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ROUTING AND FORWARDING TABLE MANAGEMENT
FOR NETWORK PROCESSOR ARCHITECTURES

Background of the Invention

1. Field of the Invention

The present invention relates to software architecture and related components that
fully utilize network processors in communications equipment applications. In particular, the
invention relates to a method and apparatus for forwarding information packets on a multiple
element computer system that utilizes a forwarding table manager application operating on

primary and secondary computing elements of the computer system.

2. Background

The infrastructure of the Internet consists of a variety of components including,
principally, routers, gateways, and hosts. User communication over the Internet takes place
from host-to-host. Thus, hosts comprise the beginning and end points for most Internet
communication (i.e. a conference call, file transfer, email, or web browsing takes place from
one user’s host computer to another’s host computer). Gateways simply bridge different
Internet networks together. Routers identify the source and destination of each packet of
information sent over the Internet, and make decision about where to send the packet so it can
reach its destination most efficiently.

Figure 1 shows an example of a basic network with three hosts, two routers, and one
gateway. Notice, that if Host A wishes to reach Host B, there are two different paths that can
be taken through the network — either through Router 1 or Router 2. There is only one path

for Host A to reach Host C, that being through Router 1. The technicalities of router
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communication involve the use of “routing protocols” that generate a “routing database.” The
routing database stores all known host and network addresses and the routing rules for
sending packets out the correct router ports to reach the address destination.

Each component of the Internet infrastructure is identified by an Internet Protocol (IP)
address, which takes the general form “a.b.c.d” where a-d are integer values between 0-255.
Of course, the number of “digits” in an address can vary. In addition, the address is arranged
in a hierarchical manner. The leftmost number “a” typically represents the address of a large
segment of Internet infrastructure, like an entire network or a system of networks that may
encompass a very large number of routers and hosts. The address of each component of this
network would share the same initial leftmost value. Each digit to the right of the leftmost
digit in the IP address would identify a smaller and smaller segment of the network, or
system, until the rightmost number would identify a single host computer. The IP address
works in a manner analogous to a conventional post office address, where one component of
the post office address identifies a country, the next a state within the country, then a city, and
then a house on the street. The routing protocols and routing databases take advantage of a
similar hierarchical structure of IP addresses to route and direct Internet communications
from source to destination. In actual practice, however, the “a.b.c.d” format of the IP address
is not so structured. For example, each of the individual digits of the IP address can contain
information about the address of more than one segment of the Internet infrastructure. Thus,
the hardware and software architecture of routers and gateways facilitate the routing and
transmission of the data packets that make up the Internet communications.

The traditional hardware architecture of a router or gateway includes a general-

purpose microprocessor (i.e. PowerPC, Pentium, MIPS) and an Application Specific
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Integrated Circuit (ASIC) generally configured in the manner shown in Figure 2. The number
of data packets passing through each router typically far exceeds the general purpose
microprocessor’s ability to look at the packet, determine the destination, figure out which port
it must go out on, and send the packet on its way. Therefore, the ASIC performs this function
on the majority of the Internet data packets. This traffic is generally called “data plane”
traffic or data plane packets, i.e. traffic/packets that are not destined for the router itself, but
just passing through on their way to their ultimate destination. ASICs program the “routing
and forwarding” algorithms into the silicon, thereby providing very high-speed packet
processing capability.

A drawback of this method comprises the fact that as these algorithms are improved,
new ASIC designs must integrate the new algorithms into the silicon. This requires building
new hardware, and then replacing the previous communications equipment. Essentially, the
equipment must then be thrown away with each new design. This inflexible and cost-
prohibitive cycle is quickly being replaced by network specific processor technology.
Network processors contain a general purpose CPU and multiple computing engines called
“microengines” that replace the ASIC. Instead of hard-coding packet processing algorithms
into the silicon, the microengines are programmed with software called “microcode.” As new
algorithms are developed, new microcode can simply be downloaded into the existing
microengine hardware, eliminating any hardware production expense and greatly increasing
product service life.

With the new network processor paradigm comes new issues and challenges related to
applying the software architecture associated with traditional hardware architecture to the new

hardware paradigm. Figure 3 shows the traditional software architecture that is used with the
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traditional hardware architecture described above. Generally, the software architecture needs
to handle three types of information, each identified in Figure 3 with a specific
communication plane. One type of information is the information crossing the data plane,
which consists of data packets that are merely passing through the processor (shown in Flow
2 of Figure 3). The processor uses its routing information to determine where to send to the
data packet such that it most efficiently reaches its ultimate destination.

Other information, however, comes into the processor besides data packets on the data
plane. One such type of information is associated with the control pIane (shown in Flow la-c
in Figure 3). Control plane information involves information directed to the updating of the
routing database, or table, or information needed for the proper functioning of the routing
protocols. Management plane information consists of information associated with the
configuration, diagnostics, or monitoring of the processor and its activities. Flows la-c show
the routing of control plane information through the traditional software architecture. These
communications cause modifications to the routing table, and include responses to requests
for routing information made by other processors. As mentioned previously, Flow 2 shows
the data plane traffic that flows into the software architecture and up to the TCP/UDP/IP
(Internet Protocol) block, and is then passed back down for transmission to its destination.
Conventionally, all of the of the software shown in Figure 3, and the processing of the
information flows, requires the utilization of the general purpose processor.

While the network processor provides the microengines to more efficiently handle the
various network communications, the traditional software architecture still requires the core
processor to handle all processing. Accordingly, applying the traditional software

architecture to network processors results in no performance gain due to the fact that the
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traditional software architecture cannot properly utilize the microengines. Thus, a need exists

for a software architecture that maximizes the efficiencies of the network processors.

Summary of the Invention

An object of the present invention comprises providing a method and apparatus for
forwarding information packets on a computer system having a network processor with at
least one microengine.

These and other objects of the present invention will become apparent to those skilled
in the art upon reference to the foliowing specification, drawings, and claims.

The present invention intends to overcome the difficulties encountered heretofore. To
that end, a multiple element computer system having a primary computing element and a
secondary computing element in operative communication with each other. A table
comprised of a plurality of entries with addresses associated therewith is built, wherein the
entries are organized hierarchically according to an LC-Trie compression algorithm operating
on the addresses. An Information packet is received within the computer system, wherein the
information packet has a destination address associated therewith. The table is searched
using an LC-Trie search algorithm to find a match between an address of an entry in the table
and the destination address of the information packet. The information packet is transmitted

to a forwarding address associated with the address of the matching entry.

Brief Description of the Drawings

Figure 1 is a block diagram of a prior art host/router network.

Figure 2 is a block diagram of a prior art Internet infrastructure architecture.



Figure 3 is a block diagram of a prior art software architecture
Figure 4 is a block diagram of a network processor system
Figure 5 is a block diagram of a network processor architecture with a forwarding
table manager
5 Figure 6a is a diagram of a binary tree.
Figure 6b is a diagram of the binary tree of Figure 6a with path compression.

Figure 6¢ is a diagram of the binary tree of Figure 6b with LC-Trie compression.

Detailed Description of the Invention

10 In the Figures, Figure 4 shows the architecture of a network processor made by Intel
Corporation (IXP1200), of the type contemplated for use with the present invention. Those of
ordinary skill in the art will understand the applicability of the present invention to other
similar and related processors, and in particular network processors. The IXP1200 network
processor includes a plurality of microengines (or subsystems) interfaced with the IX Bus

15 Interface. The microengines are dynamically programmable with microcode. The
microengines possess the capability of independently carrying out instructions, accessing
system components via the Bus Interface, without the assistance of the StrongARM core
processor. The utilization of the microengines for network processing requires the
development of software architecture to support the microengines.

20 Accordingly, the present invention adds software components to the traditional
software environment depicted in Figure 3 and defines a table interface for the microcode
running on the microengines that enables the microengines to exclusively handle the data

plane communications, thereby realizing significant performance improvement over
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traditional network processing. In particular, Figure 5 depicts a software block diagram of the
present invention that gathers the appropriate information to enable the microcode engines to
make routing and forwarding decisions utilizing information placed in a microcode routing
table.

Flow la-c shown in Figure 5 represents the routing of control and management
communications. Flow la depicts the flow of routing packets as they come into the system.
Flow 1b depicts the flow for routing table updates by the routing protocol, which takes place
as new routes are learned and added to the routing table. Flow 1c depicts the flow for routing
responses sent out to other communications equipment as necessary. Flow 2a shows that the
network processor also handles the flow of data plane traffic (all traffic passing through the
system and not destined for the system itself). While the network processor software
architecture handles the data plane traffic using the microcode subsystem running on the
microengines, in order to make correct routing decisions, the microcode must have access to
routing and port information as well as any special tagging or quality of service requirements
traveling along the control and management planes and normally handled by the conventional
software architecture. The microcode subsystem uses a microcode routing table to carry out
correct routing of data plane traffic. A forwarding table manager is responsible for
identifying routing information from the standard routing table, information from the
TCP/UDP/TP stack, and any special tagging requirements to generate the microcode routing
table.

The forwarding table manager implements a microcode routing table based in part on
the principal of LC-Tries compression of hierarchical data structures, based on the work of

Stefan Nilsson and Gunner Karlsson as disclosed in a paper entitled IP-Address Lookup
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Using LC-Tries, dated July 2, 1998, incorporated herein by reference. The following
comprises a theoretical example of LC-Tries compression, and assumes the following pseudo
IP address lookup table:

TABLE 1

'ENTRYNO. | PSEUDO
. . | ADDRESS
0000

0001

00101

010

0110

0111

100

101000
101001
10101

10110

10111

110
11101000
11101001
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Table 1 refers to the tree diagram shown in Figure 6a. For illustrative purposes the
pseudo address represents the path from the root of the tree to any particular terminal leaf,
wherein a “0” represents a left-turn at any particular node, and a “1” represents a right-turn.
For example, Entry No. 6 contains the pseudo address 100. This indicates an initial right-turn
from the root node, and then left-turns at the next two nodes. This represents the path from
the root node to the terminal leaf node corresponding to Entry No. 6 in the tree shown in
Figure 6a. In addition the entries in Table 1 are sorted by binary digit so that as many left

turns are made before making any right turns. In other words, the entries are ordered from the
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top of the table to the bottom giving priority to the left most digits, “0” coming before “1” n
each case.

The first step in compressing the tree structure comprises path compression whereby
as many internal nodes (i.e. nodes that do not comprise a terminal leaf node) as possible are
removed. The result of this compression is shown in Figure 6b, with entry numbers 2, 13,
and 14 compressed by the skip values (Skip) of 2 and 4 respectively. Note that not all
internal nodes are removed during path compression. The internal nodes that eventually
branch to at least two leaf nodes that are not siblings of the same parent node cannot be
removed during path compression. This effectively removes descendent nodes along any
single path that must be traversed, and are only traversed, to reach a particular leaf node (or
its immediate sibling). This effectively compresses sparsely populated regions of the tree.

A second level of compression, called level compression, effectively compresses
densely populated regions of the tree. The idea is that all siblings of a given node are
removed, if and only if all of the siblings of that node are internal nodes. The removal of
levels is reflected in a branching factor (Branch) that can be expressed as a power of 2
(25 due to the fact that a node always has two branches. Thus, Branch represents the
number of levels removed, and 25! represents the number of children of a node removed.
The level and path compressed tree is shown in Figure 6¢, and data in Table 2 illustrates how
to navigate the tree.

TABLE 2

" NODENO. [ BRANCH | SKIP | POINTER/ | PSEUDO
: ' _ENTRY | ADDRESS

- NO. .
0 1]~
1 1 0 9| -
2 2 | 00101
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3 0 0 31010

4 1 0 11 | --

5 0 0 6 (100

6 2 0 13 | -

7 0 0 12 1110

3 1 4 17 | --

9 0 0 0 | 0000

10 0 0 110001

11 0 0 410110

12 0 0 510111

13 1 0 19 | --

14 0 0 9110101

15 0 0 10 | 10110

16 0 0 11 | 10111

17 0 0 13111101000
18 0 0 14 | 11101001
19 0 0 7 1101000
20 0 0 8 [ 101001

The value of Node No. is determined by counting each of the nodes beginning from
the root and working from left to right across each level, starting from the top level and
working to the bottom level. Thus, the children of the root node are given Node Nos. 1-8
from left to right, and Node No. 9 corresponds to the leftmost child of the leftmost child of
the Entry No. 0 in Table 1 (the root node), and so on. As discussed hereinabove, the value of
Branch equals the number of levels removed between the current node and its children due to
level compression, and 25™™" equals the number of children of the node. Additionally, the
number Branch also equals the number of bits of the pseudo address needed to uniquely
identify all the given children of a particular node. Again, as discussed hereinabove, the
value of Skip equals the number of internal nodes removed during path compression. The
value of Pointer/Entry No. has two uses. If the particular node is an internal node (Branch #

0) then the value Pointer/Entry No. represents the Node No. of the leftmost descendent of the

10
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particular node. In this case, Pointer/Entry No. is a pointer to another entry in Table 2. If the
particular node is a leaf node (Branch = 0) then the value of Pointer/Entry No. represents the
Entry No. of an entry in Table 1 (for the sake of convenience, the Table 1 Pseudo Address
information is entered in the lust column of Table 2 for each entry in appearing in Table 1).
Of course, purely internal nodes do not have an external Pseudo Address associated with
them, and this is represented by the “--" entry in the Pseudo Address column of Table 2.

To conceptually illustrate the method for searching the compressed LC-Tries, consider
a search for the binary string “10110111” in the compressed LC-Trie of Figure 6¢ using the
information in Table 2. Beginning at the root node (Node No. 0), the Branch value is “3” and
the value of Skip is “0”. This indicates three levels of the tree have been removed under the
root node, representing the removal of 2% (“8”) descendent nodes. No nodes have been
skipped. This means that the first three bits of the search string contain the information
removed by compression. The decimal equivalent of the first three bits of the search string
(“101”) equals 5, adding this value to the value (“1”) stored in the Pointer/Entry No. column
for the root node yields the Node No. (“6”) of the next entry in the table. Due to the fact that
Branch does not equal “0” the value in Pointer/Entry No. is a pointer and not the entry
number of a leaf node. Thus, the LC-Trie compression information represented in Table 2
directs the search to next node in the compressed LC-Trie. Performing these steps again on
the information in Table 2 for Node No. 6, yields a Branch of “2”” and a Skip of “0”. Thus,
the decimal equivalent of bits 4-5 (the next two bits) of the search string is “2” and adding
this to the value (“13”) in the Pointer/Entry No. column for the row with Node No. 6 yields
“15”, Since the Branch factor still does not equal “0” this points to Node No. 15 as the next

step in the LC-Trie. Table 2 reveals that the Branch value for Node No. 15 equals “0”

11



indicating that this is a leaf node. The Pointer/Entry No. for Node No. 15 equals “10” and the
Pseudo Address is “10110” which is the most significant prefix match for the search string of
“10110111™.

The preferred implementation of the present invention utilizes Microware Systems
Corporations OS-9 operating system, Berkeley Standard Distribution (BSD) version 4.4
TCP/UDP/IP stack, RIP and OSPF routing protocols, and the Microware Microcode
Solutions Library for the Intel IXP1200 network processor. While these components were
used to develop and implement the present invention, those of ordinary skill in the art will
understand that invention applies to any operating system (real-time or non-real-time), any
protocol stack, any routing or addressing protocols, and any software that runs on network
processor microengines.

The preferred embodiment of the forward table manager (FTM) consists of a FTM
application that runs on either Microware Systems Corporation’s OS-9 real-time operating
system, or Linux. As shown in Figure 5, The FTM application interfaces with the various
software components of the network processor to extract all of the information necessary to
complete data plane communications. This information is stored in a Microcode IP routing
table called a Forwarding Table, which is based on a specialized implementation of the LC-
Trie compression algorithm disclosed hereinabove. FTM application routines for querying
the Forwarding Table for the purpose of routing data packets can be accomplished by a low
level driver through command line options. The low level driver can run on the same
processor segment as the FTM application, or on a completely separate microcode subsystem
as is the case with the IXP1200 network processor. In fact, the FTM application itself could

be run from a different processor than the network processor, or it could run from the network

12
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processor. The method of the present invention can be utilized on a computer system with
multiple computing elements, wherein the method is carried out between a primary
computing element and a secondary computing element. Using the network processor as an
example, the core processor would comprise the primary computing element, and the
microengine(s) would comprise the secondary computing element(s). The invention,
however, is not so limited. The multiple computing elements could reside on the same
microprocessor, on different microprocessors, or on different computing devices within the
computing system.

In ény event, by utilizing the FTM application routines the low level driver can
perform data plane routing without assistance of the entire network software architecture, and
in this manner substantially reduces the overhead associated with managing data plane
communications.

Upon initialization the FTM application, which comprises the central feature of the
Forwarding Table Manager shown in Figure 5, queries the system to determine all of the
existing IP addresses, routing information, and layer 2 machine addresses - for example, the
Media Access Control (MAC) address for Ethernet. The application then allocates memory
for two tables and fills them with the current information according to the method of the
present invention. The tables are stored in any memory area accessable by the microengines.
The application also registers with the various components of the system for all the required
types of notifications to ensure the tables remain consistent and up to date with those
maintained by the network stack of the system.

The two tables allocated by the application collectively comprise the Microcode

Routing Table shown in Figure 5. The tables contain a search tree represented internally

13
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using the LC-Trie path and level data compression algorithm described hereinabove, and a
next-hop table. In the preferred embodiment of the invention these two tables contain a fixed
number of entries and cannot be dynamically resized after initially allocated. The FTM
application includes command line options to alter the default sizing options for these tables
used upon initialization.

In general, upon receipt of an IP packet, the operation of the FITM application reads
the destination IP address of the packet and then searches the tables to locate the next-hop
destination address. This may be the final destination of the packet, or just the address of
another router that can then forward the packet on along toward its final destination. The
search by the FTM application will result in one of three possible outcomes depending on the
state of the tables in relation to address searched: (1) no route for destination found; (2) route
found but layer 2 information not valid; (3) route found and layer 2 information valid.

In the first case, the application could just drop the packet, or pass the packet back up
through the network stack for processing. The latter case is preferable in that the system can
issue an error message back to the originating host indicating that no route was found for the
packet. In the second case, this situation would arise most frequently when the next-hop
address points to a router on a local Ethernet with no MAC information, or the router is
connected via an Asynchronous Transfer Mode (ATM) network connection and no circuit has
been established. In this situation the FTM application would pass the packet back up the
networking stack of the system to attempt to resolve the layer 2 information. For example,
the system could broadcast an Address Resolution Protocol (ARP) request in the case of
Ethernet. If the systems can validate the layer 2 information the system notifies FTM

application for updating the tables for use in forwarding future packets. The third case

14
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represents the desired final outcome. In this instance the FTM application locates in the
forwarding tables all of the information necessary to immediately send the packet to the
correct destination through the correct port.

In more particular detail, the FTM application includes several command line options
used upon invoking the application to control its operation. The protocol for calling the FTM
application comprises a call to FTM[<Options>], where the Options consist of

—t [size, the size of the LC-Trie (default = 100,00 entries)]

! [size, size of the next-hop table (default = 50,000 entries)]

-f [number, fill factor (default = 0.50)]

-1 [number, root branching factor (default = 16)]

-c [enables cache flushing (on by default for the IXP1200)]

-d [increase/decrease the debugging level (5 levels)]

-1 [running on IXP1200 (set only when running Linux)]

-p [seconds, ARP table polling interval (default = 30]

By default the LC-Trie search table holds 100,000 entries. There is no maximum
value for this parameter; the only limit is the amount of available memory. Each of the
entries comprises 4 bytes, for a total default memory usage of 400,000 bytes. A rough
estimate of the space needed for the search table consists of 2 to 3 times the maximum
number of IP routes, plus any additional space resulting from the root branching factor
(explained in detail hereinbelow). Also, as explained hereinbelow, the fill factor and the
organization of routes within the search table can greatly effect the amount of memory

required for the search table.
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By default the next-hop table holds 50,000 entries. As with the search table, the
actual size of the next-hop table is only limited by the amount of available memory. Each
entry comprises 16 bytes, for a total default memory usage of 800,000 bytes. The total
number of routes plus the number of unique routers referenced by those routes roughly equals
the required size of the next-hop table. For example, if the routing table includes 5 routes
going to router A, and 3 routes going to router B, then the total number of entries in the next-
hop table equals 10 (5 routes to A, plus 3 routes to B, plus routes to A and B).

The fill factor is an optimization parameter that allows for increasing the speed of
searches, at the expense of creating a larger LC-Trie search table. The fill factor is a number
between 0 and 1 that represents a percentage. The default factor is .5, or 50 percent fill factor.
Understanding the effect of the fill factor requires first recalling from the discussion, of the
theoretical implementation of the LC-Trie hereinabove, that the branching factor represents
the amount of level compression. The value of Branch equals the number of levels skipped,
and 22™" equals the number of nodes removed between any two nodes during level
compression. Because the implementation assumes that each node has two children,
representing one bit of information, namely, either a left turn or a right turn, eliminating a
level is possible only if the number of children of remaining level equals a power of 2. Thus,
referring to Figure 6¢, the root node includes 23 (8) children, and all of the remaining nodes
with children include either 2! (2) or 2% (4) children. The value of level compression arises
from remembering that moving from one level to another in the LC-Trie represents one
memory access. In an uncompressed LC-Trie, each bit of the search string represents one
level of the LC-Trie, and, therefore, one memory access. Level compression groups together

several bits of the search string and allows one memory access to process several bits of
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information in the search string at one time, thereby reducing the number of memory accesses
necessary to complete the search. Thus, level compression proves very important in
improving routing performance. However, the fact that each node needs exactly 25
children may prevent level compression and thereby prevent taking advantage of the reduced
search advantage. The fill factor allows for adding artificial dummy nodes to allow for
compression of level that would not otherwise satisfy the requirement that each node needs

exactly 2572

children. For example, if compression of two levels would leave a node with
only 6 children, compression would ordinarily not take place. The fill factor allows for
adding two dummy nodes to bring the total number of children nodes to 8 so the compression
can take place. The value assigned to the fill factor comprises a threshold level for
determining whether to fill in a level with dummy nodes. In the previous example, a level
with 6 children is 75 percent full (wherein 8§ would comprise a full level). If the fill factor
equals .75 or less then the level is filled with 2 dummy nodes and the compression takes
place. Thus, the larger the fill factor the less compression that will take place. This will
result in longer searches, but will conserve space in the search table by not creating dummy
entries. The smaller the fill factor the faster search will take place, but will result in a larger
search table. Experimentation may be required to determine the best setting for the fill factor
depending on the exact circumstances of any specific implementation.

The root branching factor consists of a special implementation of the fill factor
applied to the root node. The root branching factor forces the root branch to have 2* children,

where k equals the root branching factor. The default value for the root branching factor is

16.
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The cache flushing value provides protection to ensure that any changes to the search
LC-Trie and next-hop tables stored in cache memory are immediately flushed to the
appropriate permanent memory location. The OS-9 operating system automatically enables
cache flushing when it detects it is running on an IXP1200 network processor. The Linux
implementation of the present invention requires locating the tables in non-cached memory,
which nullifies the cache flushing option. However, in those implementations that store the
tables in cached memory and other portions of processor can view the tables directly from
permanent memory, the cache flushing option should be set to avoid problems associated
with stale data.

Currently the FTM application includes 5 debugging levels. The debugging option
can be specified between one and five times on the command line to select the different levels
as desired.

The IXP1200 option is for the Linux implementation, OS-9 automatically detects if it
is running on an IXP1200 network processor. Setting this option will allow for proper
configuration of the port numbers in the next-hop table. The port numbers are assigned
differently on the IXP1200.

The ARP table polling option is also for the Linux implementation. Because the
Linux implementation of the FTM application does not receive direct notification of changes
to the ARP layer 2 information, this option allows the FTM application to poll the Ethernet
ARP cache at a set time interval. The OS-9 implementation uses bus line snooping to
monitor the network stack, which alleviates the need to poll the ARP cache.

The FTM application includes the ability to respond to certain signals from outside the

application to cause the application to perform certain tasks. A SIGINT signal causes the
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application to print the current LC-Trie search table, and the next-hop table. A SIGUSR1 and
SIGUSR2 signal causes changes in the debugging level, the former signal increments the
debugging level, while the latter decrements the level. If the FTM application was initially
called with no debugging enabled, then incrementing the level will enable debug level 1. If
two —d options were specified in the FTM application command line, then incrementing the
level will enable debug level 3. If the debug level is set at 5 (the highest level), additional
signals to increment the level will have no effect. Similarly, if the debug level is 0, then
signals to decrement the level will be ignored.

The following discussion describes the design and implementation of the search table
and the next-hop table. In particular, this information relates to how the FTM application
receives the required information to build the tables, the data structure of the tables, and the
algorithms used to build and search the tables.

The tables used by the FTM application reside in memory shared by the FTM
application and the process performing the data packet forwarding. The packet forwarding
process can only read the tables, but cannot make changes to the tables. The FTM application
performs all of the administrative functions, like adding and deleing entries from the tables.

Again, the microcode routing table used by the FTM application consists of two
components: (1) the LC-Trie search table; and (2) the next-hop table. The LC-Trie search
table comprises the main data structure used to store and search for IP addresses by the FTM
application. The LC-Trie search table is very efficient data structure for performing the
longest possible prefix matches of IP addresses used to locate the forwarding address of a
data packet. Each node of the LC-Trie is represented in memory by a 4-byte entry in the

search table. As disclosed in reference to the foregoing theoretical implementation, each
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entry in the search table includes a branching factor (Branch), a skip value (Skip), and a value
that represents either a pointer into the LC-Trie itself or an offset into the next-hop table

(Pointer/Entry No. in Table 2). Thus, each 4-byte LC-Trie entry takes the following form:

" '5BITS - 7BITS .. 20BIIS ,
Branching Factor ! Skip Value ! LC-Trie/Next-Hop Offset

Again, the branching factor indicates the number of levels removed during level
compression, and 25nhinE FClr iy dicates the number of children of the node removed. The
skip value indicates any path compression. Thus, the FTM application can process Branch +
Skip bits of the search string in a single search step. The LC-Trie/Next-Bit Offset
(Pointer/Entry No.) indicates the location of either the next entry in the search table matching
the search string (if Branch 0), or the offset into the next-hop table entry containing the
forwarding IP address (if Branch = 0).

The goal of the searching the LC-Trie is to find the entry in the next-hop table that has
the longest prefix of matching bits in common with the search tree. The incoming data packet
will be sent to the forwarding IP address stored in this entry, which should most directly route
the data packet to its ultimate destination. However, it is important to note that it is not
necessary to exactly match the entire search string a destination IP address. All that is
required is to match the network portion of the address. For example, if a route for the IP
address of 172.16.192.0 with a network mask of 18 bits is in the table, this will match the
network portion of both the IP address 172.16.224.14 or the IP address 172.16.120.39, while

not matching either address exactly, as illustrated by the following table.

DECIMAL - - BINARY (NET MASK BITS)
172.16.192.0/18 | 10101100 00010000 11000000

172.16.224.14 ] 10101100 00010000 11100000
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[172.16.120.39 [ 10101100 00010000 1111000 |

Next, turning to the next-hop table, this table contains the actual information
necessary to forward a data packet to another host/router. The search of the LC-Trie search
table returns an offset into the next-hop table. The actual next-hop entry consists of a 16-byte

entry that takes the following form:

IP Address

| Mask Length | Flags | Next-Hop Backup Offset | Port Number
Port Specific

Port Specific

The IP address occupies the first 4 bytes, and consists of the full layer 3 address of the
entry. The mask length occupies 5 bits, and indicates the number of bits in the network mask
associated with the entry. In other words, the rightmost portion of the IP address identifies
the network associated with the address, while the remainder of the address identifies a
particular host computer on that network. The mask length determines the number of bits
used to identify the network, upon conversion of the address to a binary equivalent number.
Depending on the setting of the flags the mask length entry may be ignored. Ifthe flags field
indicates that the entry is a host computer the mask length is not used, because all host entries
assume a mask length of 32 bits. The number of bits used for the mask length field length
can be increased to 7 bits to handle IPv6 addresses if necessary.

The flags field occupies 5 bits, however, only bits 0 and 1 are used, the remainder of
the bits are reserved. Bit 1 is the network bit. If the bit is set (equals 1), this indicates the
entry is a network route. In this situation, one more hop in the next-hop table is required in

order to reach the appropriate layer 2 information for the entry (i.e. the MAC layer
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information for Ethernet), the port specific field of the current next-hop entry will contain the
offset to the next-hop entry that stores the correct layer 2 information. Ifbit 1 is not set then
the entry is a host route, and the port specific field will contain the layer 2 address
information for the entry. Bit 0 is the valid bit. If the bit is set then any layer 2 information in
the port specific field is valid. If the bit is not set this indicates that there is a problem with
the layer 2 information, either it is missing, or is out-dated. If the network bit is set, then the
valid bit is not relevant. The valid bit only relates to the validity of layer 2 information, and
not to offsets into the next-hop table.

The next-hop backup offset field occupies 14 bits, and is used in special situations
where the search algorithm proceeded too far down the LC-Trie. This can occur do to the fact
that the LC-Trie search algorithm tries to find the entry with the largest prefix of bits that
match the search string, and the fact that the LC-Trie search algorithm terminates the search
only when it reaches a leafnode. In rare instances, the search algorithm can pass by a correct
match, only to identify a match that may be technically the best match, but for practical
purposes is not an acceptable match.

In the IP address application, consideration needs to be given to the network mask
length as it affects the search algorithm. In the IP address search, the goal is to not just match
the largest prefix of bits, but to match the number of bits in the network mask for an entry.

Consider an example based on the following Table 3:

TABLE 3
- DECIMAL ..~ BINARY -
Search String [172.16.130.44 ] 10101100 00010000 10000010 0101100
Entry 1 B 172.16.0.0/16 10101100 00010000 00000000 00000000 _
Entry 2 172.16.192.0/18 | 10101100 00010000 11000000 00000000
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The table shows a search string with the IP address 172.16.130.44, followed by its
binary equivalent. The binary equivalent is obtained by converting each component of the
decimal IP address to an 8 bit binary number. The table includes two entries, and for
purposes of this example Entry 1 is the parent of Entry 2 in the LC-Trie. Entry 1 has a
network mask length of 16 bits, and Entry 2 has mask length of 18 bits. Of course, the first
16 bits of both Entry 1 and Eniry 2 match the search string. However, the largest prefix
match would occur between the search string and Entry 2 (the first 17 bits of both binary
strings match). Thus, the LC-Trie search algorithm would pass through Entry 1 on its way to
match the search string with Entry 2. This produces an undesirable result in that the network
mask length for Entry 2 is 18 bits, and Entry 2 and the search string only match to 17 bits.
Thus, the match provided by the search algorithm would not identify the correct network.
The network mask length number of bits of the parent entry (Eniry 1), however, does match
the first 16 bits of the search string. In this case, the correct match is the parent entry (Entry
1) or the entry (Entry 2) actually found by the search algorithm. This happens because the
search algorithm is trying to match the largest prefix. To address this situation, once the
search algorithm reaches the bottom of the LC-Trie and the number of bits in common
between the entry and the search string does not equal at least as many bits as the network
mask length, the algorithm looks back up the tree to attempt to find a match that does meet
this criteria. For this reason, the next-hop backup offset stores the offset of the parent of the
current entry. This occurs in rare instances in actual practice, the notable case comprises the

default route. Because the network mask length of a default route is always smaller than any
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other route, the default route will always be a network mask length prefix match of all of the
descendent routes.

The port number field occupies 8 bits, and is used to give the FTM the correct
information to communicate with the rest of the network processor. The configuration of the
port number generally will take on one of two forms depending on the nature of the interface
between the microengine running the FTM application and the rest of the network processor.
If the IX bit is set, then the FTM application is using the IX bus (see Figure 4) and the port

number field is configured as shown below.

_BIT7 _BIT6 _BIT5 . BIT1  BIT2

X | 3 MAC Number Unit Number

The port number contains the IXP1200 interface MAC number and unit number. If the bit is
not set, this indicates that the interface is not on an IX bus. In this case the configuration of

the port number takes the following form.

[T7 _BIT6 _BIT5 _ BIT4
X | i

Interface In

Bits 0-5 contain the interface index number of the interface used to communicate between the
microengine running the FTM application and the rest of the network processor. Of course,
the format of this field can and will vary to accommodate other, and newly emerging, address
protocols and associated information.

The port specific field consists of 8 bytes, and is used to store either the next-hop
offset or the layer 2 information depending on the flag setting. If the flag bit is set, indicating

that the entry is a network route, the port specific field contains the offset into the next-hop
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table containing the layer 2 information. In that case the configuration of the next-hop table

entry takes the following form.

Offset 0 IP Address

Offset4 | Mask Length I Flags | Next-Hop Backup Offset | Port Number
Offset 8 Next-Hop Table Offset

Offset 12 Not Used

It is possible to store the layer 2 information in the actual entry, however, for practical
purposes it proves more efficient to create a separate entry in the next-hop table for network
route layer 2 information. In practice, it frequently occurs that several entries in the next-hop
table may have the same next-hop layer 2 address information. Storing that address
separately in a single entry makes updating the entry simpler. If the address changes, the
system only needs to locate and correct a single entry, rather than search every entry to find
all the entries that need updating.

If the flag is not set, indicating the entry is a host route, and the port specific field will
contain the layer 2 address information for the entry. In that case the configuration of the

next-hop table entry takes the following form.

’ IP Address
fifs | Mask Length | Flags | Next-Hop Backup Offset | Port Number
Offset 8. Byte 1 Byte 2 Byte 3 Byte 4
- Offset 12 Byte 5 Byte 6 Byte 7 Byte 8

In the case of Ethernet, the port specific field contains the 6-byte MAC address. For an ATM
network, the port specific field would contain an encoded VCI/VPI circuit number. In any
event, no processing or interpretation of this data is ever done by the FTM application. It is
always treated as 8 individual bytes to prevent endian problems associated with those

processors that do not allow for indiscriminate segmentation of data.
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The port specific field can vary in length, and in function, from that described
hereinabove, in that it can function as an opaque data field that can store a wide array of
specialized packet processing parameters. For example, the port specific field can also
include information related to quality of service parameters, encryption handling parameters,
multi-protocol label switching (MPLS) tags, or virtual LAN (VLAN) tags, and the like.

The following discussion describes the structure and core activities of the FTM
application. The FTM application is primarily responsible for building, searching, and
maintaining the search table and the next-hop table. This includes activities like adding,
updating, and deleting entries based on new routing information and changes in routing
information, and maintaining layer 2 network information. In order to conduct these
activities the FTM application needs to communicate with the network stack through the
operating system. Due to the fact that the FTM application runs on different operating
systems the protocol for performing the FTM applications may vary from operating system to
operating system. In order to minimize these variations the FTM application is implemented
in two distinct components. First, an operating system independent application program
interface (API) implements a set of core functions that perform the table manipulations.
Second, an operating-specific component translates the information required to perform the
core functions from the rest of the system into a form suitable for core functions.

The core functions that manipulate the underlying search and next-hop tables are
called by the operating system, and include the following routines. An FTMAddRoute
function adds a route to the search/next-hop tables and utilizes four parameters: (1) a
destination IP address — the destination network or host associated with a route, it is passed as

a pointer to an conventional in_addr structure; (2) gateway IP address — the address of he next
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hop associated with the route, also a pointer to an in_addr structure; (3) network mask length,
passed as an integer; and (4) port number, valid port numbers are between 0-255. The
FTMAddRoute function can fail either because the route being added already exists, or the
search/next-hop tables is/are full.

An FTMDelRoute function deletes a route from the search/next-hop tables. The
function uses the same parameters, except that the port number is not required. The only time
the FTMDelRoute function can fail is if the route being deleted is not present.

An FTMAddMAC function fills the port specific field with opaque data, which most
typically consists of layer 2 information. The FTM application does not interpret the MAC
information, but simply stores the information for return when queried. The function uses
three parameters: (1) destination IP address — the IP address associated with the layer 2 MAC
information, passed as a pointer to an in_addr structure; (2) data pointer — an unsigned
character pointer that points to the layer 2 information; and (3) size — the number of bytes
used by the layer 2 information pointed to by the data pointer, currently limited to 8 bytes. If
more than 8 bytes are needed to store the layer 2 information, the data pointer could point to
an index in a table of sufficient size to store the data. The FTMAJddMAC function can fail if

the next-hop table is full, or the layer 2 information passed in to the function exceeds 8 bytes.

An FTMDeIMAC function deletes layer 2 information. The only parameter required
by the function is the destination IP address associated with the layer 2 information. The
function does not actually delete the layer 2 information, but marks the entry as invalid. The
function may fail if the destination IP address is not found in the next-hop table, or if the

entry is already invalid.
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An FTMQuery function performs a search of the search/next-hop tables. The function
takes a single parameter in the form of an IP address passed in to the function as a pointer to
an in_addr structure. The function returns one of three possible results: (1) an error if no
route exists for the IP address; (2) an error if the route exists but is invalid; and (3) a success
when an IP address is found with valid layer 2 information. In the first instances a NULL is
returned. In the last instance a pointer to the next-hop table entry is returned.

An FTMQueryRT function performs a search of the search/next-hop table that can
distinguish between the first two results of an FTMQuery function call. In other words, the
FTMQueryRT function allows for distinguishing between a route that does not exist, and one
that exists but contains invalid layer 2 information. The FTMQueryRT returns a NULL value
if route does not exist. If the route exists, the function returns a pointer to the next-hop table
entry, at which point a user can examine the valid bit to determine if the entry contains valid
layer 2 information.

On the operating system specific side, the FTM application needs to communicate
with the network stack along the control and management planes in order to access
information, or send requests for information, necessary to update and maintain the search
and next-hop tables. Again, this portion of the application is operating system specific.
Referring to OS-9, OS-9 systems use BSD (Berkeley Software Distribution) Unix-style
routing domain sockets to send and receive configuration changes to and from the network
stack. The FTM application opens a routing socket and simply reads all messages, but only
pays attention to two types of messages, namely, the RTM_ADD and RTM_DELETE

messages. Once the FTM application detects a message of interest, it parses the content of
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the message calls the appropriate core function (FTMAddRoute, FTMDelRoute,
FTMAddMac, FTMDelMac) to affect the change to the search/next-hop tables.

In 0OS-9, a RTM_ADD message is sent by SPIP (the IP protocol layer) whenever a
new route is added to the routing table, or upon updating layer 2 information. In either case
the message will have an RTA_DST field containing the IP address associated with the entry.

The message will also have an RTA_ GATEWAY field, which will allow for distinguishing
between adding a new route, and updating layer 2 information. The value of the
AF_FAMILY field of the R-TA_ GATEWAY SOCKADDR will distinguish between the two
tasks. If the AF_ FAMILY field equals AF_INET, a route is being added. If the value equals
AF_LINK, a layer 2 entry is being added. The following examples illustrate the two types of
command line commands followed by the resulting RTM_ADD message generated by OS-9.
Command — route add —net 192.168.9 172.16.5.88 255.255.255.192
Type: RTM_ADD

Flags: RTF UP RTF_GATEWAY
Address Bitmask: RTA DST RTA_GATEWAY RTA NETMASK

RTA_DST: 10 01 00 00 c0 a& 09 00 00 00 00 00 00 00 00 00
SIN FAMILY: AF _INET
SIN_ADDR: c0a809 00

RTA_GATEWAY: 1002 00 00 ac 10 05 58 00 00 00 00 00 00 00 00
SIN FAMILY: AF _INET
SIN_ADDR: ac 10 05 58

RTA_NETMASK: 08 00 00 00 ff ff ffcO
SIN_LEN: 8
SIN_ADDR: ff ff ff cO

Command - arp—s 192.168.3.141 00:11:22:33:44:55

Type: RTM_ADD
Flags: RTF_HOST
Address Bitmask: RTA_ DST RTA_GATEWAY

RTA_DST: 10 02 00 00 cO a8 03 8d 00 00 00 00 00 00 00 00
SIN_ FAMILY: AF_INET
SIN_ADDR: c0 a8 03 8d
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RTA_GATEWAY: 14 12 03 00 06 00 06 00 00 11 22 33 44 55 00 00 00 00

00 00
SDL_LEN: 0x14
SDL_FAMILY: AF_LINK
SDL_INDEX: 3

SDL_TYPE IFT_ETHER
SDL_ALEN: 6

SDL_DATA: 00 11 22 33 44 55

The FTM application treats the layer 2 information as opaque data. The MAC address
00:11:22:33:44:55 in the SDL._DATA field is treated as an unsigned character array
containing 6-bytes of data. This allows the FTM application to process all types of data
without any special knowledge of the each specific type of interface used in a system.

In 0S-9, an RTM_DELETE message is sent by SPIP whenever a route is deleted from
the routing table, or a layer 2 entry is deleted. The data contained in the message is the same
as the data in the RTM_ ADD message, except that the Type filed contains RTM_DELETE.

The Linux and OS-9 implementations differ in that Linux does not support BSD
routing domain sockets. Linux uses a similar mechanism called netlink sockets. The netlink
sockets, however, can only receive route additions and deletions. This requires obtaining the
layer 2 information by other means.

In particular, the last option in the command line call to the FTM application sets a
polling interval for checking for new entries in the Ethernet ARP cache. The polling allows
the FTM application to know when the ARP cache changes, this information is used in
combination with a Unix domain socket mechanism that allows the ATM network subsystem
to add and delete layer 2 information. The mechanism uses the netlink socket concept by
sending the netlink RTM_NEWNEIGH and RTM_DELNEIGH messages to the

/TMP/ATMPROXY Unix domain socket. The FTM application opens the socket, reads the
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messages, and calls the appropriate core function (FTMAddMac or FTMDelMac) to make the
changes to the layer 2 information.

Linux systems generate a RTM_NEWROUTE message when new routes are added to
the system, and a RTM_DELROUTE message when a route is deleted. The following
examples illustrate the two types of command line commands followed by the resulting
message generated by Linux.

Command — route add —net 192.168.9.0 netmask 255.255.255.192 gw 172.16.5.88

Type: RTM_NEWROUTE
Netmask Length: 26

Family: AF_INET
RTA_DST: 00 08 00 01 c0 a8 09 00
RTA_LEN: 8
RTA_TYPE: RTA_DST (1)
DATA: c0 a8 09 00 (192.168.9.0)
RTA_GATEWAY: 00 08 00 01 c0 a8 09 00
RTA_LEN: 8
RTA _TYPE: RTA_GATEWAY (5)
DATA: c0 a8 03 12 (192.168.3.18)
RTA_OIF: 00 08 00 04 00 00 00 02
RTA_LEN: 8
RTA_TYPE: RTA_OIF (4)
DATA: 2 (interface index)

Command - route del —net 192.168.3.141 netmask 00:11:22:33:44:55

Type: RTM_DELROUTE
Netmask Length: 26

Family: AF_INET
RTA_DST: 00 08 00 01 c0 a8 09 00
RTA _LEN: 8
RTA_TYPE: RTA_DST (1)
DATA: c0 a8 09 00 (192.168.9.0)
RTA_GATEWAY: 00 08 00 01 c0 a8 09 00
RTA LEN: 8
RTA _TYPE: RTA GATEWAY (5)
DATA: c0a803 12 (192.168.3.18)
RTA_OIF: 00 08 00 04 00 00 00 02
RTA LEN: 8
RTA_TYPE: RTA_OIF (4)
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DATA: 2 (interface index)

Next, pseudo code is used to disclose the procedure for first building the LC-Trie and
next-hop tables, and then searching the tables. The procedure for building the tables is
generally straightforward. The first step comprises retrieving all of the current routing
information from the systems routing tables. This information includes all of the IP
addresses, any MAC address information from layer 2 tables, and the like. A next-hop entry
is created for each route in the system, in no particular order. Again, if the entry is a network
route, two next-hop entries are created one containing the IP address and the other containing
the layer 2 address information.

The next-hop entries are then sorted by IP address and duplicate entries are removed.
Duplicate nexi-hop entries can occur in the situation where one gateway server is the next-
hop to multiple routes, the host information for the gateway only needs to be stored once in
the next-hop table. Also, if the layer 2 information associated with a particular entry is
already in the ARP cache, this can result in a duplicate information. An entry is considered a
duplicate if the IP address and the mask length matches that of another entry. In the case of
duplicate entries, the entry with valid layer 2 information is retained over one with invalid
information.

The next step comprises sorting the entries by IP address in binary in the manner
described in reference to the entries in Table 1. Any conventional sort method can be used
including standard comparison based sorting algorithms like quick-sort, or a radix sorting
algorithm can be used as well. Once the entries are sorted it is a simple task to identify base
vectors, and prefix vectors of those base vectors. A prefix vector is an entry whose binary IP

address has a prefix of bits at least as long as the mask length of the entry, entirely contained
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within another entries prefix of mask length bits. In addition, a prefix vector would comprise
an internal node in the LC-Trie, while the base vector would comprise a terminal leaf node.
For example, referring to Table 3, Entry 1 would be a prefix entry of the base vector stored in
Entry 2. Of course, it is possible that Entry 2 could be a prefix vector of some other base
vector entry. Because the table is sorted a prefix entry will immediately follow its base vector
entry, and there might be a chain of such entries. These chains of prefix entries are linked
together to allow for easily traversing a chain of entries starting from a base vector through
each prefix entry from the largest mask length to the smallest mask length. The links in the
chain are reflected in the Next-Hop Backup Offset field of the next-hop table. Again, this
allows for moving back up the tree in those rare instance where the LC-Trie search moved too
far down the tree.

The final step before actually building the LC-Trie search table comprises updating
each network route entry in the next-hop table with a pointer to the entry in the next-hop table
containing the layer 2 information for that IP address. Again, this reduces the complexity of
updating MAC layer 2 information in the case where several entries use the same MAC
address. By storing the MAC information in a single entry in the next-hop table, only that
entry needs updating if the MAC information changes. Otherwise, the entry next-hop table
would have to be searched linearly each time MAC information changed in order to find all
effected entries.

In order to avoid conflicts during the build process with ongoing searches of the LC-
Trie table, the LC-Trie is built initially in a separate memory area and then upon completion

the LC-Trie is copied over the previous LC-Trie. The following, based on the work of
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Nilsson & Karlsson, shows the pseudo code for a recursive function for building an LC-Trie
search table named LC-Trie from a table of IP address entries named Base.

Build (int first, intn, int pre, int pos)

{
if(n=1)
{
LC-Trie[pos] = {0, 0, first};
return,
}

Skip = ComputeSkip(pre, first, n);

Branch = ComputeBranch (pre, first, n, skip);
Offset = AllocateMemory(2”Branch);
LC-Trie[pos]= {Branch, Skip, Offset};

p = first;
for bitpat = 0 to 2"Branch — 1
{
k=0;
while (Extract(pre + Skip, Branch, Base[p + k]) == bitpat)
k=k+1;
Build(p, k, pre + skip, Offset + bitpat);
p=p+k
}
}

The LC-Trie table (LC-Trie) is built from the top down based on recursive processing
of branches (or subintervals) of the entries in the table Base. The Build function is passed
four integer parameters: first — the number of the first entry of the set of entries from the table
Base being processed by the Build function; n — the number of entries set of entries being
processed by the Build function; pre — the number of bits in any common prefix among the
set of entries being processed by the Build function; and pos — the first available position in
the table LC-Trie for assignment of an entry.

To illustrate the building of an LC-Trie search table, consider executing the Build
function on the entries in Table 1 hereinabove. The initial call to the function would take the

form “Build (0, 15, 0, 0)”, where the first call includes all 15 entries in Table 1. The first if
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statement handles the case where the Build function is called with only one entry, in which
case a lead node is created in the table LC-Trie. Thus, all leaf (or terminal) nodes are created
be this if statement with a branch and skip value of zero. While Nilsson and Karlsson
disclose a leaf node with a non-zero skip value, in practice with full IP address this does not
occur.

If there is more than one entry, control passes to the next execution block for
calculation of the value of Skip and Branch. The Skip value is calculated by a ComputeSkip
function that examines the first and last entry in the subinterval for a common prefix of bits,
the number of bits in any such prefix comprises the Skip value. In the initial call to the Build
function there is no common prefix among the 15 entries in Table 1, therefore, the Skip value
equals zero.

The Branch value is calculated by a ComputeBranch function that examines all of
entries in the subinterval to determine the largest number of prefix bits, disregarding any
common prefix, that contain all of the possible values of that number of bits. Using the first
call to all of the entries in Table 1 for illustration, there is no common prefix to ignore. Thus,
beginning with the first bit all values are present (0,1), examining the first two bits of the
entries shows all possible values of the first 2 bits are present in the entries (00, 01, 10, 11).
Continuing in this fashion, all values are present for the first 3 bits, but not the first 4 bits.
Thus, the Branch value is 3.

The value of Offset is calculated by an AllocateMemory function. The result of the
function (Offset) is an internal pointer to the next-hop entry in the search table LC-Trie
associated with the current internal node. In other words, AllocateMemory returns the

Pointer portion of the Pointer/Entry No. column of Table 2. Taking into account that Branch

35



10

15

20

2Branch jnternal nodes have been removed between the current node and the next-

levels, and
hop internal node, the AllocateMemory function sets the value of Offset to reflect its new
node position in the compressed LC-Trie. Next, the Branch, Skip, and Offset value are
assigned to the current search table entry (LC-Trie[pos]). By way of illustration, the first time
through the Build function, Offset will equal 1 (see Table 2, row 1) due to the removal of 23
internal nodes. This reflects the fact that the internal node that is Node No. 7 in Figure 6a
(starting from 0) is now Node No. 1 in the compressed LC-Trie shown in Figure 6¢. This is a
reduction in 8 (2%) nodes. The assignment of the values of Branch, Skip, Offset to the current
position in the search table sets this new path in the compressed LC-Trie from the root node
to the first internal node.

The next code section comprises the recursive call that builds progressively smaller
subintervals of the entries. The code sets a counter variable p equal to first, which preserves
the value of the first entry prior to the recursive call. A for loop executes 25™™" loops, one
for each node removed. The loop sets a local counter variable k to zero, and then uses a while
loop to count the number of entries with each possible common prefix, or set, of bits. The
while loop uses an Extract function that returns an integer equivalent of a predetermined
portion of an entry. The function call is of the form Extract(p, b, s), where the function
returns the integer equivalent of b bits of the string s starting at position p. The Build
function is then called of for each combination.

To illustrate the recursive code section using the example of a call to the Build
function for all entries, the first time through this section p is set to 0. The for loop will

increment from 0 to 2°-1, or 8 iterations (one for each of the 8 possible values of 3 bits). The

counter K is set to 0, and the while loop is executed. The while loop will extract Branch
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number of bits (3 in this case), starting at position pre plus Skip (0 in this case), from the (p
plus kjth entry (0 in this case), and then compare that value to bitpat (0 in this case). The first
iteration of the while loop will extract the first three bits of Entry No. 0 (000) from Table 1,
which equals bitpat. The counter k is incremented, and the loop repeats this time extracting
the first 3 bits of Entry No. 1 (000), which also equals bitpat. The counter k is increments to
the value of 2, and the while loop extracts the first 3 bits of Entry No. 2 (001), which does not
equal bitpat. Then the Build function is called recursively for the set of entries that matched
bitpat (in the case where the first entry is Entry No. 0, the call to build should be for k-1
entries, rather than k entries). Upon return from the recursive call, the value of the counter p
is incremented by the value of k and the for loop continues. In this manner the LC-Trie is
built one branch at a time.

The preferred implementation differs from the pseudo code implementation in that in
order to accommodate the root branch factor, which is always present, the first entry in the
LC-Trie search table is required to have a skip value of 0.

As mentioned the LC-Trie table is built to a separate memory area and then copied
over the existing LC-Trie table. The copy proceeds one entry at a time from the bottom of the
table to the top. This avoids the need for locking the table during copying. Thus, searches
and copying can proceed at the same time. The search algorithm rarely moves backwards
through the search table, accordingly, a search is likely to move between the old and new
portions of the search table only once. While it is possible that this could result in a failed
search and a dropped packet, this is a rare enough occurrence to justify the benefit resulting

from avoid locking the table from searches during copying.
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To add a new entry to the search table requires adding the entry to a free entry in the
table and then rebuilding the table in the same manner described hereinabove. To delete an
entry merely requires marking the deleted entry as a free entry, and then rebuilding the table.
However, the sort step can be omitted due to the fact that removing an entry will not effect
the order of the remaining entries.

The following pseudo code discloses the procedure for searching the LC-Trie
compressed search table. In the preferred embodiment of the invention the routine (and the
routines disclosed hereinbelow) is implemented in C code, and IXP 1200 microcode. Those
of ordinary skill in the art will understand that the invention in not so limited, and can be

implemented in other languages.

FTMQuery (ip)
{
if (hopent = Getent(ip))
{
if (hopent.flags & Flags Net)
{
hopent = nexthop[hopent.pro_spec.nhop];
}
if (hopeent.flags & Flags PSV)
{
return (hopent);
}
}
return NULL;
}
Getent(ip)
{

node = LC-Trie[0];
Pos = node.skip;
Branch = node.branch;
Offset = node.offset;

while (Branch !=0)

{
node = LC-Trie[Offest + Extract(Pos, Branch, IP)];
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Pos = Pos + Branch + node.skip;
Branch = node.branch;
Offest = node.offset;
}

hopent = nexthop[Offset];

bitmask = hopent.ipaddr’ip;

if (Extract(0, hopent.masklen, bitmask) = 0)
{

return hopent;

}

Offset = hopent.nexthop;
‘While (Offset != NoPrefix)
{
hopent = next[Offset]];
if (Extract(0, hopent.mask.len, bitmask) == 0)

{
return hopent;
}
}
return NULL;

}

The search begins by calling the FTMQuery core function, which attempts to find a
match for the IP Address ip. The FTMQuery function calls the Getent function, which
actually handles the search. The Getent function, if successful, returns the entry in the next-
hop table that matches the address ip in the variable hopent. If Getent is not successful it
returns the value of NULL in the variable hopent. Thus, if the Getent function returns an ip
address control passes into the if statement in FTMQuery. At this point FTMQuery needs to
check two situations. First, Getent checks the Flags field in the next-hop table to determine if
the ip address is a network entry. If so, one more hop is made into the next-hop table to get
the layer 2 information. The first if statement handles this situation. The second situation

comprises checking the Flags field in the next-hop table to determine if the ip address in
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hopent is valid. If it is valid FTMQuery successfully returns hopent, otherwise, a NULL
value is returned.

Again, the Getent function actually searches the table LC-Trie for a match to the IP
address ip. First, the function loads the root node information, setting the values of Pos (or
Skip), Branch, and Offset associated with the first entry in the table. Next, Getent executes a
while loop that searches the table LC-Trie until it reaches a terminal leaf node, i.e. a node
where Branch equals 0. To illustrate using the values in Table 2, suppose the Getent is called
to search for the ip address 10111. The root node information is loaded, setting Pos =0,
Branch = 3, and Offset = 1. The function extracts the first three bits of the ip address 10111,
or 101, which is 5 in decimal equivalent. Adding the value of Offset (Pointer/Entry No. in
Table 2) to this number results in 6 (5 + 1), which identifies the next entry (Node No. 6) in
Table 2 to read into node. Pos is then incremented to the value of Pos + Branch + the current
value of node.skip. This assigns Pos the value 3 (0 + 3 + 0), this mean that Pos numbers of
bits can be now be ignored by Getent. The values of Branch and Offset are set to 2 and 0
respectively (the values of Node No. 6 in Table 2). The while loop executes again due to the
fact that Branch does not equal 0. Extract pulls out the remainder of the next, and last, two
bits in ip (11) and returns the decimal equivalent of 3, which is then added to the value of
Offset in Node No. 6 of Table 2. Thus, node is assigned the value of 3 + 13 =16. Node No
16 has a Branch value of 0, which terminates the search loop. At this point the Getent
function has identified an identical match in that the pseudo address of Node No. 16 matches
address ip exactly. However, in practice Getent needs to further examine the match to

determine if it found the best match.
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The code block in Getent following the while loop determines if the match between ip
and hopent is exact to the mask length number of bits in hopent. This is accomplish by
performing an exclusive or operation on the two strings, and then comparing the result in the
if statement. If the mask length number of bits match then Getent has found a match and it
returns hopent (the next-hop offset).

The following code block deals with the case where there is not a match, or not a
significant match, and Getent looks back up the tree for a match. The block begins by setting
Offset to the first entry back up the tree from hopent. A while loop is executed, as long as
Offset is a valid number, which repeats the comparison of the previous code block. Ifa
match is found Getent returns hopent, otherwise it keeps trying. If a match is not found,
Getent returns NULL. The foregoing discloses the mechanics of the FTM application
running on the microengines, the format of the associated tables, and the manner the tables
are built and searched. The FTM application, however, cannot function in isolation. The
structure of the network processor requires a means for the core processor to interface with
the microengines. For example, if the FTM application cannot process a data packet it passes
the packet to the core, or as in the preferred embodiment of the invention the portion of the
FTM application that builds and maintains the tables operates on the core processor, while the
searching portion of the application operates on the microcengines. In either event, an
interface is required to provide for communication between the aforementioned computing
elements.

This following describes the preferred embodiment of the interface presented by the
IXP 1200 microcode to the StrongARM core. This interface provides the framework

necessary to write an Ethernet and/or ATM driver for any operating system running on the
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core. Of course, the invention is not so limited, the invention and the interface can utilize any
conventional or similar network. The FTM application provides for the bulk of the standard
communication along the data plane, however, there are instances where communication
needs to take place between the core and the microengines. This communication includes
primarily control and management plane communication, along with setup and initialization
information and data plane communication that the FTM application passes to the core
Processor.

The core driver has two initialization responsibilities. The first is to make sure the
hardware has been correctly initialized. The second is to provide the required configuration
parameters to the microengines. This configuration information is provided to the
microengines via a CSR (configuration and status register) block. Appendix A contains a ‘C’
language structure that describes the interfaces CSR.

After initialization of the interfaces, the core is responsible only for management of
the high level buffer descriptors. All MAC and physical layer processing is handled by the
microengines through the FTM application.

The core processor and microeﬁgines use buffer descriptors to exchange the location
of transmitted/received data as well as any required control information. The Ethernet and
ATM drivers each allocate and maintain their own set of buffer descriptors. These buffer
descriptor pools are further divided into separate transmit buffer descriptor and receive buffer
descriptor pools. Thus there are four distinct groups: Ethernet receive; Ethernet transmit;
ATM receive; and ATM transmit. While these four pools are maintained separately, they all
use the same basic data structure format. The only difference is that the status field bits are

defined differently for each group. The general format of the buffer descriptors is as follows:

42



10

15

Offset 0 Next Buffer Descriptor

Offset 4. Control/Status Port Number
Offset 8 Data Length Reserved
Offset 12 Data Size Reserved
Offset 16 Data Location

Offset 20 User Data

Offset 24 Reserved

Offset 28 -

Each buffer descriptor refers to a single complete packet. Ata minimum there must
be at least one transmit and one receive buffer descriptor for each driver although in any
practical application more are required. The number required depends on how many ports
will be active and the expected packet rates. Performance will be impacted if either the core
driver or the microengines are unable to get a free buffer descriptor. The maximum number
of descriptors is limited only by the amount of available memory. It is strongly recommended
that all buffer descriptors either be located in non-cached memory, or no more than one
occupy a single cache line.

The memory location of the various buffer descriptor queues is configured via the
CSR. There are two basic types of linked list queues. The first type makes use of the IXP
push/pull queues. Three of the available eight push/pull queues are required for either the
Ethernet or ATM interfaces. These queues hold the lists of tree transmit and receive buffer
descriptors, in addition to a list of transmitted buffer descriptors waiting final core processing.

No locking is required when inserting onto or removing from these queues as the hardware
provides this feature. The second type of queue is used for the transmit and receive queues.
These must maintain a FIFO ordering so the push/pull queues are not appropriate. To provide
fast insertions and deletions a head and tail pointer are maintained for each of these queues.

In order to maintain consistency the CAM (conditional access module) locking mechanism
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must be used to acquire a lock on the tail pointer before accessing these queues from the core
driver.
Each descriptor contains a user-defined field that the microengines never modify.
This field may be used for anything the core driver wishes. For example, the data pointer
may point into a data area that is contained inside some other structure such as an mbuf.
After packet transmission the driver may need to return this encompassing structure to the
system. The user data field provides a convenient place to store a pointer to this structure.
The following describes the format of the receive buffer descriptors, which take the
general form disclosed hereinabove. The core driver is responsible for allocating and
initializing receive buffer descriptors, the components of which are described hereinbelow.
The next buffer descriptor field allows for creating chains of descriptors for
processing by the core by identifying the next buffer descriptor in the chain for processing.
The control/status word field contains information relating to certain errors associated
with, and relating to certain characteristics of, the actual data that the buffer descriptors
describe. The structure of the word varies depending on whether the information is
received/transmitted on an Ethernet or ATM network.

Control/Status Word (Ethernet)

1511413 12110101 918 [7 [ 6] 5] 4 327 1] o

T FC|FR|OV|CR|[SH |LG|MC|BC

The control/status word occupies 16 bits, and all of the reserved bits should be
initialized to zero.

Bits 15 through 11 — Reserved.
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Bit 10 — This bit contains the type bit indicating whether this is a receive or transmit
buffer descriptor. For receive buffer descriptors the driver should set the bit to 0.

Bits 9 through 8 — Reserved.

Bit 7 — This bit is the flow control packet bit, which indicates that the received packet
is a flow control packet.

Bit 6 — This bit is the framing error bit, which indicates the packet was received with a
framing error.

Bit 5 — This bit is the receiver overrun bit, which indicates that the microcode was
unable to remove data from the hardware receive FIFO before it overflowed. This indicates
either the microcode is not fast enough to keep up, or the system ran out of free receive buffer
descriptors.

Bit 4 — This bit is the CRC (cyclic redundancy code) error bit, which indicates the
packet was'received, but the CRC was incorrect.

Bit 3 — This is the short packet bit, which indicates a packet smaller than 64 bytes was
received. |

Bit 2 — This is the long packet bit, which indicates a packet longer than the maximum
was received.

Bit 1 — This is the multicast bit, which indicates the packet was received as a hardware
layer multicast.

Bit 0 — This is the broadcast bit, which indicates the packet was received as a
hardware layer broadcast.

Control/Status Word (ATM)

15014 13112111009 | 8]7]%6 ][5 41312110
I T
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Bit 15 — This is the interrupt bit, wherein setting this bit will cause the microengines
to send an interrupt to the core after filling this buffer descriptor with data and placing it on
the rxbd queue.

5 Bit 14 through 11 — Reserved.

Bit 10 - This is the type bit, which indicates whether this is a receive or transmit
buffer descriptor. For receive buffer descriptors this should be set to 0.

Bit 9 through 0 — Reserved.

For receive buffer descriptors the port number field will be set by the microcode to

10 indicate on which interface the packet was received.

Port Number

15 |40 13 12 (110 7o '8 7 [6] .5 432 REEE
- | IX Type Reserved MAC Number | Unit Number

Bit 15 — Reserved.

Bit 14 —This is the IX bit, which indicates that the port is located on the IX bus. For
15 both Ethernet and ATM this will be set to 1 by the microcode.

Bit 13 through 10 — This is the type bit ﬁeld, which indicates the type of interface: 1 —

Ethernet; 2 — ATM; and 3 through 15 — Reserved.

Bits 9 through 6 — Reserved.

Bits 5 through 3 — These bits indicate the MAC number of the port.
20 Bits 2 through 0 — These bits indicate the Unit number of the port.

The data length field should be initialized to 0 before being placed on the rxfree

queue. Before the microengines enqueue the buffer descriptor on the rxbd queue, they will
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set the data length field to reflect the total number of bytes copied into the buffer. This will
include both the data link header and payload. In the case of ATM, only the ATM header on
the first cell is copied, and subsequent ATM headers for the same packet are discarded. The
data size field indicates the maximum number of data bytes the microengines can copy into
the buffer associated with this buffer descriptor. For both Ethernet and ATM it must be large
enough to contain an entire frame. This means it should be at least 1552 for ATM and 1514
for Ethernet.

The data location field contains a pointer to the beginning of the buffer associated
with the buffer descriptor that contains the actual transmitted/received data. For receive
buffer descriptors this must be on an 8 byte boundary. The ATM microcode also requires the
8 bytes immediately preceding this location to the available to store temporary data.

The user data field may be used to store any data needed by the driver. This field is
never looked at or modified by the microengines. For example, if the data location pointer
points inside of a larger data structure this field could be used to easily find the encompassing
data structure.

The following describes the transmit buffer descriptors, again of the general form
disclosed hereinabove. When the core wishes to transmit a packet, the driver removes a
buffer descriptor from the txfree queus, fills in all the required transmit fields, and enqueues
it on the txbd queue. The core driver does not need to wait for the packet to be sent, but
instead can immediately use the next transmit buffer descriptor. This may continue until
either the core processor runs out of packets to transmit, or the txfree queue is empty. Once
the core processor enqueues the packet, it is not allowed to change any fields in the transmit

buffer descriptor. After each packet has been sent, the microengines enqueue the buffer
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descriptor on the txdone queue and interrupt the core if requested. The driver then removes

buffer descriptors from this queue, frees any associated system memory and places the buffer

descriptor back in the txfree queue.

The following describes the format of the transmit buffer descriptors.

5 The next buffer descriptor field allows for creating chains of descriptors for

processing by the core by identifying the next buffer descriptor in the chain for processing.

The Control/Status Word contains information to identify certain information related

to interrupts and types.

Control/Status Word (Ethernet)

1514 71615 0
I
10
Bit 15 — This is the interrupt bit, which when set will cause the microengines to send
an interrupt to the core after transmitting the data and placing the buffer descriptor on the
txdone queue.
Bit 14 through 11 — Reserved.
15 Bit 10 — This is the type bit, which indicates whether this is a receive or transmit

buffer descriptor. For transmit buffer descriptors this should be set to 1.

Bits 9 through 0 — Reserved.

Control/Status Word (ATM)

13

12

11

10

9

8

7

6

5

T
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Bit 15 — This is the interrupt bit, which when set will cause the microengines to send
an interrupt to the core after transmitting the data and placing the buffer descriptor on the
txdone queue.

Bit 14 to 11 — Reserved.

5 Bit 10 — This is the type bit, which indicates whether this is a receive or transmit
buffer descriptor. For transmit buffer descriptors this should be set to 1.
Bit 9 to 0 — Reserved.

The port number field is used to indicate on which port the packet will be sent.

511413 ]12]11Jo]9[8[7]6] 5 [4]3]2[1]0
- | IX Type Reserved MAC Number | Unit Number

10 Bit 15 - Reserved
Bit 14 — This is the IX bit, which indicates the port is located on the IX bus. For both
Ethernet and ATM this should be set to 1.
Bit 13 through 10 — This is the type bit field, which indicates the type of interface: 1 —
Ethernet; 2 — ATM; and 3 through 15 — Reserved.
15 Bits 9 through 6 — Reserved.
Bits 5 through 3 — These bits indicate the MAC number of the port.
Bits 2 through 0 — These bits indicate the Unit Number of the port.
The data length field indicates the number of data bytes in the buffer associated with
this descriptor that should be transmitted.
20 The data size field is not used by transmit buffer descriptors, and should be initialized

to zero.
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The data location field points to the beginning of a buffer containing the packet to be
transmitted. The packet must already contain the Ethernet or ATM data link header. In the
case of ATM only the header for the first cell is included. There are no alignment restrictions
on the data location pointer for Ethernet. For ATM the data location must be 8§ byte aligned.

The user data field may be used to store any data needed by the driver. This field is
never looked at or modified by the microengines. For example, if the data location pointer
points inside of a larger data structure this field could be used to easily find the encompassing
data structure.

The following describes the configuration of the CSR block provided to the
microengines upon initialization. The C code of the CRS for the Ethernet and ATM
interfaces is set forth in Appendix A. The CRS for Ethernet and ATM are divided into two
sections and contain configurable parameters to control microengine operation. The first is a
single common section that is shared by all interfaces of that type, and a second section that
contains port specific information.

The common Ethernet CSR section contains a single copy of various queuing data
structures that are shared by all Ethernet ports, which are set forth below.

e rxfree push — A pointer to one of the eight IXP push queues. When the core is
finished processing a received buffer descriptor, the driver should retum it to the
rxfree list using this push queue.

e rxfree pull — A pointer to one of the eight IXP push queues. When the microengines
need a receive buffer descriptor they can get one from here. This parameter must be

associated with the same push/pull queue as rxfree_push.
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e txfree_push— Similar to rxfree push. The core driver should enqueue transmit buffer
descriptors here after processing them from the txdone_pull queue.

e ixfree pull — Similar to rxfree_pull. When the core driver needs a free transmit buffer
descriptor it can get one from this queue.

5 e txdone push — A pointer to an IXP push queue that stores transmitted buffer
descriptors. After the microengines are finished with a transmit buffer descriptor it
will be enqueued here.

e txdone pull-The core driver can retrieve transmitted buffer descriptors from this
IXP pull queue. This allows the driver to free any memory associated with a buffer
10 descriptor before it is enqueued on the txfree_push queue.
e 1xbd_tail — A pointer to the tail of the receive queue. The microengines will enqueue
any incoming packets here.
e rxbd_head — A pointer to the head of the receive queue. The core driver will receive
incoming packets from here.
15 e ixbd_tail - A pointer to the tail of the transmit queue. The core driver should enqueue
all transmit buffer descriptors here.
e ixbd head — A pointer to the head of the transmit queue. The microengines will
remove buffer descriptors that are ready to be transmitted from here.
Also included in the common Ethernet CSR section is the interrupt vector (vector)
20  used by all Ethernet ports. It is the responsibility of the core driver to demultiplex the
incoming packets if required.
The common Ethernet CSR section also includes an interrupt event/mask register

(i_event/i_mask). The event register and mask register are physically different registers but
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contain the same bit field definitions. The event register will indicate which of the various
interrupts are pending. However, an actual interrupt to the core only occurs if the equivalent

bit in the mask register is set.

31 |30 |29 (2 |2 ({2 (2 |2 |2 {242 |2 |1 |1 (1 |1
8 |7 16 |5 (4 |3 ]2 {1 |0 6
Fiel | TX
d . |B
15 |14 (13 |1 {1 |1 |9 |8 |7 |6 |5 |4 (|32 |1 |0
1
‘Fiel - RX |RX
d. E F

Bit 31 — This is the transmit buffer interrupt bit. This interrupt is generated by the
microengines after a buffer has been transmitted and the associated buffer descriptor placed
on the txdone queue.

Bit 30 through 15 — Reserved.

Bit 14 — This is the receive error interrupt bit. If an error occurs during the reception
of a packet the receive error interrupt is generated. The buffer descriptor is still enqueued on
the rxbd queue and the bd_status field indicates the cause of the error.

Bit 13 — This is the receive frame interrupt bit. After a frame has been successfully
received, it is placed in the rxbd queue and the receive frame interrupt is generated.

Bit 1 through 0 — Reserved.

The last component of the common Ethernet CSR section comprises the microengine

command register (mccr) used to send commands to the microengines.

31 [30]29]28[27]26]25]24[23[22[21[20][19]18[17]16
| Field Port

15 J1al13]12]11]10]9 [8 [7 [6 [5 [4 [3 ]2 1 o
| Field | BF Opcode
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Bits 31 through 16 — These bits comprises the port bit field used to specify which
Ethernet ports on which to apply the command. Bit 16 represents port 0 and bit 31 represents
port 15. It is possible for a single command to be applied to multiple ports by setting more
than one bit in this field.

Bit 15 — This is the busy flag bit and indicates that the microengines are currently
executing a command. The driver sets this bit after initializing the appropriate parameters
and then waits for the bit to be cleared, indicating the command has finished.

Bits 3 through 0 — This is the opcode field, which specifies what command is to be
executed by the microengines on the indicated port(s).

e 0000 — Start transmitter and receiver, it is possible to start both the transmitter and
receiver for a port at the same time. This is equivalent to a start receiver followed by

a start transmitter command.

e (001 — Start receiver
e 0010 — Start transmitter

e 0011 — Stop receiver

® (0100 — Stop transmitter
The following describe the port specific Ethernet CSR section. The first component
configures the physical address (paddr) of each Ethernet port with a 48 bit 802.3 MAC layer
address.

The last component configures the transmitter and receiver control register (trcr).

31130129 (28|27 2625|2423 (22|21 20|19 )18 17 |16

| Field

15(1413 1211 ]10]9 |8 |7 [6 |5 |4 |3 |2 |1
| Field TE | RE

o
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Bit 31 through 2 — Reserved.

Bit 1 — This bit enables the transmitter.

Bit 0 — This bit enables the receiver.

The following describes the structure of the CRS for the ATM network and is also
divided into two sections. The first section is a single common section that is shared by all
interfaces of that type, and a second section that contains port specific information.

The common ATM CSR section contains a single copy of various data structures that
are shared by all ATM ports, which are identical to the queuing structures used for the
Ethernet ports as set forth hereinabove.

Also included in the common ATM CSR is the interrupt vector (vector) used by all
ATM ports. It is the responsibility of the core driver to demultiplex the incoming packets if
required.

Interrupt Event/Mask Register (i_event/i_mask). The event register and mask register
are physically different registers but contain the same bit field definitions. The event register
will indicate which of the various interrupts are pending. However, an actual interrupt to the

core only occurs if the equivalent bit in the mask register is set.

31 130 (29 (2 (212 (212 2 (|22 |2 |1 |1 |1 |1
8 |7 16 |5 |4 |3 |2 |1 |0 |9
Fiel | TX
d |B
15 (14 |13 (1 |1 |1 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0
1
‘Fiel RX |RX
d E |F
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Bit 31 — This is the transmit buffer bit. This interrupt is generated by the
microengines after a buffer has been transmitted and the associated buffer descriptor placed
on the txdone queue.

Bit 30 through 15 — Reserved.

Bit 14 — This is the receive error interrupt bit. If an error occurs during the reception
of a packet the receive error interrupt is generated. The buffer descriptor is still enqueued on
the txbd queue and the bd_status field indicates the cause of the error.

Bit 13 — This is the receive frame interrupt bit. After a frame has been successfully
received, it is placed in the rxbd queue and the receive frame interrupt is generated.

Bit 1 through 0 — Reserved.

The last component of the common ATM CSR section comprises the microengine

command Register (mccr) used to send commands to the microengines.

31 [30[29 [28]27[2625]24[23[22]21[20]19[18]17[16
| Field Port

151413 ]12]11]10]9 [8 [7 [6 [5 [4 [3 |2 [1 o
| Field | BF Opcode

Bits 31 through 16 — These bits comprise the port bit field to specifying which ATM
ports on which to apply the command. Bit 16 represents port 0 and bit 31 represents port 15.
It is possible for a single command to be applied to multiple ports by setting more than one
bit in this field.

Bit 15 — This is the busy flag bit and indicates that the microengines are currently
executing a command. The driver sets this bit after initializing the appropriate parameters

and then waits for the bit to be cleared, indicating the command has finished.
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Bits 3 through 0 — This is the opcode field, which specifies what command is to be
executed on the indicated port(s).
e 0000 — Start transmitter and receiver, it is possible to start both the transmitter and
receiver for a port at the same time. This is equivalent to a start receiver followed
5 by a start transmitter command.
e 0001 — Start receiver
e 0010 — Start transmitter

e 0011 — Stop receiver

0100 — Stop transmitter
10 Port Specific ATM CSR
The following describe the port specific ATM CSR section, which consists of a bit

field that configures the transmitter and receiver control register (trcr).

3130129 (28|27 12625124 (231221212019 1817 |16

| Field
1514 |13 [12]11]10]9 |8 [7 l6 |5 |4 |3 |2 [1 |0
| Field TE | RE

Bit 31 through 2 — Reserved
15 Bit 1 — This bit enables the transmitter.
Bit 0 — This bit enables the receiver.
The following section comprises a functional description of the steps required in
initialization and resetting the microengines as well as transmission and reception of packets.
e Initialization steps: (1) disable transmit and receive; (2) configure CSRs (speed,
20 duplex, BD’s, address information, and the like); (3) clear event register; (4) set

mask register; (5) enable interrupts; and (6) start transmit and receive.
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o Transmit steps: (1) fill in descriptor; (2) put on transmit queue; and (3) and
process TX interrupt.
e Receive steps: (1) when a packet arrives at an interface the microengines remove
a buffer descriptor from the receive free list and begin filling it with data, after the
5 packet reception has completed, the status information is updated and the buffer
descriptor is placed in the rxbd queue, if requested, an interrupt to the core is also
generated, if the core driver does not process packets fast enough and the
microengines run out of available receive descriptors, all incoming packets are
simply dropped until descriptors become available; (2) save information from
10 descriptor; (3) reset descriptor values; and (4) put on rxfree queue;
e Reset steps: (1) stop transmitter and receiver; (2) change configuration
parameters; and (3) issue reset command.
With regard to hardware initialization, the driver is responsible for some of the
Ethernet and ATM hardware initialization. With Ethernet, preferably Intel IXF440 Ethernet,
15  the core driver is responsible for configuring the following registers on the Intel IXF440
multiport 10/100 Mbps Ethernet controller.
e ixf pcr— Port control register
e ixf fbr — FIFO bus mode register
o ixf rpr— Receive parameter register
20 e ixf smr— Serial mode register
e ixf ftr— FIFO threshold register
e ixf rmfr— Receive mode filtering register

e ixf jer - Interrupt enable register
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Appendix A —Data Structures.
This appendix contains the ‘C’ language definitions for the data structures referenced
hereinabove.
5 /*
** Buffer Descriptors
*/
typedef struct BufferDescriptor {
struct BufferDescriptor *bd_next;
10 u_intl6 bd_status;
u_int16 bd_port;
u_int16 bd_lenl;
u_int16 bd_len2;
u_int16 bd_sizel;
15 u_int16 bd_size2;
u_int8 *bd_datal;
u_int32 bd_usrl;
u_int8 *bd_data2;
u_int32 bd_usi2;

20 }BD;

/*Ethernet interfaces */

typedef struct {
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/* BEthernet Port Specific Data */

u_int8 paddr[6]; /* Unicast address */

u_int8 res1[2];/* Padding for alignment */

u_int32 res2[2]; /* Reserved */

u_int32 trer; /* Transmit/Receive Control Register */

}Enet_port;

typedef struct {

/* Ethernet Common Data */

BD

BD

BD

BD

BD

BD

BD

*free_push; /* IXP Push Queue for Empty BD’s */
*free_pull; /* IXP Pull Queue for Empty BD’s */
*txdone_push; /* IXP Push Queue for Transmitted BD’s */
*txdone_pull; /* IXP Pull Queue for Transmitted BD’s */
*rxbd_tail; /* Tail of receive queue */

*rxbd_head; /* Head of receive queue */

*txbd tail; /* Tail of transmit queue */

BD *txbd head; /* Head of transmit queue */

u_int32 vector /* Interrupt Vector */

u_int32 i_event; /* Interrupt Event Register */
u_int32 i_mask; /* Interrupt Mask Register */
u_int32 mecr; /* Microcode Command Register */

} Enet_common;
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/* ATM Interfaces */

typedef struct {

/* ATM Port Specific Data */

u_int32 trer; /*Transmit/Control Register */

} ATM_port;
typedef struct {
/* ATM Common Data */
BD *free_push; /* TIXP Push Queue for Empty BD’s */

BD

BD

BD

BD

BD

BD

BD

*free pull; /* IXP Pull Queue for Empty BD’s */
*txdone_push; /* IXP Push Queue for Transmitted BD’s */
*txdone_pull; /* IXP Pull Queue for Transmitted BD’s */

*rxbd tail; /* Tail of receive queue */

*rxbd_head; /* Head of receive queue */
*txbd_tail; /* Tail of transmit queue */
*txbd head; /* Head of transmit queue */

u_int32 vector; /* Interrupt Vector */

u_int32 i_event; /* Interrupt Event Register */

u_int32 i_mask; /* Interrupt Mask Register */

u_int32 mecr; /* Microcode Command Register */

} ATM_common;
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** IXP 1200 Shared memory map
*/

typedef struct {

Enet_common enet_common;

Enet_port enet_portfMAX_ENET_PORTS];

ATM_common atm_common;

ATM port atm_port{ MAX_ATM_PORTS];

} IXP1200MM;

The foregoing description and drawings comprise illustrative embodiments of the
present inventions. The foregoing embodiments and the methods described herein may vary
based on the ability, experience, and preference of those skilled in the art. Merely listing the
steps of the method in a certain order does not constitute any limitation on the order of the
steps of the method. The foregoing description and drawings merely explain and illustrate the
invention, and the invention is not limited thereto, except insofar as the claims are so limited.

Those skilled in the art that have the disclosure before them will be able to make

modifications and variations therein without departing from the scope of the invention.
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Claiming:

1.

An interface for enabling communication between a primary and a secondary
computing elements of a multiple element computer system, said method comprising:
a multiple element computing system having a primary computing element and a
secondary computing element; and

a configuration and status register (CSR) block having a common section and a port
specific section for enabling the exchange of buffer descriptors between said primary
and said secondary computing elements, wherein said buffer descriptors contain

information identifying underlying information packets.

The invention in accordance with claim 1 wherein said buffer descriptors further
comprise receive buffer descriptors sent from said secondary computing element to
said primary computing element, and transmit buffer descriptors sent from said

primary computing element to said secondary computing element.

The invention in accordance with claim 2 wherein said common section of said CSR
block further comprises a queuing structure that said primary and said secondary

computing elements can use to receive and transmit said buffer descriptors.

The invention in accordance with claim 3 wherein said queuing structure further
comprises:
areceive free pull queue wherein said secondary computing element can obtain an

available receive buffer descriptor;
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a receive queue having a head and a tail pointer, wherein said secondary computing
element can return receive buffer descriptors to said tail of said receive queue after
filling said receive buffer descriptor with data, and wherein said primary computing
element can remove filled receive buffer descriptors from said head of said receive
queue;

a receive free push queue wherein said primary computing element can return buffer
descriptors after said primary computing element has finished processing buffer
descriptors;

a transmit free pull queue wherein said primary computing element can obtain an
available transmit buffer descriptor;

a transmit queue having a head and a tail pointer, wherein said primary computing
element can return transmit buffer descriptors to said tail of said transmit queue after
filing said transmit buffer descriptor with data, and wherein said secondary computing
element can remove filled transmit buffer descriptors from said head of said transmit
queue;

a transmit done push queue wherein said secondary computing element can return
transmit buffer descriptors after said secondary computing element has finished
processing transmit buffer descriptors;

a transmit done pull queue wherein said primary computing element can retrieve
transmit buffer descriptors; and

a transmit free push queue wherein primary computing element can obtain return

transmit buffer descriptors.
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10.

The invention in accordance with claim 1 wherein said common section of said CSR
block further comprises an interrupt vector for communicating interrupts to the

primary computing element.

The invention in accordance with claim 5 wherein said common section of said CSR
block further comprises interrupt event and mask registers, wherein said interrupt
event register will identify pending interrupts and said mask register will determine if

said identified interrupts are sent to said primary computing element.

The invention in accordance with claim 1 wherein said common section of said CSR
block further comprises a secondary computing element command register for sending

commands to said secondary computing element.

The invention in accordance with claim 1 wherein said port specific section of said
CSR block is Ethernet specific and comprises a physical address component and a

transmitter and receiver control register to enable transmitting or receiving.

The invention in accordance with claim 1 wherein said port specific section of said
CSR block is ATM specific and comprises a physical address component and a

transmitter and receiver control register to enable transmitting or receiving.

The invention in accordance with claim 2 wherein said receive buffer descriptors

comprise:
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a next buffer descriptor field for storing a pointer to a next buffer descriptor in a chain
of buffer descriptors;

5 a control/status field comprising information about said underlying information
packets if said receive buffer descriptor is Ethernet specific, or an interrupt bit
indicating the secondary computing element to send an interrupt to said primary
computing element if said receive buffer descriptor is ATM specific;

a port number field comprising network and interface specific information;
10 a data length field comprising the number of bytes read into the buffer containing the
underlying information packets;
a data size field ;
a data location field;
a user data field;

15

Buffer descriptors
20  Add forwarding table claims

Kitchen sink
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11.

12.

A method of forwarding information packets operating on a multiple element
computer system having primary and secondary computing elements, said method
comprising:

providing a multiple element computing system having a primary computing element
and a secondary computing element in operative communication with each other;
building a table comprised of a plurality of entries with addresses associated therewith
wherein said entries are organized hierarchically according to an LC-Trie compression
algorithm operating on said addresses;

receiving an information packet within said computer system wherein said
information packet has a destination address associated therewith;

searching said table using an LC-Trie search algorithm to find a match between said
address of an entry in said table and said destination address of said information
packet;

transmitting said information packet to a forwarding address associated with said
address of said matching entry; and

wherein said steps of said method are performed by a forwarding table manager

application running on said primary and said secondary computing elements.

The invention in accordance with claim 1 wherein said table comprises an LC-Trie
search table and a next-hop table associated together, wherein said LC-Trie search
table comprises information from said LC-Trie compression algorithm, and wherein
said next-hop table comprises information necessary to transmit said information

packet to said forwarding address associated with said matching entry.
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13.

14.

15.

16.

The invention in accordance with claim 2 wherein said LC-Trie search table entries
comprise a branching factor, a skip value, and an LC-Trie/N ext-Hop Offset generated
for each of said plurality of entries by said LC-Trie compression algorithm during said

building step.

The invention in accordance with claim 3 wherein said next-hop table entries
comprise said address field containing said IP address of said matching entry
identified in said searching step, and an opaque data field for storing specialized

packet processing information.

The invention accordance with claim 4 wherein said next-hop table entries further
comprise a mask length field containing a mask length of said entry, and said method
further comprises the step of verifying that said address of said matching entry and

said destination address of said information packet match to at least said mask length.

The invention in accordance with claim 5 wherein said next-hop table entries further
comprise a next-hop backup offset field that references a previous entry in the
hierarchy created in the building step, and said method further comprises a second

step of verifying performed if said verifying step fails, that verifies that said address of
said previous entry and said destination address of said information packet match to at

least a mask length number of bits of said previous entry.
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17.

18.

19.

20.

21.

22,

23,

The invention in accordance with claim 4 wherein said opaque data field further

comprises MPLS tags.

The invention in accordance with claim 4 wherein said opaque data field further

comprises quality of service parameters.

The invention in accordance with claim 4 wherein said opaque data field further

comprises encryption handling parameters.

The invention in accordance with claim 4 wherein said addresses comprise IP

addresses, and said opaque data field further comprises VLAN tags.

The invention in accordance with claim 4 wherein said opaque data field further
comprises a port specific field for accessing said forwarding address identified in said

transmitting step.

The invention in accordance with claim 11 wherein said addresses are IP addresses.

The invention in accordance with claim 12 wherein said next-hop table entries further

comprise a flag field wherein if said flag is set said port specific field contains an

offset to an entry in said next hop table containing said forwarding IP address

indicating said forwarding IP address addresses a network route, and if the flag is not
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24.

25.

26.

set said port specific field contains said forwarding IP address indicating said

forwarding IP address addresses a host route.

The invention in accordance with claim 1 wherein said computer system comprises a
network processor with a core processor and at least one microengine, and said
primary computing element is said core processor and said secondary computing

element is said microengine.

The invention in accordance with claim 14 wherein said step of building said table is
performed by said forwarding table manager on said core processor, and said step of
searching said table is performed on said microengine by said forwarding table

manager.

A method of forwarding information packets operating on a multiple element
computer system having a network processor with a core processor and at least one
microengine, said method comprising:

providing a multiple element computing system having a network processor with a
core processor and at least one microengine in operative communication with each
other;

building an LC-Trie search table and a corresponding next-hop table comprised of a

plurality of entries with IP addresses associated therewith:
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wherein said LC-Trie table comprises a branching factor, a skip value, and an
LC-Trie/Next-Hop Offset generated for each of said plurality of entries by an
LC-Trie compression algorithm that hierarchically organizes said entries; and
wherein said next-hop table entries comprise:
said IP addresses with a mask length;
a destination IP address associated therewith;
a next-hop backup offset field for locating a previous entry in said
next-hop table;
an opaque data field for storing specialized packet processing
information, comprising, a port specific field, a VLAN tags, quality of
service parameters, and encryption handling parameters; and
a flag field wherein if said flag is set said port specific field contains an
offset to an entry in said next hop table containing a forwarding IP
address indicating said forwarding IP address addresses a network
route, and if the flag is not set said port specific field contains said
forwarding IP address indicating said forwarding IP address addresses
a host route;
receiving an information packet within said computer system wherein said
information packet has a destination IP address associated therewith;
searching said LC-Trie table using an LC-Trie search algorithm to find a match
between said IP address of said corresponding entry in said next-hop table and said

destination IP address of said information packet;
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verifying that said IP address of said matching entry and said destination IP address of
said information packet match to at least said mask length;

verifying, if said pervious verifying step fails, that said IP address of said previous
entry and said destination IP address of said information packet match to at least a
mask length number of bits of said previous entry represented by said entry in said
next-hop backup offset field;

transmitting said information packet to said forwarding IP address associated with
said IP address of said matching entry; and

wherein said steps of said method are performed by a forwarding table manager,
wherein said step of building said table is performed by said forwarding table manager
on said core processor, and said step of searching said table is performed on said

microengine by said forwarding table manager.
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