wo 2014/177869 A1 [N NI DO OO 0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

(43) International Publication Date
6 November 2014 (06.11.2014)

Organization
International Bureau

=

WIPOIPCT

\

(10) International Publication Number

WO 2014/177869 Al

(51) International Patent Classification:
GO6F 13/12 (2006.01)

(81)
HO4L 29/08 (2006.01)

GOGF 13/10 (2006.01)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(21) International Application Number: PCT/GEA014/051348 DO, DZ, EC, FE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
30 April 2014 (30.04.2014) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
.) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
(26) Publication Language: English ?’V’ TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(30) Priority Data: L
1308085.8 3 May 2013 (03.05.2013) GB (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): DIS- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
PLAYLINK (UK) LIMITED [GB/GB]; Mount Pleasant UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
House, Mount Pleasant, Cambridge CB3 ORN (GB). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV
(72) Inventors; and i i AT ? ? P O S
(71) Applicants (for US ornly): TURNOCK, Martin Andrew MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
. . . TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
[GB/GB]; Flat 19, Block D, 4 Valentia Place, Brixton, KM. ML. MR. NE. SN. TD. TG
London SW9 8EP (GB). EDMONDS, Timothy Mark > - NE, SN, TD, TG).
[AU/FR]; 5 Allee des Trouveres, Castelnau-le-Lez, F- Published:
34170 (FR). COOPER, Patrick David [GB/GB]; 21 o .
Landbeach Rd., Milton, Cambridge Cambridgeshire CB24 with international search report (Art. 21(3))
6DA (GB).
(74) Agent: HIRSZ, Christopher; Mathys & Squire LLP, The
Shard, 32 London Bridge Street, London Greater London
SE1 9SG (GB).
(54) Title: SYSTEM FOR CONNECTING A DISPLAY OVER A GENERAL-PURPOSE DATA TRANSPORT

s 208 200
/ /
/ 240
221 S
_ Firmware .
04 /l: /i"‘ 4 USB Display
] o/ // Adapter
UsB I:
05 Loader Controller E/_v:l /
. L) 2
05 f 3 E 22 /
\ 224
A A}
o
A
206 218 .
Fig. 2

(57) Abstract: Disclosed is a method of enabling a computer to provide output to a display over a general-purpose data transmission
medium, such as USB. The method includes providing a plurality of display interface components, each display interface component
adapted to receive display data and transmit the display data to the display via the general-purpose data transmission medium. Each
component is associated with a respective stage of operation of the computer. The computer is configured to use a respective one of
the display interface components during each of a plurality of distinct operational stages.

10

15

20

25

30

35

WO 2014/177869 -1- PCT/GB2014/051348

System for connecting a display over a general-purpose data transport

The present invention relates to methods and systems for providing output to
a display over a general-purpose data transport.

Computer displays utilise a variety of specialised connections such as VGA,
DVI or HDMI connections, coupled to dedicated video hardware in order to output a
display signal to a display. This need for dedicated connection hardware can
increase the cost and complexity of computers.

Systems have been developed that allow connection of displays over certain
other specialised types of connections. For example, the Thunderbolt interface
combines transport of DisplayPort and PCle express communications over a single
connection, to enable a variety of peripheral devices to use a single port. However,
specialised new hardware must be added to the computer to implement this
interface.

Systems for connecting a display to a computer over USB are also available.
Such systems generally use a software display driver loaded by the computer’s
operating system, which transmits display data over USB instead of via the
standard display connection. However, the driver is dependent on other parts of the
operating system’s display driver stack, as well as the USB driver stack for the
purposes of transmitting information over USB. Such systems can therefore
generally only be used once the operating system is up and running. Some other
display means is needed to interact with the computer outside the operating
system, e.g. during the boot process. With this approach, a USB-connected display
is thus generally only suitable for use as a secondary display.

The present invention seeks to alleviate some of these problems.

Accordingly, in a first aspect of the invention, there is provided a method of
enabling a computer to provide output to a display over a general-purpose data
transmission medium, the method comprising: providing a plurality of display
interface components, each display interface component adapted to receive display
data and transmit the display data via the general-purpose data transmission
medium for output to the display, each display interface component associated with
a respective stage of operation of the computer; and configuring the computer to
use a respective one of the display interface components during each of a plurality
of distinct operational stages.

This allows display output to be provided during multiple operational stages
of the computer. Each operational stage preferably corresponds to a distinct

10

15

20

25

30

35

WO 2014/177869 -2- PCT/GB2014/051348

software execution context, e.g. a context during which a distinct set of software
services are available for use by software running in the computer (such as
firmware services and operating system services). Preferably, the operational
stages include at least an operating stage prior to boot of an operating system (e.g.
a firmware context), and an operating stage after booting of the operating system
(e.g. an operating system context). The operational stages may also include an
operating stage during booting of the operating system. Different display interface
components may thus handle display output to the general-purpose data
transmission medium during each of those stages.

The term “operating stages” thus preferably refers to stages or phases of
operation of the computer in relation to any or all of the following: the powering up /
booting of a computer, booting of an operating system, running of the operating
system (and applications within it) and shutting down the operating system and the
computer. The operating stages may also include one or more stages of an OS
installation process.

The general-purpose data transmission medium is preferably external to the
computer, or includes a transmission channel that is external to the computer, for
example in the form of an external cabled or wireless connection, with the data
transmission medium providing a connection to a device that is separate and/or
remote from the computer (e.g. via said external channel), e.g. to a display or
display adapter connected to the display. The general-purpose data transmission
medium is preferably a data transmission medium that is not specifically designed
or intended for connection to a display. The transmission medium may include
software (e.g. driver) components, hardware components (e.g. controller and
connector/port hardware and interconnecting cables), or a combination of software
and hardware components. The data transmission medium may include or be a
software interface (or software stack) which itself handles data transport over an
underlying physical connection medium external to the computer. The data
transmission medium may be packet-based, and may be a peripheral connection
bus such as USB, or an IP-based transmission channel (e.g. a TCP/IP channel
such as a LAN or wireless LAN connection). In this context, the term “computer”
preferably refers to a self-contained computing device including at least a
processor, memory, one or more internal buses, and optionally one or more
input/output controllers connected to the processor via the one or more internal
buses, these components typically being housed in a computer enclosure. The
computer preferably includes one or more external connectors/ports, including a

10

15

20

25

30

35

WO 2014/177869 -3- PCT/GB2014/051348

connector/port for connection to the general-purpose transmission medium (or an
external channel thereof).

Display interface components are preferably software components (e.g.
executable code modules or libraries), for example in the form of drivers (e.g.
firmware or operating system drivers). However, display interface components
could optionally include hardware interface modules.

The display data may include pixel data. The display data may specify a
complete display frame or one or more modified portions of a display frame. The
display data may include metadata, such as data defining modified areas of a
display frame, or display configuration data. A display interface component may be
configured to modify the display data (e.g. convert or compress the data) prior to
transmission. Outputting display data may include outputting the data to a software
or hardware interface associated with the data transmission medium.

Configuring the computer may include configuring firmware, such as an
extensible firmware interface, or an operating system to load a display interface
component, e.qg. as a display driver.

The invention also analogously provides in a further aspect a method of
providing output to a display over a general-purpose data transmission medium, the
method comprising: running, at each of a plurality of respective stages of operation
of a computer, a respective display interface component, and receiving, by each
display interface component during the associated operational stage, display data
and transmitting the display data via the general-purpose data transmission medium
for output to the display.

The invention also provides a computer program product and a computer
system having means for (or configured for) carrying out any method as set out
above. The following optional features may be applied to any of these aspects.

Preferably, the plurality of display interface components comprises a pre-OS
display interface component associated with a stage of operation prior to booting of
an operating system (OS). Operation of the computer is preferably under control of
firmware during the pre-OS stage, the method preferably comprising configuring the
firmware to use the pre-OS display interface component for outputting display data.
The pre-OS stage may include operation of an OS loader (or an early part thereof).
Thus, the pre-OS display interface component is preferably adapted to receive
display data output by pre-OS code running on the computer, the pre-OS code
preferably including one or both of: firmware code; and OS loader code.

10

15

20

25

30

35

WO 2014/177869 -4- PCT/GB2014/051348

The pre-OS display interface component preferably implements a firmware
display interface or protocol, preferably Unified Extensible Firmware Interface
(UEFI) Graphic Output Protocol (GOP). Thus, the component may take the form of
a UEFI GOP driver. The pre-OS display interface component is preferably adapted
to receive display data through calls to such a firmware display interface or API.

Alternatively or additionally, the pre-OS display interface component may be
arranged to read display data from a framebuffer (e.g. periodically) and output the
display data to the general-purpose data transmission medium.

The plurality of display interface components preferably further comprises
one or more display interface components configured to interface with an operating
system of the computer, e.g. during or after booting of the operating system. Such a
display interface component may be arranged to receive display data from the
operating system (or a process or application running within the operating system)
via display API calls associated with a display API of the operating system or by
reading from a framebuffer written to by the operation system/process/application.

The method may comprise providing a plurality of display interface
components for use at respective stages of operation of an operating system of the
computer, and configuring the operating system to output display data for
transmission to the display using a selected one of said display interface
components during each respective stage.

Preferably, the method comprises configuring the operating system to load a
first display interface component during a first stage of booting the operating
system, preferably prior to establishment of the operating system display driver
stack, and to load a second display interface component during a second,
subsequent stage of booting the operating system, preferably as part of establishing
the operating system display driver stack.

The first display interface component is preferably configured to read display
data from a framebuffer written to by the operating system and output the read
display data to the general-purpose data transmission medium. The second display
interface component is preferably configured to receive display data through calls to
an operating system display API.

Advantageously, the display interface components may comprise one or
preferably both of. a kernel mode display driver, configured to receive display data
(e.g. from the operating system or associated applications or processes) prior to
initialisation of a user mode of the operating system and output the display data to
the general-purpose data transmission medium; and a user mode display service,

10

15

20

25

30

35

WO 2014/177869 -5- PCT/GB2014/051348

configured to receive display data and output the display data to the general-
purpose data transmission medium after initialisation of the user mode. The display
interface components may further comprise a user mode display driver configured
to receive display data from the operating system after initialisation of the user
mode and to output the display data to the general-purpose data transmission
medium using a selected one of the kernel mode display driver and the user mode
display service in dependence on a current operational state of the operating
system. This enables output to the general-purpose transmission medium to cover
essentially the entire user mode initialisation stage (i.e. the transition from kernel
mode driver to user mode service). The user mode display driver is preferably
configured to output the display data to the kernel mode display driver prior to
starting of the user mode display service, and to the user mode display service after
starting of the user mode display service.

The method may comprise configuring the operating system to prioritise
during booting of the operating system one or both of: loading of a selected one of
the display interface components; and loading of one or more drivers associated
with the general-purpose data transmission medium. The prioritising preferably
includes modifying a driver load order, preferably so as to place one or more display
interface components or data transmission medium drivers at an earlier point in a
driver load order (compared to an existing or standard driver load order). This has
the advantage of reducing a period during booting of the operating system when
display output over the general-purpose data transmission medium is not available
due to lack of drivers. The method may comprise configuring the operating system
to place the display interface component and/or the data transmission medium
driver(s) in a first (earliest) group of drivers processed by the operating system
when |loading drivers during boot.

The display interface components may include one or more display interface
components adapted to operate during one or more stages of an operating system
installation and/or configuration process.

The display interface components are preferably configured to output display
data to a display adapter connected to the general-purpose data transmission
medium, the display adapter configured to output a display signal to the display
based on received display data. The method preferably comprises configuring the
display adapter to maintain an output image on the display during transition from a
first display interface component operating during a first operational stage to a
second display interface component operating during a second operational stage,

10

15

20

25

30

35

WO 2014/177869 -6- PCT/GB2014/051348

wherein the output image is preferably a static image during the transition and/or is
an output image previously transmitted to the display adapter. The transition is
preferably a transition involving an initialisation or reset of the data transmission
medium or one or more components thereof. This can prevent a disruption to the
display output during such an initialisation. The output image that is maintained by
the adapter is preferably the last output image transmitted to or generated at the
adapter prior to the initialisation.

This feature may also be provided independently. Accordingly, in a further
aspect of the invention, there is provided a method of providing display output from
a computer to a display adapter over a general-purpose data transmission medium,
the display adapter associated with a display and arranged to receive display data
over the data transmission medium and provide an output signal to the display
based on the display data, the method comprising: prior to booting of an operating
system of the computer, transmitting display data to the display adapter over the
general-purpose data transmission medium by a display interface component
associated with a firmware of the computer; configuring the display adapter to
maintain a predetermined display output during an initialisation of the general-
purpose data transmission medium occurring during booting of the operating
system; and subsequent to the initialisation, transmitting display data to the display
adapter over the general-purpose data transmission medium by a display interface
component associated with the operating system.

The display adapter may form part of the display device, or may be a
separate device connected to the display, preferably via a standard display
connection.

The configuring is preferably performed by the display interface component
associated with the firmware. The method may comprise, at the adapter,
maintaining the predetermined display output during the initialisation. The
predetermined display output preferably corresponds to a previous (preferably most
recent) display output sent to the display adapter by the firmware display interface
component, e.g. prior to termination of said component or prior to handover from
said component to the display interface component associated with the operating
system. The method preferably further comprises at the display adapter,
subsequent to the initialisation, updating the display based on subsequently
received display data.

The invention preferably also provides as independent aspects the parts of
the above method performed respectively at the computer and the display adapter,

10

15

20

25

30

35

WO 2014/177869 -7- PCT/GB2014/051348

as well as computer program products and devices having means for performing
the respective parts of the method.

In a further aspect of the invention, there is provided a method of providing
output to a display connected to a computer over a general-purpose data
transmission medium, the method comprising: transmitting display data over the
general-purpose data transmission medium to a display adapter, the display
adapter arranged to receive the display data and output a display signal to the
display based on the display data; in response to an operating system of the
computer entering a fault mode, the fault mode including terminating operation of an
operating system interface to the data transmission medium, transmitting prior to
the terminating a fault indication to the display adapter over the general-purpose
data transmission medium (e.g. using said interface); and in response to the fault
indication, outputting by the display adapter a stored display image comprising
information indicating occurrence of the fault.

This can enable a fault indication to be displayed to a user even though the
data transmission medium is becoming unavailable (because the operating system
is in the process of halting). The method preferably comprises transmitting the
display image to the display adapter prior to entering the fault mode (e.g. by a
display interface component as set out above), and storing the display image at the
display adapter.

To ensure that the fault indication can be successfully transmitted, an
amount of data used for transmitting the fault indication is preferably less than an
amount of data of the stored display image and/or less than an amount of data used
for transmitting the display image to the display adapter. The fault indication is
preferably transmitted on the general-purpose data transmission medium using a
single data packet.

The invention preferably also provides as independent aspects the parts of
the above method performed respectively at the computer and the display adapter,
as well as computer program products and devices having means for performing
the respective parts of the method.

In any of the above aspects, the general-purpose data transmission medium
preferably comprises a peripheral connection bus, preferably a Universal Serial
Bus, USB. The display interface components preferably comprise one or more
display interface components as set out below.

The invention also provides a computer system configured in accordance
with any method as set out above and/or having means for performing any method

10

15

20

25

30

35

WO 2014/177869 -8- PCT/GB2014/051348

as set out above, and a computer program or computer program product
comprising software code adapted, when executed on a data processing apparatus,
to perform any method as set out above.

In a further aspect of the invention, there is provided a display interface
software component for transmitting display data from a computer to a display over
a general-purpose data transmission medium, wherein the display interface
component comprises: means for receiving display data intended for output to the
display, the display data generated by code running prior to booting of an operating
system of the computer (and/or prior to loading of a display driver used by the
operating system); and means for outputting the display data to the general-
purpose data transmission medium for transmission to the display.

The display interface software component is preferably arranged to
implement a standard firmware display interface, the receiving means arranged to
receive display data through calls to the interface. Preferably, the display interface
software component is configured to implement an Extensible Firmware Interface
(EFI1), or Unified EFI (UEFI) display protocol. The display interface software
component may be in the form of a UEFI Graphics Output Protocol (GOP) driver.

The receiving means may comprise means for reading display data from a
framebuffer.

In a further aspect of the invention, there is provided a display interface
software component for use by an operating system of a computer during a stage of
operation of the operating system prior to establishment of the operating system
display driver stack (that is used after boot) during which the operating system
renders display output into a framebuffer without use of the display driver stack; the
display interface software component comprising: means for reading display data
from the framebuffer; and means for outputting the display data to the general-
purpose data transmission medium for transmission to the display.

The following optional features may be applied to either of the above
aspects. The reading means is preferably adapted to read display data from the
framebuffer periodically. The framebuffer may be associated with a hardware
display adapter. Alternatively, the display interface software component may
comprise means for creating the framebuffer and making the framebuffer accessible
to other software components in the computer. As set out above, the general-
purpose data transmission medium is preferably not specially adapted for providing
display data to a display, and preferably comprises a peripheral connection bus,
preferably a Universal Serial Bus, USB. The outputting means is preferably

10

15

20

25

30

35

WO 2014/177869 -9- PCT/GB2014/051348

arranged to output the display data to the USB via a USB interface provided by the
computer’s firmware or via an operating system USB driver. The outputting means
preferably comprises means for converting and/or compressing the display data
prior to transmission.

The display interface software component may comprise means for receiving
information indicating one or more changed areas of a display frame, the outputting
means adapted to output display data to the general-purpose data transmission
medium only in respect of the changed areas, and may comprise means for
generating the changed area information based on the received display data,
preferably by comparing received display data to previous display data. This can
reduce the amount of data that has to be transmitted.

The outputting means is preferably configured to transmit the display data to
a display adapter connected to the data transmission medium, the display adapter
arranged to output a display signal to the display based on the transmitted display
data.

The means for performing various actions are preferably in the form of
software code for execution by the computer. The invention also provides a
computer-readable medium comprising software code for implementing a display
interface software component as set out in any of the above aspects, and a
computer system comprising such a display interface software component. Display
interface software components as set out above may be used in any of the method
aspects previously set out.

More generally, the invention also provides a computer program and a
computer program product for carrying out any of the methods described herein
and/or for embodying any of the apparatus features described herein, and a
computer readable medium having stored thereon a program for carrying out any of
the methods described herein and/or for embodying any of the apparatus features
described herein.

The invention also provides a signal embodying a computer program for
carrying out any of the methods described herein and/or for embodying any of the
apparatus features described herein, a method of transmitting such a signal, and a
computer product having an operating system which supports a computer program
for carrying out any of the methods described herein and/or for embodying any of
the apparatus features described herein.

The invention extends to methods and/or apparatus substantially as herein
described with reference to the accompanying drawings.

10

15

20

25

30

35

WO 2014/177869 -10- PCT/GB2014/051348

Any feature in one aspect of the invention may be applied to other aspects of
the invention, in any appropriate combination. In particular, method aspects may be
applied to apparatus aspects, and vice versa.

Furthermore, features implemented in hardware may generally be
implemented in software, and vice versa. Any reference to software and hardware
features herein should be construed accordingly.

Preferred features of the present invention will now be described, purely by
way of example, with reference to the accompanying drawings, in which:-

Figure 1 illustrates operation of a conventional display interface;

Figure 2 illustrates in overview a display system for providing display output
over a USB connection;

Figure 3 illustrates transport of display output over USB using a graphics API
coupled to a software display driver,

Figure 4 illustrates a software display driver providing display output over
USB using a framebuffer scraper;

Figure 5 illustrates operation of a USB Display Interface during different
stages of operation of a computer;

Figure 6 illustrates operation of the USB Display Interface in more detail;, and

Figure 7 illustrates the configuration of the USB Display Interface stack
during different stages of operation of the computer.

Overview

In a conventional PC, dedicated display adapter hardware provides an
interface to a display. The display adapter may be integrated into a motherboard or
provided as an expansion card (e.g. PCI-Express). Display adapters commonly
provide a basic VGA-compatible feature set, together with more advanced
functionality, such as hardware-accelerated 3D rendering and media
encoding/decoding. The connection from the display adapter to the display is via
specialised output connectors and cables, such as those based on the VGA
(HD15), DVI, HDMI, or DisplayPort standards.

Firmware and software components that run prior to operating system boot,
(e.g. BIOS/UEFI boot code and OS loader software) may generate screen output by
writing directly to a frame buffer of the display adapter, which may be memory-
mapped into the processor's address space. Additionally, software interfaces may
be available in the form of BIOS routines or UEFI GOP drivers to simplify output to
the screen during the boot stage.

10

15

20

25

30

35

WO 2014/177869 -11- PCT/GB2014/051348

Once the operating system has been started, the operating system typically
runs a display driver, which may be generic (based on display standards such as
VGA) or may be hardware specific (e.g. NVIDIA Geforce or AMD Catalyst driver
software). The display driver provides access to the display hardware, including
advanced functionality such as 3D rendering where available. In some cases, the
display driver may allow configuration of the hardware while the hardware, once
configured, can continue to update the display without driver intervention.

Figure 1 illustrates the operation of a typical VGA-compatible display
architecture during different stages of a computer’s operation.

The top half of Figure 1 illustrates the main operational stages of the
computer, starting (e.g. after power-on or reset) with running of the UEFI (Unified
Extensible Firmware Interface) / BIOS (Basic Input/Output System) or other
firmware boot code in stage 102. The firmware boot code locates and runs an OS
loader program 104 (usually from an attached mass storage device, e.g. hard disk).
The OS loader program is responsible for loading and starting up the operating
system kernel 106. After initialisation of the system by the OS kernel, the operating
system then enters normal operation (stage 108). Normal operation terminates
either due to shutdown initiated by the user (stage 110), or due to an unrecoverable
error, in which case system operation is suspended (stage 112) and an error
message is displayed (commonly known in versions of the Microsoft Windows
operating system as the “Blue Screen of Death”, BSOD).

The lower half of Figure 1 illustrates the operation of different components of
the display architecture during the above operational stages (the elements are
shown approximately time-aligned with the relevant operational stages in the upper
half of the diagram).

During the various operational stages, the video hardware is configured and
operated as follows:

1. Boot — UEFI/BIOS: UEFI Graphics Output Protocol (GOP) VGA Driver 120
initialises the video hardware 122. BIOS boot information and setup screens
are displayed via the GOP interface. GOP establishes an in-memory
framebuffer and the video hardware continues to rasterise this framebuffer to
the display.

2. OS Loader — UEFI and GOP driver 120 are stopped and unloaded. The OS
loader renders OS boot information and logo to the framebuffer. The video

hardware 122 continues to rasterise the framebuffer to the display.

10

15

20

25

30

35

WO 2014/177869 -12- PCT/GB2014/051348

3. OS Boot — The OS Kernel 106 boots and renders OS boot option selection,
logo and progress animation to the framebuffer. The video hardware 122
continues to rasterise the framebuffer to the display.

4. OS Graphics Stack —

a. The OS initialises the kernel graphics stack including a display driver
126 for the system’s video hardware. Further updates to the display
are actioned via this driver interface and hence are mediated by the
driver software (which may delegate the actual operation to the
hardware).

b. The OS initialises the user mode graphics composition stack 128.
Further updates to the display are actioned via this composition stack
and then the kernel mode driver 126 and hence are mediated by the
driver software (which may delegate the actual operation to the
hardware).

5. Shutdown - the OS Graphics stack is destroyed and the hardware 122 is
configured to again render from the memory framebuffer. The OS renders
the shutdown animation to the framebuffer.

The transition from OS Boot (stage 3) to the creation of the OS Graphics
Stack (stage 4) also involves hardware initialisation 124, including enumeration and
reset of the display adapter hardware.

Embodiments of the invention provide a system enabling display output to be
transmitted from a computer to a display device without the need for special-
purpose display adapter hardware and connections. Instead, the display signal can
be carried over a general-purpose data connection. This may be a data bus used
for attaching peripherals to a PC, such as USB or IEEE1394, a short-range wireless
interface such as a Bluetooth, Infrared or Near-Field Communication (NFC)
connection, or a connection used for remote communication, such as an Ethernet
LAN or Wireless LAN.

A preferred embodiment will now be described in which the data transport
connection is a Universal Serial Bus (USB), but it will be understood that, in
principle, the invention may be adapted to any data transport mechanism or
medium.

The system is illustrated in overview in Figure 2, and includes a computing
device 200, such as a desktop or laptop PC, which is connected to a display 240 via
a USB display adapter 220.

10

15

20

25

30

35

WO 2014/177869 -13 - PCT/GB2014/051348

The computer 200 comprises a conventional USB controller 210 and
associated USB ports. One of the USB ports 212 connects to a USB port 222 in the
USB display adapter 220, e.g. via a standard USB cable 214. The USB display
adapter connects to the display 240 via a conventional display port 224 and display
cable 226 (e.g. VGA, DVI or HDMI). Instead of connecting via cables, the USB
Display adapter 220 may be in the form of a dongle that connects directly to either
the computer or to the display (with a cable providing the other connection leg).
Wireless display interfaces may also be used.

Display output is generated by software running on computer 200. The
environment in which that software is running depends on the operational state of
the computer. Prior to operating system (OS) boot, the software may be in the form
of firmware 202 (e.g. BIOS or UEFI firmware). OS boot is managed by an OS
loader 204. Normal operation (e.g. execution of user applications) is under the
control of the OS 206. Display output may be generated from within each of these
software contexts.

A software interface layer 208 provides for the capture of display data and its
transport over the USB interface to the USB display adapter. This interface layer is
referred to herein as the USB Display Interface, UDI. The UDI 208 preferably
operates transparently by intercepting display output from the software
202/204/206, so that no modification of that software is required to enable use of
the UDI.

The UDI includes a number of software components adapted to handle the
different operational contexts, and also implements measures to ensure smooth
transitioning between those contexts. In general terms, each UDI component
performs the following functions:

¢ Integrating into the display interface structure and driver configuration of a
particular operational stage
¢ Initialisation of the USB display
e Collecting pixel data, encoding that data and transmitting it over USB.
e Scaling image data to match output to available resolutions of the attached
display
As the computer transitions between operational stages, responsibility for image
rendering and control of the USB display adapter 220 is transferred between the
UDI components. During handover from one UDI component to the next, the USB
display adapter 220 is configured to ensure persistence of the display contents from

10

15

20

25

30

35

WO 2014/177869 - 14 - PCT/GB2014/051348

one stage to the next. The stage transitions can occur both forwards and backwards
in the chain.

Each UDI component outputs display data over the USB connection (including
the USB controller 210, USB port 212 and USB cable 214) to the USB display
adapter 220. Access to the USB controller may be via a UEFI/BIOS USB interface
or an operating system driver depending on the current operating stage.

The USB display adapter 220 receives and buffers the display data, performs any
necessary format conversion and outputs a display signal to the display 240 over
the conventional display connection comprising connector 224 and cable 226 (e.g.
a VGA, DVI or HDMI link).

The display adapter includes a processor, a video decoder and a video output
controller. The processor handles actions such as mode queries, mode setting,
blanking and the like, while the video decoder handles the compressed video
stream received from the computer. The video decoder decompresses the video
into a memory framebuffer that is rasterised out to the display by the video output
controller. The framebuffer serves to decouple the update rate of the compressed
data stream received from the computer (which is variable depending on content)
from the display raster rate (which is typically fixed e.g. at 60Hz).

The following sections describe the operation of the UDI components in more detail.
Though largely described in the context of versions of the Microsoft Windows
operating system and associated display driver architectures (especially versions of
Windows using the Windows Driver Foundation, e.g. Windows 2000 and later), it
will be understood that the same basic principles can be adapted for use in other
operating system environments and driver architectures).

Operation of the USB Display Interface

The USB Display Interface (UDI) 208 provides a chain of software
components to allow operation of the system without dedicated video hardware and
without dedicated video connectors. The UDI cannot rely on any hardware to
perform the rasterisation of the in-memory framebuffer and so this functionality is
implemented in software (running on the system CPU). Preferably, this functionality
is implemented within each runtime context (UEFI, OS loader, OS) to ensure
maximum coverage. Furthermore, the software display functionality is preferably
available from the earliest possible time to the latest possible time within each
operational stage, so as to minimise any time periods (at the handover point

10

15

20

25

30

35

WO 2014/177869 -15- PCT/GB2014/051348

between stages) where a display output cannot be transmitted to the USB-
connected display 240.

The operation of the UDI in each runtime context is similar with a capture,
compress and transport pipeline for obtaining and processing display data and
outputting it over the USB connection. However the capture mechanism depends
on the integration with the runtime context. In one approach, a UDI component can
implement a standard graphics API available within a particular runtime context,
and so can receive graphics data via that APl and push the data through the USB
output pipeline on demand. In another approach display data is periodically read
from a hardware-implemented or software-emulated framebuffer.

A UDI component implementing a standard graphics API is illustrated in
Figure 3. In this approach, a software display driver 308 takes the place of a
conventional display driver and associated display hardware. Graphics data, e.g. in
the form of pixel data 302 and associated metadata 304 is received by the driver
308 via a standard graphics API 306 and stored in a cache 310.

Metadata 304 may include dirty area information, providing information about
what areas on the screen have changed since the last update. Such information
can be useful for compression. Other forms of metadata may include the resolution
and format of the pixel data, the refresh rate and rotation of the screen, and the like.

The cache 310 supplies pixel data and metadata to a pipeline comprising a
conversion component 312, a compression component 314 and a USB transport
component 316.

The conversion component 312 converts the graphics data into a format
suitable for transport over USB. The compression component 314 compresses the
data using any appropriate compression algorithms in order to reduce the data
volume to be transported.

The conversion and compression components may operate to encode only
those parts of the display that have changed since the last transmission of a frame
to the display (for example only the parts affected by the Graphics API call currently
being handled). Those parts are identified based on dirty area information forming
part of the graphics metadata 304. The output of the compression component then
only includes compressed data for the changed areas of the frame, together with
metadata identifying those areas.

The compression component outputs compressed information (optionally
including metadata) for a single display frame to the USB transport component 316,
which packetizes the compressed data into transfer units of a size and format

10

15

20

25

30

35

WO 2014/177869 - 16 - PCT/GB2014/051348

appropriate to the bus and display adapter, and outputs the packetized data to the
display adapter 220 over the USB link. This involves interfacing with a standard
USB interface (e.g. a UEFI USB interface or a USB driver provided by the OS).

The compressed data is received by the display adapter 220 and
decompressed. The display adapter may maintain a cached copy of the last
received/displayed frame, which it may use to reconstruct the new frame if the
received frame only includes the changed regions, by combining the changed
regions from the received data with the cached data for the other areas of the
frame. Alternatively, the transmitted data may comprise a complete frame. The
decompressed and optionally reconstructed frame is then output to the display (as
indicated above, the display adapter uses its own framebuffer to decouple display
refresh from the receipt of frames, which typically occur at different frequencies).

The software display driver 308 may, for example, take the form of a GOP
driver during the UEFI boot stage, and an OS display driver during normal OS
operation.

In runtime contexts where there is no standard graphics API, the UDI
emulates the video hardware’s in-memory framebuffer rasterisation. This approach
is illustrated in Figure 4.

In this approach the graphics data (i.e. pixel data 302) is written into a
framebuffer 404 in memory. The software display driver 402 comprises a scraper
operation 408 which is run periodically. This may be as part of a separate scraper
thread 406 in the driver, or may be triggered by a timer. The scraper preferably
operates at a frequency of at least 5Hz. In a preferred embodiment, the frequency is
around 10Hz, though higher frequencies may advantageously be used, even as
high as the native refresh rate of the display, e.g. around 60Hz for a 60Hz display.

The scraper 408 implements the emulation of the framebuffer by periodically
scanning the framebuffer and forwarding the pixel data via cache 310 to the display
pipeline (consisting of the conversion, compression and transport operations 312,
314, 316 as described previously in relation to Figure 3).

The driver may optionally include a metadata generator 410 which compares
the framebuffer contents to a cached history of the display to reconstruct the dirty-
area information. In this approach, the driver 402 maintains a copy of the last
display frame sent to the display in cache 310. The metadata generator 410
compares this to the current frame read from the framebuffer, and compiles a list of
screen regions that have changed (the “dirty areas”). This metadata is then used in

10

15

20

25

30

35

WO 2014/177869 -17- PCT/GB2014/051348

the convert-compress-transport pipeline as described above to reduce the amount
of data that has to be encoded and transmitted.

The APl and scraper approaches (as illustrated in Figures 3 and 4
respectively) may be used at different operational stages (in different runtime
contexts) and where necessary may be combined. Thus, a software display driver
may implement either or both of the approaches described in relation to Figures 3
and 4.

Figure 5 shows the operation of the UDI components during the different
operational stages. The operational stages depicted correspond to those shown in
Figure 1, i.e. UEFI/BIOS boot stage 102, followed by the OS loader 104 loading the
kernel 106, leading to normal OS operation in stage 108 and finally regular
shutdown 110 or termination 112 due to a fault.

The UDI operates either as a graphics API driver or framebuffer scraper
depending on the operational stage. In some cases, such as the GOP driver, the
interface may act as both simultaneously. Figure 5 has been subdivided into a
number of phases to show the transitions between different operating modes of the
UDI.

In particular, a new UDI GOP driver 502 replaces (or may be provided in
addition to) the VGA GORP driver 120 of Figure 1. This GOP driver operates during
the initial stages of boot (the UEFI/BIOS operation and the early part of the
operation of the OS loader) and captures content via both APl and scraping
approaches (see Figures 3 and 4). This combined approach accommodates legacy
applications that render directly to the framebuffer (such as the OS loader) instead
of using the GOP interface.

During loading of the OS and initialisation by the OS kernel, control of the
USB hardware passes from the UEFI/BIOS to the operating system. This involves a
reset of the USB hardware and enumeration of USB devices as per standard OS
USB initialisation procedures 504 (phase 2). Once the operating system’s USB
driver stack is operational, the system loads a direct mode display driver 506.
Subsequently, after user login, a user mode display driver 508 is started. The direct
mode (kernel mode) display driver and user mode display driver operate as per
Figure 3, by processing OS display API calls and passing the received display data
and metadata on to a convert/compress/transport pipeline for transmission over
USB. The direct mode and user mode drivers consist of several individual driver

components as described in more detail below.

10

15

20

25

30

35

WO 2014/177869 - 18- PCT/GB2014/051348

Figure 6 shows the individual UDI components of the USB display interface
in more detail, in relation to a timeline of system operation, and illustrates where the
display content is made available either via a graphics API or via scraping of an in-
memory framebuffer at various points in time. Figure 6 also illustrates by way of
comparison how information flows to conventional VGA display components during
the same stages of operation (such conventional VGA display components may or
may not be present at the same time as the UDI as discussed in more detail below).

In the diagram, solid arrows show image data passed by graphics API calls,
and dashed arrows show image data obtained by scraping the frame buffer.

The UDI components include:

e A UDI GOP Driver 602, which operates both through GOP-compatible API
calls during the UEFI boot and setup stages (i.e. the firmware stage), and via
framebuffer scraping during that stage and during the running of the OS
loader

e UDI BootVid Driver 604, which operates during an early stage of OS
initialisation, and during OS shutdown, and operates via framebuffer
scraping

e UDI Kernel Driver 606, which operates during the OS Kernel Rendering
Stage via display driver APIs

e UDI Compositor 608, which operates during the OS Compositing Stage via
display driver APIs

e UDI User Service 610, which operates during ordinary OS operation, after
user login, via display driver APIs

e Fault condition handling, which handles display of an error screen during an
OS Fault Condition (e.g. BSOD)

The above represents a functional division of UDI functionality. In practice, each
functional unit may be implemented by a separate software component, or
alternatively several functional units may be combined into a single software
component.

The UDI may be included in (or installed during) a standard OS installation.
Alternatively an existing computer (with installed OS) may be configured to use the
UDI by installing the relevant UDI components/drivers (e.g. in the UEFI and the
0OS), and performing other configuration steps (e.g. to specify driver load order) as
described elsewhere herein.

The operation of the different UDI components during each of the operational
stages will be described in more detail in the following sections.

10

15

20

25

30

35

WO 2014/177869 -19- PCT/GB2014/051348

Firmware Stage

The Firmware Stage is the initial state of the system from power on.
Typically the firmware implements a UEF| or BIOS compatible system interface and
boot code. During this stage, the system performs various checks and initialisations.
The user can manipulate various settings via the BIOS settings utility and can select
the boot device. The firmware then runs the OS loader which can use the firmware
facilities until it transfers control to the operating system (referred to as the Boot Exit
point).

The UDI provides a standard Graphics Output Protocol (GOP) interface to
the UEFI to receive pixel data which is subsequently encoded and sent over USB
via the UEFI USB interface as described above. BIOS displays for configuration and
boot device selection are presented via this GOP interface.

Concurrently, the driver periodically scrapes pixel data from the VGA
hardware video device by accessing its framebuffer memory. This is necessary to
capture pixels from non-conformant or legacy programs that draw directly to the
framebuffer, bypassing the GOP interface and relying on the VGA hardware
rasteriser to render the pixels to the display. Some OS loaders display in this way.

In a system without VGA hardware, the UDI emulates the functionality by
providing its own framebuffer in memory. UEFI and OS processes query the
framebuffer memory location via the GOP API, and so the UDI GOP driver is
configured to respond to these queries by providing the address of the emulated
framebuffer instead of a VGA hardware framebuffer.

At Boot Exit point, the UEFI GOP features are stopped and the UDI GOP
Driver is unloaded. At this point the UDI receives no pixels directly nor is it able to
scrape image data from the frame buffer, so that the display is not updated during
this time (Phase 2 in Figure 5).

However, the OS loader display is typically static at this point and it therefore
suffices to simply maintain the current contents of the display. To achieve this, the
UDI GOP driver instructs the USB display adapter to maintain the display on and
with static content corresponding to the last received display data during the next
USB reset that will occur as the OS starts up. This improves continuity of the
display and makes for a smoother user experience.

The system does not return to this stage until system reset.

10

15

20

25

30

35

WO 2014/177869 -20- PCT/GB2014/051348

OS Boot Video Stage

The OS Boot Video Stage covers the early period from OS load to OS
initialisation of the graphics stack. Typically at this stage the OS will display some
sort of progress animation as it initialises the system.

During this phase, many operating systems use a simple VGA-compatible
display driver (known in Windows systems as the BootVid driver).

The UDI includes a boot video driver component which augments the OS
BootVid driver (UDI BootVid driver 604 in Figure 6). This acts as a periodic
framebuffer scraper in a similar manner to the GOP firmware driver. When ready, it
queries the memory location and size of the boot framebuffer and then processes
the pixel data (written to the framebuffer by the OS Bootvid driver) at regular
intervals, encodes it and forwards it to the USB display adapter (as described with
regard to Figure 4).

The BootVid driver cannot start immediately at OS load but must wait for the
OS to initialise the USB stack, which is needed to enable transport of the display
data over USB. To minimise the gap between Firmware and Boot Video stages, the
OS is configured to prioritise the loading of USB host controller and USB hub
drivers at the first round of device enumeration. For example, in an operating
system like Windows, which loads drivers by group, this involves moving the USB
drivers (USB host controller and USB hub drivers) into the “Boot” group, i.e. the first
group of drivers that are loaded. The UDI BootVid driver is also preferably added to
this group. Additionally, it is possible to mask or modify the enumeration of PCI
devices to promote the enumeration of USB host controllers ahead of other devices.

This stage continues to scrape from the boot framebuffer until the OS
constructs the graphics stack including initialisation of the video hardware low-level
(2D) drivers. At this point control of the USB display is passed to the Kernel
Rendering stage.

Control is handed back to this stage during OS shutdown as the graphics
stack is torn down.

OS Kernel Rendering Stage
The OS Kernel Rendering Stage covers the period from the OS initialisation
of the OS graphics stack to the OS initialisation of the OS user mode compositor.
The UDI Kernel Rendering Driver 606 (Figure 6) acts as an OS graphics
driver (or intercepts calls to the OS graphics driver if a hardware video driver is also
present) with 2D display support. As such, all graphics data is passed directly to the

10

15

20

25

30

35

WO 2014/177869 -21- PCT/GB2014/051348

driver in the form of pixel data and associated metadata (such as dirty area
rectangles).

This simple 2D interface is also used to display OS fault conditions should
the OS enter into an unrecoverable error state. Handling of fault conditions is
described in further detail below.

This stage continues until the driver detects the presence of the UDI user
mode compositor 608 or the UDI user mode service 610. Control reverts to this
stage if both the compositor 608 and service 610 have stopped.

However, the UDI kernel mode driver preferably continues to handle display
configuration even during subsequent stages where display rendering (i.e. output of
display data) is handled by the user mode service, as described further below.

OS Compositing Stage

The OS Compositing Stage covers the period from OS user mode
initialisation to shutdown. In this stage, the OS provides a user mode compositor
component which composites the system display using 3D primitives (e.g.
compositing multiple windows into a complete desktop screen). Immediately after
starting the OS compositor, general user mode services are not yet running. It is
typically a very brief period at about the time of the login screen.

The UDI Compositor Renderer 608 operates within the OS compositor as a
user mode graphics driver. It is loaded into the process by the UDI Kernel Driver
606 and monitors 3D primitive operations via the user mode graphics driver API.
When the renderer 608 detects an update to the display, it connects to the UDI
Kernel Driver 606, passing the pixel data and metadata (e.g. dirty areas) through.
The UDI Kernel Driver 606 performs the compression and transmission of this
content (as per the process described in relation to Figure 3).

This stage continues until it detects the presence of the UDI User Service
610 at which point it passes the pixel data and metadata (dirty areas) to that
component rather than the UDI Kernel Driver 606.

OS User Service Stage

The OS User Service Stage covers the normal OS operation.

In this stage the UDI User Mode Service 610 (a background application
running in user mode) interfaces with the UDI compositor renderer 608 running
within the OS compositor (see above) to collect display data (pixel data and
metadata) and performs the compression and transmission to the device via USB

10

15

20

25

30

35

WO 2014/177869 -22- PCT/GB2014/051348

(and USB drivers) using the methods described in relation to Figure 3. However, as
it is running in user mode, this software implementation is easier to develop and can
be more complex. For example, in preferred embodiments, the user service may
implement higher performance compression modes and more features such as
improved desktop layout, protected content, power saving, etc.

The UDI User Mode Service 610 also interacts with the Kernel Mode driver
606 to handle setup of display modes and display configuration.

This is the final stage in the boot sequence, and so there is no handover
from this stage. However, control reverts to the UDI Compositor Renderer 608 or
UDI Kernel Driver 606 on exit from the User Service.

OS Fault Condition

Rendering of the OS Fault Condition (e.g. Windows “Blue Screen of Death”)
is a special condition as the display must be presented while the OS runtime is
halted. In a typical system, the fault information is rendered to the display via the in-
memory framebuffer which is in turn delivered to the screen by the dedicated video
hardware.

With the UDI, framebuffer rendering by the video hardware is not available.
Furthermore, access to the USB is limited because the OS is in the process of
halting. Typically it is only possible to issue a single USB packet (512 bytes) in this
time, before the USB service becomes unavailable. A single packet is generally not
sufficient to send the contents of a complete fault screen.

To work around this, the UDI Kernel Driver 606 sends pixel data for a
complete fault screen to the USB display adapter 220 (Figure 2) at startup, while
the system is still healthy. The adapter does not display this content but instead
stores it in an offscreen memory area. When the system enters a fault condition, the
UDI Kernel Driver 606 then sends a single packet to the USB adapter instructing it
to show the pre-stored fault screen.

The fault condition is detected by way of a hook in the graphics driver where
it presents the full fault screen (which would normally be placed into the framebuffer
by the hardware graphics driver). However, because the fault screen contents were
pre-generated and sent to the display adapter in advance of any fault, full details of
the fault are not provided (e.g. to specify the driver at fault or provide crashdump
information); instead a default, simplified fault message is displayed.

10

15

20

25

30

35

WO 2014/177869 -23- PCT/GB2014/051348

UDI driver stack

Figure 7 summarises key elements of the UDI driver stack at different
operational stages. Figure 7 shows the stack as it applies to the flow of pixel data
(rather than display configuration, which may follow a different data flow, as
indicated above).

During the firmware boot stage 702, the UDI GOP Driver 602 receives
display data via GOP calls and framebuffer scraping and transmits it via the
firmware USB interface to the USB hardware for transmission to the display adapter
and display.

During part of the OS loader stage 704, no UDI service is available due to
handover of USB control from the firmware to the operating system. However, the
display adapter has been configured to maintain a static display output during this
time as described above.

During the OS early boot stage 706, the UDI BootVid driver 604 obtains
display data by scraping the framebuffer (written to by the OS BootVid driver) and
outputs to the USB hardware via the operating system USB Drivers.

During OS Graphics stack initialisation stage 708, the UDI Kernel Rendering
Driver 606 is loaded. It receives display data via the OS display APIs, and outputs it
via the OS USB driver stack as before.

At User mode initialisation stage 710, the UDI User mode graphics driver
608 is loaded and interfaces with the OS compositor. Display data is received from
the OS compositor / UDI User mode graphics driver and passed to the UDI Kernel
Rendering Driver 606, which processes it as in the earlier stage.

Finally, the UDI User Mode Service 610 runs during full user mode operation
stage 712, replacing the UDI Kernel Rendering Driver 606 in the pixel data path.
The UDI User Mode Service 610 now receives the display data from the UDI User
mode graphics driver 608 in the OS compositor and outputs it to the OS USB driver
stack using its own implementation of the conversion/compression/USB transport
pipeline of Figure 3.

Thus, the UDI GOP Driver 602, UDI Bootvid driver 604, UDI Kernel
Rendering Driver 606 and UDI User Mode Service 610 may each provide their own
version of the conversion/compression/USB transport pipeline, potentially with
different features and functionality. Alternatively, some or all of these components
could share a single implementation of the pipeline (e.g. implemented as a separate

component in the stack).

10

15

20

25

30

35

WO 2014/177869 -24- PCT/GB2014/051348

Dual operation

The system described above can be used in a computing device without
dedicated video hardware (i.e. without hardware display adapters and connectors).
For example, the system could be implemented in a small form-factor PC with a set
of USB ports as the only means for connecting peripherals, including the display,
keyboard and mouse. This allows a fully functioning PC to be provided with reduced
hardware complexity and cost. The UDI software described allows output to be
passed to a USB-connected display during substantially all stages of operation of
the computer device, and thus allows a USB-connected display to be used as the
primary display for the computer. Furthermore, the UDI system can support multiple
USB-connected displays, for example in a tiled or mirrored multi-monitor setup.

However, where a hardware display adapter is available (but not connected
to a display), this may be utilised by the UDI, in particular by using the display
framebuffer provided by the hardware adapter (where this is not available the
framebuffer is emulated as previously described).

Furthermore, in an alternative arrangement, the UDI can be used in addition
to conventional display hardware and driver stacks, to allow simultaneous use of
USB-connected displays and other displays connected via conventional means (for
example in a mirrored or tiled multi-monitor setup). In such a case graphics data
flow may be provided during various operational stages to the conventional display
driver and hardware components at the same time as to the UDI components, as
depicted in Figure 6.

Thus, the UDI system preferably supports the following modes:

e VGA hardware with connected display(s), and UDI software with USB-
connected display(s)

¢ VGA hardware (no connected display) together with UDI software with USB-
connected display(s)

o UDI software with USB-connected display(s) only

Operation during non-standard operational stages

The above approaches may also be used to provide display output during
operation system installation/setup. For example, a frame buffer scraping driver
may be used during an early stage of the installation procedure (similarly to the
Bootvid driver described above), followed by a kernel mode driver during a
subsequent stage, once the OS kernel has been installed and started. An operating
system such as Windows will typically restart during installation (possibly multiple

10

15

20

25

30

35

WO 2014/177869 -25- PCT/GB2014/051348

times); by configuring the operating system to use the relevant kernel and user
mode drivers as described previously, those drivers can then be used as normal
during the later parts of the OS installation.

Similarly, the described principles can be applied to other non-regular
operational stages, such as boot selection interfaces, by providing at each stage a
display driver component that interfaces with the relevant display APl and other
services available at the particular stage (e.g. firmware APIs and services, or
operating system APIs and services) and/or reads from a framebuffer, and outputs
display data received through API calls or from the framebuffer to the display
adapter via the USB.

It will be understood that the present invention has been described above
purely by way of example, and modification of detail can be made within the scope
of the invention.

For example, although a system is described above in which a display output
is transmitted over USB, the described approach is applicable to any software
driven display device that might be connected by any generic bearer such as other
wired or wireless peripheral connection standards, as well as wired or wireless local
or wide area networks, or mobile data networks. In such systems, the USB-specific
components described above (e.g. hardware USB controller and interconnects and
USB driver stack) may be replaced with appropriate hardware and software (driver)
components specific to the particular data transport used.

Instead of separate UDI driver components, alternative implementations
might comprise a single software component that works through all stages of
computer operation. This might be a UEFI driver that persists after boot-exit or a
software-emulated video device that emulates real video hardware through a
virtualisation scheme.

The implementation of the UDI driver components may depend on the
firmware type and operating system environment used. For example, though a
UEFI GOP interface is described above, the firmware UDI component could instead
implement an Extensible Firmware Interface (EFI) Universal Graphic Adapter (UGA)
interface protocol, or a standard set of BIOS display functions (e.g. in the form of
the standard BIOS INT10h interrupt function calls and associated extensions).
Similarly, OS-level UDI components may be structured and configured to interface
with the display driver architecture of other operating systems, such as versions of
Linux or Mac OS.

WO 2014/177869 -26- PCT/GB2014/051348

CLAIMS

1. A method of enabling a computer to provide output to a display over a general-
purpose data transmission medium, the method comprising:

providing a plurality of display interface components, each display interface
component adapted to receive display data and transmit the display data via the
general-purpose data transmission medium for output to the display, each display
interface component associated with a respective stage of operation of the computer;
and

configuring the computer to use a respective one of the display interface
components during each of a plurality of distinct operational stages.

2. A method according to claim 1, wherein the plurality of display interface
components comprises a pre-OS display interface component associated with a stage
of operation prior to booting of an operating system (OS).

3. A method according to claim 2, wherein operation of the computer is under
control of firmware during the pre-OS stage, the method preferably comprising
configuring the firmware to use the pre-OS display interface component for outputting
display data.

4, A method according to claim 2 or 3, wherein the pre-OS display interface
component is adapted to receive display data output by pre-OS code running on the
computer, the pre-OS code preferably including one or both of: firmware code; and OS
loader code.

5. A method according to any of claims 2 to 4, wherein the pre-OS display
interface component is adapted to receive display data through calls to a firmware
display interface / API and/or is adapted to implement a firmware display protocol,
preferably Unified Extensible Firmware Interface (UEFI) Graphics Output Protocol
(GOP).

6. A method according to any of claims 2 to 5, wherein the pre-OS display
interface component is arranged to read display data from a framebuffer and output
the display data to the general-purpose data transmission medium.

WO 2014/177869 -27- PCT/GB2014/051348

7. A method according to any of the preceding claims, the plurality of display
interface components preferably comprising one or more display interface components
configured to interface with an operating system of the computer.

8. A method according to any of the preceding claims, comprising providing a
plurality of display interface components for use at respective stages of operation of an
operating system of the computer, and configuring the operating system to output
display data for transmission to the display using a selected one of said display
interface components during each respective stage.

9. A method according to claim 7 or 8, comprising configuring the operating
system to load a first display interface component during a first stage of booting the
operating system, preferably prior to establishment of the operating system display
driver stack, and to load a second display interface component during a second,
subsequent stage of booting the operating system, preferably as part of establishing
the operating system display driver stack.

10. A method according to claim 9, wherein the first display interface component is
configured to read display data from a framebuffer written to by the operating system
and output the read display data to the general-purpose data transmission medium.

11. A method according to claim 9 or 10, wherein the second display interface
component is configured to receive display data through calls to an operating system
display API.

12. A method according to any of the preceding claims, wherein the display
interface components comprise one or both of:

a kernel mode display driver, configured to receive display data prior to
initialisation of a user mode of the operating system and output the display data to the
general-purpose data transmission medium; and

a user mode display service, configured to receive display data and output the
display data to the general-purpose data transmission medium after initialisation of the
user mode.

13. A method according to claim 12, further comprising a user mode display driver
configured to receive display data from the operating system after initialisation of the
user mode and to output the display data to the general-purpose data transmission

WO 2014/177869 -28- PCT/GB2014/051348

medium using a selected one of the kernel mode display driver and the user mode
display service in dependence on a current operational state of the operating system.

14. A method according to claim 13, wherein the user mode display driver is
configured to output the display data to the kernel mode display driver prior to starting
of the user mode display service, and to the user mode display service after starting of

the user mode display service.

15. A method according to any of the preceding claims, comprising configuring the
operating system to prioritise during booting of the operating system one or both of:
loading of a selected one of the display interface components; and
loading of one or more drivers associated with the general-purpose data

transmission medium.

16. A method according to claim 15, comprising configuring the operating system to
place the display interface component and/or the data transmission medium driver(s)
in a first group of drivers processed by the operating system when loading drivers

during boot.

17. A method according to any of the preceding claims, wherein the display
interface components are configured to output display data to a display adapter
connected to the general-purpose data transmission medium, the display adapter

configured to output a display signal to the display based on received display data.

18. A method according to claim 17, comprising configuring the display adapter to
maintain an output image on the display during transition from a first display interface
component operating during a first operational stage to a second display interface
component operating during a second operational stage, wherein the output image is
preferably a static image during the transition and/or is an output image previously
transmitted to the display adapter.

19. A method of providing display output from a computer to a display adapter over
a general-purpose data transmission medium, the display adapter associated with a
display and arranged to receive display data over the data transmission medium and
provide an output signal to the display based on the display data, the method

comprising:

WO 2014/177869 -29- PCT/GB2014/051348

prior to booting of an operating system of the computer, transmitting display
data to the display adapter over the general-purpose data transmission medium by a
display interface component associated with a firmware of the computer;

configuring the display adapter to maintain a predetermined display output
during an initialisation of the general-purpose data transmission medium occurring
during booting of the operating system; and

subsequent to the initialisation, transmitting display data to the display adapter
over the general-purpose data transmission medium by a display interface component

associated with the operating system.

20. A method according to claim 19, wherein the configuring is performed by the

display interface component associated with the firmware.

21. A method according to claim 19 or 20, comprising, at the adapter, maintaining

the predetermined display output during the initialisation.

22. A method according to any of claims 19 to 21, wherein the predetermined
display output corresponds to a previous (preferably most recent) display output sent
to the display adapter by the firmware display interface component.

23. A method according to any of claims 19 to 22, comprising, at the display
adapter, subsequent to the initialisation, updating the display based on subsequently

received display data.

24. A method of providing output to a display connected to a computer over a
general-purpose data transmission medium, the method comprising:

transmitting display data over the general-purpose data transmission medium
to a display adapter, the display adapter arranged to receive the display data and
output a display signal to the display based on the display data;

in response to an operating system of the computer entering a fault mode, the
fault mode including terminating operation of an operating system interface to the data
transmission medium, transmitting prior to the terminating a fault indication to the
display adapter over the general-purpose data transmission medium; and

in response to the fault indication, outputting by the display adapter a stored
display image comprising information indicating occurrence of the fault.

WO 2014/177869 -30- PCT/GB2014/051348

25. A method according to claim 24, comprising transmitting the display image to
the display adapter prior to entering the fault mode, and storing the display image at
the display adapter.

26. A method according to claim 24 or 25, wherein an amount of data used for
transmitting the fault indication is less than an amount of data of the stored display
image and/or less than an amount of data used for transmitting the display image to
the display adapter.

27. A method according to any of claims 24 to 26, wherein the fault indication is
transmitted on the general-purpose data transmission medium using a single data
packet.

28. A method according to any of the preceding claims, wherein the general-
purpose data transmission medium comprises a peripheral connection bus, preferably
a Universal Serial Bus, USB.

29. A method according to any of the preceding claims, wherein the display
interface components comprise one or more display interface components as set out
in any of claims 32 to 47.

30. A computer system configured in accordance with a method as set out in any of
claims 1 to 18 and/or having means for performing a method as set out in any of
claims 1 to 29.

31. A computer program or computer program product comprising software code
adapted, when executed on a data processing apparatus, to perform a method as set
out in any of claims 1 to 29.

32. A display interface software component for transmitting display data from a
computer to a display over a general-purpose data transmission medium, wherein the
display interface component comprises:

means for receiving display data intended for output to the display, the display
data generated by code running prior to booting of an operating system of the
computer; and

means for outputting the display data to the general-purpose data transmission
medium for transmission to the display.

WO 2014/177869 -31- PCT/GB2014/051348

33. A display interface software component according to claim 32, arranged to
implement a standard firmware display interface, the receiving means arranged to
receive display data through calls to the interface.

34. Adisplay interface software component according to claim 32 or 33, configured
to implement an Extensible Firmware Interface (EFI), or Unified EFI (UEFI) display
protocol.

35. A display interface software component according to any of claims 32 to 34, in
the form of a UEFI Graphics Output Protocol (GOP) driver.

36. A display interface software component according to any of claims 32 to 35,
wherein the receiving means comprises means for reading display data from a
framebuffer.

37. A display interface software component for use by an operating system of a
computer system during a stage of operation of the operating system prior to
establishment of the operating system display driver stack during which the operating
system renders display output into a framebuffer without use of the display driver
stack; the display interface software component comprising:

means for reading display data from the framebuffer; and

means for outputting the display data to the general-purpose data transmission
medium for transmission to the display.

38. A display interface software component according to claim 36 or 37, wherein
the reading means is adapted to read display data from the framebuffer periodically.

39. A display interface software component according to any of claims 36 to 38,
wherein the framebuffer is associated with a hardware display adapter.

40. A display interface software component according to any of claims 36 to 39,
comprising means for creating the framebuffer and making the framebuffer accessible
to other software components in the computer.

WO 2014/177869 -32- PCT/GB2014/051348

41. A display interface software component according to any of claims 32 to 40,
wherein the general-purpose data transmission medium is not specially adapted for
providing display data to a display.

42. A display interface software component according to any of claims 32 to 41,
wherein the general-purpose data transmission medium comprises a peripheral
connection bus, preferably a Universal Serial Bus, USB.

43. A display interface software component according to claim 42, wherein the
outputting means is arranged to output the display data to the USB via a USB interface
provided by the computer’s firmware or via an operating system USB driver.

44, A display interface software component according to any of claims 32 to 43,
wherein the outputting means comprises means for converting and/or compressing the
display data prior to transmission.

45. A display interface software component according to any of claims 32 to 44,
comprising means for receiving information indicating one or more changed areas of a
display frame, the outputting means adapted to output display data to the general-
purpose data transmission medium only in respect of the changed areas.

46. A display interface software component according to claim 45, comprising
means for generating the changed area information based on the received display
data, preferably by comparing received display data to previous display data.

47. A display interface software component according to any of claims 32 to 46,
wherein the outputting means is configured to transmit the display data to a display
adapter connected to the data transmission medium, the display adapter arranged to
output a display signal to the display based on the transmitted display data.

48. A computer-readable medium comprising software code for implementing a
display interface software component as claimed in any of claims 32 to 47.

49. A computer system comprising a display interface software component as
claimed in any of claims 32 to 47.

PCT/GB2014/051348

WO 2014/177869

177

a9y)fm

ELT

JaAlp solydel YOA SO
alempJey YOA alemp.ey YOA U
<L
441 NSwL Han
7@@25 40D <o>v
gZet
3w}
oTT
uUMOpINYS
56T kg] L 4
\ SO Buuuny TINYIN HIAVOT SO SOIE/1430
it
U305 ang

PCT/GB2014/051348

WO 2014/177869

2{7

ore

4zz

wiZ

J1depy
Aejdsig asn

L

[A44

Ot mgm/
— - SO
[]y ONORED 1an 13peo SO
[| asn

1 3JeMUWIIY

/

/

PCT/GB2014/051348

WO 2014/177869

3/7

Ja1depe Aejdsiq

owm\i\
450
\ N
(asn)
uodsuel]
m:“mxi\ &
ssaidwo)
ol
ﬁ& 1J9AUO0D & ayoe)

it

J9AQ Aejdsiq a4em1jos

(seaue Apnp)
eleq solydelo

J

80¢

m
m
m
|
m
m
|
m

id¥
saydesn

\i\.

a0z

(sjoxid)
eleq solydelo

PCT/GB2014/051348

WO 2014/177869

4/7

0

Ja1depe Aejdsiq

A

JaALIQ Ae|dsiq a1emos

~_—_— e ——— =

g50
(asn)
uodsueu|
31¢ ry ST oI =
01¢ 80
AN “ AN
ssaidwo) _ Jadesos
ayoe) |-l >
I Jlpoliad
AR A |
I
I Jawi|
|
& Jo peal
12AU0) H JoleJsauad //||W||r_.|_.l/
g h e1epel1an

Jayngawel

//l SO¥

A

/.fﬂaw

(sjoxid)

eleq soiydelo

o0

PCT/GB2014/051348

WO 2014/177869

5/7

G "84

5 a58Ud p DSBUJ £ 958l 7 aseyd T a58Yd
B80S
)
905 Jrf‘m pows 1351) \mwa
m apouw 123.iq U m apow 123.1q U e
L 1959y
pue uoljetawinul
JanopueH gsn
= Noer HEN
vos é JOALI)
< 1A doo 1an D
oTT
uMopINYS
g0t m 357] 50T m 0T
\ 50 Fuuuny TANYD ¥IAYO1 SO SOI9/1430
USRI 204 _ _r w
EEEEEEEEEEEE Jd

ditd 8450

{hx3004

PCT/GB2014/051348

WO 2014/177869

647

sjjeo Suiapual

Audeans
14y SWHIUR |
¥
1BpROY dnyas pue
5G . s e
50 e0d 43N
Jousodiiol | YoA FBAUT VOA dOD YOA
417 0P
AV AW \ A 4
SEMHLED IR BEN LS,
: m m ;
m 3IBMPIBH YOA w | m
3]] 3
i i i i
m m m ;
¥ ¥ ¥ ¥ ¥ ¥ ¥
HAIO0Y GH BHAISS 1850 {31 ABALG PRI AN PIALOOY 1GN 409 1an
09 012 809 3039 P09 709

PCT/GB2014/051348

WO 2014/177869

7{7

uoneisdo apow
SEE A RILEE S A

UOIRSHRITI SpOL
I35 S0 0T

[814

UQIIRSHRINUL 33818
SodeID §0 IR0L

100g AT SO 190L

{331A435 ou}
ABPECT SO P04

288315 1004
BIBMULIY 170/

aJempJiey 9sn

alempJiey gsn

aJempJiey 9sn

alempJiey gsn

aJempJiey 9sn

alempJiey gsn

s1aAlQ 9SN SO

sJ49AIQ 95N SO

siaAalQ 9sn SO

$19AQ 9SN SO

0T9 92InIDS
9POIN 195N 1AN

309 JaAlp
soydeud
spow
JIsn 1dn

Jousodwo) so

909
JaAuQ Sulspuay

U9 1aN

909
19A11g Sunidpuay

[uia) 1N

09
JoALI] pInoog 1dN

809 J3ALpP
solydesd

apow
950 1an

Jojisodwo) sO

CRITIEN]
gsn aJemuwuiy

709
43A1IQ 4OD 1AN

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2014/051348

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F13/12 GO6F13/10 HO4L29/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2010/002396 Al (HEWLETT PACKARD 1-49
DEVELOPMENT CO [US]; EMERSON THEODORE
[US]; GALLOWAY J)

7 January 2010 (2010-01-07)

page 4 - page 5

page 7 - page 8

figure 2

X VESA: "VESA Net2Display Remoting 1
Standard",

VESA NET2DISPLAY STANDARD,,

no. Version 1,

22 October 2009 (2009-10-22), pages 1-276,
XP007917342,

paragraph [11.1]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

°ited.t°| establish the pul_r;_licdation date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

20 June 2014 30/06/2014

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, T .
Fax: (+31-70) 340-3016 Ghidini, Mario

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2014/051348

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

[GB] ET AL) 1 September 2005 (2005-09-01)
the whole document

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 7 287 099 Bl (POWDERLY TERRENCE V [US] 1-49
ET AL) 23 October 2007 (2007-10-23)
the whole document
A US 2008/291210 Al (PARTANI DWARKA [US] ET 1-49
AL) 27 November 2008 (2008-11-27)
the whole document
A US 2005/193396 Al (STAFFORD-FRASER JAMES Q 1-49

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2014/051348
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2010002396 Al 07-01-2010 US 2011106520 Al 05-05-2011
WO 2010002396 Al 07-01-2010
US 7287099 Bl 23-10-2007 NONE
US 2008291210 Al 27-11-2008 NONE
US 2005193396 Al 01-09-2005 EP 1723506 Al 22-11-2006
JP 4759561 B2 31-08-2011
JP 2007526565 A 13-09-2007
TW 1334716 B 11-12-2010
US 2005193396 Al 01-09-2005
US 2010115139 Al 06-05-2010
WO 2005083558 Al 09-09-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report
	Page 43 - wo-search-report

