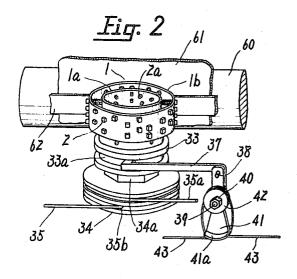
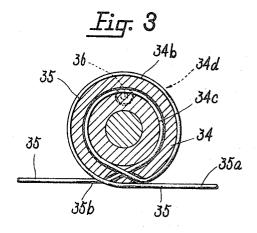

CABLE POSITIONED TYPE DRUM PRINTER

Filed June 7, 1967

Sheet / of 2


TOSHIRO SAWAKI
BY McGleward Toren


ATTORNEY\$

CABLE POSITIONED TYPE DRUM PRINTER

Filed June 7, 1967

Sheet 2 of 2

INVENTOR

TOSHIRO SAWAKI

BY M Glew and Toren

ATTORNEYS

1

3,419,124
CABLE POSITIONED TYPE DRUM PRINTER
Toshiro Sawaki, Takasaki, Japan, assignor to Oki Electric
Industry Company Limited, Minato-ku, Tokyo, Japan
Filed June 7, 1967, Ser. No. 644,236
Claims priority, application Japan, Dec. 21, 1966,
41/83,260
5 Claims. (Cl. 197—53)

ABSTRACT OF THE DISCLOSURE

The present invention discloses a printer wherein the vertical direction or rotating direction of a type carrier is selected by a selecting wire which is positively driven by a positive driving mechanism.

This invention relates to a printer.

An object of the present invention is to provide a printer wherein, in case types supported by type carrier such 20 as a type drum or type box are to be selected with a selecting wire, said wire is positively driven.

Another object of the present invention is to provide a printer wherein the type selecting operation can be carried out positively at a high speed without pulling the 25 conventional selecting wire at one end with the tension of a spring.

In the accompanying drawings:

FIG. 1 is a schematic perspective view of a printer embodying the present invention;

FIG. 2 is a detailed perspective view of a type drum, type wheel support, horizontal pulley and vertical lever in FIG. 1;

FIG. 3 is a plan view of a horizontal selecting wire clamped to the horizontal pulley;

FIG. 4 is a sectional view showing a vertical lever, vertical drum pulley, vertical clamp and vertical selecting wire as engaged; and

FIG. 5 is a sectional view showing a horizontal lever and a link as engaged.

In FIG. 1 which is a schematic perspective view of a printer of the present invention, 1 is a type drum having a thin cylindrical inside drum case 1a and outside drum case 1b. Types 2 are set between the above mentioned cases. The heads of the types are arranged along the peripheral surface of the type drum and the supporting bars 2a of the types 2 (see FIG. 2) are projected toward the center axis of the drum 1 so that, when these supporting bars 2a are struck with a type hammer (not illustrated), the types 2 may slide outward for typing.

33 is a type wheel support. As illustrated in detail in FIG. 2, the type drum 1 is removably fixed to one end of support 33 by such means as screws.

Further, a sliding groove 33a is formed on the outer periphery of said type wheel support 33. 34 is a horizontal pulley. The above mentioned type wheel support 33 is fitted to the hexagonal column part 34a of said pulley. A horizontal selecting wire 35, to control the rotation of the type drum 1, is clamped to said pulley 34 as illustrated in FIGS. 2 and 3. For the sake of brevity, only a part of the horizontal selecting wire 35 is shown in FIGS. 2 and 3. As illustrated in FIG. 3, the horizontal selecting wire 35 is so wound that one end 35a may enter an upper groove 34b made on the outer periphery of the horizontal pulley 34, may surround the grove substantially by one turn round, may then enter an inner groove 34c inside the pulley 34, may surround said groove by one round, may be inserted into a lower groove 34d on the outer periphery of the above mentioned pulley 34 and may come out at the end 35b. That is to say, the horizontal selecting wire 35 is wound in the spiral form of

2

Q. 36 is a screw (see FIG. 3) for fixing the horizontal selecting wire 35 in the inner groove 34c of the horizontal pulley 34.

The type wheel support 33 is slidable in the vertical direction with respect to the horizontal pulley 34 but is fixed to pulley 34 in the rotating direction.

A lever 37, for vertical or axial displacement of drum 1, is pivotally mounted on a shaft or pin 38, as shown in FIG. 4. One end of lever 37 is engaged in a groove 10 33a of type wheel support 33, as best seen in FIG. 2. The opposite end of lever 37 is secured to a vertical driving pulley or sector 41, pivoted on pin or shaft 38, by means of a bolt 39 and a nut 40. A selecting wire 43 is provided for swinging or oscillating pulley 41 and lever 37, and only part of this wire 43 has been shown in FIGS. 1 and 2, for the sake of simplicity. Wire 43 extends in opposed directions along the arcuate surface 41a of pulley or sector 41, the wire 43 being, in effect, wound on this surface and around a spacer on bolt 39. The portion of wire 43 wound around the spacer is clamped in position by clamping means 42 tightened by bolt 39 and nut 40. That is to say, the vertical selecting wire 43 is wound in the form of l. Further, the above mentioned shaft 38 is supported with the later described feeding

In the following, in the embodiment illustrated in FIG. 1, and for the sake of brevity of the explanation, there is illustrated a positive driving mechanism for positively driving the horizontal selecting wire 35 in the case of selecting the type in the rotating direction of the type drum 1. However, the positive driving mechanism for positively driving the vertical selecting wire 43 in the case of selecting the type in the vertical direction of the type drum 1 may be made by duplicating the above mentioned positive driving mechanism and therefore will be neither illustrated nor explained here.

The above mentioned horizontal selecting wire 35 is wound and fixed at one end to a feeding drum 46 through pulleys 45a, 45b, 45c and 45d, and at the other end to the feeding drum 46 through pulleys 45e, 45f, 45g and 45h so as to form a closed loop.

Further, said pulleys 45a and 45c are rotatably mounted on the ends of the later described left horizontal selecting lever 49 and right horizontal selecting lever 50, respectively, the pulleys 45c, 45d, 45g and 45h are rotatably mounted on a base plate not illustrated and the pulleys 45b and 45f are rotatably mounted on the later described shafts 59a and 59b, respectively.

The above mentioned feeding drum 46 has a feeding ratchet 47 integrally secured to it.

The positive driving mechanism will now be explained. 49 is a left horizontal selecting lever rotatably mounted on shaft 59a. 50 is a right horizontal selecting lever rotatably mounted on shaft 59b. These two levers 49 and 50 are connected with each other through an upper link 51 and lower link 52 made of a steel sheet or wire, at joints 54, 55, 56 and 57. At these joints, as exemplified in FIG. 5, the upper link 51 (or the lower link 52) is fitted at one end to a post or the like integrally fixed to the left horizontal selecting lever 49 (or the right horizontal selecting lever 50) and is fixed with a snap 53. If, by a selecting mechanism not illustrated, the displacement corresponding to each type 2 in the type drum 1 is given to one end 50b of the right horizontal selecting lever 50or, for example, the end 50b is displaced in the direction indicated by the solid line arrow by any amount of displacement, the right horizontal selecting lever 50 will rotate clockwise by a certain angle around the shaft 59b as a center. In such case, the joint 55 will also rotate rightward and will pull the joint 54 rightward through the upper link 51.

Therefore, the left horizontal selecting lever 49 will rotate clockwise around the shaft 59a as a center. That is to say, by the positive drive of the above mentioned levers 49 and 50, the horizontal selecting wire 35, wound into the grooves of the pulley 34, positively controls rotation of the type drum 1.

Further, if one end 50b of the right horizontal selecting lever 50 is displaced in the direction indicated by the dotted line arrow by any amount of displacement, the right horizontal selecting lever 50 will rotate anticlockwise by a certain angle around the shaft 59b as a center. In such case, the joint 56 will also rotate rightward and will pull the joint 57 rightward through the lower link 52.

Therefore, the left horizontal selecting lever 49 will rotate anticlockwise around the shaft 59a as a center. 15 That is to say, by the positive drive of the above mentioned levers 49 and 50, the horizontal selecting wire 35, wound into the groove of the horizontal pulley 34, positively controls the rotation of the type drum 1.

60 is a platen, 61 is a typing paper and 62 is an ink 20 ribbon.

The spacing operation of the type drum 1 will now be explained.

63 is a feeding carrier which rotatably supports the above mentioned horizontal pulley 34 and also the vertical lever 37 and vertical driving pulley 43. 64a and 64b are spacing wires which are fixed each at one end to the above mentioned carrier 63 and are wound and fixed each at the other end on the feeding drum 46 through pulleys 65a, 65b and 65c and pulleys 65e, 65f and 65g, respec- 30 tively.

Therefore, if the feeding ratchet 47 is rotated by a step-by-step mechanism not illustrated, the spacing wires 64a and 64b will be wound into the feeding drum 46 in turn so that the feeding carrier 63 (type drum 1) may 35 carry out the spacing operation.

As explained above, according to the present invention, as the left horizontal selecting lever 49 and the right horizontal selecting lever 50 are connected with each other through the upper link 51 and lower link 52 made of a 40steel sheet or wire, in the right and left swinging operations for the selection of the right horizontal selecting lever 50 or, for example, in the clockwise swinging operation of the lever 50, the left horizontal selecting lever 49 will be operated by the tension of the above mentioned upper 45 link 51 and, in the anticlockwise swinging operation, the left horizontal selecting lever 49 will be operated by the tension of the above mentioned lower link 52. Therefore, even if said upper link 51 or lower link 52 is made of a very thin steel sheet or wire, it will not bend. Further, it 50 can be made light. Therefore, a positive driving mechanism which can make a high speed selecting operation can be provided according to the present invention.

Further, when such positive driving mechanism as is mentioned above is used, the selecting operation will be 55able to be carried out more positively at a higher speed than by pulling a selecting wire such as is conventionally used at one end with the tension of a spring.

What is claimed is:

1. A printer comprising a rotatably and axially mov- 60 able type drum having types mounted on its peripheral surface; a first selecting wire operable to rotate said type drum and selecting means, including a second selecting wire, operable to move said type drum axially, to select a given type; a movable carrier, including an externally 65 197-18 grooved first pulley having an axial shaft, mounting said

type drum, said type drum being mounted on said shaft for axial displacement relative to said pulley by a grooved connection preventing rotation of said type drum relative to said pulley; said pulley having a radially inner substantially circular groove; said first selecting wire being wound around said pulley and having at least one turn within said inner groove; means operable to rotate said type drum and including a pair of relatively elongated selecting levers pivotal about fulcrums intermediate their ends, a first link pivotally connected at opposite ends to said levers on one side of the fulcrums thereof and a second link pivotally connected to said levers on the opposite side of the fulcrums thereof; a feeding drum; said first selecting wire extending from said first pulley around second pulleys on each of said selecting levers and to said feeding drum; and two spacing wires each having one end secured to said movable carrier and an opposite end wound around and secured to said feeding drum; selection of types in the rotary direction of movement of said type drum being effected by concurrently pivoting said selecting levers about their fulcrums.

2. A printer, as claimed in claim 1, wherein spacing of said type drum along a line to be typed is effected by rotating said feeding drum to wind one spacing wire therearound while correspondingly unwinding the other spacing wire therefrom.

3. A printer, as claimed in claim 1, wherein said first pulley is formed with a pair of axially spaced peripheral grooves each communicating with said radially inner groove; said first selecting wire extending around one of said peripheral grooves, then through the connection thereof with said inner groove, then around said inner groove, then through the connection of said inner groove with the other peripheral groove, and around said other peripheral groove.

4. A printer, as claimed in claim 1, wherein said selecting means includes a pivoted lever having a free end engaged in a circumferentially extending groove of said type drum; said second selecting wire being operatively connected with said last-named lever to pivot the same in a direction to effect axial displacement of said type drum relative to said pulley.

5. A printer, as claimed in claim 4, wherein said selecting means includes a third pulley oscillatable about the pivot of said last-named lever; means securing said lastnamed lever and said third pulley to each other for conjoint oscillation; said second selecting wire being wound around said third pulley; and clamping means securing said second selecting wire in fixed relation to said third pulley adjacent the pivotal mounting thereof.

References Cited

UNITED STATES PATENTS

3,168,182	2/1965	Bernard et al 197—18 XR
3,175,671	3/1965	Lapointe et al 197—18 XR
3,227,259	1/1966	Howard 197—49
3,247,941	4/1966	Beattie et al 197—18 XR
3,302,765	2/1967	Hickerson et al197—18 XR

ROBERT E. PULFREY, Primary Examiner. EDGAR S. BURR, Assistant Examiner.

U.S. Cl. X.R.