

(19) 日本国特許庁(JP)

(12) 公開特許公報(A)

(11) 特許出願公開番号

特開2004-40764
(P2004-40764A)

(43) 公開日 平成16年2月5日(2004.2.5)

(51) Int.C1.⁷H03H 7/075
H03H 7/06
H03M 3/02

F 1

H03H 7/075
H03H 7/06
H03M 3/02

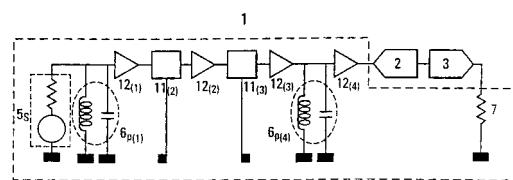
テーマコード(参考)

5 J 0 2 4
5 J 0 6 4

審査請求 未請求 請求項の数 16 O L 外国語出願 (全 34 頁)

(21) 出願番号 特願2003-64201 (P2003-64201)
 (22) 出願日 平成15年3月10日 (2003.3.10)
 (31) 優先権主張番号 0202957
 (32) 優先日 平成14年3月8日 (2002.3.8)
 (33) 優先権主張国 フランス (FR)

(71) 出願人 591000827
 タレス
 フランス国、75008・パリ、ブルバ
 ル・オースマン・173
 (74) 代理人 100109726
 弁理士 園田 吉隆
 (74) 代理人 100101199
 弁理士 小林 義教
 (72) 発明者 ジャン-ミシェル オード
 フランス国 06560 ヴアルボンヌ,
 リュ ポール セザンヌ 3
 (72) 発明者 クリストフ フルザ
 フランス国 94117 アーキュイユ,
 アヴェニュー アリストッド ブリアン
 31-33, タレス知的所有権部内
 最終頁に続く


(54) 【発明の名称】最小位相変動連続時間積分フィルタおよび当該フィルタを使用した帯域通過 $\Sigma\Delta$ 変調器

(57) 【要約】 (修正有)

【課題】レーダ受信機において、アナログ - ディジタル符号化の精度を向上させるために使用される、フィードバックループを形成する帯域通過変調器を提供する。

【解決手段】入力側に供給された信号を帯域通過積分するため、最小位相変動と称する、位相変動を有する共振装置を少なくとも1つ有する連続時間フィルタを使用することで解決される。フィルタリングに伴う遅延を最小化し、ループの安定性を保つためには、帯域通過フィルタを連続時間装置とする場合、多種フィルタである必要がある。このようなフィルタは、例えば共振器と1つ又は複数の周波数帯域においてその作用が共振器より優勢になる抵抗を有する事により実現される。

【選択図】 図14

【特許請求の範囲】**【請求項 1】**

入力側に供給された信号の帯域通過積分処理を行うフィルタであって、該処理が実時間で行われ、該フィルタが最小位相変動を有する要素を少なくとも 1 つ有するフィルタ。

【請求項 2】

最小位相変動を有する共振装置を少なくとも 1 つ有する、上記請求項に記載のフィルタ。

【請求項 3】

前記最小位相変動を有する共振装置が、共振器と、1 つまたは複数の周波数帯域においてその作用が共振器より優勢になる抵抗とを有する、上記請求項に記載のフィルタ。

【請求項 4】

共振周波数に対して対称であり、共振周波数を含まない周波数帯域において抵抗の作用が優勢である場合、前記最小位相変動を有する共振装置が位相遅れ装置である上記請求項に記載のフィルタ。 10

【請求項 5】

前記最小位相変動を有し、位相遅れを伴う共振装置が、

- 抵抗に対して並列接続された直列共振器であって、直列接続されたインダクタおよびキャパシタを有する直列共振器、または
- 抵抗に対して直列接続された並列共振器であって、並列接続されたインダクタおよびキャパシタを有する並列共振器を有する、上記請求項に記載のフィルタ。

【請求項 6】

共振周波数を含む周波数帯域において、抵抗の作用が優勢である場合、前記最小位相変動を有する共振装置が位相進み装置である、上記請求項に記載のフィルタ。 20

【請求項 7】

前記最小位相変動を有し、位相進みを伴う共振装置が、

- 抵抗に対して直列接続された直列共振器であって、直列接続されたインダクタおよびキャパシタを有する直列共振器、または
- 抵抗に対して並列接続された並列共振器であって、並列接続されたインダクタおよびキャパシタを有する並列共振器を有する、上記請求項に記載のフィルタ。

【請求項 8】

前記最小位相変動を有する共振装置が、

- 直列接続されたインダクタとキャパシタを有する直列共振器を含む第 1 アーム、
- 第 1 アームの直列共振器に対して並列接続された第 2 アームであって、キャパシタを含む第 2 アーム、および
- 第 1 アームの直列共振器および第 2 アームのキャパシタに対して並列接続されているか、直列共振器およびキャパシタによって形成される装置に対して直列接続されている抵抗を含む等価回路を有する請求項 2 または 3 に記載のフィルタ。

【請求項 9】

高次フィルタである請求項 2 ないし 8 のいずれか 1 項に記載のフィルタ。

【請求項 10】

最小位相変動を有する共振装置が、カスケードまたは梯子構造またはバランスブリッジ構造に配置される上記請求項に記載のフィルタ。 40

【請求項 11】

フィルタを構成する要素が、圧電基板上またはセラミックパッケージ内に形成される上記請求項のうちいずれか 1 項に記載のフィルタ。

【請求項 12】

1 つまたは複数の共振器が、

- セラミック共振器、
- 表面波共振器 (SAW)、
- バルク波共振器 (BAW)、
- 基本バルク共振器 (FBAR)、

10

20

30

40

50

- 高次バルク共振器 (H B A R) 、
- 薄膜共振器 (T F R) 、
- 誘電体共振器、
- 超伝導体材料からなる共振器、および
- G m C 型共振器からなる群より選択された共振器である上記請求項のうちいずれか 1 項に記載のフィルタ。

【請求項 1 3】

請求項 1 ないし 1 2 のうちいずれか 1 項に記載のフィルタを有するフィードバックループ。

【請求項 1 4】

潜時値が 1 より大きい上記請求項に記載のフィードバックループ。

【請求項 1 5】

請求項 1 4 に記載のフィードバックループからなり、ループの順方向チャネルにアナログ - ディジタル変換機を有し、ループの戻りチャネルにディジタル - アナログ変換機を有する、フィードバックループを形成する帯域通過 变調器。

【請求項 1 6】

変調器を形成する要素のうち 1 つまたは複数、あるいは 变调器を形成するすべての要素が、半導体内に集積され、

フィルタが、半導体上に搭載された圧電基板上または 变调器のセラミックパッケージ 内に形成される上記請求項に記載の帯域通過 变调器。

【発明の詳細な説明】

【0 0 0 1】

【発明の技術分野】

本発明は、連続時間系フィルタリングに関するものである。より具体的に、例えばシグマ - デルタ () 变調器等のフィードバック制御ループにおけるフィルタリングに関するものである。アナログ方式の 变调器は、例えば、レーダ受信機や通信システムにおいて、特にアナログ - ディジタル符号化の精度を向上させるために使用することができる。

【0 0 0 2】

【従来技術の説明】

信号の 变調は、当該信号を少数のビットに符号化するものであるが、そのビット数による理論上の限界より遙かに高い精度を実現することができる。その目的で、フィードバック制御ループが形成される。精度を制限する量子化装置は、図 1 (a) の一般図に見えるように、ループの出力側に配置される。

【0 0 0 3】

信号がディジタル信号である場合、 变調ユニットはディジタル装置として作成される。 变調器へ入力されるディジタル信号が N 個のビットからなるものであれば、帰還信号は $N - n$ 個の空の最下位ビット (L S B) を含む N 個のビットからなり、積分装置 1 への入力信号は $N + 1$ 個のビットからなり、量子化装置 2 の入力と出力の信号はそれぞれ N 個のビットと n 個のビット (ここで、 n は N より遙かに小さい) からなるものとなる。従って、 变調器の出力で符号化される信号は、ビット数が少ないが、帯域内で高精度を有する。これは、变调器の入力信号が 20 ビットで符号化されるが、出力が 1 ビットで得られる C D リーダにおいて一般的である。

【0 0 0 4】

しかし、信号がアナログ信号であり、アナログ - ディジタル変換機 2 (精度を制限する量子化) が、図 1 (b) に見えるように、ループの出力側に配置された場合、入力 / 出力誤差を積分するフィルタリング 1 が、必然的にアナログ方式のフィルタリングになる。ここで、2 つの可能性がある。第 1 の可能性は、信号の周波数が低い時であり、この場合、フィルタリング 1 前にループ (図示せず) の入口で信号をサンプリングし、離散時間系 (例えばスイッチトキャパシタを使用して) フィルタリングを行う。第 2 の可能性は、特にキャリア周波数などの高周波数領域で生じるものであり、この場合、離散時間方式 (特

10

20

30

40

50

に、スイッチトキャパシタまたはスイッチト電流ループ方式)は不適当である。よって、フィルタリング11を連続時間系のフィルタリングとする。このような場合、最も一般的に使用される技術はGmC技術(トランスコンダクタンス増幅器を使用するもの)である。従って、サンプリングは、ループの出力側で、量子化(アナログ-デジタル変換機)の直前に行われる。

【0005】

また、高周波数についてさらに言及すると、アナログ-デジタル変換機(ADC)2とデジタル-アナログ変換機(DAC)3の総変換時間は、1サンプリング周期を超える複数のサンプリング周期に亘って存在する。この問題は、符号化を1ビットに制限することで解決することができるが、その場合、符号化関数が非線形性の強い特性を有するため、変調器の安定性を確実に得ることができる条件を決定することができない。従って、マルチビット符号化が望ましい。この種の符号化において、開ループの応答を、1次線形性の応答とすることができます。

【0006】

そうすると、ループフィルタ11の作成にあたり、ループの安定性を維持しながら利得を最大化する(よって、フィードバック制御信号と制御との間の誤差を最小化する)といったフィードバック制御ループにおける最も一般的な課題を解決しなければならない。これは、潜時値、すなわちループの総遅延時間が、大きいので、実現することが非常に難しい。高潜時値の存在下であっても良好な結果が得られるフィルタリング関数を求めることが困難であるため、現在に至っても連続時間変調器の開発が遅れている。

【0007】

【発明の概要】

本発明は、ループの利得のモジュラスが1となる周波数領域でフィルタの位相を最小化することで、連続時間フィルタリングの困難性を準最適に解決するものである。

【0008】

具体的に、本発明は、入力側に供給された信号を帯域通過積分するための、最小位相変動と称する、位相変動を有する少なくとも1つの素子を具備する連続時間フィルタを提案する。

【0009】

最小位相変動素子とは、周波数がゼロまたは無限大に近づくにつれ、展開位相、すなわち、不明瞭な点を連続性で埋めることで再構成された位相が、ゼロに近づく傾向を有する素子である。

【0010】

帯域通過積分器として実時間のフィルタを作成する場合、-1の臨界点近辺における利得の変動と位相の変動との釣合の問題が生じる。この釣合によってループの安定性が得られなくてはならない。因果関係上、これらの変動はバヤール-ボード(Bayard-Board)関係によって結ばれている。この問題は、最小位相変更を有する共振装置を少なくとも1つ有する連続時間帯域通過積分フィルタを使用することで解決できる。この最小位相変更を有する共振装置とは、具体的には共振器と抵抗を有するものである。

【0011】

本発明のさらなる目的は、このような連続時間帯域通過積分フィルタを含むフィードバックループを提供することである。このフィードバックループは、特に変調器によって構成され得る。フィードバックループを形成する帯域通過変調器は、例えば、アナログ-デジタル変換機、帰還デジタル-アナログ変換機および上述したような連続時間帯域通過積分フィルタを具備するものである。

【0012】

【詳細な説明】

帯域通過変調器は、有用帯域内において、従来の符号器に比べて遙かに高い精度で信号のデジタル符号化を可能にする。その実際の機能として、デジタル化以外にも、量子化雑音を整形することで、有用帯域におけるこの雑音のスペクトル密度を従来の符号器

10

20

30

40

50

による雑音より遙かに小さくすることである。この有用帯域における量子化雑音のスペクトルパワー密度の低下は、帯域外の雑音のフィルタリングとデシメーションを行った後に、それに相当する精度の向上として現れる。

【0013】

図1は、ある実施例による連続時間帯域通過変調器を示す概略図である。連続時間帯域通過変調器は、フィードバックループからなる。変調器は、ループの順方向チャネルv1に、積分装置1に続いてアナログ/デジタル変換機(ADC)2を有する。積分装置1は、積分用のフィルタ装置11と、有用帯域における誤差の増幅器12を有する。変調器は、戻りチャネルv2上に、デジタル/アナログ変換機(ADC)3を有する。この変換機(ADC)3は、変調器の出力で得られた変換信号を変調器の入力まで伝送するために使用される。ループの入力側に、積分装置1の前方に演算器4が配置されており、変調器が例えばレーダまたは通信システム内に使用される場合に、受信機の入力部から送信され、変調器の入力に印加される符号化すべき信号を受信するとともに、さらに、デジタル/アナログ変換後に戻りチャネルから送信される変換信号も受信する。この演算器4が入力信号と変換信号の差を評価することによって、帯域通過積分装置が、帯域内における出力信号と入力信号との誤差の積分を行う。

【0014】

有用帯域における開ループの利得は1より遙かに大きいので、この有用帯域内では、出力信号と入力信号との誤差が必然的に非常に小さくなる。これがフィードバックループの原理である。従って、ループの出力側の量子化雑音が、この利得に相当する率で排除される。出力信号の量子化雑音は、アナログ/デジタル変換を行う際に発生する。

【0015】

よって、ループの利得をできるだけ高くすることが必要である。しかし、2つの変換機2および3を行うために必要な時間を考慮すると、好ましいレベルの利得を選択することは不可能である。実際、ループの実用化にあたり、ナイキスト基準を満たさなくてはならない。その結果、所定の変換機2および3について、ループの安定性は専らフィルタリング11と積分処理12によって決定する。

【0016】

フィルタリングに伴う遅延を最小化し、ループの安定性を保つためには、帯域通過フィルタ11を連続時間装置とする場合、多極フィルタである必要がある。この種の連続時間フィルタは、その原理上、各々が完全な増幅器に挟まれ、1次フィルタを形成する1次共振器のカスケードとして表すことができる。この構造の伝達関数は、各応答の(対数振幅および位相における)総和である。これらの応答は、前記共振器を、直列または並列に、第1に、内部インピーダンス51を有する発電機52と、第2に、負荷7との間に繋ぐことで得ることができる。図2(a)および2(b)に示すLC共振器は、通常の方法によって、この目的で実施される。

【0017】

図2(a)には、直列共振器を示す。インダクタL61とキャパシタC62が直列接続された直列LC回路6sを有する。図2(b)には、並列共振器を示す。インダクタL61とキャパシタC62が並列接続された並列LC回路6pを有する。

【0018】

しかし、このような簡単なLC共振器6を有する連続時間フィルタ11は、位相の変動が最小化されたものではない。実用上、共振周波数または反共振周波数から離れた状態で位相がゼロに戻ることが好ましい。実際、これが確認されなければ、フィルタが設置されたループは安定性を示す。

【0019】

図3(a)には、図2に示す共振装置の位相応答を、周波数の関数として示す。周波数軸は、共振周波数に対して正規化されている。図3(a)に示す位相は、周波数が0に近づくにつれ、90°に寄り、周波数が無限大に向かうにつれ、-90°に寄る。位相変動を最小化するためには、周波数がゼロまたは無限大に向かうにつれ、位相がゼロに寄る必要

10

20

30

40

50

がある。よって、図3(a)において、図2に示すような簡単なLC共振器を有するフィルタは、いわゆる「最小」位相変動を有するものではない。

【0020】

図3(b)には、図2の共振装置の振幅応答を、周波数の関数として示す。周波数軸は、共振周波数に対して正規化されている。振幅は、共振周波数から離れても飽和しない。振幅応答の波形は、因果関係により、図2(a)に見えるような位相変動を説明することができる。

【0021】

高安定性と同時に充分の利得を実現するためには、フィルタ11は最小位相変動を有する連続時間帯域通過積分フィルタでなければいけない。具体的に、次のような伝達関数を有する。

$$H(p) \propto \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2}$$

【0022】

ここで得られる関数は、 Q_N と Q_D の値によって変化する。実際、 $Q_D < Q_N$ の場合、共振周波数周辺で、周波数とともに位相が低下するので、位相遅れを有する帯域フィルタリング関数が得られる。 $Q_D > Q_N$ の場合に得られるフィルタは、位相進みを有する帯域阻止性のものになる。 Q_D は、共振器6(または共振装置)の振幅における伝達関数の極大を示す。この比率 Q_D / Q_N は、共振器6(または共振装置)の振幅における伝達関数の極大と極小との間の比率を示す。

【0023】

本発明は、これを、共振器6に代わって共振装置 $6'_{s1}$ 、 $6'_{s2}$ 、 $6'_{p1}$ 、 $6'_{p2}$ 、 $6''_{s}$ および $6''_{p}$ を使用することで実現することを提案する。

【0024】

本発明の第1、第2、第3および第4の変形を、図4(a)、4(b)、6(a)および6(b)に示す。これらの装置は、共振装置 $6'_{s1}$ 、 $6'_{s2}$ 、 $6'_{p1}$ または $6'_{p2}$ を構成するために、LC回路6に、直列または並列に抵抗を追加したものである。

【0025】

本発明によるフィルタの第1変形は、図4(a)に示すように、直列共振器 $61 \sim 62$ に抵抗 63 を並列配置したものである。その結果、共振状態の場合、共振装置 $6'_{s1}$ の作用において共振器 $61 \sim 62$ が優勢になる。また、回路が共振状態から遠く、共振器 $61 \sim 62$ のインピーダンスが大きい場合、抵抗 63 の作用が優勢になる。これは、図5(a)および5(b)に示してある。

【0026】

図5(a)には、フィルタ11の当該変形の、 $Q_N = 7$ の場合の位相の応答を、周波数の関数として示す。曲線 $c1$ 、 $c2$ および $c3$ で示す応答は、 Q_D の値が、それぞれ10、20および14である場合のフィルタ11の応答に相当する。周波数軸は、共振周波数に対して正規化されている。共振装置 $6'_{s1}$ は、図5(a)に示すように、最小位相変動素子である。実際、周波数が0または無限大に向かうにつれ、位相は0に近づく。

【0027】

図5(b)には、フィルタ11の当該変形の、 $Q_N = 7$ の場合の振幅の応答を、周波数の関数として示す。曲線 $c1$ 、 $c2$ および $c3$ で示す応答は、 Q_D の値が、それぞれ10、20および14である場合のフィルタ11の応答に相当する。周波数軸は、共振周波数に対して正規化されている。

【0028】

同様に、並列共振器 $61 \sim 62$ に抵抗 63 を直列接続することによって、図4(b)に示す共振装置 $6'_{p1}$ を構成することが可能である。

10

20

20

30

40

50

【0029】

この種の共振装置 6'₁ の伝達関数は、一般的に次のような形式を有する。

$$H(p) = \frac{1+Q_N \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)}{1+Q_D \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)} = \frac{Q_N}{Q_D} \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2}$$

ここで、

$$\begin{cases} Z = \sqrt{\frac{L}{C}} \\ LC\omega_0^2 = 1 \end{cases}$$

10

そして、直列共振装置 6'₂₁ において、

$$\begin{cases} Q_N = \frac{Z}{R} \\ Q_D = \left(\frac{1}{R} + \frac{1}{2R_0} \right) Z \end{cases}$$

さらに、直列共振装置 6'₂₂ において、

$$\begin{cases} Q_N = \frac{R}{Z} \\ Q_D = \frac{1}{Z} \left(R + \frac{R_0}{2} \right) \end{cases}$$

20

【0030】

これらの共振装置 6' の部品を、図 6 (a) および 6 (b) に示すように変更、配置すると、フィルタに位相進みを伴う帯域阻止作用を持たせることができる。図 6 (a) の発明によるフィルタ 1 1 の第 3 变形において、抵抗 6 3 は並列配置される L C 直列共振器 6 1 ~ 6 2 と直列接続される。その結果、共振状態では、共振装置 6'₂₂ の作用において抵抗 6 3 が優勢になる。また、動作条件が共振状態から遠い場合、共振器 6 1 ~ 6 2 の働きが抵抗 6 3 より大きくなる。これは、フィルタ 1 1 のこの変形における、図 7 (a) に示すような位相および、図 7 (b) に示すような振幅の周波数応答によって表すことができる。

30

【0031】

図 7 (a) には、当該変形による共振装置 6'₂₂ を有するフィルタ 1 1 における、 $Q_N = 7$ の場合の位相応答を、周波数の関数として示す。曲線 c 4、c 5 および c 6 に示す応答は、それぞれ、 $Q_D = 2.5, 3.5$ および 5 であるフィルタ 1 1 に対応するものである。周波数軸は、共振周波数に対して正規化されている。共振装置 6'₂₂ は、図 7 (a) に示すとおり、最小位相変動素子である。実際、周波数が 0 または無限大に向かうにつれ、位相は 0 に近づく。

40

【0032】

図 7 (b) には、当該変形による共振装置 6'₂₂ を有するフィルタ 1 1 における、 $Q_N = 7$ の場合の振幅応答を、周波数の関数として示す。曲線 c 4、c 5 および c 6 に示す応答は、それぞれ、 $Q_D = 2.5, 3.5$ および 5 であるフィルタ 1 1 に対応するものである。周波数軸は、共振周波数に対して基準化されている。

【0033】

従って、どの種類の共振装置（例えば、位相遅れ装置、位相進み装置等）を望むかによって、共振装置の構造を、1つまたは複数の所定の周波数帯域（それぞれ、共振周波数を含まない周波数帯域、共振周波数を含む周波数帯域等）において抵抗 6 3 の作用が共振器より優勢になるようにする。

50

【0034】

同様にして、図6(b)に示すように、共振装置 $6'_{s_2}$ に対して直列配置された並列型のLC共振器 $6_1 \sim 6_2$ に対して、抵抗 6_3 を並列配置することができる。

【0035】

この種の共振装置 $6'_{s_2}$ は、次の形式の伝達関数を有する。

$$H(p) = \frac{\frac{1}{Q_N} + \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)}{\frac{1}{Q_D} + \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)} = \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2}$$

10

ここで、

$$\begin{cases} Z = \sqrt{\frac{L}{C}} \\ LC\omega_0^2 = 1 \end{cases}$$

そして、直列共振装置 $6'_{s_2}$ において、

$$\begin{cases} \frac{1}{Q_N} = \frac{R}{Z} \\ \frac{1}{Q_D} = \frac{1}{Z} \left(R + \frac{R_0}{2} \right) \end{cases}$$

20

さらに、直列共振装置 $6'_{p_2}$ において、

$$\begin{cases} \frac{1}{Q_N} = \frac{Z}{R} \\ \frac{1}{Q_D} = \left(\frac{1}{R} + \frac{1}{2R_0} \right) Z \end{cases}$$

【0036】

複数の基本素子、すなわち共振装置を組み合わせることで高次フィルタ11が得られる。

従って、本発明による高次フィルタ11の製造は、上記共振装置の第1ないし第4変形 $6'_{s_1}$ 、 $6'_{s_2}$ 、 $6'_{p_1}$ 、 $6'_{p_2}$ を1つ以上カスケードさせる過程を含む。この高次フィルタを得るために使用されるカスケードは、伝達関数の乗算を可能にする増幅器、または図8に示すような梯子構造に直接組立てたり、図12に示すようなバランスプリッジ構造として組立てることによって実現することができる。

【0037】

図8において、フィルタ素子を構成するのは共振装置 $6'_{s_1}$ 、 $6'_{p_1}$ のみであるが、次の組合せを、一般的な応用において、位相進み素子 $6'_{s_2}$ 、 $6'_{p_2}$ にも難なく適用することが可能であることは明かである。また、両種類に適用することも可能である。図8に示すフィルタ11は、交互に配置された共振装置 $6'_{s_1}$ 、 $6'_{p_1}$ からなる梯子構造のカスケードである。各対の共振装置 $6'_{s_1}$ 、 $6'_{p_1}$ が段を形成する。フィルタ11は、N段によって構成される。

【0038】

実用上、品質因子の値が高いインダクタを含ませることは難しい。そのため、過電圧の高い共振器の(インダクタおよびキャパシタによる)製造は不可能である。共振器の過電圧は、特に変換時間が長い場合、過電圧が大きいほど臨界領域における位相が小さくなるので、変調器のループ安定性を得るために基本条件である。それが、非常に高い過電圧を有するモノリシックまたは一体型の共振器技術を使用する理由である。これらの技術に属する装置として、バルク波共振器(BAW)やそのTFR(薄膜共振器)またはFBA(基本バルク波共振器)またはHBAR(高次バルク波共振器)形態、表面波共振器(SAW)、誘電体共振器、MEMS(マイクロエレクトロメカニカルシステム)共振器等

40

50

があるが、これらに限定されるものではない。しかし、多くの場合、このような共振器は、単純な直列または並列LC回路61～62ではなく、図9に示すように、LC素子61～62を有する直列構造の共振枝と並列の静電キャパシタ64からなる等価図を有するものである。従って、共振と反共振を両方有するものである。

【0039】

よって、共振装置6"sおよび6"pは、フィルタリングの場合は直列型、位相進みの場合は並列型の特性を有する直列LC共振器61～62を得るために図10(a)に示すように変更され、フィルタリングの場合は並列型、位相進みの場合は直列型の特性を有する並列LC共振器61～62を得るために図10(b)に示すように変更される。これらの共振装置6"s、6"pは、1次フィルタまたは上述したような高次フィルタであるフィルタ11において使用され、増幅器を介してカスケードされるか、図11に示すように梯子状に直接接続される。この図11において、装置全体の性能を最適化するためにすべての共振装置6"s、6"pを異なるものにすることができる。さらに、この図において、位相遅れフィルタと位相進みフィルタとの間に構造上の差異はもはや存在せず、その差は共振器の抵抗値とインピーダンス値との比、該当する周波数帯域およびフィルタにおける抵抗-共振器対の配置によって決まるものである。

【0040】

従って、図11を、共振装置6"s、6"pの静電キャパシタンス64またはその直列キャパシタンス62の値がゼロである一般図として捉えることもできる。これが、すべての共振装置6"s、6"pに対して行われる場合、図8を参照して説明するように、使用される構造はインダクタおよびキャパシタ構造としてもっとも一般的なものである。

【0041】

勿論、図11の一般構造は、差動モードの操作のために、自明の方法で対称化し、図11の共振装置6"pの倍のインピーダンスを有する共振装置6"sを有する図12の構造にすることも可能である。さらに、図12において、電源装置5sのインピーダンス51とフィルタのインピーダンス7も、それぞれ、図11におけるインピーダンスの倍である。

【0042】

この種のフィルタ構造によって得られる通常の周波数応答を、位相におけるものを図13(a)に、振幅におけるものを図13(b)に示す。これは、 f_s を標本化周波数とした時に、中央周波数 $f_0 = 3f_s / 8$ を有する 变調器の開ループ応答を近似する線形応答である。このような 变調器の構造例を図14に示す。この図面において、この变調器、アナログ-デジタル変換機2およびデジタル-アナログ変換機3によって形成される対は、累積的な総合処理時間が4.82個の標本化周期である。この応答は、アナログ-デジタル変換機2によるスペクトルのエイリアシングやデジタル-アナログ変換機3によるシンク(Sinc)フィルタリングを考慮したものである。

【0043】

図14に提案される実施例において、ループフィルタ11は2つのフィルタ11(2)および11(3)からなる。各フィルタ11は、3つの部分に分けることができる。ループフィルタ11は、さらに、第1の増幅器12(1)、第1のフィルタ11(2)、第2の増幅器12(2)、第2のフィルタ11(3)および第3の増幅器12(3)を、順番に配置した直列回路を挟んだ両側に2つの共振セル6p(1)および6p(4)を具備する。

【0044】

各フィルタ11(2)および11(3)の3つの部分は、いずれも、図11に示すような直列装置6"sおよび並列装置6"pからなる2つの共振装置を有する。共振セル6p(1)および6p(4)は、アナログ-デジタル変換機2によって設けられるスペクトルのエイリアシングによる応答への影響を最小化するように設計されるため、低過電圧セルである。従って、閉ループの場合の変調器の動作は、位相において±20度、振幅において±3dBの限界を以って安定である。

【0045】

10

20

30

40

50

次の表は、フィルタ 11(2) および 11(3) の各部分の要素の代表的な値を示すものである。

	共振装置	$\frac{\omega_r - \omega_0}{\omega_0}$	Z/R_0	R/R_0
第1部	直列 $6''_s$ (1)	0.408×10^{-2}	1.46	0.94
	並列 $6''_p$ (1)	-3.395×10^{-2}	0.72	0.78
第2部	直列 $6''_s$ (2)	0.480×10^{-2}	1.85	1.54
	並列 $6''_p$ (2)	-4.113×10^{-2}	0.52	0.58
第3部	直列 $6''_s$ (3)	0.421×10^{-2}	1.87	1.67
	並列 $6''_p$ (3)	-3.690×10^{-2}	0.50	0.59

10

20

30

40

50

【0046】

差動モードによる操作の特例の場合に、他の構造を提案することができる。その構造とは、バランスブリッジ構造であり、その原理を図15に示す。バランスブリッジは、共振装置 $6''_s$ (a) および $6''_s$ (b) の静電キャパシタ 6_4 と、同値のさらなるキャパシタ 6_{21} および 6_{23} を有する。共振装置 $6''_s$ (a) および $6''_s$ (b) における2つの抵抗 6_3 (a) および 6_3 (b) と2つの共振アーム $6_1 \sim 6_2$ (a) および $6_1 \sim 6_2$ (b) の存在によって、ブリッジがアンバランスになる。その結果、帯域内で応答を得ることができ、さらに、近範囲の拒絶による準プラトーで応答を制限することで、位相変動を抑えることができる。

【0047】

通過帯域、すなわち共振装置 $6''_s$ (a) および $6''_s$ (b) の共振周辺において、追加された静電キャパシタ 6_{21} および 6_{23} のインピーダンスを、2つのインダクタ 6_{11} および 6_{13} によって補償することができる。この操作態様が、 $L C_r^2 = 1$ における最適の操作である。

【0048】

これらのブリッジ構造は、通常は異なる中央周波数でカスケード接続することによって、高次フィルタリングを実現することができる。

【0049】

図16(a) および 16(b) は、中央周波数 $f_0 = 3 f_s / 4$ の、累積的総合処理時間が7.5標本化周期であるアナログ-デジタル変換機2とデジタル-アナログ変換機3からなる対を有する変調器の、開ループにおける、位相および振幅の周波数応答の例をそれぞれ示すものである。変調器は、さらに、図15に示すブリッジ型構造を4つ有するカスケードによって得られるフィルタ11を含むものである。共振器の周波数およびインピーダンス値は、次の条件を満たすものである: $a^2 / r^2 - 1 = 1 / 150$ 、 $R C_r = 0.943$ および $(r - o) / o = \pm 2.53 \times 10^{-3}$ および $\pm 2.94 \times 10^{-3}$ 。

【0050】

図16(a) および 16(b) に示す応答を読み取ると、閉ループ変調器の操作が安定しており、次の限界を有することが示されている: 位相において ± 20 度、振幅において ± 3 dB。

【0051】

変調器の変換機は、標本化周期より長い遅延を設けるように選択することができる。

変調器のある実施形態によると、変調器の1つの要素または特定の要素またはすべての要素が、半導体内に集積される。

【0052】

抵抗 6_3 は、圧電基板上またはセラミックパック内またはその上に取り付けることができる。キャパシタ 6_2 は、セラミックパック内またはその上に取り付けることができる。

つまたは複数の共振器 6 1 ~ 6 2 は、セラミック共振器または表面波共振器 (S A W) またはバルク波共振器 (B A W) 、またはその変形である F B A R (基本バルク波共振器) または H B A R (高次バルク波共振器) または T F R (薄膜共振器) 、または誘電体共振器、または超伝導体材料からなる共振器、または G m C 型共振器 (キャパシタ + トランジスタコンダクタンス増幅器) であってもよい。さらに、音響共振器 (S A W 、 B A W 、 T F R 、 F B A R 、 H B A R) の圧電基板は、シリコン上に集積されたものであってもよい。

【 0 0 5 3 】

フィルタ要素 (抵抗、キャパシタおよびインダクタ) を圧電基板上に製造することによって、要素間の相互接続の手間がなくなり、フィルタの製造を容易化する。フィルタの要素 (抵抗、キャパシタおよびインダクタ) を圧電基板上またはセラミックパック内に形成する利点の 1 つは、フィルタの伝達関数を制御し易くなることである。さらに、圧電基板上に形成されたフィルタは、変調器の 1 つまたは複数の要素を含んだ半導体上に搭載されたものだってよい。

【 0 0 5 4 】

ここであげる応用例は、変調器によって示したが、あらゆる種類のフィードバックループに適用することも可能である。本発明により、ループが不安定になることなく、フィードバックループの潜時値を 1 より大きくすることができる。

【 図面の簡単な説明 】

【 図 1 】 図 1 (a) および 1 (b) は、それぞれ、あらゆる種類の信号と、アナログ信号を処理するための連続時間帯域通過変調器を示す一般図である。

【 図 2 】 図 2 (a) および 2 (b) は、従来技術による 1 次連続時間帯域通過積分フィルタを示すものである。

【 図 3 】 図 3 (a) および 3 (b) は、それぞれ、図 2 のフィルタの位相と振幅における周波数応答を示すものである。

【 図 4 】 図 4 (a) および 4 (b) は、本発明による 1 次連続時間帯域通過積分フィルタの第 1 変形と第 2 変形を示すものである。

【 図 5 】 図 5 (a) および 5 (b) は、それぞれ、図 4 のフィルタの位相と振幅における周波数応答を、共振器 Q_d の過電圧の関数として示すものである。

【 図 6 】 図 6 (a) および 6 (b) は、本発明による 1 次連続時間帯域通過積分フィルタの第 3 変形と第 4 変形を示すものである。

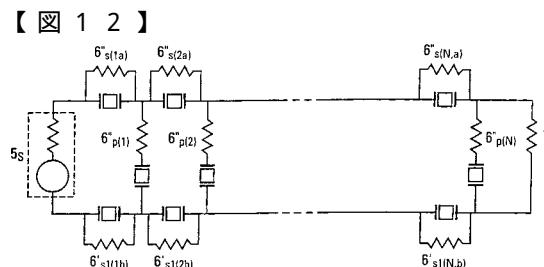
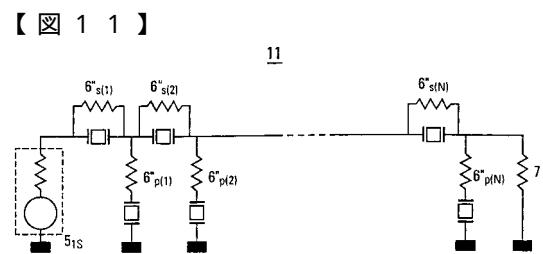
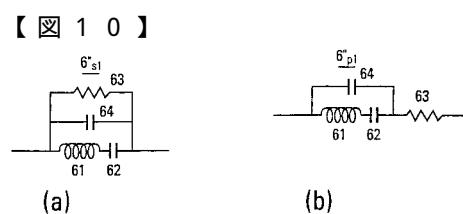
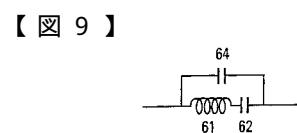
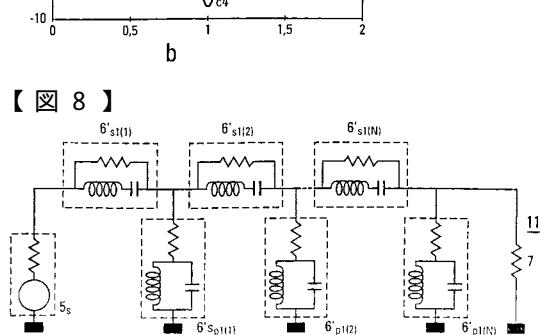
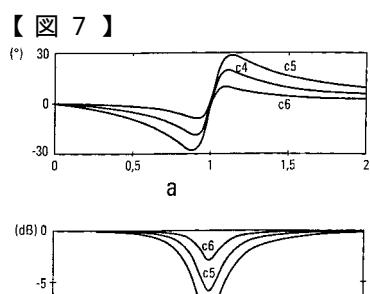
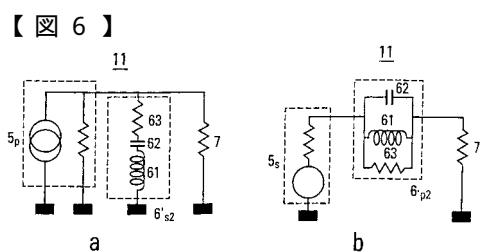
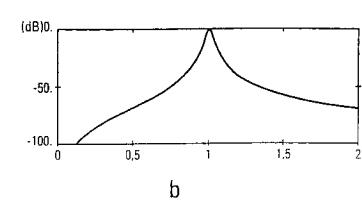
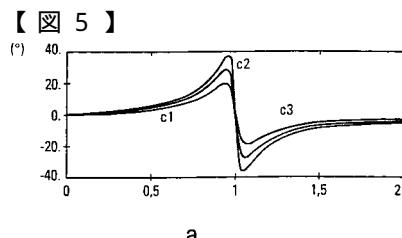
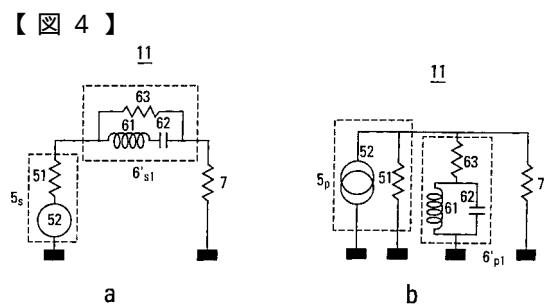
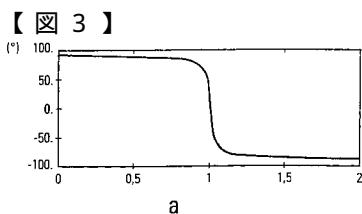
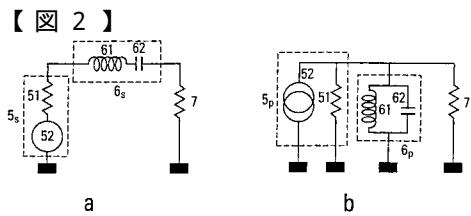
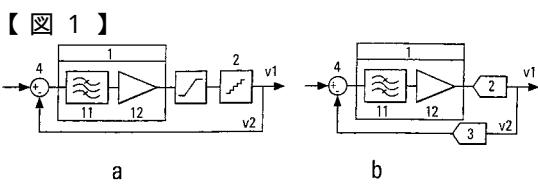
【 図 7 】 図 7 (a) および 7 (b) は、それぞれ、図 6 のフィルタの位相と振幅における周波数応答を、共振器 Q_d の過電圧の関数として示すものである。

【 図 8 】 図 8 は、本発明による高次連続時間帯域通過積分フィルタの第 5 変形を示すものである。

【 図 9 】 図 9 は、従来技術による共振器の等価回路を示すものである。

【 図 10 】 図 10 (a) および 10 (b) は、本発明による等価共振装置の 2 つの実施形態を示すものである。

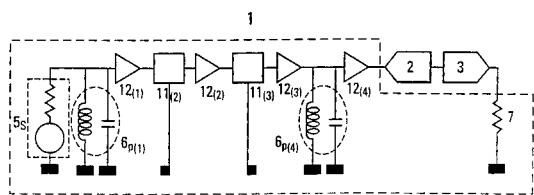
【 図 11 】 図 11 は、図 10 の等価共振装置を使用した梯子構造を有する差動モードの高次連続時間帯域通過積分フィルタの第 6 の変形を示すものである。

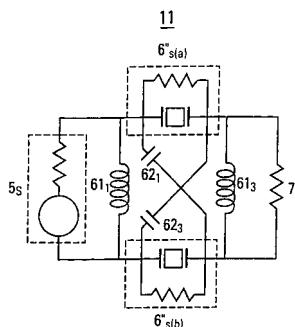













【 図 12 】 図 12 は、図 10 の等価共振装置を使用した梯子構造を有する差動モードの高次連続時間帯域通過積分フィルタの第 7 の変形を示すものである。

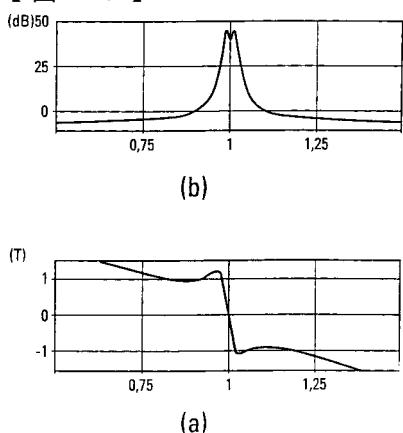
【 図 13 】 図 13 (a) および 13 (b) は、それぞれ、図 12 のフィルタの位相と振幅における周波数応答を示すものである。


【 図 14 】 図 14 は、図 11 の高次連続時間帯域通過積分フィルタを使用した連続時間帯域通過積分変調器を示すものである。

【 図 15 】 図 15 は、図 10 の等価共振装置を使用したブリッジ構造を有する差動モードの高次連続時間帯域通過積分フィルタの第 8 の変形を示すものである。


【 図 16 】 図 16 (a) および 16 (b) は、それぞれ、図 15 のフィルタの位相と振幅における周波数応答を示すものである。


【図13】


【図14】

【図15】

【図16】

フロントページの続き

(72)発明者 ジャン - リュック ドゥ グイ

フランス国 91640 ブリイユ ス- フォルジュ , リュ デ ゼコール 90

F ターム(参考) 5J024 AA01 CA04 CA08 CA14 DA01 DA25 DA35 KA02 KA03

5J064 AA01 BA03 BC06 BC07 BC11 BD01

【外國語明細書】

1. Title of Invention

Continuous-time integrating filter with minimum phase variation, and bandpass $\Sigma\Delta$ modulator using such a filter

2. Claims

WHAT IS CLAIMED IS :

1. A filter carrying out the bandpass integration of the signal presented at its input, wherein this operation is done in real time and wherein said filter comprises at least one element with minimum phase variation.
2. A filter according to the above claim comprising at least one resonance device with minimum phase variation.
3. A filter according to the above claim, wherein said resonance device with minimum phase variation comprises a resonator and a resistor, whose function becomes preponderant over that of the resonator in one or more determined frequency bands.
4. A filter according to the above claim, wherein said resonance device with minimum phase variation is a phase delay device when the function of the resistor is preponderant in frequency bands that are symmetrical relative to the resonance frequency and excluding the resonance frequency.
5. A filter according to the above claim, wherein said resonance device with minimum phase variation and with phase delay comprises:
 - either a series resonator in parallel with the resistor, said series resonator comprising an inductor and a capacitor in series;
 - or a parallel resonator in series with the resistor, said parallel resonator comprising an inductor and a capacitor in parallel.
6. A filter according to the above claim wherein said resonance device with minimum phase variation is a phase lead device when the function of the resistor is preponderant in a frequency band comprising the resonance frequency.
7. A filter according to the above claim, wherein said resonance device with minimum phase variation and with phase lead comprises:
 - either a series resonator in series with the resistor, said series resonator comprising an inductor and a capacitor in series;
 - or a parallel resonator in parallel with the resistor, said parallel resonator comprising an inductor and a capacitor in parallel.

8. A filter according to any of the claims 2 or 3, wherein said resonance device with minimum phase variation has an equivalent diagram comprising:

- a first arm with a series resonator, said series resonator comprising an inductor and a capacitor in series,
- a second arm in parallel with the series resonator of the first arm, the second arm comprising a capacitor, and
- a resistor either in parallel with the series resonator of the first arm and the capacitor of the second arm, or in series with the device formed by the series resonator and the capacitor.

9. A filter according to any of the claims 2 to 8, wherein it is a higher-order filter.

10. A filter according to the above claim, wherein the resonance devices with minimum phase variation are assembled either in cascade or in a ladder configuration or in a balanced-bridge configuration.

11. A filter according to any of the above claims, wherein the elements forming it are made on a piezoelectric substrate or inside a ceramic package.

12. A filter according to any of the above claims, wherein one or more of the resonators is a resonator selected from the group consisting of:

- ceramic resonator,
- surface acoustic wave resonator (SAW),
- bulk acoustic wave resonator (BAW),
- fundamental Bulk Acoustic Resonator(FBAR),
- High-Order Bulk Acoustic Resonator (HBAR),
- Thin Film Resonator (TFR),
- dielectric resonator,
- resonator made of supraconductive material,
- GmC type resonator.

13. A feedback loop comprising a filter according to any of the claims 1 to 12.

14. A feedback loop according to the above claim, comprising a latency number strictly greater than 1.

15. A bandpass $\Sigma\Delta$ modulator forming a feedback loop, consisting of a feedback loop according to claim 14 comprising an analog-digital converter on the direct channel of the loop and a digital-analog converter on the return channel of the loop.

16. A bandpass $\Sigma\Delta$ modulator according to the above claim wherein:

- either one or more of the elements forming the $\Sigma\Delta$ modulator or all the elements forming the $\Sigma\Delta$ modulator are integrated into a semiconductor,
- and wherein the filter is made either on a piezoelectric substrate mounted on the semiconductor or inside a ceramic pack of the $\Sigma\Delta$ modulator.

3. Detailed Description of Invention

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to continuous-time filtering. More particularly, it relates to filtering in a feedback control loop, for example in a sigma-delta ($\Sigma\Delta$) modulator. Analog $\Sigma\Delta$ modulators can be used, for example, in radar receivers or telecommunications systems, in particular to improve the resolution of analog-digital encoding.

2. Description of the Prior Art

The $\Sigma\Delta$ modulation of a signal consists of the encoding of this signal on a small number of bits but with a far higher resolution than the theoretical limit given by the number of bits. To this end, a feedback control loop is made. The quantization device, which limits the resolution, is placed at output of this loop as can be seen in the generic diagram of figure 1(a).

If the signal is a digital signal, the $\Sigma\Delta$ modulator unit is made as a digital device. When the digital signal at the input of the $\Sigma\Delta$ modulator comprises N bits, the return signal comprises N bits including $N-n$ null least significant bits (LSB), the input signal of the integration device 1 comprises $N+1$ bits, and the signal at the input and output of the quantization device 2 respectively comprises N bits and n bits (where n is far smaller than N). Thus, the signal encoded at output of the $\Sigma\Delta$ modulator has a small number of bits and high resolution in the band. This is typically the case in CD readers where the output of the modulator is obtained on 1 bit whereas the input signal is encoded on about 20 bits.

However, if the signal is an analog signal, with the analog-digital converter 2 (a source of quantization that limits the resolution) being placed at output of the loop as can be seen in figure 1(b), the result is that the filtering 11, which integrates the input/output error, is necessarily an analog filtering. Two cases arise. The first is that frequency of the signal is low enough. In this case the signal may be sampled at the entry to the loop (not shown) before the filtering 11, which is then done in the discrete time domain (using switched capacitors for example). The second

possible case arises at higher frequencies, especially on carriers: in this case the discrete time techniques (switched-capacitor or switched-current loop techniques, especially) are inappropriate. The filtering 11 can then be continuous-time filtering. The most commonly used technology here is the GmC technology (entailing the use of transconductance amplifiers). The sampling is then done at output of the loop, just before the quantization (analog-digital conversion).

Furthermore, referring again to the high frequencies, the cumulated conversion times of the analog-digital converter (ADC) 2 and of the digital-analog converter de (DAC) 3 are spread over several sampling periods instead of being smaller than a single period. This problem disappears if the encoding is done on only one bit, but then the very high non-linearity of the encoding function means that it is not possible to define a criterion of stability for the $\Sigma\Delta$ modulator with certainty. A multi-bit encoding is then preferred. For this encoding, the response of the open loop may be considered to be a first-order linear response.

The making of the loop filter 11 must then resolve the classic problem of feedback control loops: providing the maximum gain (and thus minimizing the error between the feedback-controlled signal and the control) while preserving the stability of the loop. This is especially difficult to achieve since the total delay time of the loop, also known as the latency number, is great. It is the difficulty of finding filtering functions that perform well, even in the presence of high latency numbers, that has hitherto hampered the development of continuous-time $\Sigma\Delta$ modulators.

SUMMARY OF THE INVENTION

The present invention resolves the difficulties of continuous-time filtering quasi-optimally by minimizing the phase of the filter in the frequency domain where the gain of the loop is close to 1 in terms of modulus.

In particular, the invention proposes a continuous-time filter carrying out the bandpass integration of the signal presented at its input, comprising at least one element with a phase variation known as a minimum phase variation.

Minimum phase variation elements are elements whose unfolded phase, namely the phase reconstituted by continuity at the points of ambiguity, tends to zero when the frequency tends towards zero or infinity.

The making of a filter in real-time as a bandpass integrator raises the problem of compromise between variations of gain and variations of phase close to the -1 critical point. This compromise must lead to the stability of the loop. Owing to causality, these variations are linked by the Bayard-Bode relations. This problem is resolved by using a continuous-time bandpass integrating filter comprising at least one resonance device with minimum phase variation. In particular, said resonance device with minimum phase variation comprises a resonator and a resistor.

Another object of the invention is the feedback loop comprising a continuous-time bandpass integrating filter of this kind. This feedback loop may be constituted in particular by a $\Sigma\Delta$ modulator. For example, a bandpass $\Sigma\Delta$ modulator forming a feedback loop comprises an analog-digital converter, a return digital-analog converter and a continuous-time bandpass integrating filter of this kind.

MORE DETAILED DESCRIPTION

A bandpass $\Sigma\Delta$ modulator enables the digital encoding of a signal with a resolution in the useful band that is far higher than that obtained with a classic encoder. Its real function, apart from the digitization, is that it shapes the quantization noise so that, in the useful band, the spectral density of this noise is far smaller than the noise coming from a classic

encoder. This reduction of the spectral power density of the quantization noise in the useful band is expressed by an equivalent gain in resolution after filtering of the out-of-band noise and decimation.

La figure 1 is a schematic of an exemplary continuous-time bandpass $\Sigma\Delta$ modulator. The continuous-time bandpass $\Sigma\Delta$ modulator is a feedback loop. On the direct channel v_1 of the loop, the modulator comprises an integration device 1 followed by an analog-digital converter (ADC) 2. The integration device 1 comprises a filtering device 11 enabling integration and an amplifier 12 of the error in the useful band. On the return channel v_2 , the modulator comprises a digital-analog converter (ADC) 3. This converter (ADC) 3 is used to convey the converted signal obtained at output of the $\Sigma\Delta$ modulator to the input of this modulator. An operator 4 is placed at the input of the loop before the integration device 1. It receives the signal to be encoded present at the input of the $\Sigma\Delta$ modulator coming, for example, from the input stages of the receiver when the $\Sigma\Delta$ modulator is used in a radar or telecommunications system. It furthermore receives the converted signal coming from the return channel after the digital-analog conversion. This operator 4 assesses the difference between the input signal and the converted signal so that the bandpass integration device carries out the integration, in the band, of the error between the output signal and the input signal.

The gain of the open loop is far greater than 1 in the useful band so much so that, in this useful band, the error between the output signal and the input signal is necessarily very low; this is the principle of a feedback loop. This causes the quantization noise at output of the loop to be rejected by a factor equivalent to this gain. This quantization noise at the output signal results from the analog-digital conversion.

The gain of the loop therefore must be as high as possible. However, in view of the periods of time needed to make the two conversions 2 and 3, it is not possible to choose as great a gain as desired. Indeed, in practice, the loop must meet the Nyquist criterion. Hence, for given converters 2 and 3, the stability of the loop is entirely determined by the filtering 11 and the gain 12 of the integration operation 1.

To minimize the delay linked to the filtering and, therefore, preserve the stability of the loop, the bandpass filter 11 must be a multipole filter when it is made as a continuous-time device. This type of continuous-time filter may be represented, in its principle, as a cascade of first-order resonators each sandwiched by perfect amplifiers and each forming a first-order filter. The transfer function of the assembly is the sum (in terms of logarithmic amplitude and phase) of the individual responses. These responses are obtained by placing these resonators, in series or in parallel, between, firstly, a generator 52 with internal impedance 51 and, secondly, a load 7. The LC resonators shown in figures 2(a) and 2(b) are envisaged for this purpose in the usual way.

Figure 2(a) illustrates a series resonator. It comprises a series LC circuit 6_s, series-connected with an inductor L 61 and a capacitor C 62. Figure 2(b) illustrates a parallel resonator. It comprises a parallel LC circuit 6_p, parallel-connected with an inductor L 61 and a capacitor C 62.

However, such continuous-time filters 11 with a simple LC resonator 6 do not have a phase with minimum variations. In practice, it is important that the phase should return to zero, at a great distance from the resonance frequency or the anti-resonance frequency. Indeed, if this is not verified, the loop in which such a filter is placed shows instability.

Figure 3(a) shows the phase response of the resonance devices of figures 2 as a function of the frequency. The frequency axis is normalized with respect to the resonance frequency. The phase presented by figure 3(a) tends toward 90° when the frequency tends to toward 0 or it tends towards -90° when the frequency tends towards infinity. Now, to have a minimum phase variation, the phase must tend toward zero when the frequency tends toward zero or infinity. Hence, according to figure 3(a), the filters with a simple LC resonator as proposed in figures 2 are not filters with what is called a "minimum" phase variation.

Figure 3(b) shows the amplitude response of the resonance devices of figures 2 as a function of frequency. The axis of the frequencies is normalized with respect to the resonance frequency. The amplitude does not get saturated at a great distance from the resonance frequency. The

shape of the amplitude response, by a relation of causality, explains the type of phase variation observed in figure 2(a).

In order to have high stability while, at the same time, having satisfactory gain, the filter 11 must be a continuous-time bandpass integrating filter with minimum phase variation. More specifically, it has a transfer function with the form:

$$H(p) \propto \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2}$$

The function achieved differs according to the values of Q_N and Q_D . Indeed, if $Q_D \geq Q_N$ the function achieved is a band filtering function with phase delay because the phase decreases with the frequency about the resonance frequency. If $Q_D \leq Q_N$, the filter made is a band rejector with phase lead. Q_D represents the maximum of the transfer function in amplitude of the resonator 6 (or resonance device). The ratio Q_D/Q_N represents the ratio between the maximum and the minimum of the transfer function in amplitude of the resonator 6 (or resonance device).

The present invention achieves this by proposing resonance devices $6'_{s1}$, $6'_{s2}$, $6'_{p1}$, $6'_{p2}$, $6''_s$ and $6''_p$ instead of the resonators 6.

The first, second, third and fourth variants of the invention are illustrated by figures 4(a), 4(b), 6(a) and 6(b). To make a resonance device $6'_{s1}$, $6'_{s2}$, $6'_{p1}$ or $6'_{p2}$, these devices propose the adding, to the LC circuit 6, of a resistor either in series or in parallel.

In a first variant of the filter according to the invention as shown in figure 4(a), a resistor 63 is placed in parallel on a series resonator 61-62. Thus, in conditions of resonance, the resonator 61-62 is preponderant in the operation of the resonance device $6'_{s1}$. And, when the circuit is far from the conditions of resonance, when the impedance of the resonator 61-62 is great, the resistance 63 becomes preponderant. This is illustrated by figures 5(a) and 5(b).

Figure 5(a) shows different responses in phase of this variant of the filter 11 as a function of the frequency for a value $Q_N = 7$. The responses represented by the curves c1, c2 and c3 correspond to those of a filter 11 for which the respective value of $Q_D = 10$, 20 and 14. The

frequency axis is normalized with respect to the resonance frequency. The resonance device 6's₁ is a minimum phase variation element as indicated in figure 5(a). Indeed, the phase tends toward 0 when the frequency tends toward 0 or infinity.

Figure 5(b) represents different responses in amplitude of this variant of the filter 11 as a function of the frequency for a value $Q_N = 7$. The responses represented by the curves c1, c2 and c3 correspond to those of a filter 11 for which the respective value of $Q_D = 10, 20$ and 14 . The axis of the frequencies is normalized with respect to the resonance frequency.

In a dual way, a resistor 63 may be series-connected with a parallel-type resonator 61-62 to form a resonance device 6'p₁ as illustrated by figure 4(b).

The transfer function of this type of resonance device 6'p₁ has the following general shape:

$$H(p) = \frac{1 + Q_N \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)}{1 + Q_D \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)} = \frac{Q_N}{Q_D} \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2}$$

with $\begin{cases} Z = \sqrt{\frac{L}{C}} \\ LC\omega_0^2 = 1 \end{cases}$ and : $\begin{cases} Q_N = \frac{Z}{R} \\ Q_D = \left(\frac{1}{R} + \frac{1}{2R_0} \right) Z \end{cases}$

for the series resonance devices 6's₁, and

$$\begin{cases} Q_N = \frac{R}{Z} \\ Q_D = \frac{1}{Z} \left(R + \frac{R_0}{2} \right) \end{cases} \text{ for the series resonance devices 6'p}_1.$$

By modifying and placing the elements of these resonance devices 6' differently as shown in figures 6(a) and 6(b), the filters made have a band rejection function with phase lead. In the third variant of the filter 11 according to the invention of figure 6(a), a resistor 63 is series-connected with an LC series resonator 61-62 placed in parallel. Thus, in conditions of resonance, the resistor 63 becomes preponderant in the working of the resonance device 6's₂. And, when the operation is far from

the resonance conditions, the incidence of the resonator 61-62 becomes great as compared with the resistor 63. This is illustrated by the frequency responses of this variant of the filter 11 in phase as shown in figure 7(a) and in amplitude as shown in figure 7(b).

Figure 7(a) shows different responses in phase of this variant of the filter 11 comprising a resonance device 6's₂ as a function of the frequency for a value $Q_N = 7$. The responses represented by the curves c4, c5 and c6 correspond to those of a filter 11 for which the respective value of $Q_D = 2.5, 3.5$ and 5 . The frequency axis is normalized with respect to the resonance frequency. The resonance device 6's₂ is a minimum phase variation element as indicated in figure 7(a). Indeed, the phase tends toward 0 when the frequency tends toward 0 or infinity.

Figure 7(b) represents different responses in amplitude of this variant of the filter 11 comprising a resonance device 6's₂ as a function of the frequency for a value $Q_N = 7$. The responses represented by the curves c4, c5 and c6 correspond to those of a filter 11 for which the respective value of $Q_D = 2.5, 3.5$ and 5 . The axis of the frequencies is standardized with respect to the resonance frequency.

Hence, depending on the type of resonance device desired (for example a phase delay device, a phase lead device etc), the structure of this resonance device is made in such a way that the function of the resistor 63 becomes preponderant over that of the resonator in one or more determined frequency bands (respectively, the frequency band excluding the resonance frequency, the frequency band including the resonance frequency etc).

In a dual way, a resistor 63 may be placed in parallel with an LC resistor 61-62 of a parallel type placed in series with a resonance device 6'p₂ as shown in figure 6(b)

The transfer function of this type of resonance device 6'p₂ has the following general form:

$$H(p) = \frac{\frac{1}{Q_N} + \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)}{\frac{1}{Q_D} + \left(\frac{p}{\omega_0} + \frac{\omega_0}{p} \right)} = \frac{p^2 + \frac{\omega_0}{Q_N} p + \omega_0^2}{p^2 + \frac{\omega_0}{Q_D} p + \omega_0^2} \text{ with } \begin{cases} Z = \sqrt{\frac{L}{C}} \\ LC\omega_0^2 = 1 \end{cases} \text{ and:}$$

$$\begin{cases} \frac{1}{Q_N} = \frac{R}{Z} \\ \frac{1}{Q_D} = \frac{1}{Z} \left(R + \frac{R_0}{2} \right) \end{cases} \text{ for the series resonance devices } 6'_{s2} \text{ and}$$

$$\begin{cases} \frac{1}{Q_N} = \frac{Z}{R} \\ \frac{1}{Q_D} = \left(\frac{1}{R} + \frac{1}{2R_0} \right) Z \end{cases} \text{ for the series resonance devices } 6'_{p2}.$$

A higher-order filter 11 is constituted by several basic elements, namely the resonance devices. Hence, the making of a higher-order filter 11 according to the invention may comprise a cascade of one or more of the first to fourth variants of resonance devices $6'_{s1}$, $6'_{s2}$, $6'_{p1}$, $6'_{p2}$ proposed here above. This cascade, used to obtain a higher-order filter, may be made either through amplifiers which enable a multiplication of the transfer functions, or by direct assembly to make filters in ladder configuration as illustrated in figure 8, or by assembly in a balanced bridge structure as illustrated in figure 12.

Figure 8 shows only resonance devices $6'_{s1}$, $6'_{p1}$ comprising filtering elements but it is clear that the following combinations may be extended without difficulty, in any general application, to the phase lead elements $6'_{s2}$, $6'_{p2}$. They can also be applied jointly. The filter 11 of figure 8 is a cascade, in a ladder configuration, of resonance devices $6'_{s1}$, $6'_{p1}$ placed in alternation. Each pair of resonance devices $6'_{s1}$, $6'_{p1}$ forms a section. The filter 11 is constituted by N sections.

In practice, it may be difficult to have inductors with very high quality factor values. This prevents the making (with inductors and capacitors) of resonators having high overvoltages. Now the overvoltage of the resonators is a fundamental factor for the loop stability of a $\Sigma\Delta$ modulator, especially in the case of high conversion times, because the greater this overvoltage, the lower the phase in the critical zone. This is the reason for the use of monolithic or integrated resonator technologies having very high overvoltages. The devices belonging to these technologies include, non-exhaustively, bulk acoustic wave resonators (BAW) and their TFR (thin-film resonator) or FBAR (fundamental bulk acoustic resonator) or HBAR (high-order bulk acoustic resonator) variants,

surface acoustic wave (SAW) resonators, dielectric resonators, MEMS (microelectromechanical systems) resonators and the like. However, very often, these resonators are not simple series or parallel LC circuits 61-62 but rather have an equivalent diagram, as illustrated in figure 9, formed by a series-mounted resonant branch with the LC components 61-62 and a parallel static capacitor 64. Thus, they have both resonance and anti-resonance.

The resonance devices 6^s, 6^p can thus be modified as shown in figure 10(a) for a series LC resonator 61-62 whose operation will be of a serial type in filtering or of a parallel type in phase lead, and as shown in figure 10(b) for an LC resonator 61-62 whose operation will be of a parallel type in filtering or of a serial type in phase lead. These resonance devices 6^s, 6^p are used in the filter 11 which is either a first-order filter, or a higher-order filter as described further above. There are either cascaded through amplifiers or directly coupled in a ladder configuration as illustrated for example in figure 11. In this figure 11, all the resonance devices 6^s, 6^p may be different to optimize the performance characteristics of the entire unit. It must also be noted that, in this figure there is no longer any difference of structure between phase-delay filtering and phase-lead filtering, as this difference occurs through the ratio of the resistance values to the impedance values of the resonators, the frequency band considered and placing of the resistor-resonator pair in the filter.

Figure 11 can therefore be seen as a generic and general figure in which either the static capacitance 64 of a resonance device 6^s, 6^p or its series capacitance 62 may have a value of zero. If this should occur for all the resonance devices 6^s, 6^p, then the structures used are the most general type of inductor and capacitor structures, as described particularly with reference to figure 8.

Naturally, the generic structure of figure 11 may get symmetrized in an obvious way for operation in differential mode as illustrated by figure 12 in which the resonance devices 6^p have impedance double that of the resonance devices 6^s of figure 11. Furthermore, the impedance 51 of the source device 5_s and the

impedance 7 of the filter of the figure 12 are, for their part too, double the impedance of figure 11.

A typical frequency response obtained by means of this type of filter structure is shown in phase by figure 13(a) and in amplitude by figure 13(b). This is the linear response approaching the open-loop response of a $\Sigma\Delta$ modulator with a center frequency $f_0 = \frac{3f_s}{8}$ where f_s is the sampling frequency. An exemplary structure of a $\Sigma\Delta$ modulator such as this is given by figure 14. In this figure, this $\Sigma\Delta$ modulator, the pair formed by the analog-digital converter 2 and the digital-analog converter 3 has a cumulated, overall processing time of 4.82 sampling periods. This response takes account of the spectral aliasing provided by the analog-digital converter 2 and the sinc filtering provided by the digital-analog converter 3.

In the example proposed by figure 14, the loop filter 11 consists of two filters 11(2) and 11(3). Each of these filters 11 may be subdivided into three sections. The loop filter 11 also has two resonating cells $6_p(1)$ and $6_p(4)$, one on either side of a series circuit with the following in alternation: a first amplifier 12(1), the first filter 11(2), a second amplifier 12(2), the second filter 11(3) and a third amplifier 12(3).

Each of the three sections of the filters 11(2) and 11(3) itself comprises two resonance devices, one being a series device $6''_s$ and the other being a parallel device $6''_p$, as shown in figure 11. The resonating cells $6_p(1)$ and $6_p(4)$ are low overvoltage cells because they are designed to minimize the effects on the response of the spectral aliasing provided by the analog-digital converter 2. The working of the modulator in closed loop is then stable with the following margins: ± 20 degrees in phase and ± 3 dB in amplitude.

The following table brings together exemplary values of the elements of the different sections of the filters 11(2) and 11(3):

	Resonance device	$\frac{\omega_r - \omega_0}{\omega_0}$	Z/R_0	R/R_0
Section No.1	Series $6''_s(1)$	$0,408 \cdot 10^{-2}$	1.46	0,94
	Parallel $6''_p(1)$	$-3,395 \cdot 10^{-2}$	0,72	0,78

Section No. 2	Series 6" _s (2)	$0,480 \cdot 10^{-2}$	1,85	1,54
	Parallel 6" _p (2)	$-4,113 \cdot 10^{-2}$	0,52	0,58
Section No. 2	Series 6" _s (3)	$0,421 \cdot 10^{-2}$	1,87	1,67
	Parallel 6" _p (3)	$-3,690 \cdot 10^{-2}$	0,50	0,59

Another structure may be proposed in the specific case of an operation in differential mode. This structure, whose principle is given in figure 15, is a balanced bridge structure. The balanced bridge comprises static capacitors 64 of the resonance devices 6"_s(a) and 6"_s(b) and additional capacitors 62₁ and 62₃ with the same value. Through the presence of the two resistors 63(a) and 63 (b) and of the two resonating arms 61-62 (a) and 61-62 (b) of the resonance devices 6"_s(a) et 6"_s(b), there is an imbalance of the bridge. This makes it possible to obtain the response in the band and furthermore to limit the response in the form of a pseudo-plateau in close-range rejection in order to limit the phase variations.

In the pass band, namely around the resonance of the resonance devices 6"_s(a) and 6"_s(b), the compensation for the impedance of the additional static capacitors 62₁ and 62₃ may be obtained by two inductors 61₁ and 61₃. The operation is then the optimum operation for $LC\omega_r^2 = 1$.

These bridge structures may be cascade-connected, generally with different center frequencies to obtain a higher-order filtering.

Figures 16(a) and 16(b) give an exemplary frequency response, respectively in phase and in amplitude, in an open loop, of a $\Sigma\Delta$ modulator having a center frequency $f_0 = \frac{3f_s}{4}$ and comprising a pair consisting of an analog-digital converter 2 and a digital-analog converter 3 with a cumulated, overall processing time of 7.5 sampling periods. The $\Sigma\Delta$ modulator also comprises a filter 11 obtained by a cascade of four bridge-type structures illustrated by figure 15. The frequency and impedance values of the resonators verify $\frac{\omega_a^2}{\omega_r^2} - 1 = \frac{1}{150}$, $RC\omega_r = 0,943$ and $\frac{\omega_r - \omega_0}{\omega_0} = \pm 2,53 \cdot 10^{-3}$ and $\pm 2,94 \cdot 10^{-3}$.

The reading of the responses shown in these figures 16(a) and 16(b) indicates that the operation of the closed loop modulator is stable with the following margins: ± 20 degrees in phase and ± 3 dB in amplitude.

The converters of the $\Sigma\Delta$ modulator may generally be chosen to present delays greater than a sampling period. In an exemplary embodiment of the $\Sigma\Delta$ modulator, either one element or certain elements or all the elements of the $\Sigma\Delta$ modulator are integrated in a semiconductor.

The resistors 63 may either be made on a piezoelectric substrate or made inside a ceramic pack or mounted in it. The capacitors 62 may be made inside a ceramic pack or mounted in this ceramic pack. One or more resonators 61-62 may be either ceramic resonators or surface acoustic wave (SAW) resonators or bulk acoustic wave resonators (BAW), or variants thereof such as FBAR (fundamental bulk acoustic resonators) or HBAR (high-order bulk acoustic resonators) or TFR (thin-film resonators), or dielectric resonators, or resonators made of supraconductive material, or GmC type resonators [capacitor + transconductance amplifier]. Furthermore, the piezoelectric substrate of the acoustic resonators (SAW, BAW, TFR, FBAR, HBAR) may be integrated on silicon.

The making of the elements of the filter (resistor, capacitor and inductor) on a piezoelectric substrate resolves the problems of interconnections between the elements and simplifies the making of the filter. One of the advantages of the making of the elements of the filter (resistor, capacitor and inductor) on a piezoelectric substrate or inside a ceramic pack is that it provides greater control over the transfer function of the filter. Furthermore, the filter made on a piezoelectric substrate may be mounted on a semiconductor comprising one or more of the elements of the $\Sigma\Delta$ modulator.

The examples of application given have been illustrated by the $\Sigma\Delta$ modulator. They may be extended to application in any type of feedback loop. Through the invention, a feedback loop comprising a latency number strictly greater than 1 can be made without any risk of instability in this loop.

BRIEF DESCRIPTION OF THE DRAWINGS

The characteristics and advantages of the invention shall appear more clearly from the following description, given by way of an example, and from the appended figures, of which:

Figures 1(a) and 1(b) are generic diagrams of a continuous-time bandpass $\Sigma\Delta$ modulator, respectively for the processing of any signal and of an analog signal

Figures 2(a) and 2(b), are prior art first-order continuous-time bandpass integrating filters,

Figures 3(a) and 3(b) are the frequency responses, in phase and in amplitude respectively, of the filters of figures 2,

Figure 4(a) and 4(b) show a first variant and a second variant of first-order continuous-time bandpass integrating filters according to the invention,

Figure 5(a) and 5(b), show the frequency responses, in phase and in amplitude respectively, of the filters of figures 4, as a function of the overvoltage of the resonator Q_d ,

Figure 6(a) and 6(b) show a third variant and a fourth variant of first-order continuous-time bandpass integrating filters according to the invention,

Figures 7(a) and 7(b) show the frequency responses, in phase and in amplitude respectively, of the filters of figures 6, as a function of the overvoltage of the resonator Q_d ,

Figure 8 shows a fifth variant of a higher-order continuous-time bandpass integrating filter according to the invention,

Figure 9 shows a circuit equivalent to the resonator according to the prior art,

Figure 10(a) and 10(b) show two exemplary embodiments of the equivalent resonance device according to the invention,

Figure 11 shows a sixth variant of a higher-order continuous-time bandpass integrating filter in differential mode using the equivalent resonance device of figures 10 with a ladder structure,

Figure 12 shows a seventh variant of a higher-order continuous-time bandpass integrating filter in differential mode using the equivalent resonance device of figures 10 with a ladder structure,

Figure 13(a) and 13(b) show the frequency responses, in phase and in amplitude respectively, of the filter of figure 12,

Figure 14 shows a continuous-time bandpass integrating $\Sigma\Delta$ modulator using the higher-order continuous-time bandpass integrating filter of figure 11,

Figure 15 shows an eighth variant of a higher-order continuous-time bandpass integrating filter in differential mode using the equivalent resonance device of figures 10 with a bridge structure,

Figures 16(a) and 16(b) show the frequency responses, in phase and in amplitude respectively, of the filter of figure 15.

1. Abstract

The disclosure pertains to continuous-time filtering. More particularly, it relates to filtering in a feedback control loop, for example in a sigma-delta ($\Sigma\Delta$) modulator. The making of a filter for this type of application comes up against a major problem linked to the relativity between the amplitude and phase responses. This limits the possibilities of choice in order to take steps against the instability of the loop. A continuous-time filter with minimum phase variation carries out the bandpass integration of the signal presented at its input. The making of the continuous-time filter as a bandpass integrator raises the problem of achieving a compromise between gain variations and phase variations close to the -1 critical point. This compromise must lead to the stability of the loop. This problem is resolved by using a continuous-time bandpass integrating filter comprising at least one resonance device with minimum phase variation.

2. Representative Drawing: Fig. 14

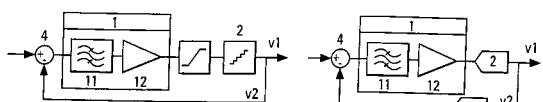


Fig. 1a

Fig. 1b

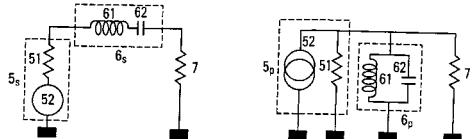


Fig. 2a

Fig. 2b

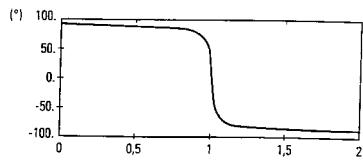


Fig. 3a

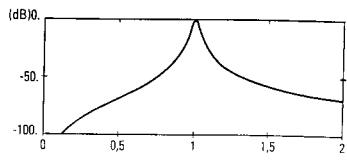


Fig. 3b

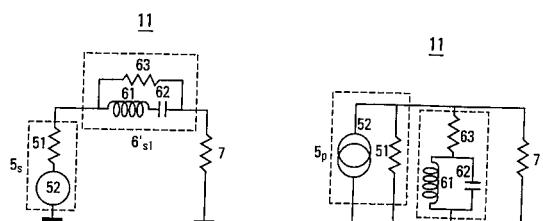


Fig. 4a

Fig. 4b

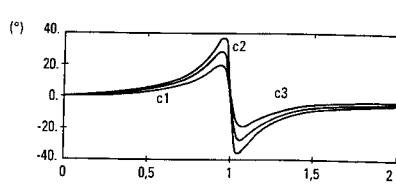


Fig. 5a

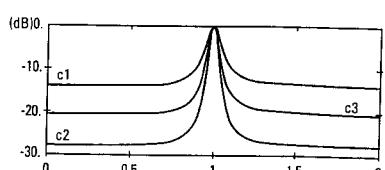


Fig. 5b

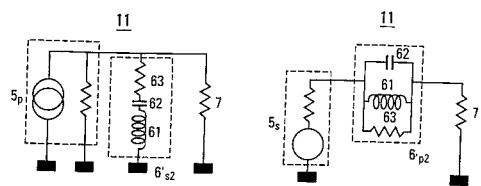


Fig. 6a

Fig. 6b

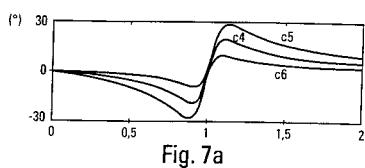


Fig. 7a

Fig. 7b

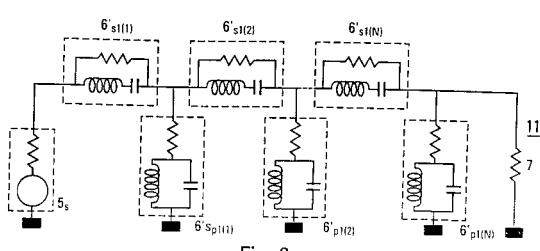


Fig. 8

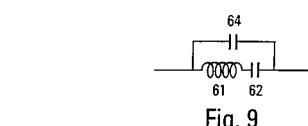


Fig. 9

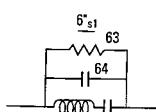


Fig. 10(a)

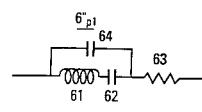


Fig. 10(b)

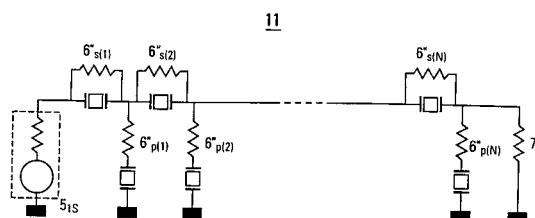


Fig. 11

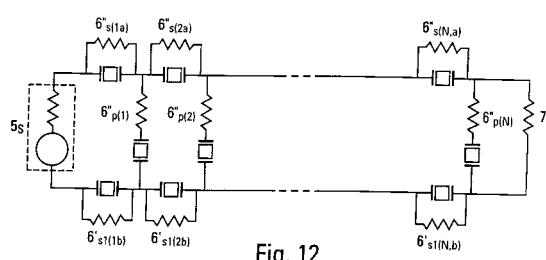


Fig. 12

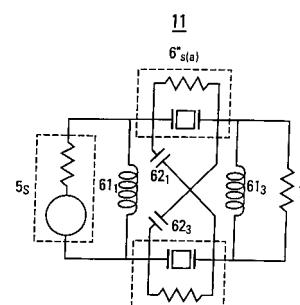


Fig. 15

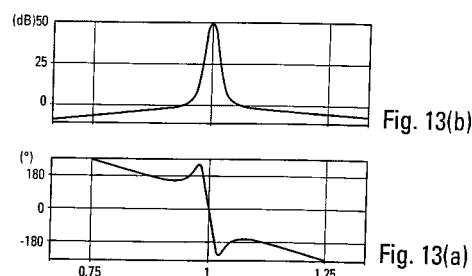


Fig. 13(b)

Fig. 13(a)

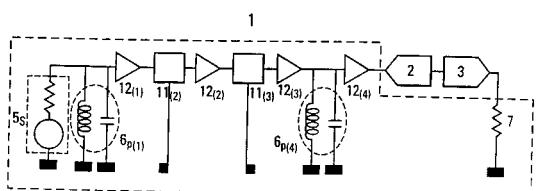


Fig. 14

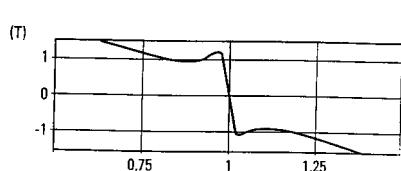


Fig. 16(a)

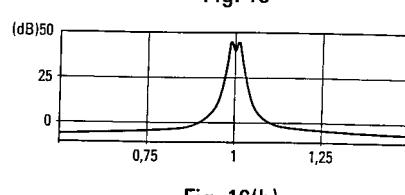


Fig. 16(b)