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ENHANCING DELINQUENT DEBT COLLECTION USING STATISTICAL
MODELS OF DEBT HISTORICAL INFORMATION AND ACCOUNT EVENTS

BACKGROUND

Field of Invention

The present invention relates generally to the optimization of strategies for
collecting and recovering on delinquent debt accounts, and more particularly, to an
automated system that uses predictive modeling to optimize the use of various collection
resources on a portfolio of delinquent debt accounts, including for example credit card

accounts.

-+~ Background of the Related Art

A significant portion of the debts that people incur are not repaid in a timely fashion.
The term “debt” as used herein may refer to credit card debt, loan debts, unpaid bills, or a
variety of other types of debt or credit obligation. A delinquent debt is any such debt that
has not been repaid by its due date, or a debt in which one or more installment payments
have been missed. Debt issuers typically employ various different methods to collect on

these delinquent debts, either in full or in part.

Assume for purposes of example that a debtor stops making monthly payments on
his credit card debt. Typically, the credit card company will use various collection methods,
such as letters and phone calls, to encourage the customer to pay. However, once the |
account is 180 days overdue, it attains the legal definition of a non-performing debt and
must be charged off. Subsequent efforts to collect the debt are known as “recoveries.” At
this point, the credit card company may continue to work the debt in-house, or may elect to

sell the debt to a contingency collection agency.

Such delinquent debts are often sold for pennies on the actual dollar value of the
debt. A variety of existing analytical methods are currently used to evaluate the net present
value (NPV) of a delinquent debt, and to determine how to maximize the NPV of each debt.

Current analytical measures of the collectability of a delinquent debt include: behavior
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scores, bureau scores, and payment projection scores. Although these measures all provide
some information about a delinquent debt account, they all suffer different limitations on

their usefulness.

Behavior scoring is based on the activities of a delinquent credit cardholder that are
visible to the card issuer. The primary source of relevant behavior information used in
existing scores comes from payment information (during the time the cardholder was still
paying): Has the cardholder been making minimum payments only? What is the ratio of
full payments to minimum payments over the past 12 months? What is the account holder’s
spending-to-paying ratio? Unfortunately, behavior scoring data becomes stale by the time
many collection efforts are initiated. After the authorization stream is shut down, and after
the cardholder has stopped making payments, the only “transactions” posted to the account
are late charges, interest charges, more interest charges, etc. These transactions are not
measures of the cardholder’s behavior during the debt collection process. Thus, as
delinquent debt collection efforts proceed, the behavior scoring data quickly becomes

outdated.

Credit bureau data provides information on what the delinquent account customer is
doing elsewhere, for example, if he is delinquent on other debts as well as the current debt.
However, credit bureau information also suffers from a data staleness problem due to the
lag time in credit bureau information reporting. For example, it typically takes
approximately four months from the date of the customer’s last timely payment for the

credit bureau information to indicate that something is amiss with the customer’s account.

Payment projection scores are used to estimate the likelihood that payments will
eventually be made. These models are used in prioritizing collection cases to be worked.
Currently available payment projection models rely on masterfile information, which
typically contains information such as the account holder’s name, address, social security
number, and monthly balances. A variety of calculated quantities are generated from the
masterfile. For instance, the 3-cycles rolling average balance may be calculated, or the sum
of payments in the last 6 cycles as a percentage of the amount due in the last 6 cycles or
percentage of the balance that is cash may be calculated. However, a problem with these

variables is that there is no updating of these characteristics throughout the collection
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process. The same projections - only updated for the time that has passed - will be
produced on day 120 as on day 30. Thus, there is no way for the payment projection score
model to take advantage of information that is gleaned during the collection process itself.
Furthermore, none of these currently existing measures of information about delinquent
debt accounts provides information about the collection actions that will be most effective
when used on a particular account. There is a wide variety of collection actions that can be
taken, such as a letter, a phone call, or the sale of the debt to a collection agency. Typically,
individual collectors review the delinquent accounts and select which accounts to work, and
which methods to apply, based upon their previous collection experiences. However, this
individualized method for evaluating collection efforts does not provide an automated and

consistent method for evaluating collection actions among a group of delinquent debts.

Individually, collection specialists often rely on information contained in the account
notes made by previous collectors to determine the recent actions taken on an account, such
as letters sent and phone calls made. Additionally, account notes also often contain
information about why the debtor has not paid; for example, he lost his job or she has been
ill. Collection notes information is useful in deciding how best to work the account; for
example, once a debtor tells creditors he has lost his job, the next collection specialist can
call and inquire as to whether the debtor has found a new job yet. In later delinquency
stages once the account has been shut off, collection notes may be the most current
information about the account, and therefore collection specialists currently use this
information in an individual capacity. However, because the collection notes are in text

format, existing analytical methods are not able to quantify them.

What is needed is an improved method for analyzing delinquent debt accounts that
uses available information about a debt holder to evaluate the likelihood of collecting on a
delinquent debt. The method should also be able to evaluate the effectiveness of different

collection actions, and use the information found in collector’s notes as well.
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SUMMARY OF THE INVENTION

The present invention provides an automated system and method for predicting the
likelihood of collecting on a delinquent debt of an account. The system uses one or more
predictive models, for example, a neural network, to evaluate individual debt holder
accounts and predict the amount that will be collected on each account based on learned

relationships among known variables.

In one embodiment, a predictive model is generated using historical data of
delinquent debt accounts, the collection methods used to collect the debts in the accounts,
and the success of the collection methods. In another embodiment, a predictive model is
generated using profiles of delinquent debt accounts summarizing patterns of events in the

accounts, and the success of the collection effort in each account.

In one embodiment, the predictive model includes a mathematical representation of
the collector’s notes created during the collection period for each account. The collector’s
notes are modeled using a vector representation that encodes contextual similarity, which is
used to map the word space of collectors’ notes. Each account’s collector notes may then
be quantified by their degree of relatedness with a certain area of collection word space, for
example, “debtor explanations regarding health problems” or “debtor explanations
regarding job loss.” The measure of relatedness or the vector representation of the notes

themselves are then used as inputs to the predictive model.

Variations of the predictive model may be used to calculate the net present value of
a delinquent debt, the preferred collection action or preferred sequence of collection actions
to use on a particular debt, or the most appropriate collection agent to work a particular
debt. Additionally, the predictive model may be used to optimize the use of collection

resources for a portfolio of delinquent debt accounts.

The features and advantages described in the specification are not all-inclusive, and
particularly, many additional features and advantages will be apparent to one of ordinary
skill in the art in view of the drawings, specification, and claims hereof. Moreover, it
should be noted that the language used in the specification has been principally selected for

readability and instructional purposes, and may not have been selected to delineate or
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circumscribe the inventive subject matter, resort to the claims being necessary to determine
such inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a financial data facility and a collections data facility in

an embodiment of the present invention.

Fig. 2 is a diagram illustrating the process of training and using a predictive model

in an embodiment of the present invention.

Fig. 3 is a block diagram of the elements used in creating a profile in an embodiment

of the present invention.

Fig. 4 is a flowchart of the generation of context vectors in an embodiment of the

present invention.

Fig. 5 is a diagram of the life cycle of a delinquent debt account in an embodiment

of the present invention.

Fig. 6 illustrates a predictive model for estimating marginal probabilities of

individual actions in an embodiment of the present invention.

The figures depict a preferred embodiment of the present invention for purposes of
illustration only. One skilled in the art will readily recognize from the following discussion
that alternative embodiments of the structures and methods illustrated herein may be

employed without departing from the principles of the invention described herein.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to several embodiments of the present
invention, examples of which are illustrated in the accompanying drawings. Wherever
practicable, the same reference numbers will be used throughout the drawings to refer to the
same or like parts. The term “debt” as used throughout this document is defined to
encompass a wide variety of different types of debts or credit obligations, for example,
credit card debt, medical debts, utility bills, bounced checks, electronic transaction
(Internet) debt, personal loan debt, secured or unsecured loans, and other types of unpaid
bills.
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There are a large number of actions that may be taken when determining how to
attempt to collect a delinquent debt. For example, a letter may be sent, a phone call may be
made by a collection specialist, or no action at all may be taken. Letters and phone calls
may be made at a variety of different times, and may target both the debtor’s home and
work locations. Electronic mail may also be used to contact a debtor. The debtor may be
assessed late fees and penalties, and be offered debt counseling. The debtor may also be
allowed to restructure the debt, forgive a portion of the debt, or borrow additional money.
A skip trace search may be performed if the debtor is missing. Finally, legal action may be

taken or the debt may be sold to a secondary collection agency.

The present invention includes a debt collection optimization system, which uses a
predictive model to estimate the amount of a particular debt that will be recovered based
upon information about the debt account and the collection actions taken on the account.
The system gathers information and uses a predictive model to determine the optimal

actions to use in debt collection.

1. Data Collection and Predictive Model Development Systems

Fig. 1 is a block diagram of a financial data facility 110 and a collections data
facility 130 in an embodiment of the present invention. Fig. 1 illustrates the types of
information found in a credit card account type transaction facility for purposes of example.
A credit card issuer company typically contains a financial facility to manage day-to-day
credit card transactions, and a collections facility to handle accounts that have become
overdue. It will be evident to one of skill in the art that various other types of debt accounts

may include different types of information from those shown in Fig. 1.

The financial data facility 110 provides traditional credit card account information to
a debt collection optimization system 100. Information about a credit card account is
collected from an authorization éystem 112, an account management system 120, and a
customer service system 115. Additionally, loan application information 111 is also

collected.

The authorizations system 112 provides information about account authorizations

113 for credit card purchases. The account management system 120 provides information
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about account payments and reversals 121, a cardholder masterfile 122, account transfers
123, and account exceptions 124. The cardholder masterfile 122 typically contains
information such as the account holder’s name, address, and social security number. The
account exceptions file 124 typically contains information about account instances outside
of normal transactions, such as a request to re-send a lost account statement. The customer
service system 115 provides notes 116 and contact information 117 from any interactions
the account holder has had with the customer service division of the credit card issuer

company.

The collection efforts data facility 130 provides information about accounts that
have become delinquent to the debt collection optimization system 100. Information about
delinquent accounts is collected from a collections masterfile 146, a calls/contacts file 145,
an action/results file 136, a collectors’ notes file 134, and delinquent account profiles 132.
The collections masterfile 146 includes information such as the account holder’s name,
address, the date on which the debt was incurred, and the date on which the account became
delinquent. The calls/contacts file 145 includes a record of calls made to the account holder
and whether those calls successfully established contact with the delinquent account holder.
The action/results file 136 includes a record of all collection actions taken on the account
and the results generated from those actions (for example, payments made, additional fees
charged, etc.) The collectors’ notes file 134 includes notes and comments generated by
collectors who have worked on the account. Collectors typically take notes regarding a
debtor’s explanations for delinquency and promises to pay. The delinquent account profiles
132 include a summarized pattern of events that have occurred in the lifetime of the

account, as will be discussed later in further detail.

Information generated by the debt collection optimization system 100 is fed back

into the collection efforts data facility 130 via an account decisioning and strategy

- management system 140. For example, system 100 may suggest a preferred collection

action, group of actions, or a collection action sequence to use on a particular account, or a
preferred collections specialist to work the account. Strategy management system 140

decisions, as well as information from the collections masterfile 146, are fed into the
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collections workflow system 142, which coordinates various actions taken to collect the
debt.

The collections workflow system 142 selects a collector (“collection specialist™) 141
to work on a particular account, and these specialists 141 generate additional collectors’
notes 134. The collections workflow system 142 also recommends optimized actions to
take on the account, adding to the action/result file 136. The collections workflow system
142, preferably in conjunction with a predictive dialer 144, assists collectors in making

additional phone calls on the account, adding to the calls/contacts file 145.

It will be understood by one of skill in the art that many additional types of
information may be used in the debt collection optimization system 100. For example,
certain types of third-party information may be useful in modeling delinquent debt
collection, including information from credit-reporting agencies, bankruptcy-reporting
services, public records, marketing data suppliers, skip trace agencies, law enforcement
authorities, and legal professionals. These examples and other types of information may be
incorporated into the specific account information used to develop a predictive model for

delinquent debt collection.

Alternatively, a more simplified financial data facility 110 or collection efforts data
facility 130 may be used. For example, collectors may manually make phone contacts
without the aid of a predictive dialer 144. The system 100 does not require all of the types
of data inputs shown in Fig. 1 for developing and using a predictive model. The specific
data inputs used in system 100 will depend on the desired predictive model complexity and

particular areas of interest, as will be evident to one of skill in the art.

Fig. 2 illustrates an embodiment of the development and use of predictive models
for delinquent debt collection. A set of historical data is selected for use in model
development 230. A suitable set of data is selected wherein the data contains sufficient
information to properly train the desired predictive model. Suitable criteria for inclusion in
the historical dataset is developed, taking into account such factors as the type of account
information historically available, and the type of information that will typically be

available when making a prediction for a currently delinquent debt.
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A selected set of historical delinquent debt data 210, including collection outcomes
achieved on the accounts, is used for the model development process 230. Collection
outcomes are typically represented as the momey collected on an account. In one
embodiment, historical collectors’ notes 220, converted into a vector representation 222 that
can be mathematically expressed, is also used in model development 230. The historical
data is used to train a predictive model for delinquent debt collection. Multiple different
types of predictive models may be developed, including neural networks, regression

analysis, integrated rules systems, and decision tree models.

One example of a predictive model is a neural network containing various
interconnected layers of processing elements. Each different historical delinquent debt
record is used as an input into the neural net, with the outcome attained on each historical
debt used as a comparison point with the neural net output. The strength of each connection
between processing elements in the neural network is given by a weight. The weights
associated with each connection between the processing elements have the ability to skew
the output based upon the variability (or invariability) of a single input. The neural network
is trained by properly adjusting the weights of each connection until the connections
between each element are optimized to match historical outcomes based upon the set of
historical inputs. The training and use of neural networks is described further in U.S. Patent
No. 5,819,226, the subject matter of which is herein incorporated by reference in its

entirety.

It will be evident to one of skill in the art that other types of statistical predictive
models may be used in place of a neural network. For example, a regression analysis, an
integrated rules system, or a decision tree may all be used to develop predictive models for
delinquent debt collection. Regression methodology, integrated rules systems and decision
trees are all well known in the art, and methods for developing these types of predictive

models will be evident to one of skill in the art.

Both linear and non-linear regression analysis may be used for predictive model
development. In a linear regression, each input variable is assigned a weight that is
computed based on the correlation of that variable, in the context of all the other variables,

with the desired output in the data that was used to develop the model. Some weights may
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be negative. The model’s computed output is the weighted-sum of all input variables. In a
non-linear regression, additional derived variables representing nonlinear combination of
the original input variables are created. For instance, additional derived variables may be
the product of some of the original variables, or some of the original variables squared,
cubed, or raised to higher powers. A linear regression model is then developed as described

above using a combination of the original and derived variables.

An integrated rules system is a series of rigorous rules, expert-written or machine-
produced, which are resolved thereby allowing actions to follow from the outcome of the
resolution of the rules. For example, an individual rule might state: “If 3 or more letters
have been sent in the last 60 days and no response received, consider rule ‘ignored #1° to
have fired.” The integrated rules system might then have a rule that states: “If 2 or more
‘ignored’ rules fire and the outstanding debt is over $150, then utilize phone call script #6”.
In this example, “phone script #6” may be a specifically developed script for collectors to
use with debtors who ignore communication efforts. The rules typically have tunable
parameters (“3 letters,” “60 days,” “$150” “2 rules fired,” etc.) that may be optimized using

a typical statistical modeling paradigm.

A decision tree uses a selected input variable as a basis to subdivide the data
population into two parts that are as equal in size as possible, such that the average value of
the output variable in the two subdivided sections are as different from each other as
possible. This process is repeated in each of the two parts, creating a 4-parts subdivision.
The process continues until the total number of subdivided sections becomes sufficiently
large or the statistical population of each section sufficiently small, that farther subdivision

would be counterproductive.

The trained predictive model 250 is stored for use in delinquent debt predictive
modeling. In one embodiment, a delinquent debt predictive model predicts the percentage
likelihood of collecting on a delinquent debt. Multiplying the likelihood of collection times
the face value of the debt produces the expected value of the delinquent debt. In another
embodiment, the calculation of the expected value of the delinquent debt also considers the
net-present-value of the debt, based on an estimate of how long it will take for the debt to be

paid (in effect, taking into account the time value of money. This embodiment requires that
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the expected time until payment be predicted. In yet another embodiment, the expected
value calculation also takes into account the time-value-corrected cost of subsequent
collection actions. This embodiment further requires that the expected expense stream until

payment be predicted.

Decisions about particular areas of debt collection, for example, the best action to
take on an account, are optimized by comparing the debt valuations produced by the
predictive model for different inputs. For example, if the action “send a letter to debtor”
produces a debt value of $10.00 for a particular debt, whereas the action “call the debtor”
produces a debt value of $300.00 for the same debt, then calling the debtor is the optimal

action. This analysis may also take into account the different costs of various actions.

In another embodiment, multiple different types of specialized predictive models are
created. For example, different predictive models may be created to predict: accounts in
early delinquency that will self-cure (become current without intervention), straight roller
accounts (accounts that will never be paid no matter what types of intervention are
attempted), the correct collection specialist to work on a delinquent debt account, the
optimum method of communicating with a delinquent debtor, the net present value of a
debt, the best time to contact a debtor, and when authorization to shut off a delinquent
account should be given. Each of the different predictive models has a different model

target variable.

Once the predictive model or a set of predictive models 250 has been trained, the
model(s) are used with current delinquent debt account information to make predictions
about current debt accounts. A debt collection facility 270 collects information 260 relating
to current delinquent debt accounts. Additional processing may be performed on the raw
information to produce derived variables, if desired. The information regarding a particular
delinquent debt is fed into one or more of the predictive models 250, and prediction results
are returned to the debt collection facility 270. The predictive model results are used to help‘

determine account actions and decisions 280 to take regarding the delinquent debt accounts.

As with all models, the ultimate outcome depends upon the set of input variables
260 used in constructing the model. A wide variety of variables may be used as inputs, for

example, account purchase information, the Merchant Category Code (MCC/SIC) for
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purchases, the amount of purchases, cash transaction information, and account payments
made. A representative set of derived variables suitable for use in constructing a predictive

model includes:

Diff1 = Referral Date — Original Charge-off Date
Diff2 = Original Charge-off Date — Original Last Payment Date
Social Security Yes/No

In Statute Risk (status of the debt)

Number of Agency Placement Risk

State Risk

Rural/Urban Risk

Own/Rent Risk

Area Code Risk

Zip3 Risk

Diffl Risk

Diff2 Risk

Face-value at Comment Date

Pay Percentage 12-months from Comment Date (model target, 0-100%)

The “risk” suffix for a variable indicates that instead of supplying the model with a
binary “yes/no” answer input, the variable is converted to a number representing the risk
calculated for each of the possible answers. For example, if 30% of all debt where the
variable answer is “yes” and 50% of all debt where the variable answer is “no” is ultimately
charged off, then the variable risk will be set to 30% and 50%, respectively, for these two

potentialities.

The predictive model or set of predictive models for delinquent debt collection are
used to implement a strategy for delinquent debt collection. For example, a predictive

model for estimating the value of delinquent debt accounts is used to prioritize resources for

12
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contacting debtors, whereby resources are first expended on debts of higher predicted
worth. Further optimization of the implemented strategy may be achieved through the use

of a champion/challenger system.

A champion/challenger system is used to optimize strategy in a production
environment (additionally, the system may be used in a development environment by
simulating the production environment). The environment’s strategy is the collection of
rules, models, policies, workflow, and other metrics that define the overall operational
strategy. The currently used strategy is referred to as the “champion” strategy, as it is
presumably the best strategy know to the users by the existing criterion used to measure
strategy performance. A competing strategy, potentially one that is indicated through the
use of statistical optimization or simulation, or one that is created through a random

variation from the champion strategy, is referred to as the “challenger” strategy.

The champion-challenger methodology is used to randomly assign a certain
(typically small) percentage of the population of cases to be worked to the challenger
strategy. The percentage chosen should be large enough so that results of statistic
significance can be collected within a reasonable timeframe, yet small enough so that the
potentially poorer performance of the untested challenger strategy does not have a large
impact on overall portfolio performance. Typically, approximately 10% of the accounts in a
portfolio would be assigned to be worked via the challenger strategy; occasionally multiple
challenger strategies are employed simultaneously. If the performance of the challenger
strategy proves itself superior to that of the champion strategy, then the original champion
strategy is eliminated, the original challenger strategy becomes the new champion strategy,
and a new challenger strategy is developed to test potential farther improvements in
performance. Occasionally, the challenger strategy outperforms the champion strategy, but
only on a specific, defined sub-segment of the case population (for example, only on
accounts that are over 90 days overdue). In such a case, the challenger strategy replaces the
champion strategy only for those case population sub-segments. The use and
implementation of champion/challenger systems is well known and will be evident to one of

skill in the art.
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The system shown in Fig. 2 may be implemented using a standard computer system.
A typical computer system will include a central processing unit, random access memory,
data and program storage, and an output device. A computer system suitable for

implementing the delinquent debt prediction system will be evident to one of skill in the art.

2. Profiles

Fig. 1 illustrates that the system used for delinquent debt management uses a variety
of different data inputs. In one embodiment, a predictive model 250 uses profiling to
combine selected information about an account into a summarized representation of that
account. Profiles describe patterns of events in the historical information about a particular
account. Events occurring over the lifetime of a delinquent debt account are not viewed as
isolated, solitary incidents. Each event is paﬁ of a pattern; events impact — and sometimes
cause — each other, and thus should be made part of a complete picture. For example, an
inbound phone call from a debtor has an entirely different meaning if it is unprompted, as
opposed to being a returned call after a message was left by a collector. A profile captures

this sequence of events and interprets it properly.

Fig. 3 is a block diagram illustrating the creation of a profile 300. The profile 300
represents a delinquént debt account as a dynamic entity. A set of data 310A-I is collected
regarding the account, for example, from the financial data facility 110 and the collection
efforts data facility 130 shown in Fig. 1. These data inputs 310 are then used to create a set
of derived variables 320A-F, which make up the profile 300. In delinquent debt account
profiles, the profile 300 is initialized by pre-collection activities, such as the cardholder
masterfile, authorizations, and historical payment information. The profile 300 is
dynamically updated by each transaction or other interaction with the account holder, such
as a phone call, a letter, or a debt payment. The profile 300, in addition to other static data

sources, becomes the base data from which predictive statistical models 250 are built.

Predictive models 250 each combine the predictive information from a profile of an
account to create a score that exploits the meanings in the interactions between pieces of

information. In one embodiment, a statistical pattern recognition technology is used to
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develop a statistical predictive model that calculates an estimate of how likely a delinquent

debt account is to pay, and a correlation of likely payment to estimated payment amount.

3. Context vectors

The derived variables used in the predictive model are created from raw data such as
address area codes, account purchases and payments, and payment dates, which are stored
in numerical form. However, many key events in the lifecycle of a delinquent debt account
are contained in the contacts made during earlier collection efforts. Collection specialists
typically take notes with each phone call or other contact with the debtor, and use these
notes as an aid in subsequent collection efforts. These notes may be taken as plain text,
pseudo-text, or various internally developed, preformatted “codes.” For example, some
collection specialists use the shorthand “TR” to mean “telephoned residence,” “TE” for
“telephoned employment,” and “DA” for “didn’t answer.” These notes are typically stored
in text fields of the account record, but conventionally have not been subject to automated

analysis.

It is desirable to provide a predictive model access to the textual information about
collection actions by incorporating collectors’ notes into the delinquent debt account
profiles. A context mining process 1s used to transform the free-flow text of the collectors’
notes into a mathematical representation that is well suited for statistical analysis. Each text
construct — individual words, phrases, sentences, or even entire text sections — can be
represented in the form of a high dimensional vector. Each word has a vector associated
with it. Words that are “close” to each other in meaning have vectors that are topologically
close to each other. Context vector topology is used to classify collectors’ notes

topologically and provide additional information about a delinquent debt account.

For example, collection specialists often prefer cases of temporary unemployment to
cases of imminent bankruptcy. Temporary unemployment cases typically involve
responsible account holders who fully intend to make good on their debts as soon as they
obtain another job. As long as a collections specialist stays on top of the account, for

example, by calling in periodically to inquire if a new job has been found, the repayment of
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the delinquent debt will likely remain a high priority for the debtor once a new job is found.

Conversely, cases of imminent bankruptcy are less likely to lead to future debt repayment.

Thus, an optimized debt collection management system applies more resources to
collection efforts on the accounts of unemployed debtors, and fewer resources on
bankruptcy accounts. In order to be able to make such an optimization decision, the system
predicts accounts containing phrases like “John lost job” or “Jane got downsized,” as well
as many other variants referring to unemployment, to be worthy of collection resource
expenditures.  Conversely, other accounts containing phrases referring to imminent
bankruptcies will not indicate that an expenditure of collection resources is valuable. It'will
be evident to one of skill in the art that various other debtor categories may be tracked

through the use of context mining of collector’s notes.

Fig. 4 is a flowchart of a process for context vector generation in an embodiment of
the present invention. In one embodiment, context vector generation is performed by
context vector software that operates on the raw collectors’ notes text. Using historical
delinquent debt account information, a model of collectors’ notes is built mathematically,
representing different types of notes’ subject matter as “cluster centroid vectors” in the word
space of collectors’ notes. Current delinquent debt accounts’ collectors’ notes are then
mathematically transformed into vectors that are compared against the model’s centroid
vectors to determine subject matter similarities. The mathematical representation of a
current debt account’s collectors’ notes is used as an input into a delinquent debt predictive

model.

A set of documents is constructed 410 from historical information about delinquent
debt accounts, for use in building a mathematical context vector model. Collectors’ notes
typically consist of many comments and each individual comment is preferentially
characterized as a document. The first comment for.an account becomes itself a first
document. The second comment is merged with the first comment to become a second
document for the account. This second document can correspond to a different value for
other derived variables (for example, face value at comment date) for the account, because

certain derived variables are computed from the date the comment was entered into the
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database. Likewise, the document construction process continues and the third comment for

the account is merged with the first and second comments to form a third document.

Data cleansing 412 is then performed on the constructed documents d;, ds, ...dp.
Within the text there may be collection company specific codes, abbreviations, and
misspelled words that may not convey immediate meaning. In typical collection specialist
comments, over 90% of the content consists of abbreviations, codes, misspellings, and
garbled text. Therefore, the formation of documents includes a data cleansing stage. This
cleansing is accomplished by defining a concise vocabulary in which the documents are
rewritten. This vocabulary is referred to as the “gdod words” list, and contains the most
commonly occurring content carrying words in the documents. For example, words such as
“the,” “and,” “man,” and “says” do not convey much information compared to words such
as “paid,” “check,” “mailed,” and “hospital.” The “good words” list also reduces the
complexity of the context vectors and eliminates much erroneous contextual information.
The second stage of data cleansing involves using an “exception words” list to replace
words of similar meaning, abbreviations, and misspellings by a single word stem. An

example of data cleansing of a collector’s comments is provided in Table 1 below:
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COMMENT

DOCUMENT

TR AT 4:30PM, SHE ON PHONE SD HER PHONE
IS TRANSFERED TO THE HOSPITAL WHERE HER
MOM IS IN FOR MAJOR SURGERY SD SHE LOST

PHONE PHONE HOSPITAL
SURGERY LOST TRACK NOTE AM
BANK DEALS BANK BANK CALL WEEX

TRACK OF THIS NOTE WHEN TEXAS AMERICAN
BNK WENT UNDER AND SD THAT SHE DEALS WITH
TEAM BNK AND HAS SINCE THE BNK WENT UNDER
SD SHE WLD CL ME THE FIRST PART OFTHE WEEK
ON THIS

*##+THISD ACCT WAS A 91 DAY TERMS NOTE
ASSIGNMENT OF PROM NOTES IN THE AMOUNT
OF**14.762.00 AND 6992.00%##**THERE IS LAND IN
OKLAHOMA THAT SECURES THIS,A131*#* #*THIS
ACCT HAS NOT BEEN SUED, A]31%##%%%

PHONE PHONE HOSPITAL
SURGERY LOST TRACK NOTE AM
BANK DEALS BANK BANK CALL
ACCT TERMS NOTE ASSIGNMENT PR(
NOTES AMT LAND SECURES ACCT
SUED

TELE NUMBER STILL HOOKED UP TO HER
MOTHERS HOSPITAL ROOM HER MOM ANSWERED
THE PH SD SHE WLD BE IN LATER***WELL ATLEAST
HER MOM SOUNDED PRETTY GOOD SO WE CAN GET
ON WITH THIS ACCOUNT AND THE MONEY OWED,

PHONE PHONE HOSPITAL
SURGERY LOST TRACK NOTE AM
BANK DEALS BANK BANK CALL
ACCT TERMS NOTE ASSIGNMENT PR(
NOTES AMT LAND SECURES ACCT
SUED PHONE NUMBER MOM HOS
ROOM MOM ANSWER PHONE
SOUNDED GOOD ACCT MONEY OWED

STO AT 3:15PM, SD SHE POSS CLD PAY
1000.00 FOR 2 MNTHS AND THEN PIF ON THE THIRD
MONTH SD SHE HAS A DEAL CLOSING AND SD
SHOULD HAVE A NICE CK NEXT WEEK WILL CL ME
ON TUESDAY
***COME ON BIG BUCKS AND NO
WAMMIES***#%

PHONE PHONE HOSPITAL
SURGERY LOST TRACK NOTE AM
BANK DEALS BANK BANK CALL
ACCT TERMS NOTE ASSIGNMENT PR(
NOTES AMT LAND SECURES ACCI
SUED PHONE NUMBER MOM HOS
ROOM MOM ANSWER PHONE
SOUNDED GOOD ACCT MONEY OWEL
PAY DEAL CLOSING CHECK WEEK CAl

Table 1: Data cleansing using “good words” and “exception words” lists

Table 1 demonstrates several features of the data cleansing stage. In Table 1, for

each comment listed the corresponding constructed document is also presented. Past
information accumulates in documents 2, 3, and 4. The new appended information for each
document is shown underlined. The data cleansing stage 412 can significantly reduce the
amount of textual information stored without losing much contextual information. For
example, in Table 1, documents are approximately 25% smaller than the combined raw
comments. Further, Table 1 illustrates that the exception list was used to convert “BNK”
into “BANK,” “PH” into “PHONE,” “CL” into “CALL,” and “CK” into “CHECK.” This

conversion is important especially if many different people are inputting data and each
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refers to “CHECK” by different abbreviations “CH,” “CHK,” “CHCK,” “C,” etc. It will be
understood by one of skill in the art that data cleansing 412 is a stage that requires some
specialized collections knowledge to understand which words convey information about

collections and to interpret common abbreviations and misspellings in the text data.

A co-occurrence matrix is constructed 414 for the words in the set of documents d;,
ds, ...dy. The context vector software collects documents and determines co-'occurrences
(words that appear commonly together) between sets of words within the documents. Co-
occurrences are determined within a window of size w, where w indicates the number of
words from which to infer content. For example, “sick can’t pay” or “hospital bills no
money” may occur commonly together and contain predictive information.
Mathematically, the software forms a co-occurrence matrix to find relationships between all
the words in the list of “good words.” Words that appear often in the same context will be

weighted more heavily in this matrix; this provides structure to the matrix (see Table 2 for

an example).
Hospital No Pay Mail
Hospital 56 45 30 3
No 45 200 100 34
Pay 30 100 450 189
Mail 3 34 189 310

TABLE 2: Example of Co-occurrence Matrix

The dimensionality of the co-occurrence matrix is the same as the number of “good
words.” If the number of good words is S, then the co-occurrence matrix will have a
dimension of § *S. For example, using a list of 500 “good words” produces a co-occurrence
matrix of size 500 * 500 word stems.

To extract the most meaningful textual relationships from this high-dimensional
phase space, lower-dimensional context vector approximations are selected 416 from the
larger co-occurrence matrix. Context vectors can be envisioned as the principle components
of the co-occurrence matrix, or the most significant eigenvectors of the co-occurrence
matrix. A context vector has a component corresponding to each word in the “good words”
list and is expressed in terms of the weights of each word stem in the “good words” list (see
Table 3).
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0.3 0.4 0.5 0.7
Hospital No Pay Mail

TABLE 3: Example of a Context Vector

The dimensionality of the context vector space determines the total number of
context vectors. For example, if the d most significant eigenvectors are chosen, d defines
the number of context vectors. In one embodiment, a dimensionality of 280 was found to
be too large, and a 16-dimensional context vector space was chosen and found to provide a
significant improvement for a delinquent debt predictive model.

A transformation matrix M then is constructed, in which every row contains the
components of one eigenvector. The transformation matrix will be therefore of dimension d
* 8.

Document vectors are constructed 418. For each individual document d;, da, ...dp, a
unit word occurrence vector w; (=1, 2, ...S), with dimensions S * 1 is constructed. Each
unit word occurrence vector w; is transformed using the transformation matrix M to obtain a
d-dimensional document vector v;:

M*w;=v;

)

The document vectors v; are then clustered to compute 420 a set of N cluster
centroid vectors C;. Each cluster centroid vector C; points to the center of a cluster
containing documents of similar contextual information. In one embodiment, each cluster
has an associated list of keywords. Keywords are computed by finding those words in the
“good words” list that have the highest dot product with the cluster centroid vector. A
frequency filter is then applied to the list of keywords such that only those words that
appear most frequently are included in the final keyword table. An example of a keyword

table is given in Table 4:
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Cluster Keywords
1 ADJUST CONTRACT ACTION STOPPED ENCLOSED
2 VACATION ADVISED REMIND PERSONAL S
3 FRM SEARCH COASTAL UNABLE CERTIFIED
4 PROOF VISA WRONG ATTENTION MOTOR
5 LETTER PHYSICAL SOUNDED CONSTRUCTION DEATH
6 MONTHLY SETTLEMENT OVERNIGHT TRANSFER COLLECTION
7 JAIL SECRETARY OFFICE JUDGMENT PERMISSION
8 THINKS ASSIGNMENT CO ACCT INTEND
9 RESEND FIGURE DEATH LITTLE RAISE
10 TAKING BUSINESS PERMISSION ACCT CHARTER
11 REDATED SOCIAL MONTHLY BALANCE SALARY
12 MANUAL VEHICLE PURSUE MENTIONED READ
13 DECIDED ASKD REFUSED VACATION EXPRESS
15 FORECLOSURE JOB UPDATE RESPONSIBLE ENVELOPE
16 JUDGMENT WEEKEND JAIL PERSON MISSED
17 WRONG STAMPED DIVISION CLOSE SIG
18 AGAINST SICK OFFER CLEARED SURGERY
19 PERMISSION NOTES AGREED EQUITABLE SEARS
20 SENT ASAP FEDERAL UNDERSTAND LIVE
21 OTHER

TABLE 4: Example of Context Vector Cluster Keywords

The set of keywords for each cluster provides contextual meaning for the cluster.
For example, cluster 18 appears to deal with illness, cluster 7 appears to deal with criminal
and legal issues, cluster 6 appears to deal with payment plans and settlements, and cluster
15 with foreclosure and job issues. Keywords such as “jail” appear in more than one

cluster, which indicates that this word is an important component of several clusters.

The context vector model is now used to create additional informational inputs for a
particular delinquent debt account for use in a predictive model. A document is constructed
430 from the collectors’ notes for a current delinquent debt account. The document is
subjected to the data cleansing process 432. A document vector is constructed 434 by
constructing a unit word occurrence vector w; and using the transformation matrix M to

obtain a d-dimensional document vector v;.

Each document vector v; is then projected 422 onto each cluster centroid vector C; to

determine which clusters each document most resembles. A vector dot product is
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performed between the document v; and the N cluster centroid vectors C; resulting in N dot

products a;:

v, e C, =q
)]

The N dot products a; define how close each document is to each cluster vector, and
these dot products are used as inputs into the predictive model. As each cluster contains
documents of similar context, the dot product of a document vector v; with each of the N
cluster vectors C; quantifies the cluster vector that the document most resembles. A dot
product close to 1.0 quantifies that the document contains very similar contextual
information to the cluster vector, whereas a dot product close to 0.0 represents nearly no

shared information. These projections are used as inputs 438 into the predictive model.

In another embodiment, the d components of the document context vector v;
expressed in the context vector eigenbasis (i.e., the projections along the subspace defining
each context vector) may be used as inputs into the predictive model. This embodiment

does not use cluster centroid grouping of document vectors.

An important consideration in modeling with context vectors is how to build the
document vectors. A docﬁment vector can be constructed in two ways. In one “
embodiment, past documents are merged into one document by accumulating historical
information on the cardholder (like a story). This approach relies on the idea that several
comments blended together can form a good contextual profile of the cardholder. In
another embodiment, a vector computation is performed for each separate comment. This
fine-grain approach is most useful for identifying actions like a promise to pay, debtor not
home, broken promise, working, or death in family, but the “whole story” may be missed.
To obtain historical information, the single-comment vectors can be added or decayed in an
appropriate fashion to obtain a historical averaging (not the same as a story) of the past
comments. Historical averaging has some inherent shortcomings. For example, decaying
the cluster vector dot products makes distant pieces of information less important.
However, events like broken promises to pay are very important in the modeling effort,

irrespective of how far in the past they occurred. In a third embodiment that combines these
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two approaches, single comment context vectors are used to identify single events, whereas

blended documents are used to derive a customer contextual profile.

The example shown in Fig. 4 and described above presents one embodiment of a
method for creating a mathematical representation of textual information. Additional
embodiments of the construction and use of vectors to represent text are given in U.S. Pat.
No. 5,619,709; U.S. Patent Application Serial No. 08/971,'091; and U.S. Patent Application
Serial No. 09/306,237, the subject matter of each of which is herein incorporated by

reference in its entirety.
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4. Predictive model applications

a) Net present value over lifecycle of debt

After the delinquent debt collection predictive model has been trained on a set of
historical debt collection records, the model may be used to make decisions about how to
collect existing delinquent debts. A variety of different types of decisions may be
considered. For example, the model may be used to determine the estimated value of a
delinquent debt account, the optimal collection actions to use with a particular account, or

the appropriate collections specialist to attempt to collect on the account.

Typically, an estimated value is developed for a delinquent debt account by using
the predictive model to estimate a probability that the debt holder will pay, multiplied with
the face value of the debt. For example, a delinquent debt of $100.00 where the debtor has
a 5% probability of paying generates an estimated debt value of $5.00. Thus, when
comparing the use of two different debt collection actions on a particular account, the
estimated value of the account given one action is compared to the estimated value given
another action. The action that generates the higher estimated value is the preferred action

to take on the account.

However, there are additional factors that may also be taken into account when
calculating the estimated value of a delinquent debt account. For example, different actions
have different costs (i.e., a phone call is more expensive than a letter). Also, the timing of
collecting the debt is also important due to the time value of money (i.e., collecting today is
better than collecting in 2 years). A predictive model trained with the same data and inputs
may be used to predict multiple outcome variables for use in calculating the value of a
delinquent debt, by changing the target outcome variable of the predictive model. For
example, one outcome target value may be “likelihood of collection,” while another is “time

to collection.”

The following presents an example of the type of delinquent debt value calculation

that is performed using the outcome of a predictive model or set of models. Assume a
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delinquent debt of $10,000 where the debtor is predicted to have a 5% probability of paying
the debt (i.e., the likelihood of collection is 5%), the anticipated collection expense is
predicted to be $100 in each of the next 2 months, the predicted time until payment is 2
months, and the effective time value of money factor (effective interest rate) is 1% per

month. The following calculations are performed:

e The expected collection amount is $500 (5% * $10,000).

The net present value (NPV) of the collected amount is approximately $490
(8500 discounted by 1% per month for 2 months.).

The expected collection cost is $200 ($100 in each of the next 2 months).

The NPV of the collection cost is approximately $197 as follows:
o The next month’s $100 expense is discounted by 1% to become $99

o The following month’s $100 expense is discounted 2% - 1% per
month for 2 months — to become $98. A more detailed calculation

would also involve compounding interest for the 2 months.

Therefore, the NPV of the debt is $293 ($490-$197).

As an additional consideration, certain types of debt collection actions may also
involve customer relations or legal concerns due to the nature of debt collection. The

overall value of a delinquent debt account is given by:

Recoveries —Cost _of _recovering
(1+ Discount _Rate)"

3

In equation 3, Recoveries is the amount of the delinquent debt that is eventually

Value =

paid. Cost_of recovering represents the cost of all of the collection actions taken on the
account, which is typically derived from models and historical information about debt
recovery. The Discount Rate represents the time value of money factor (the interest rate

per period), where n represents the amount of time that passes before the debt recovery is
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made (number of periods). The general method of equation 3 for estimating the value of a
debt is expanded upon for different stages in the lifecycle of a delinquent debt in the

following discussion.

The various methods used to collect on a debt may vary depending upon the type of
debt and the current stage of delinquency. For example, when a company holds a
delinquent debt where the debt holder is a repeat player in the debt market (such as a credit
card company), the company may initially wish to avoid needlessly irritating the debt holder
during collection efforts. However, later in the delinquent debt lifecycle, the same credit
card company may already have closed the customer’s account, and is thus no longer
concerned about losing the debt holder as a customer. In other situations, such as a
mortgage debt, the mortgage company may not be particularly concerned with losing the
customer, but instead must determine when it is appropriate to seize the underlying

collateral on the debt.

Different factors involved in calculating the estimated value of a delinquent debt

account come into play in different stages of the lifecycle of a delinquent debt. In the

example of Fig. 5, a credit card debt lifecycle is shown. However, it will be evident to one

of skill in the art that the debt lifecycle analysis is equally applicable to other types of debt.

Fig. 5 is a diagram of the lifecycle of a delinquent credit card debt account. Each
state in the diagram should be understood as a stage in the current or delinquent life of a
credit cardholder account. State Sy represents the current or non-delinquency stage, and
states S5 and S5 are terminal states in which the account is no longer on file, whether
voluntarily through attrition (wherein the account holder terminates his relationship with the
issuer after paying all debts) or involuntarily due to the issuer ending its relationship with
the customer. The delinquency states S;, S, and S; represent early-, mid- and late-
delinquency stages. The separation between early-, mid- and late-delinquency is based on
significant delinquency events. For example, in early-delinquency the cardholder may have
his account authorizations turned off, in mid-delinquency the cardholder’s account may be
closed, and in late-delinquency the cardholder cannot become current anymore. The day
ranges for early-, mid- and late-delinquency should be interpreted as days past due (i.e., the

number of days past the statement payment due date). It will be understood by one of skill
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in the art that the day ranges given are only approximate. A wide variety of timing ranges

for the different delinquency states are possible.

As mentioned above, the states are segmented based on distinct actions at each stage
and the possible transitions between states. Each transition from one state to another is
assumed to only take place once per cycle (e.g., every 30 days). The different states and

available transitions are briefly explained as follows.

In state Sp an account is current, meaning that the last payment was received on time.
At the next statement due-date, the account can either remain current (the self-loop from
state Sp) or become 1-30 days delinquent (transition to state ;). In state §;, the account has
entered early-delinquency. Many of these accounts will self-cure (i.e. pay the debt due) or
cure with collection specialist intervention (both of which are represented by the transition
from S; to Sp). }fowever, a significant number of accounts will move to a later stage of
delinquency (transition to state S;). Some of the accounts that move to state S are straight
rollers, meaning that irrespective of the actions taken by collectors, they will end up by
being finally charged-off. An account can only be in the S; state for a single statement
cycle, there is no self-loop in state S;. Typically, between 15 and 30 days past due most

accounts will be shut-off to authorizations.

In state S the account is in mid-delinquency. The account can remain in this state
when the new statement arrives (self-loop from state .S;), can become current by maléing, fqr
example, 2-3 minimum payments (transition from S, to Sp) or be re-aged by making a
minimum payment (transition from S; to S;). Finally, the account can move forward along

the delinquency path, becoming late-delinquent (transition from S to S3).

The transition into state S is characterized by the fact that at approximately 90 days
past due the cardholder’s account will be closed, meaning that most cardholder accounts
will not be re-opened for transactions (the exceptional cases of reopening past 90 days past
due are not taken into consideration in the diagram). Therefore, there is no transition from
this state to states S», S;, or Sp. The account will typically be terminated, irrespective of
whether the debt is paid or not. If the account holder pays his/her debt, the account will go
to S5. Otherwise, if the bank wants to continue to try to collect what is owed, the account

will go to the asset recovery state ;.
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In state S, the account is off the collections books (legally a debt must be written off
after it is 180 days past due) and the account is worked by the asset recovery management
group. Actions available to this group include arranging payment plans, taking legal
actions, accepting some fraction of the owed amount, or selling the account to an external
collection agency. In state Ss the account is taken off of the debt issuer’s books and the

account holder’s relationship with the debt issuer is terminated.

State S¢ represents an attrition state, where too harsh collection efforts have caused
the cardholder to pay-off his debt in full and voluntarily end the relationship with the debt
issuer. Attrition state Sy may occur after states Sy, S; or S2. The different actions available
in each state, as well as the models intended to address the different collection needs, are

presented below.

Accounts in state S; (early-delinquency) have just become delinquent and a
substantial portion of them will cure out of delinquency and become current without any
action being taken by collectors. Typically, a statement message is sent to everyone at the
next statement date (about 5 days into early-delinquency) and does not incur any additional
cost to the issuing bank. Reminder letters may also be sent to accounts starting around 10
days into early-delinquency, incurring a cost of approximately 30 cents per letter. Finally,
collectors may attempt to contact the 15-20% of the riskiest accounts by phone with each
successful phone contact representing approximately a $15 cost to the issuing bank.
Pursuing every account in this early-delinquency segment with collection activity may
waste valuable resources since many accounts self-cure. Additionally, the issuing bank
risks jeopardizing a number of profitable cardholder relationships (cardholders annoyed by
the collection activity may decide to attrite — transition to state Ss). The most significant
action taken by collectors in S is typically to block authorizations for the account at 10-15

days into early-delinquency.

Accounts that enter early-delinquency can be classified as “self-cure,” “straight
rollers” and “cure-with-action.” As the names suggest, self-cure accounts become current
(i.e. pay the debt) irrespective of whether the bank takes any collection action or not (most
often these accounts are those whose statements were either lost in the mail or who were

traveling, therefore unable to pay their bill on time). Straight-rollers are those accounts that
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undergo the entire delinquency cycle (S;-5-S3-S¢-S5) irrespective of any collection action
taken. The accounts that are of major interest for focusing the collection effort are those

accounts that will only cure with intervention.

Given the previous considerations, two predictive model estimates may be used:
one that estimates the probability that the account cures with intervention and another that
estimates the probability that the account cures without intervention, respectively. At a
finer granularity, distinct estimates are made for each of the different possible actions taken,
such as the probability to cure with a reminder letter sent, the probability to cure with
successful phone call made, etc. The result from taking “no action” is estimated as simply a

type of action.

”

It should be noted that in early delinquency “cure,” “become current” and “pay
minimum payment due” are synonymous. Therefore, in order to introduce a consistent
terminology across the different delinquency stages, the probability to pay (given an action
or without action) is used as the measure for collection efficiency. Additionally, the
probability to pay should be understood as the probability to pay the minimum due during

the current delinquency stage and not across possible future delinquency stages.
The value of an account can therefore be expressed as:

Value (account | action;)) = P (pay | action;) * [ADJBAL + (1-P, (actiony)) * o *
NPV] - COST (actiony)
“4)

Here P(pay|action) is the probability of paying given a certain action, ADJBAL is
the adjusted balance on the account through the delinquency stages, NPV is the net present
value of the account, and P, is the probability of attrition given a certain action (when
action; stands for “no action,” the attrition probability due to the action will be zero).
Generally, the action that provides the largest account value will dictate the preferred action.
However, in order to allow the selection of a sub-optimal action due to “preferred customer”
or other business considerations, we can determine the selection of a preferred action based

on the incremental benefit A(7, j) of an action (action;) versus an alternate action (action;).
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A(, j) = Value (account | action;) - Value (account | action;)
)

The above adjusted balance (4DJBAL) is given as a recursive formula that takes into

account interest and late fees:

ADJBAL, = Balance

(6)

ADJBAL, ;. 1 = (1 + Interest; ) * (ADJBAL, - Payment, + Chargesy) + ((t % 30)- 1)
* Late Fee;

)

The first term of equation 7 accounts for the balance increase due to interest applied
to the account, whereas the second term accounts for the late fees that are applied at every
statement date. Payments made and additional charges to the credit card account since the
last balance adjustment are also taken into consideration. In order to allow for a variable
interest/late fee structure, indices have been added to the former two quantities. In equation
7, t represents the number of days since the missed due date. & represents Kronecker-
Capelli’s delta which is 1 only when its argument is zero and 0 otherwise, (f % 30) stands
for the remainder of the integer division of ¢ by 30, which is 1 only every thirty days.
Equation 7 represents late fees being assessed every 30 days, but the equation may be

modified to adopt to situations where late charges are assessed monthly.

Finally, the net present value (NVPV) in equation 4 represents the bank’s long-term
gain due to the credit cardholder. Thus the NPV of equation 4 refers to the value of an
account, once it is in good standing again, to the issuer. This is the value that the issuer will
lose if the account holder decides to attrite. At this stage, it is assumed that the NPV is
computed according to the issuer’s specification, possibly weighted by a scaling constant o.
Alternatively, o can be viewed as an operator (e.g., differentiation) used to allow an issuer
using this model to modify the value-of-an-account computation to better represent their
specific customer worth beyond a standard NPV calculation. For example, if a portfolio is

being readied for sale at a multiple above the total NPV of the constituent accounts, then it
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would be reasonable to use o to represent that multiple. For a straight NPV maximization

evaluation, o is set to 1.

Once the most desirable action for each account is chosen and the associated account
value computed, the accounts can consequently be ranked by incremental benefit A(i, j).

This incremental benefit ranking determines queues to be worked by collection specialists.

Once an account reaches mid-delinquency, the probability of self-cure without
action is nearly zero. Therefore, to collect dollars on an account generally requires the
allocation of collection resources in some fashion. However, it is undesirable to act at all on
straight rollers because the actions will not produce a cure. Typical actions taken at this
stage are letters and phone calls. Although phone calls are significantly more expensive
then letters, they also tend to be more effective, and are thus preferred. Federal and State
Fair Debt Collection Practices, preventing collectors from calling before/after certain hours
and not allowing more than pre-specified numbers of contacts, regulate phone calls.
Consequently, typically after a successful contact (in which a promise to pay was made), a
collection specialist will not contact the credit card debt holder again until the payment
promise has been broken. Here, a record of prior collection efforts (past delinquencies) and
current collection communication becomes important in establishing the validity of
promises. Data feeds such as past delinquency, promises kept/broken, and number of times
contacted, are important in predicting the amount of collected dollars. Since a successful
contact translates into an increased probability of collection, it is extremely important to

attempt to contact the credit cardholder when one is most likely to find them at home.

Two predictive models may be used at this delinquency stage, a model predicting
the best time to call a cardholder and a model estimating the probability to pay. Once again,

the probability to pay can be conditioned upon the action taken on the account.

A probability to pay model incorporates historical information such as past
delinquencies, broken promises, authorizations, credit limit, behavior scores, etc. A best-
time-to-call predictive model has, as an output, whether successful telephone contact is
made with the correct party, and as input various information about the delinquent debt

account, as well as call-attempt-specific information such as the time and the date of the call

31



10

15

20

25

30

WO 01/57756 PCT/US01/02451

attempt. The best time to call prediction will utilize information about past successful/failed
contacts, but must be tempered by the fact that there is a limited “collector bandwidth” (i.e.,
only a limited number of accounts can be contacted within a certain time frame). The
collector bandwidth is a parameter that is determined by the operational situation of the
collection organization. It may be dependent on the number of employees, the length of
calls, and other site-specific parameters. These site-specific parameters are supplied as
fixed parameters in the best time to call decision making process. It may not always be
possible for a collection organization to call each account at the precise time suggested by
the best time to call predictive model, as this may be inconsistent with the organization’s

available operational loads and legal restrictions.

Equation 4 also applies to the mid-delinquency stage. However, the probability to
pay will obviously take on a lower value at this stage than during the 1-30 days period, due
to the increased probability of charge off at the later stages of delinquency. The account’s
value (left hand side of equation 4) is a metric that serves to order the accounts in allocating

collection resources throughout the different stages of delinquency.

During the mid-delinquency stage, a collection specialist has several important
actions available, which directly affect the credit card holder. One action is shutting off any
authorizations that have remained open through the early stage of delinquency. A further
action is the closing of the credit card account. Both shutting off authorizations and closing
the account serve as valuable bargaining chips for collection specialists in affecting the
payment of delinquent debt. These actions are clearly identified by the predictive model as
a specific type of letter or phone call that may be made, for example “letter threatening
account closure” is oﬁe specific action. In addition, in order to measure the efficiency of
these actions, it is important to identify in the model how they were presented to the credit
card debt holder (e.g., as verbal or written threats of actions taken on their account). At the
end of state S,, the account has been closed and there is no chance for the cardholder to

come into good standing with the bank.

The last stage S of pre-charge off collections is often the most difficult to manage as
there will typically be no future continuing relationship with the cardholder. The accounts

in this state generally have very high forward-roll rates to charge off, coupled with very low
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contact rates. Because data sources such as transaction, payment, master file and credit
bureau data become stale at this stage, information obtained during the collection process

itself becomes very important.

At this stage, the only incentive for the credit card debt holder to pay is to repair
his/her credit record and subsequently end the relationship with the bank. Early-out policies
are possible in this stage, in which by agreeing to pay part of the outstanding balance the
account is removed from the accounting system, tagged as “paid in full,” and is legally “off
the bank’s books.” Since this stage is characterized by very low contact rates, a model
estimating a probability to pay given a certain action is helpful in prioritizing contact
efforts. A best-time-to-call model may still be appropriate at this stage if the historical
information of past contacts is not stale or overly sparse. Generally, collectors work to
contact those accounts identified as most probable to pay, and will make as many contact
attempts as possible. Predictive models that estimate the probability to pay given different
actions are the most feasible models at this stage of delinquency. These models utilize data
sources such as collectors’ notes to determine which accounts have made promises, how
easily the account has been contacted, and the credit card debt holder’s responses to

collection efforts. The predicted value of the account given a certain action is given by:

Value (account | actiony) = P (pay | actiony) * ADJBAL - COST (actiony)

®)

Considering that the charge off rates are typically significantly higher as the account
progresses along the delinquency path, the probability to pay is therefore lower in late-
delinquency as compared to mid-delinquency (which, in turn, is lower than the one in early

delinquency).

Most often, at 180 days past due, accounts are taken off the collections accounting
system. Accounts will either have ended their obligation to the bank (ending in state S5), or

will have been passed onto the asset recovery management (state Sy).

The objective of state Sy asset recovery management is to maximize the amount of
post charge off recovered dollars by choosing the best recovery channel (in-house recovery,

a legal department, or an external collection agency). A relevant factor at this stage is the
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freshness of contact information and the success of the collection team in collecting some
percentage of the owed dollars. For accounts where contact information is missing, or
collection specialists have found the credit card debt holder unwilling or unable to make any
payments, the accounts can be bundled and sold to secondary collection agencies. For
accounts that are found to have the means to pay, legal actions may be taken. For accounts
in which the predicted percentage of recovered dollars is larger than the liquidation value
that can be received from secondary debt purchasers, a cost-benefit formula can determine
which accounts will remain in-house. An account’s value is expressed as an expected

collected amount over a given time period as a percentage of its outstanding balance.

Collectors’ notes can potentially be extremely informative at this stage, because
recovery management is typically totally separate from the collection process. In addition
to the raw collectors’ notes, additional pre-charge off aggregated data streams may also be
generated and used such as the number of broken promises, payment information, recent

successful contacts, and the date of the last successful contact.

At the recovery stage (after a debt has been legally charged-off), there are various
available “channels” for continued collection efforts. Different collection channels include,
for example, legal actions, an asset sale (selling the debt — typically at pennies-on-the-dollar
— to another entity, who may specialize in recoveries), a collection agency, or continued in-
house efforts. The expected recovered dollars for training the predictive models may
combine recoveries with portfolio-specific economic parameters of the collection channel
such as placement fees, internal recovery costs, data processing expenses, cash flow, etc.
Each channel has associated costs and an associated chance of salvaging some of the debt

value.

The recovery model is used to help identify the best channel for each specific
charged-off account. The output variable for this model is the total recoveries minus the
total cost of the collection effort (with both quantities corrected for the time-value-of-money
as explained previously). In one embodiment, a different predictive model is built for each
different collection channel. Alternatively, a single predictive model may be used with the

channel being an input parameter. For some channels, a statistical model may not be
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necessary (for example, if an asset sale always brings a fixed pennies-on-the-dollar ratio;

then it can be calculated directly with no need to use a statistical model).

b) Collection action modeling

Modeling the success or failure of a particular collection action is complicated due
to the fact that by making action recommendations, the underlying distribution on which the
model was built is changed (i.e. a feedback loop is created, because each current action
taken effects the likelihood of the consequences of future actions). In order to explicitly
model collection action effects to obtain better recoveries, it is preferable to avoid creating
too many distinct actions to be monitored, to prevent undesired feedback. Assume,
therefore, that all possible actions have been aggregated into a small number of action
groups (e.g., soft reminder letter, harsh reminder letter, soft reminder call, harsh reminder
call, threat to shut off authorizations, threat to close account, offer of partial pay, offer to re-
age, etc.), denoted as a;, a5, ..., a;,. Furthermore, assume that building individual predictive
models that estimate the probability to pay for each action or action sequence is practically
undesirable. Two different embodiments of the modeling process may be used, either

modeling the effect of a single action, or modeling the effect of action sequences.

In one embodiment modeling the effect of a single action (current action), all of the
possible action groups are encoded (a,, ..., a) by performing a 1-of-g encoding and adding
the ¢ additional variables to the existing predictive model inputs. In a 1-of-g encoding, ¢
variables are used as inputs, representing all possible actions groups of interest. Whenever
an action takes place, only one of these g inputs will have a value 1 (corresponding to the
action group that the current action belongs to), whereas the remaining g—1 inputs will be 0.
The prediction target will be different than the targets mentioned for early-, mid- and late-
delinquency (marginal and conditional probabilities to pay) and will quantify the effect of
the action over a finite time interval (e.g., recovered amount over a six months period as a

percentage of the outstanding balance).

However, in collections it can be difficult to quantify the effect of any one action.
Typically, several actions have occurred before one is presented with the result. As an

example, a reminder letter may trigger a decision to pay, but a harsh call may be made in
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the meantime and it is interpreted that the harsh call caused the payment. Alternatively,
oftentimes an early action encourages payment, but the cardholder must wait for a paycheck
to pay the amount owed. Therefore, modeling single actions can be spurious, as the cause

and effect of an action are not always easily identifiable.

The difference between modeling a single action as opposed to modeling action
sequences relies on how to treat action sequences as complex single actions. In another
embodiment modeling the effect of an action sequence, assume (for practical
manageability) a fixed window w of past actions that is considered at any time when
evaluating the actions’ combined effect. For example, assume that the pool of single
actions contains 5 possible actions (where g represents the number of possible action

groups,) aj, @, ..., as. Furthermore, consider a fixed window containing the last 3 actions.

‘Consequently, the following action sequences are denoted as complex single actions:

aj, az az > cj
aj, as, a; 2 ¢z
as a aj > c3

... (continuing the set of complex actions)
®)

In the context of this example, the total number of unique complex actions is:

q! B 5!
(g-w) ~ (5-3)!

©)

If all complex actions are encoded in a similar fashion as simple actions for

= 60

providing predictive model inputs, this results in a fairly large number of additional inputs
(60 in this example). However, if it is known that from the entire pool of possible action
sequences only a small number of sequences are actually possible in practice, only those
possible sequences are converted to complex actions, énd a 1-of-n encoding is performed

only for those # complex actions.
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Alternatively, in yet another embodiment, the predictive model may be provided
with the set of all possible single actions, without using a 1-of-n encoding. Each input line '
is 0 if the action has not occurred in the lifetime of the account, or 1 if the action has
occurred while the account has been in collections. Therefore, the predictive model is
provided with all the actions that occurred in the history of the account without allowing the
inference of the action sequence. The sequence in which the actions occurred may not be
necessary for the model, because it is often the case in collections that actions occur around
fairly rigid timelines, and thus any appearance of an action is identifiable within the action
sequence. For example, a threat to shut off authorizations is typically done only after a
statement message and a reminder message have already been sent. In this situation if an
unknown complex action occurs, that complex action will translate to the entire » predictive

model inputs as having a 0 value (“inactive”).

Unknown action sequences may pose a problem on estimating the conditional
probability to pay. Under these circumstances, instead of using the predictive model output
value as an expected probability to pay given some unknown action, a prior probability of
payment may be computed over the entire population irrespective of the action taken. This
prior probability evolves towards a posterior probability as more and more data reflecting

the result of the new action is gathered.

In practice, a certain complex action may be taken rarely (or not at all) on a
particular segment of the population. Therefore, for this population segment it is
undesirable to trust the predictive model estimate of the probability to pay given the rarely
applied complex action. Consequently, it is preferable to compute a prior probability that is
adjusted, as more data regarding the success of the sparsely occurring complex action
becomes available. Since the population segments for which to monitor the presence or
absence of a certain complex action are typically unknown apriori, a means for performing
an implicit segmentation on which to monitor the scarcity of different complex actions is
needed. An implicit segmentation is achieved by constructing statistical estimates of the
marginal probabilities of taking different complex actions. These estimates may be
constructed by training a multiple-output predictive model that provides on each output the

marginal probability of a given complex action being applied to the delinquent account.
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Fig. 6 illustrates a multiple-output predictive model 600 that has a set of n input
variables (Varl — Var(n)) representing a set of n possible single actions. The predictive
model 600 provides as output the marginal probability P of a given complex action (actions
A — Z) being applied to the delinquent account. Since actions A, B,..., Z represent an
exhaustive enumeration (i.e., partitioning) of all the possible complex actions to be taken, a
constrained optimization is performed to ensure that the provided probabilities are
normalized (sum up to 1). This normalization may be avoided by constructing individual
predictive models to estimate the marginal probability for each individual complex action.
An implicit segmentation is imposed by setting a low threshold for each marginal
probability (e.g., R could be defined as representing the segment of the population for which
P(action A) is less than a specified threshold 7).

By scoring the entire population, the desired segmentation is obtained. The
probability to pay given a complex action is computed either by using the predictive model
estimate or by using the previously discussed prior probability. The prior probability for a
population segment is computed as the probability to pay given all possible actions whose
marginal probabilities exceed the corresponding thresholds 77 T7,.., Tx. As sufficient data is
gathered for sparse complex actions, the prior probability can be modified to reflect the

success or failure of the complex action.

c¢) Global optimization of resources

In one embodiment, accounts in different delinquency states are treated and
prioritized separately by the predictive model. The overall predictive model contains
several separate models within it to be used for accounts in different delinquency states. In
another embodiment, resources (for example, collectors) are globally optimized across the
different delinquency stages in order to maximize the overall recovered amount. A
common value measure is used across the different delinquency stages, such as the
value(account) function introduced in each delinquency stage, given in equations 4-7. Care
should be taken to ensure that the value-function is continuous across the delinquency
stages and that none of the computed values within a delinquency stage is overly
emphasized (possibly artificially). In this embodiment, the organization that issued the debt
adapts a multistage delinquency treatment, instead of the typical bank model where
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collectors are assigned to specific delinquency stages (e.g., “customer service collectors”
are assigned to early-delinquency, and more experienced collectors are assigned to later-
delinquency). The value(account) metric prioritizes accounts within specific stages and
may also be used to prioritize accounts across stages allowing collectors to work across
delinquency stages. The previously introduced value(account) metric of equation 4 is used

as a function allowing a cross-delinquency stage prioritization of accounts as follows.

It is assumed that for late-delinquency the probability of attrition is set to 1,
irrespective of the action taken. In order to rank the accounts within or across delinquency
stages, we can proceed as follows. First, a table (Table 5) is created in which each row is
assigned an account number and each column represents a simple or complex action. Next,

the value(account) function (equation 4) is used to compute each entry in the table:

Action
A B C D
Account 1 10 20 30 28
2 20 10 5 45
3 27 10 20 7
4 3 10 22 20

Table 5

Next, the maximum value within each row is determined. This value indicates the

desirable action and quantifies the maximum value of the account, as shown in Table 6:

" Action
A B C D
Account 1 30
2 45
3 27
4 22

Table 6
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Next, the accounts are ranked based on the determined best account value, as shown
in Table 7. Based on the rank ordering, the accounts and the suggested action to realize the

account value can be assigned to one or more collector queues.

Account Value Action
2 45 D
1 30 C
3 27 A
4 22 C
Table 7

In cases in which the incremental benefit of different actions needs to be taken into
consideration (for example if a harsh letter only results in a marginal return compared to a
soft letter, then a soft letter may be preferable), the most desirable action and its associated
value is computed by assigning value thresholds to pairs of actions. Resources are thus

optimized globally across the group of accounts.

In one embodiment, individual optimized account-level value predictions are rolled-
up at the portfolio level. Typically, late-delinquency accounts are sold as a group, or
portfolio, to a secondary debt collection agency. The secondary collection agency will
evaluate the expected collection return from the portfolio in order to determine a reasonable
purchase price. Using a predictive model and the global optimization methods disclosed
herein, a secondary collection agency can estimate the maximum expected collection rate on
all of the accounts in a portfolio (assuming that properly optimized collection actions will
be taken on each of the accounts). The secondary collection agency can also estimate the
cost of the optimized collection actions that will be taken on the portfolio accounts. This
produces a global value estimate for the entire portfolio, and aids in setting a proper price

for the worth of the portfolio.

In another embodiment, results are globally aggregated across a portfolio of
accounts, but different statistical predictive models are constructed and used for different

segments of the portfolio of accounts. This embodiment allows additional individual
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tailoring of predictive models to represent a particular account type. Such a set of
predictive models may more precisely predict collection results for their particular account

segment, resulting in improved overall global predictions of collection results.

Delinquent debt accounts may be segmented in a variety of different ways. For
example, as discussed previously, different debt lifecycle stages or time periods have
different valuation methods, as well as different available collection actions. Debt in
different lifecycle stages may be divided into segments, where each segment uses a different
predictive model. Accounts may also be segmented based upon the credit-worthiness of the
debtor, the type of debt, collection activity history, the amount owed, collection notes
information, a debt’s status as charged-off, or the number of collection agencies that have
worked on the debt. Statistical clustering of similarly behaved accounts can also provide a

mechanism for segmenting accounts.

d) Optimization of selected individual collection specialist

In yet another embodiment of the invention, a predictive model is used to select the
most appropriate collection specialist to work a particular delinquent debt account. In one
embodiment, a separate predictive model is created to predict the optimal collection
specialist for an account. In another embodiment, a predictive model predicting the
likelihood of collecting and thus the value of an account is used. In this embodiment, an
individual account’s value is calculated using each different collection specialist, and the

maximum value indicates the optimal collection specialist.

Existing methods for ranking the success rate of individual collection specialists
typically track only employee proficiency, i.e., the percentage of debt that is collected.
However, employee proficiency does not take into account the types of debt worked on by
the collection specialist. Thus, typical models will not recognize that collector A is

particularly good at divorce cases, while collector B does well with low-face-value debts.

Two different embodiments are possible for training a predictive model to optimize
the assignment of individual collection specialists to delinquent debt accounts. In one
embodiment, a predictive model is built using specific collection specialists as an input into

the model, thereby linking them with the past accounts that they have worked. The
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resulting model may be used to estimate the value of a delinquent debt account given its
assignment to a specific collection specialist. The preferred collection specialist for an

account is the collection specialist that maximizes the value of the account.

In another embodiment, individual collection specialists are represented by a profile
or parameter list. For example, a parameter list for an individual collection specialist might
include his/her age, years of experience, proficiency, hours worked, sex, and the company
employing the specialist. The resulting predictive model may be used to recommend

attributes for a preferred collection specialist given a particular delinquent debt account.

Although the invention has been described in considerable detail with reference to
certain embodiments, other embodiments are possible. As will be understood by those of
skill in the art, the invention may be embodied in other specific forms without departing
from the essential characteristics thereof. For example, different types of predictive models,
such as a neural net or a statistical regression, may be used for modeiing delinquent debt
collection.  Additionally, the predictive model may use context vectors to improve
delinquent debt predictions. Furthermore, collection actions may be modeled individually,
or as collection action sequences. Accordingly, the present invention is intended to embrace
all such alternatives, modifications and variations as fall within the spirit and scope of the

appended claims and equivalents.
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We claim;

1. A computer implemented method of predicting the likelihood of collecting on a

delinquent debt on an account, the method comprising:

storing a predictive model of debt collection likelihood generated using
historical data of delinquent debt accounts, the collection methods used
in each account, and the success of the collection methods in each

account;
receiving data of a currently delinquent debt account;
selecting a collection method; and

generating a signal indicative of the likelihood of collecting on the currently
delinquent debt by applying the data of the currently delinquent debt

account and the selected collection method to the predictive model.

2. The method of claim 1, wherein the delinquent debt was incurred on a credit

card.

3. The method of claim 1, wherein the delinquent debt was incurred on a

medical service.

4. The method of claim 1, wherein the delinquent debt was incurred on a utility
bill.

5. The method of claim 1, wherein the delinquent debt was incurred on an

unpaid check.

6. The method of caim 1, wherein the delinquent debt was incurred on mail-

ordered goods.

7. The method of claim 1, wherein the delinquent debt was incurred on an

electronic transaction via the Internet.
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8. The method of claim 1, wherein the delinquent debt has been charged-off.

9. The method of claim 1, wherein the collection methods include a set of

different letters that can be sent to delinquent debtors.

10. The method of claim 1, wherein the collection methods include different

times at which a letter can be sent to delinquent debtors.

11. The method of claim 1, wherein the collection methods include different

phone call approaches.

12. The method of claim 1, wherein the collection methods include different

debt lifecycle stages when phone calls may be made.

13. The method of claim 1, wherein the collection methods include different

debt lifecycle stages at which a letter can be sent to delinquent debtors.

14. The method of claim 1, wherein the collection methods include different

days of the week during which phone calls may be made.

15. The method of claim 1, wherein the collection methods include different

monthly dates during which phone calls may be made.

16. The method of claim 1, wherein the collection methods include different

hours of the day during which phone calls may be made.

17. The method of claim 1, wherein the collection methods include different

collections specialists who may be assigned to work the account.

18. The method of claim 1, wherein the collection methods include electronic

communications that may be made with the debtor.

19. The method of claim 1, wherein the collection methods include offering debt

counseling.

20. The method of claim 1, wherein the collection methods include debt

rescheduling.

21. The method of claim 1, wherein the collection methods include offering

additional credit.
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22. The method of claim 1, wherein the collection methods include changing

delinquency financial penalties for an account.

23. The method of claim 1, wherein the collection methods include offering debt

forgiveness.

24, The method of claim 1, wherein the collection methods include a search for

a missing debtor.

25. The method of claim 1, wherein the collection methods include legal

actions.

26. The method of claim 1, wherein the collection methods include the

employment of a collection agency.

27. The method of claim 1, wherein the collection methods include the sale of a

debt.

28. The method of claim 1, wherein the historical data includes information

regarding an account before the account became delinquent.

29. The method of claim 1, wherein the historical data includes account

purchase information.

30. The method of claim 1, wherein the historical data includes information

regarding the Merchant Category Code of purchases on the account.

31. The method of claim 1, wherein the historical data includes information

regarding the amount of account purchases.

32. The method of claim 1, wherein the historical data includes information

regarding account cash transactions.

33. The method of claim 1, wherein the historical data includes information

regarding account payments made.

34. The method of claim 1, wherein the historical data includes events related to

previous collection activities.
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35. The method of claim 1, wherein the historical data includes collectors’ notes

related to previous collection activities.

36. The method of claim 35, wherein the collectors’ notes use preformatted codes.

37. The method of claim 35, wherein the collectors’ notes use a natural language

5  format.

38. The method of claim 35, further comprising:

transforming the collectors’ notes into a mathematical representation that

encodes contextual similarity of terms contained in the collector’s notes.

39. The method of claim 38, further comprising creating the mathematical

10  representation using a vector model.

40. The method of claim 38, further comprising creating the mathematical
representation by determining co-occurrence statistics of terms contained in the collector’s

notes.

41. The method of claim 38, wherein the mathematical representation is created

15  using context vector methodology.

42. The method of claim 1, further comprising:
segmenting a portfolio of accounts into a plurality of segments; and
providing a different predictive model for each segment.

43. The method of claim 42, wherein each segment is based on the time period

20 for which an account has been delinquent.

44. The method of claim 42, wherein each segment is based on the credit-

worthiness of the holder of a delinquent debt account.
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45. The method of claim 42, wherein each segment is based on the type of debt

of an account.

46. The method of claim 42, wherein each segment is based on the history of

collection activities for an account.

47. The method of claim 42, wherein each segment is based on a statistical

clustering of accounts having similar charactistics.

48. The method of claim 42, wherein each segment is based on the amount owed on

an account.

49. The method of claim 42, wherein each segment is based on the collectors’ notes

for an account.

50. The method of claim 42, wherein each segment is based on a determination of

whether a debt on an account has been charged-off.

51. The method of claim 42, wherein each segment is based on the number of

collection agencies that have attempted to collect on the debt account.

52. A computer implemented method for developing a predictive model for a

delinquent debt account, comprising the operations of:

receiving for a plurality of accounts, historical data for transactions occurring

over a period of time;

receiving for the plurality of accounts, the collection methods used on the

accounts and the amount collected on each account; and

creating the predictive model using the historical transaction data, the collection

methods used, and the amount collected on each account.
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53. The method of claim 52, wherein the predictive model is a neural network

model.

54. The method of claim 52, wherein the predictive model is a regression analysis

model.

55. The method of claim 52, wherein the predictive model is an integrated rules

system model.

56. The method of claim 52, wherein the predictive model is a decision tree model.

57. The method of claim 52, wherein the predictive model predicts a collection

amount on a delinquent debt account.

58. The method of claim 52, wherein the predictive model predicts the likelihood of

collecting on a delinquent debt account.

59. The method of claim 52, wherein the predictive model predicts the optimal

collection specialist to collect on a delinquent debt account.

60. The method of claim 52, wherein the predictive model predicts which

delinquent debt accounts will self-cure.

61. The method of claim 52, wherein the predictive model predicts which accounts

will become straight-roller accounts.

62. The method of claim 52, wherein the predictive model predicts the optimal

method of communicating with a delinquent debtor.

63. The method of claim 52, wherein the predictive model predicts when an account
should be shut off.
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64. The method of claim 52, wherein the predictive model predicts a best time to

contact a delinquent debtor.

65. A computer implemented method of predicting the likelihood of collecting on a

delinquent debt on an account, the method comprising:

storing a predictive model of debt collection likelihood generated using

historical data of delinquent debt accounts, profiles of delinquent debt
accounts that summarize patterns of events in the accounts, and the

success of the collection effort in each account;

receiving data regarding a currently delinquent debt account;

obtaining a profile that summarizes patterns of events in the delinquent debt

account; and

generating a signal indicative of the likelihood of collecting on the currently

66.

67.

68.

69.

70.

71.

delinquent debt by applying the data of the currently delinquent debt

account and the profile to the predictive model.

The method of claim 65, wherein the profile is initialized using account

masterfile information.

The method of claim 65, wherein the profile includes account events that

predate the delinquency status of the account.

The method of claim 65, wherein the profile includes account transaction

purchase information.

The method of claim 65, wherein the profile includes account transaction

merchant category code information.

The method of claim 65, wherein the profile includes account transaction

amount information.

The method of claim 65, wherein the profile includes account cash

withdrawal transaction information.
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The method of claim 65, wherein the profile includes account payment

history information.

The method of claim 65, wherein the profile includes events related to

promises to pay made by the account debtor.

The method of claim 65, wherein the profile includes events related to a

phone call made by a collector to the account debtor.

The method of claim 65, wherein the profile includes events related to a

letter sent to the account debtor.

The method of claim 65, wherein the profile inclucies events related to a

phone call made by the account debtor.

The method of claim 65, wherein the profile includes events related to a

letter sent by the account debtor.

The method of claim 65, wherein the profile includes events related to a

bankruptcy filing by the account debtor.

The method of claim 65, wherein the profile includes events related to an

inability to locate the account debtor.

The method of claim 65, wherein the profile includes events related to a

change in the employment status of the account debtor.

The method of claim 65, wherein the profile includes events related to a
medical condition of the account debtor or family members of the

account debtor.

The method of claim 65, wherein the profile includes events related to a

change in a financial burden of a holder of the account.

The method of claim 65, wherein the profile includes events related to an

account holder disclaiming responsibility for a debt.

The method of claim 65, wherein the profile includes events related to

information gathered from a third party organization.
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The method of claim 84, wherein the third party organization is a credit-

reporting agency.

The method of claim 84, wherein the third party organization is a
bankruptcy-reporting agency.

. The method of claim 84, wherein the third party organization is an office of

public records.

. The method of claim 84, wherein the third party organization is a marketing

data supplier.

The method of claim 84, wherein the third party organization performs a

skip trace.

The method of claim 84, wherein the third party organization is a law

enforcement authority.

The method of claim 84, wherein the third party organization is a legal

professional.

The method of claim 65, wherein the profile includes events related to

previous collection activities performed on the account.

The method of claim 92, wherein events related to previous collection

activities are obtained from collectors’ notes.

The method of claim 93, wherein the collectors’ notes use preformatted

codes.

The method of claim 93, wherein the collectors’ notes use a natural

language format.

. The method of claim 93, wherein the collectors’ notes are transformed into a

mathematical representation.

. The method of claim 96, wherein the mathematical representation is created

using a vector model.
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98. The method of claim 96, wherein the mathematical representation is created

using context vector methodology.

99. A computer implemented method for developing a predictive model for a

delinquent debt account, comprising the operations of:

5 receiving for a plurality of accounts, historical transaction data of delinquent
debt accounts, events that have occurred in the history of each debt
account, and the success of collection efforts, wherein success is the

amount collected;

for each of the accounts, creating a profile summarizing patterns of the

10 transactions data and the events in the account; and

creating the predictive model using the historical transaction data, the profiles,

and the success of the collection efforts.

100. The method of claim 99, wherein the predictive model is a neural network

model.

15 101. The method of claim 99, wherein the predictive model is a regression analysis

model.

102. The method of claim 99, wherein the predictive model is an integrated rules

system model.

103. The method of claim 99, wherein the predictive model is a decision tree model.

20 104. A computer implemented method for modeling textual information about a

delinquent debt account, the method consisting of:
receiving text notes taken by collectors who have worked on the account;

transforming the text into a mathematical representation of conceptual

relationships among collection notes; and
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generating a signal modeling the text using the mathematical representation.

105. The method of claim 104, wherein the signal modeling the text notes is used as

an input for a predictive model of debt collection likelihood.

106. The method of claim 104, wherein the signal modeling the text notes is

5 included in a profile that summarizes patterns of events in the delinquent debt account.

107. The method of claim 104, wherein text notes use preformatted codes to

describe events.
108. The method of claim 104, wherein text notes use a natural language format.

109. The method of claim 104, wherein the step of transforming the text notes into a

10  mathematical representation further includes:
constructing a set of documents from the text collectors’ notes;

determining co-occurrences between words in the set of documents and deriving
a set of coniext vectors from the co-occurrences, each context vector

associated with a word; and

15 generating for a current account document a document vector using the context
vectors associated with words in the collector’s notes of the current
account document.110. The method of claim 109, wherein a document
vector is used as input into a predictive model for delinquent debt

collection.

20 111. The method of claim 109, wherein transforming the text notes into a

mathematical representation further includes:

grouping document vectors into clusters of similar contextual information and

selecting cluster centroid vectors; and
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projecting a current account’s document vector onto each cluster centroid vector

to determine which clusters the document most resembles.

112. The method of claim 111, wherein the projections of a document vector onto a
cluster centroid vector are used as input into a predictive model for delinquent debt

collection.

113. The method of claim 109, wherein constructing a set of documents from the

notes further includes:

performing a data-cleansing step to standardize each document and retain

informative word stems.

114. The method of claim 109, wherein each document is constructed from an

individual collector’s note.

115. The method of claim 109, wherein each successive collector’s note on an
account is appended to the previous notes on the account to form the current account

document.

116. A computer implemented method of estimating the value of a delinquent debt,

the method comprising:

storing a predictive model of debt collection likelihood generated using
historical data of delinquent debt accounts, the collection methods used
in each account, and the success of the collection methods in each

account;
receiving data of a currently delinquent debt account;

calculating the likelihood of collecting on the currently delinquent debt given a

particular collection method using the predictive model;
calculating the time until the debt will be collected;

estimating the cost of the particular collection method; and
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generating a signal indicative of the value of the delinquent debt using the
likelihood of collecting on the currently delinquent debt account, the time

until collection, and the cost of the collection method.

117. The method of claim 116, further including:

calculating the likelihood of collecting on the currently delinquent debt for a

plurality of different collection methods using the predictive model;

calculating the value of the currently delinquent debt for the plurality of different

collection methods; and

selecting as the optimal collection method the method that produces the highest

value for the delinquent debt.

118. The method of claim 116, wherein the value of the delinquent debt is

computed according to the equation:

_ Recoveries — Cost _of _recovering
(1+ Discount _Rate)"

Value

wherein:

Recoveries represents the likelihood of recovering on the delinquent debt times

the face value of the debt;
Cost_of recovering represents the cost of the collection method;

Discount_Rate represents the time-value-of-money discount rate for each unit of

time; and

n represents a statistically estimated number of units of time that will pass until

the debt is collected.

119. The method of claim 116, wherein generating a signal indicative of the

value of the delinquent debt further includes:

using the probability of attrition by the account holder given the particular

collection action.
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120. The method of claim 116, wherein the cost of the particular collection

action is estimated using historical debt collection industry information.

121. A computer implemented method of estimating the suitability of a collector to

collect on a delinquent debt account, the method comprising:

5 storing a predictive model of collector suitability generated using historical data
of delinquent debt accounts, data about the collector used on each

account, and the success of the collection methods in each account;
receiving data of a currently delinquent debt account;
selecting a collector; and

10 generating a signal indicative of the likelihood of collecting on the currently
delinquent debt by applying the data of the currently delinquent debt

account and the selected collector to the predictive model.

122. The method of claim 121, wherein the data about the collector used on each

account includes the identity of each collector.

15 123. The method of claim 121, wherein the data about the collector used on each

account includes a set of parameters describing each collector.

124, A computer implemented method for developing a predictive model for
determining the suitability of a collector for collecting on a delinquent debt account,

comprising the operations of;

20 receiving for a plurality of accounts, historical data for transactions occurring

over a period of time;

receiving for the plurality of accounts, data about the collector used to collect on
each account and the success of the collection efforts, wherein success is

the amount collected; and
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creating the predictive model using the historical transaction data, data about the

collector used, and the success of the collection efforts.

125. A computer implemented method of predicting the likelihood of collecting on

a delinquent debt on an account, the method comprising:

storing a predictive model of debt collection likelihood generated using
historical data of delinquent debt accounts, the set of collection actions
used in each account, and the success of the collection actions in each

account;
receiving data of a currently delinquent debt account;
selecting a sequence of collection actions; and

generating a signal indicative of the likelihood of collecting on the currently
delinquent debt using the selected sequence of collection actions by
applying the data of the currently delinquent debt and the selected

sequence of collection actions to the predictive model.

126. The method of claim 125, wherein generating a signal indicative of the

likelihood of collection on the currently delinquent debt further includes:

repeatedly applying the predictive model to each collection action in the
sequence of collection actions to generate a set of signals indicative of

the likelihood of collecting; and

summarizing the set of signals to produce a.final signal indicative of the

likelihood of collecting for the sequence of collection actions.

127. A computer implemented method for developing a predictive model for a

delinquent debt account, comprising the operations of:

receiving for a plurality of accounts, historical data for transactions occurring

over a period of time;
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receiving for the plurality of accounts, the set of collection actions used on each
account and the success of the collection actions used on each account,

wherein success is measured by the amount collected; and

creating the predictive model using the historical transaction data, the set of
collection actions used, and the success of the collection actions in each

account.

128. The method of claim 127, wherein each set of collection actions is defined as a

different group of actions.

129. The method of claim 127, wherein each set of collection actions is defined as a

group of actions that occur in a different sequence in time.

130. The method of claim 127, wherein each set of collection actions is defined as a

different group of actions occurring within a predetermined window of time.

131. A computer implemented method of pricing a portfolio of delinquent debts, the

method comprising:

selecting an optimal set of collection actions for each account in the portfolio of
delinquent debts using a predictive model generated using historical data
of delinquent debt accounts, the collection methods used in each
historical account, and the success of the collection methods in each

historical account;

estimating the likelihood of collecting on each account in the portfolio using the

predictive model;

estimating the cost of the collection actions taken in each account in the

portfolio;

calculating a value for each account in the portfolio using the likelihood of

collection and the cost of collection actions; and
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calculating a portfolio value, wherein the portfolio value is the sum of the values

of each account in the portfolio.

132. A system for predicting the likelihood of collecting on a delinquent debt on an

account, comprising:

5 a predictive model for predicting the likelihood of collecting on a delinquent

debt account;

a set of information regarding delinquent debt accounts, including a

mathematical representation of the collectors’ notes for each account; and

a debt collection facility, wherein the debt collection facility applies the
10 information regarding delinquent debt accounts to the predictive model
and uses the model results to make decisions regarding the delinquent

debt accounts.

133. The system of claim 132, wherein the predictive model is implemented on a

standard computer system.

15 134. The system of claim 132, wherein the information regarding delinquent debt

accounts is obtained from a financial data facility.

135. The system of claim 132, wherein the information regarding delinquent debt

accounts is obtained from a collection efforts data facility.

136. The system of claim 132, wherein the functions of the debt collection facility

20  are implemented automatically via a computer system.
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