A digital palm PC (10) includes a housing, a storage device to store digital text and/or image data, and a printer located within the housing and receiving digital information from the storage device. The printer built into the palm PC (10) casing is configured to print an image (12) on print media (11) external to the casing as the palm PC (10) traverses the media (11).
Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
SWIPE PALM COMPUTER

FIELD OF INVENTION
The following invention relates to a hand-held personal computer known as a “palm PC”, having a built-in printer.

BACKGROUND TO INVENTION
Known palm PCs have no means of providing an “instant” print-out of text and/or images therefrom. Instead, if a print-out is needed, the palm PC must communicate data stored therein to another PC to which there is attached a printer.

The mere incorporation into a palm PC of a known conventional printer device would not result in a compact, easily portable palm PC. This is because prior printers incorporate a supply of print media and employ a print media feed mechanism to transport the print media past the printheads to effect printing onto the print media. Moreover, known printers, having a supply of print media, are large and heavier than would be desirable in a portable palm PC that is sized and shaped to fit conveniently with a user’s pocket or purse for example.

CO-PENDING APPLICATIONS
Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications filed by the applicant or assignee of the present invention simultaneously with the present application:

<table>
<thead>
<tr>
<th>AP39</th>
<th>AP43</th>
<th>AP44</th>
<th>AP46</th>
<th>AP47</th>
<th>AP48</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP49</td>
<td>AP50</td>
<td>AP51</td>
<td>AP52</td>
<td>AP53</td>
<td>AP55</td>
</tr>
<tr>
<td>AP58</td>
<td>AP60</td>
<td>AP61</td>
<td>AP62</td>
<td>AP63</td>
<td>AP64</td>
</tr>
<tr>
<td>AP65</td>
<td>AP66</td>
<td>AP67</td>
<td>AP68</td>
<td>AP69</td>
<td>AP70</td>
</tr>
<tr>
<td>AP71</td>
<td>AP77</td>
<td>AP78</td>
<td>AP79</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The disclosures of these co-pending applications are incorporated herein by cross-reference. Each application is temporarily identified by its file reference. This will be replaced by the corresponding PCT Application Number when available.

RELATED PATENT APPLICATIONS AND PATENTS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>US6,247,795</td>
<td>US6,394,581</td>
<td>US6,244,691</td>
<td>US6,257,704</td>
</tr>
<tr>
<td>40</td>
<td>US6,302,528</td>
<td>US6,283,582</td>
<td>US6,239,821</td>
<td>US6,338,547</td>
</tr>
<tr>
<td></td>
<td>US6,247,796</td>
<td>US09/113,122</td>
<td>US6,390,603</td>
<td>US6,362,843</td>
</tr>
</tbody>
</table>
SUMMARY OF THE INVENTION

In accordance with the invention, there is provided a digital palm PC comprising:

a housing;
a digital storage device to store digitally text and/or image data; and
a printer located within the housing and receiving digital information from the digital storage device,
the printer being configured to print an image on media external thereto as the palm PC traverses the media in
a printing orientation.

5 Preferably, the palm PC further includes a movement sensor configured to measure the relative movement
of the palm PC as it traverses the media in the printing orientation. More preferably, the movement sensor
includes a wheel configured to engage the media as the palm PC traverses the media in the printing
orientation.

10 In one embodiment, the wheel is an optical encoder wheel including a series of circumferential markings, the
movement sensor further including an optical sensor for detecting relative movement of the markings as the
wheel rotates in engagement with the media.

15 Alternatively, the movement sensor forms part of an optical tracking system for tracking relative movement of
the palm PC as it traverses the media in the printing orientation. In one form, the optical tracking system
includes pattern recognition means for recognising relative movement of the palm PC with respect to the
media. The optical tracking system can be configured to recognise a predetermined pattern on the media, and
to recognise the relative movement of the palm PC with respect to the media by determining relative
movement of the palm PC with respect to the predetermined pattern.

20 Preferably, the housing also includes a print controller including a processor into which image data can be
input and converted into a sequence of drop ejection control signals. The print controller operates said ink
ejection nozzles in accordance with said drop ejection control signals to cause printing on said print media at a
rate determined by the measured relative movement of palm PD with respect to the media.

25 Preferably, the printer includes a drop-on-demand color inkjet printhead.

In a preferred form, the palm PC further includes an ink reservoir in fluid communication with the printhead
for providing ink thereto. Preferably, the ink reservoir includes at least one ink inlet via which the ink
reservoir can be recharged with ink.

BRIEF DESCRIPTION OF THE DRAWINGS
A preferred embodiment of the invention will now be described, by way of example only, with reference to
the accompanying drawings, in which:

Fig.1 is a schematic perspective illustration of a palm PC having a built-in printer in use, printing an
image on a page;

Fig. 2 is perspective illustration of a palm PC shown from above;
Fig. 3 is a schematic perspective illustration of a palm PC shown from below;
Fig. 4 is a schematic parts-exploded perspective view of the palm PC;
Fig. 5 is a schematic perspective illustration of the major internal components of the palm PC;
Fig. 6 is a front elevational view of the palm PC;
Fig. 7 is a side elevational view of the palm PC;
Fig. 8 is an end elevational view of the palm PC; and
Fig. 9 is a schematic cross-sectional elevational view of the palm PC taken at IX-IX in Fig. 8.

DESCRIPTION OF THE PREFERRED EMBODIMENT

In Fig. 1 of the accompanying drawings there is schematically depicted a palm PC 10 having an integral printer. The palm PC is sized and shaped to fit within a typical purse or pocket user and is shown in the figure traversing a page of print media 11 to print an image 12 thereon.

As shown in Fig. 2, the palm PC includes a housing having a top molding 13 and a base molding 14. These moldings house the internal components of the device. The palm PC includes a color liquid crystal display (LCD) and touch screen 20. A stylus 21 fits within a receptacle in the palm PC and is used to touch the LCD and touch screen 20 to operate the device. Function buttons 19 also serve to control the functioning of the palm PC.

At the bottom edge of the palm PC 10 there is provided a printhead 15 flanked at either end by wheels 16 and 22. Wheel 16 is an optical encoder wheel, whereas wheel 22 is an idler wheel. These wheels may be connected so as to rotate in unison upon a common shaft. The operation of optical encoder wheel 16, idler wheel 22 and printhead 15 is described in detail our co-pending application (AP46) entitled “Portable Printer and Copier”, the content of which is specifically incorporated herein by cross-reference.

The printhead 15 can be capped and uncapped selectively by a capping device (not shown), which is described in our co-pending application (AP44) entitled “Capping Device for a Portable Printer”, the content of which is specifically incorporated herein by cross-reference. As an alternative to a capping device, an ink seal 36 may be provided. This might be in the form of a removable strip of elastomeric material.

As shown in Fig. 3, the palm PC 10 includes ink inlets 17 via which an internal ink reservoir having separate compartments can be refilled with ink. A battery charger and communications port module 18 are located, in this embodiment, on the same side of the palm PC as the ink inlets 17.

As shown in the exploded perspective illustration of Fig. 4, the LCD and touch screen 20 sits upon a printed circuit board 26. A number of function switches 37 are mounted on the PCB 26 and aligned with function buttons 19 so as to be depressed when the buttons 19 are used. A battery 23 which is preferably a lithium-ion rechargeable battery resides alongside the PCB and is connected electrically to the charger port module 18 and the PCB 26. A speaker 24 is also provided. The ink inlets communicate with respective compartments within reservoir 29. These compartments are best illustrated in Fig. 9. The individual ink compartments relay ink to the printhead unit 15.
As depicted in Fig. 5, the PCB 26 has attached thereto a dynamic random access memory (DRAM) chip 31, a print engine controller (PEC) chip 30, a QA chip 27 and a flash memory chip 28. The battery 23 connects to the PCB at connector block 38 and a ribbon cable for flexible PCB 39 connects the power and communications port module 18 to the PCB 26 via a connector block 40.

As shown in Fig. 9, the ink reservoir 29 is divided into a number of longitudinal compartments. In the depicted embodiment, there are separate compartments for cyan ink 32, magenta ink 33, black ink 34 and yellow ink 35. Ink from these compartments is transferred to printhead 15.

Power and data transfer from the PCB 26 to the printhead 15 can be by direct connection between those two units. That is, the printhead 15 may have electrical contacts soldered directly onto the PCB 26. However, in alternate configurations, an intermediate flexible PCB extending between the printhead 15 and PCB 26 can be used.

In use, the palm PC 10 can be operated by use of the stylus 21 upon the color LCD and touch screen 20. Function buttons 19 can also be manipulated as required. When a printed image of text and/or graphics is desired, a print command can be initiated either by use of a stylus 21 or function buttons 19. A user then draws the printhead 15 over a sheet of print media (in this case paper) as shown in Fig. 1. The ejection of ink by printhead 15 upon print media 11 is controlled by the PEC chip 30 in response to signals received from the optical encoder wheel 16 which contacts the surface of the print media 11 and rotates in use. Details of this interaction can be found in our co-pending application AP46 as cross-referenced above.

The internal configuration of components within the housing of the palm PC can vary depending upon requirements. For example, the printhead and ink cartridge can be an integral unit or formed separately. The printhead can extend generally normal to the extent of the ink cartridge or parallel thereto. In a further embodiment, instead of providing only two wheels 16 and 22 (one optical encoder wheel and one idler wheel) on a narrow edge of the palm PC, three, four, or more wheels might be provided say in the broad back face of base molding 14. In the case of four wheels being provided, they can be disposed in a rectangular layout in plan. One of the wheels would be an optical encoder wheel and the other wheels idler wheels. The printhead can be located generally within a space defined by a rectangle with a wheel at each corner.

Although the invention has been described with reference to a number of specific embodiments, it will be appreciated by those skilled in the art that the invention can be embodied in many other forms.
WE CLAIM:

1. A digital palm PC comprising:
 a housing;
 a digital storage device to store digitally text and/or image data; and
 a printer located within the housing and receiving digital information from the digital storage device,
 the printer being configured to print an image on media external thereto as the palm PC traverses the media in
 a printing orientation.

2. The palm PC of claim 1, further including a movement sensor configured to measure the relative
 movement of the palm PC as it traverses the media in the printing orientation.

3. The palm PC of claim 2, wherein the movement sensor includes a wheel configured to engage the
 media as the palm PC traverses the media in the printing orientation,

4. The palm PC of claim 3, wherein the wheel is an optical encoder wheel including a series of
 circumferential markings, the movement sensor further including an optical sensor for detecting relative
 movement of the markings as the wheel rotates in engagement with the media.

5. The palm PC of claim 2, wherein the movement sensor forms part of an optical tracking system for
 tracking relative movement of the palm PC as it traverses the media in the printing orientation.

6. The palm PC of claim 5, wherein the optical tracking system includes pattern recognition means for
 recognising relative movement of the palm PC with respect to the media.

7. The palm PC of claim 5, wherein the optical tracking system is configured to recognise a
 predetermined pattern on the media, and to recognise the relative movement of the palm PC with respect to
 the media by determining relative movement of the palm PC with respect to the predetermined pattern.

8. The palm PC of any one claims 2 to 7, wherein the housing also includes a print controller including
 a processor into which image data can be input and converted into a sequence of drop ejection control signals,
 said print controller operating said ink ejection nozzles in accordance with said drop ejection control signals
 to cause printing on said print media at a rate determined by the measured relative movement of palm PD with
 respect to the media.

9. The palm PC of claim 1 or 2, wherein the printer includes a drop-on-demand color inkjet printhead.

10. The palm PC of claim 1 or 2, further including an ink reservoir in fluid communication with said
 printhead for providing ink thereto.
11. The palm PC of claim 10, wherein said ink reservoir includes at least one ink inlet via which the ink reservoir can be recharged with ink.

12. The palm PC of claim 1, further including a rechargeable battery.

13. The palm PC of claim 12, wherein the battery powers the printer and a processor of the palm PC.

14. The palm PC of claim 12, including a power port for recharging said battery.

15. The palm PC of claim 1, further including a communications port for receiving data.
INTERNATIONAL SEARCH REPORT

International application No.
PCT/AU03/00162

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl. 7: G06F 1/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

WPAT, keywords including palm, PDA, printer, inkjet, traverse

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, A</td>
<td>US 20020093570 A (SILVERBROOK et al) 18 July 2002</td>
<td></td>
</tr>
<tr>
<td>P, A</td>
<td>US 20020030716 A (WATANABE et al) 14 March 2002</td>
<td></td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C [] See patent family annex

<table>
<thead>
<tr>
<th>* Special categories of cited documents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
</tr>
<tr>
<td>"E" earlier application or patent but published on or after the international filing date</td>
</tr>
<tr>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
</tr>
<tr>
<td>"O" document referring to an oral disclosure, use, exhibition or other means</td>
</tr>
<tr>
<td>"P" document published prior to the international filing date but later than the priority date claimed</td>
</tr>
<tr>
<td>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
</tr>
<tr>
<td>"&" document member of the same patent family</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

19 March 2003

Date of mailing of the international search report

16 APR 2003

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
E-mail address: pct@ipaaustralia.gov.au
Facsimile No. (02) 6285 3929

Authorized officer

J.W. THOMSON

Telephone No: (02) 6283 2214

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5443320 A (AGATA et al) 22 August 1995</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 3314041 A (REITBURGER) 25 October 1984 Abstract and drawing obtained from esp@ccnet.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Derwent Abstract Accession No 2001-263703/27, class P75, T04, JP 2001057586 A (F & F YG) 27 February 2001</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT
Information on patent family members

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6357939</td>
<td>JP 2002307756</td>
</tr>
<tr>
<td>US 2002003071</td>
<td>DE 10132429</td>
</tr>
<tr>
<td></td>
<td>JP 2002019405</td>
</tr>
<tr>
<td></td>
<td>JP 2002048169</td>
</tr>
<tr>
<td>US 5443320</td>
<td>CA 2096670</td>
</tr>
<tr>
<td></td>
<td>EP 571158</td>
</tr>
<tr>
<td></td>
<td>JP 5342164</td>
</tr>
<tr>
<td>JP 2001057586</td>
<td>NONE</td>
</tr>
<tr>
<td>DE 3314041</td>
<td>NONE</td>
</tr>
</tbody>
</table>

END OF ANNEX