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METHODS AND SYSTEMS FOR PROVIDING 
UNIVERSAL PORTABILITY IN MACHINE 

LEARNING 

TECHNICAL FIELD 
[ 0003 ] The subject matter disclosed herein generally 
relates to processing data . In some example embodiments , 
the present disclosures relate to systems and methods for 
providing universal portability in natural language process 
ing applications . 

CROSS REFERENCES TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a continuation of U . S . patent 
application Ser . No . 14 / 964 , 526 , filed Dec . 9 , 2015 , and 
titled “ METHODS AND SYSTEMS FOR PROVIDING 
UNIVERSAL PORTABILITY IN MACHINE LEARN 
ING ” , which claims the benefits of U . S . Provisional Appli 
cation 62 / 089 , 736 , filed Dec . 9 , 2014 , and titled , “ METH 
ODS AND SYSTEMS FOR ANNOTATING NATURAL 
LANGUAGE PROCESSING , " U . S . Provisional Applica 
tion 62 / 089 , 742 , filed Dec . 9 , 2014 , and titled , “ METHODS 
AND SYSTEMS FOR IMPROVING MACHINE PER 
FORMANCE IN NATURAL LANGUAGE PROCESS 
ING , ” U . S . Provisional Application 62 / 089 , 745 , filed Dec . 
9 , 2014 , and titled , “ METHODS AND SYSTEMS FOR 
IMPROVING FUNCTIONALITY IN NATURAL LAN 
GUAGE PROCESSING , " U . S . Provisional Application 
62 / 089 , 747 , filed Dec . 9 , 2014 , and titled , “ METHODS 
AND SYSTEMS FOR SUPPORTING NATURAL LAN 
GUAGE PROCESSING , ” and U . S . Provisional Application 
62 / 167 , 078 , filed May 27 , 2015 , and titled “ METHODS 
AND SYSTEMS FOR PROVIDING UNIVERSAL POR 
TABILITY IN NATURAL LANGUAGE PROCESSING 
APPLICATIONS , ” the disclosures of which are incorpo 
rated herein in their entireties and for all purposes . 
[ 0002 ] This application is also related to US non provi 
sional applications U . S . patent application Ser . No . 14 / 964 , 
517 , filed Dec . 9 , 2015 , and titled “ METHODS FOR GEN 
ERATING NATURAL LANGUAGE PROCESSING 
SYSTEMS , " U . S . patent application Ser . No . 14 / 964 , 518 , 
filed Dec . 9 , 2015 , and titled “ ARCHITECTURES FOR 
NATURAL LANGUAGE PROCESSING , " U . S . patent 
application Ser . No . 14 / 964 , 520 , filed Dec . 9 , 2015 , and 
titled “ OPTIMIZATION TECHNIQUES FOR ARTIFICIAL 
INTELLIGENCE , ” U . S . patent application Ser . No . 14 / 964 , 
522 , filed Dec . 9 , 2015 , and titled “ GRAPHICAL SYS 
TEMS AND METHODS FOR HUMAN - IN - THE - LOOP 
MACHINE INTELLIGENCE , " U . S . patent application Ser . 
No . 14 / 964 , 510 , filed Dec . 9 , 2015 , and titled “ METHODS 
AND SYSTEMS FOR IMPROVING MACHINE LEARN 
ING PERFORMANCE , ” U . S . patent application Ser . No . 
14 / 964 , 511 , filed Dec . 9 , 2015 , and titled “ METHODS AND 
SYSTEMS FOR MODELING COMPLEX TAXONOMIES 
WITH NATURAL LANGUAGE UNDERSTANDING , " 
U . S . patent application Ser . No . 14 / 964 , 512 , filed Dec . 9 , 
2015 , and titled " AN INTELLIGENT SYSTEM THAT 
DYNAMICALLY IMPROVES ITS KNOWLEDGE AND 
CODE - BASE FOR NATURAL LANGUAGE UNDER 
STANDING , ” U . S . patent application Ser . No . 14 / 964 , 525 , 
filed Dec . 9 , 2015 , and titled “ METHODS AND SYSTEMS 
FOR LANGUAGE - AGNOSTIC MACHINE LEARNING 
IN NATURAL LANGUAGE PROCESSING USING FEA 
TURE EXTRACTION , ” and U . S . patent application Ser . 
No . 14 / 964 , 528 , filed Dec . 9 , 2015 , and titled “ TECH 
NIQUES FOR COMBINING HUMAN AND MACHINE 
LEARNING IN NATURAL LANGUAGE PROCESSING , " 
each of which were filed concurrently with U . S . patent 
application Ser . No . 14 / 964 , 526 , and the entire contents and 
substance of all of which are hereby incorporated in total by 
reference in their entireties and for all purposes . 

BRIEF SUMMARY 
[ 0004 ] In some embodiments , methods and systems for 
providing universal portability in natural language process 
ing applications are presented . In some embodiments , a 
method is presented for classifying a document in natural 
language processing using a natural language model stored 
in a universally portable data file . The method may include : 
accessing one or more feature types from the data file , the 
one or more feature types each defining a data structure 
configured to access a tokenized sequence of the document 
and generate linguistic features from content within the 
tokenized sequence ; performing a tokenizing operation of 
the document , the tokenizing operation configured to gen 
erate one or more tokenized sequences from the content 
within the document ; generating a plurality of features for 
the document from the one or more tokenized sequences 
based on parameters defined by the one or more feature 
types ; accessing a plurality of probabilities stored in the data 
file , each probability among the plurality of probabilities 
associated with a feature among the plurality of features and 
defining a pre - computed likelihood that said feature predicts 
a presence of absence of a label that the document is to be 
classified into ; computing a prediction score indicating how 
likely the document is to be classified into said label , based 
on the plurality of probabilities ; and classifying the docu 
ment into said label based on comparing the prediction score 
to a threshold . 
[ 0005 ] In some embodiments of the method , generating 
the plurality of features is further based on parameters 
defined in task configuration data in the data file , the task 
configuration data associated with a type of task analysis 
that the natural language model is configured to classify the 
document into . 
[ 0006 ] In some embodiments of the method , the plurality 
of probabilities are pre - computed during a model training 
process configured to train the natural language model to 
classify documents according to at least said label and said 
task . 
10007 ] In some embodiments of the method , the plurality 
of probabilities comprise a first probability that said feature 
predicts the presence of said label and a second probability 
that said feature predicts the absence of said label . 
[ 0008 ] In some embodiments of the method , the plurality 
of probabilities comprise a first probability that said feature 
appears at a beginning of a subset of the document , a second 
probability that said feature appears at an inside of the subset 
of the document , and a third probability that said feature 
appears on an outside of the subset of the document . 
[ 0009 ] In some embodiments of the method , each feature 
among the generated plurality of features comprises a first 
array storing integer indices of every label in the natural 
language model having a non - zero probability . 
[ 0010 ] In some embodiments of the method , each feature 
among the generated plurality of features further comprises 
a second array storing a quantized 16 - bit fixed - point value of 
each probability converted as a logarithm . 
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[ 0016 ] FIG . 1 is a network diagram illustrating an example 
network environment suitable for aspects of the present 
disclosure , according to some example embodiments . 
[ 0017 ] FIG . 2 is a block diagram showing an example 
system architecture for performing aspects of the present 
disclosure , according to some example embodiments 
[ 0018 ] FIG . 3 is a high level diagram showing an example 
language modeling flow for how human communications are 
processed using a combination of machine learning tech 
niques and human annotations , according to some example 
embodiments . 
[ 0019 ] FIG . 4 is a diagram showing an example flowchart 
for how different data structures within the system architec 
ture may be related to one another , according to some 
example embodiments . 
10020 ] FIG . 5 shows an example display for adding a 
feature type to a natural language training model , according 
to some embodiments . 
[ 0021 ] FIG . 6 shows examples of feature types and how a 
document may be converted into a set of features , according 
to some embodiments . 
[ 0022 ] FIG . 7 shows examples of information pertaining 
to the efficient storage of a natural language model in a ZIF 
file , according to some embodiments . 
[ 0023 ] FIG . 8 is a block diagram illustrating components 
of a machine , according to some example embodiments , 
able to read instructions from a machine - readable medium 
and perform any one or more of the methodologies dis 
cussed herein . 

[ 0011 ] In some embodiments of the method , generating 
the plurality of features is based further on task configura 
tion data stored in the data file , the task configuration data 
including training feature types used to train the natural 
language model . In some embodiments , the task configura 
tion data stored in the data file includes executable code 
configured perform a user - specified data transformation to 
generate custom feature types . 
[ 0012 ] In some embodiments of the method , the task 
configuration data further comprises analyst - defined tuning 
rules . 
[ 0013 ] In some embodiments , a natural language platform 
configured to classify a document in natural language pro 
cessing using a natural language model stored in a univer 
sally portable data file is presented . the natural language 
platform may include : a memory configured to store the data 
file ; and a processor coupled to the memory and configured 
to : access one or more feature types from the data file , the 
one or more feature types each defining a data structure 
configured to access a tokenized sequence of the document 
and generate linguistic features from content within the 
tokenized sequence ; perform a tokenizing operation of the 
document , the tokenizing operation configured to generate 
one or more tokenized sequences from the content within the 
document ; generate a plurality of features for the document 
from the one or more tokenized sequences based on param 
eters defined by the one or more feature types ; access a 
plurality of probabilities stored in the data file , each prob 
ability among the plurality of probabilities associated with a 
feature among the plurality of features and defining a 
pre - computed likelihood that said feature predicts a presence 
of absence of a label that the document is to be classified 
into ; compute a prediction score indicating how likely the 
document is to be classified into said label , based on the 
plurality of probabilities , and classify the document into said 
label based on comparing the prediction score to a threshold . 
[ 0014 ] In some embodiments , a non - transitory computer 
readable medium is presented embodying instructions that , 
when executed by a processor , perform operations compris 
ing : accessing one or more feature types from the data file , 
the one or more feature types each defining a data structure 
configured to access a tokenized sequence of the document 
and generate linguistic features from content within the 
tokenized sequence ; performing a tokenizing operation of 
the document , the tokenizing operation configured to gen 
erate one or more tokenized sequences from the content 
within the document ; generating a plurality of features for 
the document from the one or more tokenized sequences 
based on parameters defined by the one or more feature 
types ; accessing a plurality of probabilities stored in the data 
file , each probability among the plurality of probabilities 
associated with a feature among the plurality of features and 
defining a pre - computed likelihood that said feature predicts 
a presence of absence of a label that the document is to be 
classified into ; computing a prediction score indicating how 
likely the document is to be classified into said label , based 
on the plurality of probabilities ; and classifying the docu 
ment into said label based on comparing the prediction score 
to a threshold . 

DETAILED DESCRIPTION 
[ 0024 ] Example methods , apparatuses , and systems ( e . g . , 
machines ) are presented for performing natural language 
processing techniques using human annotations applied to 
machine learning techniques of natural language . 
10025 ] Aspects of the present disclosure are presented for 
operating complex natural language processing engines in 
computationally - and memory - efficient ways . A natural lan 
guage processing engine may be configured to analyze and 
categorize thousands or even millions of human communi 
cations , and distill the results into various descriptions that 
humans can more easily digest . However , conventional 
natural language processing engines may require large 
amounts of resources to perform such tasks . Besides being 
inefficient , these limitations may disallow the conventional 
natural language processing programs to operate on smaller 
or more memory - strapped machines , such as mobile devices 
or more limited computers . On the other hand , the systems 
and methods of the present disclosure provide an efficient 
architecture to allow for natural language processing pro 
grams to be portable to virtually any machine of the present 
age , at least in part due to an efficient data storage of the 
natural language models used when loaded into the natural 
language processing engines . 
[ 0026 ] Examples merely demonstrate possible variations . 
Unless explicitly stated otherwise , components and func 
tions are optional and may be combined or subdivided , and 
operations may vary in sequence or be combined or subdi 
vided . In the following description , for purposes of expla 
nation , numerous specific details are set forth to provide a 
thorough understanding of example embodiments . It will be 
evident to one skilled in the art , however , that the present 
subject matter may be practiced without these specific 
details . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0015 ] Some embodiments are illustrated by way of 
example and not limitation in the figures of the accompa 
nying drawings . 
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[ 0027 ] Referring to FIG . 1 , a network diagram illustrating 
an example network environment 100 suitable for perform 
ing aspects of the present disclosure is shown , according to 
some example embodiments . The example network envi 
ronment 100 includes a server machine 110 , a database 115 , 
a first device 120 for a first user 122 , and a second device 
130 for a second user 132 , all communicatively coupled to 
each other via a network 190 . The server machine 110 may 
form all or part of a network - based system 105 ( e . g . , a 
cloud - based server system configured to provide one or 
more services to the first and second devices 120 and 130 ) . 
The server machine 110 , the first device 120 , and the second 
device 130 may each be implemented in a computer system , 
in whole or in part , as described below with respect to FIG . 
8 . The network - based system 105 may be an example of a 
natural language platform configured to generate natural 
language models as described herein . The server machine 
110 and the database 115 may be components of the natural 
language platform configured to perform these functions . 
While the server machine 110 is represented as just a single 
machine and the database 115 where is represented as just a 
single database , in some embodiments , multiple server 
machines and multiple databases communicatively coupled 
in parallel or in serial may be utilized , and embodiments are 
not so limited . 
[ 0028 ] Also shown in FIG . 1 are a first user 122 and a 
second user 132 . One or both of the first and second users 
122 and 132 may be a human user , a machine user ( e . g . , a 
computer configured by a software program to interact with 
the first device 120 ) , or any suitable combination thereof 
( e . g . , a human assisted by a machine or a machine super 
vised by a human ) . The first user 122 may be associated with 
the first device 120 and may be a user of the first device 120 . 
For example , the first device 120 may be a desktop com 
puter , a vehicle computer , a tablet computer , a navigational 
device , a portable media device , a smartphone , or a wearable 
device ( e . g . , a smart watch or smart glasses ) belonging to the 
first user 122 . Likewise , the second user 132 may be 
associated with the second device 130 . As an example , the 
second device 130 may be a desktop computer , a vehicle 
computer , a tablet computer , a navigational device , a por 
table media device , a , smartphone , or a wearable device 
( e . g . , a smart watch or smart glasses ) belonging to the 
second user 132 . The first user 122 and a second user 132 
may be examples of users or customers interfacing with the 
network - based system 105 to utilize a natural language 
model according to their specific needs . In other cases , the 
users 122 and 132 may be examples of annotators who are 
supplying annotations to documents to be used for training 
purposes when developing a natural language model . In 
other cases , the users 122 and 132 may be examples of 
analysts who are providing inputs to the natural language 
platform to more efficiently train the natural language 
model . The users 122 and 132 may interface with the 
network - based system 105 through the devices 120 and 130 , 
respectively . 
[ 0029 ] Any of the machines , databases 115 , or first or 
second devices 120 or 130 shown in FIG . 1 may be 
implemented in a general - purpose computer modified ( e . g . , 
configured or programmed ) by software ( e . g . , one or more 
software modules ) to be a special - purpose computer to 
perform one or more of the functions described herein for 
that machine , database 115 , or first or second device 120 or 
130 . For example , a computer system able to implement any 

one or more of the methodologies described herein is 
discussed below with respect to FIG . 8 . As used herein , a 
" database " may refer to a data storage resource and may 
store data structured as a text file , a table , a spreadsheet , a 
relational database ( e . g . , an object - relational database ) , a 
triple store , a hierarchical data store , any other suitable 
means for organizing and storing data or any suitable 
combination thereof . Moreover , any two or more of the 
machines , databases , or devices illustrated in FIG . 1 may be 
combined into a single machine , and the functions described 
herein for any single machine , database , or device may be 
subdivided among multiple machines , databases , or devices . 
[ 0030 ] The network 190 may be any network that enables 
communication between or among machines , databases 115 , 
and devices ( e . g . , the server machine 110 and the first device 
120 ) . Accordingly , the network 190 may be a wired network , 
a wireless network ( e . g . , a mobile or cellular network ) , or 
any suitable combination thereof . The network 190 may 
include one or more portions that constitute a private net 
work , a public network ( e . g . , the Internet ) , or any suitable 
combination thereof . Accordingly , the network 190 may 
include , for example , one or more portions that incorporate 
a local area network ( LAN ) , a wide area network ( WAN ) , 
the Internet , a mobile telephone network ( e . g . , a cellular 
network ) , a wired telephone network ( e . g . , a plain old 
telephone system ( POTS ) network ) , a wireless data network 
( e . g . , WiFi network or WiMax network ) , or any suitable 
combination thereof . Any one or more portions of the 
network 190 may communicate information via a transmis 
sion medium . As used herein , " transmission medium ” may 
refer to any intangible ( e . g . , transitory ) medium that is 
capable of communicating ( e . g . , transmitting ) instructions 
for execution by a machine ( e . g . , by one or more processors 
of such a machine ) , and can include digital or analog 
communication signals or other intangible media to facilitate 
communication of such software . 
[ 0031 ] Referring to FIG . 2 , a diagram 200 is presented 
showing an example system architecture for performing 
aspects of the present disclosure , according to some example 
embodiments . The example system architecture according to 
diagram 200 represents various data structures and their 
interrelationships that may comprise a natural language 
platform , such as the natural language platform 170 , or the 
network - based system 105 . These various data structures 
may be implemented through a combination of hardware 
and software , the details of which may be apparent to those 
with skill in the art based on the descriptions of the various 
data structures described herein . For example , an API mod 
ule 205 includes one or more API processors , where multiple 
API processors may be connected in parallel . In some 
example embodiments , the repeating boxes in the diagram 
200 represent identical servers or machines , to signify that 
the system architecture in diagram 200 may be scalable to an 
arbitrary degree . The API module 205 may represent a point 
of contact for multiple other modules , includes a database 
module 210 , a cache module 215 , background processes 
module 220 , applications module 225 , and even an interface 
for users 235 in some example embodiments . The API 
module 205 may be configured to receive or access data 
from database module 210 . The data may include digital 
forms of thousands or millions of human communications . 
The cache module 215 may store in more accessible 
memory various information from the database module 210 
or from users 235 or other subscribers . Because the database 
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module 210 and cache module 215 show accessibility 
through API module 205 , the API module 205 can also 
support authentication and authorization of the data in these 
modules . The background module 220 may be configured to 
perform a number of background processes for aiding natu 
ral language processing functionality . Various examples of 
the background processes include a model training module , 
a cross validation module , an intelligent queuing module , a 
model prediction module , a topic modeling module , an 
annotation aggregation module , an annotation validation 
module , and a feature extraction module . These various 
modules are described in more detail below as well as in 
non - provisional applications U . S . patent application Ser . 
No . 14 / 964 , 520 , filed Dec . 9 , 2015 , and titled " OPTIMIZA 
TION TECHNIQUES FOR ARTIFICIAL INTELLI 
GENCE , " U . S . patent application Ser . No . 14 / 964 , 522 , filed 
Dec . 9 , 2015 , and titled " GRAPHICAL SYSTEMS AND 
METHODS FOR HUMAN - IN - THE - LOOP MACHINE 
INTELLIGENCE , ” U . S . patent application Ser . No . 14 / 964 , 
510 , filed Dec . 9 , 2015 , and titled “ METHODS AND 
SYSTEMS FOR IMPROVING MACHINE LEARNING 
PERFORMANCE , " U . S . patent application Ser . No . 14 / 964 , 
512 , filed Dec . 9 , 2015 , and titled " AN INTELLIGENT 
SYSTEM THAT DYNAMICALLY IMPROVES ITS 
KNOWLEDGE AND CODE - BASE FOR NATURAL 
LANGUAGE UNDERSTANDING , ” U . S . patent applica 
tion Ser . No . 14 / 964 , 525 , filed Dec . 9 , 2015 , and titled 
“ METHODS AND SYSTEMS FOR LANGUAGE - AG 
NOSTIC MACHINE LEARNING IN NATURAL LAN 
GUAGE PROCESSING USING FEATURE EXTRAC 
TION , ” and U . S . patent application Ser . No . 14 / 964 , 528 , 
filed Dec . 9 , 2015 , and titled “ TECHNIQUES FOR COM 
BINING HUMAN AND MACHINE LEARNING IN 
NATURAL LANGUAGE PROCESSING , ” each of which 
are incorporated by reference in their entireties . The API 
module 205 may also be configured to support display and 
functionality of one or more applications in applications 
module 225 . 
[ 0032 ] In some embodiments , the API module 205 may be 
configured to provide as an output the natural language 
model packaged in a computationally - and memory - efficient 
manner . The natural language model may then be transmit 
ted to multiple client devices , such as devices 120 and 130 , 
including transmitting to mobile devices and other machines 
with less memory and less processing power . 
[ 0033 ] Referring to FIG . 3 , a high level diagram 300 is 
presented showing various examples of types of human 
communications and what the objectives may be for a 
natural language model to accomplish . Here , various sources 
of data , sometimes referred to as a collection of documents 
305 , may be obtained and stored in , for example database 
115 , client data store 155 , or database modules 210 , and may 
represent different types of human communications , all 
capable of being analyzed by a natural language model . 
Examples of the types of documents 305 include , but are not 
limited to , posts in social media , emails or other writings for 
customer feedback , pieces of or whole journalistic articles , 
commands spoken or written to electronic devices , tran 
scribed call center recordings , electronic ( instant messages ; 
corporate communications ( e . g . , SEC 10 - k , 10 - q ) ; confiden 
tial documents and communications stored on internal col 
laboration systems ( e . g . , SharePoint , Notes ) , and pieces of 
or whole scholarly texts . 

[ 0034 ] In some embodiments , at block 310 , it may be 
desired to classify any of the documents 305 into a number 
of enumerated categories or topics , consistent with some of 
the descriptions mentioned above . This may be referred to as 
performing a document - scope task . For example , a user 130 
in telecommunications may supply thousands of customer 
service emails related to services provided by a telecommu 
nications company . The user 130 may desire to have a 
natural language model generated that classifies the emails 
into predetermined categories , such as negative sentiment 
about their Internet service , positive sentiment about their 
Internet service , negative sentiment about their cable ser 
vice , and positive sentiment about their cable service . As 
previously mentioned , these various categories for which a 
natural language model may classify the emails into , e . g . 
“ negative ” sentiment about “ Internet service , " " positive ” 
sentiment about “ Internet service , ” “ negative ” sentiment 
about “ cable service , " etc . , may be referred to as " labels . " 
Based on these objectives , at block 315 , a natural language 
model may be generated that is tailored to classify these 
types of emails into these types of labels . 
[ 0035 ] As another example , in some embodiments , at 
block 320 , it may be desired to extract specific subsets of 
text from documents , consistent with some of the descrip 
tions mentioned above . This may be another example of 
performing a span - scope task , in reference to the fact that 
this function focuses on a subset within each document ( as 
previously mentioned , referred to herein as a " span ” ) . For 
example , a user 130 may desire to identify all instances of 
a keyword , key phrase , or general subject matter within a 
novel . Certainly , this span scope task may be applied to 
multiple novels or other documents . Another example 
includes a company that may want to extract phrases that 
correspond to products or product features ( e . g . , “ iPhone 5 " 
or “ battery life ” ) . Here too , based on this objective , at block 
315 , a natural language model may be generated that is 
tailored to perform this function for a specified number of 
documents . 
[ 0036 ] As another example , in some embodiments , at 
block 325 , it may be desired to discover what categories the 
documents may be thematically or topically organized into 
in the first place , consistent with descriptions above about 
topic modeling . In some cases , the user 130 may utilize the 
natural language platform only to perform topic modeling 
and to discover what topics are most discussed in a specified 
collection of documents 305 . To this end , the natural lan 
guage platform may be configured to conduct topic model 
ing analysis at block 330 . Topic modeling is discussed in 
more detail below , as well as in applications U . S . patent 
application Ser . No . 14 / 964 , 520 , filed Dec . 9 , 2015 , and 
titled “ OPTIMIZATION TECHNIQUES FOR ARTIFICIAL 
INTELLIGENCE , ” U . S . patent application Ser . No . 14 / 964 , 
522 , filed Dec . 9 , 2015 , and titled “ GRAPHICAL SYS 
TEMS AND METHODS FOR HUMAN - IN - THE - LOOP 
MACHINE INTELLIGENCE , ” U . S . patent application Ser . 
No . 14 / 964 , 511 , filed Dec . 9 , 2015 , and titled “ METHODS 
AND SYSTEMS FOR MODELING COMPLEX TAX 
ONOMIES WITH NATURAL LANGUAGE UNDER 
STANDING , ” and U . S . patent application Ser . No . 14 / 964 , 
528 , filed Dec . 9 , 2015 , and titled " TECHNIQUES FOR 
COMBINING HUMAN AND MACHINE LEARNING IN 
NATURAL LANGUAGE PROCESSING , ” each of which 
are incorporated herein by reference in their entireties . In 
some cases , it may be desired to then generate a natural 
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language model that categorizes the documents 305 into 
these newfound topics . Thus , after performing the topic 
modeling analysis 230 , in some embodiments , the natural 
language model may also be generated at block 315 . 
[ 0037 ] Referring to FIG . 4 , a diagram 400 is presented 
showing an example flowchart for how different data struc 
tures within the system architecture may be related to one 
another , according to some example embodiments . Here , the 
collections data structure 410 represents a set of documents 
435 that in some cases may generally be homogenous . A 
document 435 represents a human communication 
expressed in a single discrete package , such as a single 
tweet , a webpage , a chapter of a book , a command to a 
device , or a journal article , or any part thereof . Each 
collection 410 may have one or more tasks 430 associated 
with it . A task 430 may be thought of as a classification 
scheme . For example , a collection 410 of tweets may be 
classified by its sentiment , e . g . a positive sentiment or a 
negative sentiment , where each classification constitutes a 
task 430 about a collection 410 . A label 445 refers to a 
specific prediction about a specific classification . For 
example , a label 445 may be the “ positive sentiment ” of a 
human communication , or the “ negative sentiment ” of a 
human communication . In some cases , labels 445 can be 
applied to merely portions of documents 435 , such as 
paragraphs in an article or particular names or places men 
tioned in a document 435 . For example , a label 445 may be 
a “ positive opinion ” expressed about a product mentioned in 
a human communication , or a “ negative opinion ” expressed 
about a product mentioned in a human communication . In 
some example embodiments , a task may be a sub - task of 
another task , allowing for a hierarchy or complex network of 
tasks . For example , if a task has a label of “ positive 
opinion , ” there might be subtasks for types of “ positives 
opinions , ” like “ intention to purchase the product , " " positive 
review , " " recommendation to friend , ” and so on , and there 
may be subtasks that capture other relevant information , 
such as “ positive features . " 
[ 0038 ] Annotations 440 refer to classifications imputed 
onto a collection 410 or a document 435 , often times by 
human input but may also be added by programmatic means , 
such as interpolating from available metadata ( e . g . , cus 
tomer value , geographic location , etc . ) , generated by a 
pre - existing natural language model , or generated by a topic 
modeling process . As an example , an annotation 440 applies 
a label 445 manually to a document 435 . In other cases , 
annotations 440 are provided by users 235 from pre - existing 
data . In other cases , annotations 440 may be derived from 
human critiques of one or more documents 435 , where the 
computer determines what annotation 440 should be placed 
on a document 435 ( or collection 410 ) based on the human 
critique . In other cases , with enough data in a language 
model , annotations 440 of a collection 410 can be derived 
from one or more patterns of pre - existing annotations found 
in the collection 410 or a similar collection 410 . 
10039 ] In some example embodiments , features 450 refer 
to a library or collection of certain key words or groups of 
words that may be used to determine whether a task 430 
should be associated with a collection 410 or document 435 . 
Thus , each task 430 has associated with it one or more 
features 450 that help define the task 430 . In some example 
embodiments , features 450 can also include a length of 
words or other linguistic descriptions about the language 
structure of a document 435 , in order to define the task 430 . 

For example , classifying a document 435 as being a legal 
document may be based on determining if the document 435 
contains a threshold number of words with particularly long 
lengths , words belonging to a pre - defined dictionary of 
legal - terms , or words that are related through syntactic 
structures and semantic relationships . In some example 
embodiments , features 450 are defined by code , while in 
other cases features 450 are discovered by statistical meth 
ods . In some example embodiments , features 450 are treated 
independently , while in other cases features 450 are net 
worked combinations of simpler features that are used in 
combination utilizing techniques like “ deep - learning . ” In 
some example embodiments , combinations of the methods 
described herein may be used to define the features 450 , and 
embodiments are not so limited . One or more processors 
may be used to identify in a document 435 the words found 
in features data structure 450 to determine what task should 
be associated with the document 435 . 
10040 ] In some example embodiments , a work unit ' s data 
structure 455 specifies when humans should be tasked to 
further examine a document 425 . Thus , human annotations 
may be applied to a document 435 after one or more work 
units 455 is applied to the document 435 . The work units 455 
may specify how many human annotators should examine 
the document 435 and in what order of documents should 
document 435 be examined . In some example embodiments , 
work units 455 may also determine what annotations should 
be reviewed in a particular document 435 and what the 
optimal user interface should be for review . 
[ 0041 ] In some example embodiments , the data structures 
405 , 415 , 420 and 425 represent data groupings related to 
user authentication and user access to data in system archi 
tecture . For example , the subscribers block 405 may repre 
sent users and associated identification information about 
the users . The subscribers 405 may have associated API keys 
415 , which may represent one or more authentication data 
structures used to authenticate subscribers and provide 
access to the collections 410 . Groups 420 may represent a 
grouping of subscribers based on one or more common 
traits , such as subscribers 405 belonging to the same com 
pany . Individual users 425 capable of accessing the collec 
tions 410 may also result from one or more groups 420 . In 
addition , in some cases , each group 420 , user 425 , or 
subscriber 405 may have associated with it a more person 
alized or customized set of collections 510 , documents 435 , 
annotations 440 , tasks , 430 , features 450 , and labels 445 , 
based on the specific needs of the customer . 
[ 0042 ] Aspects of the present disclosure allow for a 
trained natural language model to be stored in an efficient 
manner such that the trained natural language model may be 
utilized in virtually any computing device . Unlike other 
natural language processing engines that may be computa 
tionally intensive to the point of being capable of running 
only on high performance machines , the organization of the 
natural language models according to the present disclosures 
allow for natural language processing to be performed even 
on smaller devices , such as mobile devices . 
[ 0043 ] In some embodiments , the flexible portability of 
the trained natural language model is based at least in part 
on an efficient organization for storing the trained learning 
data of a model . In some embodiments , the efficiently 
organized data file is called a “ ZIF , ” and may include a table 
of linguistic features and associated predictive probabilities 
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for each feature . Multiple ZIFs may be generated and used 
to comprise a natural language model . 
[ 0044 ] As used herein , a feature type is a data structure 
responsible for taking a tokenized sequence of document 
text and generating linguistic features from the content . 
Aspects of the present disclosure include an extensible 
system for defining feature types and parameters for each 
( e . g . , case sensitivity ) , and project administrators are able to 
choose appropriate feature types for their tasks in an asso 
ciated graphical user interface for conducting the model 
training . An example interface for adding a feature is shown 
in FIG . 5 . 
[ 0045 ] In some embodiments , a standard set of feature 
types are assigned by the system based on properties of the 
document training data , such as the length of the text or the 
language used . Additionally , " deep - learning ” techniques 
may be used to further optimize the assigned feature types . 
[ 0046 ] Referring to FIG . 6 , illustration 600 shows a chart 
of some example feature types , according to some embodi 
ments . Each of the features may be applied to a particular 
type of tasks , as described in the “ Valid Tasks ” column . 
Example parameters needed for utilizing the various feature 
types are described in the “ Parameters ” column . 
[ 0047 ] An example process of converting a document to a 
set of features is illustrated in example flow diagram 610 . 
Shown here is the application of the NGrams feature with 
parameters of size = 2 , strip _ punctuation = false and case _ 
insensitive = false . 
[ 0048 ] In some embodiments , the ZIF file stores a natural 
language model for task 430 within a table that associates , 
for each feature among a plurality of features generated 
using a process like that shown in flow diagram 610 , one or 
more probabilities associated with a label among a plurality 
of labels . Each of these different probabilities has a different 
meaning , examples of some of which are described more 
below , but in general the natural language platform is 
configured to interpret the meaning of each probability given 
its location in a row and column of a table in the ZIF file . The 
probabilities are calculated by a model training process such 
as included in the background processing module 220 of 
FIG . 2 . In some embodiments , the ZIF file stores either 2 or 
3 probabilities for each generated feature for each of the 
labels 445 , depending on whether task 430 is a document 
scope or span - scope task , respectively . In some embodi 
ments , the ZIF may be restricted to store a maximum 
number of feature probabilities for each label ( for example , 
100 , 000 ) , and a feature selection process performed during 
model training may decide which features should be 
included in the ZIF . In such embodiments , the ZIF may store 
O probabilities for specific features and labels , if the feature 
selection process discards that feature . 
10049 ] In some embodiments , the ZIF file stores the loga 
rithms of each probability , rather than the exact probability 
value . An example of this table is described below . Using the 
logarithms improves run - time prediction speed by using 
addition and subtraction operations to combine the prob 
abilities for multiple features , rather than multiplication and 
division . The addition and subtraction operations are less 
computationally intensive and therefore more efficient . 
[ 0050 ] For document tasks , this table will be organized 
like a spreadsheet with 1 column for the feature , and 2 
columns for each label ( e . g . , corresponding to the probabil 
ity that the feature predicts the presence or absence of a 
label , respectively ) . An example row of this table is shown 

in illustration 710 . As shown , the row of feature “ Lorem ” in 
the “ BagofWords ” feature type has probabilities for the 
presence and absence of “ Labell ” and “ Label2 ” in the 
respective columns , stored in a logarithmic scale for better 
efficiency . 
[ 0051 ] For span tasks , the table will be organized to have 
1 column for the feature , and 3 columns for each label ( e . g . , 
corresponding to the probability that the feature appears at 
the beginning , inside , or outside a span , respectively ) . An 
example row of this type is shown in illustration 720 . As 
shown , the row of the feature " the United ” in the feature type 
" SpanWords ” with an offset of - 1 has probabilities that the 
feature appears at the beginning , inside , and outside of a 
span of “ Labell ” in the respective columns , stored in a 
logarithmic scale for better efficiency . 
[ 0052 ] . To conserve space , in some embodiments , the 
tables are stored using 2 arrays of 16 - bit numbers for every 
feature row . A first array stores the integer indices of every 
label with non - zero probability . This allows the ZIF to store 
sparse models efficiently , since features that are not selected 
in Step 3 for the label do not consume any space on - disk . A 
second array stores a quantized 16 - bit fixed - point value of 
the log - probability . In conventional systems , weights would 
be stored as 32 - bit or 64 - bit floating - point values . This is 
inefficient , since probabilistic values are between 0 . . . 1 , 
and a 32 - bit floating point number represents - 2 * * 127 . . . 
2 * * 126 , so a substantial amount of space is wasted on values 
that would never be used ( a 64 - bit floating point number is 
even more extreme ) . Additionally , conventional floating 
point encodings use a sign - exponent - mantissa format which 
distributes numerical accuracy logarithmically throughout 
the range , with values closer to zero receiving a proportion 
ally higher percentage of available encodings than larger 
values . One additional advantage to storing the logarithms 
of the probabilities in the ZIF file is that the logarithmic 
transform provides a similar distribution of encodings to raw 
values as using a conventional floating - point format . There 
fore , 16 - bits of precision , logarithmically distributed for 
probabilities between 0 . . . 1 may be sufficient and provide 
more memory efficiency . 
[ 0053 ] ZIF files also contain the Task configuration data 
that existed when the model was trained , in some embodi 
ments . This includes ( a ) the feature types that were used and 
parameters configured for each , and ( b ) any analyst - defined 
tuning rules . Descriptions of these data are below , according 
to some embodiments . 
[ 0054 ] In some embodiments , tuning dictionaries are 
stored within a ZIF using Javascript Object Notation ( JSON ) 
encoding . Tuning dictionaries are represented as dictionaries 
of phrases and corresponding rule weights for each label in 
the task . Dictionaries may be empty if no rules are defined 
for that label . Shown below is an example storage format for 
rules with weights . Here for example , if a document contains 
the word “ router ” or “ connectivity , ” it will be highly likely 
to be classified as belonging to the Broadband classification . 
As described below , the weight ( e . g . , 0 . 8 ) influences weights 
assigned by machine learning . 

“ Broadband ” : { 
“ / ( ? i ) broad . ? band / " : 0 . 9 , 
“ / ( ? i ) router connectivity / " : 0 . 8 , 
“ / ( ? i ) wire . ? less / wi . ? fi / " : 0 . 8 
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- continued 
" On demand " : { 

“ / ( ? i ) 4od / " : 0 . 9 , 

[ 0055 ] In some embodiments , enabled feature types and 
parameters configured for each are stored within a ZIF using 
JSON encoding . According to these embodiments , the 
names and parameters for enabled features may be stored as 
an array of dictionaries , with each dictionary containing 
entries for both the enabled feature type name and its 
associated configuration parameters . Below is an example of 
how this aspect may be organized . 

“ features " : [ 
" name " : “ BagOfWords ” , 
" parameters " : { 

" case _ insensitive ” : " false " , 
“ strip _ punctuation " : " false " 

SS 

portable scripting language may be stored within the same 
JSON array used to store other enabled feature type names 
and associated parameters . 
[ 0060 ] Unlike conventional methods of storing features , 
whereby typically a natural language platform may provide 
only a fixed set of feature types ( e . g . , having a " central 
authority ” define all available feature types ) , providing 
executable code in the ZIF file to perform user - specified data 
transformations allows for new features to be developed and 
resolves tedious inconsistencies between different software 
versions of the natural language model stored in the ZIF . For 
example , if a model is trained using a new version of 
software that includes a new feature type that was not 
present in an older software version , allowing feature types 
to be defined as executable code embedded within the model 
data may eliminate these compatibility problems . Further 
more , this may also allow for much faster development and 
utilization of new feature types , due to being able to train 
and apply models incorporating the new feature types with 
out re - deploying the platform through , e . g . , a new software 
version . 
[ 0061 ] One advantage to storing all necessary configura 
tion data within the ZIF file is that application of the natural 
language model is self - contained ; no external state is nec 
essary to apply the natural language model stored in a ZIF 
file to unprocessed text . Once the ZIF file ( s ) containing the 
language model is generated , a device even with low pro 
cessing power and memory may be able to utilize the model 
stored within the ZIF . For example , whenever a client 
application makes a request to classify ( or extract spans ) 
from some document text , a software application utilizing 
the ZIF file may perform the following operations according 
to some embodiments : 
[ 0062 ] 1 . Load and cache the ZIF model for the task ( if not 
already loaded ) 
[ 0063 ] 2 . Tokenize the document 
[ 0064 ] 3 . Generate features according to the feature types 
and parameters defined in the task configuration data 
[ 0065 ] 4 . Compute the odds for each label by applying the 
equation ( 1 ) as shown to the document features , using the 
log - probabilities stored in the ZIF 

En label = e { fefeaturesE ( / label - z ( ! ! label ) 

“ name ” : “ NGrams ” , 
" parameters " : { 

" case _ insensitive " : " true " , 
" size " : “ 3 ” , 
“ strip _ punctuation " : " true " 

( 1 ) 
[ 0066 ] 5 . If any rules are defined , compute a rule - based 
prediction using the equation ( 2 ) as shown , given the 
weights , W , , for each rule and number of times the rule 
matches text within the document , count ( r , document ) : 

[ 0056 ] Additionally , in some embodiments , the inclusion 
of feature configuration and rules within the binary model 
data ensures that all of the configuration information needed 
to apply a model to text is contained within the model file 
itself . 
[ 0057 ] In some embodiments , ZIF files may also include 
inter - document statistical data as used by the enabled feature 
types . For example , a feature type that designates documents 
as being longer or shorter than a median document length for 
the document set may store the computed median document 
length statistic within the same structure used to store 
feature parameter configuration . 
[ 0058 ] In some embodiments , the set of supported feature 
types is defined by a centralized API server , and the list of 
feature types , including each name and parameters sup 
ported therein are defined by this central authority . Applying 
the natural language model defined according to these 
embodiments requires that the software which reads the ZIF 
file provide an environment in which all feature types 
referenced by the model are implemented accordingly . 
[ 0059 ] In tightly embedded environments , coupling of the 
model to the software environment may be undesirable , 
necessitating expensive software updates . To decouple this , 
in some embodiments , the ZIF file may include executable 
code that performs a user - specified data transformation to 
generate custom features . This executable code may be used 
instead of , or in addition to other supported feature types . 
Such transformations may be developed in a standard lan 
guage ( like JavaScript , or Lua ) that has been broadly ported 
across a number of platforms . In such embodiments , the 
software reading the ZIF file may provide a much more 
limited set of services , for example only providing tokeni 
zation and a suitable execution engine for the provided 
transformation . In such embodiments , code written in a 

Wr . count ( r , document ) 
label _ rerules 

count ( r , document ) Prule = 

rerules 

[ 0067 ] 6 . The final confidence for the prediction in each 
label is a weighted average of Pmi and pruie . The weights are 
the number of features found in the ZIF and the number of 
matching rules , respectively . 
[ 0068 ] A similar process may be applied to classify 
regions of text within documents , such as identifying com 
pany and location names , as the one described for classifi 
cation of entire documents , according to some embodiments . 
In addition , further statistical considerations may be applied 
to span - specific contexts . For example , a feature type spe 
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cific to spans may include additional rules , such as " string x 
is more likely to be label y if it appears in the first part of the 
document . ” This type of analysis may also be programmed 
and included in the ZIF data . 
[ 0069 ] In some embodiments , various data structures for 
storing content of a ZIF may also improve efficiency . For 
example , some ZIF files are organized like spreadsheets , 
with every feature stored in its entirety along with a row of 
probabilities for it . However , many features are substrings of 
each other ( for example , the bigram “ the United ” is an exact 
substring of the trigram “ the United States ” ) . As the text in 
features gets longer , the proportion of storage space con 
sumed by the feature text increases relative to the overall 
model size . 
0070 ] This suggests that an alternate data structure , such 
as a trie or other hierarchical structure , may be a better way 
to store ZIFs to improve F - measure / byte . In some embodi 
ments , these data structures may be used to improve effi 
ciency . 
[ 0071 ] Referring to FIG . 8 , the block diagram illustrates 
components of a machine 800 , according to some example 
embodiments , able to read instructions 824 from a machine 
readable medium 822 ( e . g . , a non - transitory machine - read 
able medium , a machine - readable storage medium , a com 
puter - readable storage medium , or any suitable combination 
thereof ) and perform any one or more of the methodologies 
discussed herein , in whole or in part . Specifically , FIG . 8 
shows the machine 800 in the example form of a computer 
system ( e . g . , a computer ) within which the instructions 824 
( e . g . , software , a program , an application , an applet , an app , 
or other executable code ) for causing the machine 800 to 
perform any one or more of the methodologies discussed 
herein may be executed , in whole or in part . 
[ 0072 ] In alternative embodiments , the machine 800 oper 
ates as a standalone device or may be connected ( e . g . , 
networked ) to other machines . In a networked deployment , 
the machine 800 may operate in the capacity of a server 
machine 110 or a client machine in a server - client network 
environment , or as a peer machine in a distributed ( e . g . , 
peer - to - peer ) network environment . The machine 800 may 
include hardware , software , or combinations thereof , and 
may , as example , be a server computer , a client computer , a 
personal computer ( PC ) , a tablet computer , a laptop com 
puter , a netbook , a cellular telephone , a smartphone , a 
set - top box ( STB ) , a personal digital assistant ( PDA ) , a web 
appliance , a network router , a network switch , a network 
bridge , or any machine capable of executing the instructions 
824 , sequentially or otherwise , that specify actions to be 
taken by that machine . Further , while only a single machine 
800 is illustrated , the term “ machine ” shall also be taken to 
include any collection of machines that individually or 
jointly execute the instructions 824 to perform all or part of 
any one or more of the methodologies discussed herein . 
[ 0073 ] The machine 800 includes a processor 802 ( e . g . , a 
central processing unit ( CPU ) , a graphics processing unit 
( GPU ) , a digital signal processor ( DSP ) , an application 
specific integrated circuit ( ASIC ) , a radio - frequency inte 
grated circuit ( RFIC ) , or any suitable combination thereof ) , 
a main memory 804 , and a static memory 806 , which are 
configured to communicate with each other via a bus 808 . 
The processor 802 may contain microcircuits that are con - 
figurable , temporarily or permanently , by some or all of the 
instructions 824 such that the processor 802 is configurable 
to perform any one or more of the methodologies described 

herein , in whole or in part . For example , a set of one or more 
microcircuits of the processor 802 may be configurable to 
execute one or more modules ( e . g . , software modules ) 
described herein . 
[ 0074 ] The machine 800 may further include a video 
display 810 ( e . g . , a plasma display panel ( PDP ) , a light 
emitting diode ( LED ) display , a liquid crystal display 
( LCD ) , a projector , a cathode ray tube ( CRT ) , or any other 
display capable of displaying graphics or video ) . The 
machine 800 may also include an alphanumeric input device 
812 ( e . g . , a keyboard or keypad ) , a cursor control device 814 
( e . g . , a mouse , a touchpad , a trackball , a joystick , a motion 
sensor , an eye tracking device , or other pointing instrument ) , 
a storage unit 816 , a signal generation device 818 ( e . g . , a 
sound card , an amplifier , a speaker , a headphone jack , or any 
suitable combination thereof ) , and a network interface 
device 820 . 
[ 0075 ] The storage unit 816 includes the machine - read 
able medium 822 ( e . g . , a tangible and non - transitory 
machine - readable storage medium ) on which are stored the 
instructions 824 embodying any one or more of the meth 
odologies or functions described herein , including , for 
example , any of the descriptions of FIGS . 1 - 7 . The instruc 
tions 824 may also reside , completely or at least partially , 
within the main memory 804 , within the processor 802 ( e . g . , 
within the processor ' s cache memory ) , or both , before or 
during execution thereof by the machine 800 . The instruc 
tions 824 may also reside in the static memory 806 . 
[ 0076 ] Accordingly , the main memory 804 and the pro 
cessor 802 may be considered machine - readable media 822 
( e . g . , tangible and non - transitory machine - readable media ) . 
The instructions 824 may be transmitted or received over a 
network 826 via the network interface device 820 . For 
example , the network interface device 820 may communi 
cate the instructions 824 using any one or more transfer 
protocols ( e . g . , HTTP ) . The machine 800 may also represent 
example means for performing any of the functions 
described herein , including the processes described in FIGS . 
1 - 7 . 
[ 0077 ] In some example embodiments , the machine 800 
may be a portable computing device , such as a smart phone 
or tablet computer , and have one or more additional input 
components ( e . g . , sensors or gauges ) ( not shown ) . Examples 
of such input components include an image input component 
( e . g . , one or more cameras ) , an audio input component ( e . g . , 
a microphone ) , a direction input component ( e . g . , a com 
pass ) , a location input component ( e . g . , a GPS receiver ) , an 
orientation component ( e . g . , a gyroscope ) , a motion detec 
tion component ( e . g . , one or more accelerometers ) , an 
altitude detection component ( e . g . , an altimeter ) , and a gas 
detection component ( e . g . , a gas sensor ) . Inputs harvested by 
any one or more of these input components may be acces 
sible and available for use by any of the modules described 
herein . 
[ 0078 ] As used herein , the term " memory ” refers to a 
machine - readable medium 822 able to store data temporarily 
or permanently and may be taken to include , but not be 
limited to , random - access memory ( RAM ) , read - only 
memory ( ROM ) , buffer memory , flash memory , and cache 
memory . While the machine - readable medium 822 is shown 
in an example embodiment to be a single medium , the term 
" machine - readable medium " should be taken to include a 
single medium or multiple media ( e . g . , a centralized or 
distributed database 115 , or associated caches and servers ) 
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able to store instructions 824 . The term “ machine - readable 
medium ” shall also be taken to include any medium , or 
combination of multiple media , that is capable of storing the 
instructions 824 for execution by the machine 800 , such that 
the instructions 824 , when executed by one or more proces 
sors of the machine 800 ( e . g . , processor 802 ) , cause the 
machine 800 to perform any one or more of the method 
ologies described herein , in whole or in part . Accordingly , a 
“ machine - readable medium ” refers to a single storage appa 
ratus or device 120 or 130 , as well as cloud - based storage 
systems or storage networks that include multiple storage 
apparatus or devices 120 or 130 . The term “ machine 
readable medium ” shall accordingly be taken to include , but 
not be limited to , one or more tangible ( e . g . , non - transitory ) 
data repositories in the form of a solid - state memory , an 
optical medium , a magnetic medium , or any suitable com 
bination thereof . 
10079 ] . Furthermore , the machine - readable medium 822 is 
non - transitory in that it does not embody a propagating 
signal . However , labeling the tangible machine - readable 
medium 822 as " non - transitory ” should not be construed to 
mean that the medium is incapable of movement ; the 
medium should be considered as being transportable from 
one physical location to another . Additionally , since the 
machine - readable medium 822 is tangible , the medium may 
be considered to be a machine - readable device . 
10080 ] Throughout this specification , plural instances may 
implement components , operations , or structures described 
as a single instance . Although individual operations of one 
or more methods are illustrated and described as separate 
operations , one or more of the individual operations may be 
performed concurrently , and nothing requires that the opera 
tions be performed in the order illustrated . Structures and 
functionality presented as separate components in example 
configurations may be implemented as a combined structure 
or component . Similarly , structures and functionality pre 
sented as a single component may be implemented as 
separate components . These and other variations , modifica 
tions , additions , and improvements fall within the scope of 
the subject matter herein . 
[ 0081 ] Certain embodiments are described herein as 
including logic or a number of components , modules , or 
mechanisms . Modules may constitute software modules 
( e . g . , code stored or otherwise embodied on a machine 
readable medium 822 or in a transmission medium ) , hard 
ware modules , or any suitable combination thereof . A " hard 
ware module ” is a tangible ( e . g . , non - transitory ) unit capable 
of performing certain operations and may be configured or 
arranged in a certain physical manner . In various example 
embodiments , one or more computer systems ( e . g . , a stand 
alone computer system , a client computer system , or a server 
co computer system ) or one or more hardware modules of a 
computer system ( e . g . , a processor 802 or a group of 
processors 802 ) may be configured by software ( e . g . , an 
application or application portion ) as a hardware module 
that operates to perform certain operations as described 
herein . 
[ 0082 ] In some embodiments , a hardware module may be 
implemented mechanically , electronically , or any suitable 
combination thereof . For example , a hardware module may 
include dedicated circuitry or logic that is permanently 
configured to perform certain operations . For example , a 
hardware module may be a special - purpose processor , such 
as a field programmable gate array ( FPGA ) or an ASIC . A 

hardware module may also include programmable logic or 
circuitry that is temporarily configured by software to per 
form certain operations . For example , a hardware module 
may include software encompassed within a general - pur 
pose processor 802 or other programmable processor 802 . It 
will be appreciated that the decision to implement a hard 
ware module mechanically , in dedicated and permanently 
configured circuitry , or in temporarily configured circuitry 
( e . g . , configured by software ) may be driven by cost and 
time considerations . 
[ 0083 ) Hardware modules can provide information to , and 
receive information from , other hardware modules . Accord 
ingly , the described hardware modules may be regarded as 
being communicatively coupled . Where multiple hardware 
modules exist contemporaneously , communications may be 
achieved through signal transmission ( e . g . , over appropriate 
circuits and buses 808 ) between or among two or more of the 
hardware modules . In embodiments in which multiple hard 
ware modules are configured or instantiated at different 
times , communications between such hardware modules 
may be achieved , for example , through the storage and 
retrieval of information in memory structures to which the 
multiple hardware modules have access . For example , one 
hardware module may perform an operation and store the 
output of that operation in a memory device to which it is 
communicatively coupled . A further hardware module may 
then , at a later time , access the memory device to retrieve 
and process the stored output . Hardware modules may also 
initiate communications with input or output devices , and 
can operate on a resource ( e . g . , a collection of information ) . 
[ 0084 ] The various operations of example methods 
described herein may be performed , at least partially , by one 
or more processors 802 that are temporarily configured ( e . g . , 
by software ) or permanently configured to perform the 
relevant operations . Whether temporarily or permanently 
configured , such processors 802 may constitute processor 
implemented modules that operate to perform one or more 
operations or functions described herein . As used herein , 
“ processor - implemented module ” refers to a hardware mod 
ule implemented using one or more processors 802 . 
[ 0085 ] Similarly , the methods described herein may be at 
least partially processor - implemented , a processor 802 being 
an example of hardware . For example , at least some of the 
operations of a method may be performed by one or more 
processors 802 or processor - implemented modules . As used 
herein , " processor - implemented module ” refers to a hard 
ware module in which the hardware includes one or more 
processors 802 . Moreover , the one or more processors 802 
may also operate to support performance of the relevant 
operations in a “ cloud computing ” environment or as a 
" software as a service ” ( SaaS ) . For example , at least some 
of the operations may be performed by a group of computers 
( as examples of machines 800 including processors 802 ) , 
with these operations being accessible via a network 826 
( e . g . , the Internet ) and via one or more appropriate interfaces 
( e . g . , an API ) . 
[ 0086 ] The performance of certain operations may be 
distributed among the one or more processors 802 , not only 
residing within a single machine 800 , but deployed across a 
number of machines 800 . In some example embodiments , 
the one or more processors 802 or processor - implemented 
modules may be located in a single geographic location 
( e . g . , within a home environment , an office environment , or 
a server farm ) . In other example embodiments , the one or 
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more processors 802 or processor - implemented modules 
may be distributed across a number of geographic locations . 
[ 0087 ] Unless specifically stated otherwise , discussions 
herein using words such as “ processing , " " computing , " 
" calculating , " " determining , ” “ presenting , " " displaying , " or 
the like may refer to actions or processes of a machine 800 
( e . g . , a computer ) that manipulates or transforms data rep 
resented as physical ( e . g . , electronic , magnetic , or optical ) 
quantities within one or more memories ( e . g . , volatile 
memory , non - volatile memory , or any suitable combination 
thereof ) , registers , or other machine components that 
receive , store , transmit , or display information . Furthermore , 
unless specifically stated otherwise , the terms “ a ” or “ an ” are 
herein used , as is common in patent documents , to include 
one or more than one instance . Finally , as used herein , the 
conjunction " or ” refers to a non - exclusive “ or , ” unless 
specifically stated otherwise . 
[ 0088 ] The present disclosure is illustrative and not lim 
iting . Further modifications will be apparent to one skilled in 
the art in light of this disclosure and are intended to fall 
within the scope of the appended claims . 
What is claimed is : 
1 . A method for classifying a document in natural lan 

guage processing using a natural language model stored in 
one or more data files , the method comprising : 

accessing one or more feature types from the data file , the 
one or more feature types each defining a data structure 
configured to access a tokenized sequence of the docu 
ment and generate linguistic features from content 
within the tokenized sequence ; 

performing a tokenizing operation of the document , the 
tokenizing operation configured to generate one or 
more tokenized sequences from the content within the 
document ; 

generating a plurality of features for the document from 
the one or more tokenized sequences based on param 
eters defined by the one or more feature types ; 

accessing a plurality of probabilities stored in the data file , 
each probability among the plurality of probabilities 
associated with a feature among the plurality of fea 
tures and defining a pre - computed likelihood that said 
feature predicts a presence of absence of a label that the 
document is to be classified into ; 

computing a prediction score indicating how likely the 
document is to be classified into said label , based on the 
plurality of probabilities ; and 

classifying the document into said label based on com 
paring the prediction score to a threshold . 

2 . The method of claim 1 , wherein generating the plurality 
of features is further based on parameters defined in task 
configuration data in the data file , the task configuration data 
associated with a type of task analysis that the natural 
language model is configured to classify the document into . 

3 . The method of claim 1 , wherein the plurality of 
probabilities are pre - computed during a model training 
process configured to train the natural language model to 
classify documents according to at least said label and said 
task . 

4 . The method of claim 1 , wherein the plurality of 
probabilities comprise a first probability that said feature 
predicts the presence of said label and a second probability 
that said feature predicts the absence of said label . 

5 . The method of claim 1 , wherein the plurality of 
probabilities comprise a first probability that said feature 

appears at a beginning of a subset of the document , a second 
probability that said feature appears at an inside of the subset 
of the document , and a third probability that said feature 
appears on an outside of the subset of the document . 

6 . The method of claim 1 , wherein each feature among the 
generated plurality of features comprises a first array storing 
integer indices of every label in the natural language model 
having a non - zero probability . 

7 . The method of claim 6 , wherein each feature among the 
generated plurality of features further comprises a second 
array storing a quantized 16 - bit fixed - point value of each 
probability converted as a logarithm . 

8 . The method of claim 1 , wherein generating the plurality 
of features is based further on task configuration data stored 
in the data file , the task configuration data including training 
feature types used to train the natural language model . 

9 . The method of claim 8 , wherein the task configuration 
data stored in the data file includes executable code config 
ured perform a user - specified data transformation to gener 
ate custom feature types . 

10 . The method of claim 1 , wherein the task configuration 
data further comprises analyst - defined tuning rules . 

11 . A natural language platform configured to classify a 
document in natural language processing using a natural 
language model stored in one or more data files , the natural 
language platform comprising : 

a memory configured to store the data file ; and 
a processor coupled to the memory and configured to : 
access one or more feature types from the data file , the one 

or more feature types each defining a data structure 
configured to access a tokenized sequence of the docu 
ment and generate linguistic features from content 
within the tokenized sequence ; 

perform a tokenizing operation of the document , the 
tokenizing operation configured to generate one or 
more tokenized sequences from the content within the 
document ; 

generate a plurality of features for the document from the 
one or more tokenized sequences based on parameters 
defined by the one or more feature types ; 

access a plurality of probabilities stored in the data file , 
each probability among the plurality of probabilities 
associated with a feature among the plurality of fea 
tures and defining a pre - computed likelihood that said 
feature predicts a presence of absence of a label that the 
document is to be classified into ; 

compute a prediction score indicating how likely the 
document is to be classified into said label , based on the 
plurality of probabilities ; and 

classify the document into said label based on comparing 
the prediction score to a threshold . 

12 . The natural language platform of claim 11 , wherein 
generating the plurality of features is further based on 
parameters defined in task configuration data in the data file , 
the task configuration data associated with a type of task 
analysis that the natural language model is configured to 
classify the document into . 

13 . The natural language platform of claim 11 , wherein 
the plurality of probabilities are pre - computed during a 
model training process configured to train the natural lan 
guage model to classify documents according to at least said 
label and said task . 

14 . The natural language platform of claim 11 , wherein 
the plurality of probabilities comprise a first probability that 
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said feature predicts the presence of said label and a second 
probability that said feature predicts the absence of said 
label . 

15 . The natural language platform of claim 11 , wherein 
the plurality of probabilities comprise a first probability that 
said feature appears at a beginning of a subset of the 
document , a second probability that said feature appears at 
an inside of the subset of the document , and a third prob 
ability that said feature appears on an outside of the subset 
of the document . 

16 . The natural language platform of claim 11 , wherein 
each feature among the generated plurality of features 
comprises a first array storing integer indices of every label 
in the natural language model having a non - zero probability . 

17 . The natural language platform of claim 16 , wherein 
each feature among the generated plurality of features 
further comprises a second array storing a quantized 16 - bit 
fixed - point value of each probability converted as a loga 
rithm . 

18 . A non - transitory computer - readable medium embody 
ing instructions that , when executed by a processor , perform 
operations comprising : 

accessing one or more feature types from the data file , the 
one or more feature types each defining a data structure 
configured to access a tokenized sequence of the docu 
ment and generate linguistic features from content 
within the tokenized sequence ; 

performing a tokenizing operation of the document , the 
tokenizing operation configured to generate one or 
more tokenized sequences from the content within the 
document ; 

generating a plurality of features for the document from 
the one or more tokenized sequences based on param 
eters defined by the one or more feature types ; 

accessing a plurality of probabilities stored in the data file , 
each probability among the plurality of probabilities 
associated with a feature among the plurality of fea 
tures and defining a pre - computed likelihood that said 
feature predicts a presence of absence of a label that the 
document is to be classified into ; 

computing a prediction score indicating how likely the 
document is to be classified into said label , based on the 
plurality of probabilities ; and 

classifying the document into said label based on com 
paring the prediction score to a threshold . 

19 . The computer readable medium of claim 18 , wherein 
generating the plurality of features is further based on 
parameters defined in task configuration data in the data file , 
the task configuration data associated with a type of task 
analysis that the natural language model is configured to 
classify the document into . 

20 . The computer readable medium of claim 18 , wherein 
the plurality of probabilities are pre - computed during a 
model training process configured to train the natural lan 
guage model to classify documents according to at least said 
label and said task . 

* * * * * 


