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ABSTRACT

Systems, methods, and apparatuses are presented for a
trained language model to be stored in an efficient manner
such that the trained language model may be utilized in
virtually any computing device to conduct natural language
processing. Unlike other natural language processing
engines that may be computationally intensive to the point
of being capable of running only on high performance
machines, the organization of the natural language models
according to the present disclosures allows for natural

language processing to be performed even on smaller
devices, such as mobile devices.
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METHODS AND SYSTEMS FOR PROVIDING
UNIVERSAL PORTABILITY IN MACHINE
LEARNING

CROSS REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 14/964,526, filed Dec. 9, 2015, and
titled “METHODS AND SYSTEMS FOR PROVIDING
UNIVERSAL PORTABILITY IN MACHINE LEARN-
ING”, which claims the benefits of U.S. Provisional Appli-
cation 62/089,736, filed Dec. 9, 2014, and titled, “METH-
ODS AND SYSTEMS FOR ANNOTATING NATURAL
LANGUAGE PROCESSING,” U.S. Provisional Applica-
tion 62/089,742, filed Dec. 9, 2014, and titled, “METHODS
AND SYSTEMS FOR IMPROVING MACHINE PER-
FORMANCE IN NATURAL LANGUAGE PROCESS-
ING,” U.S. Provisional Application 62/089,745, filed Dec.
9, 2014, and titled, “METHODS AND SYSTEMS FOR
IMPROVING FUNCTIONALITY IN NATURAL LAN-
GUAGE PROCESSING,” U.S. Provisional Application
62/089,747, filed Dec. 9, 2014, and titled, “METHODS
AND SYSTEMS FOR SUPPORTING NATURAL LAN-
GUAGE PROCESSING,” and U.S. Provisional Application
62/167,078, filed May 27, 2015, and titled “METHODS
AND SYSTEMS FOR PROVIDING UNIVERSAL POR-
TABILITY IN NATURAL LANGUAGE PROCESSING
APPLICATIONS,” the disclosures of which are incorpo-
rated herein in their entireties and for all purposes.

[0002] This application is also related to US non provi-
sional applications U.S. patent application Ser. No. 14/964,
517, filed Dec. 9, 2015, and titled “METHODS FOR GEN-
ERATING NATURAL LANGUAGE PROCESSING
SYSTEMS,” U.S. patent application Ser. No. 14/964,518,
filed Dec. 9, 2015, and titled “ARCHITECTURES FOR
NATURAL LANGUAGE PROCESSING,” U.S. patent
application Ser. No. 14/964,520, filed Dec. 9, 2015, and
titled “OPTIMIZATION TECHNIQUES FOR ARTIFICIAL
INTELLIGENCE,” U.S. patent application Ser. No. 14/964,
522, filed Dec. 9, 2015, and titled “GRAPHICAL SYS-
TEMS AND METHODS FOR HUMAN-IN-THE-LOOP
MACHINE INTELLIGENCE;,” U.S. patent application Ser.
No. 14/964,510, filed Dec. 9, 2015, and titled “METHODS
AND SYSTEMS FOR IMPROVING MACHINE LEARN-
ING PERFORMANCE,” U.S. patent application Ser. No.
14/964,511, filed Dec. 9, 2015, and titled “METHODS AND
SYSTEMS FOR MODELING COMPLEX TAXONOMIES
WITH NATURAL LANGUAGE UNDERSTANDING,”
U.S. patent application Ser. No. 14/964,512, filed Dec. 9,
2015, and titled “AN INTELLIGENT SYSTEM THAT
DYNAMICALLY IMPROVES ITS KNOWLEDGE AND
CODE-BASE FOR NATURAL LANGUAGE UNDER-
STANDING,” U.S. patent application Ser. No. 14/964,525,
filed Dec. 9, 2015, and titled “METHODS AND SYSTEMS
FOR LANGUAGE-AGNOSTIC MACHINE LEARNING
IN NATURAL LANGUAGE PROCESSING USING FEA-
TURE EXTRACTION,” and U.S. patent application Ser.
No. 14/964,528, filed Dec. 9, 2015, and titled “TECH-
NIQUES FOR COMBINING HUMAN AND MACHINE
LEARNING IN NATURAL LANGUAGE PROCESSING,”
each of which were filed concurrently with U.S. patent
application Ser. No. 14/964,526, and the entire contents and
substance of all of which are hereby incorporated in total by
reference in their entireties and for all purposes.
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TECHNICAL FIELD

[0003] The subject matter disclosed herein generally
relates to processing data. In some example embodiments,
the present disclosures relate to systems and methods for
providing universal portability in natural language process-
ing applications.

BRIEF SUMMARY

[0004] In some embodiments, methods and systems for
providing universal portability in natural language process-
ing applications are presented. In some embodiments, a
method is presented for classifying a document in natural
language processing using a natural language model stored
in a universally portable data file. The method may include:
accessing one or more feature types from the data file, the
one or more feature types each defining a data structure
configured to access a tokenized sequence of the document
and generate linguistic features from content within the
tokenized sequence; performing a tokenizing operation of
the document, the tokenizing operation configured to gen-
erate one or more tokenized sequences from the content
within the document; generating a plurality of features for
the document from the one or more tokenized sequences
based on parameters defined by the one or more feature
types; accessing a plurality of probabilities stored in the data
file, each probability among the plurality of probabilities
associated with a feature among the plurality of features and
defining a pre-computed likelihood that said feature predicts
a presence of absence of a label that the document is to be
classified into; computing a prediction score indicating how
likely the document is to be classified into said label, based
on the plurality of probabilities; and classifying the docu-
ment into said label based on comparing the prediction score
to a threshold.

[0005] In some embodiments of the method, generating
the plurality of features is further based on parameters
defined in task configuration data in the data file, the task
configuration data associated with a type of task analysis
that the natural language model is configured to classify the
document into.

[0006] In some embodiments of the method, the plurality
of probabilities are pre-computed during a model training
process configured to train the natural language model to
classify documents according to at least said label and said
task.

[0007] In some embodiments of the method, the plurality
of probabilities comprise a first probability that said feature
predicts the presence of said label and a second probability
that said feature predicts the absence of said label.

[0008] In some embodiments of the method, the plurality
of probabilities comprise a first probability that said feature
appears at a beginning of a subset of the document, a second
probability that said feature appears at an inside of the subset
of the document, and a third probability that said feature
appears on an outside of the subset of the document.
[0009] In some embodiments of the method, each feature
among the generated plurality of features comprises a first
array storing integer indices of every label in the natural
language model having a non-zero probability.

[0010] In some embodiments of the method, each feature
among the generated plurality of features further comprises
a second array storing a quantized 16-bit fixed-point value of
each probability converted as a logarithm.
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[0011] In some embodiments of the method, generating
the plurality of features is based further on task configura-
tion data stored in the data file, the task configuration data
including training feature types used to train the natural
language model. In some embodiments, the task configura-
tion data stored in the data file includes executable code
configured perform a user-specified data transformation to
generate custom feature types.

[0012] In some embodiments of the method, the task
configuration data further comprises analyst-defined tuning
rules.

[0013] In some embodiments, a natural language platform
configured to classify a document in natural language pro-
cessing using a natural language model stored in a univer-
sally portable data file is presented. the natural language
platform may include: a memory configured to store the data
file; and a processor coupled to the memory and configured
to: access one or more feature types from the data file, the
one or more feature types each defining a data structure
configured to access a tokenized sequence of the document
and generate linguistic features from content within the
tokenized sequence; perform a tokenizing operation of the
document, the tokenizing operation configured to generate
one or more tokenized sequences from the content within the
document; generate a plurality of features for the document
from the one or more tokenized sequences based on param-
eters defined by the one or more feature types; access a
plurality of probabilities stored in the data file, each prob-
ability among the plurality of probabilities associated with a
feature among the plurality of features and defining a
pre-computed likelihood that said feature predicts a presence
of absence of a label that the document is to be classified
into; compute a prediction score indicating how likely the
document is to be classified into said label, based on the
plurality of probabilities; and classify the document into said
label based on comparing the prediction score to a threshold.
[0014] In some embodiments, a non-transitory computer-
readable medium is presented embodying instructions that,
when executed by a processor, perform operations compris-
ing: accessing one or more feature types from the data file,
the one or more feature types each defining a data structure
configured to access a tokenized sequence of the document
and generate linguistic features from content within the
tokenized sequence; performing a tokenizing operation of
the document, the tokenizing operation configured to gen-
erate one or more tokenized sequences from the content
within the document; generating a plurality of features for
the document from the one or more tokenized sequences
based on parameters defined by the one or more feature
types; accessing a plurality of probabilities stored in the data
file, each probability among the plurality of probabilities
associated with a feature among the plurality of features and
defining a pre-computed likelihood that said feature predicts
a presence of absence of a label that the document is to be
classified into; computing a prediction score indicating how
likely the document is to be classified into said label, based
on the plurality of probabilities; and classifying the docu-
ment into said label based on comparing the prediction score
to a threshold.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Some embodiments are illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings.

May 17, 2018

[0016] FIG.1 is a network diagram illustrating an example
network environment suitable for aspects of the present
disclosure, according to some example embodiments.
[0017] FIG. 2 is a block diagram showing an example
system architecture for performing aspects of the present
disclosure, according to some example embodiments
[0018] FIG. 3 is a high level diagram showing an example
language modeling flow for how human communications are
processed using a combination of machine learning tech-
niques and human annotations, according to some example
embodiments.

[0019] FIG. 4 is a diagram showing an example flowchart
for how different data structures within the system architec-
ture may be related to one another, according to some
example embodiments.

[0020] FIG. 5 shows an example display for adding a
feature type to a natural language training model, according
to some embodiments.

[0021] FIG. 6 shows examples of feature types and how a
document may be converted into a set of features, according
to some embodiments.

[0022] FIG. 7 shows examples of information pertaining
to the efficient storage of a natural language model in a ZIF
file, according to some embodiments.

[0023] FIG. 8 is a block diagram illustrating components
of a machine, according to some example embodiments,
able to read instructions from a machine-readable medium
and perform any one or more of the methodologies dis-
cussed herein.

DETAILED DESCRIPTION

[0024] Example methods, apparatuses, and systems (e.g.,
machines) are presented for performing natural language
processing techniques using human annotations applied to
machine learning techniques of natural language.

[0025] Aspects of the present disclosure are presented for
operating complex natural language processing engines in
computationally- and memory-efficient ways. A natural lan-
guage processing engine may be configured to analyze and
categorize thousands or even millions of human communi-
cations, and distill the results into various descriptions that
humans can more easily digest. However, conventional
natural language processing engines may require large
amounts of resources to perform such tasks. Besides being
inefficient, these limitations may disallow the conventional
natural language processing programs to operate on smaller
or more memory-strapped machines, such as mobile devices
or more limited computers. On the other hand, the systems
and methods of the present disclosure provide an efficient
architecture to allow for natural language processing pro-
grams to be portable to virtually any machine of the present
age, at least in part due to an efficient data storage of the
natural language models used when loaded into the natural
language processing engines.

[0026] Examples merely demonstrate possible variations.
Unless explicitly stated otherwise, components and func-
tions are optional and may be combined or subdivided, and
operations may vary in sequence or be combined or subdi-
vided. In the following description, for purposes of expla-
nation, numerous specific details are set forth to provide a
thorough understanding of example embodiments. It will be
evident to one skilled in the art, however, that the present
subject matter may be practiced without these specific
details.



US 2018/0137098 Al

[0027] Referring to FIG. 1, a network diagram illustrating
an example network environment 100 suitable for perform-
ing aspects of the present disclosure is shown, according to
some example embodiments. The example network envi-
ronment 100 includes a server machine 110, a database 115,
a first device 120 for a first user 122, and a second device
130 for a second user 132, all communicatively coupled to
each other via a network 190. The server machine 110 may
form all or part of a network-based system 105 (e.g., a
cloud-based server system configured to provide one or
more services to the first and second devices 120 and 130).
The server machine 110, the first device 120, and the second
device 130 may each be implemented in a computer system,
in whole or in part, as described below with respect to FIG.
8. The network-based system 105 may be an example of a
natural language platform configured to generate natural
language models as described herein. The server machine
110 and the database 115 may be components of the natural
language platform configured to perform these functions.
While the server machine 110 is represented as just a single
machine and the database 115 where is represented as just a
single database, in some embodiments, multiple server
machines and multiple databases communicatively coupled
in parallel or in serial may be utilized, and embodiments are
not so limited.

[0028] Also shown in FIG. 1 are a first user 122 and a
second user 132. One or both of the first and second users
122 and 132 may be a human user, a machine user (e.g., a
computer configured by a software program to interact with
the first device 120), or any suitable combination thereof
(e.g., a human assisted by a machine or a machine super-
vised by a human). The first user 122 may be associated with
the first device 120 and may be a user of the first device 120.
For example, the first device 120 may be a desktop com-
puter, a vehicle computer, a tablet computer, a navigational
device, a portable media device, a smartphone, or a wearable
device (e.g., a smart watch or smart glasses) belonging to the
first user 122. Likewise, the second user 132 may be
associated with the second device 130. As an example, the
second device 130 may be a desktop computer, a vehicle
computer, a tablet computer, a navigational device, a por-
table media device, a, smartphone, or a wearable device
(e.g., a smart watch or smart glasses) belonging to the
second user 132. The first user 122 and a second user 132
may be examples of users or customers interfacing with the
network-based system 105 to utilize a natural language
model according to their specific needs. In other cases, the
users 122 and 132 may be examples of annotators who are
supplying annotations to documents to be used for training
purposes when developing a natural language model. In
other cases, the users 122 and 132 may be examples of
analysts who are providing inputs to the natural language
platform to more efficiently train the natural language
model. The users 122 and 132 may interface with the
network-based system 105 through the devices 120 and 130,
respectively.

[0029] Any of the machines, databases 115, or first or
second devices 120 or 130 shown in FIG. 1 may be
implemented in a general-purpose computer modified (e.g.,
configured or programmed) by software (e.g., one or more
software modules) to be a special-purpose computer to
perform one or more of the functions described herein for
that machine, database 115, or first or second device 120 or
130. For example, a computer system able to implement any
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one or more of the methodologies described herein is
discussed below with respect to FIG. 8. As used herein, a
“database” may refer to a data storage resource and may
store data structured as a text file, a table, a spreadsheet, a
relational database (e.g., an object-relational database), a
triple store, a hierarchical data store, any other suitable
means for organizing and storing data or any suitable
combination thereof. Moreover, any two or more of the
machines, databases, or devices illustrated in FIG. 1 may be
combined into a single machine, and the functions described
herein for any single machine, database, or device may be
subdivided among multiple machines, databases, or devices.

[0030] The network 190 may be any network that enables
communication between or among machines, databases 115,
and devices (e.g., the server machine 110 and the first device
120). Accordingly, the network 190 may be a wired network,
a wireless network (e.g., a mobile or cellular network), or
any suitable combination thereof. The network 190 may
include one or more portions that constitute a private net-
work, a public network (e.g., the Internet), or any suitable
combination thereof. Accordingly, the network 190 may
include, for example, one or more portions that incorporate
a local area network (LAN), a wide area network (WAN),
the Internet, a mobile telephone network (e.g., a cellular
network), a wired telephone network (e.g., a plain old
telephone system (POTS) network), a wireless data network
(e.g., WiFi network or WiMax network), or any suitable
combination thereof. Any one or more portions of the
network 190 may communicate information via a transmis-
sion medium. As used herein, “transmission medium” may
refer to any intangible (e.g., transitory) medium that is
capable of communicating (e.g., transmitting) instructions
for execution by a machine (e.g., by one or more processors
of such a machine), and can include digital or analog
communication signals or other intangible media to facilitate
communication of such software.

[0031] Referring to FIG. 2, a diagram 200 is presented
showing an example system architecture for performing
aspects of the present disclosure, according to some example
embodiments. The example system architecture according to
diagram 200 represents various data structures and their
interrelationships that may comprise a natural language
platform, such as the natural language platform 170, or the
network-based system 105. These various data structures
may be implemented through a combination of hardware
and software, the details of which may be apparent to those
with skill in the art based on the descriptions of the various
data structures described herein. For example, an API mod-
ule 205 includes one or more API processors, where multiple
API processors may be connected in parallel. In some
example embodiments, the repeating boxes in the diagram
200 represent identical servers or machines, to signify that
the system architecture in diagram 200 may be scalable to an
arbitrary degree. The API module 205 may represent a point
of contact for multiple other modules, includes a database
module 210, a cache module 215, background processes
module 220, applications module 225, and even an interface
for users 235 in some example embodiments. The API
module 205 may be configured to receive or access data
from database module 210. The data may include digital
forms of thousands or millions of human communications.
The cache module 215 may store in more accessible
memory various information from the database module 210
or from users 235 or other subscribers. Because the database
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module 210 and cache module 215 show accessibility
through API module 205, the API module 205 can also
support authentication and authorization of the data in these
modules. The background module 220 may be configured to
perform a number of background processes for aiding natu-
ral language processing functionality. Various examples of
the background processes include a model training module,
a cross validation module, an intelligent queuing module, a
model prediction module, a topic modeling module, an
annotation aggregation module, an annotation validation
module, and a feature extraction module. These various
modules are described in more detail below as well as in
non-provisional applications U.S. patent application Ser.
No. 14/964,520, filed Dec. 9, 2015, and titled “OPTIMIZA-
TION TECHNIQUES FOR ARTIFICIAL INTELLI-
GENCE,” U.S. patent application Ser. No. 14/964,522, filed
Dec. 9, 2015, and titled “GRAPHICAL SYSTEMS AND
METHODS FOR HUMAN-IN-THE-LOOP MACHINE
INTELLIGENCE,” U.S. patent application Ser. No. 14/964,
510, filed Dec. 9, 2015, and titled “METHODS AND
SYSTEMS FOR IMPROVING MACHINE LEARNING
PERFORMANCE,” U.S. patent application Ser. No. 14/964,
512, filed Dec. 9, 2015, and titled “AN INTELLIGENT
SYSTEM THAT DYNAMICALLY IMPROVES ITS
KNOWLEDGE AND CODE-BASE FOR NATURAL
LANGUAGE UNDERSTANDING,” U.S. patent applica-
tion Ser. No. 14/964,525, filed Dec. 9, 2015, and titled
“METHODS AND SYSTEMS FOR LANGUAGE-AG-
NOSTIC MACHINE LEARNING IN NATURAL LAN-
GUAGE PROCESSING USING FEATURE EXTRAC-
TION,” and U.S. patent application Ser. No. 14/964,528,
filed Dec. 9, 2015, and titled “TECHNIQUES FOR COM-
BINING HUMAN AND MACHINE LEARNING IN
NATURAL LANGUAGE PROCESSING,” each of which
are incorporated by reference in their entireties. The API
module 205 may also be configured to support display and
functionality of one or more applications in applications
module 225.

[0032] Insome embodiments, the API module 205 may be
configured to provide as an output the natural language
model packaged in a computationally- and memory-efficient
manner. The natural language model may then be transmit-
ted to multiple client devices, such as devices 120 and 130,
including transmitting to mobile devices and other machines
with less memory and less processing power.

[0033] Referring to FIG. 3, a high level diagram 300 is
presented showing various examples of types of human
communications and what the objectives may be for a
natural language model to accomplish. Here, various sources
of data, sometimes referred to as a collection of documents
305, may be obtained and stored in, for example database
115, client data store 155, or database modules 210, and may
represent different types of human communications, all
capable of being analyzed by a natural language model.
Examples of the types of documents 305 include, but are not
limited to, posts in social media, emails or other writings for
customer feedback, pieces of or whole journalistic articles,
commands spoken or written to electronic devices, tran-
scribed call center recordings; electronic (instant) messages;
corporate communications (e.g., SEC 10-k, 10-q); confiden-
tial documents and communications stored on internal col-
laboration systems (e.g., SharePoint, Notes), and pieces of
or whole scholarly texts.
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[0034] In some embodiments, at block 310, it may be
desired to classify any of the documents 305 into a number
of enumerated categories or topics, consistent with some of
the descriptions mentioned above. This may be referred to as
performing a document-scope task. For example, a user 130
in telecommunications may supply thousands of customer
service emails related to services provided by a telecommu-
nications company. The user 130 may desire to have a
natural language model generated that classifies the emails
into predetermined categories, such as negative sentiment
about their Internet service, positive sentiment about their
Internet service, negative sentiment about their cable ser-
vice, and positive sentiment about their cable service. As
previously mentioned, these various categories for which a
natural language model may classify the emails into, e.g.
“negative” sentiment about “Internet service,” “positive”
sentiment about “Internet service,” “negative” sentiment
about “cable service,” etc., may be referred to as “labels.”
Based on these objectives, at block 315, a natural language
model may be generated that is tailored to classify these
types of emails into these types of labels.

[0035] As another example, in some embodiments, at
block 320, it may be desired to extract specific subsets of
text from documents, consistent with some of the descrip-
tions mentioned above. This may be another example of
performing a span-scope task, in reference to the fact that
this function focuses on a subset within each document (as
previously mentioned, referred to herein as a “span”). For
example, a user 130 may desire to identify all instances of
a keyword, key phrase, or general subject matter within a
novel. Certainly, this span scope task may be applied to
multiple novels or other documents. Another example
includes a company that may want to extract phrases that
correspond to products or product features (e.g., “iPhone 57
or “battery life”). Here too, based on this objective, at block
315, a natural language model may be generated that is
tailored to perform this function for a specified number of
documents.

[0036] As another example, in some embodiments, at
block 325, it may be desired to discover what categories the
documents may be thematically or topically organized into
in the first place, consistent with descriptions above about
topic modeling. In some cases, the user 130 may utilize the
natural language platform only to perform topic modeling
and to discover what topics are most discussed in a specified
collection of documents 305. To this end, the natural lan-
guage platform may be configured to conduct topic model-
ing analysis at block 330. Topic modeling is discussed in
more detail below, as well as in applications U.S. patent
application Ser. No. 14/964,520, filed Dec. 9, 2015, and
titled “OPTIMIZATION TECHNIQUES FOR ARTIFICIAL
INTELLIGENCE,” U.S. patent application Ser. No. 14/964,
522, filed Dec. 9, 2015, and titled “GRAPHICAL SYS-
TEMS AND METHODS FOR HUMAN-IN-THE-LOOP
MACHINE INTELLIGENCE,” U.S. patent application Ser.
No. 14/964,511, filed Dec. 9, 2015, and titled “METHODS
AND SYSTEMS FOR MODELING COMPLEX TAX-
ONOMIES WITH NATURAL LANGUAGE UNDER-
STANDING,” and U.S. patent application Ser. No. 14/964,
528, filed Dec. 9, 2015, and titled “TECHNIQUES FOR
COMBINING HUMAN AND MACHINE LEARNING IN
NATURAL LANGUAGE PROCESSING,” each of which
are incorporated herein by reference in their entireties. In
some cases, it may be desired to then generate a natural
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language model that categorizes the documents 305 into
these newfound topics. Thus, after performing the topic
modeling analysis 230, in some embodiments, the natural
language model may also be generated at block 315.

[0037] Referring to FIG. 4, a diagram 400 is presented
showing an example flowchart for how different data struc-
tures within the system architecture may be related to one
another, according to some example embodiments. Here, the
collections data structure 410 represents a set of documents
435 that in some cases may generally be homogenous. A
document 435 represents a human communication
expressed in a single discrete package, such as a single
tweet, a webpage, a chapter of a book, a command to a
device, or a journal article, or any part therecof. Each
collection 410 may have one or more tasks 430 associated
with it. A task 430 may be thought of as a classification
scheme. For example, a collection 410 of tweets may be
classified by its sentiment, e.g. a positive sentiment or a
negative sentiment, where each classification constitutes a
task 430 about a collection 410. A label 445 refers to a
specific prediction about a specific classification. For
example, a label 445 may be the “positive sentiment” of a
human communication, or the “negative sentiment” of a
human communication. In some cases, labels 445 can be
applied to merely portions of documents 435, such as
paragraphs in an article or particular names or places men-
tioned in a document 435. For example, a label 445 may be
a “positive opinion” expressed about a product mentioned in
a human communication, or a “negative opinion” expressed
about a product mentioned in a human communication. In
some example embodiments, a task may be a sub-task of
another task, allowing for a hierarchy or complex network of
tasks. For example, if a task has a label of “positive
opinion,” there might be subtasks for types of “positives
opinions,” like “intention to purchase the product,” “positive
review,” “recommendation to friend,” and so on, and there
may be subtasks that capture other relevant information,
such as “positive features.”

[0038] Annotations 440 refer to classifications imputed
onto a collection 410 or a document 435, often times by
human input but may also be added by programmatic means,
such as interpolating from available metadata (e.g., cus-
tomer value, geographic location, etc.), generated by a
pre-existing natural language model, or generated by a topic
modeling process. As an example, an annotation 440 applies
a label 445 manually to a document 435. In other cases,
annotations 440 are provided by users 235 from pre-existing
data. In other cases, annotations 440 may be derived from
human critiques of one or more documents 435, where the
computer determines what annotation 440 should be placed
on a document 435 (or collection 410) based on the human
critique. In other cases, with enough data in a language
model, annotations 440 of a collection 410 can be derived
from one or more patterns of pre-existing annotations found
in the collection 410 or a similar collection 410.

[0039] In some example embodiments, features 450 refer
to a library or collection of certain key words or groups of
words that may be used to determine whether a task 430
should be associated with a collection 410 or document 435.
Thus, each task 430 has associated with it one or more
features 450 that help define the task 430. In some example
embodiments, features 450 can also include a length of
words or other linguistic descriptions about the language
structure of a document 435, in order to define the task 430.
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For example, classifying a document 435 as being a legal
document may be based on determining if the document 435
contains a threshold number of words with particularly long
lengths, words belonging to a pre-defined dictionary of
legal-terms, or words that are related through syntactic
structures and semantic relationships. In some example
embodiments, features 450 are defined by code, while in
other cases features 450 are discovered by statistical meth-
ods. In some example embodiments, features 450 are treated
independently, while in other cases features 450 are net-
worked combinations of simpler features that are used in
combination utilizing techniques like “deep-learning.” In
some example embodiments, combinations of the methods
described herein may be used to define the features 450, and
embodiments are not so limited. One or more processors
may be used to identify in a document 435 the words found
in features data structure 450 to determine what task should
be associated with the document 435.

[0040] In some example embodiments, a work unit’s data
structure 455 specifies when humans should be tasked to
further examine a document 425. Thus, human annotations
may be applied to a document 435 after one or more work
units 455 is applied to the document 435. The work units 455
may specify how many human annotators should examine
the document 435 and in what order of documents should
document 435 be examined. In some example embodiments,
work units 455 may also determine what annotations should
be reviewed in a particular document 435 and what the
optimal user interface should be for review.

[0041] In some example embodiments, the data structures
405, 415, 420 and 425 represent data groupings related to
user authentication and user access to data in system archi-
tecture. For example, the subscribers block 405 may repre-
sent users and associated identification information about
the users. The subscribers 405 may have associated API keys
415, which may represent one or more authentication data
structures used to authenticate subscribers and provide
access to the collections 410. Groups 420 may represent a
grouping of subscribers based on one or more common
traits, such as subscribers 405 belonging to the same com-
pany. Individual users 425 capable of accessing the collec-
tions 410 may also result from one or more groups 420. In
addition, in some cases, each group 420, user 425, or
subscriber 405 may have associated with it a more person-
alized or customized set of collections 510, documents 435,
annotations 440, tasks, 430, features 450, and labels 445,
based on the specific needs of the customer.

[0042] Aspects of the present disclosure allow for a
trained natural language model to be stored in an efficient
manner such that the trained natural language model may be
utilized in virtually any computing device. Unlike other
natural language processing engines that may be computa-
tionally intensive to the point of being capable of running
only on high performance machines, the organization of the
natural language models according to the present disclosures
allow for natural language processing to be performed even
on smaller devices, such as mobile devices.

[0043] In some embodiments, the flexible portability of
the trained natural language model is based at least in part
on an efficient organization for storing the trained learning
data of a model. In some embodiments, the efficiently
organized data file is called a “ZIF,” and may include a table
of linguistic features and associated predictive probabilities
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for each feature. Multiple ZIFs may be generated and used
to comprise a natural language model.

[0044] As used herein, a feature type is a data structure
responsible for taking a tokenized sequence of document
text and generating linguistic features from the content.
Aspects of the present disclosure include an extensible
system for defining feature types and parameters for each
(e.g., case sensitivity), and project administrators are able to
choose appropriate feature types for their tasks in an asso-
ciated graphical user interface for conducting the model
training. An example interface for adding a feature is shown
in FIG. 5.

[0045] In some embodiments, a standard set of feature
types are assigned by the system based on properties of the
document training data, such as the length of the text or the
language used. Additionally, “deep-learning” techniques
may be used to further optimize the assigned feature types.
[0046] Referring to FIG. 6, illustration 600 shows a chart
of some example feature types, according to some embodi-
ments. Each of the features may be applied to a particular
type of tasks, as described in the “Valid Tasks” column.
Example parameters needed for utilizing the various feature
types are described in the “Parameters” column.

[0047] An example process of converting a document to a
set of features is illustrated in example flow diagram 610.
Shown here is the application of the NGrams feature with
parameters of size=2, strip_punctuation=false and case_
insensitive=false.

[0048] In some embodiments, the ZIF file stores a natural
language model for task 430 within a table that associates,
for each feature among a plurality of features generated
using a process like that shown in flow diagram 610, one or
more probabilities associated with a label among a plurality
of'labels. Each of these different probabilities has a different
meaning, examples of some of which are described more
below, but in general the natural language platform is
configured to interpret the meaning of each probability given
its location in a row and column of a table in the ZIF file. The
probabilities are calculated by a model training process such
as included in the background processing module 220 of
FIG. 2. In some embodiments, the ZIF file stores either 2 or
3 probabilities for each generated feature for each of the
labels 445, depending on whether task 430 is a document-
scope or span-scope task, respectively. In some embodi-
ments, the ZIF may be restricted to store a maximum
number of feature probabilities for each label (for example,
100,000), and a feature selection process performed during
model training may decide which features should be
included in the ZIF. In such embodiments, the ZIF may store
0 probabilities for specific features and labels, if the feature
selection process discards that feature.

[0049] In some embodiments, the ZIF file stores the loga-
rithms of each probability, rather than the exact probability
value. An example of this table is described below. Using the
logarithms improves run-time prediction speed by using
addition and subtraction operations to combine the prob-
abilities for multiple features, rather than multiplication and
division. The addition and subtraction operations are less
computationally intensive and therefore more efficient.
[0050] For document tasks, this table will be organized
like a spreadsheet with 1 column for the feature, and 2
columns for each label (e.g., corresponding to the probabil-
ity that the feature predicts the presence or absence of a
label, respectively). An example row of this table is shown
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in illustration 710. As shown, the row of feature “Lorem” in
the “BagofWords” feature type has probabilities for the
presence and absence of “Labell” and “Label2” in the
respective columns, stored in a logarithmic scale for better
efficiency.

[0051] For span tasks, the table will be organized to have
1 column for the feature, and 3 columns for each label (e.g.,
corresponding to the probability that the feature appears at
the beginning, inside, or outside a span, respectively). An
example row of this type is shown in illustration 720. As
shown, the row of the feature “the United” in the feature type
“SpanWords” with an offset of —1 has probabilities that the
feature appears at the beginning, inside, and outside of a
span of “Labell” in the respective columns, stored in a
logarithmic scale for better efficiency.

[0052] To conserve space, in some embodiments, the
tables are stored using 2 arrays of 16-bit numbers for every
feature row. A first array stores the integer indices of every
label with non-zero probability. This allows the ZIF to store
sparse models efficiently, since features that are not selected
in Step 3 for the label do not consume any space on-disk. A
second array stores a quantized 16-bit fixed-point value of
the log-probability. In conventional systems, weights would
be stored as 32-bit or 64-bit floating-point values. This is
inefficient, since probabilistic values are between 0 . . . 1,
and a 32-bit floating point number represents —2*%127 . . .
2*%%126, so a substantial amount of space is wasted on values
that would never be used (a 64-bit floating point number is
even more extreme). Additionally, conventional floating
point encodings use a sign-exponent-mantissa format which
distributes numerical accuracy logarithmically throughout
the range, with values closer to zero receiving a proportion-
ally higher percentage of available encodings than larger
values. One additional advantage to storing the logarithms
of the probabilities in the ZIF file is that the logarithmic
transform provides a similar distribution of encodings to raw
values as using a conventional floating-point format. There-
fore, 16-bits of precision, logarithmically distributed for
probabilities between O . . . 1 may be sufficient and provide
more memory efficiency.

[0053] ZIF files also contain the Task configuration data
that existed when the model was trained, in some embodi-
ments. This includes (a) the feature types that were used and
parameters configured for each, and (b) any analyst-defined
tuning rules. Descriptions of these data are below, according
to some embodiments.

[0054] In some embodiments, tuning dictionaries are
stored within a ZIF using Javascript Object Notation (JSON)
encoding. Tuning dictionaries are represented as dictionaries
of phrases and corresponding rule weights for each label in
the task. Dictionaries may be empty if no rules are defined
for that label. Shown below is an example storage format for
rules with weights. Here for example, if a document contains
the word “router” or “connectivity,” it will be highly likely
to be classified as belonging to the Broadband classification.
As described below, the weight (e.g., 0.8) influences weights
assigned by machine learning.

“Broadband”: {
“/(?1)broad.?band/”: 0.9,
“/(?)router|connectivity/”: 0.8,
“/()wire.?lessIwi.?fi”: 0.8

b
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-continued

“On demand”: {
“/(2i)dod’: 0.9,

[0055] In some embodiments, enabled feature types and
parameters configured for each are stored within a ZIF using
JSON encoding. According to these embodiments, the
names and parameters for enabled features may be stored as
an array of dictionaries, with each dictionary containing
entries for both the enabled feature type name and its
associated configuration parameters. Below is an example of
how this aspect may be organized.

“features™: [
{
“name”: “BagOfWords”,
“parameters”: {
“case__insensitive: “false”,
“strip__punctuation”: “false”
»

b
{

“name”: “NGrams”,

“parameters”: {
“case_insensitive”: “true”,
“size™: “37,
“strip__punctuation”: “true”

>

¥
]

[0056] Additionally, in some embodiments, the inclusion
of feature configuration and rules within the binary model
data ensures that all of the configuration information needed
to apply a model to text is contained within the model file
itself.

[0057] In some embodiments, ZIF files may also include
inter-document statistical data as used by the enabled feature
types. For example, a feature type that designates documents
as being longer or shorter than a median document length for
the document set may store the computed median document
length statistic within the same structure used to store
feature parameter configuration.

[0058] In some embodiments, the set of supported feature
types is defined by a centralized API server, and the list of
feature types, including each name and parameters sup-
ported therein are defined by this central authority. Applying
the natural language model defined according to these
embodiments requires that the software which reads the ZIF
file provide an environment in which all feature types
referenced by the model are implemented accordingly.
[0059] In tightly embedded environments, coupling of the
model to the software environment may be undesirable,
necessitating expensive software updates. To decouple this,
in some embodiments, the ZIF file may include executable
code that performs a user-specified data transformation to
generate custom features. This executable code may be used
instead of, or in addition to, other supported feature types.
Such transformations may be developed in a standard lan-
guage (like JavaScript, or Lua) that has been broadly ported
across a number of platforms. In such embodiments, the
software reading the ZIF file may provide a much more
limited set of services, for example only providing tokeni-
zation and a suitable execution engine for the provided
transformation. In such embodiments, code written in a
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portable scripting language may be stored within the same
JSON array used to store other enabled feature type names
and associated parameters.

[0060] Unlike conventional methods of storing features,
whereby typically a natural language platform may provide
only a fixed set of feature types (e.g., having a “central
authority” define all available feature types), providing
executable code in the ZIF file to perform user-specified data
transformations allows for new features to be developed and
resolves tedious inconsistencies between different software
versions of the natural language model stored in the ZIF. For
example, if a model is trained using a new version of
software that includes a new feature type that was not
present in an older software version, allowing feature types
to be defined as executable code embedded within the model
data may eliminate these compatibility problems. Further-
more, this may also allow for much faster development and
utilization of new feature types, due to being able to train
and apply models incorporating the new feature types with-
out re-deploying the platform through, e.g., a new software
version.

[0061] One advantage to storing all necessary configura-
tion data within the ZIF file is that application of the natural
language model is self-contained; no external state is nec-
essary to apply the natural language model stored in a ZIF
file to unprocessed text. Once the ZIF file(s) containing the
language model is generated, a device even with low pro-
cessing power and memory may be able to utilize the model
stored within the ZIF. For example, whenever a client
application makes a request to classify (or extract spans)
from some document text, a software application utilizing
the ZIF file may perform the following operations according
to some embodiments:

[0062] 1.Load and cache the ZIF model for the task (if not
already loaded)

[0063] 2. Tokenize the document

[0064] 3. Generate features according to the feature types
and parameters defined in the task configuration data
[0065] 4. Compute the odds for each label by applying the
equation (1) as shown to the document features, using the
log-probabilities stored in the ZIF

5, Jabel=gXffeanesZ(label-X(\abel) (1)

[0066] 5. If any rules are defined, compute a rule-based
prediction using the equation (2) as shown, given the
weights, w,, for each rule and number of times the rule
matches text within the document, count(r, document):

Z w, - count(r, document) 2)
fabel - rerules
Prude > count(r, document)
rerules
[0067] 6. The final confidence for the prediction in each

label is a weighted-average of p,,; and p,,,;.- The weights are
the number of features found in the ZIF and the number of
matching rules, respectively.

[0068] A similar process may be applied to classify
regions of text within documents, such as identifying com-
pany and location names, as the one described for classifi-
cation of entire documents, according to some embodiments.
In addition, further statistical considerations may be applied
to span-specific contexts. For example, a feature type spe-
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cific to spans may include additional rules, such as “string x
is more likely to be label y if it appears in the first part of the
document.” This type of analysis may also be programmed
and included in the ZIF data.

[0069] In some embodiments, various data structures for
storing content of a ZIF may also improve efficiency. For
example, some ZIF files are organized like spreadsheets,
with every feature stored in its entirety along with a row of
probabilities for it. However, many features are substrings of
each other (for example, the bigram “the United” is an exact
substring of the trigram “the United States”). As the text in
features gets longer, the proportion of storage space con-
sumed by the feature text increases relative to the overall
model size.

[0070] This suggests that an alternate data structure, such
as a trie or other hierarchical structure, may be a better way
to store ZIFs to improve F-measure/byte. In some embodi-
ments, these data structures may be used to improve effi-
ciency.

[0071] Referring to FIG. 8, the block diagram illustrates
components of a machine 800, according to some example
embodiments, able to read instructions 824 from a machine-
readable medium 822 (e.g., a non-transitory machine-read-
able medium, a machine-readable storage medium, a com-
puter-readable storage medium, or any suitable combination
thereof) and perform any one or more of the methodologies
discussed herein, in whole or in part. Specifically, FIG. 8
shows the machine 800 in the example form of a computer
system (e.g., a computer) within which the instructions 824
(e.g., software, a program, an application, an applet, an app,
or other executable code) for causing the machine 800 to
perform any one or more of the methodologies discussed
herein may be executed, in whole or in part.

[0072] In alternative embodiments, the machine 800 oper-
ates as a standalone device or may be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine 800 may operate in the capacity of a server
machine 110 or a client machine in a server-client network
environment, or as a peer machine in a distributed (e.g.,
peer-to-peer) network environment. The machine 800 may
include hardware, software, or combinations thereof, and
may, as example, be a server computer, a client computer, a
personal computer (PC), a tablet computer, a laptop com-
puter, a netbook, a cellular telephone, a smartphone, a
set-top box (STB), a personal digital assistant (PDA), a web
appliance, a network router, a network switch, a network
bridge, or any machine capable of executing the instructions
824, sequentially or otherwise, that specify actions to be
taken by that machine. Further, while only a single machine
800 is illustrated, the term “machine” shall also be taken to
include any collection of machines that individually or
jointly execute the instructions 824 to perform all or part of
any one or more of the methodologies discussed herein.
[0073] The machine 800 includes a processor 802 (e.g., a
central processing unit (CPU), a graphics processing unit
(GPU), a digital signal processor (DSP), an application
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), or any suitable combination thereof),
a main memory 804, and a static memory 806, which are
configured to communicate with each other via a bus 808.
The processor 802 may contain microcircuits that are con-
figurable, temporarily or permanently, by some or all of the
instructions 824 such that the processor 802 is configurable
to perform any one or more of the methodologies described
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herein, in whole or in part. For example, a set of one or more
microcircuits of the processor 802 may be configurable to
execute one or more modules (e.g., software modules)
described herein.

[0074] The machine 800 may further include a video
display 810 (e.g., a plasma display panel (PDP), a light
emitting diode (LED) display, a liquid crystal display
(LCD), a projector, a cathode ray tube (CRT), or any other
display capable of displaying graphics or video). The
machine 800 may also include an alphanumeric input device
812 (e.g., a keyboard or keypad), a cursor control device 814
(e.g., a mouse, a touchpad, a trackball, a joystick, a motion
sensor, an eye tracking device, or other pointing instrument),
a storage unit 816, a signal generation device 818 (e.g., a
sound card, an amplifier, a speaker, a headphone jack, or any
suitable combination thereof), and a network interface
device 820.

[0075] The storage unit 816 includes the machine-read-
able medium 822 (e.g., a tangible and non-transitory
machine-readable storage medium) on which are stored the
instructions 824 embodying any one or more of the meth-
odologies or functions described herein, including, for
example, any of the descriptions of FIGS. 1-7. The instruc-
tions 824 may also reside, completely or at least partially,
within the main memory 804, within the processor 802 (e.g.,
within the processor’s cache memory), or both, before or
during execution thereof by the machine 800. The instruc-
tions 824 may also reside in the static memory 806.
[0076] Accordingly, the main memory 804 and the pro-
cessor 802 may be considered machine-readable media 822
(e.g., tangible and non-transitory machine-readable media).
The instructions 824 may be transmitted or received over a
network 826 via the network interface device 820. For
example, the network interface device 820 may communi-
cate the instructions 824 using any one or more transfer
protocols (e.g., HT'TP). The machine 800 may also represent
example means for performing any of the functions
described herein, including the processes described in FIGS.
1-7.

[0077] In some example embodiments, the machine 800
may be a portable computing device, such as a smart phone
or tablet computer, and have one or more additional input
components (e.g., sensors or gauges) (not shown). Examples
of'such input components include an image input component
(e.g., one or more cameras), an audio input component (e.g.,
a microphone), a direction input component (e.g., a com-
pass), a location input component (e.g., a GPS receiver), an
orientation component (e.g., a gyroscope), a motion detec-
tion component (e.g., one or more accelerometers), an
altitude detection component (e.g., an altimeter), and a gas
detection component (e.g., a gas sensor). Inputs harvested by
any one or more of these input components may be acces-
sible and available for use by any of the modules described
herein.

[0078] As used herein, the term “memory” refers to a
machine-readable medium 822 able to store data temporarily
or permanently and may be taken to include, but not be
limited to, random-access memory (RAM), read-only
memory (ROM), buffer memory, flash memory, and cache
memory. While the machine-readable medium 822 is shown
in an example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database 115, or associated caches and servers)
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able to store instructions 824. The term “machine-readable
medium” shall also be taken to include any medium, or
combination of multiple media, that is capable of storing the
instructions 824 for execution by the machine 800, such that
the instructions 824, when executed by one or more proces-
sors of the machine 800 (e.g., processor 802), cause the
machine 800 to perform any one or more of the method-
ologies described herein, in whole or in part. Accordingly, a
“machine-readable medium” refers to a single storage appa-
ratus or device 120 or 130, as well as cloud-based storage
systems or storage networks that include multiple storage
apparatus or devices 120 or 130. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to, one or more tangible (e.g., non-transitory)
data repositories in the form of a solid-state memory, an
optical medium, a magnetic medium, or any suitable com-
bination thereof.

[0079] Furthermore, the machine-readable medium 822 is
non-transitory in that it does not embody a propagating
signal. However, labeling the tangible machine-readable
medium 822 as “non-transitory” should not be construed to
mean that the medium is incapable of movement; the
medium should be considered as being transportable from
one physical location to another. Additionally, since the
machine-readable medium 822 is tangible, the medium may
be considered to be a machine-readable device.

[0080] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may be
performed concurrently, and nothing requires that the opera-
tions be performed in the order illustrated. Structures and
functionality presented as separate components in example
configurations may be implemented as a combined structure
or component. Similarly, structures and functionality pre-
sented as a single component may be implemented as
separate components. These and other variations, modifica-
tions, additions, and improvements fall within the scope of
the subject matter herein.

[0081] Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute software modules
(e.g., code stored or otherwise embodied on a machine-
readable medium 822 or in a transmission medium), hard-
ware modules, or any suitable combination thereof. A “hard-
ware module” is a tangible (e.g., non-transitory) unit capable
of performing certain operations and may be configured or
arranged in a certain physical manner. In various example
embodiments, one or more computer systems (e.g., a stand-
alone computer system, a client computer system, or a server
computer system) or one or more hardware modules of a
computer system (e.g., a processor 802 or a group of
processors 802) may be configured by software (e.g., an
application or application portion) as a hardware module
that operates to perform certain operations as described
herein.

[0082] In some embodiments, a hardware module may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware module may
include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor, such
as a field programmable gate array (FPGA) or an ASIC. A
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hardware module may also include programmable logic or
circuitry that is temporarily configured by software to per-
form certain operations. For example, a hardware module
may include software encompassed within a general-pur-
pose processor 802 or other programmable processor 802. It
will be appreciated that the decision to implement a hard-
ware module mechanically, in dedicated and permanently
configured circuitry, or in temporarily configured circuitry
(e.g., configured by software) may be driven by cost and
time considerations.

[0083] Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses 808) between or among two or more of the
hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).
[0084] The various operations of example methods
described herein may be performed, at least partially, by one
or more processors 802 that are temporarily configured (e.g.,
by software) or permanently configured to perform the
relevant operations. Whether temporarily or permanently
configured, such processors 802 may constitute processor-
implemented modules that operate to perform one or more
operations or functions described herein. As used herein,
“processor-implemented module” refers to a hardware mod-
ule implemented using one or more processors 802.

[0085] Similarly, the methods described herein may be at
least partially processor-implemented, a processor 802 being
an example of hardware. For example, at least some of the
operations of a method may be performed by one or more
processors 802 or processor-implemented modules. As used
herein, “processor-implemented module” refers to a hard-
ware module in which the hardware includes one or more
processors 802. Moreover, the one or more processors 802
may also operate to support performance of the relevant
operations in a “cloud computing” environment or as a
“software as a service” (SaaS). For example, at least some
of'the operations may be performed by a group of computers
(as examples of machines 800 including processors 802),
with these operations being accessible via a network 826
(e.g., the Internet) and via one or more appropriate interfaces
(e.g., an API).

[0086] The performance of certain operations may be
distributed among the one or more processors 802, not only
residing within a single machine 800, but deployed across a
number of machines 800. In some example embodiments,
the one or more processors 802 or processor-implemented
modules may be located in a single geographic location
(e.g., within a home environment, an office environment, or
a server farm). In other example embodiments, the one or
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more processors 802 or processor-implemented modules
may be distributed across a number of geographic locations.
[0087] Unless specifically stated otherwise, discussions
herein using words such as “processing,” “computing,”
“calculating,” “determining,” “presenting,” “displaying,” or
the like may refer to actions or processes of a machine 800
(e.g., a computer) that manipulates or transforms data rep-
resented as physical (e.g., electronic, magnetic, or optical)
quantities within one or more memories (e.g., volatile
memory, non-volatile memory, or any suitable combination
thereof), registers, or other machine components that
receive, store, transmit, or display information. Furthermore,
unless specifically stated otherwise, the terms “a” or “an” are
herein used, as is common in patent documents, to include
one or more than one instance. Finally, as used herein, the
conjunction “or” refers to a non-exclusive “or,” unless
specifically stated otherwise.

[0088] The present disclosure is illustrative and not lim-
iting. Further modifications will be apparent to one skilled in
the art in light of this disclosure and are intended to fall
within the scope of the appended claims.

What is claimed is:

1. A method for classifying a document in natural lan-
guage processing using a natural language model stored in
one or more data files, the method comprising:

accessing one or more feature types from the data file, the

one or more feature types each defining a data structure
configured to access a tokenized sequence of the docu-
ment and generate linguistic features from content
within the tokenized sequence;

performing a tokenizing operation of the document, the

tokenizing operation configured to generate one or
more tokenized sequences from the content within the
document;
generating a plurality of features for the document from
the one or more tokenized sequences based on param-
eters defined by the one or more feature types;

accessing a plurality of probabilities stored in the data file,
each probability among the plurality of probabilities
associated with a feature among the plurality of fea-
tures and defining a pre-computed likelihood that said
feature predicts a presence of absence of a label that the
document is to be classified into;

computing a prediction score indicating how likely the

document is to be classified into said label, based on the
plurality of probabilities; and

classifying the document into said label based on com-

paring the prediction score to a threshold.

2. The method of claim 1, wherein generating the plurality
of features is further based on parameters defined in task
configuration data in the data file, the task configuration data
associated with a type of task analysis that the natural
language model is configured to classify the document into.

3. The method of claim 1, wherein the plurality of
probabilities are pre-computed during a model training
process configured to train the natural language model to
classify documents according to at least said label and said
task.

4. The method of claim 1, wherein the plurality of
probabilities comprise a first probability that said feature
predicts the presence of said label and a second probability
that said feature predicts the absence of said label.

5. The method of claim 1, wherein the plurality of
probabilities comprise a first probability that said feature
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appears at a beginning of a subset of the document, a second
probability that said feature appears at an inside of the subset
of the document, and a third probability that said feature
appears on an outside of the subset of the document.

6. The method of claim 1, wherein each feature among the
generated plurality of features comprises a first array storing
integer indices of every label in the natural language model
having a non-zero probability.

7. The method of claim 6, wherein each feature among the
generated plurality of features further comprises a second
array storing a quantized 16-bit fixed-point value of each
probability converted as a logarithm.

8. The method of claim 1, wherein generating the plurality
of features is based further on task configuration data stored
in the data file, the task configuration data including training
feature types used to train the natural language model.

9. The method of claim 8, wherein the task configuration
data stored in the data file includes executable code config-
ured perform a user-specified data transformation to gener-
ate custom feature types.

10. The method of claim 1, wherein the task configuration
data further comprises analyst-defined tuning rules.

11. A natural language platform configured to classify a
document in natural language processing using a natural
language model stored in one or more data files, the natural
language platform comprising:

a memory configured to store the data file; and

a processor coupled to the memory and configured to:

access one or more feature types from the data file, the one

or more feature types each defining a data structure
configured to access a tokenized sequence of the docu-
ment and generate linguistic features from content
within the tokenized sequence;

perform a tokenizing operation of the document, the

tokenizing operation configured to generate one or
more tokenized sequences from the content within the
document;

generate a plurality of features for the document from the

one or more tokenized sequences based on parameters
defined by the one or more feature types;

access a plurality of probabilities stored in the data file,

each probability among the plurality of probabilities
associated with a feature among the plurality of fea-
tures and defining a pre-computed likelihood that said
feature predicts a presence of absence of a label that the
document is to be classified into;

compute a prediction score indicating how likely the

document is to be classified into said label, based on the
plurality of probabilities; and

classify the document into said label based on comparing

the prediction score to a threshold.

12. The natural language platform of claim 11, wherein
generating the plurality of features is further based on
parameters defined in task configuration data in the data file,
the task configuration data associated with a type of task
analysis that the natural language model is configured to
classify the document into.

13. The natural language platform of claim 11, wherein
the plurality of probabilities are pre-computed during a
model training process configured to train the natural lan-
guage model to classify documents according to at least said
label and said task.

14. The natural language platform of claim 11, wherein
the plurality of probabilities comprise a first probability that
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said feature predicts the presence of said label and a second
probability that said feature predicts the absence of said
label.

15. The natural language platform of claim 11, wherein
the plurality of probabilities comprise a first probability that
said feature appears at a beginning of a subset of the
document, a second probability that said feature appears at
an inside of the subset of the document, and a third prob-
ability that said feature appears on an outside of the subset
of the document.

16. The natural language platform of claim 11, wherein
each feature among the generated plurality of features
comprises a first array storing integer indices of every label
in the natural language model having a non-zero probability.

17. The natural language platform of claim 16, wherein
each feature among the generated plurality of features
further comprises a second array storing a quantized 16-bit
fixed-point value of each probability converted as a loga-
rithm.

18. A non-transitory computer-readable medium embody-
ing instructions that, when executed by a processor, perform
operations comprising:

accessing one or more feature types from the data file, the
one or more feature types each defining a data structure
configured to access a tokenized sequence of the docu-
ment and generate linguistic features from content
within the tokenized sequence;
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performing a tokenizing operation of the document, the
tokenizing operation configured to generate one or
more tokenized sequences from the content within the
document;
generating a plurality of features for the document from
the one or more tokenized sequences based on param-
eters defined by the one or more feature types;

accessing a plurality of probabilities stored in the data file,
each probability among the plurality of probabilities
associated with a feature among the plurality of fea-
tures and defining a pre-computed likelihood that said
feature predicts a presence of absence of a label that the
document is to be classified into;

computing a prediction score indicating how likely the

document is to be classified into said label, based on the
plurality of probabilities; and

classifying the document into said label based on com-

paring the prediction score to a threshold.

19. The computer readable medium of claim 18, wherein
generating the plurality of features is further based on
parameters defined in task configuration data in the data file,
the task configuration data associated with a type of task
analysis that the natural language model is configured to
classify the document into.

20. The computer readable medium of claim 18, wherein
the plurality of probabilities are pre-computed during a
model training process configured to train the natural lan-
guage model to classify documents according to at least said
label and said task.



