Q0-/Q0Vic-, Q1- und
Q2-Paketen, die aktuell in dem Puffer 160a gespeichert sind, und einen Eintrag zum Speichern einer Zählung
der Anzahl von verwendeten generischen Einträgen in dem Puffer. Das Flag-Register umfasst drei Bits, wobei
jedes Bit einem der Q0-/Q0Vic-, Q1- oder Q2-Pakettypen entspricht, und zeigt an, ob der zugehörige zugeord-
nete Zähler null ist (d. h., ob der zugeordnete Eintrag für diesen Pakettyp verwendet wurde). Folglich sind die
Werte des Flag-Registers entweder eins, anzeigend, dass wenigstens ein Paket dieses Typs in dem Puffer ge-
speichert ist, oder null, anzeigend, dass keine Pakete dieses Typs in dem Puffer gespeichert sind.

[0164] Zusätzlich enthält der hierarchische Switch 155 für jeden Puffer 160a und 160b jeweils eine Transit-
zählung 164a und 164b. Die Transitzählung führt für jede Quelle die Anzahl von ausstehenden Paketen jedes
Typs, die sich während eines gegebenen Datenzyklus im Transit befinden kann.

[0165] Die Anzahl von Paketen, die sich in einem gegebenen Datenzyklus im Transit befinden kann, steht in
direkter Beziehung mit der Flusssteuerungslatenz des hierarchischen Switchs und des globalen Ports. Von
dem hierarchischen Switch wird ein Flusssteuersignal zu dem globalen Port weitergeleitet, um dem globalen
Port zu signalisieren, das Senden von Daten zu dem hierarchischen Switch einzustellen. Die Flusssteuerungs-
latenz (L) wird als die Anzahl der Datenübertragungszyklen gemessen, die zwischen der Aktivierung eines
Flusssteuersignals durch den hierarchischen Switch und dem Anhalten der Datensendungen durch den glo-
balen Port anwächst.

[0166] Der hierarchische Switch enthält außerdem eine Schreibsteuerlogik 166a und 166b zum Steuern des
Schreibens der jeweiligen Puffer 168a und 168b. Die Schreibsteuerlogik steuert den Datenfluss in den zuge-
hörigen Puffern durch das Aktivieren des Flusssteuersignals auf der Leitung 168a und der Bestätigungssignale
(ACK-Signale)<3:0> auf den Leitungen 168b. Das Flusssteuersignal und die ACK-Signale werden jeden Da-
tenzyklus gesendet. Wie oben erwähnt, wird das Flusssteuersignal verwendet, um das Übertragen von Paket-
daten durch den gekoppelten globalen Port anzuhalten. Die ACK-Signale<3:0> auf den Leitungen 168b ent-
halten ein Bit für jeden der zugewiesenen Pakettypen und werden verwendet, um dem gekoppelten globalen
Port zu signalisieren, dass ein Paket dieses Typs von dem zugehörigen Puffer freigegeben wurde. Die ACK-Si-
gnale werden infolgedessen von der Zählung des globalen Ports verwendet, um die Werte in dem zugeordne-
ten Zähler 136 zu inkrementieren.

[0167] Die Schreibsteuerlogik aktiviert die Flusssteuerung, wenn festgestellt ist, dass die Gesamtmenge der
verfügbaren generischen Einträge in dem Puffer nicht ausreichend groß ist, um alle der möglichen Pakete, die
im Transit zu dem hierarchischen Switch sind, unterzubringen. Die Anzahl der verfügbaren generischen Schlit-
ze kann durch die Gleichung 1 unten bestimmt werden.

Gleichung 1:

Generische Zählung = Puffergröße – # der in dem Puffer verwendeten generischen Einträge – # nicht aktivierter
Flags

[0168] Sobald die Anzahl der verfügbaren generischen Einträge bestimmt wurde, wird das Flusssteuersignal
20/89

DE 698 32 943 T2 2006.06.29
aktiviert, wenn die Gleichung 2 gilt.

Gleichung 2:

Generische Zählung >= Transitzählung · Anzahl der den Knoten verwendenden Puffer

[0169] Dementsprechend überwacht die Schreibsteuerlogik 166 die Anzahl von generischen und zugewiese-
nen Schlitzen, die in Verwendung sind, die Transitzählung und die Puffergesamtgröße, um festzustellen, wann
ein Flusssteuersignal zu aktivieren ist.

[0170] Die Aktivierung des Flusssteuersignals stoppt nicht alle Sendungen durch einen globalen Port eines
Quellenknotens. Der globale Port kann immer zugeordnete Paketdaten zu dem hierarchischen Switch übertra-
gen, wenn der zugewiesene Schlitz, der dem zugeordneten Pakettyp entspricht, in dem Puffer des hierarchi-
schen Switchs vertügbar ist. Infolgedessen kann der globale Port, wenn die Werte einer der zugeordneten Zäh-
lungen in dem zugeordneten Zähler gleich null sind, immer Paketdaten des entsprechenden zugeordneten Pa-
kettyps senden.

[0171] Dementsprechend garantiert das Bereitstellen von zugewiesenen Einträgen in dem Puffer effektiv,
dass der Forschritt der Pakete eines Typs durch den hierarchischen Switch nicht von dem Fortschritt eines an-
deren Pakets durch den hierarchischen Switch abhängig ist.

[0172] Die Verwendung von zugewiesenen und generischen Schlitzen in den Puffern 160a und 160b ermög-
licht, dass eine Mindestanzahl von Schlitzen für jeden Pakettyp reserviert ist. Durch das Verfolgen der Anzahl
von Paketen, die im Transit sind, kann die Flusssteuerung in einer präzisen Art und Weise erfolgen. Sowohl
die Pufferausnutzung als auch die Bandbreite werden maximiert. Wenn beispielsweise nur generische Schlitze
vertügbar sind, kann die Flusssteuerung für einen Zyklus verlassen werden und dann in dem nächsten Zyklus
wieder durchgesetzt werden. Im Ergebnis können innerhalb des Zeitraums bis zu x mehr Nachrichten empfan-
gen werden.

[0173] Im Folgenden Bezug nehmend auf die Fig. 12B, wird ein Flussdiagramm gezeigt, das das durch den
globalen Port verwendete Verfahren zu Weiterleiten von Daten zu dem hierarchischen Switch darlegt. Der Pro-
zess wird unter Bezugnahme auf einen Pakettyp beschrieben, obwohl er gleichermaßen auf andere Paketty-
pen anwendbar ist. In dem Schritt 169 wird in dem GS-Verteiler 134 festgestellt, ob in einem der Puffer
135a–135d ein Paket vorhanden ist oder nicht, das zu dem hierarchischen Switch weiterzuleiten ist. Wenn ein
Paket vorhanden ist, wird in dem Schritt 171 der Status des Flusssteuersignals durch den Verteiler 134 bewer-
tet. Wenn das Flusssteuersignal aktiviert ist, wird in dem Schritt 172 die zugeordnete Zählung für den bestimm-
ten Pakettyp, der zu dem hierarchischen Switch zu senden ist, geprüft, um festzustellen, ob sie gleich null ist
oder nicht. Wenn die zugeordnete Zählung nicht gleich null ist, dann ist der zugeordnete Eintrag in dem Puffer
für diesen Pakettyp bereits in Verwendung und der Prozess geht zu dem Schritt 170 zurück, in dem er zwi-
schen den Schritten 169, 171 und 172 in einer Schleife bleibt, bis die zugeordnete Zählung für diesen Pakettyp
gleich null ist oder bis das Flusssteuersignal deaktiviert ist. Wenn in dem Schritt 172 festgestellt wird, dass die
zugeordnete Zählung gleich null ist, dann aktiviert der GP-Verteiler 134 in dem Schritt 173 das adäquate Aus-
wahlsignal zu dem Multiplexer 167, um das erwünschte Paket zu dem hierarchischen Switch 155 weiterzulei-
ten. In dem Schritt 174 wird die zugeordnete Zählung, die dem ausgewählten Pakettyp entspricht, in dem zu-
geordneten Zählregister 136 in dem globalen Port und in dem zugeordneten Zählregister 162a in dem hierar-
chischen Switch 155 inkrementiert und das zugehörige Flag in dem Flag-Register 163a wird aktiviert.

[0174] Wie oben beschrieben, wird das Flag-Register 163a zusammen mit der generischen Zählung und der
Transitzählung verwendet, um den Status des Flusssteuersignals für den nächsten Datenzyklus zu bestim-
men. Im Folgenden Bezug nehmend auf die Fig. 13, ist ein Ausführungsbeispiel zum Steuern der Aktivierung
des Flusssteuersignals durch den hierarchischen Switch gezeigt. In dem Schritt 175 wird das Flag-Register
163a geprüft, um die Anzahl der zugeordneten Zähleinträge, die gleich null sind, zu zählen. Wie oben erwähnt,
zeigt die Anzahl von Nullen die Anzahl der potenziell zugeordneten Pakete an, die durch jeden der Knoten, die
mit dem Puffer gekoppelt sind, selbst dann weitergeleitet werden könnten, wenn das Flusssteuersignal aktiviert
ist.

[0175] Dementsprechend würden, wenn einer der zugewiesenen Schlitze für einen der Knoten in dem Bei-
spiel der Fig. 11 verwendet werden würde, alle Einträge des Flag-Registers gleich null sein und infolgedessen
anzeigen, dass drei Pufferstellen vorhanden sind, die für die zugewiesenen Pakete reserviert werden sollten.
21/89

DE 698 32 943 T2 2006.06.29
[0176] Nachdem die Werte in dem Flag-Register 163a geprüft wurden, wird in dem Schritt 176 unter Verwen-
dung der oben dargestellten Gleichung 1 die Gesamtanzahl der verfügbaren generischen Schlitze festgestellt.
Als Nächstes wird in dem Schritt 177 die Transitzählung für jeden Knoten festgestellt. Wie oben erwähnt, zeigt
die Transitzählung die Anzahl von Nachrichten an, die für jeden gegebenen Datenzyklus im Transit zwischen
dem globalen Port und dem hierarchischen Switch sein kann. Die Worst-case-Transitzählung ist gleich der
Flusssteuerungslatenz L mal der Anzahl von Knoten, die Puffer N nutzen. Jedoch berücksichtigt die Feststel-
lung der Transitzählung gemäß einem Ausführungsbeispiel der Erfindung, ob das Flusssteuersignal für vorher-
gehende Zyklen aktiviert war oder nicht. Wenn das Flusssteuersignal in einem vorhergehenden Zyklus aktiviert
war, sind keine Pakete im Transit zwischen dem globalen Port und dem hierarchischen Switch. Wenn die
Flusssteuerung beispielsweise für die vorhergehenden J Perioden null war, können bis zu J × n Nachrichten
im Transit sein. Wenn jedoch das Flusssteuersignal für einen Zeitraum von J – 1 des vorhergehenden Daten-
zyklus null war, sind nur (J – 1) × n Nachrichten im Transit.

[0177] Infolgedessen bestimmt das Ausführungsbeispiel der Erfindung durch das Prüfen der Gesamtlatenz
zwischen der Quelle (globaler Port) und der Zieladresse (hierarchischer Switch) und durch das Prüfen der
Wechselbeziehung zwischen der Quelle und der Zieladresse in den vorhergehenden Datenzyklen intelligent
die Anzahl von Paketen im Transit. Nachdem die Transitzählung für jeden Knoten ausgeführt ist, wird in dem
Schritt 178a unter Verwendung der oben dargestellten Gleichung 2 festgestellt, ob ausreichend verfügbare ge-
nerische Einträge in dem Puffer vorhanden sind, um die ausstehenden zugeordneten Pakete und die Pakete,
die im Transit sind, unterzubringen. Wenn die Gesamtanzahl der verfügbaren generischen Pakete kleiner als
die Anzahl von Paketen im Transit mal der Anzahl von Knoten, die den Puffer gemeinsam nutzen, ist, dann
wird in dem Schritt 178 das Flusssteuersignal zu dem globalen Port 120a aktiviert, um das Weiterleiten von
Daten zu dem hierarchischen Switch 155 auszuschließen. Wenn jedoch die Gesamtzählung anzeigt, dass die
Anzahl der potenziell empfangenen Pakete durch den Puffer 160a untergebracht werden kann, dann wird das
Flusssteuersignal nicht aktiviert und der Prozess kehrt für den nächsten Datenzyklus zu dem Schritt 175 zu-
rück.

[0178] Dementsprechend wird durch das Verfolgen der Anzahl von Nachrichten, die im Transit sind, und der
Anzahl von vorhergehenden Zyklen, in denen das Flusssteuersignal aktiviert war, die Flusssteuerung fein ge-
regelt, um sicherzustellen, dass die Verwendung des Daten-Links, der den globalen Port mit dem hierarchi-
schen Switch koppelt, maximiert wird.

[0179] Obwohl die Pufferschreibsteuerlogik und das Verfahren, die in den Fig. 11–Fig. 13 in Bezug auf das
Übertragen von Daten von den Knoten zu dem hierarchischen Switch beschrieben wurden, sollte beachtet
werden, dass die vorliegende Erfindung nicht auf ein derartiges Konstrukt beschränkt ist. Stattdessen kann ein
Ausführungsbeispiel der Erfindung in jeder Umgebung verwendet weiden, in der mehrere Quellen zum Spei-
sen eines gemeinsamen Empfängers vorhanden sind und in der Verklemmung verhindert werden muss.

Mechanismen in dem hierarchischen Switch zum Unterstützen von Kanalordnungszwängen

[0180] Das Auslesen von Daten aus dem hierarchischen Switch involviert im Wesentlichen das Weiterleiten
von Daten aus einem Eingangspuffer in eine Anzahl von Ausgangsquellen, so dass sowohl die Ordnung der
Pakete als auch die Datenabhängigkeiten zwischen den Paketen erhalten bleiben. Wie oben erwähnt, werden
die Pakete auf einer Vielzahl von Kanälen geliefert. Den Paketen auf den verschiedenen Kanälen sind be-
stimmte Ordnungszwänge oder Abhängigkeiten zugehörig. In einem Ausführungsbeispiel der Erfindung ist ein
Ordnungszwang, dass alle Pakete auf dem Kanal in einer Reihenfolge gehalten werden. Eine weitere Paket-
ordnungszwangsabhängigkeit ist, dass Pakete, die auf Kanälen höherer Priorität unterwegs sind, nicht von Pa-
keten, die auf Kanälen niedrigerer Priorität unterwegs sind, blockiert werden sollten, wobei die Priorität der Ka-
näle von höchster zu niedrigster Q2, Q1, Q0, Q0Vic und QIO ist. Das Aufrechterhalten der Ordnung wird unter
Verwendung verschiedener Techniken, die unten beschrieben werden, durchgängig durch das SMP-System
erreicht. In dem hierarchischen Switch werden drei Grundrichtlinien befolgt, um sicherzustellen, dass die Da-
tenabhängigkeiten und die Q1-Kanalordnung eingehalten werden. Diese Grundrichtlinien sind folgende:

[0181] Richtlinie 1: Wenn mehrere Q1-Pakete an einem gegebenen Eingangsport eines hierarchischen
Switchs empfangen werden, die auf einen gemeinsamen Ausgangsport zielen, erscheinen die Q1-Pakete in
derselben Reihenfolge an dem Ausgangsport, in der sie an dem Eingangsport erschienen sind.

[0182] Richtlinie 2: Wenn Q1-Pakete von mehreren Eingangsports an dem hierarchischen Switch durch zu
gemeinsamen Ausgangsports massenversendet werden, erscheinen die Q1-Pakete in derselben Ordnung an
allen Ausgangsports, auf die sie zielen.
22/89

DE 698 32 943 T2 2006.06.29
[0183] Richtlinie 3: Wenn geordnete Verzeichnisse von Q1-Paketen von mehreren Eingangsports des hierar-
chischen Switchs auf mehrere Ausgangsports zielen, erscheinen die Q1-Pakete an den Ausgangsports in ei-
ner Art und Weise, die mit einer einzelnen gemeinsamen Ordnung aller eingehenden Q1-Pakete konsistent ist.
Jeder Ausgangsport kann einige oder alle der Pakete in der gemeinsamen geordneten Liste übertragen.

[0184] Zusätzlich zu dem Aufrechterhalten der Gesamtsystemordnung für den Zweck der Kohärenz ist außer-
dem erwünscht, die Pakete, die von dem Switch ausgegeben werden, so zu ordnen, dass die Leistung des
Adress- und des Datenbusses vollständig umgesetzt wird. Im Folgenden Bezug nehmend auf die Fig. 14, wird
ein exemplarisches Zeitablaufdiagramm gezeigt, das die Verwendung der Adress- und Datenbusstruktur des
HS-Links 170 zeigt.

[0185] Der HS-Link 170 ist durch zwei Paare von unidirektionalen Adress- und Datenbussen mit jedem der
Mehrprozessorknoten 100 gekoppelt. Der Datenbus befördert 512 Bit Datenpakete und der Adressbus beför-
dert 80 Bit Adresspakete. Das Übertragen von Datenpaketen erfordert das Zweifache der Anzahl von Zyklen
wie das Übertragen der Adresspakete. Einige Befehle, wie zum Beispiel ein Schreibbefehl, enthalten sowohl
ein Adress- als auch ein Datenpaket. Beispielsweise entspricht in der Fig. 14 das Adresspaket 179a dem Da-
tenpaket 179d. Wenn jeder Befehl sowohl ein Adress- als auch ein Datenpaket enthalten würde, wäre jeder
zweite Adressschlitz auf dem Adressbus im Leerlauf. Jedoch enthalten viele Befehle, wie zum Beispiel ein Le-
sebefehl, nur Adresspakete und erfordern keinen Schlitz auf dem Datenbus zum Übertragen von Datenpake-
ten. Dementsprechend ist erwünscht, um die Gesamtsystemleistung zu verbessern, einen Switch zu haben,
der Pakete zum Weiterleiten aus dem Bus in einer solchen Reihenfolge aussucht, dass sowohl der Datenteil
als auch der Adressteil „gepackt" werden, d. h., dass eine Adresse und Daten in jedem möglichen Zeitschlitz
der Adress- und Datenteile des HS-Links vorhanden sind. Wenn die Adressen und Daten auf dem HS-Link „ge-
packt" werden, wird der HS-Link optimal ausgenutzt.

[0186] Zum Implementieren eines hierarchischen Switchs, der in der Lage ist, Daten aus mehreren Quellen
über mehrere Eingangsports simultan zu empfangen und die Daten über mehrere Ausgangsports zu mehreren
Zieladressen weiterzuleiten, gleichzeitig die Datenabhängigkeiten einzuhalten, die Systemordnung aufrecht-
zuerhalten und die Datenübertragungsrate zu maximieren, wird eine Vielzahl von Ausführungsbeispielen be-
reitgestellt. Die verschiedenen Ausführungsbeispiele werden unter Bezugnahme auf die Fig. 15–Fig. 18 be-
schrieben.

[0187] Im Folgenden Bezug nehmend auf die Fig. 15, wird ein Ausführungsbeispiel eines Switchs, der die
oben beschriebenen Ordnungszwänge implementieren kann, gezeigt. Wie in der Fig. 11 dargestellt, enthält
der Switch 155 eine Vielzahl von Puffern 160a–160h. Jeder der Eingangspuffer ist ein Puffer mit einem
Schreibport und acht Leseports und gekoppelt, um Pakete von acht jeweiligen Eingängen zu empfangen. Der
Switch enthält ebenso acht Ausgangsports, obwohl nur die Logik für einen Ausgangsport, Ausgangsport<0>,
gezeigt ist. Die Logik der restlichen Ausgangsports ist gleichartig und wird aus Gründen der Übersichtlichkeit
hier nicht weiter dargestellt.

[0188] In einem Ausführungsbeispiel der Erfindung enthält jeder Eintrag jedes Puffers ein Kanalfeld 185 zum
Identifizieren des Kanals eines Pakets, das in dem Eintrag des Puffers gespeichert ist. Zusätzlich enthält jeder
Eintrag eine Reihe von Link-Indexen 186. Jeder Link-Index ist ein Index zu einem der Einträge in den Ein-
gangspuffern 160a–160h. Die Link-Indexe werden verwendet, um eine Kettenliste-Adressierstruktur bereitzu-
stellen, um auf aufeinanderfolgende Pakete auf demselben Kanal aus dem Puffer 160a in Übereinstimmung
mit den Paketordnungszwängen zuzugreifen. In jedem Eintrag sind drei verknüpfte Indexe L1, L2 und L3 vor-
handen, wobei jeder Link-Index den Ort der Eintragung in ein bis drei geordneten Listen kennzeichnet.

[0189] Jeder Eintrag enthält außerdem Abhängigkeits-Flags 189. Die Abhängigkeits-Flags werden verwen-
det, um die Abhängigkeiten von zwei Kanälen zu markieren. Das Abhängigkeits-Flag F1 wird gesetzt, wenn
das Paket in dem entsprechenden Eintrag ein Paket ist, das entweder auf einem Q1-, einem QIO-Kanal oder
einem Q0Vic-Kanal unterwegs ist. Das Abhängigkeits-Flag F2 wird gesetzt, wenn das Paket in dem entspre-
chenden Eintrag ein Paket ist, das entweder auf einem Q0-Kanal oder einem Q0Vic-Kanal unterwegs ist. Die
Abhängigkeits-Flags unterstützen eine Ordnung der Weiterverarbeitung von Paketen in der folgenden Art und
Weise.

[0190] Konzeptionell werden die empfangenen Pakete in fünf geordnete Warteschlangen aufgeteilt, die eine
Q2-Kanalwarteschlange, eine kombinierte Q1-/QIO-/Q0Vic-Kanalwarteschlange, eine kombinierte
Q0-/Q0Vic-Kanalwarteschlange, eine Q0Vic-Kanalwarteschlange und eine QIO-Kanalwarteschlange enthal-
ten. Infolgedessen kann ein Paket in mehr als einer Warteschlange enthalten sein. Die Kopfzeiger enthalten
23/89

DE 698 32 943 T2 2006.06.29
einen Zeiger 187a–187e für jede der Warteschlangen. Die Kopfzeiger werden verwendet, um in den Puffern
160a–160h einen Index zum Identifizieren des nächsten Pakets in dem Puffer, das dieser Warteschlange ent-
spricht, bereitzustellen. Die Kopfzeiger 187 enthalten infolgedessen einen Q2-Kopfzeiger 187a, einen
Q1-/QIO-/Q0Vic-Kopfzeiger 187b, einen Q0-/Q0Vic-Kopfzeiger 187c, einen Q0Vic-Kopfzeiger 187d und einen
QIO-Kopfzeiger 187e. Wenn ein Paket zuerst in einen Eingangspuffer geschrieben wird, wird es in einer oder
in mehreren der geordneten Warteschlangen platziert. Wenn es in mehr als einer geordneten Warteschlange
platziert wird, dann wird ein Abhängigkeits-Flag aktiviert oder werden mehrere Abhängigkeits-Flags 189 akti-
viert. Der Kanaltyp und die Abhängigkeits-Flags werden geprüft, um einen adäquaten Eintrag in dem Puffer zu
wählen, um derartig auszugeben, dass die Kanalabhängigkeiten eingehalten werden.

[0191] Jeder der Einträge jedes der acht Eingangspuffer 160a–160h wird zu dem Multiplexer 182 weiterge-
leitet. Der Multiplexer 182 wählt in Reaktion auf ein Auswahlsignal von dem Manager 180 eines der Pakete von
einem der Eingangspuffer. Der Manager 180 wählt Einträge aus den 64 möglichen Leseports der Eingangs-
puffer 160a–160h als Ausgänge für den zugehörigen Ausgangsport. Der Manager 180 wählt die Pakete so aus,
dass eine Gesamtsystemordnung und die Kanalabhängigkeiten eingehalten werden.

[0192] Während auf einem der Eingangspuffer 160a–160h ein Paket empfangen wird, wird der Kanaltyp in
das Kanalfeld des Eintrags geschrieben und jedes diesem Eintrag zugehörige Flag wird in dem Flag-Feld 189
aktiviert. Wie oben erwähnt, sind für jeden Eintrag in den Eingangspuffer drei Link-Indexe vorhanden, von de-
nen jeder einer der drei geordneten Warteschlangen entspricht. In einem Ausführungsbeispiel der Erfindung
werden die mehreren Link-Indexe zum Massenversenden der Pakete zu drei verschiedenen Ausgangsports
verwendet. Wenn ein massenversendetes Paket in dem Puffer gespeichert wird, wird es auf mehr als einer der
verketteten Listen platziert, wobei die verketteten Listen jeweils den verschiedenen Ausgangsports entspre-
chen. Im Ergebnis kann jeder der den verschiedenen Ausgangsports zugehörige Ausgangsmanager unter Ver-
wendung von verschiedenen verketteten Listen-Indexen auf denselben Eingangspuffereintrag zugreifen.

[0193] Wie oben erwähnt, sind die Link-Indexwerte Pufferindexwerte zum Adressieren des nächsten Pakets
des entsprechenden Typs in den Puffern 160a–160h. Dementsprechend wird der Link-Indexwert nicht ge-
schrieben, bis ein nachfolgendes Paket des entsprechenden Typs in den Puffer geschrieben wird. Wenn das
nachfolgende Paket in den Puffer geschrieben wird, wird die Adresse des nachfolgenden Pakets in den ver-
ketteten Index des vorhergehenden Pakets geschrieben, wodurch in dem nächsten Paket dieses Kanaltyps
ein Listen-Index bereitgestellt wird. Weil jeder der Einträge zusätzlich zu dem Schreiben der Adressen in dem
vorhergehenden Eintrag drei mögliche Link-Indexfelder enthält, wird ein Zwei-Bit-Feld (nicht gezeigt) zusam-
men mit der Adresse gespeichert, um dem Eintrag zu ermöglichen, den adäquaten der drei Link-Indexe zum
Konstruieren der geordneten Liste zu identifizieren.

[0194] Der Manager 180 wählt eines der Pakete in den Puffern 160a–160h zum Weiterleiten zu dem Aus-
gangsport in der folgenden Art und Weise. Wie oben erwähnt, speichern die Kopfzeiger den Puffer-Index, der
der Oberseite jeder der Warteschlangen entspricht. Wenn Pakete für einen gegebenen Kanal weiterverarbeitet
werden, wählt der Manager den Eintrag, der durch den entsprechenden Kopfzeiger angezeigt wird. Wenn ein
Flag 189 gesetzt ist oder mehrere Flags 189 gesetzt sind und Pakete in dieser Warteschlange, die den Kanälen
mit höherer Priorität zugehörig ist, nicht weiterverarbeitet wurden, kann das Paket nicht weiterverarbeitet wer-
den, bis alle vorhergehenden Pakete in der Warteschlange, die eine höhere Priorität haben, weiterverarbeitet
worden sind.

[0195] Wenn der Ausgangsmanager beispielsweise Pakete des Q0-Typs weiterverarbeitet, prüft er die Ein-
träge, die durch die Q1-, QIO-, Q0Vic- und Q0-/Q0Vic-Kopfzeiger angezeigt werden. Wenn das Paket ein
Q0-Kanalpaket ist, jedoch das Verarbeiten von Q1-Paketen noch nicht ausgeführt ist, kann der Eintrag nicht
weiterverarbeitet werden. Die Weiterverarbeitung von Paketen kann durch das Bereitstellen von Verarbei-
tungs-Flags mit jedem der Flags F1 und F2 angezeigt werden, die anzeigen, dass entweder die Kanal-Q1-Pa-
kete oder die Kanal-Q0-Pakete bereits weiterverarbeitet wurden. Sobald die Weiterverarbeitung aller Pakete
in der Warteschlange, die die Kanäle höherer Priorität hat, eingetreten ist (wie durch die Verarbeitungs-Flags
angezeigt), ist das dem Eintrag zugehörige Paket frei zur Weiterverarbeitung.

[0196] Wenn ein Eintrag zu Weiterverarbeitung gewählt wird, wählt der Manager den Kopfzeiger, der mit der
Warteschlange, in der der Eintrag ist, assoziiert ist, als den Puffer-Index. Der Puffer-Index wird zu dem Multi-
plexer 182 weitergeleitet und der Puffereintrag wird an den Ausgangsport weitergeleitet. Die Link-Indexe wer-
den zurück zu dem Kopfzeiger geleitet und der Kopfzeiger wird mit dem Puffer-Listen-Index des nächsten Pa-
kets in dieser Warteschlange aktualisiert.
24/89

DE 698 32 943 T2 2006.06.29
[0197] Dementsprechend verwendet das Switch-Ausführungsbeispiel der Fig. 15 eine verkettete Verzeich-
nisdatenstruktur, geordnete Warteschlangen und Flags zum Bereitstellen der Pakete zu einem Ausgangsport,
so dass die Gesamtsystemordnung erhalten bleibt. Zusätzlich stellt die verkettete Verzeichnisdatenstruktur, die
die mehrfachen Link-Indexe enthält, einen einfachen Mechanismus zum Massenversenden der Pakete bereit,
während die Massenversendungs-Paketordnungsregeln eingehalten werden.

[0198] Das Ausführungsbeispiel der Fig. 15 verwendet Flags und geordnete Warteschlangen, um sicherzu-
stellen, dass die Kanalordnung erhalten bleibt. Im Folgenden Bezug auf die Fig. 16 nehmend, wird ein zweites
Ausführungsbeispiel eines Switchs gezeigt, der in der Lage ist, Ausgangsdaten entsprechend vorgegebenen
Ordnungsabhängigkeiten bereitzustellen. In dem Ausführungsbeispiel der Fig. 16 ist für jeden Ausgangsport
des Switchs ein Puffer 200 bereitgestellt. Der Puffer 200 kann gekoppelt sein, um Eingänge von jedem der Puf-
fer 160a–160h (Fig. 11) auf einem Eingangspaket-Empfangspfad 201 zu empfangen, wobei die Pakete von
den Eingangspuffern zu dem adäquaten Puffer des Ausgangsports in Abhängigkeit von der Zieladresse der
Pakete weitergeleitet werden. In einem Ausführungsbeispiel der Erfindung ist der Puffer als ein kollabierender
FIFO implementiert, obwohl andere Pufferungsarchitekturen, die dem Fachmann in dieser Technik bekannt
sind, verwendet werden können.

[0199] Der Puffer 220 wird als eine Vielzahl von Paketen speichernd gezeigt, die zu dem Switch weiterzuleiten
sind. Der Puffer 200 in dieser Beschreibung speichert Pakete, die auf fünf verschiedenen Kanälen zu übertra-
gen sind: Q0, Q1, Q2, Q3 und Q4. Es sollte beachtet werden, dass die Kanäle Q0–Q4 den zuvor beschriebe-
nen Kanälen Q0, Q1, Q2, Q0Vic und QIO nicht analog sind. Stattdessen werden sie lediglich für den Zweck
der Beschreibung des Ausgabevorgangs des Switchs verwendet. Die Pakete Q0–Q4 stellen infolgedessen ge-
nerische Pakete auf verschiedenen Kanälen dar, wobei die Kanalabhängigkeiten entsprechend den Pfeilen in
dem Flussdiagramm der Fig. 16A definiert sind. In dem Diagramm der Fig. 16A zeigt ein Pfeil, der von einem
Kanal auf einen anderen Kanal gerichtet ist, dass die Pakete in dem ersten Kanal nicht zu einem Ausgangsport
weitergeleitet werden dürfen, während ein Paket in dem zweiten Kanal ist, das vor dem Paket in dem ersten
Kanal empfangen wurde, und zur Weiterverarbeitung durch den Switch anhängig ist. Beispielsweise werden
in der Fig. 16A die Pakete in dem Kanal Q0 gezeigt, um abhängig von der Weiterverarbeitung der Pakete in
dem Kanal Q3 zu sein, und folglich ist ausgesagt, dass die Pakete in dem Kanal Q0 Pakete in den Kanal Q3
„schoben". Die zusätzlichen durch das Flussdiagramm der Fig. 16A dargestellten Abhängigkeiten zeigen an,
dass die Pakete in Kanal Q1 Pakete in die Kanäle Q2 und Q3 schoben. Wieder sollte beachtet werden, dass
die durch das Flussdiagramm der Fig. 16A dargestellten Abhängigkeiten nicht die Abhängigkeiten der zuvor
beschriebenen Q0-, Q1-, Q2-, Q0Vic- und QIO-Kanäle darstellen. Wie hierin später beschrieben wird, sind die
Abhängigkeiten der Pakete in den Q0-, Q1-, Q2-, Q0Vic- und QIO-Kanälen komplex und deshalb wurden für
ein einfacheres Erklären des Betriebs des Puffers 200 die generischen Pakete und Abhängigkeiten bereitge-
stellt.

[0200] Wie oben erwähnt, werden die Eingangspakete an jedem der Eingangspuffer 160a–160h des Switchs
in Reihenfolge empfangen und in der Reihenfolge, die von der durch das Paket angezeigten Zieladresse ab-
hängig ist, zu den Ausgangspuffern, wie dem Puffer 200, weitergeleitet. Jeder Eintrag in jedem Ausgangspuf-
fer, wie zum Beispiel der Eintrag 200a, enthält ein Quellen- und ein Zieladressfeld, die die sendenden und emp-
fangenden Knoten für das Paket anzeigen, ein Kanalfeld, das den Kanal, auf dem das Paket übertragen wird,
anzeigt, und eine Reihe von Bits 206a–206e. Die Bitreihe 206a–206e enthält ein Bit für jeden Kanal, der Pakete
durch den hierarchischen Switch weiterleitet. Beispielsweise enthält die Bitreihe in dem Ausführungsbeispiel
der Fig. 16 ein Bit für jeden Kanal Q0, Q1, Q2, Q3 und Q4.

[0201] Die Schreiblogik 205, die mit dem Eingangspaket-Empfangspfad für den Ausgangsport gekoppelt ist,
steuert die Einstellung jeder Bitreihe gemäß dem Kanal des empfangenen Pakets und gemäß den Abhängig-
keiten zwischen den Kanälen, die in dem Flussabhängigkeitsdiagramm der Fig. 16A gezeigt werden. Wie un-
ten detaillierter beschrieben, kann die Schreibsteuerlogik die Bits ebenso durch das entweder statische oder
dynamische Erkennen der Abhängigkeiten aktualisieren. Wenn die Abhängigkeiten statisch erkannt werden,
werden die für die Kanäle definierten Abhängigkeiten ungeachtet weiterer Pakete, die in dem Puffer sind, an-
gewendet. Wenn die Abhängigkeiten dynamisch erkannt werden, werden die Abhängigkeiten für die Kanäle
unter Berücksichtigung der Kanal- und Adressziele der weiteren Pakete in dem Puffer 200 angewendet.

[0202] Mit jeder der Reihen von Bits ist eine entsprechende Suchmaschine 208a–208e gekoppelt. Jede Such-
maschine sucht die zugehörige Spalte von Bits, um einen Eintrag in dem Puffer 200, der das entsprechende
Bit der Spaltengruppe hat, auszuwählen. Der ausgewählte Eintrag wird für jede Spalte (oder jeden Kanal)
durch eine Reihe von Signalen S4–S0 zu einem Ausgangspuffer-Manager 202 angezeigt. Unter Verwendung
der Auswahlsignale, die von jeder der Suchmaschinen empfangen werden, in Verbindung mit den bekannten
25/89

DE 698 32 943 T2 2006.06.29
Datenabhängigkeiten zwischen den Kanälen, wählt der Ausgangspuffer-Manager eines der Pakete aus dem
Ausgangspuffer 200, um dieses zu dem Ausgang des globalen Ports bereitzustellen.

[0203] In Betrieb, wenn auf dem Eingangspaket-Empfangspfad 201 ein Paket empfangen wird, wird der Ka-
nal durch die Schreibsteuerlogik 205 bewertet und das Bit in der Reihe von Bits 206a–206e, das diesem Kanal
entspricht, wird durchgesetzt. In der Fig. 15 wird das Bit, dass eingestellt wird, um den Typ des Pakets anzu-
zeigen durch ein „⊗" angezeigt und wird als Kanalidentifizierungs-Flag bezeichnet. Demgemäß ist in der
Fig. 16 das Paket1 ein Q3-Paket. Gemäß dem Ausführungsbeispiel der Fig. 15 wird zusätzlich zum Aktivieren
des Bits, das den Kanal des Eintrags anzeigt, zusätzlich für jeden der Kanäle, die das Paket auf diesem Kanal
schieben, ein Bit aktiviert. Jedes dieser Bits wird als ein Abhängigkeits-Flag bezeichnet und durch ein „x" in der
Fig. 16 angezeigt. Deshalb wird für Paket2, das ein Q0-Kanal-Paket ist, das dem Q3-Kanalpaket zugehörige
Bit zusätzlich aktiviert, da, wie in dem Flussdiagramm der Fig. 16A gezeigt, die Q0-Pakete die Q3 Pakete
schieben.

[0204] Während die Pakete in dem Puffer 200 gespeichert werden und die ihnen zugehörige Reihe von Bits
206a–206e aktiviert wird, wählt jede der Suchmaschinen 208a–208e, die mit jeder Spalte von Bits assoziiert
ist, den ersten Eintrag in dem Puffer, der ein Bitset aufweist. Deshalb würde der für die Suchmaschine 208a
ausgewählte Wert auf Paket2 zeigen, der für die Suchmaschine 208b ausgewählte Wert würde auf Paket3 zei-
gen usw.

[0205] Die Signale S0–S4 werden zu dem Manager weitergeleitet. Der Manager 202 wählt in Reaktion auf die
Aktivierung der Auswahlsignale durch die Suchmaschinen und zusätzlich zu den in dem System vorhandenen
Abhängigkeiten eines der Pakete aus. Gemäß einem Ausführungsbeispiel der Erfindung wird beispielsweise
ein solches Paket wie Paket2, das auf dem Kanal Q0 ist, nicht zu dem Switch weitergeleitet, bis sowohl die
Suchmaschine für Kanal Q0 (208a) als auch die Suchmaschine für Kanal Q3 (208d) dasselbe Paket auswäh-
len. Dementsprechend wählt der Manager 202, wann immer mehrere Flags für ein gegebenes Paket gesetzt
sind, dieses Paket nicht für die Ausgabe aus, bis die den Flags entsprechenden Suchmaschinen eingerichtet
sind, um beide das gegebene Paket auszuwählen.

[0206] Gemäß einem alterriativen Ausführungsbeispiel der Erfindung könnte die Suchmaschine, wenn die
Suchmaschine einen Eintrag auswählt, weil ihr Abhängigkeits-Flag gesetzt war, das Abhängigkeits-Flag lö-
schen, und den Puffer weiter durchsuchen, um den nächsten Eintrag zu wählen, in dem entweder das Abhän-
gigkeits-Flag oder das Identitäts-Flag gesetzt ist. Mit einer derartigen Anordnung wird die Weiterverarbeitung
der Pakete verbessert, weil die Suchmaschinen nicht abgewürgt werden, wenn sie zur Weiterverarbeitung
durch andere Kanäle anstehen.

[0207] Der Effekt des Aktivierens der mehreren Flags zum Kennzeichnen der Abhängigkeiten unterstützt die
Aufrechterhaltung einer Gesamtsystemordnung von Paketen, die durch den Switch propagieren. Beispielswei-
se ist in der Fig. 16 die Beziehung zwischen den Q0-Paketen und den Q3-Paketen so, dass die Q0-Pakete
jedes vorhergehende Q3-Kanalpaket vor der Ausführung schieben. Folglich sollte ein Q0-Kanalpaket, das
nach einem Q3-Kanalpaket empfangen wurde, nicht vor dem Q3-Paket ausgeführt werden. Paket1 ist ein
Q3-Kanalpaket, das vor dem Paket2 (Q0-Kanalpaket) empfangen wurde. Durch Einstellen des Bits 206d für
Paket2 kann sichergestellt werden, dass das Paket2 (Q0-Kanalpaket,) nicht vor dem Paket1 (Q3-Kanalpaket)
über den Ausgangsport ausgegeben wird, da der Manager 208 das Q0-Paket solange nicht auswählen wird,
bis das S3- als auch das S0-Signal Paket2 auswählen. Im Ergebnis wird durch das Aktivieren von Bits für jedes
Paket, das durch ein Paket auf einen gegebenen Kanal geschoben wird, der Kanal effektiv blockiert, bis die
Pakete, die durch den gegebenen Kanal geschoben werden, weiterverarbeitet sind. Im Ergebnis wird die Ge-
samtsystemordnung aufrechterhalten.

[0208] Wie oben erwähnt, kann die Puffersteuerlogik der Fig. 16 betrieben werden, um die Abhängigkeiten
entweder statisch oder dynamisch zu erkennen. Statische Abhängigkeiten sind jene Abhängigkeiten, die von
dem Flussdiagramm der Fig. 16A gezeigt werden. Dynamische Abhängigkeiten werden durch das Bewerten
der Inhalte der Puffer, um zu bestimmen, ob aktuell zwischen Paketen in dem Puffer statische Abhängigkeit
vorhanden ist, erkannt. Die statischen Abhängigkeiten werden verwendet, um Ordnungsregeln bereitzustellen,
die sicherstellen, dass die Speicherdaten in dem SMP nicht die Kohärenz verlieren. Jedoch ist die Datenkohä-
renz nur dann betroffen, wenn die Pakete auf denselben Block von Speicherdaten zugreifen. Deshalb unter-
suchen die dynamischen Abhängigkeiten die Inhalte des Puffers mit größerer Detailtiefe durch das Prüfen der
Adresse der Pakete, die bereits in dem Puffer sind, um festzustellen, ob bereits eine Abhängigkeit zwischen
zwei Paketen auf verschiedenen Kanälen besteht oder nicht.
26/89

DE 698 32 943 T2 2006.06.29
[0209] Ein Vorteil des dynamischen Erkennens der Abhängigkeiten zwischen Paketen in dem Puffer 200 ist,
dass dies die Zeit, die erforderlich ist, um die Pakete in dem Puffer weiterzuverarbeiten, verringert. Als ein Bei-
spiel die Beschreibung des Betriebs mit Paket1 und Paket1 oben verwendend, besteht, wenn das Q0-Paket2
und das Q3-Paket1 nicht in dieselbe Adresse abbilden, kein Problem zuzulassen, dass das Q0-Paket vor dem
Q3-Paket weiterverarbeitet wird. Die Verzögerungszeit, die beim Warten auf die Weiterverarbeitung des vor-
hergehenden Q3-Pakets anfällt, ist eliminiert, wodurch die Gesamtleistung des SMP-Systems verbessert wird.

[0210] Im Folgenden Bezug nehmend auf die Fig. 17, stellt ein Flussdiagramm exemplarisch den Arbeitsvor-
gang der Auswahl eines Pakets zur Weiterverarbeitung durch das Erkennen der dynamischen Abhängigkeiten
dar. In dem Schritt 220 wird ein Paket an dem Puffer 200 empfangen. In dem Schritt 222 wird das Bit für den
Kanal des Pakets durch die Schreibsteuerlogik 205 in die Reihe der Bits 206 gesetzt. In dem Schritt 224 wer-
den die vorhergehend in dem Puffer 200 gespeicherten Pakete geprüft, um zu bestimmen, ab andere Pakete
auf dem Kanal, der das Paket schiebt, an demselben Speicherblock sind. Wenn sie an demselben Speicher-
block sind, dann werden in dem Schritt 226 die Bits, die den Paketen auf dem Kanal, der das Paket schiebt,
entsprechen und die sich in demselben Speicherblock befinden, aktiviert. Dementsprechend, das Beispiel der
Fig. 16 für Paket2 verwendend, wird das Bit für Pakettyp Q3 nur aktiviert, wenn das Paket1 auf denselben
Speicherblock wie Paket2 zugreift. Dementsprechend kann durch das dynamische Erkennen der Abhängig-
keiten die Speicherkohärenz aufrechterhalten werden, während die Gesamtsystemleistung verbessert wird.

[0211] Im Folgenden Bezug nehmend auf die Fig. 18, wird ein weiteres Ausführungsbeispiel eines Verfah-
rens zum Ausgeben von Daten, die von mehreren Eingangsquellen empfangen wurden, zu mehreren Aus-
gangsquellen unter Aufrechterhaltung der Gesamtsystemordnung gezeigt. Das Ausführungsbeispiel der
Fig. 18 enthält dieselben Elemente, wie jene der Fig. 16. Jedoch aktualisiert die Schreibsteuerlogik der
Fig. 209 der Fig. 18 jede Bitreihe 206a–206e durch das Analysieren der Abhängigkeiten von Paketen auf eine
unterschiedliche Art und Weise. Wie in der Fig. 16 wird für jedes Paket eines der Reihe von Bits gesetzt, um
anzuzeigen, dass das Paket von dem zugehörigen Kanal ist. Anstatt jedoch zusätzliche Bits für alle Pakete der
Kanäle, die der Kanal schiebt, einzurichten, werden die Bits für die Pakete in dem Kanal, der Pakete dieses
Kanals schiebt, gesetzt.

[0212] Dementsprechend werden in dem Ausführungsbeispiel der Fig. 18 zusätzlich zum Setzen des Kana-
lidentifikations-Flags zusätzliche Bits für alle Kanäle, die durch das Paket maskiert oder blockiert sind, gesetzt.
Beispielsweise ist in dem Beispiel der Fig. 18 Paket1 ein Q3-Kanalpaket. Pakete auf dem Kanal Q3 blockieren
die Ausführung von Q1- und Q0-Paketen, bis das Q3-Paket ausgeführt ist, wie durch das Abhängigkeitsfluss-
diagramm der Fig. 18A gezeigt. Dementsprechend werden für das Paket1 die Bits 206d, 206b und 206a ge-
setzt. Das Paket2 ist jedoch ein Q0-Paket, das die Ausführung eines anderen Pakets nicht blockiert. Im Ergeb-
nis wird für das Paket2 nur das Bit 206 gesetzt.

[0213] Die Switch-Implementierung der Fig. 18 stellt infolgedessen ein abgeändertes Verfahren zum Weiter-
leiten von Daten zu einem Ausgangsport bereit, während die Systemordnung durch statisches Erkennen von
Abhängigkeiten aufrechterhalten bleibt. Es sollte beachtet werden, dass die Pufferimplementierung der Fig. 18
nicht verwendet werden kann, um dynamische Abhängigkeiten zu erkennen, da ein solches Vorgehen das
Kennen der Adressen von Daten, bevor diese Daten in den Puffer 200 geschrieben werden, erfordern würde.
Jedoch können alle beschriebenen statischen und dynamischen Methoden verwendet werden, um sicherzu-
stellen, dass die Abhängigkeiten zwischen Paketen eingehalten werden.

[0214] Demnach wurden drei Ausführungsbeispiele eines Switchs beschrieben, der in der Lage ist, Daten aus
mehreren Quellen über mehrere Eingangsports simultan zu empfangen und die Daten über mehrere Aus-
gangsports zu mehreren Zieladressen weiterzuleiten, gleichzeitig die Datenabhängigkeiten einzuhalten, die
Systemordnung aufrechtzuerhalten und die Datenübertragungsrate zu maximieren. In einem Ausführungsbei-
spiel wurde ein Pufferschema mit verketteter Liste beschrieben, in dem die Ordnungsabhängigkeiten durch die
Verwendung von mehreren Warteschlangen, die Flags speichern, untergebracht werden und in dem die War-
teschlangen ausgewählt werden, um die Abhängigkeiten zu identifizieren. In einem zweiten und in einem drit-
ten Ausführungsbeispiel enthält ein Ausgangspuffer, der Daten in Reihenfolge von einem Eingangspuffer des
Switchs empfängt, eine Bitreihe, die verwendet wird, um Pakete eines bestimmten Typs zu blockieren, um si-
cherzustellen, dass die Abhängigkeits- und Kohärenzzwänge durchgesetzt werden. In allen Ausführungsbei-
spielen werden die Ordnungsabhängigkeiten durch die Verwendung von geordneten Warteschlangen, die
Flags enthalten, die gesetzt werden, um potenzielle Abhängigkeitskonflikte zu markieren, verfolgt. Durch das
Verwenden einer geordneten Liste von Flags zum Identifizieren der Abhängigkeiten wird die Komplexität der
Operationen, die durch den Manager durchzuführen sind, um die Ordnung aufrechtzuerhalten und die Kohä-
renz sicherzustellen, vereinfacht, während gleichzeitig die Busausnutzung maximiert wird.
27/89

DE 698 32 943 T2 2006.06.29
Cache-Kohärenz-Protokoll

[0215] Das Cache-Kohärenz-Protokoll eines Ausführungsbeispiels der Erfindung ist ein Write-Invalidate-Pro-
tokoll, das auf Besitz basiert. „Write-Invaldate" impliziert, dass, wenn ein Prozessor eine Cache-Zeile modifi-
ziert, er alte Kopien in den Caches anderer Prozessoren annulliert, anstatt diese mit neuen Werten zu aktua-
lisieren. Das Protokoll wird als ein „Besitzprotokoll" bezeichnet, weil für jede Cache-Zeile immer, ob es der
Speicher oder einer der Prozessoren oder IOPs in dem System ist, ein identifizierbarer Besitzer vorhanden ist.
Der Besitzer der Cache-Zeile ist, wenn angefordert, für das Liefern des aktuellen Wertes der Cache-Zeile ver-
antwortlich. Ein Prozessor/ein IOP können eine Cache-Zeile „exklusiv" oder gemeinsam besitzen. Wenn ein
Prozessor exklusiver Besitzer einer Cache-Zeile ist, kann er diese aktualisieren, ohne das System zu informie-
ren. Andernfalls muss er das System informieren und potenziell die Kopien in den Caches anderer Prozesso-
ren/IOPs annullieren.

[0216] Vor einer ausführlichen Beschreibung wird das Cache-Kohärenz-Protokoll beschrieben und eine Ein-
führung in den gesamten Kommunikationsablauf, der in dem hierarchischen Netzwerk verwendet wird, wird be-
reitgestellt.

[0217] Wie in Bezug auf die Fig. 7A beschrieben, enthält das große SMP-System 150 eine Anzahl von Kno-
ten, die über einen Switch 155 gekoppelt sind. Jeder der Prozessoren in jedem der Knoten generiert Befehle,
um auf Daten in einem Speicher zuzugreifen. Die Befehle können zur Gänze innerhalb des Quellenknotens
behandelt werden oder können basierend auf der Adresse und dem Anforderungstyp zu anderen Knoten in
dem System übertragen werden.

[0218] Der Adressraum ist in den Speicherraum und den IO-Raum unterteilt. Die Prozessoren und das IOP
verwenden eigene Caches, um nur Daten für Speicherraumadressen zu speichern und IO-Raumdaten werden
in den eigenen Caches nicht zwischengespeichert. Infolgedessen ist das Cache-Kohärenz-Protokoll nur von
den Speicherraumbefehlen betroffen.

[0219] Eine Schlüsselkomponente jedes Cache-Kohärenz-Protokolls ist ein Ansatz zur Serialisierung von
Lasten und Speicherungen. Ein Cache-Kohärenz-Protokoll muss allen Lasten eine Ordnung auferlegen und in
jeder Speicheradresse X speichern. Die Ordnung ist derartig, dass alle „Speicherungen" in X geordnet sind, es
sollten eine erste Speicherung, eine zweite Speicherung, eine dritte Speicherung usw. vorhanden sein. Die i-te
Speicherung aktualisiert die Cache-Zeile wie durch die (I – 1)-te Speicherung bestimmt. Des Weiteren ist mit
jeder Last eine aktuellste Speicherung assoziiert, aus der die Last den Wert der Cache-Zeile bekommt. Im Fol-
genden wird dies als Lastspeicherungs-Serialisierungsordnung bezeichnet.

[0220] Es ist eine Eigenschaft des hierin beschriebenen Protokolls, dass der Verteilerbus für eine Adresse X
der „Serialisierungspunkt" für alle Lasten ist und X speichert. Das bedeutet, dass die Reihenfolge, in der An-
forderungen zu X an dem Home-Verteilerbus für X ankommen, die Reihenfolge ist, in der die entsprechenden
Lasten und Speicherungen serialisiert werden. Die meisten Protokolle für große SMP-Systeme nach dem
Stand der Technik weisen diese Eigenschaft nicht auf und sind infolgedessen weniger effizient und komplexer.

[0221] In dem in der Fig. 2 gezeigten kleinen SMP-Knotensystem ist ein Verteilerbus vorhanden. Dieser Ver-
teilerbus ist der Serialisierungspunkt für alle Speicherlasten und Speicherungen in dem kleinen SMP. Der mit
dem Verteilerbus gekoppelte DTAG erfasst alle Zustände, die durch das kleine SMP-Protokoll erforderlich wer-
den. In dem großen SMP-System erfasst das DIR auf dem Home-Verteilerbus den Grobzustand für das Pro-
tokoll und die TTTs und DTAGs erfassen die Zustandsinformationen auf einer detailtieferen Ebene.

[0222] Wenn an dem Home-Verteilerbus eine Anforderung R ankommt, werden der DIR-, der DTAG- und der
TTT-Zustand geprüft, Probe-Befehle zu anderen Prozessoren und/oder Antwortbefehle zu dem Quellenpro-
zessor können generiert werden. Des Weiteren werden die Zustände des DIRs, des DTAGs und des TTTs ato-
mar aktualisiert, um die „Serialisierung" der Anforderung R zu reflektieren. infolgedessen wird eine Anforde-
rung Q mit der angeforderten Adresse, die der des Rs gleich ist und die an dem Home-Verteilerbus nach der
Anforderung R eingeht, in dem hierarchischen Switch nach R erscheinen.

[0223] Demnach ist der Home-Verteilerbus definiert, um der „Serialisierungspunkt" für alle Anforderungen zu
einer Speicheradresse zu sein. Für jede Speicheradresse X werden Speicherungen erscheinen, die in der Rei-
henfolge ausgeführt werden müssen, in der die entsprechenden Anforderungen (RdMods oder CDTs) in dem
Home-Verteilerbus ankommen. Die Lasten zu der Adresse X werden die Version X, die der Speicherung X ent-
spricht, die zuletzt von dem Home-Verteilerbus serialisiert wurde, sein.
28/89

DE 698 32 943 T2 2006.06.29
[0224] In der folgenden Einführung in das Cache-Kohärenz-Protokoll bezeichnet der Ausdruck „System" alle
Komponenten des großen SMP-Systems, einschließlich der Prozessoren und der IOPs. Die Prozessoren und
das System interagieren durch das Senden von „Befehlspaketen" oder einfach von „Befehlen". Befehle können
in drei Typen unterteilt werden:
Anforderungen, Probes und Antworten.

[0225] Die Befehle, die von dem Prozessor zu dem System ausgegeben werden, und jene, die von dem Sys-
tem zu den Prozessoren ausgegeben werden, sind eine Funktion der Speichersystemschnittstelle des gege-
benen Prozessors. Für den Zweck der Beschreibung des Betriebs des SMPs werden Anforderungen und Be-
fehle gemäß der Alpha®-System-Schnittstellendefinition der Digital Equipment Corporation beschrieben, ob-
wohl selbstverständlich ebenso andere Typen von Prozessoren verwendet werden können.

[0226] Anforderungen sind Befehle, die von einem Prozessor ausgegeben werden, wenn er im Ergebnis des
Ausführens eines Lade- oder Speichervorgangs eine Kopie von Daten erhalten muss. Anforderungen werden
außerdem verwendet, um den exklusiven Besitz eines Datenelements aus dem System zu gewinnen. Anfor-
derungen enthalten Lesebefehle, Lese-/Modifizierbefehle (RdMod-Befehle), Change-to-Dirty-Befehle,
Victim-Befehle und Evict-Befehle (bei denen eine Cache-Zei1e aus dem jeweiligen Cache entfernt wird). Pro-
be-Befehle sind Befehle, die von dem System zu einem Prozessor oder zu mehreren Prozessoren ausgege-
ben werden, die Daten- und/oder Cache-Tag-Status Aktualisierungen anfordern. Probe-Befehle enthalten wei-
tergeleitete Lesebefehle (FRd-Befehle), weitergeleitete Lese-/Modifizierbefehle (FRdMod-Befehle) und Befeh-
le Invalidate. Wenn ein Prozessor P eine Anforderung zu dem System ausgibt, könnte das System einen Probe
oder mehr Probes zu anderen Prozessoren auszugeben haben. Wenn P eine Kopie einer Cache-Zeile (mit ei-
ner Leseanforderung) anfordert, wird das System einen Probe zu dem Besitzerprozessor (falls vorhanden)
senden. Wenn P einen exklusiven Besitz einer Cache-Zeile anfordert (mit einer CDT-Anforderung) sendet das
System Invalidate-Probes zu einem Prozessor oder zu mehreren Prozessoren mit Kopien der Cache-Zeile.
Wenn P sowohl eine Kopie der Cache-Zeile als auch den exklusiven Besitz der Cache-Zeile anfordert (mit ei-
ner RdMod-Anforderung), sendet das System einen FRd-Befehl zu einem Prozessor, der aktuell eine Dirty-Ko-
pie der Cache-Zeile von Daten speichert. Als Antwort auf den FRd-Befehl wird die Dirty-Kopie der Cache-Zeile
an das System zurückgesendet. Ebenso wird durch das System ein FRdMod-Befehl zu einem Prozessor, der
eine Dirty-Kopie einer Cache-Zeile speichert, ausgegeben. Als Antwort auf den FRdMod-Befehl wird die dirty
Cache-Zeile zu dem System zurückgesendet und die in dem Cache gespeicherte Dirty-Kopie wird annulliert.
Durch das System kann ein Befehl Invalidate zu einem Prozessor, der eine Kopie der Cache-Zeile in seinem
Cache speichert, ausgegeben werden, wenn die Cache-Zeile durch einen anderen Prozessor zu aktualisieren
ist.

[0227] Antworten sind Befehle von dem System zu den Prozessoren/IOPs, die die durch den Prozessor an-
geforderte Daten oder eine der Anforderung entsprechende Bestätigung tragen. Für Lese- und RdMod-Befeh-
le, ist die Antwort jeweils ein Füll- oder FillMod-Befehl, von denen jeder die angeforderten Daten trägt. Für die
CDT-Befehle ist die Antwort ein CDT-Success- oder ein CDT-Failure-Befehl, der den Erfolg oder das Versagen
des CDTs anzeigt. Für Victim-Befehle ist die Antwort ein Victim-Release-Befehl.

[0228] Im Folgenden Bezug nehmend auf die Fig. 19, wird eine Tabelle zum Darstellen der Beziehung zwi-
schen Anforderungen und dem Status der jeweiligen Cache-Zeile in den einzelnen Prozessoren gezeigt.

[0229] Die Fig. 19 stellt außerdem die sich ergebenden Befehle des Probe-Typs für jede der Anforderungen
und jeden der Zustände der Cache-Zeile dar. Die Spalten 300 und 300a zeigen die durch den Prozessor aus-
gegebenen Anforderungen, die Spalten 305 und 305a zeigen den Status der Cache-Zeile in anderen Prozes-
soren in dem System und die Spalten 320 und 320a zeigen die sich ergebenden Probe-Befehle, die durch das
System generiert werden.

[0230] Die Tabelle der Fig. 19 geht davon aus, dass ein Prozessor, der als Prozessor A bezeichnet wird, eine
Anforderung an das System ausgibt. Der Befehl des Prozessors A interagiert anschließend mit einem Prozes-
sor oder mit mehreren Prozessoren, als Prozessor B bezeichnet. Wenn eine durch den Prozessor A adressier-
te Cache-Zeile in dem Cache des Prozessors B gespeichert ist, wie unter Verwendung des DTAGs und/oder
der Verzeichnisinformation festgestellt, dann wird der Cache-Status des Prozessors B bestimmen, ob ein Pro-
be-Befehl zu dem Prozessor B ausgegeben werden muss und welcher Typ von Probe-Befehl ausgegeben wer-
den sollte.

[0231] Im Folgenden werden das Cache-Kohärenz-Protokoll und die Mechanismen detaillierter beschrieben.
Die von den Befehlspaketen genommenen Pfade, die Quellen der Statusinformation für jeden Befehlstyp und
29/89

DE 698 32 943 T2 2006.06.29
die sich ergebenden Operationen sind in der Beschreibung enthalten. Alle Befehle stammen entweder von ei-
nem Prozessor oder einem IOP, wobei der ausgebende Prozessor des IOPs als „Quellenprozessor" bezeich-
net wird. Die Adresse, die in der Anforderung enthalten ist, wird als die angeforderte Adresse bezeichnet. Der
„Home-Knoten" der Adresse ist der Knoten, dessen Adressraum die angeforderte Adresse abbildet. Die Anfor-
derung wird als „lokal" bezeichnet, wenn der Quellenprozessor in einem der Home-Knoten der angeforderten
Adresse ist, andernfalls wird sie als „globale" Anforderung bezeichnet. Der Verteilerbus auf dem Home-Knoten
wird als der Home-Verteilerbus bezeichnet. Das „Home-Verzeichnis" ist das der angeforderten Adresse ent-
sprechende Verzeichnis. Das Home-Verzeichnis und der Speicher sind folglich mit dem Home-Verteilerbus für
die angeforderte Adresse gekoppelt.

[0232] Eine aus einem Prozessor oder einem IOP entstammende Speicheranforderung wird zuerst auf den
Home-Verteilerbus geleitet. Die Anforderung wird über den lokalen Switch geleitet, wenn die Anforderung lokal
ist, sie geht über den hierarchischen Switch, wenn sie global ist. In dem letzteren Fall durchquert sie den loka-
len Switch und den GP-Link, um zu dem GP zu kommen, anschließend geht sie über den HS-Link zu dem hie-
rarchischen Switch, dann über den GP und den lokalen Switch in dem Home-Knoten zu dem Home-Verteiler-
bus.

[0233] Es ist zu beachten, dass die globale Anforderungen nicht zuerst auf dem Verteilerbus des Home-Kno-
tens erscheinen, sondern stattdessen über den GP-Link direkt zu dem HS-Link geleitet werden. Bei Protokol-
len nach dem Stand der Technik greift eine globale Anforderung auf den Status des Home-Knotens zu, bevor
sie zu einem anderen Knoten ausgesendet wird. Die vorliegende Erfindung verringert die Durchschnittslatenz
der globalen Anforderungen durch das Ausgeben von globalen Anforderungen direkt zu dem HS.

[0234] Im Folgenden Bezug nehmend auf die Fig. 20A–Fig. 20J, werden exemplarische Flussdiagramme ei-
ner Anzahl von grundlegenden Speichertransaktionen bereitgestellt.

Lokales Lesen

[0235] In der Fig. 20A wird eine Anforderung von einem Quellenprozessor 320 zu dem Home-Verteilerbus
weitergeleitet. Das Verzeichnis 322 bestimmt, welcher Prozessor den Speicherblock besitzt. Wenn der lokale
Speicher 323 der Besitzer ist, wird von dem Home-Verteilerbus ein kurzer Füll-Befehl zu dem Quellenprozes-
sor 320 ausgegeben.

Globales Lesen

[0236] In der Fig. 20B ist vorausgesetzt, dass der Prozessor 320 des Knotens 325 einen Lese-Befehl zu einer
Cache-Zeile des Speichers ausgibt, dessen Home ein Knoten 326 ist. Der globale Lesebefehl wird durch den
Schalter 324 zu dem Home-Verteilerbus und zu dem Verzeichnis 321 über den Pfadweg, der durch die Linie
327 angezeigt wird, geleitet. Wenn der Speicher 330 des Knotens 326 der Besitzer der Cache-Zeile ist, dann
werden die Daten von dem Knoten 326 durch den Knoten 326, eine Shortfill-Antwort ausgebend, zu dem Kno-
ten 325 zurückgesendet.

[0237] Wenn ein anderer Prozessor/anderes IOP aktuell die Cache-Zeile besitzt, werden verschiedene
Schritte unternommen, um die angeforderte Cache-Zeile zu erhalten. Im Folgenden Bezug nehmend auf die
Fig. 20C, wird der Lesebefehl, wenn der Prozessor 320 einen Lesebefehl zu einer Cache-Zeile in dem Spei-
cher des Homes des Knotens 326 ausgibt, wieder über den Pfadweg 327 zu dem Home-Verteilerbus und dem
Verzeichnis geleitet. Der Eintrag des Verzeichnisses 321 enthält, wie oben erwähnt, für jede Cache-Zeile des
Speichers 14 Bits Statusinformation, die die Besitzerinformation enthält. In diesem Fall identifiziert die Besit-
zerinformation als den Besitzer den Prozessor 342 in dem Knoten 328.

[0238] Als Antwort auf die Anzeige des Verzeichnisses, dass der Knoten 328 die erforderliche Cache-Zeile
besitzt, treten zwei Ereignisse ein. Zuerst gibt der Home-Knoten, Knoten 326, einen FR-Probe zu dem Besit-
zerprozessor 342 aus, wie durch die Linie 329 angezeigt wird. Gleichzeitig damit sendet der Home-Knoten 326
eine Fill-Marker-Antwort zu dem Prozessor 320; wie durch die Linie 331 angezeigt. Die Rolle der Fill-Mar-
ker-Antwort wird in einem späteren Abschnitt beschrieben.

[0239] Als Antwort auf den weitergeleiteten Lesebefehl gibt der Prozessor 342 einen Füllbefehl zu dem Pro-
zessor 320 aus, wobei der Füllbefehl die betreffende Cache-Zeile enthält. Dieser Typ der Antwort auf eine Le-
seabforderung wird als Long Fill bezeichnet, weil eine Abfolge von drei Befehlen erforderlich ist, um die Daten
zurückzusenden. Infolgedessen können die Lesetransaktionen in zwei Typen unterteilt werden: Einen Short
30/89

DE 698 32 943 T2 2006.06.29
Fill, der eine Antwort von dem Speicher ist, und einen Long Fill, der eine Antwort von dem Besitzer eines Pro-
zessors ist.

Lokaler RdMod

[0240] Im Folgenden Bezug nehmend auf die Fig. 20D, kann dieser entnommen werden, dass eine lokale Le-
se-Maddifiziere-Transaktion gleichartig wie eine lokale Lese-Transaktion arbeitet, mit der Ausnahme, dass (1)
zu allen Prozessoren, die eine Kopie der aktuellen Version der Cache-Zeile erhalten haben, Invalidate Probes
gesendet werden und (2) FRMod und FillMod anstelle von Frds und Fills zu dem Besitzer gesendet werden.

[0241] In der Fig. 20D zeigt das Verzeichnis in dem Home-Knoten an, dass ein lokaler Prozessor oder Spei-
cher den Block besitzt. In dem Home-Verteilerbus identifiziert das Verzeichnis 322 alle externen Knoten, die
die aktuelle Version des Blocks erhalten haben. Ein Befehl Invalidate mit allen in einem Multi-Cast-Vektor iden-
tifizierten entsprechenden Knoten wird zu dem HS 324 gesendet. Der HS massenversendet die Invalida-
te-Nachrichten zu allen in dem Vektor identifizierten Knoten. Die Invalidate-Nachrichten gehen zu dem Vertei-
lerbus in jedem der Knoten, wo der DTAG diese weiter filtert und Invalidate-Probes nur zu jenen Prozessoren
oder IOPs sendet, die als die aktuelle Version der Cache-Zeile aufweisend identifiziert sind.

Globaler RdMod

[0242] Im Folgenden Bezug nehmend auf die Fig. 20E, kann dieser entnommen werden, dass eine Lese-Mo-
difiziere-Transaktion gleichartig wie die Lesetransaktionen, die in Bezug auf die Fig. 20A und Fig. 20B be-
schrieben wurden, arbeitet. Ein Befehl Lesen/Modifizieren (RdMod) wird zuerst von dem Prozessor 320 zu
dem Home-Verteilerbus und dem Home-Verzeichnis 321 der Cache-Zeile geleitet. Wenn der Speicher in dem
Knoten 326 die Cache-Zeile speichert, dann wird von dem Prozessor 326 ein Befehl Short Fill Modify, der die
Reset-Daten enthält, zu dem Prozessor 320 weitergeleitet. Im Ergebnis dieser Transaktion wird das Verzeich-
nis 321 aktualisiert. Der Lese-Modifizier-Befehl zeigt an, dass der Prozessor 320 exklusiven Besitz der Ca-
che-Zeile erfordert, so dass er die Inhalte der Cache-Zeile modifizieren kann. Deshalb gibt der Knoten 326 zu-
sätzlich zu dem Befehl Short Fill Modify außerdem Befehle Invalidate zu allen Prozessoren aus, die eine aktu-
elle Kopie der Cache-Zeile erhalten haben. Das DIR identifiziert die Knoten, auf denen ein Prozessor oder
mehrere Prozessoren eine Kopie der aktuellen Version der Cache-Zeile erhalten hat bzw. haben. Die Präsenz-
bits des DIRs enthalten diese Informationen. Der DTAG identifiziert alle Home-Knoten-Prozessoren, die eine
Kopie der Cache-Zeile erhalten haben. Befehle invalidate, dass diese ihr jeweiliges DIR-Präsenzbit zu setzen
haben, werden zu allen Knoten gesendet. In jedem der Knoten, der einen Befehl Invalidate empfängt, wird der
DTAG aktiviert, um festzustellen, welche Prozessoren aktuell eine Kopie der Cache-Zeile speichern. Die Be-
fehle Invalidate werden nur an diese Prozessoren gesendet. Der IOP-Tag wird verwendet, um zu bestimmen,
ob das IOP eine Kopie hat, falls ja, empfängt das IOP ebenso einen Invalidate-Probe-Befehl.

[0243] In dem Fall, in dem ein anderer als der anfordernde Prozessor der Besitzer ist, generiert der Ho-
me-Knoten einen Füllen/Modifizieren Marker, einen weitergeleiteten Befehl Lesen/Modifizieren und null oder
mehr Befehle Invalidate als einen Befehl. An dem Knoten wird der Befehl zu allen Zieladressenknoten mas-
senversendet. An jedem Zieladressenknoten wird der Befehl in seine Komponenten getrennt und der globale
Port jedes Knotens bestimmt, welche Handlung an dem jeweiligen Knoten ausgeführt werden sollte. In dem
Beispiel oben wird ein weitergeleiteter RdMod-Befehl durch den Prozessor 342 weiterverarbeitet und ein Mar-
ker Füllen/Modifizieren wird durch den Prozessor 320 weiterverarbeitet. Zusätzlich werden Befehle Invalidate
an dem Home-Knoten, an dem Knoten, der den Marker Füllen/Moditfizieren und an dem Knoten, der den wei-
tergeleiteten Befehl Modifizieren empfängt, in Übereinstimmung mit ihren DTAG-Einträgen durchgeführt. In
Reaktion auf den weitergeleiteten RdMod-Befehl werden die dirty Daten von dem Prozessor 342 über den Be-
fehl langes Füllen/Modifizieren zu dem Prozessor 320 weitergeleitet.

[0244] Infolgedessen kann der Befehl RdMod entweder zwei oder drei Knotenverbindungen oder Hops durch-
führen. In einem Ausführungsbeispiel der Erfindung resultieren nur die Befehle des Lesetyps (Lesen und Le-
sen/Modifizieren) in drei Hops, wobei der dritte Hop ein Befehl des Fülltyps ist (entweder Füllen oder Fül-
len/Modifizieren). Jedoch kann die Erfindung durch adäquates Zuordnen von den zugefügten Befehlen in den
virtuellen Kanalwarteschlangen, die unten beschrieben werden, leicht modifiziert werden, um andere Transak-
tionen zu enthalten, die drei oder mehr Hops erforderlich machen.

CTDs

[0245] Im Folgenden Bezug nehmend auf die Fig. 20G und Fig. 20H, wird jeweils der Basisfluss für
31/89

DE 698 32 943 T2 2006.06.29
Clean-to-Dirty (CTD) und Invalidate-to-Dirty (ITD) gezeigt. In der Fig. 20G wird ein Clean-to-Dirty von dem Pro-
zessor 320 zu dem Verzeichnis 321 in dem Home-Knoten ausgegeben. Entweder wird ein Bestätigungsbefehl
(ACK) oder eine Nichtbestätigungsbefehl (NACK) zu dem Prozessor 320 zurückgesendet, abhängig davon, ob
die saubere Cache-Zeile, die der Prozessor 320 aktualisieren will, aktuell oder veraltet ist. Dementsprechend
wird über den CTD ausgesagt, dass er erfolgreich ist oder versagt. Zusätzlich werden Befehle Invalidate zu
allen Knoten, die durch das Vorhandensein des Bits des Verzeichnisses 321 als eine Kopie der Cache-Zeile
aufweisend angezeigt werden, gesendet, wenn der CTD erfolgreich ist.

[0246] Wie in der Fig. 20H gezeigt, arbeitet der Befehl ITD im Wesentlichen gleichartig wie der CTD. Jedoch
versagt der ITD nie. Ein ACK wird immer zu dem Prozessor 320 zurückgesendet und Befehle Invalidate wer-
den zu anderen Knoten in dem System gesendet, die eine Kopie der Cache-Zeile von Daten speichern.

Lokale und globale Write Victims

[0247] Wie oben beschrieben, leitet der Befehl Write Victim dirty Daten von dem Cache des Prozessors zu-
rück in den adäquaten Home-Speicher weiter. Im Folgenden Bezug nehmend auf die Fig. 20I bis Fig. 20J,
kann diesen entnommen werden, dass der Fluss für die Write Victims in Abhängigkeit davon, ob der Ho-
me-Speicher in demselben Knoten wie der Prozessor ist, der den Befehl Write Victim ausgibt, oder nicht, ge-
ringfügig verschieden ist. Wie in der Fig. 20I gezeigt, gibt der Prozessor 320, wenn der Home-Knoten der Kno-
ten des Prozessors ist, den Befehl Write Victim aus und die Daten werden direkt zu dem Speicher desselben
Knotens weitergeleitet.

[0248] Wie in der Fig. 20J gezeigt, werden die Daten jedoch, wenn die Victim-Daten in einem anderen Home
als der Prozessor sind, in zwei Stufen übertragen. Zuerst wird die Cache-Zeile aus dem Cache (oder
Victim-Puffer) heraus weitergeleitet und in dem Victim-Cache (Fig. 6, Element 124) an dem globalen Port des
Knotens des Prozessors gespeichert. Der Victim-Cache antwortet dem Prozessor mit einem Victim-Freigabe-
signal, das anzeigt, dass der Prozessor den Victim-Puffereintrag erneut nutzen kann. Dann, wenn die verfüg-
bare Bandbreite auf dem Switch vorhanden ist, werden die Victim-Daten von dem Victim-Cache über einen
Befehl Write Victim zu dem Speicher des Home-Prozessors weitergeleitet.

[0249] Es sollte beachtet werden, dass die Victim-Daten, die durch den Quellenprozessor P zu dem Ho-
me-Speicher gesendet werden, zu dem Zeitpunkt, zu dem sie zu dem Speicher gelangen, veraltet sein können.
In einem solchen Fall wird über den Victim-Befehl aus- gesagt, dass er versagt hat, und der Home-Speicher
wird nicht aktualisiert. Dieses Szenario tritt ein, wenn sich ein anderer Prozessor in dem Intervall zwischen dem
Aneignen des Besitzes der Cache-Zeile durch P und dem Erreichen des Home-Verzeichnisses durch Ps Victim
den Besitz der Cache-Zeile aneignet. In einem derartigen Fall muss ein Befehl Invalidate oder ein Befehl Frd-
MOd Probe für die Cache-Zeile zu dem Prozessor P gesendet worden sein, bevor Ps Victim den Home-Ver-
teilerbus erreicht hat.

[0250] Um zu bestimmen, welche Victim-Daten in den Speicher geschrieben werden sollten, wird der Ver-
zeichniseintrag für die anfordernde Adresse nachgeschlagen, wenn ein Befehl Write Victim auf dem Ho-
me-Verteilerbus erscheint. Wenn das Verzeichnis anzeigt, dass der Quellenprozessor noch immer der Besitzer
der Cache-Zeile ist, dann ist der Victim-Befehl erfolgreich und aktualisiert den Speicher. Andernfalls versagt er
und aktualisiert den Speicher nicht. In beiden Fällen wird, sobald die Entscheidung für ein Victim in dem Ver-
zeichnis 321 getroffen ist, ein Victim-Ack-Befehl zu dem globalen Port des Knotens 325 zurückgesendet, um
dem Victim-Cache zu ermöglichen, den zugehörigen Eintrag zu löschen.

[0251] In einem Ausführungsbeispiel der Anordnung wird der DTAG verwendet, um in dem Fall, in dem der
Befehl Write Victim lokal ist, über den Erfolg oder das Versagen eines Befehls Write Victim zu entscheiden. In
diesem besonderen Fall (dem einer lokalen Anforderung Write Victim) sind sowohl der DTAG als auch das DIR
in der Lage, die Informationen bereitzustellen, die gebraucht werden, um den Erfolg oder das Versagen des
Befehls Write Victim festzustellen. Der DTAG wird deshalb anstelle des DIRs verwendet, weil der DTAG-ba-
sierte Mechanismus bereits in der Hardware des kleinen SMP-Knotens bereitgestellt ist.

[0252] Bei der Beschreibung des Cache-Kohärenz-Protokolls wurden die gebräuchlichsten Operationen und
Befehlstypen beschrieben. Die Mechanismen werden in den folgenden Abschnitten ausführlicher beschrieben.

[0253] Wie oben erwähnt, können in einem Ausführungsbeispiel der Erfindung für die Effizienz zwei oder
mehr in Beziehung stehende Pakete kombiniert werden. Das kombinierte Paket wird dann an dem HS oder
dem Verteilerbus an einem Knoten in seine Komponenten geteilt. Beispielsweise teilt sich eine FrdMod-Nach-
32/89

DE 698 32 943 T2 2006.06.29
richt zu dem HS in eine FrdMod-Nachricht zu dem Knoten mit dem Besitzerprozessor, in Invalidate-Nachrich-
ten zu Knoten mit Kopien der Cache-Zeile und eine FillMarkerMod-Nachricht zu dem Quellenknoten. Die Frd-
Mod-Nachricht zu dem Besitzer des Prozessorsknotens teilt sich des Weiteren an dem Verteilerbus des Kno-
tens in eine FrdMod-Nachricht zu dem Besitzerprozessor und null oder mehr Invalidate-Nachrichten zu ande-
ren Prozessoren in dem Knoten.

Verzögerte Schreibpufferung zum Aufrechterhalten der Victim-Kohärenz

[0254] Wie oben in Bezug auf die Fig. 20I und Fig. 20J beschrieben, können die Victim-Daten, die zu dem
Home-Speicher gesendet werden, zum Zeitpunkt ihres Eintreffens auf Grund eines dazwischenkommenden
Befehls invalidate oder FrdMod-Probe-Befehls für die Cache-Zeile, bevor der Write-Victim-Befehl den Ho-
me-Verteilerbus erreicht hat, veraltet sein. Ein Verfahren zum Bestimmen, ob die Victim-Daten in den Speicher
geschrieben werden sollten, ist ist dem Verzeichniseintrag für jeden Victim-Schreibbefehl nachzuschlagen.
Wenn das Verzeichnis anzeigt, dass der Prozessor, der der Victim-Schreibbefehl ausgibt, der Dirty-Besitzer ist,
dann sollte der Victim-Befehl zugelassen werden, um durchgesetzt zu werden. Andernfalls sollte er versagen.
Dieses Vorgehen ist erwünscht, weil der Bedarf für aufwendiges Vergleichen der Logikstrukturen zum Über-
einstimmen der Victim-Schreibbefehle zwischen dem Prozessor und dem Serialisierungspunkt mit Probe-Be-
fehlen zwischen dem Serialisierungspunkt und dem Prozessor umgangen wird.

[0255] Während dieser Ansatz das Aufrechterhalten der Datenkohärenz vereinfacht, kann er Leistungsnach-
teile in Form von verringerter Speicherbandbreite verursachen. Gemäß diesem Schema muss das System je-
des Mal, wenn es einen Victim-Schreibbefehl ausführt, zuerst auf den Verzeichnisstatus zugreifen, dann den
Status evaluieren und schließlich, basierend auf dem Status, einen DRAM-Schreibbefehl der Victim-Daten
ausführen. Da auf den Speicher und das Verzeichnis automatisch zugegriffen wird, würde der gesamte
Victim-Schreibzyklus, wenn das System gemäß der Methode nach dem Stand der Technik ausgeführt würde,
gleich der Summe der Verzeichnis-Nachschlagezeit, der Statusbewertungszeit und der DRAM-Schreibzeit
sein. Ein derartiges System würde in Bezug auf jene Systeme, deren gesamter Victim-Zyklus nur aus einem
DRAM-Schreiben besteht, schwere Leistungseinbußen erleiden.

[0256] Ein Ausführungsbeispiel der Erfindung überwindet das Problem der Verschlechterung der Speicher-
bankausnutzung durch das Bereitstellen eines Schreibverzögerungspuffers an jeder Speicherbank. Jedes Mal,
wenn zu dem Speichersystem ein Victim-Schreibbefehl ausgegeben wird, antwortet das Speichersystem
durch das parallele Ausführen der folgenden Funktionen: Speichern der Victim-Schreibdaten in einem Schreib-
verzögerungspuffer in der Zielspeicherbank und Markieren der Blocks als „nicht schreibbar" oder „ungültig",
Zugreifen auf den mit dem Victim-Schreibbefehl assoziierten Verzeichnisstatus und Ausführen, anstelle des
aktuellen Victim-Schreibbefehls, eines DRAM-Schreibbefehls eines zuvor gepufferten Victim-Schreibbefehls,
der als „schreibbar" oder „gültig" markiert ist. Dann, wenn der Zugriff auf das Verzeichnis ausgeführt ist, zeigt
der dem Victim-Schreibbefehl zugehörige Status an, dass der Victim-Schreibbefehl erfolgreich sein soll und
der Schreib-Verzögerungspuffer, in dem sich die Victim-Datenl befinden, geht in den „schreibbaren" oder „gül-
tigen" Status über. Der „schreibbare" oder „gültige" Status eines Datenblocks in dem Schreibverzögerungspuf-
fer zeigt an, dass die Daten in dem Puffer eine aktuellere Version der Cache-Zeile sind, als die Version, die in
den DRAMs des Speichers gespeichert sind. Wenn der Puffer als „schreibbar" oder „gültig" markiert ist, werden
seine Daten im Ergebnis der anschließenden Ausgabe eines Victim-Schreibbefehls zu dem Speichersystem
in den DRAM geschrieben.

[0257] Durch das Ausführen des Verzeichnisnachschlagens parallel zu dem DRAM-Schreiben eines zuvor
ausgegebenen Victim-Schreibbefehls verringert dieses Ausführungsbeispiel die Victim-Gesamtzykluszeit auf
die einer DRAM-Schreibzeit. Da dieses Ausführungsbeispiel „schreibbare" oder „gültige" Datenblöcke für viele
Zyklen in den Schreibverzögerungspuffern hält, in denen nachfolgende Referenzen zu dem Pufferblock zu
dem Speicherblock ausgegeben werden können, enthält der Schreibverzögerungspuffer ein assoziatives
Adressregister. Die Adresse des Victim-Schreibblocks wird gleichzeitig mit dem Speichern der zugehörigen
Daten in dem Schreibverzögerungspuffer in dem assoziativen Adressregister gespeichert. Wenn nachfolgende
Referenzen zu dem Speichersystem ausgegeben werden, identifiziert das Speichersystem durch das Mittel ei-
nes Adressabgleichens mit dem Adressregister jene, die in dem Schreibverzögerungspuffer Adressen blockie-
ren. Durch diese Einrichtung wird das Speichersystem alle Referenzen zu Blocks in den Schreibverzögerungs-
puffern mit den aktuelleren Daten aus den Puffern, anstatt mit den veralteten Daten in dem Speicher der
DRAMs, bedienen.

[0258] Die oben beschriebene Technik des Bereitstellens von Schreibverzögerungspufferung der Victim-Da-
ten kann ebenso in auf einem Snoopy-Bus basierenden Systemen, die keinen direkten DTAG-Status enthalten,
33/89

DE 698 32 943 T2 2006.06.29
diesen jedoch verwenden, um die Gültigkeit eines Datenblocks zu bestimmen, verwendet werden.

[0259] Im Folgenden Bezug nehmend auf die Fig. 21, wird ein Ausführungsbeispiel eines Speichersteuersys-
tems zum Bereitstellen von verzögerten Schreiboperationen gezeigt, das einen Speicher-Kontroller 332, der
gekoppelt ist, um ein Signal Owner_Match auf der Leitung 140 von dem Verzeichnis 140 zu empfangen, ent-
hält. Zusätzlich empfängt der Speicher-Kontroller 332 einen Eingang von dem QS-Verteiler 11 (der ebenso das
Verzeichnis 140 speist) zum Verfolgen der Befehle, die in das Verzeichnis eingegeben werden.

[0260] Der Speicher-Kontroller 332 enthält einen Schreibverzögerungspuffer 336. Jeder Eintrag in den
Schreibverzögerungspuffer 336 enthält einen Datenteil 336a, einen Flag-Teil 336b und einen Adressteil 336c.
In einem Ausführungsbeispiel der Erfindung enthält der Schreibverzögerungspuffer, um die Komplexität der
Ausführung zu verringern, nur jeweils einen Adress-, Daten- und Flag-Eintrag, obwohl die Erfindung nicht auf
eine derartige Konfiguration beschränkt ist.

[0261] Der Schreibverzögerungspuffer arbeitet wie folgt. In Betrieb, während ein Befehl, eine Adresse und
Daten in dem Verteilerbus 130 empfangen werden, werden diese zu dem Verzeichnis 140 und auch zu dem
Kontroller 332 weitergeleitet. Der Speicher-Kontroller 332 speichert den Befehl, die Adresse und die Daten in
dem Schreibverzögerungspuffer 336 für eine Transaktionsperiode (hier 18 Taktzyklen). Während der Transak-
tionsperiode wird auf das Verzeichnis 140 zugegriffen und die Ergebnisse des Zugriffs werden auf der Leitung
Owner_Match 140a durchgesetzt. Die Leitung Owner_Match wird aktiviert, wenn der Verzeichniseintrag an-
zeigt, dass die Prozessor-ID des Prozessors, der versucht, den Speicher zu aktualisieren, tatsächlich die Be-
sitzerin der Cache-Zeile der Daten ist. Das Signal Owner_Match wird verwendet, um das Flag 336b des
Schreibverzögerungspuffereintrags 336 zu setzen. in der darauf folgenden Transaktionsperiode werden, wenn
der Speicherbus verfügbar ist und wenn das Flag 336b gesetzt ist, die gespeicherten Daten in den Speicher
geschrieben. In einem Ausführungsbeispiel der Erfindung werden nur Schreibvorgänge gepuffert und ein ein-
gehender Lesevorgang wird zugelassen, um auf den Speicherbus zuzugreifen, ohne verzögert zu werden.
Darauf folgende Leseoperationen an Victim-Daten, die in dem Schreibverzögerungspuffer gespeichert sind,
werden von dem Schreibverzögerungspuffer bedient.

[0262] Im Folgenden Bezug nehmend auf die Fig. 22, wird ein Zeitablaufdiagramm des Betriebs einer
Schreibverzögerungsoperation gezeigt. Zu der Zeit T0 wird auf dem Verteilerbus ein Vorgang Read0 empfan-
gen. Diese Leseoperation wird sofort in dem Speicher propagiert, um auf den DRAM 334 zuzugreifen. Zu der
Zeit T1 wird eine Operation Write1 auf dem Verteilerbus empfangen. Während dieses T1-Zyklus wird auf das
Verzeichnis 140 zugegriffen und bei Abschluss des T1-Zyklus wird das Signal Owner_Match, eine Überein-
stimmung der WRITE1-Adresse anzeigend, aktiviert. Im Ergebnis wird das Flag 336b des Schreibverzöge-
rungspuffereintrags gesetzt. Zu der Zeit T2 wird ein Lesevorgang empfangen und zu dem Speicher vor der
Operation WRITE1 weitergeleitet. Während der Zeit T3 wird das der Operation WRITE1 entsprechende Flag
aktiviert und wenn die nächste Operation WRITE3 in dem Schreibverzögerungspuffer empfangen wird, wird
die Operation WRITE1 zum Speicher für Behandlung durch den DRAM 334 weitergeleitet.

[0263] Es sollte beachtet werden, dass zum Auslesen des lokalen Speichers alternativ die DTAGs verwendet
werden können, um das Flag-Bit in dem Schreibverzögerungspuffer zu setzen. Eine der Cache-Zeilen von ei-
nem lokalen Speicher kann in einem der Caches der Prozessoren in dem lokalen Knoten gespeichert werden.
Wenn einer der Prozessoren eine Cache-Zeile zu einem Victim macht und die Cache-Zeile in den Schreibver-
zögerungspuffer geschrieben wird, können die DTAG-Einträge für jede Cache-Zeile geprüft werden, um zu be-
stimmen, ob die Cache-Zeile in einem der Prozessoren vorhanden war oder nicht. Wenn die Cache-Zeile in
einem der Prozessoren anwesend war, wird das Gültigkeits-Bit des DTAG-Eintrags geprüft, um sicherzustel-
len, dass die Kopie, die der Prozessor zu einem Victim macht gültig war. Wenn in dem DTAG ein Treffer ist und
die Cache-Zeile gültig war, kann der DTAG das Flag in dem Schreibverzögerungspuffer setzen, um zu veran-
lassen, dass die Cache-Zeile in den lokalen Speicher geschrieben wird. Dies ermöglicht einfachen snoo-
py-bus-basierten Systemen (d. h. ohne Verzeichnis) denselben Vereinfachungsalgorithmus anzuwenden.

[0264] Die Speichersteuerlogik der Fig. 21 ermöglicht infolgedessen, dass READ-Operationen sofort in ei-
nem READ-Zyklus ausgeführt werden und dass eine WRITE-Operation für jeden WRITE-Zyklus ausgeführt
wird (selbst, wenn es ein verzögertes Schreiben ist). Im Ergebnis wird ein gleichförmiger Datenstrom zu den
DRAMs weitergeleitet, ohne dass Verzögerungen im Ergebnis der Zugriffe auf das Verzeichnis eintreten und
die Leistung wird erhöht, während die Kohärenz aufrechterhalten bleibt. Obwohl die Schreibverzögerungspuf-
fer-Technik hierin in Bezug auf Victim-Schreibvorgänge beschrieben wurde, kann sie in jedem System verwen-
det werden, in dem der Kohärenzzustand zentralisiert und stationär ist, um die Speicherleistung zu verbessern.
34/89

DE 698 32 943 T2 2006.06.29
Virtuelle Kanäle

[0265] Danach kann festgestellt werden, dass viele Speicherreferenzen zwischen den Prozessoren, den Ver-
zeichnissen, den Speichern und den DTAGs übertragen werden, um das Cache-Kohärenz-Protokoll zu imple-
mentieren. Zusätzlich kann jede Speicherreferenz eine Anzahl von Transaktionen oder Hops zwischen den
Knoten, in denen Nachrichten für die Speicherreferenz übertragen werden, bevor die gesamte Referenz aus-
geführt ist, enthalten. Wenn die Abhängigkeiten zwischen den Nachrichten verursachen, dass eine Referenz
indefinit blockiert wird, verklemmt das Mehrprozessorsystem.

[0266] Wie zuvor kurz beschrieben, bewerkstelligt ein Ausführungsbeispiel der Erfindung den Verkehr zwi-
schen den Knoten und hält durch die Verwendung einer virtuellen Kanalflusssteuerung die Datenkohärenz
ohne Verklemmung aufrecht. Virtuelle Kanäle wurden zuerst zum Bereitstellen von verklemmungsfreiem Rou-
ting in Verbindungssysteme eingeführt. Gemäß dem Ausführungsbeispiel der Erfindung können die virtuellen
Kanäle zusätzlich verwendet werden, um Ressourcenverklemmungen in einem Cache-Kohärenz-Protokoll für
Computersysteme mit gemeinsamen Speichern zu verhindern.

[0267] Nach dem Stand der Technik werden in Bezug auf Cache-Kohärenz-Protokolle zwei Lösungswege be-
reitgestellt. Für Systeme, die eine kleine Anzahl von Prozessoren und eine kleine Anzahl von aktuell ausste-
henden Anforderungen haben, werden Warteschlangen und Puffer bereitgestellt, die groß genug sind, um die
größtmögliche Anzahl von Antworten, die zu einem Zeitpunkt während der Ausführung vorhanden sein kön-
nen, zu enthalten. Das Bereitstellen von ausreichend vielen Warteschlangen und genügend Pufferraum garan-
tiert, dass Nachrichten, um Fortschritt zu machen, nie von anderen Nachrichten abhängig sind.

[0268] In größeren Systemen mit einer großen Anzahl von ausstehenden Anforderungen, ist es nicht prak-
tisch, Puffer und Warteschlangen bereitzustellen, die groß genug sind, um die maximale Anzahl von möglichen
Antworten zu enthalten. Dementsprechend wurde das Problem durch die Verwendung von Zweikanal-Inter-
connects, die über einen Verklemmungserfassungs- und Verklemmungsauflösungsmechanismus gekoppelt
waren, gelöst. Zuerst verwendet die Interconnect-Verbindung (logische Pfade, die verwendet werden, um zwei
Nachrichten zwischen Systemkomponenten, wie zum Beispiel Prozessor und Speicher, zu bewegen) zwei Ka-
näle, einen Anforderungskanal (oder Kanal niedrigerer Ordnung) und einen Antwortkanal (oder Kanal höherer
Ordnung). Die Kanäle sind typischerweise physikalisch, das bedeutet, sie verwenden verschiedene Puffer und
Warteschlangen. Zweitens wird typischerweise eine Heuristik angewendet, um eine potenzielle Verklemmung
zu erfassen. Beispielsweise kann ein Kontroller eine potenzielle Verklemmung signalisieren, wenn eine War-
teschlange voll ist und für einige Zeit keine Nachricht aus der Warteschlange entfernt wurde. Drittens wird ein
Verklemmungsauflösungsmechanismus angewendet, bei dem Auswahlnachrichten negativ bestätigt werden,
um so Ressourcen freizumachen und infolgedessen zu ermöglichen, dass andere Nachrichten Fortschritte ma-
chen. Negative Bestätigungsnachrichten verursachen, dass der entsprechendene Befehl zurückgezogen wird.

[0269] Die oben beschriebene Lösung für das große System hat zwei grundsätzliche Probleme: ein Fair-
ness-/Aushungerungsproblem und ein Problem der Leistungseinbuße. Weil einige der Nachrichten negativ be-
stätigt werden, ist es möglich, dass einige Befehle für eine lange Zeit nicht ausgeführt werden (potenziell inde-
finit). Wenn nicht garantiert ist, dass ein Befehl innerhalb eines gegebenen Zeitraums ausgeführt wird, erhält
die Ressource, die den Befehl ausgibt, keinen fairen Zugriff auf die Systemdaten. Außerdem kann die Res-
source, weil sie keinen fairen Zugriff auf die Systemdaten bekommt, nach Daten aushungern und potenziell
das System verklemmen. Da die meisten Nachrichten negativ bestätigt sein könnten und infolgedessen darin
versagen, zu ihren Zieladressen zu kommen, müssen Protokollmeldungen, wie zum Beispiel Invalidate-Nach-
richten, eine Bestätigung erzeugen, um anzuzeigen, dass sie ihre Zieladresse erfolgreich erreichen. Des Wei-
teren muss der Kontroller warten, bis alle Bestätigungen empfangen wurden, bevor er die entsprechende Be-
fehlsausführung berücksichtigen kann. Dieser Nichtdeterminismus führt sowohl zu einem Nachrichten-Over-
head als auch zu, untypischer Latenz, die die Gesamtleistung des Cache-Kohärenz-Protokolls verringert.

[0270] Gemäß einem Ausführungsbeispiel der Erfindung wird ein Cache-Kohärenz-Protokoll verwendet, das
einen systematischen und deterministischen Ansatz zur Vermeidung von Verklemmung verwendet. Anstatt
eine potenzielle Verklemmung zu erfassen und dann korrigierend einzugreifen, wird die Verklemmung durch
die Ausführung eliminiert. Dementsprechend besteht kein Bedarf für einen Verklemmungserfassungs- und Ver-
klemmungsauflösungsmechanismus. Zweitens werden, da die Nachrichten nie negativ bestätigt werden, Be-
stätigungen für Protokollmeldungen, wie Invalidate-Nachrichten, nicht erforderlich und deshalb werden die
Bandbreite und die Latenz verbessert.

[0271] Für den Zweck des Erklärens der Verwendung von virtuellen Kanälen wird zuerst eine dienliche Ter-
35/89

DE 698 32 943 T2 2006.06.29
minologie bereitgestellt.

[0272] Abhängigkeit: Eine Nachricht M1 ist als „abhängig" von Nachricht M2 definiert, wenn M1 keinen Fort-
schritt machen kann, ohne dass M2 Fortschritt macht. Des Weiteren wird Abhängigkeit als transitiv definiert.
Für die Implementierung des Cache-Kohärenz-Protokolls der vorliegenden Erfindung sind wenigstens zwei
Klassen von Abhängigkeiten vorhanden: Ressourcenabhängigkeiten und Flussabhängigkeiten. M1 wird als
„ressourcenabhängig" von M2 definiert, wenn M1 keinen Fortschritt machen kann, bis M2 eine Ressource, wie
zum Beispiel einen Warteschlangenschlitz, freimacht. M1 wird als „flussabhängig" von M2 definiert, wenn das
Cache-Kohärenz-Protokoll erfordert, dass M1 keinen Fortschritt macht, bis M2 Fortschritt macht. Beispielswei-
se kann das Cache-Kohärenz-Protokoll erfordern, dass M1 blockiert, bis das Verzeichnis einen bestimmten
Status erreicht, und es ist M2, die den Verzeichnisstatus auf den erwünschten Wert setzt. M1 wird als abhängig
von M2 definiert, wenn eine Kette von entweder Ressourcen- oder Flussabhängigkeiten von M1 zu M2 vorhan-
den ist.

[0273] Abhängigkeitszyklus: Ein „Abhängigkeitszyklus" ist definiert, zwischen einer Reihe von Nachrichten
M1, M2 (≥ 2) vorhanden zu sein. Wenn der Fortschritt von M1 von dem Fortschritt von M2 abhängig ist, hängt
der von M2 von dem von M3 ab, der von Mk-1 hängt von dem von Mk ab und schließlich hängt der von Mk von
dem von M1 ab. Ein System von Nachrichten verklemmt, wenn irgendeine Teilmenge der Nachrichten einen
Abhängigkeitszyklus bildet. Da M1 von Mk abhängig ist, die wiederum von M1 abhängig ist, kann keine der
Nachrichten in dem Zyklus Fortschritt machen.

[0274] Das hierin offen gelegte Verfahren und die hierin offen gelegte Vorrichtung verwenden virtuelle Kanäle,
um Verklemmungen in dem Cache-Kohärenz-Protokoll deterministisch zu vermeiden. Im Folgenden werden
sowohl die benötigten Hardwaremechanismen als auch die Reihe von Regeln, die bei der Ausführung des Ca-
che-Kohärenz-Protokolls befolgt wird, beschrieben.

[0275] In einem Ausführungsbeispiel definiert das Cache-Kohärenz-Protokoll, dass alle Speichervorgänge in
höchstens drei Phasen ausgeführt sein müssen. In der ersten Phase wird eine Nachricht oder werden mehrere
Nachrichten zwischen den Komponenten des Systems übertragen. Deshalb wird jede Phase ebenso als ein
„Hop" bezeichnet. Die Hops werden mit 0, 1 und 2 nummeriert. In Hop-0 wird eine Anforderung von einem Pro-
zessor oder einem IO-Prozessor zu dem Home-Verzeichnis geleitet. In Hop-1 werden die Nachrichten, die
durch das Home-Verzeichnis generiert wurden, zu einem Prozessor oder IO-Prozessor oder zu mehreren Pro-
zessoren oder IO-Prozessoren geleitet. In Hop-2 bewegen Sich die Nachrichten von einem Besitzerprozessor
zu dem Quellenprozessor. Die Hops werden in der Fig. 23 dargestellt.

[0276] Es ist eine gewollte Eigenschaft des Cache-Kohärenz-Protokolls, dass alle Operationen in einer vor-
bestimmten Anzahl von Hops ausgeführt werden. In einem hierin beschriebenen Ausführungsbeispiel ist die
vorbestimmte Anzahl drei, obwohl die Erfindung nicht auf eine bestimmte Anzahl von Hops beschränkt ist, so-
lange die Anzahl, die ausgewählt wird, relativ gering und konsistent ist. Diese Eigenschaft ist der Schlüssel,
der garantiert, dass alle Nachrichten ohne jeden Mechanismus zum Erfassen von Verklemmungen und versa-
genden und wiederholt gesendeten Nachrichten zum Lösen der Verklemmung zu ihren Zieladressen geleitet
werden können.

[0277] Wie oben erwähnt, ist die Höchstanzahl von Hops in diesem Ausführungsbeispiel drei. Das System
stellt folglich drei Kanäle bereit, die jeweils mit Q0, Q1 und Q2 gekennzeichnet werden. Die Kanäle sind logisch
unabhängige Datenpfade durch die System-Interconnect-Verbindung. Die Kanäle können physikalisch oder
virtuell sein (oder teilweise physikalisch und teilweise virtuell). Wenn sie physikalisch sind, hat jeder Kanal
durchgängig durch das System eine verschiedene Warteschlange und verschiedene Pufferressourcen. Wenn
sie virtuell sind, nutzen die Kanäle die Warteschlangen und Pufferressourcen unter den unten genannten Ein-
schränkungen und Regeln.

[0278] Die drei Kanäle bilden eine Hierarchie. Q0 ist der Kanal niedrigster Ordnung, gefolgt von Q1, und Q2
ist der Kanal höchster Ordnung. Eine Nachricht in Kanal Qi kann nie von einer Nachricht in einem Kanal, der
geringer als Qi ist, abhängig sein.

[0279] Einem Ausführungsbeispiel der Erfindung ist zusätzlich ein QIO-Kanal hinzugefügt, um Flussabhän-
gigkeitszyklen zwischen den Antwortnachrichten von dem IO-System und Speicherraumbefehlen von dem
IO-System zu eliminieren.

[0280] Schließlich wird in einem Ausführungsbeispiel der Erfindung ein Q0Vic-Kanal für Victim-Nachrichten
36/89

DE 698 32 943 T2 2006.06.29
und darauf folgende abhängige Nachrichten, ausgegeben während Victim-Nachrichten ausstehend sind, an-
gewendet.

[0281] Wie zuvor in Verbindung mit den Fig. 10A–Fig. 20H beschrieben, kann ein gegebenes Befehlspaket,
das zu dem Switch ausgegeben wird, eine Zahlenreihe von diskreten Transaktionen generieren. In einem Aus-
führungsbeispiel der Erfindung wird jede diskrete Transaktion für ein gegebenes Befehlspaket einem Kanal zu-
geordnet. Die Kanäle stellen essentiell eine geordnete Struktur zum Definieren der Ausführungsphasen und
der Abhängigkeiten eines gegebenen Befehlspakets bereit.

[0282] Im Folgenden Bezug nehmend auf die Fig. 22, stellt ein Flussdiagramm beispielsweise die Zuordnung
von Kanälen für die diskreten Transaktionen, die in den Fig. 10A–Fig. 20J gezeigt werden, dar. Die diskreten
Transaktionen werden durch die folgende Nomenklatur beschrieben: die erste Transaktion in einer Reihe von
Transaktionen, die aus einer Referenz resultiert, wird als Q0- oder Q0Vic-Transaktion bezeichnet, die zweite
Transaktion der Reihe von Transaktionen ist eine Q1-Transaktion und die dritte Transaktion in der Reihe von
Transaktionen ist eine Q2-Transaktion.

[0283] Ein Q0- oder Q0Vic-Kanal trägt Anfangsbefehle von Prozessoren und IOPs, die das Verzeichnis noch
nicht ausgesucht haben. Infolgedessen ist die Zieladresse eines Q0-/Q0Vic-Pakets immer das Verzeichnis.
Der Q0Vic-Kanal ist speziell für Write-Victim-Befehle reserviert, während der Q0-Kanal alle anderen durch den
Prozessor oder den IOP initiierten Befehle transportiert.

[0284] Ein in dem Schritt 380 ausgegebener Befehl kann versuchen, Daten oder den Aktualisierungsstatus
zu erhalten. Der Status ist immer in dem Home-Verzeichnis, das der Adresse der Daten entspricht, verfügbar.
In dem Schritt 382 wird auf das Home-Verzeichnis zugegriffen und es wird festgestellt, ob die verfügbare Ca-
che-Zeile im Besitz des Speichers (relativ zu dem Verzeichnis) oder in dem eines anderen Prozessors ist. In
beiden Fällen wird über den Q1-Kanal eine Antwort ausgegeben. Wenn in dem Schritt 382 festgestellt ist, dass
der Status oder die Daten in dem zweiten Knoten verfügbar sind, dann ist in dem Schritt 384 die Antwort auf
dem Q1-Kanal zurück zu dem ersten Knoten gerichtet. Die Q1-Transaktionen umfassen ShortFill, Short Fill
Mod, VicACK, CTD-ACK/NACK usw.

[0285] Wenn in dem Schritt 382 festgestellt ist, dass der Home-Knoten die Daten nicht besitzt, dass die Daten
jedoch dirty sind und im Besitz eines anderen Prozessors sind, dann wird in dem Schritt 386 auf dem Q1-Kanal
eine Q1-Typ-Transaktion entweder eines weitergeleiteten Lesens oder eines weitergeleiteten Lesens/Modifi-
zierens zu einem Remote-Knoten ausgegeben.

[0286] Wenn als Antwort auf eine Statusprüfung in dem Home-Knoten oder als Antwort auf ein Lesen/Modi-
fizieren angezeigt ist, dass andere Knoten Daten, die ihren Status zu dirty geändert haben, gemeinsam nutzen,
wird in dem Schritt 388 eine Q1-Typ-Transaktion Invalidate zu den anderen betroffenen Knoten weitergeleitet.

[0287] Infolgedessen dient der Q1-Kanal zum Transportieren von Paketen, die in ihrem zweiten „Hop" sind,
wobei der erste „Hop" das Verzeichnis ist. Die Zieladresse des zweiten „Hops" ist immer ein Prozessor, wobei
der Prozessor entweder in einem Knoten, der den ursprünglichen Befehl initiiert, ist oder in einem anderen Re-
mote-Knoten in dem System ist.

[0288] Ein Q2-Kanal transportiert entweder eine Transaktion Long Fill oder eine Transaktion Long Fill Mod.
Der Q2-Kanal transportiert die Daten aus dem dritten Knoten durch einen dritten „Hop" zurück zu dem Knoten,
der den ursprünglichen Befehl initiiert hat. Die Zuordnung der Befehle in Befehle des Q0-/Q0Vic-, Q1- und
Q2-Typs kann in einem SMP-System verwendet werden, um verklemmungsfreie Nachrichtenübermittlung in
der folgenden Art und Weise bereitzustellen. Obwohl das Flussdiagramm der Fig. 23 die Wechselwirkung zwi-
schen vier virtuellen Kanälen darstellt, können in einem Ausführungsbeispiel der Erfindung für den Zweck der
Aufrechterhaltung der Cache-Kohärenz fünf virtuelle Kanäle verwendet werden. Der zusätzliche Kanal enthält
einen QIO-Kanal. Generell trägt der QIO-Kanal alle Lese- und Schreibvorgänge, einschließlich des Steuersta-
tusregisterzugriffs (CRS-Zugriff), zu IO-Adressräumen.

[0289] Im Folgenden auf die Tabelle 2 Bezug nehmend, wird eine Liste von exemplarischen Befehls-Map-
pings in Kanalpfade bereitgestellt:
37/89

DE 698 32 943 T2 2006.06.29
[0290] Eine Implementierung von virtuellen Kanälen in einem switchbasierten System involviert die Verwen-
dung von physikalisch verschiedenen Warteschlangen, Puffern oder Pfaden für jeden Kanal. Alternativ können
die Warteschlangen, Puffer und Pfade gemeinsam von den Kanälen genutzt werden und sind infolgedessen
wirklich „virtuell". In einem Ausführungsbeispiel der Erfindung wird eine Kombination dieser Techniken verwen-
det, um die Hardware optimal auszunutzen.

[0291] Im Folgenden Bezug nehmend auf die Fig. 24, wird ein Beispiel gezeigt, wie ein Puffer von mehr als
einem virtuellen Kanal genutzt werden kann. Der gezeigte Puffer 400 enthält eine Anzahl von Schlitzen". Jeder
der Schlitze ist zur Verwendung durch nur einen der Kanäle zugeordnet. Beispielsweise umfasst der Schlitz
402 eine Anzahl von Puffereinträgen, die den Befehlen des Q2-Typs zugeordnet sind, Schlitz 404 umfasst eine
Anzahl von Puffereinträgen, die den Befehlen des Q1-Typs zugeordnet sind, usw.

[0292] Die restlichen Schlitze 410 können durch Nachrichten für jeden der Kanäle verwendet werden und
werden deshalb als gemeinsam genutzte oder generische" Schlitze bezeichnet. Für jeden Kanal ist ein Belegt-
signal bereitgestellt. Das Belegtsignal zeigt an, dass ein Puffer nicht in der Lage ist, weitere Nachrichten zu
speichern und deshalb nichts zu diesem Puffer übertragen werden sollte.

[0293] Zwischen dem Zeitpunkt, zu dem das Belegtsignal in einer gegebenen Ressource für einen gegebe-
nen Kanal aktiviert wird, und dem Zeitpunkt, zu dem die Vorrichtung, die Befehle zu dieser Ressource ausgibt,
als Antwort auf das Belegtsignal das Ausgeben einstellt, ist eine Latenzperiode. Während dieser Wartezeit ist
es möglich, dass ein Befehlspaket oder mehrere Befehlspakete zu der Ressource ausgegeben werden könn-
ten und deshalb sollte die Ressource so ausgelegt sein, dass keiner dieser Befehle fallengelassen wird.

[0294] Deshalb könnte der Empfänger, nachdem er das Belegt-Flusssteuersignal aktiviert, noch immer M
Nachrichten annehmen, wobei M in der Gleichung 3 unten definiert ist:

Gleichung 3:

M = (Flusssteuerungslatenz in Frame-Takten)/(Paketlänge in Frame-Takten)

[0295] Der Wert von „M" definiert dabei die Anzahl von pro Kanal zugeordneten Schlitzen, die verfügbar ist.

[0296] Im Folgenden Bezug nehmend auf die Fig. 25, wird ein Ausführungsbeispiel bereitgestellt, in dem vir-
tuelle Kanäle implementiert werden, die für jeden Kanal separate Ressourcen nutzen. Teile der zwei Knoten
38/89

DE 698 32 943 T2 2006.06.29
420 und 424 werden über einen hierarchischen Switch (HS) 422 zusammengekoppelt gezeigt.

[0297] Der globale Port 420 ist gekoppelt, um auf dem Bus 421a Eingangsdaten von dem hierarchischen
Switch 422 zu empfangen und um auf dem Bus 421 Daten zu dem Switch 422 zu übertragen. Gleichermaßen
ist der globale Port 424 gekoppelt, um auf dem Bus 423a Daten zu dem Switch 422 zu übertragen und auf dem
Bus 423b Daten von dem Switch 422 zu empfangen.

[0298] Die Datenbusse 421a, 421b, 423a und 423b übertragen jeder alle Kanalbefehlstypen. Ein Warte-
schlangenmechanismus, wie der Warteschlangenmechanismus 425, ist an jedem Eingangs- und Ausgangs-
anschluss jeder Ressource bereitgestellt. Der Warteschlangenmechanismus umfasst eine Anzahl von einzel-
gesteuerten Puffern 425a–425e, wobei jeder Puffer zugeordnet ist, um nur einen Typ von Kanalbefehl zu spei-
chern. Der Puffer 425a speichert nur Q0-Kanalbefehle, der Puffer 425b speichert nur Q0Vic-Kanalbefehle usw.

[0299] Während die Befehlspakete an der Schnittstelle jeder Ressource empfangen werden, wird der Befehl-
styp analysiert und das Paket wird zu dem adäquaten Puffer weitergeleitet.

[0300] Wenn die Befehlspakete bereit sind, um zu dem adäquaten Prozessor oder IOP des Knotens weiter-
geleitet zu werden, werden sie von dem adäquaten Puffer ausgewählt und über den Verteilerbus und den QSA
(Fig. 6) weitergeleitet. Fünf Suchmaschinen, eine für jeden Kanal, sind vorhanden, um die nächste Nachricht
für den jeweiligen Kanal zu lokalisieren.

[0301] In dem oben beschriebenen Schema wird jeder Kanal einzeln flussgesteuert und systemdurchgängig
ist außer für den niedrigsten Kanal ein Schlitz für jeden Kanal in der Hierarchie reserviert. Dies garantiert, dass
ein Kanal nie auf Grund von Ressourcenabhängigkeiten durch einen niedrigeren Kanal blockiert werden kann.
Die Bewegung der höheren Kanalnachrichten wird nicht auf Grund von Belegung von Ressourcen durch nied-
rigere Kanalnachrichten blockiert.

[0302] Das oben beschriebene Schema zum gemeinsamen Nutzen eines physikalischen Puffers zwischen
virtuellen Kanälen ist ein einfacheres. Ein fortgeschritteneres Schema wurde zuvor im Zusammenhang mit
dem hierarchischen Switch beschrieben.

Virtuelle Kanäle: Regeln für die Zugriffsverteilung und das Kohärenz-Protokoll-Design

[0303] Die Hardwaremechanismen allein sind nicht adäquat, um verklemmungsfreie Nachrichtenübermittlung
in dem Kohärenzprotokoll zu garantieren, weil sie sich nur dem Ressourcenabhängigkeitsteil des Problems zu-
wenden. Um alle ressourcen- und flussabhängige Zyklen zu eliminieren, wird eine Anzahl von zusätzlichen Zu-
griffsverteilungs- und Kohärenz-Protokoll-Designregeln festgelegt.

[0304] Zuerst sollte der Fortschritt einer Nachricht nicht von dem Fortschritt einer niedrigeren Kanalnachricht
abhängig sein, wobei Q2 ein Kanal höherer Ordnung ist und Q0 ein Kanal niedriger Ordnung ist. Die Verteiler
sollten die Flusssteuerung jedes Kanals unabhängig von den anderen steuern. Wenn beispielsweise für Q1
ein Belegt-Flusssteuersignal aktiviert ist, jedoch für Q2 nicht, sollten die Verteiler Q2 Fortschritt machen lassen.
Alle Suchmaschinen, die verwendet werden, um eine Ressource für ausstehende Befehlspakete zu suchen,
müssen dieselbe Eigenschaft sicherstellen.

[0305] Zweitens, jede Ressource, die von zwei oder mehr Kanälen gemeinsam genutzt wird, muss einige zu-
geordnete Schlitze für jeden der höheren Kanäle inkorporieren und sollte den Kanälen höherer Ordnung er-
möglichen, Fortschritt zu machen, wenn Kanäle niedriger Ordnung blockiert sind.

[0306] Drittens, alle Kanalbefehle müssen konsistent arbeiten. Der Endpunkt eines Q0-Befehls ist immer ein
Verzeichnis. Der Endpunkt eines Q1-Befehls und eines Q2-Befehls ist immer ein Prozessor. Wenn Transakti-
onen an einem Endpunkt fortsetzen wollen, müssen Sie sich zu einem höheren Kanal bewegen. Wenn bei-
spielsweise eine Q0-Nachricht ein Verzeichnis erreicht, kann sie keine Q0-Nachrichten generieren, sondern
muss Q1- oder Q2-Nachrichten generieren. Deshalb kann eine Nachricht nicht verzweigen oder in eine nied-
rigere Kanalnachricht konvertieren.

[0307] Für Transaktionen, die sich an anderen Punkten verzweigen, können nur Nachrichten desselben oder
eines höheren Kanals erzeugt werden. Wenn beispielsweise eine weitergeleitete Lesen-Modifizieren-Nach-
richt (eine Q1-Nachricht) eine weitergeleitete Lesen-Modifizieren-, eine Invalidate- und eine Füllen-Modifizie-
ren-Markierungsnachricht erzeugt, sind alle diese Nachrichten Q1-Nachrichten.
39/89

DE 698 32 943 T2 2006.06.29
[0308] Folglich werden eine Vorrichtung und ein Verfahren zum Bereitstellen von virtuellen Kanälen in entwe-
der einem busbasierten oder einem switchbasierten System bereitgestellt. Durch das Verwenden der virtuellen
Kanäle und der oben beschriebenen Ordnungszwänge kann garantiert werden, dass Referenzen, sobald sie
durch das Verzeichnis bedient werden, ausgeführt werden. Im Ergebnis werden die aufwendigen Protokolle
nach dem Stand der Technik, die NACKS (in denen ein Prozessor dem anderen anzeigt, dass ein Prozess nicht
ausgeführt wurde) und wiederholt ausgeführte Operationen eliminiert.

[0309] Obwohl Ausführungsbeispiele mit bis zu fünf unabhängigen Kanälen gezeigt wurden, sollte verstan-
den werden, dass ein Ausführungsbeispiel der vorliegenden Erfindung nicht auf eine gegebene Anzahl von Ka-
nälen und nicht auf ein symmetrisches Mehrprozesssystem beschränkt ist. Stattdessen sollte die ausgewählte
Anzahl von Kanälen die Anzahl sein, die zum Absichern einer kohärenten Kommunikation, die jedem Kanal
inhärenten Steuer- und Hardware-Overheads gegeben, erforderlich ist. Das Steuerverfahren für die virtuellen
Kanäle und die zugehörige Vorrichtung ermöglichen deshalb in jedem Mehrprozesssystem Hochleistungskom-
munikation ohne Verklemmung.

Betrieb der Verzeichnisse beim Aufrechterhalten der Kohärenz

[0310] Bis hierhin wurde eine Basiskommunikationsfabrik dargestellt und eine Basissteuerungsstruktur zum
Ermöglichen des freien Kommunikationsflusses zwischen Knoten in dem SMP-System wurde bereitgestellt.
Der Schlüssel für die Kohärenz ist jedoch das Sicherstellen, dass die frei fließenden Befehle von jedem der
Prozessoren in dem System in der richtigen Ordnung „behandelt" werden. Der Mechanismus, der den Seriali-
sierungspunkt für alle Befehle in dem SMP-System bereitstellt, ist das Verzeichnis in jedem Knoten.

[0311] Wie oben beschrieben, greifen alle Q0-Typ-Befehle zuerst auf das Home-Verzeichnis der bestreffen-
den Speicheradresse zu. Das Sicherstellen, dass für jeden Befehl zuerst auf das Verzeichnis zugegriffen wird,
ermöglicht, dass jeder Befehl von einer gemeinsamen Quelle in Reihenfolge gesichtet wird.

[0312] In einem Ausführungsbeispiel der Erfindung ist die Serialisierungsordnung die Ordnung, in der die
Q0-Befehle für X auf dem Verteilerbus erscheinen, nachdem sie aus dem Verzeichnis die Zugriffsverteilung für
die Adresse X gewonnen haben. Ein Befehl des Ladetyps wird festgelegt, wenn der entsprechende Lesebefehl
auf das Home-Verzeichnis zugreift. Ein Befehl des Speichertyps wird festgelegt, wenn entweder der entspre-
chende Befehl Lesen/Modifizieren auf das Verzeichnis zugreift oder wenn der entsprechende Befehl
Clean-to-Dirty auf das Verzeichnis zugreift und auf dem Verteilerbus erscheint.

[0313] Als Beispiel sei vorausgesetzt, das die unten gezeigte Sequenz von zehn Befehlen durch verschiede-
ne Prozessoren (#P) zu einem gemeinsamen Home-Verzeichnis ausgegeben wird, wobei Xi der Teil der Ca-
che-Zeile X ist.

[0314] Die Version der Cache-Zeile wird im Ergebnis jedes Speichervorgangs aktualisiert. Infolgedessen er-
zeugt der Befehl eins die Version eins, der Befehl fünf erzeugt die Version zwei, der Befehl sechs erzeugt die
Version drei und der Befehl zehn erzeugt die Version vier.

[0315] Die Serialisierungsordnung stellt sicher, dass jede Sequenz von Ereignissen, die das Verzeichnis er-
reicht; die richtige Version jeder Cache-Zeile X erhält. Beispielsweise sollten die Befehle zwei bis einschließlich
vier die Version eins erhalten. Wenn der Befehl fünf des Prozessors P1 die Speicherung durchführt, sollte er
alle Invalidate-Nachrichten zu allen Versionen einer Cache-Zeile (in den Prozessoren P2, P3 und P5) senden.
Gleichermaßen sollte er, wenn der Befehl sechs des Prozessors P2 X mit den Daten der Version drei aktuali-

Tabelle 4

1 P1: Speichere X1 (1)
2 P2: Lade X1

3 P3: Lade X1

4 P5: Lade X1

5 P1: Speichere X2 (2)
6 P2: Speichere X1 (3)
7 P4: Lade X1

8 P5: Lade X2

9 P6: Lade X1

10 P2: Speichere X1 (4)
40/89

DE 698 32 943 T2 2006.06.29
siert, die Daten der Version zwei des Prozessors P1 Invalidate unterziehen. Die Prozessoren P4, P6 und P7
erhalten die Daten der Version drei, die später durch die Speicherung des Prozessors P8 der Daten der Version
vier Invalidate unterzogen werden.

[0316] Es genügt festzustellen, dass in einem System zu jeder gegebenen Zeit eine Anzahl von Last- und
Speichervorgängen für eine gemeinsame Cache-Zeile X im Gang sein kann. Das System behandelt diese Be-
fehle in einer solchen Art und Weise, dass die Lasten und Speicherungen durch das Verzeichnis in einer seri-
alisierten Ordnung weiterverarbeitet werden.

[0317] Zum Sichern der Aufrechterhaltung der System-Serialisierungsordnung und gleichzeitig der Aufrecht-
erhaltung der Datenkohärenz wird eine Anzahl von Techniken verwendet. Diese Techniken umfassen das strik-
te Ordnen von Q1-Kanalbefehlen, von CTD-Eindeutigkeiten, von Shadow-Befehlen, von Fill Markern und von
Victim-Schreibverzögerungspufferung. Im Folgenden wird jede Technik detailliert beschrieben.

Q1-Kanalordnung

[0318] Die erste Maßnahme, die ergriffen wird, um die Kohärenz aufrechtzuerhalten, ist sicherzustellen, dass
sich alle Nachrichten, die sich auf dem Q1-Kanal bewegen, d. h. jene, die von dem Verzeichnis gesendet wer-
den, in einer FIFO-Ordnung bewegen. Das bedeutet, dass die Nachrichten des Q1-Typs, die von dem Ver-
zeichnis zu einem anderen Prozessor oder dem IOP weitergeleitet werden, in der Ordnung weitergeleitet wer-
den, in der die Befehle in dem Verzeichnis serialisiert wurden.

[0319] Als Beispiel wird in dem exemplarischen Teilsystem der Fig. 26 vorausgesetzt, dass der erste Prozes-
sor P1 (431) in dem Knoten 430 eine Cache-Zeile X dirty in seinem Cache speichert. Der Prozessor P16 (433)
in dem Knoten 432 gibt einen Befehl X Lesen auf dem Q0-Kanal aus, der zu dem Home-Verzeichnis 437 in
dem Knoten 436 weitergeleitet wird. Ebenso gibt der Prozessor P17 in dem Knoten 432 einen Inaval-to-Dir-
ty-Befehl auf dem Kanal Q0 aus, der ebenso zu dem Home-Verzeichnis 437 von X in dem Knoten 436 weiter-
geleitet wird. Als Antwort auf das Empfangen des Befehls X Lesen wird in Überseinstimmung mit dem Ver-
zeichniseintrag auf dem Q1-Kanal ein weitergeleiteter Befehl X Lesen zu dem Prozessor P1 (431) gesendet.
Als Antwort auf das Empfangen des IDTs wird in Übereinstimmung mit dem Status des Verzeichniseintrages
ein Invalidate-Befehl zu dem hierarchischen Switch 435 gesendet, der die weitergeleiteten Invalidate-Befehle
auf dem Kanal Q1 zu dem Prozessor P1 und Prozessor P16 weiterleitet.

[0320] Infolgedessen werden gleichzeitig ein Inval-X-Befehl und ein weitergeleiteter Befehl X Lesen als
Q1-Kanalbefehle zu dem P1 gesendet.

[0321] Wenn den Befehlen auf dem Kanal Q1 ermöglicht würde, außerhalb der Reihenfolge ausgeführt zu
werden, könnte eintreten, dass Invalidate vor dem Read erfolgt. Als Folge dessen würden die Fill-Daten nicht
zu dem Prozessor 16 gesendet werden und alle weiteren Vorgänge würden unberechenbar sein.

[0322] Durch das Halten der Befehle auf dem Q1-Kanal in Ordnung, wird der Read-Befehl durch den P1 vor
dem Empfang des Invalidate-Befehls behandelt und die Kohärenz bleibt aufrechterhalten.

[0323] In einem Ausführungsbeispiel der Erfindung wird die FIFO-Ordnung nur für einen Kanal Q1 aufrecht-
erhalten, wobei die FIFO-Ordnung bedeutet, dass alle Nachrichten, die derselben Speicheradresse entspre-
chen, in der FIFO-Ordnung bleiben. Die vorliegende Erfindung ist jedoch nicht darauf beschränkt, lediglich die
Ordnung für den Q1-Kanal aufrechtzuerhalten, sondern kann erweitert werden, um das Aufrechterhalten von
Ordnung für jede Kombination von Kanälen zu umfassen.

[0324] Eine Methode zum Implementieren der oben beschriebenen Ordnungsprozedur wird durch den
QS-Verteiler 11 in dem QSA-Chip (Fig. 6) durchgeführt. Der QS-Verteiler serialisiert alle Q0-Transaktionen zu
dem Speicherraum des Knotens. Im Ergebnis wird ein serieller Fluss von Q1-Paketen erzeugt, der über den
globalen Port und den hierarchischen Switch sowohl zu dem lokalen Prozessor in dem Knoten als auch zu Pro-
zessoren, die dezentral zu dem Knoten sind, gerichtet ist.

[0325] Die erste Ordnungsregel sagt Folgendes aus: Alle Q1-Pakete, die durch einen gegebenen QS-Vertei-
ler erzeugt werden, werden in serieller Ordnung erzeugt. Alle Prozessoren, auf die einige oder alle der Q1-Pa-
kete von einem gegebenen QS-Verteiler zielen, empfangen diese Q1-Pakete in der Reihenfolge, in der diese
durch den QS-Verteiler generiert wurden.
41/89

DE 698 32 943 T2 2006.06.29
[0326] Um diese Regel zu abzusichern, hält der QSA-Chip die Ordnung bei allen Q1-Paketen aufrecht, die
zu und von einem gekoppelten Prozessor in dem Knoten übertragen werden. Die Logik in dem globalen Port
hält die FIFO-Ordnung bei allen Paketen aufrecht, die zwischen dem hierarchischen Switch und dem
QSA-Chip übertragen werden. Zusätzlich hält der hierarchische Switch Ordnung bei allen Q1-Paketen von je-
dem gegebenen Eingang zu jedem gegebenen Ausgang aufrecht.

[0327] Es ist zu beachten, dass diese Regel keine bestimmte Ordnung zwischen Q1-Paketen von einem
QS-Verteiler und Q1-Paketen von dem QS-Verteiler eines anderen Knotens zuweist. Die Q1-Pakete, die von
anderen Knoten empfangen werden, werden über den hierarchischen Switch mit den Q1-Paketen die durch
den Home-Knoten erzeugt werden, wie folgt serialisiert: Alle Q1-Pakete, die auf Prozessoren in Remote-Kno-
ten zielen, werden durch den QS-Verteiler der Remote-Knoten weiterverarbeitet. Diese Q1-Pakete werden
durch den hierarchischen Switch mit durch den Remote-Knoten erzeugten Q1-Paketen serialisiert. Alle Emp-
fänger von Q1-Paketen von einem gegebenen QS-Verteiler müssen die Q1-Pakete in derselben Ordnung, in
der sie in dem QS-Verteiler serialisiert wurden, empfangen.

[0328] Im Folgenden Bezug nehmend auf die Fig. 27A, wird ein Blockdiagramm gezeigt, dass das Ordnen
einer Anzahl von Q0- und Q1-Befehlen, die durch das SMP gemäß den oben beschriebenen Ordnungsrichtli-
nien weiterverarbeitet werden, dargestellt. Es sei vorausgesetzt, dass der Px in Knoten 440 einen Befehl Q0a
ausgibt, Prozessor Py einen Befehl Q0b ausgibt und Prozessor Pz einen Befehl Q0c ausgibt. Gleichzeitig da-
mit empfängt der QS-Verteiler 441 von dem globalen Port 443 Q1-Nachrichten von den Prozessoren Pr und
Pq.

[0329] Diese Nachrichten werden wie folgt geordnet: Der QS-Verteiler 441 verarbeitet den Q0a, den Q0b und
den Q0c weiter, um Q1a-, Q1b- und Q1c-Antworten zu erzeugen. Diese Erzeugten Q1-Befehle werden mit den
eingehenden Q1-Befehlen kombiniert, um einen geordneten Fluss von Befehlen zu dem FIFO 442 zum Wei-
terleiten zu den lokalen Prozessoren bereitzustellen. Die Ordnung der FIFO-Befehle reflektiert die Ordnung der
durch den QS-Verteiler weiterverarbeiteten Befehle.

[0330] Die Q1a-, Q1b- und Q1c-Befehle werden zu dem globalen Port 443 zur Übertragung zu einem Remo-
te-Knoten weitergeleitet. Der Ausgangspuffer 444 des globalen Ports speichert diese Befehle in derselben Ord-
nung, in der sie durch den QS-Verteiler weiterverarbeitet wurden. Diese Ordnung wird durch den hierarchi-
schen Switch 446 unter Verwendung der Methoden, die oben in Bezug auf die Fig. 14–Fig. 19 beschrieben
wurden, aufrechterhalten, wählend die Nachrichten zu der Remote-CPU 454 weitergeleitet werden.

[0331] Die Fig. 27A stellt außerdem weitere Ordnungsrichtlinien, die in dem hierarchischen Switch gelten,
dar. Wie zuvor erwähnt, erhält der hierarchische Switch die Ordnung durch das Sicherstellen aufrecht, dass
mehreren Paketen, die an einem gegebenen Eingangsport des hierarchischen Switchs erscheinen und die auf
einen gemeinsamen Ausgangsport des hierarchischen Switchs zielen, in derselben Ordnung an dem Aus-
gangsport erscheinen, in der sie an dem Eingangsport erschienen sind.

[0332] Im Folgenden Bezug nehmend auf die Fig. 27B, ist der hierarchische Switch, wie oben beschrieben,
für das Multicasting von Eingangsnachrichten, d. h. das Senden eines empfangenen Q1-Pakets zu mehr als
einem Zieladressenknoten, verantwortlich. Ein Beispiel eines Pakets, dass durch den Switch massenversen-
det wird, ist das Invalidate-Paket. Wenn mehrere Pakete, die von verschiedenen hierarchischen Switch-Ports
eingegeben werden, zu gemeinsamen Ausgangsports massenversendet werden, sollten die Q1-Pakete in der-
selben Ordnung an allen Ausgangsports erscheinen. Wenn beispielsweise sowohl Paket eins als auch Paket
zwei an dem hierarchischen Switch 460 empfangen wurden, dann ist eine zulässige Methode des Multicastings
der zwei Nachrichten zu den Prozessoren 464 und 466, dass die Nachricht zwei beide Prozessoren vor der
Nachricht eins erreicht. Eine weitere zulässige Methode wäre, beide Nachrichtenpakete eins beide Prozesso-
ren vor den Nachrichtpaketen zwei erreichen zu lassen. Jedoch sollten beide Prozessoren die Nachrichten
nicht in einer verschiedenen Ordnung empfangen.

[0333] Eine weitere Ordnungsregel, die der hierarchische Switch zu befolgen hat, ist sicherzustellen, dass,
wenn geordnete Listen von Q1-Paketen von mehreren Eingangsports auf gemeinsame Ausgangsports zielen,
die Q1-Pakete an den Ausgangsports in einer Art und Weise erscheinen, die mit einer einzelnen gemeinsamen
Ordnung aller eingehenden Q1-Pakete konsistent ist.

[0334] Beispielsweise wird in der Fig. 27C in dem Eingangsport 461 Paket zwei vor Paket vier empfangen.
Gleichermaßen wird in dem Eingangsport 462 Paket eins vor Paket drei empfangen. Die Gesamtordnung die-
ser Befehle muss zur Vermeidung von Verklemmung aufrechterhalten werden. Eine zulässige Ordnung die
42/89

DE 698 32 943 T2 2006.06.29
Ausgangspakete bereitzustellen, ist, das Paket drei zuerst zu dem Knoten 464 übertragen zu lassen und Paket
eins zuerst zu dem Knoten 466 übertragen zu lassen. Diese Übertragung wird in der Fig. 27C dargestellt. Eine
weitere zulässige Ausgabe wäre, die Pakete zwei und vier zuerst durch den Empfängerprozessor empfangen
zu lassen. Wenn jedoch ein Prozessor das Paket drei zuerst empfängt und ein weiterer Prozessor zuerst das
Paket vier empfängt, dann kann Verklemmung eintreten, während die blockierten Prozessoren den Empfang
ihrer weiteren Pakete ihrer Originalsequenz erwarten.

[0335] Deshalb werden Regeln bereitgestellt, die sicherstellen, dass die Ordnung in dem Q1-Kanal aufrecht-
erhalten bleibt. In einem Ausführungsbeispiel der Erfindung ist aus Leistungsgründen erwünscht, zu ermögli-
chen, die Q0- und Q2-Pakete außerhalb der Ordnung weiterzuverarbeiten. Um Datenkohärenz sicherzustel-
len, werden mehrere Kohärenzmechanismen bereitgestellt, die im Folgenden beschrieben werden.

Change to Dirty Eindeutigkeit

[0336] Wie oben erwähnt, werden nur die Befehle des Q1-Typs in einer Serialisierungsordnung in dem Ver-
zeichnis definiert. In einem Ausführungsbeispiel der Erfindung sind die Q0- und Q2-Befehle nicht geordnet. Da-
her werden Sicherheitsmaßnahmen ergriffen, um sicherzustellen, dass in dem Verzeichnis im Ergebnis des
relativen Timings der empfangenen Q0- und Q2-Befehle keine Kohärenzprobleme entstehen.

[0337] Ein Kohärenzproblem, das entsteht, resultiert aus der Struktur der Verzeichniseinträge. Wie in der
Fig. 9 gezeigt, enthält jeder Verzeichniseintrag ein Besitzerfeld und ein Präsenzbit für jeden Knoten. Das Prä-
senzbit ist ein Grobvektor, der das Vorhandensein von Daten in einem der vier Prozessoren des zugehörigen
Knotens darstellt. Arbeitsschritte durch jeden der vier Prozessoren können dazu führen, dass das Präsenzbit
gesetzt wird. Infolgedessen besteht eine bestimmte Mehrdeutigkeit, in welchem Prozessor in dem Knoten das
Präsenzbit gesetzt ist. Diese Mehrdeutigkeit kann in bestimmten Fällen zu Kohärenzproblemen führen.

[0338] Im Folgenden als Beispiel Bezug nehmend auf die Fig. 28A und Fig. 28B, wird ein Blockdiagramm
von zwei Knoten 470 und 472 gezeigt. Der Knoten 470 (Knoten-ID drei des globalen Systems) enthält die Pro-
zessoren P12, P13, P14 und P15, während der Knoten 472 (Knoten-ID sieben des globalen Systems) die Kno-
ten P28, P29, P30 und P31 enthält.

[0339] Der Status des Verzeichniseintrags für eine gegebene Cache-Zeile X in verschiedenen Zeitperioden
T0–T3 ist in der Verzeichnisstatustabelle 455 in der Fig. 28B angegeben. in diesem Beispiel ist der Home-Kno-
ten jeder Cache-Zeile X ein anderer Knoten als der Knoten 470 oder 472.

[0340] Zu der Zeit T0 ist der Speicher der Besitzer der Cache-Zeile X, wie durch die Besitzer-ID 80 angezeigt.
Außerdem speichert zu der Zeit T0 der Prozessor 30 an der Knoten-ID sieben eine Clean-Kopie der Ca-
che-Zeile X.

[0341] Zu der Zeit T1 sendet Prozessor 14 einen Speicherbefehl, der in den Block Read X Mod translatiert ist
und zu dem Home-Verzeichnis der Cache-Zeile X weitergeleitet wird. Weil der Speicher Besitzer ist, kann der
Prozessor 14 die Daten aus dem Speicher erhalten und wird Besitzer der Cache-Zeile. Zu Knoten sieben wird
eine Invalidate-Nachricht übertragen, um die ältere Version der Cache-Zeile X ungültig zu machen, und das
Präsenzbit von Knoten sieben wird gelöscht. Zusätzlich setzt Prozessor P14 sein Knotenpräsenzbit 456 (Bit
drei). Die Cache-Zeile X wird von dem Home-Speicher zum Speichern und zum Modifizieren an den Prozessor
14 gesendet.

[0342] Zu der Zeit T2 gibt ein weiterer Prozessor, wie zum Beispiel der Prozessor 31, einen Read-Befehl für
Cache-Zeile X aus. Der Lesebefehl erhält die Daten über einen Fill von dem Prozessor P14. Infolgedessen
zeigt das Verzeichnis zu der Zeit T2 an, dass sowohl die Knoten-ID drei (Prozessor 14) als auch die Knoten-ID
sieben (Prozessor 31) eine Kopie der Cache-Zeile X speichern, wie durch die Knotenpräsenzbits 458 und 456
angezeigt.

[0343] Wenn zu einer Zeit T3 durch den Prozessor P30 ein CTD ausgegeben wird, ist der Status der Ca-
che-Zeile X, von verschiedenen Prozessoren in dem System aus gesehen, aus dem folgenden Grund nicht
kohärent. Wenn der CTD das Verzeichnis erreicht, liest er den Verzeichniseintrag für X und bestimmt, dass das
Präsenzbit 458 für seinen Knoten, Knoten-ID sieben, bereits eingerichtet ist. Im Ergebnis setzt der Prozessor
P30 anschließend voraus, dass seine CTD-Anforderung erfolgreich war. Der Prozessor 30 annulliert die Kopie
der Cache-Zeile X des Prozessors 14 und aktualisiert das Besitzerfeld in dem Verzeichnis. Diese Handlung
kann zu unberechenbaren Ergebnissen führen, da der Prozessor P14 eine aktuellere Version der Daten als
43/89

DE 698 32 943 T2 2006.06.29
der Prozessor P30 speichert.

[0344] Ein Problem ist, dass der Prozessor 30 noch immer eine veraltete Version der durch den Prozessor 14
erzeugten Cache-Zeile speichert und dass Prozessor 14 mitgeteilt wurde, die aktuellste Version der Daten zu
annullieren. Eine derartige Situation könnte ernsthafte Kohärenzprobleme innerhalb des SMP-Systems verur-
sachen.

[0345] Zum Korrigieren des oben beschriebenen Problems sind einige Methoden dienlich. Eine Methode ist,
das Präsenzfeld des Verzeichniseintrags zu erweitern, um ein Bit für jeden Prozessor in dem System bereitzu-
stellen. Infolgedessen wird die Auflösung von der Knotenebene in die Prozessorebene geändert. Diese Auflö-
sung würde jedoch die Größe des Verzeichnisses unerwünscht vergrößern.

[0346] Ein Ausführungsbeispiel der Erfindung stellt eine einfachere Methode zum Verhindern des oben be-
schriebenen Eindeutigkeitsproblems durch das Verlangsamen der CTD-Befehle, wenn eine ausstehende Re-
ferenz zu derselben Adresse im Transit für diesen Knoten ist, bereit. Wenn eine ausstehende Anforderung für
dieselbe Adresse vorhanden ist, wird der CTD zurückgehalten, bis diese vorhergehende Anforderung zurück-
gezogen wird. Das Transaktions-Tracking-Verzeichnis (TTT) der Fig. 10 eines gegebenen Knotens wird ver-
wendet, um ausstehende Globalreferenzen für diesen Knoten zu überwachen. Zusätzlich sind Anforderungen,
die empfangen werden, nachdem der CTD empfangen wurde, fehlgeschlagen.

[0347] Wie unter Bezugnahme auf die Fig. 10 beschrieben, ist das TTT eine vollständig assoziative, mehr-
funktionale Steuerstruktur. Das TTT führt zwei Hauptaufgaben aus. Es speichert die Adressen aller Remo-
te-Referenzen, die durch den ihnen zugehörigen Knoten ausgegeben werden. Infolgedessen speichert das
TTT einen Informationseintrag für jeden Remote-Zugriff, der durch einen Knoten ausgegeben wird, bis die
Transaktion als ausgeführt betrachtet wird. Zusätzlich stellt das TTT in Reaktion auf Anforderungen zu lokalen
Adressen Kohärenzinformationen in Bezug auf die transitiven Kohärenzzustände bereit. Folglich ist das TTT
ein Verzeichnis zum Verfolgen des Status der Zugriffe, während diese im Transit sind.

[0348] Andere Prozesssysteme ermöglichen einer Referenz zu jeder gegebenen Cache-Zeile, zu jedem Zeit-
moment im Transit zu sein. Darauf folgende Referenzen zu einer Cache-Zeile im Transit werden blockiert, bis
die Referenz im Transit ausgeführt ist.

[0349] Im Gegensatz dazu ermöglicht das SMP der vorliegenden Erfindung, auf Grund der Serialisierung der
Befehle in dem Verzeichnis und der Kanalordnungsregeln; dass zu jedem gegebenen Zeitpunkt mehrere Re-
ferenzen zu derselben Cache-Zeile im Umlauf sind. Im Ergebnis wird die Gesamtleistung des SMP-Systems
verbessert.

[0350] Das TTT 522 wird durch die Logik in dem QSA-Chip verwendet, um den Status der Transaktionen fest-
zustellen, die über den globalen Port ausgegeben wurden. Bevor er die Antwort zu dem globalen Port ausgibt,
greift der QSA erst auf das TTT zu, um festzustellen, welche Referenzen zu derselben Cache-Zeile ausste-
hend sind. Eine Referenz steht aus, wenn sie in Reaktion auf die letzte empfangene Transaktion nicht aus dem
TTT zurückgezogen wurde.

[0351] Wie eine Referenz aus dem TTT zurückgezogen wird, ist von dem Typ der Referenz, der in dem Be-
fehlsfeld 584 angezeigt wird, abhängig. Beispielsweise erfordern Referenzen Read X, die bis zu dem globalen
Port zur Speicherung in dem TTT gekommen sind, dass sowohl das Statusbit Fill Here 588a als auch das Sta-
tusbit Fill Marker Here 588b zu empfangen sind. (Fill Marker werden unten ausführlicher beschrieben.) Für Re-
ferenzen des Statustyps, wie zum Beispiel CTD oder ITD, ist das Setzen des ACK/NACK-Bits 588c in das TTT
ausreichend, um diesen Eintrag zurückzuziehen.

[0352] Im Folgenden Bezug nehmend auf die Fig. 29, stellt ein Flussdiagramm die Verwendung des TTTs
zum Eliminieren von mehrdeutigen Verzeichniseinträgen dar. In dem Schritt 500 wird eine Cache-Zeile in dem
Speicher in ihrem Home-Knoten gespeichert und der Prozessor 30 des Knotens sieben speichert eine Kopie
der Daten. In dem Schritt 502 wird durch den Prozessor P14 ein ReadMod X ausgegeben. Im Ergebnis wird
Invalidate zu dem Knoten sieben weitergeleitet. In dem Schritt 504 gibt der Prozessor P31 einen Befehl Rd X
aus, der einen Eintrag in dem TTT in dem Knoten sieben mit dem folgenden Status erzeugt.
44/89

DE 698 32 943 T2 2006.06.29
[0353] In dem Schritt 506 gibt der Prozessor P30 einen CTD X aus. Der QSA-Chip prüft die Adresse der
CTD-Anweisung, bestimmt, dass er ein Remote-CTD ist, und leitet ihn zu dem globalen Port und über den
GP-Link zu dem TTT weiter. Der Inhalt des TTTs ist dann wie unten gezeigt.

[0354] Wie in Bezug auf die Fig. 6 erwähnt, nutzt der globale Port die Informationen aus dem TTT, um fest-
zustellen, welche Befehle zum Senden aus dem hierarchischen Switch heraus zugelassen sind. In einem Aus-
führungsbeispiel der Erfindung wird der globale Port, wenn das TTT bestimmt, dass ein hängiges Read im
Transit ist, vom Weiterleiten der CTD zu dem Switch ausgeschlossen, bis die Leseergebnisse zurückgesendet
wurden.

[0355] In dem in dem Flussdiagramm der Fig. 29 beschriebenen Beispiel wird durch das TTT eine ausste-
hende Leseanforderung zu der Adresse X identifiziert. Im Ergebnis wird in dem Schritt 508 der CTD aufgehal-
ten, bis der Read-Befehl nicht länger ausstehend ist.

[0356] Der Read steht aus, bis sowohl ein Fill als auch ein Fill Marker zu dem Knoten sieben zurückgesendet
sind. Während dieser Zeitperiode erreicht die durch den ReadMod in dem Schritt 502 ausgegebene Invalida-
te-Nachricht den Knoten sieben und aktualisiert die DTAGs des jeweiligen Knotens. Wenn die Invalidate-Nach-
richt für X das TTT erreicht, markiert das TTT jeden CTD, der in der TTT gehalten wird, als fehlgeschlagen und
er wird sofort freigegeben. Wenn in dem Schritt 510 der CTD noch immer in dem TTT ist, wird er über den
globalen Port gesendet.

[0357] Dementsprechend können durch das Verwenden des TTTs zum angemessenen Aufhalten von fehlge-
schlagenen CTD-Befehlen durch Mehrdeutigkeit der Präsenzbits in dem Verzeichnis verursachte Kohärenz-
probleme eliminiert werden.

Fill Marker

[0358] Die meisten Antworten zu einem Prozessor sind in dem Q1-Kanal und werden infolgedessen gemäß
den oben beschriebenen Regeln in Ordnung gehalten. Jedoch unterliegen Nachrichten, die auf dem Q2-Kanal
empfangen werden, diesem Ordnungszwang nicht. Die Nachrichten des Q2-Typs enthalten Fills und Fill Mo-
difies.

[0359] Weil die Ankunft von Nachrichten des Q2-Typs nicht die Serialisierungsordnung, die im Verzeichnis
vorhanden ist, reflektiert, ist in den Antwortdaten eine potenzielle Mehrdeutigkeit vorhanden. Wenn beispiels-
weise ein Invalidate auf dem Kanal Q1 unterwegs ist und ein FillMod auf dem Q2, sollte es eine Methode zum
Bestimmen geben, welcher Arbeitsschritt zuerst zu erfolgen hat, damit die Kohärenz aufrechterhalten werden
kann.

[0360] Im Folgenden Bezug nehmend auf die Fig. 30, werden beispielsweise zwei Knoten, 520 und 530, ge-
zeigt. Es werden nur die Teile der Knoten gezeigt, die für den Zweck der Erklärung gebraucht werden.

[0361] Es sei vorausgesetzt, dass der Prozessor P2 (524) und der Prozessor P4 (534) eine Kopie der Ca-
che-Zeile X speichern. Der Home-Knoten der Cache-Zeile X ist der Knoten 532.

[0362] In der folgenden Beschreibung werden die Kanäle, die durch die folgenden Pakete verwendet werden,
durch das Verwenden verschiedener Linien angezeigt. Die Q0-Befehle sind durch einfache Pfeillinien ange-
45/89

DE 698 32 943 T2 2006.06.29
zeigt, Q1-Befehle sind durch doppelte Pfeillinien angezeigt und Q2-Befehle sind durch gestrichelte Pfeillinien
angezeigt.

[0363] Vorausgesetzt, der Prozessor P4 gibt einen CTD X aus, um den exklusiven Besitz der Cache-Zeile X
zu erhalten. Als Antwort gibt das Verzeichnis 542, gemäß den Verzeichnispräsenzbits und dem DTAG (nicht
gezeigt), einen Invalidate-Befehl zu Knoten 520 aus. Dieser Invalidate wird den DTAG in dem Knoten 520 auf
dem Kanal Q1 aktualisieren und einen Invalidate-Probe zu allen Prozessoren (hier Prozessor P2), die eine Ko-
pie haben, senden.

[0364] Der Prozessor P1 gibt dann einen ReadMod X zu dem Home-Verzeichnis 542 von X aus. Wie oben
erwähnt, ist X aktuell im Besitz des Prozessors P4 und deshalb wird gemäß dem Kohärenz-Protokoll ein wei-
tergeleiteter ReadMod X zu dem Prozessor P4 weitergeleitet. Als Antwort gibt Prozessor P4 einen FillMod zu
Prozessor P1 auf dem Q2-Kanal aus.

[0365] Weil die Kommunikation auf dem Q2-Kanal nicht mit der Q1-Kommunikation serialisiert ist, besteht
eine Möglichkeit, dass der Q2-FiflMod den Prozessor P1 vor dem Invalidate von CTD X den Knoten 520 er-
reicht. Der Effekt würde sein, dass gültige Daten in den Cache des P1 geschrieben werden würden, jedoch
bald danach die DTAGs eingerichtet werden würden, um jede Kopie von X in dem Knoten zu annullieren, und
ein Invalidate würde zu P2 und zu P1 gesendet werden. Der Invalidate entspricht jedoch nur der Version in P2
und nicht der späteren in P1. Das System würde jetzt in einem nicht kohärenten Zustand sein. Das Verzeichnis
544 zeichnet P1 als den Besitzer auf, obwohl P1 Invalidate unterzogen wurde.

[0366] Ein Ausführungsbeispiel der Erfindung überwindet dieses Problem durch Verwenden von Fill Markern
und des TTTs (Fig. 10) in dem globalen Port jedes Knotens.

[0367] Ein Fill Marker oder ein Fill Marker Mod ist ein Paket, das in Reaktion auf eine Anforderung Read oder
ReadMod für Daten, die aktuell nicht in dem Speicher in dem Home-Knoten gespeichert sind, erzeugt wird.
Das bedeutet, der Fill Marker oder der Fill Marker Mod wird gleichzeitig wie der weitergeleitete Read oder der
weitergeleitete Read Mod erzeugt. Infolgedessen sind Fill Marker und Fill Marker Mods Q1-Kanalbefehle.
Während der weitergeleitete Read oder weitergeleitete Read Mod zu dem Prozessor, der eine Cache-Zeile
speichert, weitergeleitet werden, ist die Zieladresse des Fill Markers oder Fill Marker Mods der Prozessor, von
dem der ursprüngliche Read oder Read Mod stammt.

[0368] Die Fill Marker ermöglichen dem Absenderprozessor, die Serialisierungsordnung, die in dem Verzeich-
nis eintritt, festzustellen. Im Folgenden Bezug nehmend auf die Fig. 31, hilft die Anwendung von Fill Markern
dem oben dargestellten Problem wie folgt ab. Wie zuvor sei angenommen, dass der Prozessor 53A einen CTD
X zu dem Home-Verzeichnis von X ausgibt, was dazu führt, dass ein Invalidate 550 auf dem Q1-Kanal zu dem
Knoten 520 gesendet wird.

[0369] Wenn der Prozessor P1 (522) den Read Mod X zu dem Remote-Verzeichnis ausgibt, wird für diese
Anforderung ein TTT-Eintrag generiert. Ein beispielhafter TTT-Eintrg für diese Anforderung ist in der Fig. 32
gezeigt. Es ist zu beachten, dass der TTT-Eintrag kein Statusbit Fill Here und Fill Marker Here enthält. Jedes
dieser Bits wird in Reaktion auf das repräsentative Paket, das an dem globalen Port des Knotens 520 empfan-
gen wird, gesetzt. Der TTT-Eintrag wird nicht gelöscht, bis sowohl der Fill als auch der Fill Marker zurückge-
sendet sind.

[0370] Wieder Bezug auf die Fig. 31 nehmend, wird der Read Mod X von dem Prozessor 522 in einem Frd-
Mod X zu dem Prozessor 53A resultieren. Gleichzeitig wird auf dem Kanal Q1 ein Fill Marker Mod X 552 zurück
zu dem Prozessor P1 weitergeleitet. Sowohl der Invalidate als auch der Fill Mod Marker sind auf demselben
Q1-Kanal.

[0371] Vorausgesetzt, der Fill Mod 554 auf dem Kanal Q2 erreicht den Knoten 520 vor dem Invalidate. In Re-
aktion auf das Zurücksenden entweder des Fill Mods oder des Fill Mod Markers wird der Duplicate-Tag-Status
in globalen Referenzen aktualisiert. Infolgedessen veranlasst der Fill Mod, dass der DTAG-Status für X aktua-
lisiert wird, um den Besitz von X durch den Prozessor 1 zu reflektieren.

[0372] Angenommen, der Invalidate 550 ist der nächste Befehl, der den Knoten 520 erreicht. Auf das TTT
wird zugegriffen, um den Status des weitergeleiteten Befehls Read festzustellen. An diesem Punkt hat das TTT
das Bit Fill Here gesetzt, das Bit Fill Marker ist jedoch nicht gesetzt. Infolgedessen stellt das TTT eine Anzeige
in Bezug auf das relative Timing des Invalidate-Vorgangs und den Vorgang des Remote Reads bereit. Auf
46/89

DE 698 32 943 T2 2006.06.29
Grund der Serialisierung der Q1-Befehle kann abgeleitet werden, dass der Invalidate zeitlich vor dem RdMod
X von dem Prozessor 522 in dem Verzeichnis erzeugt wurde und infolgedessen der Fill Mod eine neuere Ver-
sion ist und der Invalidate nicht für die Kopie der Daten des Prozessors 522 gilt. Im Ergebnis wird der
DTAG-Eintrag für den Prozessor 1 nicht annulliert.

[0373] Obwohl das Ausführungsbeispiel oben das TTT als in dem globalen Port vorhanden zeigt, könnte ge-
mäß einem anderen Ausführungsbeispiel jeder der Prozessoren jeder der Knoten den Status von Remote-An-
forderungen zu gemeinsamen Adressen durch das Überwachen der Anforderungen in dem Verzeichnis verfol-
gen. Danach würden die Fill Marker durch das Verzeichnis zu den zugehörigen Prozessoren weitergeleitet wer-
den, anstatt lediglich zu dem TTT weitergeleitet zu werden.

[0374] Folglich ist klar, dass das TTT zwei Zwecken dienen kann. Durch das Überwachen der Befehlstypen,
die aus den Mehrprozessorknoten gesendet werden, kann das TTT das Weiterleiten bestimmter Befehle (wie
zum Beispiel des CTDs) verbieten, bis weitere Befehle zu derselben Adresse ausgeführt sind. Zusätzlich kann
das TTT, durch das Bereitstellen eines Markierungsmechanismus, der dem TTT anzeigt, wann eine Anforde-
rung in den Q2-Kanal übergegangen ist (wie der Fill Marker), verwendet werden, um eine Anzeige des relativen
Timings zwischen Befehlen, die auf verschiedenen Kanälen zurückgesendet wurden (d. h. Q2-Fill- und Q1-Be-
fehle), bereitzustellen, und kann dementsprechend Befehle ausschließen, die den Speicher beim Weiterleiten
zu einem Prozessor korrumpieren könnten.

Shadow-Befehle

[0375] Wie aus der bisherigen Beschreibung offensichtlich, sind lokale Zugriffe typischerweise wesentlich
schneller als Remote-Zugriffe. Infolgedessen wird in dem SMP-System sowohl das Erfolgen lokaler Zugriffe
als auch von Remote-Zugriffen gleichzeitig zugelassen. Jedoch kann in einigen Fällen der Vorgang eines lo-
kalen Zugriffs Verklemmungsprobleme für einen Remote-Zugriff verursachen. Im Folgenden Bezug nehmend
auf die Fig. 33A, sei beispielsweise vorausgesetzt, dass ein Prozessor 562 einen Rd X zu einer Cache-Zeile
X ausgibt. Der Home-Knoten der Cache-Zeile X ist der Knoten 560. Das Verzeichnis in dem Knoten 560 zeigt
an, dass der Prozessor 582 aktuell die Cache-Zeile X besitzt. Infolgedessen wird der weitergeleitete Rd X zu
dem Prozessor 582 gesendet.

[0376] Danach sei vorausgesetzt, dass der Prozessor 564 in dem Knoten 560 einen CTD X ausgibt. Wie zu-
vor erwähnt, ist die Cache-Zeile X zu dem Knoten 560 lokal und wenn der CTD erfolgreich ist, leitet er einen
Invalidate zu dem Prozessor P1 (und außerdem zu dem gezeigten Prozessor P5). Unter kurzer Bezugnahme
auf die Fig. 33B enthält, wie im Einzelnen in der mitanhängigen Anmeldung mit dem Titel Distributed Data De-
pendency Stall Mechanism, Anwaltnummer PD96-0149, von VanDoren u. a., mit demselben Datum wie die
vorliegende beantragt und hierin durch Bezugnahme einbezogen, jeder der Prozessoren, wie der Prozessor
P1, Logik zum Abwürgen von Probes zu einem Cache, wenn für denselben Cache-Ort ein ausstehender Le-
sebefehl vorhanden ist. Das Beispiel oben gegeben, würde der Effekt des Reads X sein, die Adresse X in der
MAF (Miss Address File) 574 zu speichern. Die Inhalte der MAF werden mit eingehenden Probes verglichen
und wenn eine Übereinstimmung zwischen der Adresse eines eingehenden Probes und der MAF vorhanden
ist, wird die Probe-Warteschlange abgewürgt.

[0377] Die Probe-Warteschlange wird freigegeben, wenn die Fill-Daten von dem Prozessor 582 zurückgesen-
det werden. Wenn jedoch Transaktionen desselben Typs (d. h. Durchführen eines Remote-Reads Y und Aus-
geben eines VTDs Y durch P6) in dem Knoten 580 erfolgen, kann die Probe-Warteschlange des Prozessors
P5 hängig der Erfüllung der Anforderung Read Y abgewürgt werden.

[0378] Wenn die P5-Probe-Warteschlange mit dem weitergeleiteten Read X von Prozessor P1 hinter dem
durch P6 erzeugten Invalidate zu derselben Zeit abgewürgt wird, zu der die P1-Probe-Warteschlange mit dem
weitergeleiteten Read Y von P5 hinter dem durch P2 erzeugten Invalidate abgewürgt wird, kann Verklemmung
eintreten.

[0379] Es sind einige Strategien vorhandenen, die dazu dienen, um dieses Verklemmungsproblem zu verhin-
dern. Erstens können alle Referenzen dezentral gemacht werden, d. h., alle Referenzen (selbst die des Ho-
me-Knotens) können zu dem Switch weitergeleitet werden, bevor sie zu dem Home-Knoten weitergeleitet wer-
den. Wenn alle Referenzen dezentral gemacht werden, dann würde, den oben dargelegten zentralen Ord-
nungsregeln entsprechend, keine Verklemmungssituation eintreten. Eine zweite Lösung ist, alle Referenzen
zu einer gegebenen Cache-Zeile abzuwürgen, sobald eine Referenz zu dieser Cache-Zeile dezentral gesendet
wird. Diese Lösungen wirken sich jedoch drastisch auf die Leistung von vorhergehenden lokalen Operationen
47/89

DE 698 32 943 T2 2006.06.29
aus und werden deshalb nicht bevorzugt.

[0380] Ein Ausführungsbeispiel der Erfindung überwindet das Verklemmungsproblem, das durch die Vermi-
schung von lokalen Referenzen und Remote-Referenzen aufgeworfen wird, durch das Verwenden von Be-
fehls-Shadowing. Sobald eine lokale Referenz zu einer Cache-Zeile X zu einem Remote-Prozessor weiterge-
leitet ist, werden anschließend alle folgenden Referenzen zu dieser Cache-Zeile dezentral zu dem hierarchi-
schen Switch weitergeleitet, um zentral geordnet zu werden, bis die lokalen Referenzen und alle darauf folgen-
den Referenzen dieser Cache-Zeile ausgeführt wurden. Infolgedessen veranlasst jede frühere Referenz zu ei-
ner Cache-Zeile, die noch immer beschattet wird, dass die gegenwärtige Referenz zu der Cache-Zeile ebenso
beschattet wird.

[0381] Im Folgenden Bezug nehmend auf die Fig. 34 und Fig. 35, wird das Beispiel oben mit der Verwendung
von Shadow-Befehlen beschrieben. Die Fig. 35 stellt die Inhalte des TTTs für dieses Beispiel dar. Zuerst gibt
der Prozessor P1 einen Rd X zu dem Verteiler aus. Dies resultiert, wie zuvor, in einen Frd X zu Prozessor P5,
der in der TTT aufgezeichnet wird. Darauf folgend gibt Prozessor P2 einen CTD X zu dem Verteiler aus. Der
Verteiler untersucht das TTT, stellt fest, dass ein ausstehender lokaler Read zu einem Remote-Prozessor wei-
tergeleitet ist und leitet den Invalidate X aus dem globalen Port zu dem Prozessor P5 weiter. Um diesen Vor-
gang zu reflektieren, wird außerdem ein Eintrag in dem TTT erzeugt, wobei ein Shadow-Bit gesetzt wird.

[0382] Gleichzeitig findet in dem Knoten 580 eine gleichartige Serie von Transaktionen statt. Der Prozessor
P5 gibt einen Rd Y aus, der zu dem Knoten 560 weitergeleitet wird und durch Enthalten der P5-Adresse in dem
TTT angemeldet wird. Der Prozessor P6 gibt darauf folgend einen CTD Y aus. Der Verteiler in dem Knoten 580
vergleicht die CTD-Adresse mit dem ausstehenden Read in dem TTT und „beschattet" den CTD Y über den
globalen Port. Für den CTD Y wird in dem TTT ein Eintrag erzeugt, wobei der Eintrag sein Shadow-Bit in dem
TTT setzt, anzeigend, dass der CTD Y eine lokale Referenz war, die dezentral weitergeleitet wurde, um die
richtige Ordnung der Anforderungen zu Y sicherzustellen.

[0383] Wie oben beschrieben, ist dann ein Problem vorhanden, wenn in beiden Knoten der Frd in der Pro-
be-Warteschlange hinter dem Invalidate ist. Weil die Invalidate-Befehle jetzt zentral geordnet sind, weil sie an
einem gemeinsamen Punkt serialisiert werden, d. h. in dem hierarchischen Switch, kann nicht eintreten, dass
beide invalidate-Befehle nicht vor den beiden weitergeleiteten Read-Befehlen zu ihren Probe-Warteschlangen
weitergeleitet werden können. Im Folgenden Bezug nehmend auf die Fig. 36, wird die Eingangssequenz von
Befehlen, die in den hierarchischen Switch 568 eingegeben werden, gezeigt. Die zulässigen Ausgangsseriali-
sierungsordnungen sind als die Ordnungen a–f definiert. Es ist zu beachten, dass gemäß den Ordnungsregeln
des Q1-Kanals die Serialisierungsordnung des Eingangs der Pakete in den hierarchischen Switch an dem Aus-
gang des hierarchischen Switchs aufrechterhalten bleibt. Deshalb geht in dem obigen Fall der Frd dem zuge-
hörigen Invalidate-Befehl voraus, während sie zu dem Zieladressknoten übertragen werden.

[0384] Einer der Knoten kann noch immer einen Invalidate, gefolgt von dem weitergeleiteten Read-Befehl, in
der Probe-Warteschlange empfangen. Beispielsweise kann unter Verwendung der Serialisierungsordnung die
Probe-Warteschlange des Prozessors P5 durch den Invalidate Y abgewürgt werden und der Frd X kann
Fill-hängig abgewürgt werden.

[0385] Es ist jedoch zu beachten, dass in diesem Beispiel der Frd Y nicht hinter dem Invalidate X ist und des-
halb in der Lage ist, Fill-Daten zum Freimachen der Probe-Warteschlange des P5 bereitzustellen.

[0386] Wenn Daten für eine Remote-Referenz zurückgesendet werden, wird der der Referenz entsprechende
TTT-Eintrag fallen gelassen. Es können andere Referenzen in dem TTT, das die Originalreferenz beschattet,
sein. Während diese Befehle von dem hierarchischen Switch empfangen werden, werden die TTT-Einträge für
jeden der beschatteten Befehle ebenso fallen gelassen. Schließlich, wenn alle Remote-Zugriffe und alle be-
schatteten Zugriffe ausgeführt sind, müssen alle darauf folgenden lokalen Referenzen zu dieser Cache-Zeile
nicht mehr beschattet werden.

[0387] Dementsprechend können durch die Verwendung von Shadow-Befehlen ressourcenabhängige Ver-
klemmungen, die aus der Koexistenz von lokalen Befehlen und Remote-Befehlen resultieren, ohne eine we-
sentliche Vergrößerung des Hardwareaufwands eliminiert werden. Es sollte beachtet werden, dass, obwohl
das obige Beispiel die Verwendung von weitergeleiteten Read- und CTD-Befehlen involviert, die Shadow-Be-
fehlsmethode gleichermaßen auf andere Befehlstypen anwendbar ist. Wann immer eine Referenz zu einer lo-
kalen Adresse X und eine frühere Nachricht zu der Adresse X zu einem Remote-Prozessor weitergeleitet wur-
de (wie durch das TTT angezeigt) oder eine frühere Referenz zu X noch immer beschattet wird, wird die ge-
48/89

DE 698 32 943 T2 2006.06.29
genwärtige Referenz ebenso beschattet.

[0388] Zusätzlich kann die Methode in anderen Architekturtypen angewendet werden, die sogar mehr Hier-
archiestufen enthalten, als die einfache Mehrprozessoren-Switch-Hierarchie, die oben beschrieben wurde.
Beispielsweise kann die Methode oben für Computersysteme, die mehrere Hierarchieebenen enthalten, ver-
wendet werden, wobei die Befehle in Abhängigkeit von der Hierarchieebene einer vorhergehenden ausstehen-
den Referenz zu der Cache-Zeile zu der adäquaten Hierarchiestufe weitergeleitet werden.

[0389] Somit wurden eine Architektur und ein Kohärenzprotokoll zur Verwendung in einem großen SMP-Sys-
tem beschrieben. Die Architektur des SMP-Systems enthält eine hierarchische Switch-Struktur, die ermöglicht,
dass eine Anzahl von Mehrprozessorknoten mit dem Switch gekoppelt wird, um mit einer optimalen Leistung
zu arbeiten. In jedem Mehrprozessorknoten wird ein Simultanpufferungssystem bereitgestellt, das allen Pro-
zessoren des Mehrprozessorknotens ermöglicht, mit Spitzenleistung zu arbeiten. Die Knoten nutzen einen
Speicher gemeinsam, wobei sich ein Teil des Speichers in jedem der Mehrprozessorknoten befindet.

[0390] Jeder der Mehrprozessorknoten enthält eine Anzahl von Elementen zum Aufrechterhalten der Spei-
cherkohärenz, einschließlich eines Victim-Caches, eines Verzeichnisses und einer Transaktions-Tracking-Ta-
belle. Der Victim-Cache ermöglicht das selektive Aktualisieren von Victim-Daten, die für Speicher, die in einem
dezentralen Mehrprozessorknoten gespeichert sind, bestimmt sind, und verbessert dadurch die Gesamtleis-
tung des Speichers. Ebenso wird die Speicherleistung dadurch zusätzlich verbessert, dass jeder Speicher ei-
nen Schreibverzögerungspuffer enthält, der in Verbindung mit dem Verzeichnis verwendet wird, um Victims,
die in den Speicher zu schreiben sind, zu identifizieren.

[0391] Ein mit dem Verzeichnis jedes Knotens gekoppelter Verteilerbus stellt einen zentralen Ordnungspunkt
für alle Nachrichten dar, die durch das SMP-System übertragen werden.

[0392] Gemäß einem Ausführungsbeispiel der Erfindung umfassen die Nachrichten eine Anzahl von Trans-
aktionen und jede Transaktion wird abhängig von der Weiterverarbeitungsphase der Nachricht einer Anzahl
von verschiedenen virtuellen Kanälen zugewiesen. Die Verwendung der virtuellen Kanäle sichert infolgedes-
sen, durch das Bereitstellen einer einfachen Methode zum Aufrechterhalten der Systemordnung, das Aufrecht-
erhalten der Datenkohärenz. Durch die Verwendung der virtuellen Kanäle und der Verzeichnisstruktur werden
Cache-Kohärenzprobleme, die früher zu Verklemmung führten, vermieden.

Patentansprüche

1. Computersystem, umfassend eine Vielzahl von gekoppelten Multiprozessorknoten (10), jeder der Kno-
ten umfasst wenigstens einen Prozessor (12a) und einen Teil eines gemeinsamen Speichers (13), das Com-
putersystem ist gekennzeichnet durch:
einen Tracking-Mechanismus (122), verbunden mit der Vielzahl von Prozessoren in jedem der Vielzahl von
Multiprozessorknoten (10), zum Bestimmen einer Position einer Anforderung zu einer Adresse eines dezent-
ralen Teils eines gemeinsamen Speichers (13), ausgegeben von wenigstens einem der Prozessoren (12a) in
dem einen der Vielzahl von Multiprozessorknoten (10), relativ zu einer Vielzahl von anderen Anforderungen,
die durch den wenigstens einen der Prozessoren (12a) in der Vielzahl von gekoppelten Multiprozessorknoten
(10) zu der Adresse ausgegeben wurde.

2. Computersystem nach Anspruch 1, des Weiteren an jedem der Vielzahl von Multiprozessorknoten (10)
umfassend:
einen Serialisierungspunkt (130), gekoppelt an den Tracking-Mechanismus (122), zum Bereitstellen einer Ein-
gangsreihenfolge von Anforderungen zu dem Teil des gemeinsamen Speichers (13) an dem entsprechenden
Multiprozessorknoten (10).

3. Computersystem nach Anspruch 2, wobei jeder der Prozessoren (12a) von jeder der Vielzahl von Mul-
tiprozessorknoten eine Vielzahl von Anforderungen ausgibt, jede der Anforderungen eine Vielzahl von Trans-
aktionen umfasst, wobei ein entsprechender einer Vielzahl von Kanälen (Q2, Q1, Q0, Q0Vic und QIO) jeder
der Vielzahl von Transaktionen jeder der Vielzahl von Anforderungen zugewiesen ist und wobei ein erster der
Kanäle zum Übertragen von Transaktionen zu dem Serialisierungspunkt (130) ist.

4. Computersystem nach Anspruch 3, wobei ein zweiter der Kanäle zum Übertragen der von dem Seriali-
sierungspunkt (130) ausgegebenen Anforderungen ist und wobei Transaktionen zu gemeinsamen Adressen
auf wenigstens dem zweiten der Kanäle streng geordnet sind.
49/89

DE 698 32 943 T2 2006.06.29
5. Computersystem nach Anspruch 4, wobei der Tracking-Mechanismus (122) eine Referenzreihenfolge
bestimmt, wie durch die zugehörige Transaktion auf dem wenigstens einen geordneten Kanal angezeigt, so
dass die Reihenfolge für Transaktionen auf anderen der Kanäle (Q2, Q1, Q0, Q0Vic und QIO) rekonstruiert
werden kann.

6. Computersystem nach Anspruch 5, umfassend des Weiteren für jede der Anforderungen, die eine dritte
Transaktion enthält, eine Einrichtung, die dem Tracking-Mechanismus (122) des mit dem gemeinsamen Teil
des Speichers (13) verbundenen Multiprozessorknotens, der der Anforderung entspricht, anzeigt, dass die An-
forderung eine dritte Transaktion aufweist.

7. Computersystem nach Anspruch 6, wobei die Einrichtung zum Anzeigen einen Befehl umfasst, der auf
dem wenigstens einen geordneten Kanal zu dem Tracking-Mechanismus (122) ausgegeben wird.

8. Computersystem nach Anspruch 7, wobei der Tracking-Mechanismus (122) des Weiteren eine Vielzahl
von Eintragungen enthält, jede der Eintragungen zum Speichern einer Adresse einer Referenz, die einen Spei-
cherort auf einem anderen der Multiprozessorknoten adressiert, und jeder der Einträge des Weiteren eine Viel-
zahl von Statusbits (158) zum Anzeigen des Status der zugehörigen Anforderung enthält.

9. Computersystem nach Anspruch 8, wobei die Statusbits (158) des Weiteren umfassen:
ein erstes Bitset zum Anzeigen, ob der Befehl auf dem geordneten Kanal, der anzeigt, dass die Anforderung
eine dritte Transaktion hat, zu dem Multiprozessorknoten (10) zurückgesendet wurde.

10. Computersystem nach Anspruch 9, wobei die Statusbits (158) des Weiteren enthalten:
ein zweites Bitset zum Anzeigen, ob die dritte Transaktion zu dem Multiprozessorknoten zurückgesendet ist,
eine Einrichtung zum Beseitigen eines Eintrags, der sowohl das erste Bit als auch das zweite Bit des Status-
bitsets aufweist, aus dem Transaktionsverzeichnis.

11. Computersystem nach Anspruch 10, des Weiteren umfassend:
eine Einrichtung zum Ignorieren einer Anforderung, die zu einer in dem Tracking-Mechanismus (122) gespei-
cherten Adresse ausgegeben wird, die empfangen wird, bevor das erste Bit in dem Tracking-Mechanismus
(122), das der Adresse entspricht, eingerichtet ist, um den Empfang des Befehls auf dem geordneten Kanal
anzuzeigen.

12. Computersystem nach Anspruch 11, wobei die ignorierte Anforderung eine ungültige Anforderung ist.

13. Computersystem nach Anspruch 11, wobei die Einrichtung zum Ignorieren der zu der Adresse ausge-
gebenen Anforderung die Anforderung nur dann ignoriert, wenn der Prozessor (12a), der die Anforderung aus-
gegeben hat, dem Prozessor (12a) entspricht, der veranlasst hat, dass die Adresse in den Tracking-Mechanis-
mus (122) eingegeben wurde.

14. Computersystem nach Anspruch 10, des Weiteren umfassend:
eine Einrichtung zum Verzögern einer Referenz, die zu einer in dem Tracking-Mechanismus (122) gespeicher-
ten Adresse ausgegeben wurde, bis der Befehl auf dem geordneten Kanal empfangen wird, wobei die Refe-
renz vor dem ersten Bit in dem Tracking-Mechanismus (122), das der Adresse entspricht, eingerichtet ist.

15. Computersystem nach Anspruch 14, wobei die Referenz ferner verzögert wird, bis eine erwünschte
Version der Daten, die der Adresse zugehörig sind, zu dem Multiprozessorknoten zurückgesendet ist.

16. Computersystem nach Anspruch 13, wobei die Referenz ferner verzögert wird, bis eine erwünschte
Version der Daten, die der Adresse zugehörig sind, zu einem der Vielzahl der Prozessoren (12a), der veran-
lasst hat, dass die Adresse in den Tracking-Mechanismus (122) eingetragen wurde, zurückgesendet ist.

17. Verfahren zum Ordnen der Reihenfolge zwischen einer Vielzahl von Anforderungen, die zu einer ge-
meinsamen Adresse in einem Multiprozessor-Computersystem ausgegeben werden, das Multiprozes-
sor-Computersystem umfasst eine Vielzahl von Multiprozessorknoten (10), die über einen Switch gekoppelt
sind, jeder der Multiprozessorknoten (10) umfasst wenigstens einen Prozessor (12a) und einen Teil eines ge-
meinsamen Speichers (13), das Verfahren ist durch den folgenden Schritt gekennzeichnet:
Führen eines Verzeichnisses von Adressen der Anforderungen, die von jedem der Multiprozessorknoten (10)
zu dem Switch weitergeleitet wurden, um eine relative Reihenfolge der Anforderungen zu den jeweiligen
Adressen in einem Teil des gemeinsamen Speichers (13) eines dezentralen Multiprozessorknotens zu bestim-
50/89

DE 698 32 943 T2 2006.06.29
men, wobei eine Adresse in dem Verzeichnis geführt wird, bis die mit der Adresse verbundene Anforderung
erfüllt ist.

18. Verfahren nach Anspruch 17, wobei jeder der Vielzahl von Multiprozessorknoten einen Serialisierungs-
punkt (130) zum Bereitstellen einer Eingangsreihenfolge von Anforderungen zu dem Teil des gemeinsamen
Speichers (13) an dem entsprechenden Multiprozessorknoten umfasst.

19. Verfahren nach Anspruch 18, des Weiteren die folgenden Schritte umfassend: jeder wenigstens einer
der Prozessoren (12a) jeder der Vielzahl von Multiprozessorknoten gibt eine Vielzahl von Anforderungen aus,
jede der Anforderungen umfasst eine Vielzahl von Transaktionen, jede der Vielzahl der Transaktionen wird auf
einem entsprechenden einer Vielzahl von Kanälen (Q2, Q1, Q0, Q0Vic und QIO) übertragen, wobei ein erster
der Vielzahl von Kanälen (Q2, Q1, Q0, Q0Vic und QIO) die Transaktionen zu dem Serialisierungspunkt (130)
überträgt.

20. Verfahren nach Anspruch 19, wobei ein zweiter der Vielzahl von Kanälen (Q2, Q1, Q0, Q0Vic und QIO)
Transaktionen, die von dem Serialisierungspunkt (130) ausgegeben wurden, überträgt und wobei die Transak-
tionen zu gemeinsamen Adressen auf dem zweiten der Vielzahl von Kanälen (Q2, Q1, Q0, Q0Vic und QIO)
streng geordnet sind.

21. Verfahren nach Anspruch 20, wobei das Adressenverzeichnis der Anforderungen eine Referenzreihen-
folge bestimmt, wie durch die zugehörigen Transaktionen auf dem wenigstens einen geordneten Kanal ange-
geben, so dass die Reihenfolge für Transaktionen in den anderen der Kanäle (Q2, Q1, Q0, Q0Vic und QIO)
rekonstruiert werden kann.

22. Verfahren nach Anspruch 21, des Weiteren den folgenden Schritt enthaltend:
für jede der Anforderungen, die eine dritte Transaktion enthält, dem Adressenverzeichnis in dem Multiprozes-
sorknoten, der mit dem gemeinsamen Teil des Speichers (13), der der Anforderung entspricht, verbunden ist,
anzeigen, dass die Anforderung eine dritte Transaktion hat.

23. Verfahren nach Anspruch 22, wobei der Schritt des Anzeigens des Weiteren einen Schritt des Ausge-
bens eines Befehls, der auf dem wenigstens einen geordneten Kanal zu dem Adressenverzeichnis ausgege-
ben wird, umfasst.

24. Verfahren nach Anspruch 23, wobei das Adressenverzeichnis eine Vielzahl von Eintragungen, jede der
Eintragungen zum Speichern einer Adresse einer Referenz, die einen Speicherort auf einem anderen der Mul-
tiprozessorknoten adressiert, und eine Vielzahl von Statusbits (158) zum Anzeigen des Status der zugehörigen
Anforderung enthält.

25. Verfahren nach Anspruch 24, wobei die Statusbits (158) des Weiteren umfassen:
ein erstes Bitset zum Anzeigen, ob der Befehl auf dem geordneten Kanal, der anzeigt, dass die Anforderung
eine dritte Transaktion hat, zu dem Multiprozessorknoten zurückgesendet wurde.

26. Verfahren nach Anspruch 25, wobei die Statusbits (158) des Weiteren umfassen:
ein zweites Bitset zum Anzeigen, ob die dritte Transaktion zu dem Multiprozessorknoten zurückgesendet ist,
und wobei das Verfahren den Schritt des Beseitigens eines Eintrags, der sowohl das erste Bit als auch das
zweite Bit des Statusbitsets aufweist, aus dem Transaktionsverzeichnis enthält.

27. Verfahren nach Anspruch 26, des Weiteren die folgenden Schritte umfassend:
Ignorieren einer Anforderung, die zu einer in dem Adressenverzeichnis gespeicherten Adresse ausgegeben
wird, die empfangen wird, bevor das erste Bit in dem Adressenverzeichnis, das der Adresse entspricht, einge-
richtet ist, um den Empfang des Befehls auf dem geordneten Kanal anzuzeigen.

28. Verfahren nach Anspruch 27, wobei die ignorierte Anforderung eine ungültige Anforderung ist.

29. Verfahren nach Anspruch 28, wobei der Schritt des Ignorierens der zu der Adresse ausgegebenen An-
forderung die Anforderung nur dann ignoriert, wenn der Prozessor (12a), der die Anforderung ausgegeben hat,
dem Prozessor (12a) entspricht, der veranlasst hat, dass die Adresse in das Adressenverzeichnis eingegeben
wurde.

30. Verfahren nach Anspruch 29, des Weiteren den folgenden Schritt umfassend:
51/89

DE 698 32 943 T2 2006.06.29
Verzögern einer Referenz, die zu einer in dem Adressenverzeichnis gespeicherten Adresse ausgegeben wur-
de, die empfangen wird, bevor das erste Bit in dem Tracking-Mechanismus (122), das der Adresse entspricht,
eingerichtet ist, bis der Befehl auf dem geordneten Kanal empfangen wird.

31. Verfahren nach Anspruch 30, wobei die Referenz ferner verzögert wird, bis eine erwünschte Version
der Daten, die der Adresse zugehörig sind, zu dem Multiprozessorknoten zurückgesendet ist.

32. Verfahren nach Anspruch 31, wobei die Referenz ferner verzögert wird, bis eine erwünschte Version
der Daten, die der Adresse zugehörig sind, zu einem der Vielzahl der Prozessoren (21a), der veranlasst hat,
dass die Adresse in das Adressenverzeichnis eingetragen wurde, zurückgesendet ist.

Es folgen 37 Blatt Zeichnungen
52/89

DE 698 32 943 T2 2006.06.29
Anhängende Zeichnungen
53/89

DE 698 32 943 T2 2006.06.29
54/89

DE 698 32 943 T2 2006.06.29
55/89

DE 698 32 943 T2 2006.06.29
56/89

DE 698 32 943 T2 2006.06.29
57/89

DE 698 32 943 T2 2006.06.29
58/89

DE 698 32 943 T2 2006.06.29
59/89

DE 698 32 943 T2 2006.06.29
60/89

DE 698 32 943 T2 2006.06.29
61/89

DE 698 32 943 T2 2006.06.29
62/89

DE 698 32 943 T2 2006.06.29
63/89

DE 698 32 943 T2 2006.06.29
64/89

DE 698 32 943 T2 2006.06.29
65/89

DE 698 32 943 T2 2006.06.29
66/89

DE 698 32 943 T2 2006.06.29
67/89

DE 698 32 943 T2 2006.06.29
68/89

DE 698 32 943 T2 2006.06.29
69/89

DE 698 32 943 T2 2006.06.29
70/89

DE 698 32 943 T2 2006.06.29
71/89

DE 698 32 943 T2 2006.06.29
72/89

DE 698 32 943 T2 2006.06.29
73/89

DE 698 32 943 T2 2006.06.29
74/89

DE 698 32 943 T2 2006.06.29
75/89

DE 698 32 943 T2 2006.06.29
76/89

DE 698 32 943 T2 2006.06.29
77/89

DE 698 32 943 T2 2006.06.29
78/89

DE 698 32 943 T2 2006.06.29
79/89

DE 698 32 943 T2 2006.06.29
80/89

DE 698 32 943 T2 2006.06.29
81/89

DE 698 32 943 T2 2006.06.29
82/89

DE 698 32 943 T2 2006.06.29
83/89

DE 698 32 943 T2 2006.06.29
84/89

DE 698 32 943 T2 2006.06.29
85/89

DE 698 32 943 T2 2006.06.29
86/89

DE 698 32 943 T2 2006.06.29
87/89

DE 698 32 943 T2 2006.06.29
88/89

DE 698 32 943 T2 2006.06.29
89/89

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

