Embodyments of the present invention relate to improvements to single-substrate, multi-chamber processing platform architecture for minimizing fabrication facility floor space requirements. Prior art systems require significant floor space around all sides to allow for adequate installation and servicing. Embodiments of the present invention provide platforms that allow for servicing the chambers and supporting systems via a front and rear of the platform allowing multiple, side-by-side platform placement within a fabrication facility, while providing improved serviceability of the platform components.
FIG. 6
PROCESS EQUIPMENT ARCHITECTURE

BACKGROUND OF THE INVENTION

[0001] Field of the Invention

[0002] Embodiments of the present invention generally relate to substrate processing equipment. In particular, embodiments of the present invention relate to single-substrate, multi-chamber platform architecture improvements for minimizing fabrication facility floor space requirements.

[0003] Description of the Related Art

[0004] As the semiconductor device fabrication industry continues to mature, fabrication facilities are continually looking for ways to increase throughput, while minimizing the amount of clean room floor space required. Traditional semiconductor substrate processing platforms include multiple, single-substrate processing chambers connected to a central transfer chamber. Such systems work well, but they require a significant amount of floor space to operate and maintain. Additionally, their size requires that these platforms be disassembled for shipment and reassembled at the fabrication facility.

[0005] One partial solution to the aforementioned problem is provided by the VANTAGE® platform from Applied Materials, Inc. of Santa Clara, Calif. This platform provides two processing chambers and associated sub-systems on a single frame structure that can be shipped intact for installation into the fabrication facility. This platform has a smaller footprint than its predecessors but still requires significant floor space when multiple units are needed for parallel processing schemes, due to space requirements for serviceability of the chambers and/or related systems.

[0006] Therefore, a need exists for single-substrate, multi-chamber, processing platforms with improved architecture for minimizing fabrication facility floor space requirements.

SUMMARY OF THE INVENTION

[0007] In one embodiment of the present invention, a platform for substrate processing equipment comprises a frame member having a single-substrate processing chamber attached thereto, a factory interface unit attached to the frame member adjacent the processing chamber, a power unit attached to the frame member on an end of the platform opposite the factory interface unit, and a central service corridor separating the processing chamber from the power unit, wherein the central service corridor has a length extending from a first side of the platform to a second side of the platform and a width of at least about 36 inches.

[0008] In another embodiment, a substrate processing system comprises a first single-substrate processing chamber and a second single-substrate processing chamber attached to a mainframe, a factory interface unit attached to the first and second single-substrate processing chambers having a first factory interface access panel and a second factory interface access panel disposed thereon, a first power unit and a second power unit attached to the mainframe and separated by a rear service corridor, and a central service corridor separating the first and second single-substrate processing chambers from the first and second power units. In one embodiment, the central service corridor has a length extending from a first side of the substrate processing system to a second side of the substrate processing system and a width separating the processing chamber from the power units of about 36 inches or greater.

[0009] In yet another embodiment of the present invention, a system for substrate processing equipment comprises a first single-substrate, multi-chamber processing platform having a first side and a second side with a central service corridor having a length extending from the first side of the first platform to the second side of the first platform and a width of at least about 36 inches, a second single-substrate, multi-chamber processing platform having a first side and a second side with a central service corridor having a length extending from the first side of the second platform to the second side of the second platform and a width of at least about 36 inches. In one embodiment, the second side of the first platform is juxtaposed the first side of the second platform such that the central service corridor of the first platform is substantially aligned with the central service corridor of the second platform.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

[0011] FIG. 1 is a schematic, isometric view of a prior art, single-substrate, multi-chamber platform.

[0012] FIG. 2 is a schematic, top plan view of the prior art, single-substrate, multi-chamber platform depicted in FIG. 1.

[0013] FIG. 3 is a schematic, isometric view of a single-substrate, multi-chamber platform according to one embodiment of the present invention.

[0014] FIG. 4 is a schematic, top plan view of the single-substrate, multi-chamber platform depicted in FIG. 3.

[0015] FIG. 5 is a schematic, top plan view of an exemplary fabrication facility layout utilizing the prior art platform depicted in FIG. 1.

[0016] FIG. 6 is a schematic, top plan view of an exemplary fabrication facility layout utilizing the platform depicted in FIG. 3 according to one embodiment of the present invention.

DETAILED DESCRIPTION

[0017] Embodiments of the present invention relate to improvements to single-substrate, multi-chamber processing platform architecture for minimizing fabrication facility floor space requirements. Prior art systems require significant floor space around all sides to allow for adequate installation and servicing. Embodiments of the present invention provide platforms that allow for servicing the chambers and supporting systems via a front and rear of the platform allowing multiple, side-by-side platform placement within a fabrication facility.

[0018] FIG. 1 is a schematic, isometric view and FIG. 2 is a schematic top plan view of a prior art, single-substrate, multi-chamber platform 100. The platform includes two processing chambers 110, 120 mounted on a common frame 130. Controllers 140 are also mounted on the frame 130 beneath a bottom panel 135. A supply/exhaust unit 150 is mounted on the frame 130 as well. The frame 130 further attaches the processing chambers 110, 120 to a factory interface unit 160. The factory interface unit 160 typically includes a robot (not
shown) to transfer substrates from a front opening unified pod (FOUP) 105 (FIG. 2) to the respective processing chamber 110, 120 through slit valves (not shown). Connection with fabrication facility gas supply and exhaust are located beneath the bottom panel 135 of the frame 130. Alternating current (AC) units 170, 175, for supplying the necessary power, are attached to the frame 130 opposite the end of the platform 100 having the factory interface 160.

[0019] In order to provide for service and maintenance of certain components located on the platform 100, a number of access panels are provided as shown in FIGS. 1 and 2. For instance, a factory interface access panel 166 is provided on each side of the factory interface 160 to provide service access to the robot (not shown) located therein as well as other supporting components contained within the factory interface 160. Additionally, an AC unit access panel 172 is located on the AC unit 170, and an AC unit access panel 177 is located on the AC unit 175 to provide service access to components of the AC units 170, 175, respectively. Further, a side panel 155 is located on either side of the supply/exhaust unit 150.

[0020] As shown in FIGS. 1 and 2, adequate access regions must be provided around certain components located on the platform 100 to allow service and maintenance of the various systems. For instance, a side access area 202 must be provided to allow access to the factory interface access panel 166 for service and maintenance of the factory interface unit 160. The side access area 202 must also allow access for servicing the processing chamber 110, the controller 140, and the supply/exhaust unit 150.

[0021] Similarly, access area 204 must be provided to allow access to the factory interface access panel 166 for service and maintenance of the factory interface unit 160. The side access area 204 must also allow access for servicing the processing chamber 120, the controller 140, and the supply/exhaust unit 150. Additionally, front access area 206 must be provided to allow access to the FOUP’s 105 as well as the front of the factory interface unit 160. Finally, rear access area 208 must be provided to allow access to AC unit access panels 172, 177 for service and maintenance of components of the AC units 170 and 175, respectively.

[0022] It should be noted that the width of the platform 100, denoted by X in FIGS. 1 and 2, is typically about 72 inches. Each of the access areas shown in FIGS. 1 and 2 must have a width (Y) of about 36 inches or more to allow for adequate access to the respective components. Therefore, each platform 100 must have at least 36 inch wide buffer region disposed around the perimeter thereof.

[0023] FIG. 3 is a schematic, isometric view and FIG. 4 is a schematic top plan view of a single-substrate, multi-chamber platform 300 according to one embodiment of the present invention. In one embodiment, the platform 300 includes two processing chambers 310, 320 mounted to a common frame 330. In one embodiment, the frame 330 further attaches the processing chambers 310, 320 to a factory interface unit 360. In one embodiment, the factory interface unit 360 typically includes a robot (not shown) to transfer substrates from a FOUP 305 (FIG. 2) to the respective processing chamber 310, 320 through slit valves (not shown).

[0024] In one embodiment, controllers 340 are mounted to the frame 330 above the processing chambers 310, 320. In one embodiment, a supply/exhaust unit 350 is attached to the frame 330 and situated beneath a bottom panel 335. Connection with fabrication facility gas supply and exhaust are located beneath the bottom panel 335 of the frame 330 as well. In one embodiment, AC units 370, 375, for supplying the necessary power, are attached to the frame 330 opposite the end of the platform 300 having the factory interface 360.

[0025] In order to provide for service and maintenance of certain components located on the platform 300, a number of access panels are provided as shown in FIGS. 3 and 4. In one embodiment, a factory interface access panel 366 is provided on the front and back sides of the factory interface 360, respectively, to provide service access to the robot (not shown) located therein as well as other supporting components contained within the factory interface 360.

[0026] In one embodiment, an AC unit access panel 377 is located on the AC unit 370, and an AC unit access panel 377 is located on the AC unit 375 to provide service access to components of the AC units 370, 375, respectively. In one embodiment, one or more floor access panels 337 are provided in the bottom panel 335 for access to supply/exhaust unit 350 as well as conduit, cables, or other components disposed thereunder.

[0027] As shown in FIGS. 3 and 4, adequate access regions must be provided around certain components located on the platform 300 to allow service and maintenance of the various systems. In one embodiment, a front access area is provided to allow access to the FOUP’s 305 as well as the factory interface access panel 366 for servicing the robot (not shown) and other components housed in the factory interface unit 360. Additionally, the central service corridor allows access for servicing the processing chambers 310, 320 as well as the controllers 340. In one embodiment, the width (Y) of the central service corridor 404 is about 36 inches or more to provide adequate access for servicing the aforementioned components.

[0028] In one embodiment, a central service corridor 404 is provided through a central region of the platform 300 between the processing chambers 310, 320 and the AC units 370, 375. The central service corridor 404 allows access to the factory interface access panel 365 for servicing the robot (not shown) and other components housed in the factory interface unit 360. Additionally, the central service corridor allows access for servicing the processing chambers 310, 320 as well as the controllers 340. In one embodiment, the width (Z) of the central service corridor 404 is about 42 inches to meet or exceed electrical standards for industrial machinery, such as NFPA-79.

[0029] In one embodiment, a rear service corridor 406 is provided between the AC unit 370 and the AC unit 375 to allow access to the AC unit access panels 377, 377. Additionally, the rear service corridor 406 may intersect the central service corridor 404 to allow access to service the chambers 310, 320 from the rear of the platform 300. Such a configuration provides access for service carts and/or other equipment for transporting and servicing the large components of the chambers 310, 320. In one embodiment, the rear service corridor 406 has a width (Z) of at least about 42 inches to meet or exceed electrical standards for industrial machinery, such as NFPA-79.

[0030] FIGS. 5 and 6 are schematic, top plan views comparing a fabrication facility layout 500 of the prior art platform 100 (FIG. 5) to a fabrication facility layout 600 of the platform 300 (FIG. 6) according to one embodiment of the present invention. As previously pointed out, the platforms 100, 300 have approximately the same width (X). In one embodiment, the width (X) of each of the platforms 100, 300 is about 72 inches. Further, the prior art platform 100 requires side access areas 202, 204 having widths (Y) of about 36 inches or more on each side of the platform 100 in order to service components, such as the chambers 110, 120. This
results in inefficient utilization of the available floor space in a fabrication facility. In contrast, in one embodiment, the platforms 300 are disposed in a side-by-side configuration because no "side" access is needed to service the chambers 310, 320 or other components of the platform 300. Thus, one embodiment of the present invention provides five platforms 300 occupying the same lateral footprint (XX) as three of the prior art platforms 100. Such a configuration results in significant throughput improvements without sacrificing valuable fabrication facility floor space.

[0031] Additionally, certain embodiments of the present invention may improve serviceability as well. As can be seen in FIG. 5, in order to access each chamber 110, 120 each side of the platform 100 must be accessed, requiring any service carts or equipment to be moved around the front or rear of the platform 100 between servicing each chamber 110, 120. However, in one embodiment of the present invention, the central service corridors 404 of each of the platforms 300 are aligned and open to one another. Thus, service personnel and/or equipment may move from platform 300 to platform 300 along the central service corridors 404 of each respective platform 300 from one end of the facility layout 600 to the other. Additionally, in one embodiment, each platform 300 includes a rear service corridor 406 intersecting each central corridor 404. Therefore, large carts and equipment may be transported laterally down the line accessing each of the chambers 310, 320 as needed via the rear and central corridors 404, 406, respectively.

[0032] Thus, embodiments of the present invention provide single-substrate, multi-chamber platforms that are configured to provide increased throughput of a fabrication facility while reducing the fabrication facility floor space required.

[0033] Additionally, in one embodiment of the present invention, the platforms 300 are preassembled and tested at the factory prior to shipment to the fabrication facility. Further the individual footprint of each of the platforms 300 may be such that each platform is shipped to the fabrication facility fully assembled. This allows individual docking stations to be set up at each fabrication facility layout 600 for each of the platforms 300 prior to receiving them. Once the platforms 300 are received at the fabrication facility, each platform 300 may be mated with its respective docking station allowing for reduced installation time.

[0034] While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

1. A platform for substrate processing equipment, comprising:
 a frame member having a single-substrate processing chamber attached thereto;
 a factory interface unit attached to the frame member adjacent the processing chamber;
 a power unit attached to the frame member on an end of the platform opposite the factory interface unit;
 and a central service corridor separating the processing chamber from the power unit, wherein the central service corridor has a length extending from a first side of the platform to a second side of the platform and a width of at least about 36 inches.

2. The platform of claim 1, further comprising a second single substrate process chamber attached to the frame member adjacent the factory interface unit.

3. The platform of claim 2, wherein the factory interface unit includes an access panel disposed between the single-substrate processing chamber and the second single-substrate processing chamber.

4. The platform of claim 1, further comprising a second power unit separated from the power unit via a rear service corridor.

5. The platform of claim 4, wherein the rear service corridor has a length extending from a rear side of the platform and intersecting the central service corridor.

6. The platform of claim 5, wherein the rear service corridor has a width separating the power unit from the second power unit of at least about 42 inches.

7. The platform of claim 6, further comprising a first and a second substrate receiving member attached to the factory interface unit.

8. The platform of claim 7, wherein the factory interface unit has an access panel separating the first and second substrate receiving members.

9. The platform of claim 8, further comprising a gas supply system disposed beneath the central service corridor.

10. A substrate processing system, comprising:
 a first single-substrate processing chamber and a second single-substrate processing chamber, each attached to a mainframe;
 a factory interface unit attached to the first and second single-substrate processing chambers having a first factory interface access panel and a second factory interface access panel disposed thereon;
 a first power unit and a second power unit attached to the mainframe, and separated by a rear service corridor; and
 a central service corridor separating the first and second single-substrate processing chambers from the first and second power units, wherein the central service corridor has a length extending from a first side of the substrate processing system to a second side of the substrate processing system and a width separating the processing chamber from the power units of about 36 inches or greater.

11. The substrate processing system of claim 10, wherein the rear service corridor has a length extending from a rear side of the processing system and intersecting the central service corridor.

12. The substrate processing system of claim 11, wherein the rear service corridor has a width separating the first power unit from the second power unit of about 42 inches or greater.

13. The substrate processing system of claim 12, wherein the first power unit has an access panel adjacent the rear service corridor and the second power unit has an access panel adjacent the rear service corridor.

14. The substrate processing system of claim 13, wherein the first factory interface access panel is configured between the first and second single-substrate processing chambers.

15. A system for substrate processing equipment, comprising:
 a first single-substrate, multi-chamber processing platform having a first side and a second side with a central service corridor having a length extending from the first side of the first platform to the second side of the first platform and a width of at least about 36 inches;
 a second single-substrate, multi-chamber processing platform having a first side and a second side with a central service corridor having a length extending from the first
side of the second platform to the second side of the second platform and a width of at least about 36 inches; wherein the second side of the first platform is juxtaposed the first side of the second platform such that the central service corridor of the first platform is substantially aligned with the central service corridor of the second platform.

16. The system of claim 15, wherein the first and second platforms each have a first single-substrate processing chamber and a second single-substrate processing chamber adjacent the service corridor and attached to a factory interface unit with an access panel separating the first and second processing chambers.

17. The system of claim 16, wherein the first and second platforms each have a power unit disposed adjacent the service corridor opposite the first and second single-substrate processing chambers.

18. The system of claim 17, wherein the first and second platforms each have a second power unit disposed adjacent the service corridor opposite the first and second single-substrate processing chambers.

19. The system of claim 18, wherein the first and second platforms each have a rear service corridor separating the power unit from the second power unit and having a length extending from the rear of the platform and intersecting the central service corridor and a width of at least about 42 inches.

20. The system of claim 19, wherein the power unit and the second power unit of each of the first and second platforms each have an access panel disposed adjacent the rear service corridor.

* * * * *