发明名称
具有六元环的核苷酸类似物

摘要
本发明涉及包含能被结合到核酸上的六元环的化合物。特别地，所述六元环是环己烷、环己烯、四氢吡喃、四氢硫代吡喃或哌啶的衍生物。这些化合物可被用于构建寡聚化合物。本发明进一步涉及这些寡聚化合物用于杂交和作为探针的用途。此外，提供了检测核酸的方法，在该方法中使用这些寡聚化合物。
1. 具有式 I 的化合物

式 I

其中 L 是连接部分,
其中 B 是杂环碱基,
其中 R¹ 独立于 R²、R³、R⁴、R⁵、R⁶、R⁷、R⁸ 和 R⁹，其中 R¹ 选自如下的基团:

(1) 保护基团,
(2) 标记,
(3) 固相，和
(4) -H,

其中 R² 独立于 R¹、R³、R⁴、R⁵、R⁶、R⁷、R⁸ 和 R⁹，其中 R² 选自-H 或 OR⁶，
其中 R³ 独立于 R¹、R²、R⁴、R⁵、R⁶、R⁷、R⁸ 和 R⁹，其中 R³ 选自如下的基团:

(1) 保护基团,
(2) 共价偶联到固相的连接部分,
(3) 亚磷酸胺,
(4) H-磷酰胺，和
(5) 三磷酸酯，

其中 R⁴ 独立于 R¹、R²、R³、R⁴、R⁵、R⁶ 和 R⁷ 且 R⁴ 是-H、-OH、烷基、
卤素、-O-R⁵、-S-R⁵、NR⁵R⁶、标记或共价偶联到固相的连接部分，
其中 R⁶ 独立于 R¹、R²、R³、R⁴、R⁵、R⁶ 和 R⁷，和其中 R⁶ 是选自如下的
基团:

(1) -H,
(2) 保护基团,
（1）共价偶联到固相的连接部分，
（2）亚磷酸胺，和
（3）H-膦酸酯，
其中在六元环的 C1 原子和 Y 之间的虚线表示任意存在双键，由此当双键存在时，Y 是 CR₅ⁿ，
或当双键不存在时，Y 选自 O、S、NR₅ⁿ 和 CR₅ⁿR₅ⁿ，
由此，R₁、R₅ⁿ 和 R₅ⁿ彼此独立且独立于 R₂、R₃、R₄ 和 R₅，和 R₅ⁿ独立地选自烷基、链烯基、炔基、芳基、酰基、保护基团或 H，和 R₅ⁿ和 R₅ⁿ独立地选自烷基、链烯基、炔基、芳基、酰基或 H。
2. 根据权利要求 1 的化合物，其中的杂环碱基是天然的或非天然的杂环碱基。
3. 根据权利要求 1 的化合物，其特征是连接部分 L 包含碳、氧或氮原子和反应基团。
4. 根据权利要求 2 的化合物，其特征是连接部分 L 包含碳、氧或氮原子和反应基团。
5. 根据权利要求 1 的化合物，其特征是 R₁ 是标记。
6. 根据权利要求 2 的化合物，其特征是 R₁ 是标记。
7. 根据权利要求 3 的化合物，其特征是 R₁ 是标记。
8. 根据权利要求 4 的化合物，其特征是 R₁ 是标记。
9. 根据权利要求 1-8 任一项的化合物，其特征是该标记是染料或半抗原。
10. 根据权利要求 1-8 任一项的化合物，其特征是，该染料选自如下：
（1）荧光素染料，
（2）罗丹明染料，
（3）花青染料，
（4）香豆素染料，和
（5）偶氮染料。
11. 根据权利要求 1-8 任一项的化合物，其特征是该半抗原是生物素。
12. 根据权利要求 1-8 任一项的化合物，其特征是在六元环的 C1 原子和 Y 之间的虚线表示存在双键，其中 Y 是 CR₅ⁿ 和 R₅ⁿ 选自烷基、链烯基、炔基、芳基、酰基或 H。
13. 根据权利要求 1-8 任一项的化合物，其特征是当双键不存在时 Y 是 O、S 或 CR\(^2\)R\(^3\)。

14. 根据权利要求 1-8 任一项的化合物，其特征是 R\(^3\) 是三磷酸酯，R\(^2\) 是 -OR\(^5\)，其中 R\(^6\) 是-H，和 R\(^4\) 是-H 或-OH。

15. 式 II 代表的根据权利要求 13 的化合物，

![式 II 图](image)

（式 II）

16. 式 II 代表的根据权利要求 14 的化合物，

![式 II 图](image)

（式 II）

17. 根据权利要求 1-8 任一项的化合物，其特征是 R\(^2\) 独立于 R\(^1\)、R\(^3\)、R\(^4\)、R\(^5\)、R\(^6\)、R\(^7\) 和 R\(^8\)，及 R\(^2\) 是-OR\(^6\)，其中 R\(^6\) 是亚磷酸酯；和 R\(^3\) 独立于 R\(^1\)、R\(^2\)、R\(^4\)、R\(^5\)、R\(^6\)、R\(^7\) 和 R\(^8\)，及 R\(^3\) 是保护基团或共价偶联到连接部分的固相。

18. 一种包含具有式 S-B-L-R\(^7\) 的单体单元的寡聚化合物，其中 S 是包含六元环的部分，B 是杂环碱基，L 是连接部分，和 R\(^7\) 是标记、保护基团或固相。

19. 根据权利要求 18 的寡聚化合物，其中六元环是环己烷、环己烯、四氢毗喃、四氢硫代毗喃或哌啶的衍生物。

20. 根据权利要求 18 或 19 的寡聚化合物，具有式 III 的单体单元：
其中 L 是连接部分，
和 B 是杂环碱基，
其中 R' 独立于 R^5, R^6, R^8, R^9, R^{10} 和 R^{11}，其中 R^7 选自如下的基团:
（1）保护基团，
（2）标记，和
（3）固相，
其中 R^8 独立于 R^5, R^6, R^8, R'^7, R'^8, R'^9 和 R'^{11}，其中的 R^8 选自 H 和 OR^{11}，
其中 R^8 和 R'^{11} 彼此独立且独立于 R^5, R^6, R^8, R'^7, R'^8 或 R'^{10}，和其中 R^9
和 R'^{11} 选自如下的基团:
（1）H，
（2）共价偶联到固相的连接部分，
（4）磷酸酯，
（6）具有核苷酸、修饰的核苷酸、寡核苷酸或修饰的寡核苷酸的磷酸二酯，
其中 R'^{10} 独立于 R'^5, R'^6, R'^8, R'^9 和 R'^{11}，且 R'^{10} 是 H, -OH, 烃基、卤素、-O-R', -S-R', NR^5R'^6，标记或共价偶联到固相的连接部分，
其中在六元环的 C1 原子和 Y 之间的虚线表示任意存在双键，由此当双键
存在时，Y 是 CR^6，
或当双键不存在时，Y 选自 O, S, NR^5 和 CR^6R'^6，
由此，R^5, R^6 和 R^8 彼此独立且独立于 R'^7, R'^8, R'^9, R'^{10} 和 R'^{11}，和 R^5 独
立地选自烷基、链烯基、炔基、芳基、酰基、保护基团或 H，和 R'^5 和 R'^6 独立地选自烷基、链烯基、炔基、芳基、酰基或 H。
21. 根据权利要求 18-19 任一项的寡聚化合物，其中杂环碱基是天然的
或非天然的杂环碱基。

22. 根据权利要求 21 的寡聚化合物，其中天然的杂环碱基是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶或甲基胞嘧啶。

23. 根据权利要求 20 的寡聚化合物，其特征是连接部分 L 包含碳、氧
或氮原子和反应基团。

24. 根据权利要求 18-19 任一项的寡聚化合物，其特征是 R' 是标记。

25. 根据权利要求 24 的寡聚化合物，其特征是该标记是染料或半抗原。

26. 根据权利要求 25 的寡聚化合物，其特征是，该染料选自如下：
 （1）荧光素染料，
 （2）罗丹明染料，
 （3）花青染料，
 （4）香豆素染料，和
 （5）偶氮染料。

27. 根据权利要求 25 的寡聚化合物，其特征是该半抗原是生物素。

28. 根据权利要求 20 的寡聚化合物，其特征是 R' 是 OR'，和 R' 和 R'' 是寡核苷酸或修饰的寡核苷酸，及 R'' 是 H 或 OH。

29. 根据权利要求 20 的化合物，其特征是当双键不存在时，Y 是 O, S 或 CR' R''。

30. 根据权利要求 20 的化合物，其特征是六元环的 C1 原子和 Y 之间的虚线表示存在双键，其中 Y 是 CR'，和 R' 取自烷基、链烯基、炔基、芳基、酰基或 H。

31. 用于分析靶核酸和寡聚化合物之间相互作用的组合物，包含具有不同序列的寡聚化合物的多元阵列，其中该寡聚化合物是根据权利要求 19-29 任一项的寡聚化合物，其中 R' 是固相，或 R'、R'' 或 R'' 是共价偶联固相的连接部分。

32. 根据权利要求 1-17 任一项的化合物用于化学合成，根据权利要求 19-29 任一项的寡聚化合物的用途，在所述根据权利要求 1-17 任一项的化合物中 R' 是 OR' 和 R' 和 R' 是亚磷酸胺、共价偶联到连接部分的固相，或保护基团。

33. 根据权利要求 1-17 任一项的化合物用于标记核酸的用途。

34. 根据权利要求 18-30 任一项的寡聚化合物在与互补核酸的杂交反应
中的用途。
35. 根据权利要求 31 的组合物在与互补核酸的杂交反应中的用途。
36. 根据权利要求 18-30 任一项的寡聚化合物作为引物、探针或捕捉探针的用途。
37. 一种化学合成根据权利要求 18-30 任一项的寡聚化合物的方法，包括如下步骤:
 (a) 提供根据权利要求 1-17 任一项的化合物，其中 R² 是 OR⁶，和 R⁶ 是亚磷酸酰胺，和 R³ 是保护基团，
 (b) 提供一个通过另一个-OH 基团结合到固相上的核苷或修饰的核苷的-OH 基团，或提供一个通过在寡核苷酸或修饰的寡核苷酸的 3'末端的核苷酸或修饰的核苷酸的另一个-OH 基团结合到固相上的寡核苷酸或修饰的寡核苷酸的-OH 基团，
 (c) 使亚磷酸酰胺的亚磷酸原子和游离的 OH 基团反应以形成亚磷酸酯并且氧化此亚磷酸酯为磷酸三酯，
 (d) 可选地用步骤 (c) 中任何未反应的 OH 基团和另一种化合物反应以阻止在随后的步骤中步骤 (c) 中未反应的 5'-OH 基团的任何进一步反应，
 (e) 在除去步骤 (d) 的产物的羟基保护基团以提供游离的-OH 基团后，可选地用核苷、修饰的核苷或根据权利要求 1-17 任一项的化合物的亚磷酸酰胺衍生物重复步骤 (c) 到 (d)，其中 R² 是 OR⁶和 R⁶ 是亚磷酸酰胺和 R³ 是保护基团，
 (f) 将寡聚化合物从固相上裂解下来，除去保护基团和由此将磷酸三酯转化为磷酸二酯，和
 (g) 分离寡聚化合物。
38. 一种酶促合成根据权利要求 18-30 任一项的寡聚化合物的方法，包括如下步骤:
 (a) 在存在末端转移酶或聚合酶条件下，将其中所述的化合物的 R³ 是三磷酸酯的根据权利要求 1-17 任一项的化合物用多核苷酸、寡核苷酸或修饰的寡核苷酸的 3'末端的核苷酸或修饰的核苷酸中可扩增的 OH 基团进行培养，由此，该化合物被结合到可扩增的 OH 基团上，
 (b) 由此，释放出焦磷酸酯，
（b）可选地，在存在末端转移酶或聚合酶条件下，将步骤 a）的产物的 3’末端上的可扩增的 OH 基团用核苷三磷酸酯或修饰的核苷三磷酸酯进行培养，由此，核苷酸或修饰的核苷酸与 3’—OH 基团连接，由此，释放出焦磷酸酯，

（c）可选地重复步骤（a）或（b）或两者，和

（d）分离寡聚化合物。

39. 一种检测样品中的靶核酸的方法，包括如下的步骤:

（a）提供可能含有靶核酸的样品，

（b）提供根据权利要求 18-30 任一项的寡聚化合物，其基本上与靶核酸的配对或全部互补，

（c）可选地用模板依赖性 DNA 聚合酶和引物来扩增靶核酸，

（d）在为使寡聚化合物和靶核酸结合的条件下，将样品和寡聚化合物接触，

（e）测定靶核酸和寡聚化合物之间的结合产物或杂交的程度作为靶核酸的存在、不存在或数量的度量。

40. 根据权利要求 39 的方法，其中在步骤 (e) 中杂交的程度通过经模板依赖性 DNA 聚合酶的核酸外切酶水解而从与靶核酸杂交的寡聚化合物释放出来的第一或第二荧光标记的数量来测定。

41. 根据权利要求 39 的方法，包括如下步骤:

执行至少一个循环步骤，其中一个循环步骤中包含一扩增步骤和一杂交步骤，其中所述的扩增步骤包括将所述的样品和引物接触，以便在所述样品中存在靶核酸时产生扩增产物，其中所述的杂交步骤包括将所述的样品接触一对探针，其中至少一个探针是包含一个含有一个六元环的单体单元的寡聚化合物，其中所述配对的探针的分子杂交到所述的扩增产物上，互相不不超过 5 个核苷酸，

其中所述的配对的探针的第一个探针是用荧光供体标记所标记的，和其中所述的配对的探针的第二个探针是用相应的荧光受体标记所标记的；和

检测在所述的第一个探针的所述的荧光供体标记和所述的第二个探针的所述的荧光受体标记之间的荧光共振能量转移是否存在，其中存在荧光共振能量转移是在样品中存在靶核酸的指征，而不存在荧光能量共振转移是在样品中不存在靶核酸的指征。
42. 一种测定样品中靶核酸存在或数量的方法，
 包括如下的步骤：
 a) 提供来自要被分析的样品的靶核酸，
 b) 从靶核酸合成双链互补 DNA，
 c) 在存在根据权利要求 1-17 中任一项的化合物和核苷三磷酸酶条件下，扩增靶核酸，由此获得标记的核酸，
 d) 将标记的靶核酸与寡聚化合物阵列在规定的位置上杂交，和
 e) 在每一个规定的位置上测量荧光强度，由此靶核酸的存在或数量被测定。

43. 由几部分组成的试剂盒，含有：
 - 模板依赖性聚合酶，
 - 一组引物，
 - 核苷酸，和
 - 根据权利要求 18-30 任一项的寡聚化合物，其中 R' 是标记。

44. 由几部分组成的试剂盒，含有：
 - 根据权利要求 14-15 任一项的化合物，
 - 核苷三磷酸酯，和
 - 聚合酶。
具有六元环的核苷酸类似物

发明领域

本发明涉及包含能被结合到核酸上的六元环的化合物。特别地，六元环是环己烷、环己烯、四氢吡喃、四氢硫代吡喃或嘌呤的衍生物。这些化合物可用于构建寡聚化合物。本发明进一步涉及这些寡聚化合物用于杂交和作为探针的用途。此外，提供了检测核酸的方法，在该方法中使用这些寡聚化合物。

发明背景

在分子诊断学领域，用聚合酶链式反应（PCR）检测靶核酸扮演着一个重要的角色。常规筛查中存在有人类免疫缺陷性病毒（HIV）、乙型肝炎病毒（HBV）或丙型肝炎病毒（HCV）的血库是一个大规模应用基于 PCR 诊断学的例子。用于基于 PCR 分析的自动化系统通常在 PCR 反应过程中使用实时检测产物扩增，这种方法的关键之处在于使用带有报道基团或标记的修饰的寡核苷酸。

简单来说，PCR 是一种用于酶合成特异核酸序列的体外方法，使用两个寡核苷酸引物杂交到互补链且两侧扩增出靶核酸中感兴趣区域的靶序列。连续重复的反应步骤包括模板变性、引物退火和用 DNA 聚合酶（DNA：脱氧核糖核酸）延伸退火的引物产生指数累积的特异片段，其末端通过引物的 3'端来确定。

在一方面，PCR 反应过程中产生的 DNA 扩增产物的检测可在独立的工作步骤中被完成。这些步骤包括根据它们的电泳迁移率以鉴定扩增的片段和/或用一个杂交的探针来分析连接在固体支持物上的变性的扩增产物。

在另一方面，DNA 扩增产物可在所谓的“均相”分析系统中被检测。一个“均相”分析系统的例子是在 US 5,210,015、US 5,804,375 和 US 5,487,972 中所详述的 TaqMan® 系统。简单而言，该方法是基于一个双标记的探针和 Taq DNA 聚合酶的 5'-3'外切酶活性。该探针与在 PCR 反应过程所需被扩增的靶序列互补且在每一聚合循环步骤中该探针位于两个 PCR 引物之间。该探针连接有两个荧光标记，一是报道染料，如 6-羧基荧光素（FAM），由于第二个多
光染料，6-羧基-四甲基罗丹明（TAMRA）的空间接近，产生的能量转移使该报道染料的发射光谱淬灭。在每一扩增循环期间，在延伸一个引物 DNA 链的过程中 Taq DNA 聚合酶取代和降解该退火的探针，后者是由于该聚合酶内在的 5'→3'外切酶活性。该机理也释放出来自活性淬灭的 TAMRA 的报道染料。因而，随着裂解探针的增加荧光活性也随之增加，与 PCR 产物形成的数量成正比。因此，可通过检测释放的荧光标记来测量扩增的靶序列。

在荧光染料分子之间能量转移的一个相似的原理应用于“均相”分析，使用所谓的“分子信标”（US 6,103,476）。这些“分子信标”是具有内部淬灭荧光团的发夹状核酸分子，当它们结合到靶核酸时其荧光被复原（US 6,103,476）。它们被设计成如此一种方式，即该分子的环部分是互补于在 PCR 反应过程中的靶序列中一个区域的一个探针序列。其茎区通过退火在探针序列末端上的互补支臂序列而形成，一个荧光部分连接于一个支臂的末端并且一个淬灭部分连接于另一个支臂的末端，茎区使上述两部分互相紧密接近，导致荧光团的荧光通过能量转移而淬灭。因为该淬灭部分是非荧光发色团且发射出从受热的荧光团得到的能量，所以该探针不复原而发出荧光。当该探针遇到一个靶分子，形成一个更长的杂交分子且比茎区杂交体更稳定，并且它的刚度和长度避免了茎区杂交体的同时存在。因而，所述分子信标经过自发构象重整迫使茎区分离，和使荧光团和淬灭剂互相分开，导致能被检测到的荧光的复原。

通过在 LightCycle®设备（见，如 US 6,174,670）中使用的方法提供了更多的“均相”分析系统的例子，它们中间的一些有时称为“相吻探针”（“kissing probe”）法。同样，此原理是基于两种相互作用的染料，然而，特征在于在荧光共振能量转移使染料供体激发一个染料受体。一个作为例证的方法是使用两个修饰的寡核苷酸作为杂交探针，杂交邻近的 PCR 反应过程的靶序列的内在序列。5'位修饰的寡核苷酸在其 3'末端具有一个作为标记的染料供体。3'位修饰的寡核苷酸在其 5'末端具有一个染料受体。接着在一个扩增循环过程中两个修饰的寡核苷酸的退火头尾定向到靶序列，染料供体和受体形成密切接近。通过单色光脉冲特异地激发染料供体，染料受体荧光被检测提供了一种测定所形成的 PCR 产物数量的量度。

90/15070, WO 92/10092）。位置的数目可在几个到成百上千范围内变化，最重要地，每一位置代表一个总的独立的反应位点。每一位置载有二个核酸当做一个“寡聚化合物”，它能作为第二个核酸，特别是靶核酸的结合配体。在

用于 “均相” 分析系统中的寡聚化合物或修饰的寡核苷酸包括连接有如作为报道分子的染料的标记物的核苷酸、修饰的核苷酸或非核苷酸化合物，即单体单元，这样的单体单元的特征是，它们：

（1） 能被连接和/或结合到核酸的糖-磷酸聚合体主链，
（2） 不阻止修饰的寡核苷酸和它的互补的靶序列的配对，
（3） 为连接一或更多的标记提供功能基团。

通过核苷酸、修饰的核苷酸或非核苷酸化合物这些要求能被完成。另外，TaqMan® 方法需要能通过模板依赖性 DNA 聚合酶的 5′-3′外切酶活性消化寡聚化合物，各种修饰核苷酸也已经被结合进寡聚化合物中以影响它们的杂交行为。
或稳定性，见，如 WO02/12263。

一些化合物和它们作为单体单元结合到核酸中的用途在本领域中是众所周知。所述的化合物提供功能基团和/或连接部分可共价连接报道基团或标记。在化学合成寡聚化合物的过程中，“非核苷酸化合物”或“修饰的核苷酸”骨架结构与“寡核苷酸”主链连接，例如通过基于亚磷酸氨化学产生磷酸二酯。在新产生的“修饰的寡核苷酸”中，一个给定的已掺入的化合物可代表一个“修饰的核苷酸”或“非核苷酸化合物”。通过连接部分的一个反应基团结合标记物，例如但不限于为一个位于骨架结构或“连接部分”的功能氨基，其通过反应基团连接着骨架。在“修饰的寡核苷酸”被合成之前，标记能共价地结合到此化合物上，或者之后从偶联了标记物的官能团上去除可选择的保护基团。各种“修饰的核苷酸”也可被结合到寡聚化合物中以影响它们的杂交行为或稳定性，见，如 WO02/12263。

一些文献文献披露了包含六元环且它们结合到寡核苷酸上的修饰的核苷酸。

烯的核酸。

WO 97/27317 和 WO 02/072779 披露了大量用于核酸标记的化合物。

EP 0468352 披露了包含含有一个六元环，但在该六元环的 C4 原子处含有一个额外的亚甲基基团，的通式的核酸衍生物。WO 01/02417 和 June K. –E,

被用于结合标记到核酸上或影响修饰的寡核苷酸性质的化合物要仔细地选择，因为它们可能：

(a) 干扰碱基配对，
(b) 无法提供具有足够刚度的骨架结构，
(c) 提供大的疏水结构产生低的水溶性，
(d) 仅提供有限的化学修饰的适应性，或
(e) 包含对残基构体混合物。

因此，本发明的一个目的是提供可被用于将标记结合到核酸中或影响它们的性质的新的化合物。

发明简述

本发明涉及包合六元环部分的化合物，特别地，包含可被用于构建寡聚化合物的己糖醇或环己烯部分的特定的化合物。本发明还进一步涉及使用这些寡聚化合物来杂交作为探针的用途。此外，公开了检测样品中的核酸的方法。

在该方法中使用该寡聚化合物。己糖醇结构提供给亲水骨架结构一个特别有利的性质。此外，己糖醇和环己烯结构适合于有效的化学合成，具有对核酸酶解的增强的稳定性且在脱嘌呤作用中是稳定的。

本领域周知，“核苷”是碱基-糖化合物，核苷的碱基部分通常是杂环碱基，所述（杂环）碱基的最常见的两类是嘌呤和嘧啶，它们是天然（杂环）碱基，即，它们是天然存在的。更详细地，重要的天然（杂环）碱基是鸟嘌呤、胞嘧啶、胸腺嘧啶、腺嘌呤、尿嘧啶或甚至是甲基胞嘧啶。

“核苷酸”是进一步包括共价连接到核苷的糖部分的一个磷酸基团的“核苷”。对于包括呋喃戊糖（pentofuranosyl sugar）的那些“核苷”，磷酸基团可任一连接到该糖的2’，3’或5’羟基部分。“核苷酸”是“寡核苷酸”、“单体单元”、“寡核苷酸”在此更通常表示为“寡聚化合物”，或“多核苷酸”，更通常地表示为“多聚化合物”。因此，另一通常的表示是脱氧核糖核酸（DNA）和核糖核酸（RNA）。

“修饰的核苷酸”（或“核苷酸类似物”）通过一些修饰而不同于天然“核苷酸”，但仍然由（杂环）碱基、呋喃戊糖（pentofuranosyl sugar）、磷酸部分、（杂环）碱基相似物、呋喃戊糖相似物（pentofuranosyl sugar-like）和磷酸相似物部分或它们的结合组成。呋喃戊糖相似物部分是如1,5-脱水己糖醇或环己烯基部分。例如，“标记”可被结合到“核苷酸”的碱基部分由此获得“修饰的核苷酸”。在“核苷酸”中天然（杂环）碱基也可被非天然（杂环）碱基即非天然存在的（杂环）碱基所取代，由此同样获得“修饰的核苷酸”。因而，该“修饰的核苷酸”含有其类似于天然（杂环）碱基的（杂环）碱基相似物部分或“碱基类似物”。“碱基类似物”通常并不在天然环境中出现，即，换句话说是非天然的，但能替换有功能的碱基，尽管在结构上有小的不同。根据本发明的内容，杂环碱基可以是天然的或非天然的。术语“修饰的核苷酸”或“核苷酸类似物”在本发明中可互换使用。

“修饰的核苷”（或“核苷类似物”）通过如上对于“修饰的核苷酸”（或“核苷酸类似物”）中所描述的方法的一些修饰而不同于天然的核苷。

“非核苷酸化合物”不同于天然“核苷酸”，但在本发明中仍可理解为能类似于作为“寡聚化合物”的“单体单元”的“核苷酸”。因此，“非核苷酸化合物”能形成具有“核苷酸”的“寡聚化合物”。“非核苷酸化合物”甚至可以含有碱基相似物，呋喃戊糖相似物或磷酸相似物部分，然而，它们并不是同时存在于“非核苷酸化合物”中。

根据本发明，“寡聚体化合物”是由“单体单元”组成的化合物，所述
单体单元可单独是“核苷酸”或“非天然化合物”，更特别地单独是“修饰的核苷酸”（或“核苷酸类似物”）或“非核苷酸化合物”或它们的结合。在本发明的上下文中，“寡核苷酸”和“修饰的寡核苷酸”（或“寡核苷酸类似物”）是“寡聚化合物”的亚群。

在本发明的上下文中，术语“寡核苷酸”指来自多个作为“单体单元”的“核苷酸”形成的“多核苷酸”，即，“寡核苷酸”属于具有“单体单元”的核糖核酸（RNA）或脱氧核糖核酸（DNA）的“寡聚化合物”或“多聚化合物”的特定亚群。根据本发明，术语“寡核苷酸”仅包括由天然存在的“核苷酸”组成的“寡核苷酸”。磷酸基团通常指形成“寡核苷酸”核苷间主链。

RNA 和 DNA 的正常键或主链是 3'-5'磷酸二酯键。

如上所述，本技术领域的熟练专家周知“核酸”是“核苷酸”和多聚化合物。在这里其被用于表示要被分析的在样品中的“核酸”，即在样品中它的存在、不存在或数量要被测定。因此，换句话说该“核酸”是靶物且因此也能表示为“靶核酸”。例如，如果要测定血液中是否包含人类免疫缺陷性病毒，该“靶核酸”是人类免疫缺陷性病毒的核酸。

本文所用的术语“引物”在本技术领域中为熟练专家周知且指“寡聚体化合物”，主要指“寡核苷酸”，但也指“修饰的核苷酸”，它们能通过模板依赖性 DNA 聚合酶“引’DNA 合成，也就是如寡核苷酸的 3'-末端提供游离 3'-羟基基团，在那里更多的“核苷酸”通过模板依赖性 DNA 聚合酶形成的 3'-5'磷酸二酯连接键可被结合，由此脱氧核苷三磷酸被利用且焦磷酸被释放。

术语“探针”指合成的或生物产生的核酸（DNA 或 RNA），通过设计或选择，包含特定核苷酸序列，可使它们在详细定义的预先确定的条件下特定地（即优先地）杂交“靶核酸”。“探针”可被认为是等同于“捕捉探针”，意味着其“捕捉”靶核酸，并使其能被从在其其中很被检测到的不合需要的原料中分离。一旦分离完成，用适当的方法能实现该被捕捉的“靶核酸”的检测。“捕捉探针”通常已经结合到固相上。因此，一个特定的例子是在微阵列情况，其中众多的“捕捉探针”被结合到“固相”上，“捕捉”被标记的 cRNA 或 cDNA。

“烷基”优选选自含有 1 到 10 个碳原子的烷基，其为线性、分支或环状形式。烷基的实际长度将依赖于该烷基所位于的特定位置的空间情况。如果有空间约束，则该烷基通常是较小的，优选甲基和乙基。
“链烯基”优选选自含有2到10碳原子的链烯基。对于选择，和对于烷基一样进行相似的考虑。它们也能是线性、分支和环状的，优选链烯基是乙烯基。在链烯基中可有多于一个的双键。

“炔基”优选具有2到10个碳原子，再且，那些碳原子能被排列成线性、分支和环状的方式。在炔基中可有多于一个的三键。优选的炔基是丙炔基。

所有的“烷基”、“链烯基”和“炔基”能是未取代的或取代的。通过上述的杂原子的取代，将有助于增加在水溶液中的稳定性。

“保护基团”是一种被结合到功能部分（如与羟基中的氧、氨基中的氮或硫醇基中的硫连接，由此置换氢）以保护该功能基团不以不期望的方式反应的化学基团。保护基团通过其能被除去而不破坏所生成的分子的生物活性的事实被进一步地定义，在这里所生成的分子即指核酸结合性化合物结合到核酸上。本技术领域的熟练人员周知适合的保护基团。根据本发明，优选的保护基团是芴甲氧羰基（Fmoc）、二甲氧基三苯甲基（DMT）、一甲氧基三苯甲基、三氟乙酰基、levulinyl-或甲硅烷基。优选的可保护如在核苷酸或寡核苷酸5’末端的羟基的保护基团选自三苯甲基，如二甲氧基三苯甲基（DMT）。优选的在式1中的环外氨基的保护基团是酰基，最优选是苯甲酰基（Bz）、苯甲氧乙酰基或乙酰基或甲酰基，和侧保护基团，例如N,N-二烷基甲基基，优选二甲基甲基基，二异丁基甲基基和2正丁基甲基基。优选的氧保护基团是芳酰基、二苯基氨基甲酰、酰基和甲硅烷基。在这些基团中最优选的是苯甲酰基，优选的甲硅烷基是三烷基甲硅烷基，如，三甲基甲硅烷基、三乙基甲硅烷基和叔丁基二甲基甲硅烷基。另一优选的甲硅烷基是三甲基甲硅烷基-氧代-甲基（TOM）（WO 99/09044）。更进一步地，优选的保护基团是邻硝基-苄基，2-（4-硝基苯基）乙氧基羰基（NPOC），光活性化合物如2-硝基苯甲基-丙氧基-羰基（NPOC）（Giegrich等，Nucleosides & Nucleotides 17 (1998) 1987）和烯丙氧基羰基。

“标记”，通常称作“报道基团”，一般是使核酸，根据本发明，特别是“寡聚化合物”或“修饰的寡核苷酸”，以及任何与其结合的核酸，能与来自液体的残留物，即样品（具有已结合“标记”的核酸也可以称作核酸结合化合物，标记的探针或就是探针）区别开的基团。其中“半抗原”（如生物素或洋地黄毒苷），酶（如碱性磷酸酶或过氧化物酶）或荧光染料（如荧光素或罗
丹明），已大体上被证实合作为非放射性指示剂分子或换句话说作为非放射性“标记”。通过不同的方法，这些“标记”或“标记”被结合到或连接到核酸中。根据本发明的优选的“标记”是染料如荧光素染料、罗丹明染料、花菁染料和香豆素染料或半抗原如生物素。通常定义，“半抗原”是一个自己没有免疫原性（能导致免疫应答）的小分子，但是至少具有抗原的一个元件且能和抗体结合或和另一较大的载体分子结合而具有免疫原性。

术语“连接部分”指能将要被使用的部分（如，“固相”或“标记”）连接到“核苷酸”、“修饰的核苷酸”或“非核苷酸化合物”上的结合位置的原子基团。这些结合位置可以是如“核苷酸”或“修饰的核苷酸”的碱基、糖或磷酸部分，或“非核苷酸化合物”或“修饰的核苷酸”的碱基相似物、糖相似物或磷酸相似物部分。“连接部分”可提供柔性使得根据本发明的“寡聚化合物”，特别是“修饰的寡核苷酸”能结合到要被测定的“靶核酸”上而对于“固相”或“标记”没有大的障碍。“连接部分”，特别是那些非疏水的，如在 DE 3943522 中披露的基于连续的乙烯氧基单元的那些，为本技术领域的熟练专家所周知。在本发明的上下文中，连接部分包含一个反应基团，该基团是结合到如“固相”或“标记”的位点。

根据本发明，“固相”可以是在寡核苷酸合成中使用的可控孔度玻璃（CPG）、聚苯乙烯或硅胶。

在本文中所用的“荧光共振能量转移关系”和类似的术语涉及用“荧光供体标记”标记的“寡聚化合物”和另一种用“荧光受体标记”标记的“寡聚化合物”邻近交杂“靶核酸”使得“荧光供体标记”能转移共振能量到“荧光受体标记”，使“荧光受体标记”产生可测量的荧光发射。如果“荧光供体标记”和“荧光受体标记”在空间上分离相当大的距离，则“荧光供体标记”无法转移共振能量到“荧光受体标记”以使得该“荧光受体标记”发出可测量的荧光，因此该“荧光供体标记”和“荧光受体标记”无法形成共振能量转移关系。

在本发明的上下文中，“杂交”意思是在互补的核苷酸之间形成氢键，其可以是 Watson-Crick, Hoogsteen 或反 Hoogsteen 氢键。例如，腺嘌呤和胸腺嘧啶是互补的核酸碱基，它们通过形成氢键配对。在本文中所用的 “互补”也指在两个核苷酸间的序列互补性。例如，如果在寡核苷酸的一特定位置的核苷酸能氢键结合 DNA 或 RNA 分子的同样位置的核苷酸，那么该寡核苷酸和该 DNA 或 RNA 被认为是在该位置上互互补。当在每一个分子中足够数目的相应位置被能用氢键相结合的核苷酸占有时，该寡核苷酸和该 DNA 或 RNA 互相互补。因此，“特异杂交”和 “互补”术语被用于表示具有足够程度的互补性，使得稳定和特异的结合发生在寡核苷酸和靶 DNA 或 RNA 之间。可理解特异杂交中寡核苷酸不需要 100%与它的靶 DNA 序列互补。当寡核苷酸结合到靶 DNA 或 RNA 分子上而妨碍了靶 DNA 或 RNA 的正常功能，和产生足够程度的互补性以避免在希望的特异结合条件下，即在体内分析或治疗的生理条件下，或体外分析情况下，在实施该分析的条件下，寡核苷酸和非靶序列的非特异性结合的时候，寡核苷酸能产生特异杂交。

“反应基团”是能与其它分子上的其它基团反应并连接的基团，优选的“反应基团”是羟基（-OH）、羧基、氨基或硫醇基。

发明详述

在本发明的一个实施方案中，通过化学或酶促合成提供能被连接到核酸上的化合物，因此，在本发明的一个实施方案中，提供了式 I 的化合物，其中式 I 是
其中 \(L \) 是连接部分，
其中 \(B \) 是杂环碱基，
其中 \(R^1 \) 独立于 \(R^2, R^3, R^4, R^5, R^5^a, R^5^b \) 和 \(R^6 \)，其中 \(R^1 \) 是选自如下的基团：
(1) 保护基团，
(2) 标记，
(3) 固相，和
(4) -H，
其中 \(R^2 \) 独立于 \(R^1, R^3, R^4, R^5, R^5^a, R^5^b \) 和 \(R^6 \)，其中 \(R^2 \) 是选自-H或-OR^6的基团，
其中 \(R^3 \) 独立于 \(R^1, R^2, R^4, R^5, R^5^a, R^5^b \) 和 \(R^6 \)，其中 \(R^3 \) 是选自如下的基团：
(1) 保护基团，
(2) 共价偶联到固相的连接部分，
(3) 亚磷酰胺(phosphoryl amide)，
(4) H-磷酸酯，和
(5) 三磷酸酯，
其中 \(R^4 \) 独立于 \(R^1, R^2, R^3, R^5, R^5^a, R^5^b \) 和 \(R^6 \) 且 \(R^4 \) 是-H、-OH、烷基、卤素、-O-R^2^、-S-R^5^、NR^3^R^5^、标记或共价偶联到固相的连接部分，
其中 \(R^6 \) 独立于 \(R^1, R^2, R^3, R^4, R^5, R^5^a, R^5^b \)，和其中 \(R^6 \) 是选自如下的基团：
(1) -H，
(2) 保护基团，
(3) 共价偶联到固相的连接部分，
(4) 亚磷酰胺，和
（5）H-膦酸酯

其中在六元环的C1原子和Y之间的虚线表示可选择存在的双键，由此当
双键存在时，Y是CR
或当双键不存在时，Y选自O、S、NR
由，和R
由此，R
彼此独立且独立于R
、R
、R
和R
，和R
是独
立地选自烷基、链烯基、炔基、芳基、酰基、保护基团或H，和R
和R
是独
立地选自烷基、链烯基、炔基、芳基、酰基或H。

优选地，R
和R
不是同时为固相、同时为亚磷酸酯、同时为H-膦酸酯，
或一个为亚磷酸酯和一个为H-膦酸酯，或一个为固相和一个为亚磷酸酯，或一个
为固相和一个为H-膦酸酯。优选地，当选自R
、R
或R
的一个残基是固相时，则其它两个残基选自除固相外的R
、R
或R
。本技术领域的熟练专家知道
在式I中所例证的化合物，不会混淆它们能被连接到核酸上的有关性质。

在本发明的另一个优选的实施方案中，根据本发明的化合物的式I中的R
是-H或OH。

在一个优选的实施方案中，根据本发明的化合物的式I中的环杂碱基是天然
的或非天然的环杂碱基。优选地，该天然的环杂碱基是腺嘌呤、鸟嘌呤、胞
嘧啶、胸腺嘧啶、尿嘧啶或甲基胞嘧啶。更优选地该天然的环杂碱基是嘧啶或
7-脱氮嘌呤，更优选尿嘧啶。优选地，嘧啶，特别是尿嘧啶的C5原子，或 7-
脱氮嘌呤的7位是连接部分L的结合位点。

式I中的连接部分L的性质被设计成使R
基团和B之间具有足够的空间
距离以至:

(a) 当R
是三磷酸酯时，根据本发明的化合物能被聚合酶识别和在聚合
反应过程中结合到延长的核酸链上；

(b) 根据本发明的化合物一结合到核酸链上，优选就能和互补的碱基
进行碱基配对，就是通过扩增反应产生的探针的杂交能力优选应不被显著地影响，和

(c) 如果不想要R
基团插入，则从靶核酸去除R
基团以避免相互作用
或淬灭作用。

在另一个优选的实施方案中，根据本发明的化合物中的连接部分L包含碳、
氧或氮原子和一个反应基团。优选的反应基团是羧基、氨基、硫醇基或羟基。
L. 优选是任选取代和任选间断的碳氢链衍生物并且优选多于2个碳原子，优选多于3个碳原子和优选至少30个碳原子长。任选的间断物是-CH=CH-、-C≡C-、-NH-、-CONH-、-S-、-O-、-SO₂-、脲基、亚苯基、亚环己基和式-CH=CH-NH-、-CH=CH-CH₃-NH-、-NH-C(=NH₂)-、-NH-C(=NH₂)-NH-和-C(=O)-O-的基团。

为避免产生疑问，1,2-，1,3-和1,4-亚苯基分别当作为2,3和4个碳原子长度。导入所述任选的间断物以便于合成此链和/或提供更多的亲水元件以维持该链的线性结构和阻止其自我折叠。优选地，连接部分是C₁-C₁₀烷基、C₂-C₁₀链烯基、C₂-C₁₀炔基、氨基烯丙基或丙烯酰胺基部分的衍生物，更优选地，连接部分是C₂-C₁₀、C₃-C₁₀或C₄-C₁₀烷基的衍生物。

在核苷酸磷酸酯上的连接部分L的结合位点是在碱基部分上。为了不妨碍杂交，优选L能被结合到那些据信可被暴露在DNA双螺旋结构的大凹槽中的原子，这些原子是胞嘧啶的C₅、C₆或C₄上的氨基；尿嘧啶的C₅、C₆或结合到C₄的氧；胸腺嘧啶的C₅甲基、C₆或结合到C₄的氧，腺嘌呤的N₇、C₈或C₆上的氨基；鸟嘌呤的N₇、C₈或结合到C₆的氧，或脱氮腺嘌呤或脱氮鸟嘌呤的C₇。

在另一个实施方案中，R¹独立于R²、R³、R₄、R₅、R₆和R₇，其中R¹是保护基团、标记，或固相。在另一个实施方案中，R¹独立于R²、R³、R₄、R₅、R₆和R₇，其中R¹是标记或固相。在另一个实施方案中，R¹独立于R²、R₃、R₄、R₅、R₆和R₇，其中R¹是保护基团或标记。在最优选的实施方案中，在根据本发明的化合物的式I中R¹是标记。

优选地，该标记是染料或半抗原，优选荧光染料。优选地，该染料选自如下：

(1) 荧光素染料，
(2) 罗丹明染料，
(3) 花青染料，
(4) 香豆素染料，和
(5) 偶氮染料。

优选地，半抗原是生物素。

根据本发明，优选的化合物是通过使用酶能容易地被结合到核酸上的化合物。因此，在十分优选的实施方案中，在根据本发明的化合物的式I中R³是三
磷酸酯，R^2 是 OR^6，其中 R^6 是 H，和 R^4 是 H 或 OH。

在本发明另一个十分优选的实施方案中，当在根据本发明的化合物的式 I 中双键不存在时，Y 是 O、S 或 CR^aR^{b}. 最优选地，Y 是 O。根据本发明的十分优选的化合物表示为式 II：

(式 II)

术语 “H/OH” 应表示为 H 或 OH 可存在，换句话说，它应该被描述为可以是 H 或 OH 的残基 K.

在本发明另一个十分优选的实施方案中，环己烯衍生物被提供，即在六元环的 C_1 原子和 Y 之间的虚线表示在根据本发明的化合物的式 I 中存在双键，由此 Y 是 CR^a 和 R^a 是独立地选自烷基、链烯基、炔基、芳基、酰基或 H，优选 R^a 是 H。

在本发明的一个优选的实施方案中，亚磷酸酯被提供以适于化学合成根据本发明的寡聚化合物，更特别地，根据本发明的化合物具有式 I，其中 R^2 独立于 R^1、R^3、R^4、R^5、R^a 和 R^6，和 R^2 是 OR^6，其中 R^6 是亚磷酸酯；和 R^3 独立于 R^1、R^2、R^4、R^5、R^a 和 R^6，和 R^3 是保护基团或共价偶联到连接部分的固相，优选地，R^3 是保护基团。

在本发明的另一个实施方案中，包含具有式 S-B-L-R7 单体单元的寡聚化合物被提供，其中 S 是包含六元环的部分，B 是杂环碱基，L 是连接部分，和 R^7 是标记、保护基团或固相。优选地，六元环是环己烷、环己烯、四氢吡喃、四氢硫代吡喃或嘧啶的衍生物，优选地，R^7 是标记或固相，更优选 R^7 是标记。

在本发明的一个优选的实施方案中，具有式 III 的单体单元的寡聚化合物被提供如下：
其中L是共价的连接部分，
和B是杂环碱基，
其中R⁷独立于R⁵、R⁵a、R⁵b、R⁸、R⁹、R¹⁰和R¹¹，其中R⁷选自如下的基团：
（1）保护基团，
（2）标记，
（3）固相，和
（4）-H，
其中R⁸独立于R⁵、R⁵a、R⁵b、R⁷、R⁹、R¹⁰和R¹¹，其中的R⁸选自-H和-OR¹¹基团，
其中R⁹和R¹¹彼此独立且独立于R⁵、R⁵a、R⁵b、R⁷、R⁸或R¹⁰，和其中R⁹和R¹¹选自如下的基团：
（1）-H，
（2）共价偶联到固相的连接部分，
（4）磷酸酯，
（6）具有核苷酸、修饰的核苷酸、寡核苷酸或修饰的寡核苷酸的磷酸二酯，
其中R¹⁰独立于R⁵、R⁵a、R⁵b、R⁷、R⁸、R⁹和R¹¹，且R¹⁰是-H、-OH、烷基、卤素、-O-R⁵、-S-R⁵、NR⁵R⁵a、标记或共价偶联到固相的连接部分，
其中在六元环的Cl原子和Y之间的虚线表示可选择存在双键，由此当双键存在时，Y是CR⁵a，
或当双键不存在时，Y选自O、S、NR⁵和CR⁵aR⁵b，
由此，R⁵、R⁵a和R⁵b彼此独立且独立于R⁷、R⁸、R⁹、R¹⁰和R¹¹，和R⁵是独立地选自烷基、链烯基、炔基、芳基、酰基、保护基团或-H，和R⁵a和R⁵b是独立地选自烷基、链烯基、炔基、芳基、酰基或-H。
优选地，R⁸和R⁹不同时为-H，或当R⁸为OR¹¹时，R⁹和R¹¹不同时为-H，以避免仅有一个单体被考虑。本技术领域的熟练专家在发明知道那些无意义的化合物，即R⁹和R¹¹不同时为磷酸酯，或-H和磷酸酯。优选地，当选自R⁷、R⁸、R¹⁰或R¹¹的一个残基是固相或共价偶联于固相的连接部分时，则其它选自R⁷、R⁸、R¹⁰或R¹¹的残基不是固相或共价偶联于固相的连接部分。

磷酸酯或三磷酸酯残基可以是修饰的磷酸酯或磷酸酯的类似物，如硫代磷酸酯或α-硫代-三磷酸酯。

在一个优选的实施方案中，根据本发明的寡聚化合物的式III中的杂环碱基是天然的或非天然的杂环碱基。优选地，该天然的杂环碱基是腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶、尿嘧啶或甲基胞嘧啶。更优选地，该天然的杂环碱基是嘧啶或7-脱氮嘌呤，更优选尿嘧啶。优选地，嘧啶，特别是尿嘧啶的C₅原子，或7-脱氮嘌呤的7位是连接部分L的结合位点。

优选地，R⁷是标记或固相，更优选地R⁷是标记。

式I中的连接部分L的性质被设计成使R¹基团和B之间具有足够的空间距离以至：

(a) 当R¹是三磷酸酯时，根据本发明的化合物能被聚合酶识别和在聚合反应过程中结合到延长的核酸链上；

(b) 根据本发明的化合物一旦结合到核酸链上，优选能和互补的碱基进行碱基配对，就是通过扩增反应产生的探针的杂交能力优选应不被显著地影响；和

(c) 如果不想插入R¹基团，则从靶核酸去除R¹基团以避免相互作用或淬灭作用。

在另一个优选的实施方案中，根据本发明的化合物中的连接部分L包含碳、氧或氮原子和反应基团，优选的反应基团是羧基、氨基、硫醇基或羟基。L优选任选被取代和任选被间断的碳氢化合物链衍生物和优选多于2个碳原子，优选多于3个碳原子和优选至多30个碳原子长。任选的间断物是-CH=CH₂-、-C≡C-、-NH=、-CONH-、-S=、-O=、-SO₂=、脲基、亚苯基、亚环己基和式

CH=CH-NH=、-CH=CH-CH₂-NH-、-NH-C(=NH)₂-、-NH-C(=NH)₂-NH-和

C(=O)=O-的基团。为避免产生疑问，1,2-, 1,3-和 1,4-亚苯基分别当作为 2,3和4个碳原子长度。导入任选的间断物以便于合成此链和/或提供更多的亲水元
件以维持该链的线性结构和阻止其自我折叠。优选地，连接部分是 C₁-C₁₀烷基、
C₂-C₁₀链烯基、C₂-C₁₀炔基、氨基烯丙基或丙烯酰胺基部分的衍生物。更优选地，
连接部分是 C₂-C₁₀、C₃-C₁₀或 C₄-C₁₀烷基的衍生物。

在核苷三磷酸酯的连接部分 L 的结合位点是在碱基部分上，为了不妨碍杂交，优选 L 能被结合到那些据信可被暴露在 DNA 双螺旋结构的大凹槽中的原子，这些原子是胞嘧啶的 C₅、C₆ 或 C₄ 上的氨基；尿嘧啶的 C₅、C₆ 或结合到 C₄ 的氧；胸腺嘧啶的 C₅ 甲基、C₆ 或结合到 C₄ 的氧；腺嘌呤的 N₇、C₈ 或 C₆ 上的氨基；鸟嘌呤的 N₇、C₈ 或结合到 C₆ 的氧，或脱氨基嘌呤或脱氮鸟嘌呤的 C₇。

在另一个优选的实施方案中，根据本发明的化合物的式 III 中的 R⁷ 是标记。
优选地，该标记是染料或半抗原，优选荧光染料。更优选地，该染料是选自如下组：

(1) 荧光素染料，
(2) 罗丹明染料，
(3) 花青染料，
(4) 香豆素染料，和
(5) 偶氮染料。

优选地，半抗原是生物素。

在本发明的一个十分优选的实施方案中，化合物是修饰的寡核苷酸，由此，
根据本发明的化合物的式 III 中的 R⁸ 是 OR¹¹，和 R⁹ 和 R¹¹ 是寡核苷酸或修饰的
寡核苷酸和 R¹⁰ 是 H 或 OH。

在本发明一个十分优选的实施方案中，当双键不存在时，Y 是 O、S 或 CR⁵R⁶。在本发明一个十分优选的实施方案中，根据本发明的化合物是已糖醇衍生物，即当双键不存在时，根据本发明的化合物的式 III 中的 Y 是 O。

在本发明一个十分优选的实施方案中，根据本发明的化合物是环己烯基衍生物，即在六元环的 C₁ 原子和 Y 之间的虚线表示存在双键，由此 Y 是 CR⁵ 和 R⁶ 独立地选自烷基、链烯基、炔基、芳基、酰基或 H，优选 R⁶ 是 H。

对于用于 LightCycler® 设备使用的方法，在寡聚化合物的合成过程中，
根据本发明的化合物将被优选直接连到该寡聚化合物的 3’或 5’末端。

优选地，对于 TaqMan® 中使用的方法，结合到根据本发明的寡聚化合物上
的标记 R^7 可以位于根据本发明的寡聚化合物的中间、在根据本发明的寡聚化合物的 5'末端或 3'末端。

标记优选荧光标记，优选荧光素或罗丹明染料。根据本发明的寡聚化合物可以进一步包含其它标记，在其中一个标记的发射波长与另一个标记的吸收波长重叠。优选，寡聚化合物进一步包含第二标记作为淬灭剂，淬灭荧光标记的荧光发射，该荧光标记能是荧光素。优选的淬灭剂是荧光罗丹明或花菁染料或非荧光标记如 dabcyl（“暗淬灭剂”）。在最优选的实施方案中，根据本发明的寡聚化合物在 TaqMan®方法中不能被酶扩增以用作为探针，主要内容在 US 5,210,015、US 5,487,972 或 US 5,804,375 中阐述了。优选地，在寡聚体化合物 3'末端的单体单元是 2',3'-双脱氧核苷酸或 3'-磷酸化核苷酸。优选用于 TaqMan®方法的根据本发明带有标记，优选荧光标记的单体单元，以及具有另一个标记，优选第二个荧光标记的第二单体单元，可以位于根据本发明的寡聚化合物的中间或在根据本发明的寡聚化合物的 5'末端和/或 3'末端。因此，在本发明的一个优选的实施方案中，根据本发明的寡聚化合物包含一个修饰的寡核苷酸，该寡核苷酸含有一个单体单元，是：

（1）带有连接到核苷酸上的第二标记的连接部分，或

（2）带有连接到修饰的核苷酸或非核苷酸化合物的第二标记的连接部分。优选，该第二标记是第二染料，其优选荧光染料并且优选选自如下的基团:

（1）荧光素染料，
（2）罗丹明染料，
（3）花菁染料，
（4）香豆素染料，和
（5）偶氮染料。

优选地，根据本发明的寡聚化合物不能被酶扩增，因此，优选的在寡聚化合物 3'末端的单体单元是 2',3'-双脱氧核苷酸或 3'-磷酸化核苷酸。

本技术领域的熟练专家承认根据本发明的化合物或根据本发明的寡聚化合物的六元环可以进一步地带有取代基且在根据本发明的方法中仍具有功能的事实。特别地，不但六元环，连接部分也可进一步地带有卤素、硫醇基、羟基、氨基、烷基、链烯基、炔基、芳基取代基，由此烷基、链烯基、炔基、芳基取代基可任选地包含杂原子，或用更多的取代基任选地取代的芳杂基取代基。优
选的也是位于式 I 或 II 的六元环上的 C5 原子的另一个取代基，其选自烷基、链烯基、炔基、芳基、烷氧基、氢烷基、卤素；叠氮基、羟基、羧基或氨基部分。这些化合物可用于测试是否它们能被用于根据本发明的方法或用途，通过如用已描述的互补寡核苷酸来进行简单的杂交试验，分析的方法用 LightCycler® 设备或 TaqMan®设备，或在根据本发明的化学合成方法中使用亚磷酸酰胺或固相连接的化合物。

(a) 提供根据本发明的化合物，其中 R2 是-OR5 和 R5 是亚磷酸酰胺和 R3 是保护基团，

(b) 提供一个通过另一个-OH 基团连接到固相上的核苷或修饰的核苷的-OH 基团，或提供一个通过在寡核苷酸或修饰的寡核苷酸的 3'末端的核苷酸或修饰的核苷酸的另一个-OH 基团连接到固相上的寡核苷酸或修饰的寡核苷酸的-OH 基团，

(c) 使亚磷酸酰胺的亚磷酸原子和游离的 OH 基团反应以形成亚磷酸酯并且氧化此亚磷酸酯为磷酸三酯，

(d) 任选地用步骤 (c) 中任何未反应的-OH 基团和另一个化合物反应以阻止在随后的步骤中步骤 (c) 中未反应的 5'-OH 基团的任何进一步反应（“加帽”反应）（“Capping”-reaction），

(e) 在除去步骤 (d) 的羟基保护基团以提供游离的-OH 基团后，任选地用核苷、修饰的核苷或根据本发明的化合物的亚磷酸酰胺衍生物重复步骤 (c)。
到（d），其中 R² 是-OR⁶ 和 R⁶ 是亚磷酰胺和 R³ 是保护基团，和

（f）将寡聚化合物从固相上裂解下来，除去保护基团和由此转换磷酸三酯为磷酸二酯，和

（g）分离寡聚化合物。

本技术领域的熟练专家周知进行这些反应步骤的方法。

在本发明另一个优选的实施方案中，提供了根据本发明的寡聚化合物的酶促合成的方法，包括如下的步骤：

（a）将根据本发明的其中所述的化合物的 R³ 是三磷酸酯的化合物，在存在末端转移酶或聚合酶下，用多核苷酸、寡核苷酸或修饰的寡核苷酸的 3'末端的核苷酸或修饰的核苷酸中的 OH 基团进行培养，所述 OH 基团优选是可扩增的，

由此，该化合物被结合到 OH 基团上，所述 OH 基团优选是可扩增的，

由此，释放出焦磷酸酯（pyrophosphate），

（b）可选地在存在末端转移酶或聚合酶下，将步骤 a）的产物的 3'末端上的 OH 基团用核苷三磷酸酯或修饰的核苷三磷酸酯进行培养，所述 OH 基团优选是可扩增的，

由此，该核苷酸或修饰的核苷酸与 OH 基团连接，所述 OH 基团优选是可扩增酯，

由此，释放出焦磷酸酯，

（c）可选地重复步骤（a）或（b）或两者，和

（d）分离寡聚化合物。

在使用末端转移酶的情况下，根据本发明的酶促合成方法的步骤 b）和 c）可优选不执行。

在本发明的另一个优选的实施方案中，用于分析靶核酸和寡聚化合物之间的相互作用的组合物包含根据本发明的具有不同序列的寡聚化合物的多元阵列（an array of a plurality of oligomeric compounds）。最优选的，此寡聚化合物是根据本发明的寡聚化合物，即其是具有式 III 的化合物，其中 R⁷ 是固相或 R⁸、R¹⁰ 或 R¹¹ 是共价偶联到固相的连接部分，即这些残基是与固相结合的位点。

在本发明一个优选的实施方案中，根据本发明的化合物具有式 I，其中 R² 是-OR⁶ 和 R⁶ 是亚磷酰胺，和 R³ 是共价偶联到连接部分的固相或保护基团，其
被用于根据本发明的寡聚化合物的化学合成。

在本发明另一个优选的实施方案中，根据本发明的化合物被用于标记核酸，即通过酶结合标记的修饰的核酸到核酸上，其中酶合成根据本发明的寡聚化合物的方法是用根据本发明的三磷酸酯衍生物来实现的。更详细地，根据本发明的化合物具有式I，其中R1是三磷酸酯，R2是-OR6，其中R6是H，和R4是-H或-OH，它被用于酶合成标记的核酸，即根据本发明的寡聚化合物。

还在另一个优选的实施方案中，根据本发明的寡聚化合物或根据本发明的组合物被用于同互补核酸的杂交反应，如杂交一个根据本发明的寡聚化合物到在预先确定的位置连接在固相上以形成微阵列的多元寡核酸酸上。甚至在另一个优选的实施方案中，根据本发明的寡聚化合物被用作引物、探针或捕捉探针，结合包含六元环的根据本发明的化合物到寡聚化合物上特别是可用于稳定根据本发明的寡聚化合物，防止被核酸酶消化和嘌呤碱基的脱嘌呤。

在本发明的另一个实施方案中，提供了用于检测样品中的靶核酸的方法，包含如下的步骤：

（a）提供可能含有靶核酸的样品；
（b）提供根据本发明的寡聚化合物，其基本上与靶核酸的部分或全部互补；
（c）可选地用模板依赖性DNA聚合酶和引物来扩增靶核酸；
（d）在寡聚化合物和靶核酸结合的条件下，将样品和寡聚化合物接触。

（d）测定靶核酸和寡聚化合物之间的结合产物或杂交的程度作为靶核酸的存在、不存在或数量的量度。

优选地在该方法步骤（d）中，通过经模板依赖性DNA聚合酶的核酸外切酶水解而从与靶核酸杂交的寡聚化合物释放的第一或第二荧光标记的数量来测定杂交的程度，优选地，根据本发明的寡聚化合物包含两个标记，优选两个荧光标记。

优选的模板依赖性DNA聚合酶是Taq聚合酶。

在本发明的一个检测靶核酸的方法的优选的实施方案中，在TaqMan®分析中所使用的方法被考虑。由此，根据本发明的寡聚化合物被用于作为探针。因此，根据本发明的寡聚化合物包含一个标记如 R′，其可优选为荧光标记，优选荧光素。根据本发明的寡聚化合物可进一步包含其它的荧光标记，其中一个荧光标记的发射波长与另一个荧光标记的吸收波长重叠。优选地，寡聚化合物还包含第二荧光标记作为淬灭剂，淬灭荧光标记的荧光发射。该荧光标记可以是荧光素。优选的淬灭剂是荧光罗丹明或花菁染料。淬灭剂也可以是非荧光化合物或染料如 dabcyli（"暗淬灭剂"）。根据本发明的寡聚化合物在TaqMan®方法中不能被酶扩增以用作探针，主要内容在US 5,210,015、US 5,487,972 或 US 5,804,375 中阐述了。优选地，在寡聚化合物3ˊ末端的单体单元是2,3ˊ-双脱氧核苷酸或3ˊ-磷酸化核苷酸。优选用于TaqMan®方法的根据本发明的化合物带有标记，同样第二个化合物带有该标记，所述化合物可以位于根据本发明的修饰的寡聚化合物的中间或在根据本发明的修饰的寡聚化合物的5ˊ末端和/或3ˊ末端。因此对于在TaqMan®分析中使用的方法，在该方法的测定步骤中，荧光标记和第二个标记，即淬灭剂之间的空间关系随着杂交而变化，优选通过模板依赖性DNA聚合酶，优选Taq聚合酶的核酸外切酶的水解核酸结合化合物，由此作为核酸外切酶水解的结果释放出标记。在根据本发明的寡聚化合物和靶核酸之间的杂交程度通过在杂交过程中从根据本发明的寡聚化合物中释放出的标
记的数量来测定。因此，本发明一个优选的实施方案是在步骤（d）中通过杂交到核酸的寡聚化合物经模板依赖性 DNA 聚合酶的核酸外切酶水解而被释放的标记的数量来测定杂交程度。

在本发明一个十分优选的实施方案中叙述了更详细的 TaqMan®分析方法，提供了一种测定样品中靶核酸的方法，包括如下步骤：

（a）将包含单链核酸的样品和含有互补于靶核酸某一区域的序列的寡核苷酸及根据本发明的寡聚化合物接触，该寡聚化合物中 R^7 是荧光标记且其含有第二荧光标记，和由此所述的寡聚化合物含有互补于相同的靶核酸序列链的第二区域的序列，但不包括由寡核苷酸定义的核酸序列，以便在杂交的条件下产生双链体的混合物，其中的双链体包含退火到寡核苷酸及寡聚化合物的靶核酸，使得第一个寡核苷酸的 3’末端位于寡聚化合物的 5’末端的上游。

（b）在足以允许聚合酶的 5’-3’核酸酶活性裂解退火的、寡聚化合物和释放出的被标记的片段的条件下保持步骤（a）的混合物具有 5’-3’核酸酶活性；和

（c）检测和/或测定释放出的被标记的片段。

在本发明的另一个实施方案中，在 US 6,174,670 中提供了用于 LightCycler®设备的方法，对于用于 LightCycler®设备的方法，根据本发明的化合物优选将位于 3’-或 5’-末端，即在寡聚化合物合成后单体单元位于其的 3’-或 5’-末端。这些方法应用荧光共振能量转移技术（见，如美国专利号 No. 4,996,143, 5,565,322, 5,849,489 和 6,162,603）及基于当一个供体和一个相应的荧光受体标记彼此在一定距离内被定位，在两个荧光标记之间的能量转移发生，其能目测或另外被检测和/或定量方法测定的事实。本文所用的两个探针每一个含有荧光标记，由此它们中的至少一个是根据本发明的寡聚化合物，在特定的位置能杂交到扩增的产物上，可通过探针和靶核酸的互补性被测定。根据本发明的寡聚化合物的根据本发明的荧光标记可是荧光供体或受体标记。在适当的位置上探针杂交到扩增产物，产生一个 FRET 信号。荧光分析能被执行，用例如，光子计数表面荧光显微镜系统（含有合适的分色镜和过滤光片为监视特定角度的荧光发射）、光子计数光电倍增器系统或荧光计。用氩离子激光器、高亮度汞（Hg）弧光灯、光纤光源或其它的高强度的光源通过适当的滤光片在希望的范围内激发的光能激发起始能量转移。关于本文所用的荧光供体和相应的荧光受体标
记，"相应"指具有与荧光供体标记的发射光谱重叠的激发光谱的荧光受体标记。因此，在它们之间能产生有效的非放射性能量转移。优选的荧光标记是作为荧光供体标记的荧光素，由此荧光受体标记是罗丹明，但是，优选的是花菁染料，优选 US 6,174,670 中描述的 Cy5。

因此，在本发明一个实施方案中，提供了一种检测样品中是否存在靶核酸的方法，包括如下步骤：

执行至少一个循环步骤，其中一个循环步骤包括扩增步骤和杂交步骤，其中所述的扩增步骤包含将所述的样品和引物接触以产生扩增产物，如果在样品中存在靶核酸的话，其中所述的杂交步骤包含将所述的样品接触一对探针，其中以互相不超过 5 个核苷酸的方式，所述配对的探针的成员杂交到所述的扩增产物上，所述所述的配对的探针的第一个探针是用荧光供体标记所标记的，和其中所述的配对的探针的第二个探针是用相应的荧光受体标记所标记的，且因此其中探针之一是根据本发明的寡聚化合物。

和检测在所述的第一个探针的所述的荧光供体标记和所述的第二个探针的所述的荧光受体标记之间的荧光共振能量转移是否存在，其中存在 FRET 是在样品中存在靶核酸的指示，和其中不存在 FRET 是在样品中不存在靶核酸的指示。

因此，在本发明一个优选的实施方案中，提供了一个检测样品中靶核酸的方法，包含如下步骤，在存在两个核酸探针的条件下通过聚合酶链式反应扩增核酸，其中一探针是根据本发明的寡聚化合物，杂交靶核酸邻近的区域，所述的探针之一用荧光受体标记来标记及另一探针用荧光能量转移配对的荧光供体标记来标记，以使这两个探针和靶核酸杂交，荧光供体和受体标记彼此长度不超过 25 个核苷酸，所述的聚合酶链式反应包含如下步骤，添加热稳定聚合酶、核苷酸和用于靶核酸的引物到样品中，及样品在至少一个变性温度和一个延伸温度之间进行热循环；生物样品通过荧光供体标记的吸收波长处的光激发，并检测来自荧光能量转移配对的荧光发射。

在本发明另一个优选的实施方案中，提供了检测样品中的靶核酸的方法，包含如下步骤，在存在两个核酸探针的条件下，通过聚合酶链式反应扩增核酸，其中一探针是根据本发明的寡聚化合物，杂交核酸邻近的区域，所述的探针之一用荧光受体标记来标记及另一探针用荧光能量转移配对的荧光供体标记来标
记，以使这两个探针和靶核酸杂交，荧光供体和受体标记彼此长度不超过25个核苷酸，所述的聚合酶链式反应包含如下步骤：添加热稳定聚合酶、核苷酸和用于靶核酸的引物到样品中，及使样品在至少变性温度和延伸温度之间进行热循环；生物样品通过供体标记的吸收波长处的光激发，并监测来自荧光能量转移配对的温度依赖性荧光。

在本发明另一个优选的实施方案中，提供了一种测定样品中靶核酸存在或数量的方法，包含如下的步骤：

a）提供来自要被分析的样品的靶核酸，
b）从靶核酸合成双链互补DNA，
c）在存在根据本发明的化合物和核苷三磷酸酯下，扩增靶核酸，由此获得标记的靶核酸，
d）将标记的靶核酸与寡聚化合物阵列在规定的位置上杂交，和
e）在每一个规定的位置上测量荧光强度，由此靶核酸的存在或数量被测定。

这是使用阵列方法用于检测靶核酸的方法。优选地，在US 5,545,522; 5,716,785; US 5,891,636; US 6,291,170中描述的方法被用于根据本发明的方法的步骤b）和c），由此，用包含细菌T7-启动子的引物合成双链cDNA，和在存在核糖核苷三磷酸酯下标记的RNA被转录，由此标记被结合到一些核苷三磷酸酯上。至此靶核酸优选核糖核酸。

在本发明另一个优选的实施方案中，本发明涉及一个由几部分组成的试剂盒，由此该试剂盒含有模板依赖性聚合酶，优选具有5'-3'核酸外切活性，优选Taq聚合酶，一组引物，核苷酸和根据本发明的寡聚化合物，优选其中R'是标记，本技术领域所周知的这样的试剂盒还包含塑料皿，在扩增程序中其可被使用，如96孔或384孔的微量滴定板或就是普通的反应管，如德国汉堡Eppendorf制造的反应管和所有的其它用于进行根据本发明的该方法的试剂。

在另一个优选的实施方案中，提供的由几部分组成的试剂盒含有根据本发明的化合物，其是三磷酸酯并能通过酶反应结合到核酸上。该试剂盒还包含核苷三磷酸和聚合酶，可以是如核糖核苷三磷酸酶和RNA聚合酶。

在本发明的另一个实施方案中，试剂盒含有更多的试剂用于分离核酸。因此，该试剂盒能额外地含有对核酸有亲和性的材料，优选该对核酸有亲和性的
材料包括具有二氧化硅表面的材料。优选地，该具有二氧化硅表面的原料是玻璃，最优选，该对核酸有亲和性的材料是如在 WO 96/41811 或 WO 01/37291 中描述的包含磁性玻璃颗粒的组合物。该试剂盒能进一步地或额外地包含溶解缓冲液，其含有如离液剂、去垢剂或醇或它们的混合物，能溶解细胞及单独地提供蛋白酶，如 K 蛋白酶，用于消化多余的蛋白。根据本发明的试剂盒中的这些成分可被单独地提供在试管中或储存容器中。根据这些成分的性质，它们甚至可被提供在单个的试剂或储存容器中。当 DNA 或 RNA 结合到该颗粒上时，该试剂盒可进一步或额外地包含清洗溶液，其适用于磁性玻璃颗粒的清洗步骤。该清洗溶液含有缓冲液中的乙醇和/或离液剂，所述缓冲液为不含上述的乙醇和/或离液剂并具有酸性 pH。通常清洗溶液或其它溶液被提供作为储液，其在使用前被稀释。该试剂盒可进一步或额外地包含洗脱剂或洗脱缓冲液，即洗脱结合在磁性玻璃颗粒上的 DNA 或 RNA 的溶液或缓冲液（如 10mM Tris, 1mM EDTA, pH 8.0）或纯水。进一步地，可存在额外的试剂或缓冲溶液，其能被用于核酸即 DNA 或 RNA 的纯化过程。

提供以下的实施例、参考文献和附图，有助于理解本发明，在附加的权利要求书中阐明了本发明真正的保护范围。应理解，可以不违背本发明的精神的方式进行修改。

附图说明
图 1：包含尿嘧啶作为碱基、具有 FMOC 保护的氨基作为反应基团的连接部分及四氢吡喃作为六元环的亚磷酸胺衍生物的合成。
图 2：1,5-脱水-2-(6-生物素酰氨基-己酸 (6-biotinamido-hexanoate) 酚氨基烯丙基-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯的合成
图 3：包含腺嘌呤作为碱基、生物素作为半抗原、连接部分和四氢吡喃作为六元环的类似于图 2 的化合物的三磷酸酯衍生物的合成
图 4：用于在实施例 1.3.1 中物质合成的结合研究的总结
图 5：结合研究的点印迹（见实施例 1.3.1）
图 6：结合研究的点印迹（见实施例 1.3.1）
图 7：来自大鼠组织的 Bio-h-dUTP 标记的 cDNA 杂交后的玻璃阵列的图像（方形：阴性对照点；圆形：用于肝脏、肾脏中表达的神经元大麻受体（cannabinoid receptor）的探针；在肝脏中表达的 a-1 微球蛋白/bikunin ambp 和在所有组织
中表达的 Gapd）。

实施例
1. 制备实施例一亚硝酰胺的合成
N-芴甲氧羰基(Fmoc)-N-烯丙酰-1,6-二氨基己烷

向 90 毫升无水氯仿中的 1.26g (3 毫摩尔) 芳甲氧羰基二氨基己烷 (Bachem Q 2045) 加入 1.70 ml (12 毫摩尔) 三乙胺。混合物冷却至 0°C 并逐滴加入 300 μl (3.6 毫摩尔) 丙烯酰氯。该混合物被加热至室温并搅拌过夜。将悬浮液过滤且滤液在旋转蒸发器中浓缩，残余物通过氯仿/甲醇 4:1 作为洗脱剂的硅胶柱柱层析纯化 (硅胶上氯仿/甲醇 4:1 进行 TLC 控制:Rf=0.75)，收集含有产物的级分并蒸干，产量：440mg。

1,5-脱水-2-(5-芴-9-基甲氧羰基氨基-乙基氨基甲酰)-2,3-双脱氧-D-阿拉伯-己糖醇

5.8mg (0.023 毫摩尔) 乙酸钯 (Aldrich 20,586-9)，13mg (0.05 毫摩尔) 三苯基膦 (Merck 808270) 和 86 μl (0.61 毫摩尔) 三乙胺在 16ml 的无水二氯甲烷中回流 15min。然后加入 392mg (1 毫摩尔) N-芴甲氧羰基(Fmoc)-N-烯丙酰-1,6-二氨基己烷和 180mg (0.47 毫摩尔) 1,5-脱水-2,3-双脱氧-2-(5-碘代尿嘧啶-1-基)-D-阿拉伯-己糖醇 (Verheggen, I. 等, J. Med. Chem. 38 (1995) 826-835) 且该混合物在 80°C 加热 3h。该混合物被冷却到室温并过滤，滤液用旋转蒸发器蒸干，残余物通过氯仿/甲醇 4:1 作为洗脱剂的硅胶柱柱层析纯化 (TLC 硅胶:氯仿/甲醇 4:1: Rf=0.47)，收集含有产物的级分并用旋转蒸发器蒸干，产量：210mg。

6-O-(4,4'-二甲氧三苯甲基)-1,5-脱水-2-(5-芴-9-基甲氧羰基氨基-乙基氨基甲酰)-乙烯基)-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇

200mg (0.32 毫摩尔) 1,5-脱水-2-(5-芴-9-基甲氧羰基氨基-乙基氨基甲酰)-乙烯基)-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇和 3x 5ml 无水吡啶共蒸发，然后溶解在 5ml 的无水吡啶中。此后，在室温下 (r.t.) 搅拌下，在 15min 内加入 5ml 吡啶中的 140mg (0.39 毫摩尔) 4,4'-二甲氧三苯甲基氯。反应混合物在室温下 (r.t.) 再搅拌 2h。然后吡啶被蒸发且残留物溶解于 50ml 乙酸乙酯并用 50ml pH7.5 的 0.1M 磷酸缓冲液洗涤两次。分离有机层、硫酸钠干燥、过滤并蒸干，残留物通过硅胶闪式层析 (正己烷/乙酸乙酯/1%三乙胺梯度) 被
纯化，合并产物分级，在高真空中蒸发和干燥。产量：235mg。
6-O-(4,4′-二甲氧基苯甲基)-1,5-脱水-2-(5-(6-芴-9-基甲氧基羰基-氨基-己基氨基甲酰)-乙烯基)-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-4-O-[N,N-二异丙基-(2-氯苯乙基)]-亚磷酸胺

200mg（0.21 毫摩尔）6-O-(4,4′-二甲氧基苯甲基)-1,5-脱水-2-(5-(6-芴-9-基甲氧基羰基-氨基-己基氨基甲酰)-乙烯基)-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇在氢气下溶解在5ml二氯甲烷中。此后，15min 内，68μl（0.38 毫摩尔）N-乙基二异丙胺和5ml二氯甲烷中的72mg（0.28 毫摩尔）氯-2-氯乙氧基-二异丙基氨基膦(phosphane)被加入。反应混合物在室温下搅拌1小时。然后加入10毫升二氯甲烷。反应混合物用20ml pH 7.5 的0.1M磷酸钠缓冲液洗涤两次，有机层被分离、硫酸钠干燥、过滤并蒸干。残留物通过硅胶闪式层析（正乙烷/丙酮梯度）被纯化，合并产物分级，在高真空中浓缩中蒸发和干燥。产量：170mg。

2. 制备实施例——三磷酸酯的合成

1,5-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸二锂盐

127mg（0.48 毫摩尔）1,5-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇（Verheugen, I., 等, J. Med. Chem. 36 (1993) 2033-2040）溶解于12ml磷酸三乙酯中并加入260μl二异丙基乙胺。烧瓶在0-4℃的冰浴中冷却，加入36μl的三氯氧磷(Phosphoroyxochloride)。在0-4℃下搅拌10min后，加入0.1M pH 8.5三乙胺/乙酸缓冲液。在0.1mbar 40℃下用旋转蒸发表蒸发表溶剂。残留物溶解在20ml水中并通过DEAE Sephadex A 25 Cl-离子交换纯化：缓冲液A水、缓冲液B0.5M LiCl、梯度在60min内到100%B，用UV/VIS 样品器在260nm处检测。收集相应的级分且减压浓缩至1.3ml体积。产物溶液加到200ml 2:1 丙酮/乙醇混合液中，将悬浮液离心，得到的粒状沉淀用丙酮洗涤3次以除去LiCl并在高真空中干燥。产量：120mg。

1,5-脱水-2-(6-(1,2,4-三唑-4-基)-嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸酯（方法描述于Miles, W. M., 等, J. Am. Chem. Soc. 117 (1995) 5951-5957）

5ml 无水吡啶加入到120mg（0.34 毫摩尔）1,5-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸二锂盐和250mg（1.2 毫摩尔）1,2-((二甲氨基)亚甲基)] 胺中，且混合物被蒸发。
加入 2ml 异丙烷和 173 μl (1.36 毫摩尔) 氯化三甲基甲硅烷，混合物在 100 °C 下加热 24h，在真空中溶剂被蒸发，残留物在水中溶解并通过 DEAE Sephadex A 25 CI 离子交换层析纯化。缓冲液 A 水、缓冲液 B 0.5M LiCl，梯度在 60min 内到 100% B，用 UV/VIS 探测器在 260nm 处监测，收集相应的级分并在减压下蒸干，残留物直接用于下一步而无需除去过量的氯化锂。

N6-(6-氨基己基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸三乙基铵盐

步骤 II 的残留物 (1,5-脱水-2-(6-(1,2,4-三唑-4-基)-嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸酯) 溶解于 20ml 水中，过滤并和 1ml 二氨基己烷在 80 °C 下反应 15h。将混合物减压蒸干，残留物溶解在 5ml 0.1 M pH=8 三乙基铵碳酸氢盐中，并通过 DEAE Sephadex A 25 离子交换层析纯化，使用 0.1M-0.3M 三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测。适当的级分（在 TLC 上用苯三酮显色）被收集并在真空下蒸发。残留物用水稀释后再在真空下蒸发，此过程重复三次。产量：80mg。

N6-(6-三氟乙酰氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸酯

80mg (0.12 毫摩尔) N6-(6-氨基己基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸酯-双三乙基铵盐溶解于 10ml 水，添加 10ml 硫代三氟乙酸 S-乙酯并用 5 M 氢氧化钠调节 pH 到 10。混合物在室温下搅拌 4h。然后该混合物用 25ml 0.1M pH=8 三乙基铵碳酸氢盐稀释。溶液加到 DEAE Sephadex 柱上并用 0.1-0.4M pH8 的三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测。收集含有三氟乙酰化产物的级分并在真空下蒸发，过量的三乙基铵碳酸氢盐通过数次与水共蒸发以除去。产量：82 mg。

N6-(6-三氟乙酰氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

82mg (0.11 毫摩尔) N6-(6-三氟乙酰氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-单磷酸酯-双三乙基铵盐溶解于 3ml 无水 DMF 中，加入 89mg (0.55 毫摩尔) 羰基二咪唑 (Carbonyldiimidazol)，混合物在室温 (RT) 下搅拌 2h。加入 0.5ml 甲醇，混合物在室温 (RT) 下搅拌 20min，在减压的条件下通过蒸发除去甲醇。然后 0.7ml 0.8M 双三丁基铵焦磷酸盐的 DMF
（0.55 毫摩尔）溶液被加入，混合物在室温下搅拌过夜。使用旋转蒸发器在 0.1 毫巴 40℃下蒸发溶剂。残留物在 5ml 0.1M pH=8 三乙基铵碳酸氢盐中溶解。溶液加到 DEAE Sephadex 柱上并用 0.1-1.0M pH8 的三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测。收集含有三磷酸酯的级分并在真空中蒸发。过量的三乙基铵碳酸氢盐通过数次与水共蒸发以除去。产量：69 mg。

N6-(6-氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

69mg（0.06 毫摩尔）N6-(6-三氟乙酰氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯溶解在 4ml 水中，加入并用 6M NaOH 调节 pH 到 11.5，混合物在室温下搅拌 4h。接着用 2M HCl 调节 pH 到 8 并加入 10ml 0.1M pH=8 三乙基铵碳酸氢盐。溶液加到 DEAE Sephadex 柱上并用 0.1-1.0M pH8 的三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测，收集含有三磷酸酯的级分并在真空中蒸发。通过茚三酮反应证实氨基的存在。过量的三乙基铵碳酸氢盐通过数次与水共蒸发以除去。产量：40mg。

N6-(6-(6-生物素酰氨基-己酸)酰氨基乙基)-脱水-9H(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

40mg（0.03 毫摩尔）N6-(6-氨基乙基)-脱水-2-(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯-四-三乙基铵盐溶解于 250 µl 0.1M pH 8.5 磷酸钠缓冲液中。在 800 µl 不含胺的 DMF 中的 25mg（0.055 毫摩尔）生物素 hexancarbonsäure NHS 酯（Sigma 订购号 B2643）被加入。混合物在室温下搅拌过夜，溶剂在真空中蒸发。残留物溶解于 5ml 0.1M pH=8 三乙基铵碳酸氢盐中。溶液加到 DEAE Sephadex 柱上并用 0.2-1.2M pH8 的三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测。收集含有生物素化的三磷酸酯级分并在真空中蒸发。过量的三乙基铵碳酸氢盐通过数次与水共蒸发以除去。产量：15mg。NMR（Bruker DPX 300，溶剂 D₂O）¹H[ppm]: 1.10-1.85(m)[22H], 2.18(m) [4H], 2.45 (d, 宽)[1H], 2.65(d) [1H], 2.85(dd) [1H], 3.08(m) [4H], 3.56(s, 宽) [2H], 3.61(m) [2H], 3.79(m) [1H], 4.08 (d) [1H], 4.28(m) [4H], 4.50(dd) [1H], 8.20(s) [1H], 8.42(s) [1H],

³¹P [ppm]: -21.77 (t); 10.08(d); 9.50(d)

N6-(6-(6-(6-生物素酰氨基-己酸)酰氨基乙基)-脱水-9H(腺嘌呤-9-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯-四-三乙基铵盐

通过使用如上所述的同样的合成途径，从 9- [1R,3S,4R]-3-羟基-4-(四羟基-[1]三磷酸基氧甲基)-环己烯基腺嘌呤-4-三乙基铵基

NMR (Bruker DPX 300, 溶剂D_2O) _1^H[ppm]: 1.22(t) [36H], 1.30-1.82(m) [18H], 2.18(m) [6H], 2.51(s,宽) [1H], 2.68(d) [1H], 2.86(dd) [1H], 3.28(q) [24H], 3.56(s,宽) [2H], 3.90(q) [1H], 3.79(m) [1H], 4.18(m) [2H], 4.28(m) [1H], 4.50(dd) [1H], 5.98(dt) [1H], 6.21(d) [1H], 8.13(s) [1H], 8.21(s) [1H],

_31^P [ppm]: -22.04 (t), -9.72(d), 9.53(d)

1,5-脱水-2-(尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

200mg（0.82 毫摩尔）1,5-脱水-2-(尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇（Verheggen, I., 等，J. Med. Chem. 38 (1995) 826-835）根据上述的方法转化成150mg（0.44 毫摩尔）单磷酸酯。该单磷酸酯根据在 Moffat, J. G., Khorana, H. G. J. Am. Chem. Soc. 1961, 83, 649-658 中所描述的方法转化成三磷酸酯。因此150mg（0.44 毫摩尔）的1,5-脱水-2-(尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯二锂盐经通过 Dowex H+型 50X8-100 柱被转化为游离的酸。用水洗涤，收集 UV 吸收级分并浓缩至2ml。加入2ml 叔丁醇且该混合物被转移到安装有回流冷凝器和橡胶隔膜的双颈烧瓶中。用注射器针头加入 0.3ml (3 毫摩尔) 吗啡，混合物加热回流，在 3ml 叔丁醇中的 0.6mg (2.9 毫摩尔) 二环己基碳二亚胺溶液在 2h 内被逐滴加入。混合物回流 15h，冷却到室温并过滤。滤液浓缩到 2ml 且浓缩液用二乙醚萃取三次。水层在真空中蒸干。残留物溶解在 5ml DMF 中并加到 2.8ml 的 0.8M 双(三正丁基铵)焦磷酸盐的 DMF (2.2 毫摩尔) 溶液。混合物在室温下在氮气中搅拌过夜。溶剂通过用旋转蒸发器在 40 ℃减压下蒸发。残留物溶解在 5ml 的水中，溶液加到 DEAE 上。收集含有三磷酸酯级分并在真空 Sephadex 柱中浓缩到 5ml，用 0.1-1.2M 氯化锂梯度洗脱，在 260nm 处监测。产物溶液加入到 400ml 丙酮/乙醇 2:1 的混合液中，离心悬浮液，产生的粒状沉淀用丙酮洗涤 3 次以除去 LiCl 并在高真空中干燥。产量：100mg。

1,5-脱水-2-(5-氨基烯丙基-尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

100mg（0.19 毫摩尔）1,5-脱水-2-(尿嘧啶-1-基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯和 106mg（0.33 毫摩尔）乙酸铵 II 溶解于 5ml 0.1M pH 5 乙酸钠缓冲液中。混合物在 50 ℃下搅拌 4h，在冷却至室温后，该混合物用 40ml 的水
稀释。新鲜制备的乙酸烯丙胺溶液 (0.77ml (13 毫摩尔)) 用 4M 乙酸中和并且加入 150mg (1.5 毫摩尔) 四氯钯二钾盐 (dipotassium tetrachloropalladinate)，混合物在室温下搅拌 24h。反应的混合物用 0.45 μm 过滤滤器滤，滤液加到 DEAE-Sephadex 柱上并用 0.1-1M pH8 的三乙基铵碳酸氢盐梯度洗脱，在 260nm 处监测。收集主要的 UV 峰 (苄三酮反应阳性) 并进一步通过反相层析来纯化，在 RP 18 Hypersil 柱上梯度从 100%缓冲液 A: 0.1M pH8.0 的三乙基铵乙酸盐到 100%缓冲液 B: 0.1M 三乙基铵乙酸盐/乙腈 1:1 洗脱，在 260nm 处监测。收集含有氨基烯丙基三磷酸酯的级分并在真空中蒸发。通过茚三酮反应证实氨基的存在，过量的三乙基铵乙酸盐通过数次与水共蒸发来除去。产量：80 mg。

1,5-脱水-2-(5-(6-生物素酰氨基)-乙酸酰氨基烯丙基-尿嘧啶-1基)-2,3-双脱氧-D-阿拉伯-己糖醇-6-三磷酸酯

根据上述的方法，在硼酸盐缓冲液/DMF 中 80mg (0.08 毫摩尔) 上一步反应的产物用生物素 hexancarbonsäure NHS 酯 (Sigma 订购号 B2643) 标记。

产量：10mg。

NMR (Bruker DPX 300, 溶剂 D₂O) ¹H[ppm]: 1.28(t) [36H], 1.66(m) [10H], 1.92(m) [1H], 2.19(dd) [1H], 2.31(dd) [1H], 2.72(d) [1H], 2.95(dd) [1H], 3.18(q) [24H], 3.28(m) [2H], 3.59(d,宽) [1H], 3.95(m) [2H], 4.21(m) [2H], 4.40(dd) [1H], 4.56(dd) [1H], 4.70(s) [1H], 6.20(d) [1H], 6.38(dt) [1H], 8.21(s) [1H]

³¹P[ppm]: -22.04 (t); -9.83(d); 9.61(d)

3. 功能实施例

结合研究 (Incorporation studies)

被认为是 2'脱氧-NTP 类似物的生物素化 hUTP, hATP 和 CeATP 的结合速率 (见图 4) 与经使用 AMV 反转录酶标记的 cDNA 的点印迹稀释系列的标
准的生物素-16-dUTP 比较。首先，我们基于点印迹稀释系列 (用 SA-AP/CPD* 检测) 研究了不同比例的生物素 hUTP: dUTP 的影响，我们发现 1:4 的比例
(=20%) 是足够用于标记的。使用该比例的不同类似物同生物素 dUTP 来比较。结合有效性的增加排列如下：生物素 hATP<生物素 hUTP=生物素 dCeATP<生
物素 dUTP (见图 5a-c)。

我们研究的另一个类似物是 aUTP，其有一个额外的羟基且因此类似于核
糖核苷。我们研究了用不同的 RNA 聚合酶进行的生物素 aUTP 结合。T7 RNA
聚合酶是用于结合生物素 aUTP 最好的选择，但是，结合量大约是生物素 UTP 低 25 倍（见图 6）。

基于微阵列的表达型实验

在一个基于微阵列的表达型实验中测试生物素-h-dUTP 的性能，该应用能使研究人员并行地检测许多基因的 mRNA 水平。为此目的，寡核苷酸以有序的方式被共价结合到固体表面（即玻璃片）上。在下一个步骤中，来自于限定的样品（即组织、细胞系等）的靶分子库杂交该寡核苷酸阵列。为靶合成，必须自样品分离总 RNA。然后 mRNA 用一个寡 dT 引物引出，接着用反转录酶促合成 cDNA。在该步骤中生物素标记的核苷酸被插入到 cDNA 链中。为杂交，cDNA 被纯化并加入到阵列上。温育过夜，接着一个严格的洗涤程序。在洗涤阵列后，用荧光光标记的链霉抗生物素结合物温育。进行信号检测，玻璃片用共聚焦（convocal）激光扫描显微镜来扫描以定量杂交的靶分子。通过利用计算分析，使信号的强度与代表特定基因的特定的寡核苷酸相关联。

详细的实验程序：

订购平行三份的含有专门用于特定的大鼠基因（大鼠寡聚物测试组）的寡核苷酸玻璃阵列（MWG-Biotech AG, Ebersberg, 德国）。根据该试剂盒的使用手册，用 RNasey 试剂盒（QIAGEN, Hilden, 德国）来分离 RNA。来自于肝脏的 100 微克总大鼠 RNA 从肝组织样品中分离出作为用 cDNA 合成试剂盒（Roche, Mannheim, 德国）进行靶序列制备的模板，包括标记的生物素-h-dUTP 的结合。

标记程序：100 μg 的总 RNA 在 18 μl 含有 2 μg 寡 dT 24 聚体的水中 70°C 下温育 10 分钟并在冰中冷却。加入含有：5 μl 1RT-缓冲液、4 μl DTT、4 μl dNTP（5mM A,G,C 和 3mM T）、0.4 μl 生物素-h-dUTP、1.8 μl AMV 反转录酶、0.2 μl RNAsin、3.5 μl 水的反应混合物并在 42°C 下温育 1 小时。通过添加 10 μl 的 1N NaOH 并接着在 65°C 下温育 10 分钟来终止标记反应。

溶液用 10 μl 的 1N HCl 和 22 μl 的 1M Tris HCl（pH=7.5）来中和。根据设备的使用手册，用 HighPure 旋转柱（Roche, Mannheim, 德国）来纯化标记的靶序列。

根据玻璃阵列制造商的教导，阵列在潮湿箱中杂交 16 小时。

杂交后阵列在 30°C 下分别在 2xSSC+1% SDS，1xSSC 和 0.5xSSC 中洗三次，每次 5 分钟。
通过在 2xSSC 和 1%酪蛋白中预封闭 30 分钟以及在 2xSSC+1%酪蛋白中用链霉抗生物素-Cy3 (1 μ g/ml) 温育 10 分钟来进行抗体检测。最后在 2xSSC+0.2% SDS 中洗两次，每次 5 分钟，在 2xSSC 中洗一次，每次 5 分钟。

为进行信号检测，阵列用具有 PMT 设置及 80 的增益的共聚焦激光扫描仪（Axon, Union City, 美国）扫描。用 Imagene 软件（BioDiscovery, Marina del Rey, 美国）来进行图像分析。

结果

不出所料，含有不和靶序列匹配的探针序列的对照点显示没有信号，且因此确保了杂交程序中的特异性。在肝中不被表达的基因相应的点也显示低的信号或无信号。在另一方面，在广泛的组织中表达的基因和在肝中特异表达的基因被清楚地检测到，证明了在该方法中生物素-h-dUTP 具有优良的性能（见图 7）。

参考文献列表

Abramson, R. D., 和 Myers, T.W., Current Opinion in Biotechnology 4 (1993) 41-47
Atkins, D., 等, Pharmazie 55 (2000) 615-617
Barany, F., PCR Methods and Appl. 1 (1991) 5-16
De Bouwere, B., 等, Liebigs Ann./Recueil (1997) 1453-1461
DE 3943522
EP 0468352
EP 0476014
EP 0135587
EP 0313219
EP0439182
Garegg, et al., Chem. Scr. 25 (1985) 280
Hoheisel, J. D., TIBTECH (1997), Vol. 15, 465-469
JP 60016982
Lescrinier, E., et al., Chem. Biol. 7 (2000) 719-731
Pochet, S., 等, Nucleosides & Nucleotides 18 (1999) 1015-1017
Pravdic, N., 等, Croatica Chemica Acta 45 (1973) 343-356
Uhlmann 和 Peyman, Chemical Reviews 90 (1990) 543
US 5,002,867
US 5,143,854
US 5,202,231
US 5,338,671
US 5,411,876
US 5,418,149
US 6,022,963
US 6,156,501
US 4,458,066
US 4,996,143
US 5,130,238
US 5,210,015
US 5,314,893
US 5,451,463
US 5,487,972
US 5,804,375
US 5,849,489
US 6,103,476
US 6,130,323
5 US 6,162,603
US 6,174,670
Vandermeeren, M., 等, Biochem. Pharm. 59 (2000) 655-663
WO 01/02417
WO 02/072779
WO 89/10977
WO 89/11548
25 WO 90/15070
WO 92/10092
WO 93/17126
WO 97/27317
WO 98/25943
30 WO 99/09044
WO 99/15509
WO 01/37291
WO 02/12263
WO 90/01069
5 WO 92/08808
WO 93/25565
WO 96/41811
WO 9605213
WO 97/43451
图 2
图 3
<table>
<thead>
<tr>
<th>类似物种类</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>碱基</td>
<td>A</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>R=H</td>
<td>生物素 h-ATP</td>
<td>生物素 h-UTP</td>
<td>生物素 dCe-ATP</td>
<td></td>
</tr>
<tr>
<td>R=OH</td>
<td></td>
<td></td>
<td>生物素 a-UTP</td>
<td></td>
</tr>
</tbody>
</table>

图 4
1:5/25/125/625/3125/15625/78125

生物素 dUTP 20%
生物素 hUTP (100 μM) 20%
生物素 hUTP (200 μM) 40%
生物素 hUTP 100%

图 5a
图 5b
1:10/100/1000/10000/100000

1-5) 生物素 dUTP 20%

6) 生物素 hUTP 20%

7) 生物素 dCe-dATP 20%

图 5c
1:5/25/625/3125/15625/78125/390625/1953125

1) SP6/ 生物素-16-UTP
2) SP6/ 生物素-16-UTP
3) SP6/ 生物素-aUTP
4) SP6/ 生物素-aUTP
5) T7/ 生物素-16-UTP
6) T7/ 生物素-16-UTP
7) T7/ 生物素-aUTP
8) T7/ 生物素-aUTP
9) T3/ 生物素-16-UTP
10) T3/ 生物素-16-UTP
11) T7/ 生物素-aUTP
12) T7/ 生物素-aUTP

图 6
图 7