
IN
US 20200228505A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0228505 A1

Lapidous et al . (43) Pub . Date : Jul . 16 , 2020

Publication Classification (54) PRIVATE EXCHANGE OF ENCRYPTED
DATA OVER A COMPUTER NETWORK

(71) Applicant : Pango Inc. , Redwood City , CA (US)

(72) Inventors : Eugene Lapidous , Saratoga , CA (US) ;
Swair Mehta , Half Moon Ray , CA
(US) ; Maxim Molchanov , Mountain
View , CA (US) ; Eduardo Panisset , San
Jose , CA (US)

(51) Int . Ci .
H04L 29/06 (2006.01)
G06F 9/455 (2006.01)

(52) U.S. CI .
CPC H04L 63/0442 (2013.01) ; H04L 63/166

(2013.01) ; G06F 2009/45587 (2013.01) ; GO6F
9/45558 (2013.01) ; G06F 2009/45595

(2013.01) ; H04L 63/123 (2013.01)
(57) ABSTRACT
A handshake message includes a field containing random
data that is filled with data used to derive keying material on
the source and destination computers . The data may be
elliptic curve data and may include a representation of the
data used by the destination computer to verify that elliptic
curve data is present . The data may additionally include data
for deriving second keying material on a second destination
computer that the first destination computer forwards to the
second computer , receives a response , and returns data from
the response as part of its own handshake message .

(21) Appl . No .: 16 / 704,446

(22) Filed : Dec. 5 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 790,878 , filed on Jan.

10 , 2019 .

Client 500 -502
Derive Multiple Keys

from Single Handshake

508

Compose 1st Message : Elliptic Curve Data
and Forwarding Data ; Generate a Private Key

506
Compose 2nd Message : Client Hello with Client

Random Field Containing 1st Message
510

Compose Client Hello Message
with Client Random Field

512

Send Client Hello to the 1st Network Address Send Client Hello to the 1st Network Address

to 552 (Fig . 5B) from 578 (Fig . 5B) to 552 (Fig . 5B) from 558 (Fig . 5B) 514
Receive Message from the 1st Network Address :

Server Hello
516

Derive 1st Keying Material According to TLS Protocol
518

Send Data Encrypted with 1st Keying Material to the 1st Network Address
to 564 (Fig . 5B)

- 520

Does
Server Random Field in Server Hello Contain

Valid Elliptic Curve Data2
Done

Yes 522

Derive 2nd Keying Material from the Private Key and Elliptic Curve Data in the Server Random Field
524

Send Data Encrypted with 2nd Keying Material to the 1st Network Address
CERRAXERKKNIGEKKOKARGO

to 564 (Fig . 5B)

Patent Application Publication Jul . 16 , 2020 Sheet 1 of 10 US 2020/0228505 A1

Client Hello 100 Server Hello 120

TLS Version TLS Version

Client Random 102 Server Random -122

session id session_id
cipher_suites
Compression Method

cipher_suites
Extensions

Extensions

Server Name Indicator

ec curves

ec_point_formats
session ticket

FIG . 1A FIG . 1B

Encrypted
-200

Random Forwarding
Padding Data

Coordinate
of Elliptic

Curve Point
Representation
of Included Data

202 204 206 208

FIG . 2

Patent Application Publication Jul . 16 , 2020 Sheet 2 of 10 US 2020/0228505 A1

Client 300 302

Resume Previous Session ?
No

Compose 1st Message
with Coordinate of Elliptic Curve Point

and Generate 1st Private Key
304 Yes

306 308

Compose 2nd Message : Client Hello
with session ticket field

Containing the 1st Message
Compose Message : Client Hello

with Previous Stored
session_ticket field

312 314

Send 2nd Message to the 1st Network Address Send Message to the 1st Network Address

to 352 (Fig . 3B) from 372 (Fig . 3B) to 352 (Fig . 3B) from 374 (Fig . 3B)
316

Receive Server Finished Message
from the 1st Network Address

320
318

No Is Server Finished
Valid ?

Abort Handshake

Yes

322

Does Server Finished Contain
Valid Elliptic Curve Data ?

Yes 326 328

Derive 1st Keying Material from Received
Eliptic curve Data and the 1st Private Key

Retrieve 2nd Keying Material from the
Previously Stored Session Data

330 332

Send Data Encrypted by Using 1st Keying
Material to the 1st Network Address

Send Data Encrypted by Using 2nd Keying
Material to the 1st Network Address }

to 376 (Fig . 3B) to 378 (Fig . 3B)

FIG . 3A

Patent Application Publication Jul . 16 , 2020 Sheet 3 of 10 US 2020/0228505 A1

Server 350

from 312 (Fig . 3A) from 314 (Fig . 3A)
Retrieve 2nd Keying Material from the

Previously Stored Session Data
352

354
Yes Does session ticket Contain

Data from Previous Session ?

No

360 362

Does session_ticket Contain
Valid 1st Elliptic Curve Data ? Start Full Handshake

364 366

Generate 2nd Elipic Curve Data and a Private
Key , Derive 1st Keying Material from 1st ec

Data and the Private Key

Derive 2nd Keying Material from
session ticket

368 370
Compose Server Finished Message
Containing 2nd Elliptic Curve Data Compose Server Finished Message

372 374
Send Server Finished Message

with 2nd ec Data

to 316 (Fig . 3A) from 330 (Fig . 3A)
pa Send Server Finished Message

to 316 (Fig . 3A) from 332 (Fig . 3A) 376 378
Recieved Data Encrypted
by Using 1st Keying Material

Recieved Data Encrypted
by Using 2nd Keying Material

FIG . 3B

Patent Application Publication Jul . 16 , 2020 Sheet 4 of 10 US 2020/0228505 A1

400 420

HTTPS Web Browser VPN Client

422 Laos 424 402

Session
Handshake Resume Content Handshake

as Session
Resume

426
-440

11

3 E
& 442
ww TLS Module
**

** E
Content WNNNNN ** 1446

??

*** Content Server VPN Server ???

w 3

-448

Content Providers

FIG . 4

Patent Application Publication Jul . 16 , 2020 Sheet 5 of 10 US 2020/0228505 A1

Client 500 502
Derive Multiple Keys

from Single Handshake

508

Compose 1st Message : Elliptic Curve Data
and Forwarding Data ; Generate a Private Key

506

Compose 2nd Message : Client Hello with Client
Random Field Containing 1st Message

510

Compose Client Hello Message
with Client Random Field 7

512

Send Client Hello to the 1st Network Address P Send Client Hello to the 1st Network Address

to 552 (Fig . 5B) from 578 (Fig . 5B) to 552 (Fig . 5B) from 558 (Fig . 5B) 514 TENNE

Receive Message from the 1st Network Address :
Server Hello

516

Derive 1st Keying Material According to TLS Protocol
518

Send Data Encrypted with 1st Keying Material to the 1st Network Address 7
to 564 (Fig . 5B)

520 519
Does

Server Random Field in Server Hello Contain
Valid Elliptic Curve Data ?

Done

Yes 522

Derive 2nd Keying Material from the Private Key and Elliptic Curve Data in the Server Random Field
524

Send Data Encrypted with 2nd Keying Material to the 1st Network Address I
to 564 (Fig . 5B)

FIG . 5A

Patent Application Publication Jul . 16 , 2020 Sheet 6 of 10 US 2020/0228505 A1

1st Server -550

from 510 (Fig . 5A) from 512 (Fig . 5A) 552 554

Receive Client Hello Message
with Client Random Field Compose Server Hello Message

558
Derive 1st Keying Material According to ILS Protocol P Does Client Random

Contain Valid 2nd Network Address and
1st ec Data ?

560

Send Server Hello Message

Yes to 514 (Fig . 5A)
562 from 518 (Fig . 5A) from 524 (Fig . 5A)

Send 1st ec Data from Client Random to the
2nd Network Address

564

to 2nd addr From 2nd addr Recieve Encrypted Data

Receive 2nd ec Data from
the 2nd Network Address

570
Can Data be Decrypted

with Key Derived from 1st Keying
Material ? Compose Server Hello Message

with 2nd ec Data
Inside the Server Random Field Yes 572

574 Decrypt and Process the Data Derive 1st Keying Material
According to TLS Protocol

578 580

Send Server Hello Message Forward the Received Data
to the 2nd Network Address

to 514 (Fig . 5A) to 2nd addr

FIG . 5B

Patent Application Publication Jul . 16 , 2020 Sheet 7 of 10 US 2020/0228505 A1

602

VPN Client

604 610
608 612 Key 1 + Key 2

Handshake
[Key1
Tunnel]

[Key2
Tunnel]

622

1st VPN Server

626 -624 Key2
Handshake

630
632 Key2

Tunnel]
634

2nd VPN Server

638
640

Content Providers

FIG . 6

Patent Application Publication Jul . 16 , 2020 Sheet 8 of 10 US 2020/0228505 A1

Relay 700 702 ?????? Server 1750

???? Start

atart_wd addr = sr_addr 1
fwd addr = start_fwd addr

?????

704 752

Receive Encrypted Data from
Client Network Address (client_addr)

Receive Encrypted Data
Forwarded to svr_addr_1

754
706

is fwd_addr = svr_addr_1 ? Decrypt Received Data

Yes 708

Forward Received Encrypted Data
to Server 1's Address (svr_addr_1)

756
Does Data Contain No a Command to Change Forwarding

Address ?
710

758 Forward Received Encrypted Data
to Server 2's Address (svr_addr_2) Send Decrypted Command to Change

Forwarding Address

Create and Encrypt Response to Client
712 762

Receive Response from srv_addr_1 Send Encrypted Response to Client

??????

Is Response a Command
to change fwd_addr ? ????

Yes 716
Change Stored iwd_addr :
fwd_addr = slv_addr_2

????????
-718

Forward Response from svr_addr_1 to
Client addr

FIG . 7

Patent Application Publication Jul . 16 , 2020 Sheet 9 of 10 US 2020/0228505 A1

-802 804

Web Browser VPN Client

810
806 812 814 816 818

Key 1 Key 1 Key 2 Key 2
Handshake fwd] Handshake Content)

Key 3
Handshake Tunnel

Key 3
-820

******** ww

822
w

Relay
www

More

830 3 set fwd 824 w

* WW
th mo
woon WW

ke Parser [Key 1 Key 1 Key 2 Key 2
Handshake Content) Handshake fwd]

3
3

Key 3 Key 3
Handshake Tunnell w

21 w Y +

wwd
842 850

Content Server VPN Server

840 -852
-860

Content Providers

FIG . 8

Patent Application Publication Jul . 16 , 2020 Sheet 10 of 10 US 2020/0228505 A1

900
912

-902

Processor

Mass Storage
Device (s) 908

924 Memory Device (s) Hard Disk Drive 904

914 Removable
Storage 926

ROM 916

910 Input / Output
Device (s)

Interface (s) 906

User
Interface

930 Displace Device
920

Network
Interface

Peripheral
Device Interface 922

FIG . 9

US 2020/0228505 A1 Jul . 16 , 2020
1

PRIVATE EXCHANGE OF ENCRYPTED
DATA OVER A COMPUTER NETWORK

[0001] This application claims the benefit of U.S. Provi
sional Application Ser . No. 62 / 790,878 , filed Jan. 10 , 2019 ,
which is hereby incorporated herein by reference in their
entirety for all purposes .

FIELD OF THE INVENTION

[0002] The present invention relates generally to systems
and methods for performing encrypted communication .

BACKGROUND OF THE INVENTION

described and explained with additional specificity and
detail through use of the accompanying drawings , in which :
[0008] FIGS . 1A and 1B depict the relevant fields in the
Client Hello and Server Hello messages exchanged during
the Transport Level Security (TLS) handshake ;
[0009] FIG . 2 depicts the data stored inside a field of the
TLS handshake , according to an embodiment of the present
invention ;
[0010] FIGS . 3A and 3B are process flow diagrams of a
method for encrypting data exchange over a computer
network , according to an embodiment of the present inven
tion ;
[0011] FIG . 4 is a schematic block diagram of a network
environment for exchanging encrypted data over a computer
network , according to an embodiment of the present inven
tion ;
[0012] FIGS . 5A and 5B are process flow diagrams of a
method for deriving multiple encryption keys from a data
exchange over a computer network , according to an embodi
ment of the present invention ;
[0013] FIG . 6 is a schematic block diagram of a network
environment for exchanging data encrypted with different
encryption keys over a computer network , according to an
embodiment of the present invention ;
[0014] FIG . 7 is a process flow diagram of a method for
forwarding the encrypted data over a computer network ,
according to an embodiment of the present invention ;
[0015] FIG . 8 is a schematic block diagram of a network
environment for forwarding the encrypted data over a com
puter network , according to an embodiment of the present
invention ; and
[0016] FIG.9 is a schematic block diagram of a computing
device that may be used to implement the systems and
methods described herein .

[0003] The increased number and importance of online
services provided over computer networks has led to an
increased amount and impact of threats to user privacy ,
security , and freedom of access . If an external observer can
detect the intended destination of the user's content request ,
such as a domain name , this information can be used to deny
access (for instance , to enforce censorship) or to decrease
the access speed (for instance , to degrade the quality of
competitive service) . It may also affect user privacy and
security , for instance by observing user access to sensitive
sites — banking , medical , work - related , etc. If multiple con
tent requests can be associated with the same user (for
instance , by the source network address of the request) ,
external observer can accumulate the history of user activi
ties , further eroding user privacy and security .
[0004] To protect the user's online activities from external
observation , the user's computer may encrypt its traffic and
forward it through an intermediary server , such as a Virtual
Private Network (VPN) or a proxy . In addition to hiding the
traffic from the observers between the user's computer and
the intermediary server , the user's source network address is
replaced by the intermediary's address when the user's
request is forwarded to its intended destination . This further
improves the user's privacy by degrading the ability of
content providers to associate the same user with multiple
req sts or to deduce the user's geographic location .
[0005] To be effective , the use of a VPN or a proxy should
be protected from external detection : a censor may block
detected VPN traffic ; a communication provider may throttle
it to degrade quality of competing services . To hide VPN or
proxy traffic from observation , it is often masked as a regular
exchange of encrypted content with content providers that
use Transport Layer Security (TLS) , for instance by sup
porting Hyper Text Transport Protocol Secure (HTTPS) . To
increase resistance of VPN or proxy traffic to adversarial
attacks , it is recommended to use full TLS handshake with
per - session public / private keys , such as Elliptic Curve Dif
fie - Hellman Ephemeral (ECDHE) key exchange .
[0006] It would be an advancement in the art to improve
the use of a VPN masked as HTTPS traffic .

DETAILED DESCRIPTION
[0017] It will be readily understood that the components of
the present invention , as generally described and illustrated
in the Figures herein , could be arranged and designed in a
wide variety of different configurations . Thus , the following
more detailed description of the embodiments of the inven
tion , as represented in the Figures , is not intended to limit the
scope of the invention , as claimed , but is merely represen
tative of certain examples of presently contemplated
embodiments in accordance with the invention . The pres
ently described embodiments will be best understood by
reference to the drawings , wherein like parts are designated
by like numerals throughout .
[0018] The invention has been developed in response to
the present state of the art and , in particular , in response to
the problems and needs in the art that have not yet been fully
solved by currently available apparatus and methods .
[0019] Embodiments in accordance with the present
invention may be embodied as an apparatus , method , or
computer program product . Accordingly , the present inven
tion may take the form of an entirely hardware embodiment ,
an entirely software embodiment (including firmware , resi
dent software , micro - code , etc.) , or an embodiment com
bining software and hardware aspects that may all generally
be referred to herein as a “ module ” or “ system . ” Further
more , the present invention may take the form of a computer
program product embodied in any tangible medium of
expression having computer - usable program code embodied
in the medium .

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] In order that the advantages of the invention will be
readily understood , a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments illustrated in the appended
drawings . Understanding that these drawings depict only
typical embodiments of the invention and are not therefore
to be considered limiting of its scope , the invention will be

US 2020/0228505 A1 Jul . 16 , 2020
2

[0020] Any combination of one or more computer - usable
or computer - readable media may be utilized . For example ,
a computer - readable medium may include one or more of a
portable computer diskette , a hard disk , a random access
memory (RAM) device , a read - only memory (ROM) device ,
an erasable programmable read - only memory (EPROM or
Flash memory) device , a portable compact disc read - only
memory (CDROM) , an optical storage device , and a mag
netic storage device . In selected embodiments , a computer
readable medium may comprise any non - transitory medium
that can contain , store , communicate , propagate , or transport
the program for use by or in connection with the instruction
execution system , apparatus , or device .
[0021] Embodiments may also be implemented in cloud
computing environments . In this description and the follow
ing claims , “ cloud computing ” may be defined as a model
for enabling ubiquitous , convenient , on - demand network
access to a shared pool of configurable computing resources
(e.g. , networks , servers , storage , applications , and services)
that can be rapidly provisioned via virtualization and
released with minimal management effort or service pro
vider interaction and then scaled accordingly . A cloud model
can be composed of various characteristics (e.g. , on - demand
self - service , broad network access , resource pooling , rapid
elasticity , and measured service) , service models (e.g. , Soft
ware as a Service (“ SaaS ”) , Platform as a Service (“ PaaS ”) ,
and Infrastructure as a Service (“ IaaS ”)) , and deployment
models (e.g. , private cloud , community cloud , public cloud ,
and hybrid cloud) .
[0022] Computer program code for carrying out opera
tions of the present invention may be written in any com
bination of one or more programming languages , including
an object - oriented programming language such as Java ,
Smalltalk , C ++ , or the like and conventional procedural programming languages , such as the " C " programming
language or similar programming languages . The program
code may execute entirely on a computer system as a
stand - alone software package , on a stand - alone hardware
unit , partly on a remote computer spaced some distance from
the computer , or entirely on a remote computer or server . In
the latter scenario , the remote computer may be connected
to the computer through any type of network , including a
local area network (LAN) or a wide area network (WAN) , or
the connection may be made to an external computer (for
example , through the Internet using an Internet Service
Provider)
[0023] The present invention is described below with
reference to flowchart illustrations and / or block diagrams of
methods , apparatus (systems) and computer program prod
ucts according to embodiments of the invention . It will be
understood that each block of the flowchart illustrations
and / or block diagrams , and combinations of blocks in the
flowchart illustrations and / or block diagrams , can be imple
mented by computer program instructions or code . These
computer program instructions may be provided to a pro
cessor of a general purpose computer , special purpose
computer , or other programmable data processing apparatus
to produce a machine , such that the instructions , which
execute via the processor of the computer or other program
mable data processing apparatus , create means for imple
menting the functions / acts specified in the flowchart and / or
block diagram block or blocks .
[0024] These computer program instructions may also be
stored in a non - transitory computer - readable medium that

can direct a computer or other programmable data process
ing apparatus to function in a particular manner , such that
the instructions stored in the computer - readable medium
produce an article of manufacture including instruction
means which implement the function / act specified in the
flowchart and / or block diagram block or blocks .
[0025] The computer program instructions may also be
loaded onto a computer or other programmable data pro
cessing apparatus to cause a series of operational steps to be
performed on the computer or other programmable appara
tus to produce a computer implemented process such that the
instructions which execute on the computer or other pro
grammable apparatus provide processes for implementing
the functions / acts specified in the flowchart and / or block
diagram block or blocks .
[0026] In one aspect of the present invention , a method
includes :

[0027] composing a first outgoing message in a first
format , the first format being defined to contribute to
derivation of a first keying material ,

[0028] composing a second outgoing message in a
second format , the second format being defined to
contribute to derivation of a second keying material ,
wherein composing the second outgoing message
includes embedding of at least part of the first outgoing
message into the content of the second outgoing mes
sage while preserving the second format of the second
outgoing message ,

[0029] sending , by a first computer to a second com
puter over the computer network , the second outgoing
message containing the at least the part of the first
outgoing message ,

[0030] receiving , by the first computer from the second
computer over the computer network , at least one
incoming message containing data in at least one third
format , the at least one third format being defined to
contribute to derivation of the first keying material ,

[0031] deriving the first keying material while using the
at least the part of the first outgoing message and the
data in the at least one third format as two of a plurality
of inputs , and then

[0032] sending , by the first computer to the second
computer over the computer network , data encrypted
using the first keying material .

[0033] In the context of the disclosed embodiments , the
keying material may be data produced after the security
handshake between the two computers and then used to
derive one or more encryption keys used to exchange
encrypted data and verify its integrity . For instance , in the
case of Transport Layer Security (TLS) protocol handshake
using Elliptic Curve Diffie - Hellman (ECDH) key exchange ,
keying material derived on the first computer may refer to
the MasterSecret derived from the Client Random (from
Client Hello) , Server Random (from Server Hello) , client
private key (from Client Key Generation) and server public
key (from Server Key Exchange) . Keying material may be
used to generate multiple key data , such as client MAC key ,
server MAC key , client write key , server write key , client
write Initialization Vector (IV) and server write IV .
[0034] In some embodiments of this aspect , embedding
the at least part of the first outgoing message into the content
of the second outgoing message while preserving the second

US 2020/0228505 A1 Jul . 16 , 2020
3

format comprises including at least part of the first message
inside at least one data field of at least one message in the
second format .
[0035] In some implementations , the second format is
defined in accordance with Transport Level Security (TLS)
protocol , while the second outgoing message is one from the
group of Client Hello , Client Finished , Server Hello and
Server Finished . In one instance , at least part of the first
outgoing message is embedded into at least one field of the
second outgoing message from the group of Client Random ,
Server Random , Session ID and Session Ticket .
[0036] In some embodiments , the first outgoing message
includes a value derived from only one coordinate of an
elliptic curve point , without including a value derived from
another coordinate of the elliptic curve point .
[0037] In some implementations , the first keying material
is derived only from the data in the first outgoing message
and the data in at least one third format , while the size of the
first outgoing message does not exceed 32 bytes .
[0038] In some embodiments , the second outgoing mes
sage comprises a session resumption message , and embed
ding the first outgoing message comprises including at least
part of the first outgoing message instead of the session
resumption data .
[0039] In one some implementations , the method further
includes receiving at least one incoming message containing
data in at least one fourth format , the fourth format being
defined to contribute to derivation of the second keying
material . In some embodiments , the data in the third and in
the fourth formats may be received in the same incoming
message .
[0040] In some implementations , the method further
includes , after receiving the data in at least one fourth
format :

[0041] deriving the second keying material while using
at least part of the first outgoing message and the data
in at least one fourth format as two of a plurality of
inputs , and then

[0042] sending , by the first computer to the second
computer over the computer network , data encrypted
using the second keying material

[0043] sending , by the first computer to the second
computer over the computer network , data encrypted
using the first keying material , wherein the data
encrypted by the first keying material being forwarded
by the second computer to the third computer , different
from the second computer .

[0044] In one other aspect of the disclosed embodiments ,
a method includes :

[0045] receiving , by a first computer from a second
computer over the computer network , at least one
incoming message containing a first data in a first
format , the first format being defined to contribute to
derivation of a first keying material , and a second data
in a second format , the second format being defined to
contribute to derivation of a second keying material ,
wherein the second data in the second format is
included as a part of the first data in the first format ,

[0046] extracting at least part of the second data from
the first data ,

[0047] deriving the second keying material while using
at least part of the second data as one of the inputs ,

[0048] and then sending , by the first computer to the
second computer over the computer network , the data
encrypted using the second keying material .

[0049] In some embodiments of this aspect , the method
further comprises :

[0050] composing at least one outgoing message with a
third data in a third format , the third format being
defined to contribute to derivation of the second keying
material ,

[0051] sending , by the first computer to the second
computer over the computer network , the at least one
outgoing message with the third data , and then

[0052] receiving , by the first computer from the second
computer , the data encrypted using the second keying
material .

[0053] In some implementations , the first format is defined
in accordance with TLS protocol , while the first incoming
message is one from the group of Client Hello , Client
Finished , Server Hello and Server Finished . In some
instances , the first data is included as at least part of the field
from the group of Client Random , Server Random , Session
ID and Session Ticket .
[0054] In some embodiments of this aspect , each of the
second data and the third data include values derived from
only one coordinate of an elliptic curve point , without
including a value derived from another coordinate of the
elliptic curve point .
[0055] In some implementations , the second keying mate
rial is derived only from the second and the third data , while
the size of both the second and the third data does not exceed
32 bytes .
[0056] In some embodiments of this aspect , the first data
comprises a session resumption data , while at least part of
the second data from the first data is extracted without using
the first data for session resumption .
[0057] In some implementations , the first keying material
is derived while using at least part of the first data as one of
the inputs , and then both the data encrypted using the first
keying material and the data encrypted using the second
keying material are sent by the first computer to the second
computer over the computer network .
[0058] In some embodiments , the second data is for
warded to the third computer over the computer network ,
and then the second keying material is derived on the third
computer without deriving it on the second computer .
[0059] In some implementations , sending the data
encrypted using the second keying material comprises :
receiving , by the second computer , the data encrypted using
the second keying material , from the third computer , and
then forwarding the data encrypted using the second keying
material to the first computer .
[0060] In another aspect of the disclosed embodiments , a
method includes :
[0061] receiving , by a first module of a first computer from
a second module of a second computer over a computer
network , at least one incoming message with a first data in
a first format , the first format being defined to contribute to
derivation of a first keying material , and with a second data
in a second format , the second format being defined to
specify at least one forwarding destination for at least some
data received by the first module of the first computer from
the second computer , wherein the second data in the second
format is included as a part of the first data in the first format ,

US 2020/0228505 A1 Jul . 16 , 2020
4

[0062] extracting at least part of the second data from
the first data ,

[0063] determining at least one forwarding destination
from the extracted data , and then

[0064] forwarding to a third module of a third computer ,
at least some data received from the second computer
over the computer by network .

[0065] In some embodiments , at least some data from the
first module to the third module is forwarded through a local
connection between the first and the third modules , without
sending the data to a public IP address . In some implemen
tations , the first computer and the third computer reside on
the same local network . In some instances , the first module
and the third module reside in the different Virtual Machines
(VMs) on the same local network . In other instances , the first
module and the third module reside in different containers on
the first computer , the first computer being the same as the
third computer .
[0066] In some embodiments , at least some data for
warded from the first module to the third module is for
warded without forwarding the IP address of the second
computer .
[0067] In some implementations , at least some data that is
forwarded from the first module to the third module is
forwarded without first being decrypted . In some instances ,
at least some forwarded data is decrypted by the third
module , and then sent to one or more content servers over
the computer network .
[0068] In some embodiments , the first module derives the
first keying material and decrypts at least some data received
from the second computer by using the first keying material ,
without sharing the first keying material with the third
module .
[0069] In some embodiments of this aspect , the first for
mat is defined in accordance with Transport Level Security
(TLS) protocol , while the first incoming message is one
from the group of Client Hello and Client Finished . In some
instances , the second data is included as at least part of the
field from the group of Client Random , Session ID and
Session Ticket .
[0070] In some implementations , the second data com
prises at least one from the group of an IP address , a domain
name , an identifier of a Virtual Machine and an identifier of
a container .
[0071] In some embodiments , the first data comprises a
session resumption data , and at least part of the second data
is extracted from the first data without using the first data for
session resumption
[0072] In yet another aspect of the present invention , a
method includes :

[0073] receiving first encrypted data by a first module of
a first computer , the first data being forwarded to the
first module after being received by a second module of
a second computer from a third module of a third
computer over the computer network , the first data
being encrypted with the first key known to the first
module but not to the second module ,

[0074] decrypting the first data by the first module , and
then

[0075] determining whether at least part of the
decrypted first data is addressed to the second module ,
and , if so determined , sending second data derived
from at least part of the first data to a fourth module

without encrypting it with the first key , the fourth
module being enabled to change a state of the second
module .

[0076] In some embodiments , the first data is received by
the first module over one or more first connections , while the
second data is sent to the fourth module over one of the one
or more first connections in reverse direction .
[0077] In some implementations , the second data includes
a first message from the third computer to the second
computer . In one instance , the first message is designed to
cause the second computer to change the forwarding desti
nation for at least some of a future data received from the
third computer , so that at least some of the future data will
be forwarded to a fifth module of a fifth computer , without
being forwarded to the first module of the first computer .
[0078] In some implementations , where the at least some
of the future data forwarded to the fifth module is encrypted
with a second key , the first key being different from the
second key , the first key being known to the first module but
not to the second or the fifth module , the second key being
known to the fifth module but not to the first or the second
module .
[0079] In some instances , at least some data is forwarded
to the fifth module without forwarding the IP address of the
third computer to the fifth module .
[0080] In some implementations , the first message is
designed to inform the second module whether to continue
data exchange with the third computer . In some instances ,
the first message contains information about a payment
received from the user of the third computer .
[0081] In some embodiments of this aspect , the second
computer and at least one of the first computer and the fifth
computer reside on the same local network . In some imple
mentations , the second module and at least one of the first
module and the fifth module reside in different Virtual
Machines (VMs) on the same local network . In some other
implementations , the second module and at least one of the
first module and the fifth module reside in different contain
ers on the second computer , the second computer being the
same as at least one of the first computer and the fifth
computer .
[0082] FIGS . 1A and 1B illustrate prior art example imple
mentations of the Client Hello 100 and Server Hello 120
messages exchanged during the Transport Level Security
(TLS) handshake according to TLS 1.2 protocol . When the
full TLS handshake is performed , Client Hello 100 contains
Client Random field 102 while Server Hello 120 contains
Server Random field 122 , each field including 32 bytes of
the randomly generated data . Full TLS handshake often
contains plaintext Server Name Indication (SNI) field 104 ,
specifying the destination domain , making it easier for the
censor to identify VPN or proxy server .
[0083] After the full TLS handshake is completed , client
may resume a previous session by providing previously
known session ticket data 106. This decreases the number of
round trips required to complete the TLS handshake and
removes the need to provide SNI or other plaintext infor
mation . The security of the resumed session may be com
promised if the keying material used to encrypt a previous
session becomes exposed : session_ticket data exchange
doesn't mandate unique keys per session (no perfect forward
secrecy) .
[0084] FIG . 2 illustrates the data 200 that can be stored
inside at least one field of the TLS handshake in some of the

US 2020/0228505 A1 Jul . 16 , 2020
5

disclosed embodiments . In the described embodiment the
data 200 contains at least one coordinate 206 of the elliptic
curve point used to specify the public key of the ECDH
exchange . ECDH public key is an elliptic curve point
associated with a pair of (X , Y) coordinates . In the present
embodiment , the client and destination server share the
knowledge of the used elliptic curve , making it possible to
calculate a shared key using only the X coordinate , decreas
ing the data size . Data 200 may also contain the represen
tation 208 used to detect the presence and validate the
integrity of the included data . In one instance , such repre
sentation is computed as a hash of the elliptic curve point
data .

[0085] In the described embodiment , data 200 also con
tains the forwarding data 204 , used to instruct a forwarding
server to forward the elliptic curve data to the destination
server , and random padding 202 to align with the corre
sponding field of the TLS handshake . In some implemen
tations , the forwarding data is a network address of the
destination server , such as an Internet Protocol (IP) address
or a domain name that could be resolved to an IP address . In
implementations , he forwarding data is an identifier of the
destination server , such as an identifier of a Virtual Machine
(VM) or a container . In some instances , the representation
208 is used by the destination server to validate both the
elliptic curve coordinate 206 and the forwarding data 204 ,
for example by being computed as hash of both values .
[0086] Elliptic curve data 206 and its representation 208
may be encrypted with the public key of the destination
server , hiding it from the forwarding server . Data 200 may
be further encrypted with the public key of the forwarding
server , to hide it from external observers .
[0087] In some embodiments , encryption of the elliptic
curve data 206 may be used in conjunction with data
transformation to make the data 206 seem random to exter
nal observers across multiple sessions .
[0088] In the described embodiment , forwarding data 204
is specified when data 200 is embedded into a message sent
from the client , such as Client Hello ; in other embodiments ,
data 200 may not contain the forwarding data 204 or
representation 208 , or may not have additional encryption
for the elliptic curve data 206 .
[0089] In some embodiments , the data 200 is embedded
into the contents of the Client Random , Server Random or
the session_ticket fields of the TLS handshake . In other
embodiments , the data 200 can be embedded inside the other
messages of the TLS handshake , such as Client Finished or
Server Finished . To preserve format of the TLS handshake
message , in some embodiments size of the data 200 is
limited to 32 bytes .
[0090] FIGS . 3A and 3B are the process flow diagrams of
using TLS session resumption handshake to generate new
keying material for encryption of the data exchange over a
computer network .
[0091] Referring to FIG . 3A , the sequence of establishing
new encrypted connection according to the present invention
begins on the client computer 300 , which evaluates 302
whether to resume the previous session . If the decision of
step 302 is to start a new session with new encryption keys ,
client 300 generates 304 the data 200 including new coor
dinate 206 of an elliptic curve point , in order to provide the
server with the client's public encryption key , and the
client's private key corresponding to its public key .

[0092] The client then composes 306 the Client Hello
message according to the TLS session resumption format ,
containing the session_ticket message .
[0093] Instead of providing a previously stored session_
ticket data as the session_ticket message at step 306 , the
client , according to the present invention , embeds the data
created at step 304 into the session_ticket field of the Client
Hello message , and then sends 312 the session resumption
message composed at step 306 (Client Hello message) to a
first network address over the computer network , the first
network address being associated with (e.g. , acquired by)
the server 350 .
[0094] Alternatively , if decision 302 is to resume the
previous session , the client composes 308 the Client Hello
message with the previously stored session_ticket data in the
session_ticket field , and then sends 314 the Client Hello
message of step 308 to the first network address .
[0095] In some implementations , at least part of the ses
sion_ticket message is encrypted with a known public key of
the server 350 to prevent its analysis by external observers .
[0096] Referring to FIG . 3B , the server 350 receives 352
the Client Hello message (whether from step 312 or step
314) and then evaluates 354 whether it contains valid data
from the previous session . In one example , the server 350
makes this decision by decrypting the session_ticket mes
sage in the session_ticket field with server's private key and
then attempting to validate the session_ticket message
against a Message Authentication Code (MAC) or a cryp
tographic hash in the session_ticket message . If the session_
ticket doesn't contain previous session data (e.g. , the MAC
does not validate the session_ticket message) , the server
evaluates 360 whether the session_ticket field contains valid
elliptic curve data . In some instances , the server 350 makes
this decision by attempting to validate decrypted elliptic
curve data against its representation , also included in the
session_ticket message (see data 200 of FIG . 2) . In this
example , the MAC for the session_ticket message of a
resumed session is computed differently than the represen
tation 208 for the elliptic curve point data 206 .
[0097] If elliptic curve data (hereinafter “ first elliptic
curve data ”) is validated at the step 360 , the server 350
generates 364 second elliptic curve data in order to provide
the client 300 with the server's public encryption key . The
server's public key is then used by the client 300 together
with the client's private key derived from the first elliptic
curve (ec) data , in order to derive first keying material .
[0098] After step 364 , the server composes 368 a Server
Finished message that embeds the second ec data , and then
sends 372 the Server Finished message from step 368 back
to the client 300 .
[0099] In some implementations , the Server Finished mes
sage composed by the server 250 contains both the second
ec data and verification data for the second ec data . In some
embodiments , the verification data included in the Server
Finished message is derived from the hash of multiple
messages exchanged during the TLS handshake , thereby
validating the chain of handshake messages that include
both the first and the second ec data .
[0100] In some instances , the Server Finished message
also contains a representation of the second elliptic curve
data used to detect its presence and validate its integrity .
[0101] If the first elliptic curve data is not recognized as
valid at the step 360 , the server 350 informs 362 the client
300 that it needs to start the full TLS handshake (at this

US 2020/0228505 A1 Jul . 16 , 2020
6

point , the server has also verified 354 that session_ticket
doesn't contain previous session data) .
[0102] Alternatively , if the server 350 has decided 354 that
the session_ticket contains valid data from the previous
session , it derives 366 second keying material from the
session_ticket accordingly to the prior art , composes 370 the
Server Finished message and then sends it 374 back to the
client 300 according to the conventional TLS handshake .
[0103] Referring to FIG . 3A , the client 300 receives 316
the Server Finished message , decrypts it and then evaluates
318 whether it verifies completion of the TLS handshake
(e.g. , by computing the hash of multiple messages
exchanged during the TLS handshake and comparing it with
one provided in the Server Finished message according to
prior approaches for implementing the TLS handshake) . It
the TLS handshake isn't verified , client aborts it 320. If the
Server Finished is validated at step 318 , the client evaluates
322 whether it contains valid elliptic curve data ; in one
implementation it does it by using the representation of
elliptic curve data provided in the same Server Finished
message .
[0104] If elliptic curve data (i.e. , the second ec data) is
found valid , the client derives 326 first keying material from
the second elliptic curve data and the client's private key ,
and then uses the first keying material to generate encryption
keys , encrypts data (e.g. , a content request) using the
encryption keys and sends 330 the encrypted data to the
server 350 .
[0105] As described above , server - side processing of the
Client Hello message includes decision 354 whether it
contains data from the previous session . In some embodi
ments , client - side processing of the Server Finished message
does not include the similar decision , because client already
has access to the stored data from the previous session . If the
valid Server Finished message does not contain the valid
elliptic curve data at the step 322 , the client 300 retrieves
328 stored second keying material from the previous session
data , and then uses the previous session's keying material to
generate the previous sessions keys (if not already gener
ated) and uses the previous sessions keys to encrypt the data
(e.g. , the content request) and send 332 the encrypted data
to the first network address associated with server 350 .
[0106] Referring to FIG . 3B , the server 350 receives the
data encrypted by using either the first (376) or the second
(378) keying material and then decrypts it using the same
keying material already known to the server 350 (the first
keying material being derived from step 364 , while the
second keying material being derived from step 366) .
[0107] As a result of the steps described in FIGS . 3A and
3B , the first keying material is generated during the TLS
handshake that looks to an external observer like a standard
session resumption exchange containing no plaintext data .
However , the handshake modified accordingly to the present
invention generates new encryption keys for the VPN or
proxy session with the server 350 without relying on the
previously stored data , thereby enabling perfect forward
secrecy while taking the same time as the TLS 1.2 session
resumption handshake : 1 round trip time (RTT) . This
enables the client 300 to securely and privately connect to
any compatible VPN or proxy server 350 during 1 RTT , even
if it's the first connection to that server .
[0108] FIG . 4 is a schematic block diagram of a network
environment where the TLS session resumption handshake

is used to resume a prior session with the content server or
to establish a new session with a VPN server .
[010] Referring to FIG . 4 , Web Browser 440 is pro
grammed to access HTTPS pages , for instance MICRO
SOFT EDGE browser developed by the MICROSOFT
CORPORATION , and the VPN client 420 developed
accordingly to the present invention are programmed to
establish secure TLS connections and exchange encrypted
data with the server 440 .
[0110] The server 440 executes a TLS module 442 pro
grammed to process the TLS session resumption handshake
according to the embodiments disclosed herein , to decrypt
the data received after the handshake and to forward the
decrypted data either to the content server 444 , or to the
VPN server 446 .
[0111] When a user of a VPN client 420 starts a VPN
session , the VPN client 422 and TLS module 442 perform
full ECDHE handshake masked as a session resumption
request according to the embodiments disclosed herein .
Keying material derived from this handshake is used to
encrypt a TLS tunnel 424 , encapsulating user's content
request and response data 426 .
[0112] In the described embodiment , TLS module 442
decrypts the tunnel packets and passes them to the VPN
server 446 , which removes the encapsulation and then
exchanges content request and response data 448 with one or
more content providers 450 over the computer network .
[0113] In order to prevent VPN sessions from detection ,
the same TLS module 442 may also support regular TLS
connections , both with and without session resumption . For
instance , a user of the HTTPS browser 400 may issue
request for a content domain associated with an IP address
of the server 440. To establish the connection , the browser
400 may either perform full TLS handshake 402 , or the
session resumption handshake 404. In the described embodi
ment , TLS module 442 is enabled to support handshakes
402 , 404 and 442 and to distinguish between regular session
resume 406 and the full handshake masked as session
resume 422 according to the embodiments described herein .
If a TLS connection has started with TLS handshake 402 or
404 , TLS module passes the user data 406 received after
completion of the handshake to the content server 444 ,
instead of forwarding them to the VPN server 446 .
[0114] As a result , external observer trying to check if the
IP address associated with server 440 is used for the VPN
services would see a server at this IP address responding to
regular HTTPS requests as a content server , masking the use
of the VPN service .
[0115] In some implementation , TLS module 442 stores a
private TLS certificate for the domain associated with the
content server 444 to support full handshake 402. In some
instances , content server 444 resides on a different computer
than the VPN server 446 with the TLS module 440 func
tioning as a proxy for the content exchange between the
server hosting the TLS module 440 and the server hosting
the content server 444 .
[0116] FIGS . 5A and 5B are the process flow diagrams of
generating multiple keying materials during a single TLS
handshake , and then using them to exchange encrypted data
with different servers over a computer network , according to
an embodiment of the present invention .
[0117] Referring to FIG . 5A , client 500 evaluates 502
whether to derive multiple keys from the single handshake
while establishing a secure connection . In some embodi

US 2020/0228505 A1 Jul . 16 , 2020
7

ments , the decision 502 includes evaluation of the one or
more client configuration parameters , available to the client
before the start of the TLS handshake . For instance , the
client 500 may need multiple keys to establish secure
connections to different VPN servers accessible through a
single IP address , as illustrated on FIG . 6 .
[0118] In the described embodiment , if the outcome of the
evaluation 502 is to obtain multiple keys during a single
handshake , the client 500 obtains two keying materials : first
keying material for secure connection to a first server at a
first network address ; second keying material for secure
connection to a second server at a second network address .
[0119] To do that , client first composes 504 first message
data including both elliptic curve data 206 defining the
public key for ECDH exchange with the second server and
the forwarding data 204 , containing the second network
address . In some implementations , the elliptic curve data
206 , but not the forwarding data 204 , is encrypted with the
known public key of the second server . In some instances ,
the first message also contains a representation 208 of
included data (204 , 206) to detect its presence and validate
its integrity . In one example , the first message , including the
forwarding data , is encrypted with the known public key of
the first server 550 .
[0120] The client 500 then composes 506 the Client Hello
message according to TLS protocol (for instance , TLS 1.3) ,
while embedding data from the first message into the Client
Random field of the Client Hello message instead of filling
it completely with random data , and then sends 510 the
Client Hello message to the first network address .
[0121] If the result of evaluation 502 is not to obtain
multiple keys , the client 500 composes 508 a Client Hello
message according to TLS protocol (for instance , TLS 1.3)
and then sends 512 it to the first network address with Client
Random field filled with random data .
[0122] Referring to FIG . 5B , the first server 550 at the first
network address receives 552 the Client Hello message from
the client 500 and then evaluates 556 whether it contains
valid forwarding data and the first elliptic curve data for
instance , by using the representation 208 embedded into the
Client Random field or the session_ticket field .
[0123] If the result of evaluation 556 is “ Yes ” , the first
server sends 562 the first elliptic curve data to the network
address specified in the received forwarding data 204 , in this
instance the second network address associated with the
second server . If first elliptic curve data is encrypted , the first
server passes it to the second server without decryption .
[0124] In some embodiment , the second server decrypts
the first elliptic curve data , generates its own private and
public keys , uses its private key and the first elliptic curve
data to derive the second key material , and then responds to
the first server with the second elliptic curve data corre
sponding to the generated public key . In some implementa
tions , the second server's response also includes a represen
tation of the second elliptic curve data for validating the
second elliptic curve data .
[0125] In some embodiments , the first server 500 waits to
respond to the Client Hello message until it receives the
response from the second network address , or until a pre
defined timeout period expires .
[0126] After receiving 566 the response from the second
network address , the first server 550 composes 570 a Server
Hello message with the received data from the response
embedded into the Server Random field , derives 574 first

keying material according to TLS protocol (for instance ,
according to TLS 1.3 which allows server to derive the
keying material after receiving Client Hello with key share) ,
and sends 578 the Server Hello message with the embedded
data to the client 500. If the second elliptic curve data is
encrypted , the first server 550 passes it to the client 500
without decryption .
[0127] If decision 556 is “ No ” , the first server 550 com
poses 554 the Server Hello message and derives 558 the first
keying material , both according to TLS protocol (for
instance , TLS 1.3) and then sends the Server Hello message
to the client 500 .
[0128] Referring to FIG . 5A , the client receives 514 the
Server Hello message and then derives 516 the first keying
material according to the TLS protocol (for instance , TLS
1.3) , which can then be used to send 518 data encrypted with
the keys derived from the first keying material to the first
network address .
[0129] The client also evaluates 520 whether the Server
Random field of the Server Hello message contains valid
elliptic curve data , for instance by detecting presence of the
correct representation 208 of included data in the Server
Random field .
[0130] If valid second elliptic curve data 206 is found ,
client derives 522 the second keying material from the
previously generated private key and a public key derived
from the second elliptic curve data , which can then be used
to send 524 data encrypted with the keys derived from the
second keying material to the first network address .
[0131] If valid second elliptic curve data is not found ,
client completes 519 the processing of the Server Hello
message without deriving the second keying material .
[0132] Referring to FIG . 5B , after the TLS handshake is
completed , the first server 550 at the first network address
receives 560 the encrypted data and then evaluates 568
whether it can be decrypted with a key derived from the first
keying material , known to the first server 550. If the result
of evaluation 564 is “ Yes ” , the first server 550 decrypts and
processes the received data as requested by the client , for
instance , removes the VPN tunnel encapsulation and then
passes the payload packet to one or more content providers
referenced in the received data . If first server 550 can't
decrypt the received data (decision 568 is “ No ”) , it forwards
580 it to the second network address for decryption with the
keys derived from the second keying material , unknown to
the first server 550 .
[0133] In some implementations , the first server 550 stores
the second network address after receiving the Client Hello
message with the forwarding data , and then uses it to
forward the data it can't decrypt . In other implementations ,
first server 550 may already know (e.g. , store) the second
network address before the Client Hello message is
received for instance , from the configuration parameter or
from the prior history . In this case , the forwarding data 204
could be omitted from the TLS handshake performed
according to the disclosed embodiments .
[0134] In other implementations , the first keying material
is derived only after the completion of the TLS handshake :
for instance , when using TLS 1.2 , at least 2 RTTs are needed
to derive the keying material during the full handshake ,
instead of 1 RTT for TLS 1.3 .
[0135] In some implementations , the first ec data sent by
the client may be included in a message other than the Client
Hello message , for instance the Client Finished message

US 2020/0228505 A1 Jul . 16 , 2020
8

according to the TLS protocol . In one instance , the 2nd ec
data sent by the 2nd server may be included into the message
other than Server Hello , for instance Server Finished .
[0136] As a result of the steps described in FIGS . 5A and
5B , at least two different keying materials can be generated
during the single TLS handshake that looks to an external
observer like a standard TLS handshake generating a single
keying material . This hides the second keying material from
the observer without increasing the time needed for the
handshake (for instance , 1 RTT in case of TLS 1.3) . The
second keying material does not rely on the previously
stored data , thereby enabling perfect forward secrecy . This
allows the client 500 to securely and privately connect to any
compatible VPN or proxy server by forwarding its traffic
through the secure connection to another server .
[0137] FIG . 6 is a schematic block diagram of a network
environment for exchanging data encrypted with different
encryption keys over a computer network .
[0138] Referring to FIG . 6 , VPN client 602 initiates a
security handshake 604 with the first VPN server 622 in
order to obtain two different keying materials according to
the present invention . As described in reference to FIGS . 5A
and 5B , first server 622 forwards the data intended to derive
the second keying material to the second VPN server 634 ,
waits for its response and then returns it to the VPN client
602 as part of its own TLS handshake , enabling the client
602 to generate both the first and the second keying mate
rials , the first keying material being shared only with the first
server 622 , while the second keying material is shared 624
only with the second server 634. At this point , the client 602
may establish the VPN tunnel with each of the first and the
second server , either at the same time or at different times .
Tunnel 608 that encrypts payload 606 with the key derived
from the first keying material is decrypted by the first server
622 , and then its payload 626 is passed to the content
providers 640 over the computer network . Tunnel 612
encrypts payload 610 with the key derived from the second
keying material . The first server 622 can't decrypt it and
passes its packets to the second server 634 , which extracts
the payload 638 and then sends payload packets to the one
or more content providers 640 referenced inside the tunnel
612 .
(0139] In some implementations , the first server 622 does
not share information about the source network address of
the client 602 with the second server 634 while forwarding
the tunnel packets 632 encapsulating the payload 630. In its
turn , the second server 634 doesn't share information
obtained from the payload 630 after the tunnel 632 is
decrypted . In this way , the first server doesn't know the
destinations and the content of client's traffic , while the
second server doesn't know the client's network address ,
which preserves the client's privacy . The client's commu
nication with the second server is hidden from an external
observer , who only sees a connection to the first server ; both
connections are secure and use perfect forward secrecy .
[0140] The disclosed embodiments achieve privacy
improvement without increasing the time to establish the
connection (both keying materials are generated within the
same handshake) or increasing the CPU load (payload is
encrypted with only one key) .
[0141] If the first and the second servers 622 , 634 are
located far from each other , it could create additional latency
and packet losses . In this case , the client 602 may send less
sensitive traffic through the first VPN server 622 that is

allowed to know both the source address of the client and the
destination of such traffic , while more sensitive traffic would
be forwarded to the second VPN server 634 .
[0142] In some implementations , the first and the second
servers 622 , 634 are deployed in the same local network , to
avoid additional latency or packet losses . For instance , both
servers could be deployed in the same co - location space
rented from the same hosting provider . In one example , both
servers are Virtual Machines (VMs) deployed on the same or
different physical computers inside the same local network .
In that example , forwarding data , if present , may contain a
VM identifier identifying the second server 634 , instead of
the second network address of the second server 634. In
another example , both servers 622 , 634 could be deployed as
containers , for instance as Docker containers developed by
the Docker Inc. , on the same physical computer . In this case
the forwarding data , if present , may contain identifier of the
container hosting the second server 634 instead of the
second network address .
[0143] FIGS . 5A , 5B , and 6 describe an embodiment of
the present invention where the two keying materials
derived from the single handshake are used to securely
communicate with two different servers , such as a proxy or
VPN server , over the same IP address during the same secure
connection .
[0144] In other embodiments , two keying materials
derived from the single handshake could be used to
exchange encrypted traffic with the same or different servers
during different secure connections .
[0145] In some embodiments , the first keying material is
used for the first secure connection after the full TLS 1.3
handshake that takes 1 RTT , while the 2nd keying material
is used for the next secure connection , using O - RTT session
resumption protocol for an encryption key that was never
used before .
[0146] In other embodiments , after two keying materials
are derived from the same handshake , they are used to
establish secure connections to two different servers located
at different network addresses .
[0147] In still other embodiments , more than two keying
materials are derived during the same handshake . In some
instances , Client Random and Server Random fields of the
TLS handshake carry a first set of elliptic curve point data
used to derive first additional keying material , while Client
Finished and Server Finished carry a second set of elliptic
curve point data used to derive second additional keying
material .
[0148] In still other embodiments , multiple keying mate
rials derived from the same handshake could be used to
encrypt the same data during the same connection , for
instance , to increase resistance to decryption algorithms
implemented on quantum computers .
[0149] In some embodiments , data embedded into the
security handshake to derive additional keying material or to
derive single keying material with perfect forward secrecy
while masking such derivation as 1 - RTT session resumption
could be different from a single coordinate of the elliptic
curve point . In one instance , such data could be derived from
multiple coordinates of the elliptic curve points , or from
another transformation of the elliptic curve data that could
be used as a public key . In another instance , the data
embedded according to the present invention could be used
by different algorithms of key material derivation , such as
lattice - based cryptography .

US 2020/0228505 A1 Jul . 16 , 2020
9

[0150] In one aspect of the disclosed embodiments , the
data embedded into the security handshake is used for
purposes other than generating additional keying material .
(0151] In some embodiments , at least one of the fields in
at least one handshake message , for instance Client Random
in Client Hello message , or Client Finished message , carries
forwarding data such as network address of the destination
server , such as an Internet Protocol (IP) address or a domain
name that could be resolved to an IP address , without
carrying the data used to generate additional keying mate
rial . In some instances of this embodiment , the client com
puter initiates the security handshake with a relay server
over the computer network , while including forwarding data
into the Client Random field of the Client Hello message . In
some instances , the included forwarding data is encrypted
with the public key of the relay server . After receiving the
forwarding data , relay server forwards the handshake pack
ets to the target server associated with forwarding data , such
as a VPN or a proxy server . After that , the relay server
continues to function as a forwarding proxy between the
client computer and the target server .
[0152] In some implementations , the target server is a
VPN server ; the relay server does not share information
about the source network address of the client with the VPN
server while forwarding encrypted tunnel packets . The relay
server doesn't know the destinations or content of the
client's content requests , while VPN server doesn't know
the client's source IP address . As a result , this implementa
tion achieves privacy improvement without increasing the
time to establish the connection (there is only one TLS
handshake) or increasing the CPU load (payload is
encrypted with only with one key) .
[0153] In some implementations , the relay and the target
servers are deployed in the same local network , to avoid
additional latency or packet losses . For instance , both serv
ers could be deployed in the same co - location space rented
by the same hosting providers . In one example , both servers
may be Virtual Machines (VMs) deployed on the same or
different physical computers inside the same local network .
In that example , forwarding data , if present , may contain
VM identifier for the target servers , instead of the network
address of the target servers . In another example , both relay
and target servers could be deployed as containers , for
instance as Docker containers developed by the Docker Inc. ,
on the same physical computer . In this case the forwarding
data , if present , may contain identifier of the container
hosting the target server instead of the network address .
[0154] In some embodiments , the data embedded into the
security handshake according to the present invention is
used for purposes other than either generating an additional
keying material or providing a forwarding data . In some
instances , it includes authorization information , such as a
user identifier , to control access to the destination server . In
other instances , it includes user preferences , such as whether
the content requests should be checked against the database
of malicious sites . In still other instances , it includes user
credit data , such as amount of bandwidth or connection time
that could be provided to the user without additional pay
ment . Multiple types of included data could be combined in
the same handshake .

[0155] Another aspect of the disclosed embodiments
enables the relay server to execute commands issued by the

client computer without the need to decrypt or to analyze
any packets of the security handshake or following data
exchange .
[0156] FIG . 7 is a process flow diagram of a method for
changing the forwarding address used by the forwarding
relay .
[0157] Referring to FIG . 7 , Relay computer 700 stores
configuration parameter start_fwd_addr that specifies for
warding address for the data received at the start 702 of a
connection with a client computer over a computer network .
In the depicted case , Relay 700 starts the connection by
setting current forwarding address fwd_addr to be equal to
the start_fwd_addr , where start_fwd_addr is a network
address svr_addr_1 of the Server 1 (750) . In some instances ,
svr_addr_1 is an IP address or a domain name pointing to the
Server 750 .
[0158] The Relay computer 700 begins the secure con
nection with client computer by forwarding the security
handshake from the client computer to the Server 750. At the
completion of the security handshake , Server 750 obtains
the keying material that allows to decrypt data from the
client passing through the Relay computer 700 .
[0159] The Relay computer 700 can't decrypt the data
received from the client because it doesn't know the keying
material derived from the security handshake ; it can only
forward it to the fwd_addr .
[0160] Upon receiving 704 the encrypted data from the
client's network address (client_addr) , the Relay evaluates
706 where to forward the received data . If fwd_address
parameter is equal to svr_addr_1 , it forwards 708 the
encrypted data to the Server 750 .
[0161] Upon receiving 752 the encrypted data , the Server
750 decrypts 754 it and then evaluates 756 whether the
decrypted data contain a command to change forwarding
address . In some instances , such an evaluation could be
made by detecting that the client sent a content request with
a reference to a script with a known name , such as relay_
script.php , as described below . In another instance , the
evaluation can be made by detecting an access to a specific
port of the Server 750 , or by detecting use of a custom
protocol .
[0162] In the described embodiment , if such a command is
detected , the Server 750 sends 758 it back to the Relay
computer 700 ; this can be done over the same connection
with the Relay computer 700 as was used to forward the
encrypted data , or over an additional connection established
between the Server 750 and the Relay computer 700 .
[0163] If no such command is detected , the Server 750
continues normal processing : for instance , if the client has
issued a content request , the Server 750 creates 760 an
encrypted response with the requested content and then
sends 762 it to the client .
[0164] The Relay computer receives 712 response data
from the Server 750 , it then evaluates 714 whether it's a
command to change the forwarding address .
[0165] In some instances , the Relay computer includes a
content server , referenced by the domain associated with the
Relay computer ; the content server detects a request issued
by the Server 750 to this content server and extracts the
command from parameters of the request . In other instances ,
the Relay computer 700 listens on a specific port , and detects
a command sent by the Server 750 to that port . In still other
instances , the Relay computer 700 watches for a data pattern

US 2020/0228505 A1 Jul . 16 , 2020
10

corresponding to a custom protocol , while Server 750 uses
that protocol to send the command .
[0166] In the illustrated embodiment , if the command is to
change the forwarding address , the Relay computer 700
changes 716 the stored parameter fwd_addr to the address
svr_addr_2 that points to a Server 2 , different from Server 1
(750) .
[0167] In some instances , after changing the forwarding
address , the Relay computer 700 forwards the security
handshake from the client computer to the Server 2 , and then
forwards the data encrypted with the key derived from this
security handshake between the client and the Server 2 .
[0168] If response data is not a command that could be
understood by the relay computer 700 , it forwards 718 the
response to the client computer .
[0169] The described embodiment of FIG . 7 enables the
Relay computer 700 to execute the client's commands such
as changing the forwarding address , without being able to
decrypt the client's data . This removes the need for the
Relay computer 700 to terminate secure connections from
the clients , protecting it from recognition by external
observers , decreasing the potential security threats and sim
plifying the deployment .
[0170] After fwd_addr was changed to svr_addr_2 , all
subsequent data received 704 from the client are forwarded
710 to the Server 2's address in some embodiments .
[0171] In the instance where the command to change the
forwarding address is included in the content request from
the client to the Server 750 , one implementation of such a
request is as follows (for clarity , it is presented before URL
encoding that would convert some symbols into the percent
character “ % ” followed by two hexadecimal digits repre
senting numeric value of replaced character) :

[0172] https://serverl_domain.com/relay_script .
php ? cmd = relay domain.com/fwd.php?a ddr = 192.168 .
1.27

[0173] where :
[0174] server1_domain.com : sample domain referenc
ing Server 1

[0175] relay_script.php : reference to a sample script in
the content directory of Server 1

[0176] relay domain.com : sample domain referencing
Relay

[0177] fwd.php : sample script in the content directory
of Relay

[0178] addr = 192.168.1.27 : example of the svr_addr_2
[0179] script relay_script.php on the Server 750 may be
programmed to :

[0180] analyze whether query string (relay_domain .
com / fwd.php ? addr = 192.168.1.27) is formatted as a
URL . If not , tell the Server 1 that the data doesn't
contain a command addressed to the relay

[0181] if query string is formatted as a URL , issue
request to that URL : http://relay_domain.com/fwd.ph
p ? addr = 192.168.1.27

[0182] script fwd.php on the Relay computer 700 may be
programmed to :

[0183] parse the query string (addr = 192.168.1.27)
[0184] if it contains recognizable command , execute the
command (in this case , set fwd_addr = 192.168.1.27) .

[0185] In some instances , a content request from the client
that contains a command to the Relay computer 700 also
contains additional parameters to protect from replay
attacks , such as a time stamp or a sequence number .

[0186] In some instances , a content request from the client
that contains command to the Relay computer 700 also
contains additional parameter to identify the client connec
tion , such as a client ID or connection ID .
[0187] FIG . 8 is a schematic block diagram of a network
environment for forwarding the encrypted data over a com
puter network .
[0188] Referring to FIG . 8 , an HTTPS Web Browser 802
executes on a client , for instance MICROSOFT EDGE
browser developed by the MICROSOFT CORPORATION ,
is programmed to establish secure TLS connections and
exchange encrypted data with a content server 840 , the
exchanged data for each new connection being forwarded
between the Web Browser 802 and the content server 840 by
a Relay 822. In some instances , the Relay 822 functions as
a proxy , set to forward data from each new connection to the
Content server 840. To do that , it may open a new connec
tion to the Content server 840 or use an already opened
connection .
[0189] After the Web Browser 802 starts the connection
with the Relay 822 , it performs a security handshake 806
with the Content server 840 , resulting in creating a shared
encryption key 1 , known to the Web Browser 802 and the
Content server 840 but not to the Relay 822. After key 1 is
established , it's used to exchange the encrypted content 808 ,
for instance , to retrieve content of a web site stored on the
server 840 .
[0190] The VPN client 804 executing on the client and
developed accordingly to the disclosed embodiments may be
programmed to establish secure TLS connections and to
exchange encrypted data with both the Content server 840
and a VPN server 850 , the exchanged data for each new
connection being forwarded between the VPN client 804
and the Content server 840 by the Relay 822. To establish a
TLS connection with the Content server 840 , the VPN client
804 performs a security handshake 810 , like the handshake
806 performed by the Web Browser 802 , resulting in deriv
ing a shared encryption key 2 , known to the VPN client 804
and the VPN server 850 but not to the Relay 820 .
[0191] According to the disclosed embodiments , the for
mat of the handshake 810 is set to be identical or similar to
the format of the handshake 806 , preventing external
observers from distinguishing the security handshake to the
Content server 840 initiated the Web Browser 802 from the
one initiated by the VPN server 804. To further obfuscate
use of the VPN server 850 , the VPN client 804 may
download at least part of the content stored on the server 840
after the security handshake 810 is completed .
[0192] In some embodiments , the VPN client 804 then
sends the command 812 through the already established
secure connection with the Content server 840. In some
instances , this command is formatted as an HTTPS request
to a script stored on the Content server 840 .
[0193] In some instances , similar to those described above
with respect to FIGS . 6 and 7 , this request carries a com
mand for the Relay 822 to change the forwarding address for
the same connection ; the Content server 840 decrypts the
request and issues its own request 842 to the Relay 822 ,
containing the information about the new forwarding
address .
[0194] In the described embodiment , request 842 is for
matted as an HTTP or HTTPS request to a Parser 830
executing on the server 820 , which terminates the request
and informs 824 the Relay 822 that it should change the

US 2020/0228505 A1 Jul . 16 , 2020
11

forwarding address . In some implementations , Parser 830
and Relay 822 are located on the same physical server 820
and have shared access to the same memory space , while the
request 842 is sent over the computer network between
different servers . In some instances , the Parser 830 changes
the value of the forwarding address stored in the shared
memory , while the Relay 822 uses this value to forward the
next packet arriving from the VPN client 804. In some
instances , the stored value of the forwarding address is
associated with a connection ID or user ID .
[0195] In other embodiments , the decrypted command
from the Content server 840 to the Relay 822 could be sent
without going through the Parser 830. In some instances of
such embodiments , the Relay 822 inspects data arriving
from the Content server 840 ; the Content server 840 sends
data containing a pre - defined header and the command to the
Relay 822. If the Relay 822 recognizes the header , it
executes the command without passing the data to the VPM
client 804 .
[0196] In the described embodiment , VPN client 804
starts another security handshake 814 after sending the
command 812 to change forwarding address . In some
instances , this handshake is implemented without sending
any of its data in plaintext form , for instance , by encoding
Client Hello with known public certificate of the VPN server
850 and using random padding to obfuscate the exchange .
[0197] As a result , an external observer can't notice when
the encrypted data exchange between the VPN client 804
and the Relay 820 changes from using the encryption key 2
to establishing and then using a different encryption key 3 .
[0198] The Relay 822 forwards the handshake data
between the VPN client 804 and VPN server 850 but can't
decrypt its data or derive the key 3 .
[0199] After the new encryption key is established , the
VPN client 804 uses it to encrypt a tunnel 818 with payload
816 , such as the content request ; the Relay 822 forwards the
tunnel's packets between the VPN client 804 and the VPN
server 850 without decrypting them . The VPN server 850
extracts the payloads and exchanges the data 852 with one
or more content providers 860 and then forwards the
responses from the one or more content providers 860 inside
the tunnel encrypted with key 3 to the VPN client 804 .
[0200] The described embodiment enables data exchange
between the VPN client and the VPN server that is difficult
to distinguish from the exchange between the regular Web
Browser 802 and the content server 840. External attempts
to analyze the first handshake would indicate that it's valid
and the computer at the destination network address should
be in possession of the private key corresponding to the
registered domain . However , the described embodiment
makes it unnecessary for the Relay 822 to know (e.g. ,
previously store) this key : it just forwards the initial data to
the content server 840 , which stores the private key , and then
changes the forwarding destination after the first handshake
is completed , while continuing to accept encrypted packets .
In the described embodiment , this is accomplished by send
ing the command from the VPN client 804 to the Relay 822
by first using the Relay 822 to forward the command to
another destination , and then sending the decrypted com
mand back to the same Relay 822 that forwarded the
command .
[0201] In some embodiments , the Relay 822 forwards the
data to the VPN server 850 without providing information
about a source network address of the VPN client 804 ,

thereby preserving the user's privacy . In some implementa
tions , the Relay 822 and VPN server 850 are deployed on the
same local network , to minimize the latency and packet
losses . In some instances , the Relay 822 and the VPN server
850 are deployed on different Virtual Machines (VMs)
within the same local network . In another implementation ,
the Relay 822 and the VPN server 850 are deployed in
different containers on the same physical computer .
[0202] In some embodiments , the VPN client 804 is
programmed to send the information to the Relay other than
one related to the change of the forwarding address . In one
instance , the VPN client provides the Relay with informa
tion needed to authorize the client , such as user or device ID
at the beginning of VPN session .
[0203] In some instances , the VPN client 804 periodically
changes the forwarding address back to the Content server
840 , and then sends the information needed to authorize use
of additional resources . In some implementations , the VPN
client 804 periodically sends payment information , such as
a payment token , to request use of additional bandwidth or
additional time during the same VPN session . After the
payment is validated , the VPN client 804 sends the com
mand to switch the forwarding address again and continues
the session .
[0204] In other implementations , the command sent to the
Relay 822 contains multiple instructions : for instance , pro
cess payment information and , if additional use of the
resource is authorized , change the forwarding address .
[0205] In some instances , the VPN client 804 may send
multiple commands to change forwarding addresses to dif
ferent VPN servers , thereby enabling multiple VPN sessions
forwarded over the same connection between the VPN client
804 and the Relay 722 .
[0206] In the described embodiments , the VPN client 804
establishes a secure VPN tunnel with the VPN server 850
over the computer network . In other embodiments , the VPN
client 804 establishes secure proxy connection with a proxy
server over the computer network . In still other embodi
ments , the VPN client 804 establishes one or more secure
connections with one or more content servers 860 over the
computer network .
[0207] Computing devices (client , server , proxy server ,
VPN server , content server , etc.) , networking components ,
and modules described herein may have some or all of the
attributes of the computing device 900 of FIG . 9. In par
ticular , components described above as being a computer or
a computing device may have some or all of the attributes of
the computing device 900 of FIG . 9. FIG . 9 is a block
diagram illustrating an example computing device 900
which can be used to implement the systems and methods
disclosed herein
[0208] Computing device 900 includes one or more pro
cessor (s) 902 , one or more memory device (s) 904 , one or
more interface (s) 906 , one or more mass storage device (s)
908 , one or more Input / Output (I / O) device (s) 910 , and a
display device 930 all of which are coupled to a bus 912 .
Processor (s) 902 include one or more processors or control
lers that execute instructions stored in memory device (s) 904
and / or mass storage device (s) 908. Processor (s) 902 may
also include various types of computer - readable media , such
as cache memory .
[0209] Memory device (s) 904 include various computer
readable media , such as volatile memory (e.g. , random
access memory (RAM) 914) and / or nonvolatile memory

US 2020/0228505 A1 Jul . 16 , 2020
12

(e.g. , read - only memory (ROM) 916) . Memory device (s)
904 may also include rewritable ROM , such as Flash
memory .
[0210] Mass storage device (s) 908 include various com
puter readable media , such as magnetic tapes , magnetic
disks , optical disks , solid - state memory (e.g. , Flash
memory) , and so forth . As shown in FIG.9 , a particular mass
storage device is a hard disk drive 924. Various drives may
also be included in mass storage device (s) 908 to enable
reading from and / or writing to the various computer read
able media . Mass storage device (s) 908 include removable
media 926 and / or non - removable media .
[0211] I / O device (s) 910 include various devices that
allow data and / or other information to be input to or
retrieved from computing device 900. Example I / O device
(s) 910 include cursor control devices , keyboards , keypads ,
microphones , monitors or other display devices , speakers ,
printers , network interface cards , modems , lenses , CCDs or
other image capture devices , and the like .
[0212] Display device 930 includes any type of device
capable of displaying information to one or more users of
computing device 900. Examples of display device 930
include a monitor , display terminal , video projection device ,
and the like .
[0213] Interface (s) 906 include various interfaces that
allow computing device 900 to interact with other systems ,
devices , or computing environments . Example interface (s)
906 include any number of different network interfaces 920 ,
such as interfaces to local area networks (LANs) , wide area
networks (WAN) , wireless networks , and the Internet .
Other interface (s) include user interface 918 and peripheral
device interface 922. The interface (s) 906 may also include
one or more user interface elements 918. The interface (s)
906 may also include one or more peripheral interfaces such
as interfaces for printers , pointing devices (mice , track pad ,
etc.) , keyboards , and the like .
[0214] Bus 912 allows processor (s) 902 , memory device
(s) 904 , interface (s) 906 , mass storage device (s) 908 , and I / O
device (s) 910 to communicate with one another , as well as
other devices or components coupled to bus 912. Bus 912
represents one or more of several types of bus structures ,
such as a system bus , PCI bus , IEEE 1394 bus , USB bus , and
so forth .
[0215] For purposes of illustration , programs and other
executable program components are shown herein as dis
crete blocks , although it is understood that such programs
and components may reside at various times in different
storage components of computing device 900 , and are
executed by processor (s) 902. Alternatively , the systems and
procedures described herein can be implemented in hard
ware , or a combination of hardware , software , and / or firm
ware . For example , one or more application specific inte
grated circuits (ASICs) can be programmed to carry out one
or more of the systems and procedures described herein .
[0216] In the above disclosure , reference has been made to
the accompanying drawings , which form a part hereof , and
in which is shown by way of illustration specific implemen
tations in which the disclosure may be practiced . It is
understood that other implementations may be utilized and
structural changes may be made without departing from the
scope of the present disclosure . References in the specifi
cation to " one embodiment , " “ an embodiment , ” “ an
example embodiment , ” etc. , indicate that the embodiment
described may include a particular feature , structure , or

characteristic , but every embodiment may not necessarily
include the particular feature , structure , or characteristic .
Moreover , such phrases are not necessarily referring to the
same embodiment . Further , when a particular feature , struc
ture , or characteristic is described in connection with an
embodiment , it is submitted that it is within the knowledge
of one skilled in the art to affect such feature , structure , or
characteristic in connection with other embodiments
whether or not explicitly described .
[0217] Implementations of the systems , devices , and
methods disclosed herein may comprise or utilize a special
purpose or general - purpose computer including computer
hardware , such as , for example , one or more processors and
system memory , as discussed herein . Implementations
within the scope of the present disclosure may also include
physical and other computer - readable media for carrying or
storing computer - executable instructions and / or data struc
tures . Such computer - readable media can be any available
media that can be accessed by a general purpose or special
purpose computer system . Computer - readable media that
store computer - executable instructions are computer storage
media (devices) . Computer - readable media that carry com
puter - executable instructions are transmission media . Thus ,
by way of example , and not limitation , implementations of
the disclosure can comprise at least two distinctly different
kinds of computer - readable media : computer storage media
(devices) and transmission media .
[0218] Computer storage media (devices) includes RAM ,
ROM , EEPROM , CD - ROM , solid state drives (“ SSDs ”)
(e.g. , based on RAM) , Flash memory , phase - change
memory (“ PCM ”) , other types of memory , other optical disk
storage , magnetic disk storage or other magnetic storage
devices , or any other medium which can be used to store
desired program code means in the form of computer
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer .
[0219] An implementation of the devices , systems , and
methods disclosed herein may communicate over a com
puter network . A “ network ” is defined as one or more data
links that enable the transport of electronic data between
computer systems and / or modules and / or other electronic
devices . When information is transferred or provided over a
network or another communications connection (either
hardwired , wireless , or a combination of hardwired or
wireless) to a computer , the computer properly views the
connection as a transmission medium . Transmissions media
can include a network and / or data links , which can be used
to carry desired program code means in the form of com
puter - executable instructions or data structures and which
can be accessed by a general purpose or special purpose
computer . Combinations of the above should also be
included within the scope of computer - readable media .
[0220) Computer - executable instructions comprise , for
example , instructions and data which , when executed at a
processor , cause a general purpose computer , special pur
pose computer , or special purpose processing device to
perform a certain function or group of functions . The
computer executable instructions may be , for example ,
binaries , intermediate format instructions such as assembly
language , or even source code . Although the subject matter
has been described in language specific to structural features
and / or methodological acts , it is to be understood that the
subject matter defined in the appended claims is not neces
sarily limited to the described features or acts described

US 2020/0228505 A1 Jul . 16 , 2020
13

above . Rather , the described features and acts are disclosed
as example forms of implementing the claims .
[0221] Those skilled in the art will appreciate that the
disclosure may be practiced in network computing environ
ments with many types of computer system configurations ,
including , an in - dash vehicle computer , personal computers ,
desktop computers , laptop computers , message processors ,
hand - held devices , multi - processor systems , microproces
sor - based or programmable consumer electronics , network
PCs , minicomputers , mainframe computers , mobile tele
phones , PDAs , tablets , pagers , routers , switches , various
storage devices , and the like . The disclosure may also be
practiced in distributed system environments where local
and remote computer systems , which are linked (either by
hardwired data links , wireless data links , or by a combina
tion of hardwired and wireless data links) through a network ,
both perform tasks . In a distributed system environment ,
program modules may be located in both local and remote
memory storage devices .
[0222] Further , where appropriate , functions described
herein can be performed in one or more of : hardware ,
software , firmware , digital components , or analog compo
nents . For example , one or more application specific inte
grated circuits (ASICs) can be programmed to carry out one
or more of the systems and procedures described herein .
Certain terms are used throughout the description and claims
to refer to particular system components . As one skilled in
the art will appreciate , components may be referred to by
different names . This document does not intend to distin
guish between components that differ in name , but not
function .
[0223] It should be noted that the sensor embodiments
discussed above may comprise computer hardware , soft
ware , firmware , or any combination thereof to perform at
least a portion of their functions . For example , a sensor may
include computer code configured to be executed in one or
more processors , and may include hardware logic / electrical
circuitry controlled by the computer code . These example
devices are provided herein purposes of illustration , and are
not intended to be limiting . Embodiments of the present
disclosure may be implemented in further types of devices ,
as would be known to persons skilled in the relevant art (s) .
[0224] At least some embodiments of the disclosure have
been directed to computer program products comprising
such logic (e.g. , in the form of software) stored on any
computer useable medium . Such software , when executed in
one or more data processing devices , causes a device to
operate as described herein .
[0225] While various embodiments of the present disclo
sure have been described above , it should be understood that
they have been presented by way of example only , and not
limitation . It will be apparent to persons skilled in the
relevant art that various changes in form and detail can be
made therein without departing from the spirit and scope of
the disclosure . Thus , the breadth and scope of the present
disclosure should not be limited by any of the above
described exemplary embodiments , but should be defined
only in accordance with the following claims and their
equivalents .
[0226] The foregoing description has been presented for
the purposes of illustration and description . It is not intended
to be exhaustive or to limit the disclosure to the precise form
disclosed . Many modifications and variations are possible in
light of the above teaching . Further , it should be noted that

any or all of the aforementioned alternate implementations
may be used in any combination desired to form additional
hybrid implementations of the disclosure .

1. A method of forwarding data in a computer network ,
the method comprising :

receiving , by a first module of a first computer from a
second module of a second computer over the computer
network , at least one incoming message with a first data
in a first format , the first format being defined to
contribute to derivation of a first keying material , and
with a second data in a second format , the second
format being defined to specify at least one forwarding
destination for at least some data received by the first
module of the first computer from the second computer ,
wherein the second data in the second format is
included as a part of the first data in the first format ;

extracting , by the first module , at least part of the second
data from the first data ;

determining , by the first module , at least one forwarding
destination from the extracted data ; and

forwarding , by the first module , to a third module of a
third computer referenced by the at least one forward
ing destination , at least some data received from the
second computer over the computer by network .

2. The method of claim 1 , wherein the forwarding the at
least some data from the first module to the third module
comprises forwarding the at least some data through a local
connection between the first module and the third module ,
without sending the at least some data to a public internet
protocol (IP) address .

3. The method of claim 1 , where the first computer and the
third computer reside on a same local network .

4. The method of claim 3 , where the first module and the
third module reside in different Virtual Machines (VMs) on
the same local network .
5. The method of claim 3 , where the first module and the

third module reside in different containers on the first
computer , the first computer being the same as the third
cor ter .
6. The method of claim 1 , wherein forwarding the at least

some data from the first module to the third module is
performed without forwarding an internet protocol (IP)
address of the second computer .

7. The method of claim 1 , wherein forwarding the at least
some data from the first module to the third module is
performed without decrypting the at least some data .

8. The method of claim 7 , further comprising :
decrypting , by the third module , the at least some data to

obtain decrypted data ; and
sending , by the third module , the decrypted data to one or
more content servers over the computer network .

9. The method of claim 1 , further comprising :
deriving , by the first module , the first keying material and

decrypting the at least some data received from the
second computer by using the first keying material ,
without sharing the first keying material with the third
module

10. The method of claim 1 , where the first format is
defined in accordance with Transport Level Security (TLS)
protocol , while the first incoming message is selected from
the group consisting of messages according to TLS protocol
including Client Hello and Client Finished .

US 2020/0228505 A1 Jul . 16 , 2020
14

11. The method of claim 10 , wherein the second data is
included as at least part of a field selected from the group
consisting of Client Random , Session ID and Session Ticket .

12. The method of claim 11 , wherein the second data is
selected from the group consisting of an internet protocol
(IP) address , a domain name , an identifier of a Virtual
Machine and an identifier of a container .

13. The method of claim 11 , wherein the first data
comprises a session resumption data , the method further
comprising :

extracting the at least the part of the second data from the
first data without using the first data for session
resumption .

14. A method of forwarding data in a computer network ,
the method comprising :

receiving , by a first module of a first computer , first
encrypted data , the first data being forwarded to the first
module after being received by a second module of a
second computer from a third module of a third com
puter over the computer network , the first data being
encrypted with a first key known to the first module but
not to the second module ,

decrypting , by the first module , the first data ; and
determining , by the first module , whether at least part of

the decrypted first data is addressed to the second
module ;

in response to determining that the at least the part of the
decrypted first data is addressed to the second module ,
sending second data derived from the at least the part
of the first data to a fourth module without encrypting
the second data with the first key , the fourth module
being programmed to change a state of the second
module .

15. The method of claim 14 , wherein :
receiving , by the first module , the first data by receiving

the first data over one or more first connections in a first
direction ; and

sending , by the first module , the second data to the fourth
module comprises sending the second data over the one
or more first connections in a reverse direction opposite
the first direction .

16. The method of claim 14 , wherein the second data
includes a first message from the third computer to the
second computer .

17. The method of claim 16 , wherein the first message is
effective to cause the second computer to change a forward
ing destination for at least some future data received from
the third computer , such that at least some of the future data
will be forwarded to a fifth module of a fifth computer ,
without being forwarded to the first module of the first
computer .

18. The method of claim 17 , wherein the at least some of
the future data forwarded to the fifth module is encrypted
with a second key , the first key being different from the
second key , the first key being known to the first module but
not to the second module and the fifth module , the second
key being known to the fifth module but not to the first
module and the second module .

19. The method of claim 17 , wherein the forwarding the
at least some of the future data to the fifth module is
performed without forwarding the internet protocol (IP)
address of the third computer .

20. The method of claim 16 , where the first message is
effective to inform the second module whether to continue
data exchange with the third computer .

21. The method of claim 16 , wherein the first message
contains information about the payment received from a user
of the third computer .

22. The method of claim 14 , where the second computer
and at least one of the first computer and the fifth computer
reside on a same local network .

23. The method of claim 14 , where the second module and
at least one of the first module and the fifth module reside in
different Virtual Machines (VMs) on a same local network .

24. The method of claim 14 , where the second module and
at least one of the first module and the fifth module reside in
different containers on the second computer , the second
computer being the same as at least one of the first computer
and the fourth computer .

