

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 August 2006 (24.08.2006)

PCT

(10) International Publication Number
WO 2006/087584 A1

(51) International Patent Classification:
A61B 17/16 (2006.01)

(74) Agent: **CONNORS, Martin**; Smith & Nephew Research Centre, York Science Park, Heslington, York YO10 5DF (GB).

(21) International Application Number:

PCT/GB2006/000605

(22) International Filing Date:

21 February 2006 (21.02.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

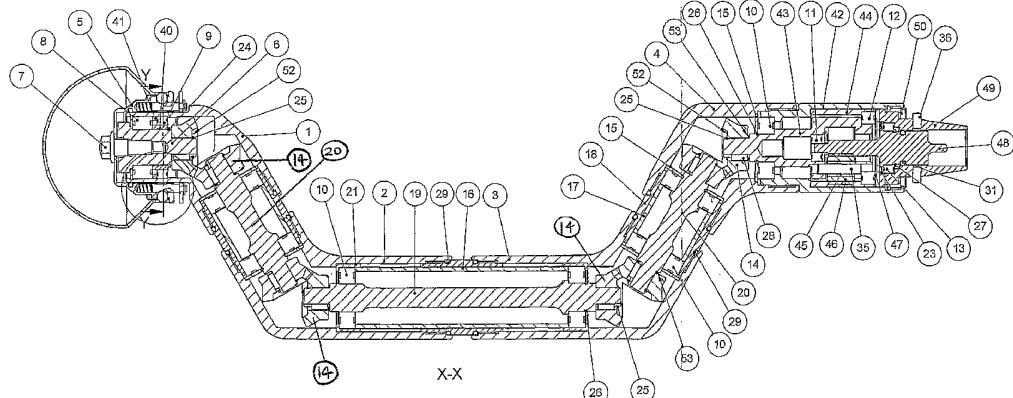
0503529.0 21 February 2005 (21.02.2005) GB

(71) Applicants (for all designated States except US): **SMITH & NEPHEW, PLC** [GB/GB]; 15 Adam Street, London WC2N 6LA (GB). **DE SOUTTER MEDICAL LIMITED** [GB/GB]; River Park, Billet Lane, Berkhamsted, Hertfordshire HP4 1HL (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MCMINN, Derek** [GB/GB]; 7 Chad Road, Edgbaston, Birmingham B15 3EN (GB). **DE SOUTTER, Charles** [GB/GB]; c/o De Soutter Medical Limited, River Park, Billet Lane, Berkhamsted, Hertfordshire HP4 1HL (GB). **GOOCH, Matthew** [GB/GB]; c/o De Soutter Medical Limited, River Park, Billet Lane, Berkhamsted, Hertfordshire HP4 1HL (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DRIVE SHAFT FOR A SURGICAL INSTRUMENT

(57) Abstract: An attachment for a surgical instrument, comprising: a drive input hub for connecting, in use, to a power source; a drive output hub for connecting, in use, to a surgical instrument; and a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub, wherein the body, the drive input hub and the drive output hub are at least in part not coaxial. A method for surgically preparing a bone using such an attachment.

WO 2006/087584 A1

DRIVE SHAFT FOR A SURGICAL INSTRUMENT

The present invention relates to an attachment for a surgical instrument, particularly a cutting device such as a reamer.

5

In-line acetabular reamer attachments are known in which the attachment consists of a straight tubular body with a drive input at one end and a drive output at the other end. The drive input and output are coupled by a drive train housed in the attachment body 10 which transfers drive from the input to the output. In use, a suitable power tool is connected to the drive input and an acetabular reamer cutting shell is attached to the drive output.

In surgical operations it is common for the Surgeon to need to 15 operate around/behind obscuring body parts. For example, in the case of the acetabular re-surfacing procedure, the femoral head obscures the cutting site. Conventional in-line acetabular reamer attachments are therefore not effective, and the Surgeon has to 20 make a large incision in order to insert the in-line acetabular reamer attachment and perform the operation. Such action is clearly disadvantageous for the Surgeon and the patient.

It is therefore desirable to provide a device that enables the Surgeon to manoeuvre around obscuring body parts and perform 25 operations behind such obscuring body parts. It is also desirable to provide a minimally invasive device that requires the Surgeon to make a minimal incision in order to use the device.

The present invention provides a device that enables a 30 Surgeon to manoeuvre around obscuring body parts and perform an operation behind such obscuring body parts.

According to a first aspect of the present invention, there is provided an attachment for a surgical instrument, comprising:

35 a drive input hub for connecting, in use, to a power source;
a drive output hub for connecting, in use, to a surgical instrument; and

a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub,

5 wherein the body, the drive input hub and the drive output hub are at least in part not coaxial.

In this application, the feature that the body, the drive input hub and the drive output hub are at least in part not coaxial means that these three components are not all in linear alignment. Thus, 10 attachments according to the present invention are not so-called in-line attachments. However, this does not mean that some or even parts of the three components cannot be in linear alignment. For example, the drive input hub and the drive output hub may be in linear alignment with each other, but not with the body or part of the 15 body. The body or part of the body may be in linear alignment with the drive input hub, but not with the drive output hub, for example. The body or part of the body may be in linear alignment with the drive output hub, but not with the drive input hub, for example.

20 Preferably, the body comprises a curved portion.

Preferably, the body comprises a plurality of sections that are angularly disposed with respect to each other.

25 According to a preferred embodiment of the present invention, the attachment for a surgical instrument comprises:

a drive input hub for connecting, in use, to a power source;
a drive output hub for connecting, in use, to a surgical instrument; and

30 a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub,

wherein the body comprises a plurality of sections that are angularly disposed with respect to each other.

35

The shape/configuration of the attachment has the advantage that a Surgeon can manoeuvre it around/past body parts that are

obscuring the target of the surgery. The surgical instrument can be positioned behind the obscuring body part.

5 The shape/configuration of the attachment has the advantage that prior to insertion of the attachment the Surgeon can make a minimal incision.

According to an embodiment of the present invention, the attachment body comprises:

10 a first section to which the drive input hub is attached;
a second section to which the drive output hub is attached;
and

15 a third section connecting the first and second sections, wherein the longitudinal axes of the first and second sections are disposed at an angle with respect to the longitudinal axis of the third section.

20 The angle between the longitudinal axes of the first and third sections may be the same as the angle between the longitudinal axes of the second and third sections.

25 The angle between the longitudinal axes of the first and third sections and/or the angle between the longitudinal axes of the second and third sections may be between plus or minus 20 and 80 degrees, or between plus or minus 20 and 75 degrees, or between plus or minus 25 and 70 degrees, or between plus or minus 30 and 65 degrees, or between plus or minus 40 and 65 degrees, or between plus or minus 45 and 65 degrees, or between plus or minus 50 and 65 degrees.

30 Preferably, the angle between the longitudinal axes of the first and third sections is about plus or minus 60 degrees. Preferably, the angle between the longitudinal axes of the second and third sections is about plus or minus 60 degrees.

35 The means for transferring drive from the input hub to the output hub may comprise a series of universal joints.

The means for transferring drive from the input hub to the output hub may comprise one or more flexible shafts.

5 According to a preferred embodiment of the present invention, the means for transferring drive from the input hub to the output hub comprises a series of drive shafts and bevel gears, the drive shafts being angularly disposed with respect to each other.

10 The angle between adjacent drive shafts may be between plus or minus: 20 and 80 degrees; 20 and 75 degrees; 25 and 70 degrees; 30 and 65 degrees; 40 and 65 degrees; 45 and 65 degrees; or 50 and 65 degrees.

15 Preferably, the angle between adjacent drive shafts is about plus or minus 60 degrees.

According to a preferred embodiment of the present invention, the attachment comprises three drive shafts respectively disposed in 20 the first, second and third sections of the body, the drive shafts being coupled by bevel gears.

25 The overall length of the attachment measured from the end of the drive input hub to the end of the drive output hub may be between 150 and 450 mm, preferably between 200 and 400 mm, more preferably between 250 and 350 mm. Lengths in the range 300 to 320 mm are particularly preferred.

30 The length of the first section may be between 30 and 90 mm, preferably between 45 and 75 mm, more preferably between 50 and 70 mm.

35 The length of the second section may be between 30 and 90 mm, preferably between 45 and 75 mm, more preferably between 50 and 70 mm.

The length of the third section may be between 100 and 300 mm, preferably between 100 and 200 mm, more preferably between 120 and 160 mm. Lengths in the range 130 to 150 mm are particularly preferred.

5

Preferably, the body is tubular. The body may have a diameter between 15 and 45 mm, preferably between 20 and 40 mm, more preferably between 25 and 35 mm.

10 The attachment may be made of any suitable material. For example, the attachment may be made of one or more metals or one or more alloys, or a combination of metal(s) and alloy(s).

15 The components of the attachment may be made of the same or different materials.

20 The body may be made of aluminium, aluminium alloy, stainless steel or titanium, for example. Preferably, the body is made of a light material. Preferably, the body is made of aluminium or aluminium alloy.

Preferably, the drive shafts and bevel gears are made of steel, more preferably stainless steel.

25 The surgical instrument may be a cutting device. The cutting device may be a reamer cutting shell, for example an acetabular reamer cutting shell.

30 Preferably, the drive input hub and the drive output hub are coaxial. That is, the input and output hubs are preferably in linear alignment.

Preferably, the power source is a rotary drive source.

35 The power source may be an electric power tool, for example an electric drill.

The power source may be a pneumatic power tool.

According to a second aspect of the present invention, there is provided a reamer for surgically preparing a bone, comprising an attachment according to the first aspect of the present invention in combination with a reamer cutting shell.

Preferably, the reamer of the second aspect further comprises a rotary drive source.

10

According to a third aspect of the present invention, there is provided a method for surgically preparing a bone, comprising the steps of:

15 providing an attachment for a surgical instrument according to the first aspect of the present invention;

providing a surgical instrument for machining a surface of the bone;

providing a power source;

20 connecting the surgical instrument and the power source to the attachment;

inserting the surgical instrument and attachment through an incision in the patient;

positioning the surgical instrument against a bone surface while positioning the attachment around intervening anatomy; and

25 driving the surgical instrument to machine the bone surface.

According to a fourth aspect of the present invention, there is provided a method for surgically preparing a bone, comprising the steps of:

30 providing an attachment for a surgical instrument comprising a drive input hub connectable to a power source, a drive output hub connectable to a surgical instrument, and a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub, wherein 35 the body, the drive input hub and the drive output hub are at least in part not coaxial;

providing a surgical instrument for machining a surface of the bone;

5 connecting the surgical instrument to the drive output hub;
providing a power source;

connecting the power source to the drive input hub;
10 inserting the surgical instrument and attachment through an incision in the patient;
positioning the surgical instrument against a bone surface while positioning the attachment around intervening anatomy; and
driving the surgical instrument to machine the bone surface.

The surgical instrument may be an acetabular reamer, and the bone surface may be an acetabulum.

15 Reference will now be made, by way of example, to the accompanying drawings in which:

Figure 1 is a plan view of an attachment according to the present invention;

20 Figure 2 is a cross-sectional view of the attachment shown in Figure 1, taken along line X-X of Figure 1;

Figure 3 is a cross-sectional view of the attachment shown in
25 Figure 1, taken along line Y-Y of Figure 1;

Figure 4 is a key to figures 1-3;

30 Figure 5 is a plan view of an attachment according to the present invention;

Figure 6 is a cross-sectional view of the attachment shown in Figure 5, taken along line X-X of Figure 5;

35 Figure 7 is an enlarged cross-sectional view of part of the attachment shown in Figure 6;

Figure 8 is a cross-sectional view of the attachment shown in Figure 6, taken along line Y-Y of Figure 6;

Figure 9 is a key to figures 5-8;

5

Figure 10 is a side view of an attachment according to the present invention in which a reamer cutting shell is attached; and

10 Figure 11 is a side view of an attachment according to the present invention in which a reamer cutting shell is detached.

An attachment for a reamer cutting shell in accordance with the present invention is illustrated in Figures 1-11. As shown in Figures 1, 2, 5 and 6, the reamer comprises six main assemblies, 15 namely a universal conical connection spigot (part of the drive input hub), a reduction gearbox (part of the drive input hub), a body comprising a drive train, a reamer drive assembly (part of the drive output hub), a reamer shell retention mechanism (part of the drive output hub) and an acetabular reamer cutting shell, which is 20 releasably attached to the drive output hub. The component parts of the reamers shown in Figures 1 and 2 and Figures 5 and 6 are listed in Figures 4 and 9, respectively.

Referring to Figures 1 to 4, in use a powered handpiece 25 drives an epicyclic gearbox (6-12) inside the reamer attachment, thereby reducing the speed and increasing the torque. Drive is transferred along the reamer attachment's unique shape to the reamer shell cutter (24) drive hub via a series of drive shafts (34,35) and bevel gears (29). The use of bevel gears (29) allows the drive 30 to be taken through a much more acute angle in comparison with universal joints or flexible shafts. Likewise bevel gears (29) withstand far higher running or slam torques.

As shown in Figure 2, the design of the final drive output hub 35 incorporates the bearing/shaft assembly within the internal space envelope of the rear portion of the acetabular shell (24). This has the effect of reducing, to an absolute minimum, the distance

between the distal end of the acetabular reamer cutting shell (24) and the rear of the angle head (1).

The reamer attachment shown in Figures 1 and 2 has a unique acetabular reamer cutting shell (24) locking system, enabling

5 the reamer shell cutter to be locked securely onto the drive hub (22) whilst the reamer is in use. The cutting shell is locked axially in place by two balls (44) which are radially held out into two corresponding holes within the driving collar on the reamer shell (24). The balls are held in the outward position by the plain portion
10 on the two notched pins (46) which are secured onto the releasing collar (47). The whole releasing collar and notched pin assembly is spring loaded away from the distal end of the reamer shell (24). Depressing the collar towards the distal end of the reamer shell allows the balls to enter the notched portion of the two pins, this in
15 turn enables the reamer shell to be withdrawn over the balls and the drive hub (22) assembly. The drive hub incorporates two drive dogs, which locate into two corresponding slots on the rear portion of the reamer shell mounting collar, this provides the drive between the drive hub and the shell.

20

To give the unique shape of the attachment, typical angles of the drive shaft and bevel gears are between 20 and 80 degrees plus or minus from the axis but also between 20 and 75 degrees, 25 and 70 degrees, 30 and 65 degrees, 40 and 65 degrees, 45 and 65
25 degrees and 50 and 65 degrees plus or minus from the axis of the shaft. Aply an angle of 60 degrees, or about 60 degrees plus or minus from the axis of the shaft may be used to give the unique shape of the attachment.

30

An attachment for a reamer cutting shell in accordance with the present invention will now be described in more detail with reference to Figures 6 to 11.

35

In use, the universal conical connection spigot assembly (49) is inserted into a surgical motor handpiece (not shown) with the output drive from the handpiece connecting to the input shaft attachment pinion (48) by means of a tang shaped drive end. The

powered handpiece output speed is normally around 1000-1200 rpm.

A reamer attachment having a universal conical connection

5 spigot assembly (49) is a preferred embodiment of the present invention. Such reamer attachments are designed to be used with the De Soutter Medical MDX electric (battery) and MPX pneumatic surgical instrument systems. However, alternative configurations are possible. For example, the conical connection spigot

10 arrangement can be replaced with a conventional Hudson, Zimmer or other industry standard chucking system. Such configurations necessitate the use of a separate geared reamer attachment with its associated drawbacks.

15 The reduction gearbox assembly reduces the output speed of the powered handpiece down to the required acetabular reaming speed, typically between 200 and 300 rpm. This speed reduction is achieved by a single stage planetary gearbox system. The attachment pinion (48) is supported on two bearings (11,13), the

20 gear form on the pinion engaging on the planet wheels (46). The attachment pinion is sealed against water and steam ingress by a seal (31) assembled to the attachment pinion (48). The planet carrier (43) is supported on two bearings (12,10) and is driven by the resultant rotary motion created between the attachment pinion (48),

25 the planet wheels (46) and the internal gear (44). A bevel gear (14) is mounted onto a shouldered spigot diameter formed on the distal end of the planet carrier (43). A key (28) transmits the drive between the planet carrier (43) and the bevel gear (14).

30 The body (1-4) takes the drive train through a deformed U-shaped, or top hat shaped, series of bends around the patient's femoral head. This particular design comprises four separate bends with the output drive from the reamer preferably ending up being in line with the original axis of the handpiece output drive. The series

35 of bends in the drive train is achieved by configuring four sets of bevel gears (14) arranged in such a manner that their axis of rotation form a typical angle to one another of 120 degrees. The bevel gear

sets are connected by three shafts (19,20) that are supported on a number of bearings (10) mounted into the angled housings (2,3,4) of the body. The housings are connected by three turnbuckles (18) and supporting spacers (16,17) which control the correct

5 dimensional relationships between the assembled components so ensuring the bevel gears (14) are correctly meshed. The transmission is therefore taken through four bends of 120 degrees each. The offset distance between the input axis from the handpiece to the secondary parallel transmission axis is typically

10 around 50mm. The distance between the two bends, which defines the length of secondary parallel transmission axis, typically measures 140mm.

The output shaft (6) is driven from the final set of bevel gears (14) which is supported on two bearings (8,9), which in turn are retained within the output housing (1). The drive between the output shaft and the end cap (5) is accomplished by dog drive machined onto the internal face of the end cap and the front of the shaft. The two items are secured together with a screw (7). The whole front-20 end reamer hub assembly is sealed against the ingress of liquid and steam by a seal (30) located between the internal annulus of the end cap (5) and the outside diameter of the output housing (1). A feature of the output hub assembly is that the output shaft (6) and supporting bearing assembly (8,9) is so arranged that it partially protrudes into, and is thereby incorporated within, the internal space envelope of the rear portion of the acetabular reamer shell (55). This has the effect of reducing, to the absolute minimum, the 25 distance between the distal end of the acetabular reamer shell (55) and the back face of the output housing (1).

30 The end cap (5) acts as the location spigot for the rear annulus of the reamer shell (55), whilst containing a quick release locking mechanism to retain the reamer shell. As shown in more detail in Figure 7, the locking mechanism comprises a series of 35 interacting notched pins (37) and balls (33) which secure the reamer shell (55) to the end cap (5). The notched pins are pushed rearwards by springs (51) which are retained within the end cap (5)

assembly. The notched pins are secured into the releasing collar (38) and are stopped from rotation by having flats machined onto their ends, the flattened notched pin ends mating with corresponding D holes formed into the releasing collar (38). With the releasing collar 5 (38) and notched pins (37) taking up their normal position the balls (33) are held radially out against the retaining ring (32). The holes in the retaining ring (32) are sized such that they keep the balls (33) captive whilst at the same time they allow the balls (33) to partially protrude beyond the retaining ring (32) diameter when acting on the 10 full diameter of the notched pins (37). The reamer shell (55) is released from the end cap assembly by pushing the spring-loaded releasing collar (38) towards the distal end of the device, this action allows the notched portion of the notched pins (37) to line up with the balls (33) thereby allowing the balls to retract inwardly. The balls 15 retracting below the outside diameter of the end cap assembly allows the reamer shell (55) to be slid off distally. The drive between the reamer shell (55) and the end cap (5) is achieved by the inclusion of two lugs that are machined onto the rear portion of the end cap (5). These lugs mate with two corresponding notches that 20 are formed into the rear location diameter on the reamer shell (55).

The acetabular reamer shell (55) is constructed in a similar fashion to those commonly used for acetabulum reaming procedures. However, reamer shells used with the attachment of 25 the present invention are configured to contain two drive notches formed into the rear location diameter.

An attachment according to the present invention is a dedicated device that improves the surgeon's ability to perform 30 various acetabular reaming procedures where access to the surgical site is limited. Typically access is restricted in hip re-surfacing procedures and least invasive total hip replacement (THR) hip surgery. The uniquely shaped reamer attachment allows the surgeon to make a much smaller incision than would otherwise be 35 required when using a conventional in-line acetabular reamer shaft assembly.

Devices according to the present invention enable the thrust line to be kept perpendicular to the cutting site when performing least invasive surgical techniques. A problem associated with the hip re-surfacing procedure is that the femoral head obscures the cutting site. Additionally the distance between the femoral head and the acetabulum is severely restricted when the surgeon inserts the reamer head/shell assembly into the surgical site. The attachment according to the present invention overcomes these problems by enabling the drive train from the powered handpiece to curve around the obscuring femoral head so that cutting behind the obscuring femoral head can occur.

Reamer attachments according to the present invention optimise the available space by utilising a very compact drive train mechanism, which has a very acute angle of approach and which incorporates both the final angled drive hub assembly and the reamer shell retention/releasing mechanism. The use of bevel gears allows the drive to be taken through a much more acute angle in comparison with alternative transmission systems such as universal joints or flexible shafts. Bevel gears can withstand far higher running or slam/stall torques which are often encountered in acetabular reaming procedures.

Attachments according to the present invention incorporate a reduction gearbox, typically having a gearing reduction of 5:1, which eliminates the necessity of utilising a separate geared reamer attachment connected to the motor handpiece. In this single attachment configuration, the weight, length and general bulk of the powered handpiece/attachment combination is minimised. As there is only one coupling point between the handpiece and the reamer attachment the complete system becomes far more robust and rigid than would normally be the case with a separate secondary attachment containing the reduction gearbox. A further advantage of this configuration is that the outer casing of the reamer attachment is both rotationally and axially secured into the handpiece by the universal conical locking mechanism. As a result, the reaming reaction torque is transmitted back into the pistol grip shaped

14

handpiece, which in turn eliminates the necessity of incorporating a side handle onto the reamer attachment.

Although the attachment of the present invention has been
5 described in relation to a reamer, it can be used as a tool driver for other surgical instruments (tools).

CLAIMS

1. An attachment for a surgical instrument, comprising:
 - 5 a drive input hub for connecting, in use, to a power source;
 - a drive output hub for connecting, in use, to a surgical instrument; and
 - 10 a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub, wherein the body, the drive input hub and the drive output hub are at least in part not coaxial.
2. An attachment according to claim 1, wherein the body comprises a curved portion.
 - 15 3. An attachment according to claim 1 or 2, wherein the body comprises a plurality of sections that are angularly disposed with respect to each other.
- 20 4. An attachment according to any of claims 1 to 3, wherein the body comprises:
 - a first section to which the drive input hub is attached;
 - 25 a second section to which the drive output hub is attached;
 - and
 - 25 a third section connecting the first and second sections, wherein the longitudinal axes of the first and second sections are disposed at an angle with respect to the longitudinal axis of the third section.
- 30 5. An attachment according to claim 4, wherein the angle between the longitudinal axes of the first and third sections is the same as the angle between the longitudinal axes of the second and third sections.
- 35 6. An attachment according to claim 4 or 5, wherein the angle between the longitudinal axes of the first and third sections and/or

16

the angle between the longitudinal axes of the second and third sections is between plus or minus 20 and 80 degrees.

7. An attachment according to claim 6, wherein the angle is
5 between plus or minus 40 and 65 degrees.

8. An attachment according to claim 7, wherein the angle is
about plus or minus 60 degrees.

10 9. An attachment according to any preceding claim, wherein the
means for transferring drive from the input hub to the output hub
comprises a series of drive shafts and bevel gears, the drive shafts
being angularly disposed with respect to each other.

15 10. An attachment according to claim 9, wherein the angle
between adjacent drive shafts is between plus or minus 20 and 80
degrees.

11. An attachment according to claim 10, wherein the angle is
20 between plus or minus 40 and 65 degrees.

12. An attachment according to claim 11, wherein the angle is
about plus or minus 60 degrees.

25 13. An attachment according to any of claims 9 to 12 when
dependant on claim 4, comprising three drive shafts respectively
disposed in the first, second and third sections of the body.

14. An attachment according to any of claims 4 to 13, wherein the
30 length of the first section is between 45 and 75 mm, the length of the
second section is between 45 and 75 mm, and the length of the third
section is between 120 and 160 mm.

15. An attachment according to any preceding claim, wherein the
35 diameter of the body is between 20 and 40 mm.

16. An attachment according to any preceding claim, wherein the body is made of aluminium.
17. An attachment according to any preceding claim, wherein the 5 surgical instrument is a cutting device.
18. An attachment according to claim 17, wherein the cutting device is a reamer cutting shell.
- 10 19. An attachment according to any preceding claim, wherein the drive input hub and the drive output hub are coaxial.
20. An attachment according to any preceding claim, wherein the power source is a rotary drive source.
- 15 21. A reamer for surgically preparing a bone, comprising an attachment according to any of claims 1 to 20 in combination with a reamer cutting shell.
- 20 22. A reamer according to claim 21, further comprising a rotary drive source.
23. A method for surgically preparing a bone, comprising the steps of:
 - 25 providing an attachment for a surgical instrument as claimed in any of claims 1 to 20;
 - providing a surgical instrument for machining a surface of the bone;
 - providing a power source;
- 30 connecting the surgical instrument and the power source to the attachment;
- inserting the surgical instrument and attachment through an incision in the patient;
- positioning the surgical instrument against a bone surface
- 35 while positioning the attachment around intervening anatomy; and
- driving the surgical instrument to machine the bone surface.

24. A method for surgically preparing a bone, comprising the steps of:

providing an attachment for a surgical instrument comprising a drive input hub connectable to a power source, a drive output hub

5 connectable to a surgical instrument, and a body connecting the drive input hub to the drive output hub, the body comprising means for transferring drive from the input hub to the output hub, wherein the body, the drive input hub and the drive output hub are at least in part not coaxial;

10 providing a surgical instrument for machining a surface of the bone;

connecting the surgical instrument to the drive output hub;

providing a power source;

connecting the power source to the drive input hub;

15 inserting the surgical instrument and attachment through an incision in the patient;

positioning the surgical instrument against a bone surface while positioning the attachment around intervening anatomy; and driving the surgical instrument to machine the bone surface.

20

25. A method according to claim 23 or 24, wherein the surgical instrument is an acetabular reamer, and the bone surface is an acetabulum.

25 26. An attachment for a surgical instrument substantially as hereinbefore described with reference to the drawings.

27. A reamer for surgically preparing a bone substantially as hereinbefore described with reference to the drawings.

30

28. A method for surgically preparing a bone substantially as hereinbefore described with reference to the drawings.

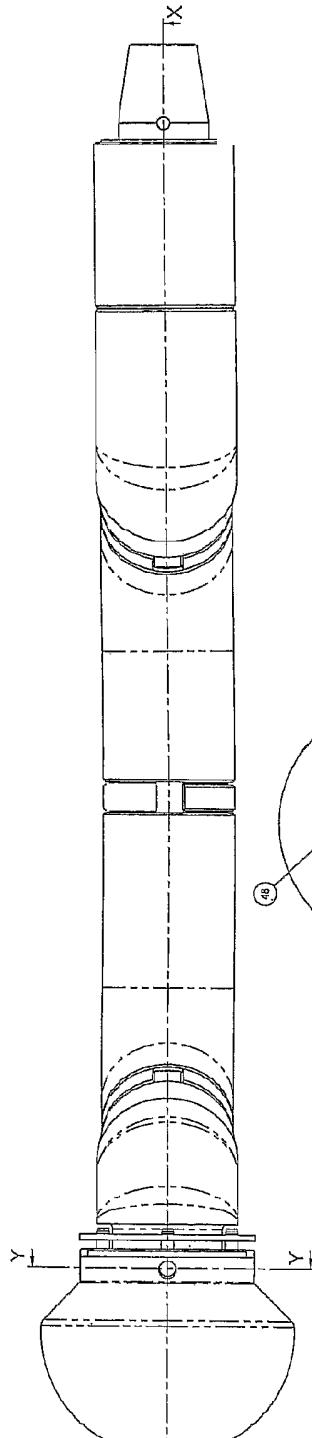
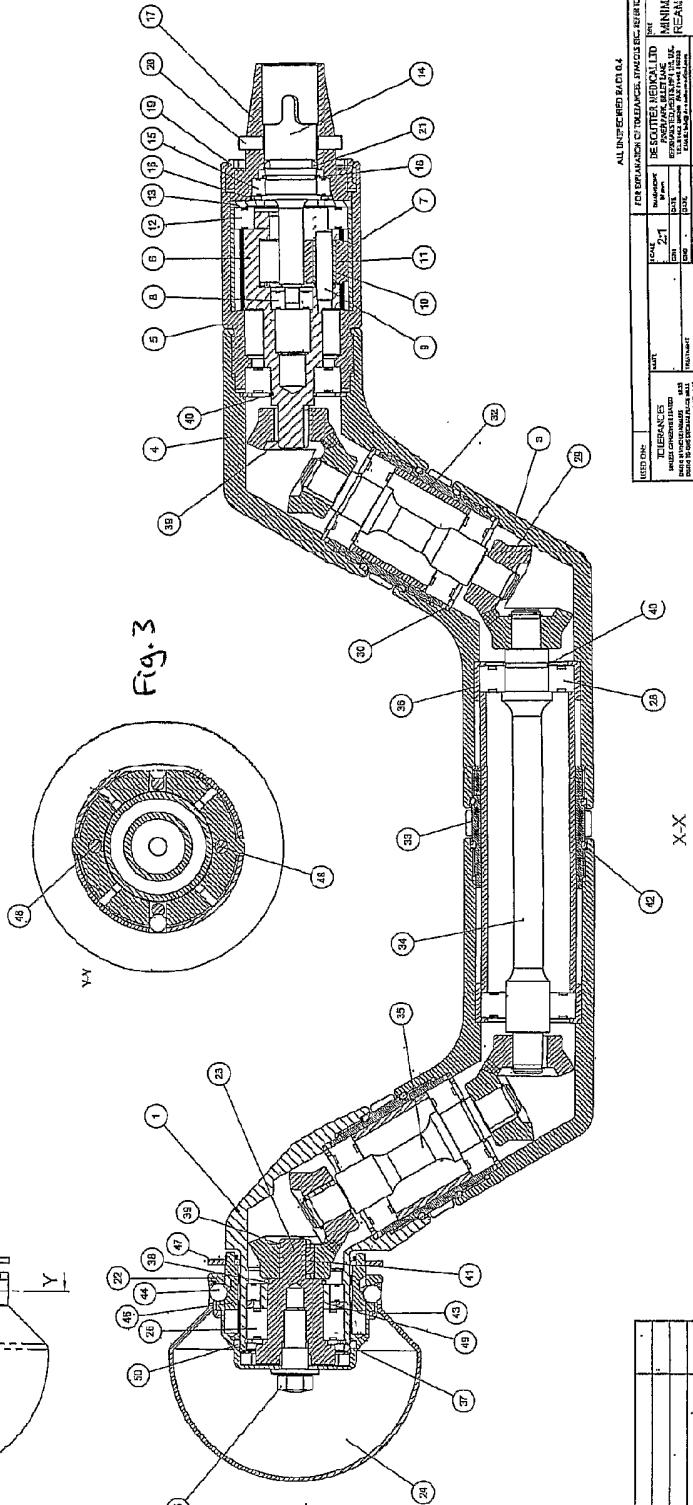
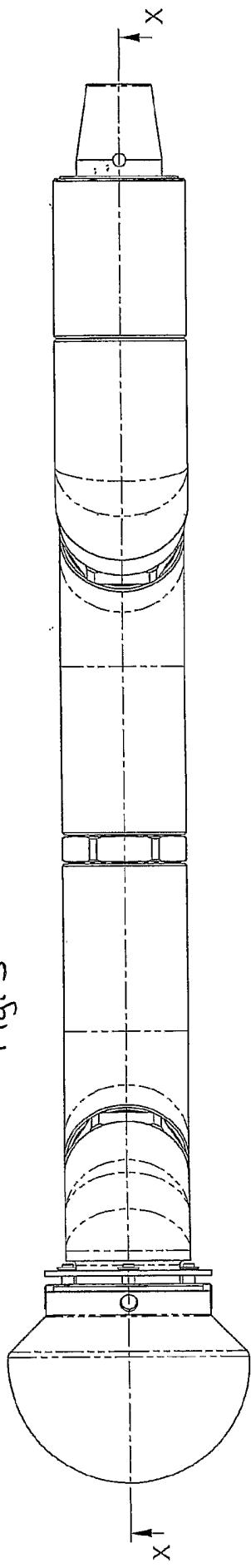
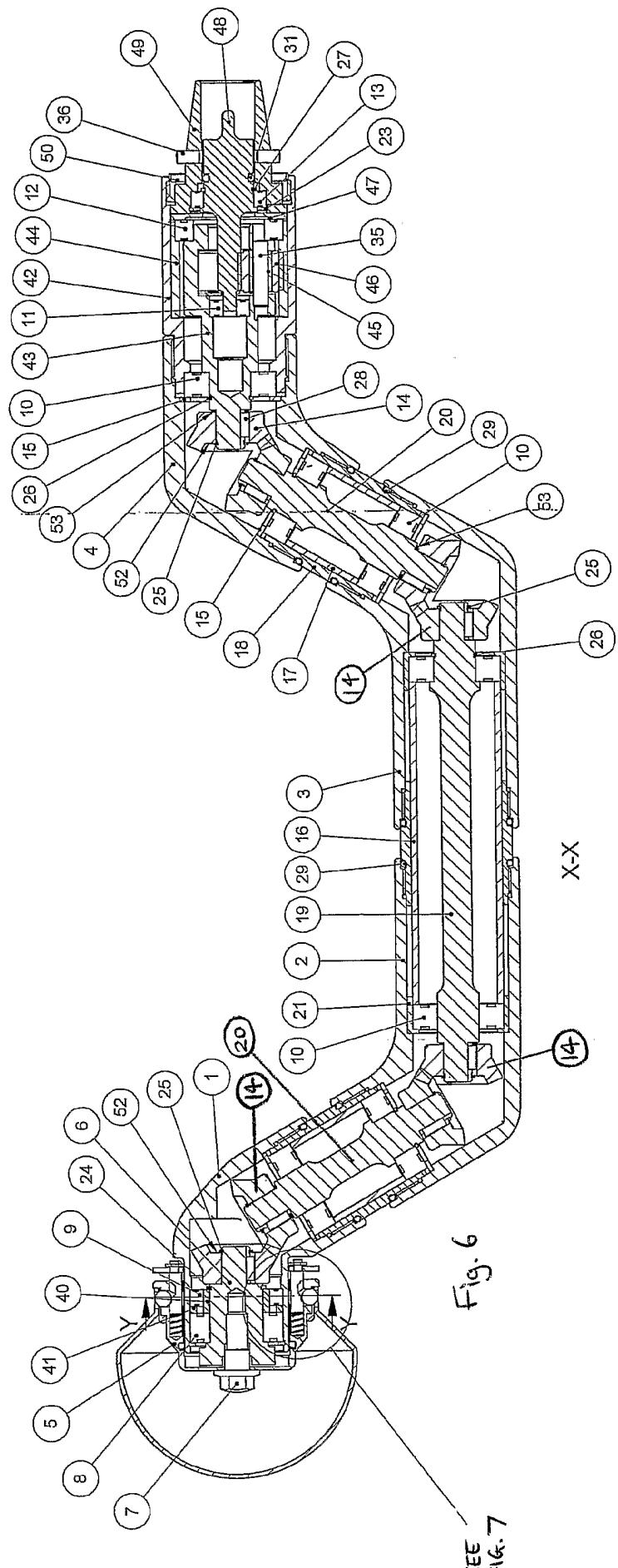


Fig. 4

一
四


Fig. 2

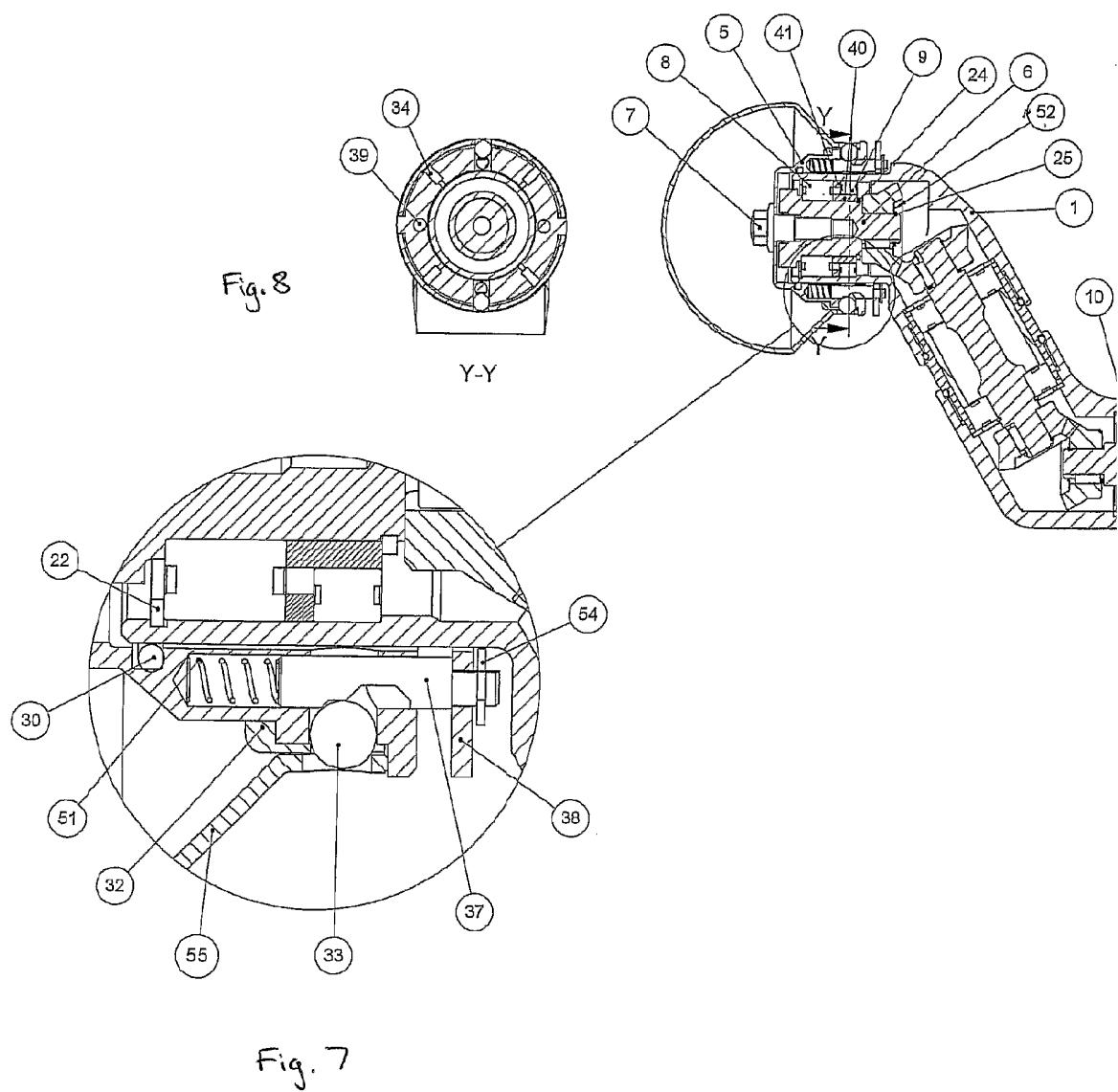
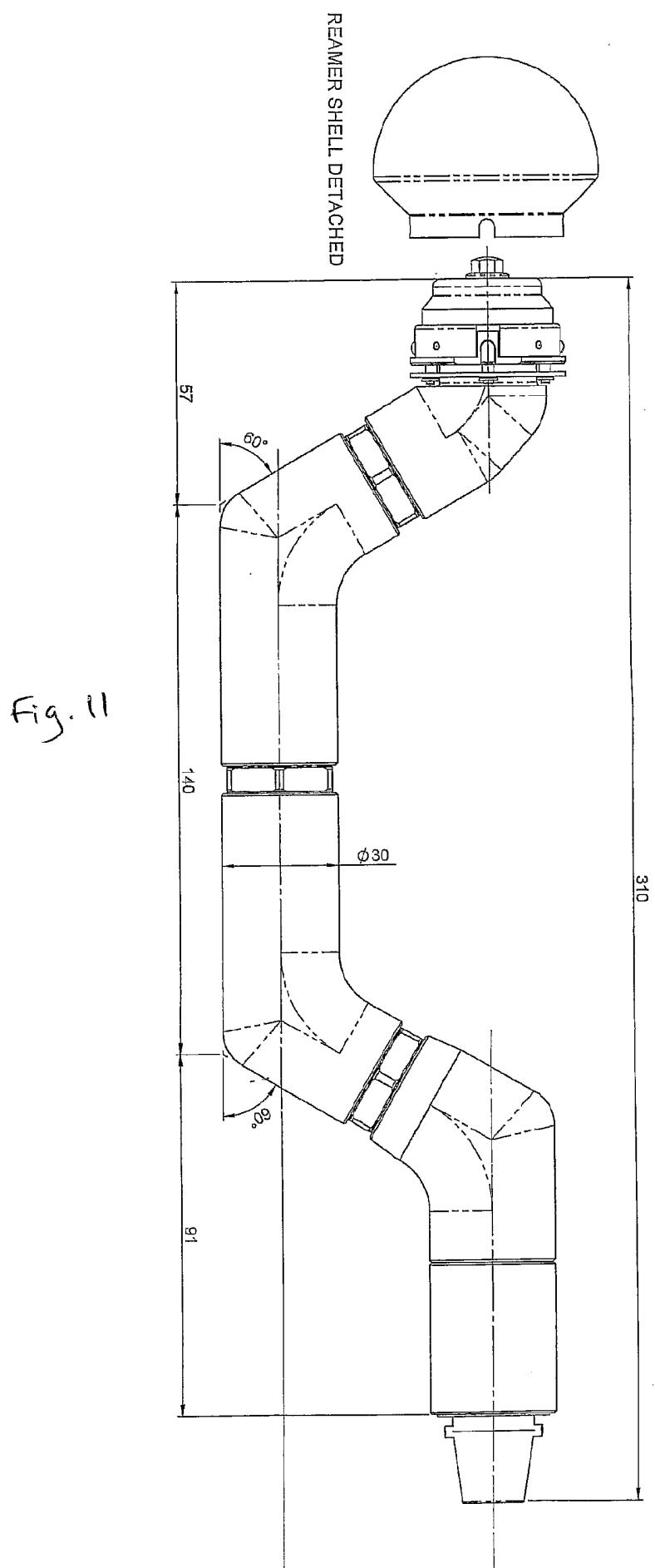


Fig. 5


2/6



ITEM	PART No.	DESCRIPTION	QTY
1	630543	HOUSING, OUTPUT	1
2	630533	HOUSING	1
3	630493	HOUSING	1
4	630453	HOUSING, INPUT	1
5	630553	END CAP	1
6	630563	SHAFT, REAMER END	1
7	630573	SCREW - SPECIAL	1
8	630643	BEARING	1
9	612023	BEARING	1
10	630653	BEARING	7
11	612353	BEARING	1
12	601633	BEARING	1
13	612073	BEARING	1
14	630433	BEVEL GEAR	8
15	630443	SPACER	5
16	630513	SPACER, LONG	1
17	630473	BEARING SPACER, SHORT	2
18	630483	TURNBUCKLE	3
19	630523	SHAFT	1
20	630463	SHAFT, SHORT	2
21	630503	BEARING LINER	2
22	612103	CIRCLIP	1
23	612663	CIRCLIP	1
24	606453	CIRCLIP	1
25	619323	CIRCLIP	8
26	607813	CIRCLIP	4
27	603843	CIRCLIP	1
28	619033	KEY	8
29	631353	O RING	6
30	628863	O RING	1
31	611923	O RING	1
32	630583	RETAINING RING	1
33	80283	BALL	2
34	619583	PIN	4
35	209743	PIN	3
36	611943	PIN	2
37	630593	BALL GUIDE PIN	2
38	630603	RELEASING COLLAR	1
39	630613	GUIDE PIN	2
40	630623	SPACER	1
41	630633	SPACER	1
42	630413	ATTACHMENT CASE	1
43	630423	PLANET CARRIER	1
44	611533	INTERNAL GEAR	1
45	251663	CAGED NEEDLE ASSEMBLY	3
46	299113	PLANET WHEEL	3
47	611573	WASHER	1
48	611343	ATTACHMENT PINION	1
49	612013	SPIGOT	1
50	612003	CLAMP SCREW	1
51	631373	SPRING	4
52	626043	SHIM	A/R
53	619863	SHIM	A/R
54	631383	E CLIP	4
55	6000	REAMER SHELL	1

Fig. 9

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2006/000605

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61B17/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03/092513 A (PRECIMED S.A; LECHOT, ANDRE; DAVIES, HUGH; WHITE, MICHEL, PATRICK) 13 November 2003 (2003-11-13) page 4, line 9 – page 5, line 6; figure 6 -----	1-4, 9, 21, 22
A	WO 03/065906 A (CHANA, GURSHARAN, SINGH) 14 August 2003 (2003-08-14) abstract; figure 4 -----	1-22

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

27 April 2006

Date of mailing of the international search report

08/05/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL – 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hansen, S

INTERNATIONAL SEARCH REPORT

International application No.
PCT/GB2006/000605

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 23-28 because they relate to subject matter not required to be searched by this Authority, namely:
Claims 23-25,28: Rule 39.1(iv) PCT – Method for treatment of the human or animal body by surgery
2. Claims Nos.: 26-28 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box II.1

Claims Nos.: 23-28

Claims 23-25,28: Rule 39.1(iv) PCT - Method for treatment of the human or animal body by surgery

Continuation of Box II.2

Claims Nos.: 26-28

Claims shall not rely on references to the description or drawings, Art. 6, Rule 6.2(a) PCT.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2006/000605

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 03092513	A	13-11-2003	AU	2003219465 A1		17-11-2003
			CN	1649546 A		03-08-2005
			EP	1499248 A1		26-01-2005
			JP	2005523764 T		11-08-2005
WO 03065906	A	14-08-2003	AU	2003208401 A1		02-09-2003
			CN	1642487 A		20-07-2005
			EP	1471837 A2		03-11-2004
			JP	2005516662 T		09-06-2005
			US	2005222572 A1		06-10-2005
			US	2005131414 A1		16-06-2005