49005 A2 I 0O A0 0O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO O

International Bureau

(43) International Publication Date
24 April 2008 (24.04.2008)

(10) International Publication Number

WO 2008/049005 A2

(51) International Patent Classification:
GOGF 9/30 (2006.01)

(21) International Application Number:
PCT/US2007/081646

(22) International Filing Date: 17 October 2007 (17.10.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
11/550,368 17 October 2006 (17.10.2006) US
(71) Applicant (for all designated States except US): MAN-
AGE IQ, INC. [US/US]; 345 Route 17 South, Upper Sad-

dle River, New Jersey 07458 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FITZGERALD,
Joseph [US/US]; 821 Atterbury Lane, Franklin Lakes,
New Jersey 07417 (US). BARENBOIM, Oleg [US/US];
5 Horizon Road, Apartment 1501, Fort Lee, New Jersey
07024 (US).

(74) Agents: GOEDKEN, James, F. et al.; Bell, Boyd & Lloyd
LLP, PO. Box 1135, Chicago, IL 60690-1135 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: AUTOMATIC OPTIMIZATION FOR VIRTUAL SYSTEMS

& (57) Abstract: Techniques are disclosed for controlling and managing virtual machines and other such virtual systems. VM exe-
of cution approval is based on compliance with policies controlling various aspects of VM. The techniques can be employed to benefit
&= all virtual environments, such as virtual machines, virtual appliances, and virtual applications. For ease of discussion herein, assume
& that a virtual machine (VM) represents each of these environments. In one particular embodiment, a systems management partition
(SMP) is created inside the VM to provide a persistent and resilient storage for management information (e.g., logical and physical
VM metadata). The SMP can also be used as a staging area for installing additional content or agentry on the VM when the VM
is executed. Remote storage of management information can also be used. The VM management information can then be made
available for pre-execution processing, including policy-based compliance testing.

=

WO 2008/049005 PCT/US2007/081646

AUTOMATIC OPTIMIZATION FOR VIRTUAL SYSTEMS

Inventors:
Joseph Fitzgerald
Oleg Barenboim

RELATED APPLICATIONS

| [0001] This applicatioh is related to U.S. Application No. (not ‘yet known), filed
October 17, 20006, titled “Control and Management of Virtual;Systems” <attorney docket
~ number 25077-11991>. In addition, this application is related to U.S. Application No.
(not yet known), filed chober 17, 2006, titled “Registering and Accessing Virtual
Systems for Use in a Managed Systelh” <attorney docket number 25077-11992>, In -
addition, this application is related to U.S. Application N_o. (not yet known), filed October
17, 20006, titled “Enforcément of Compliance Policies in Managed Virtual Systems”
- <attorney docket number 25077-11993>, In addition, this application is related to U.S.
Application No. (not yet known), filed October 17, 2006, titled “Compliance-Based
Adaptations in Managed Virtual Systems” <attorney docket number 25077-11994>.

Each of these applications is herein incorporated in its entirety by reference.

FIELD OF THE INVENTION

[0002] The invention relates to virtual execution environments, and more particularly,
to the control and management of virtual systems such as virtual machines, virtual
[.

appliances, and virtual applications.

BACKGROUND OF THE INVENTION

[0003] Virtual machines are becoming increasingly prevalent and there are a number of
commercial vendors and op\xen source products providing or enabling virtual machine
environments. Such enablement involves getting virtual machine monitors (hosts of
VMMSs) running on a variety of hardware platforrﬂS and then allowing virtual machines

(guests or VMs) to run in those environments.

WO 2008/049005 PCT/US2007/081646

[0004] The VMs themselves are typically stored in vendor-version and implementation-
specific formats, and there are utilities to create them and convert between the formats.
" Within a VM there are typically one or more virtual disks and some additional files
containing description of the VM and the hardware it virtualizes, as well as some optional
files like system snapshots of the VM at various stages of processing. There may also be
a delta, difference, and undo/redo files for changes that are not committed to the VM
virtual disks. In some grid environments (e.g., Globus®) there are the concepts of VM
workspaces that contain virtual disks or partitions, one each for the operafing system

(OS), application, and the data.

[0005]‘ One of the challenges in managing VMs is that VMs can be created in one
vendor’s enviromhent, moved to another vendor’s through a conversion utility, be moved
between hosts (within a single vendor environment) during execution (e.g., VMware®
VMotion, Microsoft® LiveMotion) and be ‘snapshoted, copied, cloned, or templéted.
Each ‘Vendor tool, and implementation has its own proprietary management
instrumentation (e.g., VMware® has Vlrtual Center VMI SDK, etc; Microsoft® has
WMI, System Center Virtual Machine Manager etc), its own repository, VM disk format,
eventing technique and format, logging format and location, VM control file name and
| format. The formats may even differ within a single vendor’s product family, as well as

between versions of a product.

[0006] There are additional vendors like PlateSpinTM PowerConvert, AkimbiT™™ and
Surgient® and others who provide tools and utilities that copy, transform, snapshot,
template, manipulate and proliferate VMs within and between environments and formats.
The original creator of a VM as wellras anyone who wants to manage a VM has a .Very
difficult task in determining who has the VM and is using it, which formats the VM has
been converted to, and where and how many derivatives of the VM exist. Many
enterprises are also trying to create and maintain .central configuration management
databases (CMDBs) which would have a very difficult time keeping up with all the VMs
coming and going. |

[0007] What is needed, therefore, are techniques for controlling and managing virtual

machines and other such virtual systems.

WO 2008/049005 PCT/US2007/081646

SUMMARY OF THE INVENTION

[0008] One embodiment of the present invention provides a method for optimizing
virtual machines (VMs). The method includes computing a delta between a pre-
execution state of a target VM and a post-exécution state of the target VM to determine
changes made to the target VM during at least one of pre-execution compliance-based
adaptation and execution. In response to a change being desirable for permanent use, the
method further includes suggesting and/or deriving a variant of the target VM that
permanently includes the desired change. In response to an adaptation being undesirable
foi permanent use, the method may include discarding that adaptation. In one particular
case, suggesting and/or deriving a variant of the target VM includes suggesting and/or
deriving a VM without previously installed under-utilized‘ applications, thereby
conserving license use. In another particular case, suggesting and/or deriving a variant of
the target VM includes suggesting and/or deriving a VM without unauthorized content
- that is consistently removed by the pre-execution compliance-bésed adaptation. In
another particular case, suggesting and/or deriving a variant of the target VM includes
siiggesting and/or deriving a VM that permanentiy includes security code that is
consistently installed by the pre-execution compliance-based adaptation. The method
may include analyzing adaptations of multiple VMs included in a gr’oiip to determine
commonality of adaptations made. In response to adaptations that are consistently made
to a quorum of the VMs included in'the group, the method may further include suggesting
" and/or deriving variants of all VMs in the group' that permanently include one or more of
those adaptations consistelitly made to a quorum. In another particular case, deriving a
variant of the target VM includes permanently committing one or more adaptations to the
“target VM. The pre-execution compliance-based adaptation may include applying one or
more signature-based compliance policies to one or more signatures associated with the
target VM, wherein the VM signatures are generatedr from physical and/or logical
" metadata associated with the target VM. In another particular case, Computing a delta
between the pre-execution state and the post-execution state includes differencing at least
one of VM content metadata and VM content itself, and capturing changes resulting from

the differencing into a storage, so that the changes can then be analyzed. In one such

WO 2008/049005 PCT/US2007/081646

case, the differencing is carried out using content signature based comparisons. Here, the
content signaturés used in the comparisons can be computed, for example, using oné or
more hashing functions (e.g., MD5 or other suitable signature generation proéess). In
another particular case, computing a delta between the pre-eXecution state and the post-
execution state includes reading delta data created during VM execution, the delta data
indicating VM differences between the pre-execution state and the post-execution state.
In another particular case, the method includes the preliminary steps of getting the pre-
execution state of the target VM, and getting the post-execution state of the target VM.
In another particular case, the method includes computing a delta between a pre-
execution state of a target VM execution platform and a post-execution state of the target
VM execution platform to determine changes made to the target VM execution platform
during at least one of pre-execution compliance-based adaptation and VM execution. In '
response to an execution platform change being desirable for permahent use, the method
may further include suggesting and/or deriving a variant of the target VM execution
platform that permanently includes the desired change. In another particular case, the
method inciudes intercepting a request to at least one of stop or suspehd the target VM,
and preventing the target VM from stopping or suspending until the target VM is
determined to be compliant with the VM compliance scheme. The térget VM can be, for
example, a virtual application, virtual appliance, or other such virtual system or special

purpose virtual process.

[0009] Another émbodiment of the present invention provides one or more machine-
readable mediums (e.g., one or more compact disks, diskettes, servers, memory sticks, or
hard drives) encoded with instructions, that when executed by one or more processors,
cause the processor to carry .out a process for optimizing virtual machines (VMs). This

process can be, for example, similar to or a variation of the methods described here.

[0010] Another embodiment of the present invention provides a system for optimizing
virtual machines (VMs). The system functionality can be implemented with a number of
means, such as software (e.g., executable instructions encoded on one or more computer-

readable mediums), hardware (e.g., gate level logic or one or more ASICs), firmware

WO 2008/049005 PCT/US2007/081646

(e.g., one or more microcontrollers with I/O capability and embedded routines for

carrying out the functionality described herein), or some combination thereof.

[0011] The features and advantages deséribed herein are not all-inclusive and, in
particular, many additional features and advantages will be apparent to one of ordinary
skill in the art in view of the ﬁgures‘ and description. Moreover, it should be noted that
the language used in the specification has been pﬁncipally selected for readability and

instructional purposes, and not to limit the scope of the inventive subject matter.

" BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Figure 1 illustrates a virtual environment configured in accordance with one

embodiment of the present invention.

[0013] Figure 2a illustrates a VM management module configured in accordance with
an embodiment of the present invention.

[0014] Figure 2b illustrates different cOntfol points and actions that can be called by the
event handler module shown in Figure 2a, in accordance with an embodiment of the
present invention. |

[0015] Figure 2c illustrates a dispatcher command shell of the command interface
- module shown in Figure 2a, configured in accordance with an embodiment of the present
invention.

[0016] Figure 2d illustrates request/event intercept mechahiéms used to. enable
‘managed execution environments, in accordance with an embodiment of the present
invention.

[0017] Figure 3 illustrates a virtual environment configured with a management

partition in accordance with one embodiment of the present invention.

[0018] Figure 4 illustrates an overall management and control scheme for a virtual

environment, in accordance with one embodiment of the present invention.

[0019] Figure 5 illustrates a registraﬁon module and VM management data storage

facility configured in accordance with one embodiment of the present invention.

WO 2008/049005 PCT/US2007/081646

[0020] Figure 6 illustrates a VM registration process configured in accordance with one

embodiment of the présent invention.

[0021] Figure 7 illustrates a VM acquisition process configured in accordance with one

embodiment of the preseht invention,

[0022] Figure 8a illustrates a policy enforcement process for a virtual environment, in

accordance with one embodiment of the present invention.

[0023] Figures 8b-d each illustrate a get VM data process configured in accordance

with one embodiment of the present invention.

[0024] Figures 9 illustrates a VM adaptation process configured in accordance with one

embodiment of the present invention.

[0025] Figure 10 illustrates a combined learn and optimization process in accordance

with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0026] Techniques are disclosed for controlling and managing virtual machines and
- other such virtual systems. Traditional VMM/host enVirbnments employ the concept of
admission control, which is quantitativé in nature, in that VMs are only allowed to
execute if there are enough resources (e.g., memory, swap space and bandwidth) for the
VM to execute and run. One techniQue described herein is qualitative, in that VM
execution approval is based on compliance with various policies, such as those regarding
- one or more of VM content, VM characteristics, execution context (e.g., production vs.
test), change management, configuration manégement,v asset management, version
control, security management, license management, and resource management. These
policies can be stored in a single or multiple locations. They can be contained in files,
databases, directories? repositories, or-other exfernal policy stores, such as a CMDB,
inventory database, or version control system. The techniques can be employed to benefit
all virtual environments, such as virtual machines, Vii'tual appliances, and virtual
applications. For ease of discussion heréin, assume that a virtual machine (VM)

represents each of these environments.

WO 2008/049005 PCT/US2007/081646

General Overview
[0027] An effective way to'maﬁage management information associatedl with a VM is
to create a new, resilient location to store the management information. This location can
be attached to the VM or within thé VM itself, in accordance with orie embodiment of the
present invention. Creating a new virtual partition or disk inside the VM provides an
ideal location that will survive transportation, conversion etc ”and can evén‘be used for
~ introspection from the VM itself, as will be explained in turn. Such a virtual partition or
~disk is referred to herein as a systems management partition (SMP). This SMP travels
, with other VM disks/partitions,‘ such as the operating system, applications, and data
drives. Conversion, migration, and transformation utilities can be used to tran’sport'the
SMP transparently, with such utilities being unaware that the SMP is for VM

management. - The VM management information can be stored across executions and

vendors.

[0028] The management information generally includes relevant metadata about the
VM contents, which is above and beyond metadata about the infrastructure necessary to
~ start or instantiate the VM (e.g., how many CPUs it needs or the type of architecture it
runs on, for example x86). As is known, there are Vafious types of metadata, including N
logical and physical metadata. Physical metadata relates to the actual location of a data
item and the characteristics of that item’s storage system. Physical metadata includes, for
example, data item size, tiines when thé data item was accessed/modified, and data item
access permissions. Logical metadata describes the contents of 'ar data item or collection,
independent of that data’s actual location. Logical metadata includes, for éxample, a
‘descriptibn of what the data item represents (e.g., VM transformation log), provenance
information (e.g., the name and description of a data item’s creator or modifier), and
_ other information that allows the data to be interpreted. In addition, replication metadata
refers to vinformation that describes the relationship between logical data identifiers and
one or more physical instances of thé data. The management information can also
include historical VM metadata (e.g., uptime/downtimé, crashes/blue screens) or time-
based VM metadata (e.g., VM to expire after X days, or do not run VM after
mm/dd/yyyy), historical performance data (e.g., number of transactions and/or jobs by

WO 2008/049005 PCT/US2007/081646

VM), historical VM system log, and historical VM event log information. Such historical
information can be used in a system management scheme to improve user experience as
well as overall system performance and efficiency. For instance, historical use data for a
particular VM may indicate, for example, what execution platform that VM performs best
(or Worst) on based on the number of crashes or abrupt terminations, or what operator has
the best (or wdrst) test performance using that VM, or what developer/user has the most
(or least) run time on that VM, or how many times that VM has been copied or translated
into new VMs, or how fast that VM executes to completion relative to other comparable
VMs, or how that VM is only used during a certain time period and/or for a certain
purpose, or how that VM always (dr never) executes certain installed software, or how
that VM is used in the same geographic location. Numerous such useful management
data points can be monitored, extracted, and/or.otherwise derived for use in a giVén
system management scheme. In addition, note that historical use data can be collected
fromv multiple SMPs and/or other management data storage locations. Further note that
those SMPsrand/or other management data storage locations can be all included in one
enterprise (intra-enterprise historical use data collection) or from multiple enterprises

(inter-enterprise historical use data collection).

[0029] * In accordance with one embodiment of the present invention, management
infonnation includes metadata about the VM itself, VM logs, and VM events (e.g., such
as creation, execution, snapshoting, templating), as well as metadata about the host and
host environment (e.g., such as vendor, version, location, author, usage, licensing and '
other such pertinent host data). By storing such information within the VM container (or
otherwise making such information accessible to the VM), it is possible to effectively
track what a VM is doing and where it has been (similar to a flight recorder or “black
box” that contains information about an airplane). The persistence and resiliencé of the
SMP allows for the storing and accessing of security certiﬁcates, VM IDs or “tattoos”,
signatures (as will be explained in turn), and content metadata about the other VM
partiti‘ons. The SMP can also be used as a staging area for installing additional content or
agentry on the VM when the VM is executed. Management agents, software, settings,

and content can be placed on the SMP pre-execution, or by a process running outside the

WO 2008/049005 PCT/US2007/081646

VM and then later referenced by the VM during execution, startup, or shutdown to alter

the VM.

., [0030] When a VM is created, discovered, or registered, aﬁ SMP is dynamically added
to the VM, in accordance with one embodiment. Templates and clones can also have the
SMP added at the time of creation or later discovery. The SMP can be created, for
example, by modifying a VM configuration file to reflect the new partition. Capturing
the management information can be achieved in a number of ways, as will be apparent in
light of this disclosure. For instance,. information about the VM available in the host |
environment and vendor control files can be queriéd and the output saved as a file in the
SMP. In addiﬁon, any host environment activity that touches the VM (e.g., starting,
stopping, snapshoting, and other such activity) can be written to an activity log stored on
the SMP. This host activity can be detected, for example, by an agent that régistérs for
events in the host environment and then writes the event entry to the log on the respective
VM’s SMP. Information regarding the vendor, version, and technique used to create or
manipulate the VM, as well as any other extracted metadata (e.g., physical and logical),
can also be written to the SMP. The partition se‘{\tings in the VM description caﬁ be set to
force the changes to be committed to the’VM when the VM execution is complete,

regardless of the other partition settings.

[0031] The extracted management information (including any created, derived, and/or
harvested metadata) about a VM can then be made available (e.g., on the SMP itself, in a
dedicated enterprise storage area, and/or on a remote management server) for pre-
execution proceséing (i.e., before the VM is initiated or any instruction contained in the
VM is executed). In addition, the extracted management information enables the control
of the execution of VMs across an enterprise based on what the content of the VM is (or
isn’t), and as well as the control of whb can execute what. VM, where the VM can
execute, when it can exécute, and why it is being requested. The fact the VM machine
need not be running during this pre-execution processing provides many advantages. For
example, the ability to determine that malware (e.g., viruses, rootkits, worms, and other
such bad intent code) is pfesent in the VM before the VM is executed allows for

eradication before the toxic payload actually has any opportunity to execute, even just a

WO 2008/049005 PCT/US2007/081646

few instructions. Knowing what software and services will be started upon VM
activation can be used to prevent or delay execﬁting of the VM to enforce policies and

optimize licensing strategies.

[0032] | Techniques described herein overcome numerous problems associated with
conventional VM systems, to provide effective: VM control and management. qu
example, the use of VMs in production environments typically involves operators using
- runbooks, scripts, and workflows to manage fhe VM startup (boot), shutdown, relocation,
pause, etc. These processes whether manual,‘semi-automated, or automated explicitlyv
reference VMs by name. When new versions of a VM are provided, the procedures and
automation scripts need to be changed. Distributed systems, geographiéally separated
datacenters, and backup sites create an additional set of challenges. The new VM needs
to be distributed and all references to the new VM need to be changed at multiple
locations, both in a coordinated fashion. In accordance with one embodiment of the
present invention, VMs can be referenced or otherwise addressed using a unique tattoo
that uniquely identifies the VM even though its explicit name (e.g., VM42) is renamed in

a file system.

[0033] Also, when VMs are shutdown or quiesced,(there are settings that govern
whether any updates or changes made to the VM will be accepted or discarded. On one
hand, chariges may be discarded at shutdown creating false positives in reports and
databases. On'the other hand, chénges that are inappropriate, unauthorized or destructive
may be committed when the VM is shutdown. One embodiment of the present invention
operates to manage the VM change or “evolution” process based on policy and behavior.
In addition, one advantage of VMs is that they can be readily cloned and created.
Templates can be created that allow a VM to be used as a model for many users of that
VM. Another embodiment of the present invention is configured to automatically dérive
what changes are being méde to copies, clones, and template-derived systems and evolve
new VMs that embody those chaﬁges. In one such case, when multiple copies of VMs
are executed, trends or patterns of VM usa;ge are examined. New VMs are then created

‘that embody changes based on analysis of that historical data.

10

WO 2008/049005 PCT/US2007/081646

[0034] Furthermore, many areas within IT organizations and vendors use VirtuéliZation
and VMs to enhance, automate, and optimize their functional area. Such a VM usually
operates in isolation and when the goal of its work is achieved, the VM is typically not
passed on to other areas in the development to production lifecycle. Each area typically
distills the components of their application or product, and packages the compohents
using traditional packaging tools and formats. Each subsequent arca then takes those
packages and installs them on their systems, and then creates VMs from that resulting
system. This process is repeated multiple times. Software vendors and integrators go
through the same process in their software development, test, and release lifecycles and
ultimately create installation packages that have to be installed by the customer. Such
redundant ot duplicative efforts are Wasteﬂll of enterprise resources. Another
embodiment of the present invention is configured to manage a lifecycle where VMs are
passed from vendor to eusterner or between departments, thereby reducing redundant
efforts within an enterprise. = Such an embodiment can be configured with various
capabilities as discussed herein, including: the ability to verify a VM complies with
policy before it is allowed to execute; the ability to create and adapt a VM in accordance
with policy; the ability to provide reliable, resilient infoﬁnation about the VM (e.g.,
including information regarding its contents, pef‘forfnance, history, author, etc); the ability
to verify the integrity of and authenticate a VM; the ability to inspect a VM without
having to execute the VM; and the ability to register, dynamically translate, transport and
decrypt a VM when needed. ' |

[0035] Another embodiment of the present invention is configured to control and
sometimes ‘prevent VM execution in a given environment. This ensures that only
enterprise-safe VMs are allowed to execute and update, and unsafe or unauthorized VMs
are removed or disabled. In addition, unmanaged'VMs (those not included in the
managedb system of the enterprise) will nof be able to execute on managed execution
platforms of the managed system. Likewise, unmanaged execution platforms (those not
included in the managed system of the enterprise) will not be able to execute managed
‘VMs. In short, only managed VMs and managed execution platforms can be used. Any

other VM/platform combination will not function.

-1

WO 2008/049005 PCT/US2007/081646

System Architecture 5

[0036] Figure 1 illustrates a virtual environment configured in accordance with one
embodiment of the present invention, VM management and/or control are enabled at
both the individual VM level and the system level. As can be seen, this example system
includes an enterprise communicatively coupled to a remote VM service center via a
network 113. The enterprise can be, for example, a small company included in a single.
office suite or a Ierge company having a multi-building campus over which the enterprise
is spread. Likewise, the enterprise can be distributed over an even larger geographic area
(e.g., regienal, national, or international). Alternatively, the enterprise can be a home-

based network.

[0037] The enterprise in this example embodiment includes an enterprise storage
facility 109, an enterprise VM manager 111, and a number of computing environments,
generally referred to as execution platforms 101. Each execution platform 101 can be
implemented, for example, as a genefal purpose computer (e.g., desktop, laptop), server
(e.g., file, application, email, and/or web servers), or special-purpose computer appliance
(e.g., gateway or network interface, firewall, set-top box). Alternatively, or in addition to,
an execution platform 101 can be implemented as a mobile communication device (e.g.,
cellular or satellite telephone, personal digital assistant, smartphone) or a GPS system

(e.g., vehicle or personal navigation).

[0038] Each execution platform 101 includes a host or virtual machine monitor
(host/‘VMM- 103) running on that platform. The hestN MM 103 can be implemented with
conventional or custem technology, so as to allow a virtual machine (guests/VM 107) to
run therein. Each guests/VM 107 can be configured to carry out some specific function
- or set of functions (as typically done), and is further configured with a systems
management partition (SMP) for storing the VM management infortnation, as will be
discussed in turn. Also running in the host/VMM 103 is a management agent (m-agent)
105. In alternative embodiments, the agent 105 can be implemented outside the
host/VMM 103, so that it executes directly 0 n the execution platform 101. In either case,
the agent 105 is programmed or otherwise cenﬁgured to provide access to the SMP of the

guests/VM 107, and to provide management and control functions as described herein.

12

WO 2008/049005 PCT/US2007/081646

The management agent 105 will be discussed in more detail with reference to Figures 2a-

C.

[0039] The enterprise VM manager 111 can be implemented, for example, as a network
computer appl_iance or enterprise server that is programmed or otherwise configured to
provide VM management and control functioné. as described herein. In particular, the
enterprise VM manager 111 can optionally be used to carry out the functionality of the
management agents 105 for each of the deployed guests/VMs 107. The enterprise VM
manager 111 can access the entc'rprise storage facility 109 to obtain, for example, copies
of the guests/VMs 107 themselves and VM management information for carrying out the
management and éontrol functions. The enterprise VM manager 111 can also be
configured to carry out a digital rights management (DRM) scheme (e.g., for monitoring -
and tracking licénse usage of host applications, content, and/or the guests/VMs 107
themselves, and ensuring licensing obligations are satisfied). In another embodiment, the
enterprise VM manager 111 and the storage 109 can be implemented with a CMDB. The
enterprise VM manager 111 will be discussed in more detail with reference to Figures 2a-

~

C.

[0040] The remote VM service center includes a VM management server 115 that can.
be implemented with conventional or custom server technology, so as to provide VM
management and control functions as well as access to. VM management information 117
as described herein. The VM management information 117 can be stored in any number
of storage facilities (e.g., object-oriented or relational database, or an indexed look-up :
table). Many server and storage schemes can be used, depen(iing on factors such as the
amount of information 117, as well as desired access speeds and query/response
complexity. The VM management and control functionality, as well as example
structures of the VM management server 115, will be discussed in further detail with

reference to Figures 2a-c.

[0041] Note that, just as with the enterprise VM manager 111, the VM management
server 115 is optional, depending on the desired management and control scheme. In
particular, VM management and control can be implerhented at the guest/VM 107 level

(e.g., via SMP agentry), the host/VMM 103 or platform 101 level (e.g., via m-agent 105),

13

WO 2008/049005 PCT/US2007/081646

the enterprise level (e.g., via manager 111), or at the remote network level (e.g., via server
115). Likewise, any combination of these management sites can be employed to carry out
various portions of the managerrient and control scheme, as will be apparent in light of

this disclosure.

[0042] As previously explained, the VM management information 117 generally
includes any information that can be used in managing and/or controlling guests/VMs
107 of the enterprise, and includes, for example, both physical and logical metadata such
as information about each guest/VM 107 (e.g., vendor, version, content, structure, activity
logs, access permissions, authorized users, and technique uséd to create or manipulate the
guest/VM 107) and information about each host/VMM 103 environment (e.g., OS, file
system, applications and executable content, licensingr data, and control files). The VM
management information 117 may further include policies (e.g., security compliance rules
such as security software and patches that are required prior to execution of a guest/VM
107, and licensing requirements to prevent use of unauthorized /software) that apply to
each guest/VM 107 and/or host/VMM 103, so that enforcement of those policies can be
carried out prior to executing the VM. For instance, such enforcement may occur after a
VM start request is received and prior to executing the target VM in response to that VM
start request. Alternatively, such enforcement can be made prior to executing the target
VM but independently of any start ‘request (e.g., such as in the case where bulk
compliancy testing is carried out on a plurality of VMs Being introduced into a managed
system). The VM management infofmation 117 may further include copies of the
guests/VMs 107, and well as‘any DRM data (e.g., number of available licenses for a
given application and number of those licenses currently in-use) associated those

guests/VMs 107.

[0043] The network 113 can be any type of communications network, such as a local
area network (e.g., intranet), wide area network (e.g., cable networks, Il}ternet), cellular or
satellite network, or some combination thereof, Alternatively, the network 113 can be
implemented with direct connections between each execution platform 101 and the VM
management server 115, and/or direct connections between each execution platform 101

and the entérprise VM manager 111. In general, the execufion platform 101, the

14

WO 2008/049005 PCT/US2007/081646

enterprise VM mahager 111, network 113, and VM management server 115 may be in
communication via any type of wired and/or wireless connections, using a wide variety of
communication protocols and transmission techniques (e.g., TCP/IP, HTTP, FTP,
TDMA, CDMA, HTTPS, SFL), security schemes (e.g., VPN, encrybtion), ¢ncodings or .
formats (e.g., XML, HTML), and inter-network inteffaces, as needed to allow for desired

communication.

[0044] As previously explained, enabling a virtual environment typically involves
‘getting a host/VMM 103 running on a execution platform 101 and then allowing a VM
(such as a guest/VM 107) to run in that environment. ‘The hosts/VMMs 103 are
constrained by hardware and instruction set architectures, and each guest/VM 107 can be
initially prepared for each vendor-specific host environment, as conventionally done. In
particular, the guests/VMs 107 are typically derived from physical machines that are then
converted into VMs via a process of physical-to-virtual conversion, or P2V. The
- guests/VMs 107 can also be created by installing software on the guest directly, where the
installation software believes it is installing on a physical machine, when in fact it is
installing on a VM. There are a number of software products and utilities that help create
and promote proliferation of VMs (e.g,, such as products from AkimbiT™™, PlateSpin™™,
VMware®, and others). Once a guest/VM 107 is created, it can then have a systems
management partition (SMP) installed as discussed herein, in ac_cordanée with ‘one
embodiment of the present invention. The SMP can be used for storing the VM
management information for that particular guest/VM 107, as well as management and/or
control agentry. An example SMP generation process\ is discussed in further detail with
reference to Figures 2a and» 3. The guests/VMs 107 themselves can be stored (e.g., in
storage facility 109 and/or database 117) as files in any number of formats (e.g., virtual
machine format of one or more vendors), or as clones and templates of model virtual
machines previously made.

[0045] In one embodiment, each host/VMM 103 can-have its own vendor-specific
proprietary format for storing the guest/VM 107, clones, and templates on the \enterpri‘se
storage facility 109, which can be, for example, a file server, NAS (network-attaéhed

storage), SAN (storage area network), or other suitable storage mechanism (e.g., intranet,

15

WO 2008/049005 PCT/US2007/081646

removable drive, CD, DVD, tape, USB stick, etc). The enterprise storage facility 109
may also store management information for the guests/VMs 107, as well as management
and/or control agentry (just as that information can be stored at the remote VM service
center). Thus, the VM management information, as well as any management,an&/or
control agentry can be stored in any one or combination of places within the virtual
environment (on an SMP of a guest/VM 107, on the host/ VMM 103 or platform 101, in
the enterprise storage facility 109, and/or in the VM management information database

/
117). |

[0046] In order to execute a guest/VM 107, enly an available host/VMM 103 and read
access to the files(s) representing the guest/VM 107 (e.g., referenced by an explicit file
name or logical file name) are required. In an enterprisé environment such as that shown
in Figure 1, many different departments and groups have their own hosts used in
development, testing, QA, support, documentation and other areas. A guest/VM 107 can
be passéd between groups or accessed from a shared location on the enterprise network
such as enterprise storage facility 109. A guest/VM 107 can also be emailed, as many are
typically implqmented with just one or two files contained in virtualized machine files

and parameters.

-[0047] Although multiple execution platforms 101 are shown networked to a remote
VM service center, other embodiments may include a single execution platform 101
configured with a guest/VM 107 and a management agent (m-agent) 105 that are

~executable on a host/VMM 103, as will be discussed in turn. In additioh, some
embodiments may include other and/or different modules and functionality. Likewise,
other embodiments may lack modules and functionality described herein and/or distribute
the described functionality among the modules in a different manner (e.g., storagé facility
109 can be integrated into manager 111, and/or storage 117 can be integrated into server

115).

Management Module

[0048] Figure 2a illustrates a VM management module configured in accordance with
an embodiment of the present invention. As previously explained, the functionality of

this module can be implemented, for instance, as the management agent 105, as the

16

WO 2008/049005 PCT/US2007/081646

enterprise VM manager 111, or on the VM management server 115, as discussed with
reference to Figure 1. Further note that the functionality illustrated in Figure 2a can be
distributed amon.g the management agent 105, enterprise VM manager 111, and/or VM

management server 115.

[0049] In this example embodiment, the VM management module includes an SMP
generator 201, a registration module 203, an aceess VM module 205, an enforce modﬁle
207, an event handler 217, an IO (input/output) module 209, an adapt VM module 211, a
learning module 213, an optimization module 215, and a request handler medule 219.
Each of these modules can be implemented in software. However, other embodiments
may be implemented in hardware (e.g., gate-level logic) or a combination of hardware
and software (e.g., microcontroller with embedded routines for carrying out the.particular

function’sgas discussed herein), if so desired.

[0050] The SMP generator 201 is programmed or otherwise configured to dynamically
add an SMP to a guest/VM (thereby producing a guest/VM 107). This SMP generation
process can take place, for example, when the VM is created, discovered, or register.ed.
Likewise, templates and clones can also have the SMP added SMP by generator 201 -at
the time of creation or later discovery. In more detail, a VM typically has a configuration
file that can be modified to add the SMP. In one particular embodiment, the SMP
generator 201 is configured to make this modification. For instance, in a VMware®
environment, the VMX file (which describes the VM and all of its hardware including
drives) can be edited by the SMP generator 201 to add the SMP. Similar files and/or
* commands also exist iﬁ other VM vendor environments (e.g., Microsoft® Virtual Server,
XeﬁTM, Linux® VServerI™, coLinuxTM, etc), so as to allow for the addition of the SMP.
The SMP generator 201 can be configured to operate with a number of different vendor
environments, configuration files, end/or command - sets. Alternaﬁvely, the SMP
generation process can be carried out manually, if so desired. The SMP is not bootable
and can either be hidden to the guest/VM 107 during execution or available to the
guest/VM 107 in a limited fashion (e.g., read only). In one particular embodiment, the
format of the SMP is FAT32, which allows for easy mounting from inside or outside of

the guest/VM 107, from both Windows® and Linux®. Other drive formats can be used

17

WO 2008/049005 PCT/US2007/081646

as well, depending on factors such as the underlying OS and desired mount/unmount
complexity (e.g., HFS for Macintosh® . systems). Figure 3 illustrates a virtual
environment configured with an SMP, in accordance with one embodiment of the present
invention. As can be seen, a target guest/VM 301 is processed by the SMP génerator 201
to produce a guest/VM 107. Within the gﬁestN M 107 (as well as the target guest/'VM
301), there are one or more virtual disks 303 and one or more VM description files 305
(which describes_the VM and the‘hardware it virtualizes, as well as some optional files
like system snapshois of the VM at various stages of processing). There may also be a
delta, difference, and undo/redo files for changes that are not committed to the VM
virtual disks 303. After processing by the SMP generator 201, the gueét/V M 107 further
“includes the SMP 309, which cah be used for stoﬁng management information as well as
agentry for managing and controlling the guest/VM 107. Access to the SMP 309 is
provided by the m-agent 105.

[0051] The registration module 203 is programmed or otherwise configured to register
VMs (such as guests/VMs 107) that will be used in a‘managed system according to an
embodiment of the present invention. In one such case, the registration module 203
operates to register both logical and physical names of a VM, and to then transfer the VM
bits to a file server repository (e.g., storage facility 109 or database 117). The registration
module 203 may also be configured to translate the VM to any or all target host
environment variants (e.g., Microsoft® Virtual Server, VMware®, XenT™, Parallels, etc),
and to transfer those variants to the repository as well. The registration module 203 may
also be configured to compress and/or encrypt the VMs (e.g., using conventional or
cusfom compression/encryption techniques), if so desired. The registration module 203
may also be configured to transfer the VMs to their intended deployment destinations; as
part of a pre—caching or staging scheme. Such pre-caching/staging can be based on, for
example, historical use statistics and VM functionality (e.g., VMs that perform function.
X are historically requested for use on node ten of enterprise network). The historical use
data can be stored, for instance, at storage facility 109 or database 117 and exploited by
VM nianager 111. The registration process carried out by module 203 is discussed in

further detail with reférence to Figures 5 and 6.

18

WO 2008/049005 PCT/US2007/081646

[0052] The access VM module 205 is programmed or othérwise' configured to access
stored VMs (such as guests/VMs 107) and make them available for use in a managed
system accofding to an embodiment of the present invention. In one such case, the access
module 205 is configured to implicitly request a VM via logical Aname, which is resolved
into an explicit name. The explicit named VM is then looked-up ‘to find source
location(s) to get the physical VM bits. The acquired VM bits are then transferred to, or
directly referenced by, the target destination. That destination can be, for example, a
| particular host/VMM 103 (or a set of hosts/VMMs 103 to which the acquired VM is
copied) or to a cache or other designated storage locatlon in Wthh the VM can be stored
| or effectively staged for subsequent use. The access module 205 may also be configured
to decompress and/or decrypt the VM (e.g., after transfer) using techniques
complementary to any compression/encryption techniques used when storing/registering
the VM, if applicable. The éccess module 205 may also be configured to translate the
VM to various target host environment formats (e.g., Microsoft® Virtual Server,
VMware®, XenT™, Parallels, etc), assuming thosé VMs have not been pre-transiated
(e.g. , at the registration process). The acquiéition process carried out by module 205 is

discussed in further detail with reference to Figure 7.

[0053] The enforce module 207 is programmed or otherwise configured to enforce a
VM compliance scheme in a managed syétern according to an embodiment of the present
invention. In one such case, the enforce module 207 is configured to execute policy-
based checking of the VMs, as well as their respective hosts (such as host/VMM 103)
and/or the requestor. For instance, the enforce module 207 can be configured to check if
a guest/VM 107 is properly licensed, and/or if the target host has the proper security
software and patches installed, and/or to check if the requestor has access permission to
use the guest/VM 107. The context and time of the request can also be checked for

policy compliance to enforce policies regarding execution windows (e.g., M-F, 9-5) and |
intended uses (e.g., production vs. test). The enforce module 207 may also be configured
to call or otherw1se execute plug-ins to assist in the enforcement of the compliance
scheme. Further note that the enforce module 207 may be conﬁgured with exceptions to

various policies (e.g., administrator level access may be exempt from policy or certain

19

WO 2008/049005 PCT/US2007/081646

files known to be good may be excused from the virus scanning process). The enforce
process cartied out by module 205 is discussed in further detail with reference to Figures

8a-8d.

2]

-[0054] The adapt VM module 211 is programméd or otherwise configured to adapt a
non-compliant VM (such as a gueét/VM 107) into compliance in a managed system
.accor(\iing to an embodiment of the present invention. .Thus, the enforce module 207
applies the policies and detects non-compliances, and the adapt VM module 211 makes
the changes necessary to bring the VM into compliance. In one such case, the adapt VM
module 211 is conﬁgured rto adapt a non-compliant VM into compliance by making
changes to the VM, such as direct manipulation/insertion of files, parameters, settings,
and/or data into the VM. The adapt VM module 211 may also be(configured to call or
otherwise schedule other agents or processes to correct non-compliances. Example non-
compliances that can be ﬁked by the adapt VM module 211 include missing security
software (e.g., install virus scanning software, install éecurity patches to the host OS), bug
fixes and hotfixes, configuration (e.g., require certain user-configurable security settings,
such as firewall level of medium or higher), and licensing issues (¢.g., removal/flagging
of vunauthorize_d or bootleg software and DRM conformance based on number of available
licenses). There are also non-co’mpliances not contained in the VM which can be
addressed by the adapt VM module 211, such as the registfétibn ofthe VM in a CMDB‘ or
Asset Management database or integration with a license manager or- server to acquire
appropriate licenses for the execution. The adapt process carried out by module 211 i‘s

discussed in further detail with reference to Figure 9.

[0055] The learning module 213 is programmed or otherwise configured to learn which
VMs (such as guests/VMs 107) require what adaptations in a managed system according
to an embodiment of the present invention. In one such case, the learning module 213 is
configured to derive changes made during the adapt process (e.g., just after compliance is
satisfied), and to capture thoée changes into a profile database (e.g., stored on SMP 309 of
guest/VM 107, or in the storage facility 109, or in database 117). Likewise, changes
made to the VM since its startup can Be captured; Such captured data provides insight

into more efficient VM management. For example, such data can be analyzed to detect

20

WO 2008/049005 PCT/US2007/081646

that certain service packs are reapplied every time (not committed) a particular guest/VM
107 is used. Likewise, software that is consistently re-installed or removed during each
VM use session can be identified. Such learning enables opﬁmization, which rcan reduce
repetitive or consistent adaptations that can be permanently integrated into a VM. The
learn process carried out by module 213 is discussed in further detail with reference to

Figure 10.

[0056] The optimization module 215 is programmed or otherwise conﬁgured to -
~ optimize the VMs (such as guests/'VMs 107) in a managed system according to aﬁ
embodiment of the present invention. In one such case, the optimization module 215 is
configured to analyze the changeé detected during the learning procéss, and to suggest
and/or derive optimized variants of the VM. For example, the optimization module 215
may be configured to derive a new (optimized) VM without applibations that were
installed, but are never or rarely executed (thereby saving licenses for other uses, in
accordance with a given DRM scheme). Likewise, a patch or security updaté that is
consistently installed during adaptation of a VM CAn be pefmanently installed
(committed) for that VM. The optimization process carried out by module 215 is-

discussed in further detail with reference to Figure 10.

[0057] The event handler 217 is programmed or otherwise configured to provide VM
host (such as host/VMM 103) and utility integration by logging events that affect a VM
(such as a guest/VM 107) in a managed system according to an embodiment of the
present invention. In one such case, various events (_e.g., starts, stops, conversions,
snapshoting, and other such activity) are captﬁred, hooked, or otherwise intercepted by
the event handler 217 and subsequently logged to the corresponding VM’s SMP. For
example, events for multiple hosts (e.g., VMware® host, Microsofit® host, XenT™M host)
can be intercepted by the event handler 217 upon execution. Likewise, events for
multiple utilities (e.g., VMware® VirtualCenter, PlateSpinT™ PowetConvert) can be
_intercepted or otherwise forwafded to the event hefndler 217 upon execution. One
example event handler 217 flow is for VM execution (starting and stopping VM), which
is as follows:

a) Guest/VM 107 is powered on;

21

WO 2008/049005 PCT/US2007/081646

b) Start event is sent to the event handler 217,

- ¢) Event handier 217 writes the start event to the SMP of the guest/'VM 107;

d) Guest/VM 107 is powered 6ff; '

e) Stop event is sent to the eVent handler 217; and 7

f) Event handler 217 writes the stop event to the SMP of the guest/V M 107.
Note that evénts_ can still be 'w»ritten to the SMP (as it is mounted or otherwise available
via its host) even when the guest/VM 107 is powered off. Another example event handler
217 flow is for VM conversion from one format (e.g., VMware®) to another format (e.g.,
Microsoft®), which is as follows:

a) Guest/'VM 107 is converted from one vender format to another;

b) Convert event is sent to the event handler 217;

¢) Event handlér 217 writes the convert event to the SMP of the pre-
conversion guest/VM 107 (e.g., effective entry: “converted to Microsoft® VM on Jan. 1,
1999); énd ’

d) Event handler 217 writes the convert event to the SMP of the post-
conversion gﬁest/VM 107 (e.g., effective entry: “converted from VMware® VM on Jan.
1,1999”). |
In this examplé, the conversion process is intercepted and logged. Note that oﬁce a
request for canersion is detected, the new VM resulting from the conversion process can
be initiated into a managed systém via the registration process as discussed herein, for
example, with reference to Figure 6. Such event intercept-triggered registration can be
employed for any type of VM translation, conversion, creation, and oither such processes
resulting in new VMs to be registered for uSe» in a managed system (e.g., convert process
= convert process + registration ﬁrocess for new VM). Another exanﬁple event handler
217 flow is for detection of a VM has been converted from one format to another (after
the fact), which is as follows:

a) Guest/VM 107 is converted from one vender format to another (no convert
event is sent to the event handler 217, as conversion utility is not hooked);

b) Post-conversion guest/V M 107 is powered on;

c) Start event is sent to the event handler 217;

22

WO 2008/049005 PCT/US2007/081646

d) Event handler 217 reads the SMP of the post-conversion guest/'VM 107, |
and learns that the guest/'VM 107 was a VMware® VM at the last managelﬁent control
point; ‘ |

e) Event handler 217 writes the convert event to the SMP of -the post-
" conversion guest/VM 107 (e.g., effective entry: “discovered as a Microsoft® VM oh_J an.
1, 1999 from VMware® VM); and , ,

- 1) Event handler 217 w;‘ites the conveft event to the SMP of the pre-

conversion guest/VM 107 (e.g., effective entry: “converted to Microsoft® on Jan. 1,
1999”). ‘
In this example, the initial conversion process was not hooked (for what ever reason, such
as not configured or intercept mechanism was temporarily suspended). Thus, the event
handler 217 effectively detects that a convers%on (from a VMware® VM to a Microsoft®
VM) has taken place, aﬁd then logs the detected activity.

[0058] The event handler 217 effectively provides a control point to allow a program or
process to intercept the start VM process (or other such events) so there are several ways
to force a request through. In one particular case, the event handler 217 intercepts file
system requests for the target VM and does nbt return control until some desired action or
actions have completed. Figure 2b illustrates different control points and example actions
that can be called by the event handler module 217, in accordance with an embodiment of
the present invention. In the pre-execution mode, when a start reque'st is received, it is
| intercepted by the event handler 217, and various pre-execution processes are called or
otherwise verified, such as registration (e.g., if VM is not registered, then tattoo and
metadata extraction processes can be engaged as discussed herein), policy enforcement
(e.g., apply given policies to content of VM), adaptation (e.g., make necessary changes to
VM to achieve compliance with policies), and cémmit/discard (e.g., permanently adopt
changes, or mark changes as “do no\t commit”). In the execution mode, commands such
)as stop, suspend, log, snap, and commit/discard can also be intercepted by the dvent
“handler 217, and various processes‘ are called or otherwise verified, such as an
“execution-watcher” module or monitoring program to ensure compliance‘ is not

compromised during execution. In the post-execution mode, when a stop request is

23

WO 2008/049005 PCT/US2007/081646

~ received, it is intercepted by the event handler 217, and various post-execution processes
can be called or otherwise Veriﬁed, such as learn (e.g., identify what changes have been
made to VM), optimize (e.g., adopt VM to permanently contain certain or all changes
made), and commit/discard (e.g., permanently adopt changes, or mark changes as “do not
corrlmit”).

[0059] In one particular embodiment, the execute/start intercept point is implemented
by placing a wrapper in front of the start VM process so the event handler 217 gets called
first and pre-execution processing can then be executed. After pre-execution processing,
if ok to execute (e.g., VM complies with all content policies), then the event handler 217
directly invokes the start VM request. In another embodiment, the execute/start intercept
point is effectively forced by changing the VM description file so the VM fails to start
every time. The failure event is then reported to the event handler 217 by a hook, which
initiates pre-execution processing. After pre-execution processing, if ok to execute (€.g.,
VM complies with all content policies), then the event handler 217 is configured to
temporarily fix up the VM description file to allow normal start event flow. Other
example VM management functions and their respective intercept event/control points
include:

e Metadata creation/VM discovery - hook into the VM creation, import and
registration processes to initiate’ or queue requests to generate VM metadata as
VMs are “discovered”.

e VM detection - Optionally intercept file system requests to the VM file system
(e.g., VMFS for Vmware®) to detect creation of new VMs.

e VM detection - Scan disks, directories, SANs, and media looking for VMs based
on name (*.VHD, * VMDK, etc) or inspect files (e.g., open and read them)
looking for known VM formats. ,

e Pre-execution control - Create an exit or method dispatch at strategic points in the
VM start process on the host to force a compliance test (e.g., check VM itself or
VM metadata against policies) and conditionally allow VM executlon to proceed,
be aborted or have corrective action taken.

[0060] The request handler module 219 is programmed or otherwise configured to
replace native commands and interfaces, so as to effectively provide a homogenous
command set and interface across multiple vender VM environments, in a managed
system according to an embodiment of the present invention. In currently available

virtualization products, there is a lack of control points and events necessary for effective

24

WO 2008/049005 PCT/US2007/081646

VM management and control. For instance, there are no exits or events that are gener_ated
when someone requests a VM to start. By the time any event is generated, the VM is
already 'e.xecut’ing. Thus, until such cbntrol points/events are provided in a given
virtualization product, an alternative approach is necessary to acquire control at VariOus
critical points in the VM lifecycle. Request handler module 219 can be used fot this
purpose. The request handler module 219 can be implemented, for example, using a
command line or shell (e.g., DOS command line), web services, APIs, and other such
suitable interfaces. In one particular embodiment, request handler module 219 is
configured With a dispatcher command shell as graphically illustrated in Figure 2c. Note
that the vertical grouping of commands is not intended to implicate any rigid‘ structure or
relationship between the commands. Other such command sets can be used as well, as
will be apparent in light of this disclosure. The command sheil effectively acts as a front-
end wrapper that is invoked and performs whatever additional processing is required and
also invokes the native VM command. The following pseudo code explains e‘ash of the
commands in this example command set, in accbrdance with one embodiment of the
present invention:

e RegisterVM
o Call AnalyzeVM (optional)
o TagProcessing
» TagVM(logical name)
» Parse Logical Name into Discrete Tags, call TagVM for each
* Add optional additional tags describing/characterizing this VM,

call TagVM
e TagVM
o SQL PUT Row into Table VMTag with Columns VM. (passed in) and Tag
e UnTagVM :
- o SQL Remove Row from Table VMTag with Columns VM (passed in) and
Tag

e UnRegisterVM
o Atend of life for VM
o Harvest info (e.g., performance, uptime/downtime, usage, licenses) on the
SMP before deregistering/destroying VM (historical use statistics and data
for use in a macro-management scheme applied to the overall managed
system)
o UnTagVM(*) for this VM
o Optionally remove from databases (e.g., asset management, CMDB, etc)
e AnalyzeVM

25

WO 2008/049005 PCT/US2007/081646

O

Call MetadataExtractVM (e.g., various extractor plugins can be used)
= Physical VM metadata
= Logical VM metadata
» Internal VM (e.g., does VM have proper content?)
= External VM (e.g., is VM properly registered?)
* VM host system may be similarly analyzed
Generate meta-metadata (system signature)
Call TattooVM '
= Tattoo can be either via unique ID process (e.g., UUID/URN in
UNIX) or can be assigned based on time, randomness, name
Place results of extraction in SMP and/or external database

s PutVM

o]

Via FTP or HTTP, upload VM (passed 1n) into a data repository
remembering its name in the repository; alternatively, don’t actually move
the VM, but ensure location where VM is registered is continuously
network accessible and contains the definitive VM (e.g., URL/URI)

SQL PUT into Table VMData with Columns passed in (VM, Type, etc)
and data repository Name as Location, and Location (passed in) as
OriginalLocation

e StartLogicalVM

0o

o

e

Ask specified host via external interface (e.g., Web Serv1ce API,
Command line) to start a LogicalVM

On specified host, Logical VM is transformed to an actual accessible VM
via Access logic

Call StartVM

e StopLogicalVM

O

O

0o

0O

Ask specified host via external intetface (e.g., Web Service, AP,
Command line) to stop a LogicalVM ‘

On specified host, Logical VM is transformed to an actual accessible VM
via Access logic "
Perform policy scan: if policy violation detected durlng execution, then
disable commit

Call StopVM

e LookupVM ,

O

o .

-0

0o

O

Use Logical Name as a tag or use requested Tag(s)

For each tag, do a SQL Query from Table VMTag storing each result set
Compute the intersection of all the resultant sets to create a set of
Physical VMs that match the Logical Name

If more than one PhysicalVM is part of the result, algorithmically pick one
(e.g., the first one in the list) or optionally prompt for selection or return
list for further refinement

Return the Physical VMs matched or a return code indicating that no
matches were found

e GetVM

(o]

For specified VM and Type, do a SQL Query from Table VMData

26

WO 2008/049005 PCT/US2007/081646

(o)

O
O

If no matching record found,
= Do a SQL Query from Table VMData searching for VM with any
Type
- = If Matching Records Found,
e Pick the First Matching Record

e In atemporary location, convert VM (e.g., via PlateSpin TM
PowerConvert) from stored type to passed-in type
e Do a PutVM on the converted VM
e For specified VM and Type, do a SQL Query from Table
VMData (on the record just added)
If no matching record found, return a VM Not Found return code
Return the matched V.

e GetPolicy '

O

0O

o]

Do LDAP Queries based on any combination of Who (userid), What (vm),
Where (host), When (time)

Take the union of the resultant set of queries and use the result for the next
step _

Convert the result into an XML Rules document (e.g., RuleML format)
and return the XML document

e CreatePolicy

(0]

©)
)

O

Five types v
* Requestor/Userid (who)
= VM (what)

= Host (where)

» Time (when)

= Context (why)
Access Control List/Discretionary Access Control List (ACL/DACL)
Rules: (e.g., If Context = Prod and VMOS = WINDOWS then MUST
CONTAIN SP2)
Patterns: Allow(Prod*, *Websphere,*)

o Che;:kPolicy

(6]

O
O

Verify that VM is allowed (based on Requestor, Type, Location, Tattoo,
etc) '

Verify that Host is allowed

Verify that mandatory items (data, applications, patches, settings, etc) are
on VM _
Verify that disallowed items (data, applications, games, settings, etc) are
NOT on VM | |
Optionally, verify that context/reason (Production, Test, etc) matches rules
Optionally; verify that time window matches rules (e.g., VM only allowed
to execute on 1 shift when IT support is available)

Verify VM is correctly and currently registered in CMDB/Change control
system

Verify starting this VM would not violate concurrency limit for this VM
If any verification fails, return failure

27

WO 2008/049005 PCT/US2007/081646

o

If all verifications pass, return success

AdaptVM

0o

o}

o N

O
(@]

For mandatory items in policy, add them to VM either directly (1nsert10n)
or indirectly (schedule task to add)

For disallowed items in policy, remove them from VM either directly

(removal) or indirectly (schedule task to remove) :

By default, do NOT register this changed VM nor store this VM centrally

(e.g., via RegisterVM or PutVM)

Record in the SMP the adaptations necessary and performed

VM host system can be adapted per policy as well, if necessary

StartVM

O
e}

o

(0]

Call CheckVM

On specified host, remember the original commit setting in SQL database
for this VM and disable commits in actual VM

On specified host, Physical VM is started (e g., on ESX Server - vmware-
cmd start command)

Optionally for every PohcyInterval specified, call CheckVM

StopVM

O
O

Call CheckVM :
Stop VM using host native command (e.g.,on ESX Server - vmware-cmd
stop command)

LearnVM

e}

e}

After the VM stops or is suspended the followmg operations are
performed:
= BeforeVM is taken as the VM before any adaptation occurred
» AfterVM is taken as the stopped or suspended VM (pendlng
commits via REDO log)
» BeforeVM and AfterVM are differenced against each other to learn
what happened when the VM ran
» Examples of what may be learned:
e Which apphcatlons/serv1ces/prograrns were installed or
uninstalled
e Which fixes/service - packs were applied to what (e g., OS,
programs, services)
e What applications/services/programs ran
e How much system resources were used (e.g., CPU vs. I/O
vs. Network, etc). :
Similar learning may be employed for the VM host system -

CheckVM -

o

The VM is checked for policy adherence
= This can be achieved using an agent running 1ns1de the VM and
communicating with it to acquire metadata
» This can be achieved by suspending the VM and doing an external
metadata scan

28

WO 2008/049005 PCT/US2007/081646

* Once the metadata is obtained by one of these methods, GetPolicy
and CheckPolicy calls are made to determine adherence of VM to
specified policy

o VM host system can be checked for policy adherence using similar
techniques

o If Policy is violated, one or more of several (configured) actions may be
performed Some examples:

» Suspend VM (e.g., vimware-cmd suspend)

= Set Commit=NO flag for VM (thus throwing away any changes)

* - Notify Administrator (e.g., email, SNMP, message to console)

= Log :

e CommitVMChanges

o Retrieve Commit setting stored during StartVM phase

o If Commit=Yes, merge VM with REDO log

o If Commit=No, discard VM changes

e EvolveVM - : '

o Based on information determined in Learn phase and information specified
in Policy and/or Configuration settings, create derivative VMs from the
current VM » '

o VM host system can be evolved as well, if necessary

o Add these derivative VMs to the repository via PutVM

o Examples:

= Create derivative VM with Windows® Service Pack 2 (SP2)
applied

» Create derivative VM by removing application (e.g., SQL Server)
that has not been used the last 10 times that this VM was run)

[0061] The following are example command Sequenees of request handler module 219
(comments for each comrnand line are included in brackets / ... /):

Reglster ReglsterVM lvim=prodwebspheresm,vm=VM42
/register both logical name (prodwebspheresm) and the exphclt name (VM42)/
PUTVM vm=VM42,type=vmware,location=..
/store VM by explicit name, along with VM type in spe01ﬁed location/

Specify: STARTLOGICALVM lvm=prodwebspheresm,host#host9
/specify logical name of target VM and explicit name of target host/
/other embodiments specify explicit name of target VM, if so desired/

Access: LOOKUPVM prodwebspheresm

‘ /look-up logical name of target VM to get location of VM bits/
GETVM vm=VM42 :
/use explicit name to get target VM from location/

Enforce: GETPOLICY vm=vm42
/get policies for explicitly named VM/

29

WO 2008/049005 PCT/US2007/081646

CHECKPOLICY vm=vm42.vmx,policy=vmpolicy87
/apply given policy to explicitly named VM/

Adapt: ADAPTVM vm=vm42,avm=vm42a _
/adapt explicitly named VM to match another explicitly named VM/

Execute: STARTVM vm=vm42a.vmx,policyinterval=5Sminutes
Learn: LEARN vm=vm42,redo=vm42redo
Commit: COMMITVMCHANGES vm=vm42

Optimize: EVOLVEVM oldvm=vm42,newvm=vm43,changes=prodrun
REGISTERVM oldvm=vm42,newvm=vm43, lvm=prodwebsphere

Functionality associated with each of these commands is discussed in further detail with
reference to Figures 4-10. Other commands and their underlying functionality will be
apparent in light of "this disclosure, such as ReplacePolicy, UpdatePolicy, and
DeletePolicy. ' | |

[0062] An alternative to providing an interface layer for VM requests (such as request
handler module 219) for transparently handling VM managefnént capabilities is to
configure the VM execution platform itself to intercept VM reqﬁests. As previously
- explained, such interception may be necessary if the control points necessary to process
the requests are not provided by the host vendors. In one such particular embodiment, the
host interception process also allows the current, existing VM requests (e.g., starting,
stopping, creating VM, etc) issued by operators, scripts, and other interfaces to be
transparently intercepfed so additional processing can be 'performed, such as those
described herein. The interception of the requests will vary by host vendor and platform.
VM requests can be intercepted at both relatively high and low system levels. At a
relatively high level, VM requests can be intercépted as early as possible in the host
processing, before the VM is accessed or read, and the interception should be
synchronous. At a relatively low level, the interception can be accomplished; for
example, by replacing a shared object or dynamic link library, trapping the /O call to

access the VM, and/or inserting code into the VM host or open source host versions to

30

WO 2008/049005 PCT/US2007/081646

redirect requests combined with recompiling the code with the appropriate control points

added to the source.

[0063] Figure 2d effectively summarizes the various request/event intercept
mechanisms used to enable managed execution environments, as discussed herein. In this
example, the intercept mechanism eﬁables request/event: ihterceptipn and provides a
managed request interface. The intercept mechanism can be implemented, for example,
as event handler 217, request handler module 219, or an intercept-enabled platform 101,
as previously discussed. With such a mechanism in place, the platform 101 is enabled
(either directly/Within the host, or indirectly/outside of the host) to be a managed
execution platform. It will be appreciated in light of this disclosure that the specific
implementation of the intercept mechanism will vary based on the vender version and

architecture of the execution platform.

[0064] The I/O module 209 is programmed or otherwise configured to provide
input/output capability to the VM management module, so that each of the modules
within can communicate with a guest/VM 107, data storage 109, data storage 117, and/or
other entity on network 113 or otherwise accessible within the managed system.
Furthermore, note that the modules. within the VM management module may
communicate with one another directly using, for example, conventional inter-process

communication techniques.

VM Management and Control Process

[00.65] Figure 4 illustrates an overall VM managerrient and control process 400, in
accordance with one embodiment of the present invention. As can be seen, the overall
process 400 includes a register process 600, a specify process 401, an access process 700,
an enforce process 800, and adapt process 900, an execute proceSs 403, a learn process
1000, a commit process 405, and an optimize process 1100. Each of these processes can |
be implemented in software, hardware, or some combination thereof, as previously
explained. |

[0066] The registration process 600 can be carried out, for example, by module 203.
As previously explained, this module can be implemented in the m-agent 105, the

enterprise ‘manager 111, and/or the management server 115. In general, the process 600

31

WO 2008/049005 PCT/US2007/081646

operates to register VMs (such as guests/VMs 107) that will be used in a managed system
according to an .embodiment of the preseht invention. In one such embodiment, the
registering one or more VMs for use in a managed system includes assigning a logical
name to each VM and registering each VM and its lbcation in a VM registry.
Management data can also be extracted from each- VM. In addition, each VM can be
disabled for ﬁse outside the managed system. Process 600 is discussed in further detail

with reference to Figures 5and 6.

[0067] The specify process 401 can be implemented as typically done énd can be
catried out, for example, by a dedicated specification module or integrated into another
process or processes, if so desired. In accordance with one particular embodiment, the
’spe‘cify process 401 operates to explicitly specify the name of 4a guest/VM 107 that is in
the target format, and already co-located with the target host/ VMM 103. The type of
host/VMM 103 and the locale are implied by the guest/VM 107 requested. Alternatively,
the specify process 401 can be configured to implicitly specify the name of a guest/VM
107 by using its logical name and the explicit target host/ VMM 103 name on which that
VM is located. Such.a specification module or functionality can be implemented, for
‘example, in the m-agent 105, the enterprise manager 111, and/or the management server -

115.

[0068] The access process 700 can be carried out, for example, by module 205. Asv'
previously explained, this module can be implémeﬁted in the m-agent 105, the entérprise
manager 111, and/or the r_nanagement server 115. In general, the process 700 operates to
access stored VMs (such as guests/VMs 107) and make them available for use in a
managed system, according to an embodiment of the present invention. = As will be
appréciated in light of this disdlosure, the accessed VMs can be explicitly disabled for use
outside the managed system (e.g., by way of encryption or VM code niodiﬁcation).‘ Note
that the registration process 600 can occur independently and remotely from the access
process 700. For instance, the registration process 600 can take place on a first network,
‘while the access process 700 can take place on another network (e.g., which accesses
registered VMs stored on the first network). Process 700 is discussed in further detail

with reference to Figure 7.

32

WO 2008/049005 PCT/US2007/081646

[0069] The enforce process 800 can be carried out, for example, by module 207. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 800 operatés to
enforce a VM compliance scheme in a managed system, according to an embodiment of
vthe presenf invention. In one such embodiment, process 800 includes getting compliance
p‘oliciés regarding a target VM, and prior to executing the target VM, applying the
compliance policies against the target VM to determine if the target VM is compliant
with the VM compliance scheme; Process 800 is discussed in further detail With

reference to Figure 8.

[0070] The adapt process 900 can be carried out, for example, by module 211. As
préeviously explained, this modulé can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 900 operates to
adapt a non-compliant VM into compliance in a managed system, according to an
embodiment of the present invention. In one particular embodiment, the enforce process
800 and the adapt process 900 are components of the registration process 700 (e.g., where
a number of VMs are registered, compliance tested, and adapted as necessary for
subsequent access and use in a managed system). Process 900 is discussed in further

detail with reference to Figure 9.

[0071] The execute process 403 can be implemented as typicaHy done and can be
carried out, for example, by a dedicated execution module or integrated into another
process or processes, if so desired. In‘acc‘ordance with one particular embodiment, the
execute process 403 operates to execute the target guest/VM 107 in a requested
host/VMM 103 environment. Resource management principles can be used to select an
appropriate host/VMM 103, if so desired. In addition to this typical functionality, the
process 403 may further include an “execution-watcher” functiqnaiity. In such an
embodiment, the process 403 operates to periodically examine the running guest/VM 107,
- If the guest/VM 107 becomes non-compliant for any reason (e. g., based on policy), then
process 403 can implement one or more remedial actions, such as log, stop, suspénd,
snap, and mark the guest/VM 107 as do-not-commit changes. Other remedial action may

also be taken, such as virus scanning and removal, removal of unauthorized software, and

33

WO 2008/049005 PCT/US2007/081646

configuration setting adjustments. Such an execute module or functionality can be
implemented, for example, in the m-agent 105, the enterprise manager 111, and/or the

management server 115.

[0072] In one example embodiment configured with execution-watcher functionality,
prior to the VM starting (or resuming) to execufe, process 403 operates to change the
settings of the VM to create a transaction ldg (e.g., .REDO file) and not commit chahges;
the commit setting in the managed systerﬁ (e.g., set within module 105, 111, and/or 115
for Figure 1) is set to its default value .(e.g.,- do-not-commit or selective commit). Note
that this chginge to VM settings can be done on-the-fly. This effectively takes the commit
functionality from the execution platform and gives it to the managed system, so that no
or otherwise selective committing can be carried out as desired. Once the VM is running,
the execution-watcher checks (e.g., on a configurable time interval) that the VM is in
policy-compliance. If not, remedial action can be taken (e.g., by Opefation of process 403
itself, or other processes of the managed system, such as the enforce process 800, adapt
process 900, ‘or learn process 1000, and/or commit process 405). Once the VM stops (or
suspends), the managed system checks its commit's'etting‘and makes deci‘sions> to commit
‘or not. If commit is decided upon, the managéd system can then call a commit process
(e.g., one of the vendor-supplied utilities or commit process 405) to commit the

transaction log to the VM.

[0073] The learn process 1000 can be carried out, for example, by module 213. As
previously explaingd, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/dr the inanagement server 115. In general, the process 1000 operates to
learn which VMs (such as guests/VMs 107) require what compliance adaptations in a
managed system, according to an embodiment of the present invention. Process 1000 is

discussed in further detail with reference to Figure 10.

' [0074] The commit process 405 can be implemented as typically done and can be
carried out, for example, by a dedicated commit module or integrated into another process
or processes, if so desired. In accordance with one particular erhbodiment, the commit
process 405 operates after execution is finished to permanently commit changes made to

a guest/VM 107, or to discard those changeé. In addition to this typical functionality, the

34

WO 2008/049005 PCT/US2007/081646

process 405 may be configured to further include a selective commit control. In such an
emBodiment, if the post-execution VM content violates policy or is otherwise non-
compiiant, then process 405 can implement one or more actions, such as log, disable VM,
mark the VM as do-not-commit changes, or prevent the changes from being committed
(e.g., by deleting REDO/Diff file(s)). Process 405 may further be configured to partially
accept changes made (e.g., by editing REDO/Diff file(s) to eliminate undesired changes,
but keeping the desired changes, and then committing the desired changes). Such a
commit module or functionality can be implemented in the m-agent 105, the enterprise

manager 111, and/or the management server 115.

[0075] The optimize process 1100 can be carried out, for example, by module 215. As
previously explained, this module can be implemented in the m-agent 105, the enterprise
manager 111, and/or the management server 115. In general, the process 1100 operates to
optimize the VMs (such as guests/VMs 107) in a managed system based on information
provided by the learn process 1000 (e.g., Where adaptations that are consistently made by
the adapt process 900 each time a VM is run are permanently committed to that VM),
éccording to an embediment of the present invention. Alternatively, or in addition to, the
process 1100 can operate to suggest and/or derive a variant of a target VM that
permanently includes any desired change. Process 1100 is discussed in further detail with

reference to Figure 10.

[0076] One particular embodiment of the present invention can be used (e.g., by’the
cumulative operation of tiie register process 600, access process 700, enforce process 800,
and adapt process 900) to pretect against the execution of VMs on execution platforms
not included in a given managed system. Likewise, such an embodiment can be used to
protect against the execution of unregistered VMs in an execution platform included in a
given managed system. In one such embodiment, the register process 600 makes a VM
available by logical, abstract names and tags, and also disables or protects the VM by
altering the VM in one of several ways. The VM can be encrypted and only a managed
VM can request the decryption. Alternatively, or in addition to, the VM can have part of
its VM control information or header manipulated so that only a managed execution

platform can correct/reverse the manipulation. Note that an advantage of such

35

WO 2008/049005 PCT/US2007/081646

manipulation over encryption is elapsed time and CPU necessary to decrypt a VM (e.g.,
some VMs are very lafge, in excess of 20 gigabytes, and the decrypt times could be long).
Thus, the goal in accordance with one such embodiment is to have a managed VM that
can only be executed on a managed execution platform. Any other VM/host combinatio’ﬁ
will not operate (e.g., a managed host will not execute an unmanaged VM, and a managed

VM cannot be executed by an unmanaged host).

VM Registration

[0077] Figure 5 illustrates a registration module 203 and VM management data storage
facility configured in accordance with one embodiment of the present invention. The VM
management data storage facility could be implemented, for example, as the enterprise
storage facility 109, VM management daté database 117, or a combination of the two

storages.

[0078] As can be seen, the registration module 203 of this 'example embodiment
includes a tattoo process 501, a metadata extraction process 503., a registry/naming
process 505, and a security process 507. Each of these processes can be implemented in
software (e.g., C, C++), although other hardware and firmware embodiments will be
apparent in light of this disclosure. The VM management data storage facility includes a
VM management data sforage 509, a VM repository 511, and a VM registry 513. These
storages 509, 511, and 513 can be co-located or exist in geographically different areas.
Module 203 can write data from the registration process directly to the storages 509, 511,
| and 513, or via a communications network, such as that discussed with reference to

network 113.

[0079] The VM management data storage 509 is used for storing VM ‘tattoos
" (guest/VM 107 identiﬁca_tion mechanism) and VM metadata (details about the guest/VM
107) and signatures (based on physical, logical metadata, and/or content). The VM
repository 511 is used for storing the actual bits of the VMs, such as guests/VMs 107.
. Note that the stored VMs can be compressed, encrypted, and/or téttooed. The VM
registry 513 stores VM logical names with the location of the corresponding VM bits
(within the VM repository 511, or some other reported location). The OVerall étorage

facility (as well as any of the individual storages 509, 511, and 513) can be implemented,

36

WO 2008/049005 PCT/US2007/081646

for example, using conventional data storage and access technology. In one particular
embodiment, storage 509 is implemented with a configuration management database
(CMDB), and stbrage 511 is implemented as a SAN or file server repository, and storage
513 is implementéa as UDDI (Universal DeScription, Discovery, and Integration) registry
or an SQL database. Mény suitable data storage/access choices are available. The
metadata can be stored in any suitable form, such as XML or other such data structure or

format.

[0080] At the time of guest/VM 107 creation, the registration module 203 receives a
VM event notification (e.g., via an intercept mechanism as discussed herein) that a new
guest/VM 107 has been created. The guest/VM 107 can be”in any vendor format, such as
VMware® ESX, GSX, Microsoft® Virtual Server, XenT™, Parallels). Note that other
VM events, like start, stop, registration, clohing and templating, can be similarly hooked,
intercepted, or otherwise detected to provide notifications. In general, notification of

such events can be used as a trigger to interrogate the VM disk files (e.g., disks 303

and/or descﬁption file 305) as well as control information kept about the guest/'VM 107
in the vendor specific locations (e.g., VMware — VMX ﬁlé, Virtual Center repository). In
the case where guests/VMs 107 are being copied or imported into a host environment, the
storage facility where the guests/'VMs 107 are kept can be scanned or monitored by the
registration module 203 (or other modules) to detect .n'ew guests/VMs 107.

[0081] The tattoo process 501 is programmed or otherwise conﬁgured}to generate a
unique ID (a “tattoo”) for each registered VM. The tattoo process 501 can be
implemented, for example, using a unique ID process (e.g., UUID or GUID or ofher
universal ID scheme). Alternatively, the tattoo process 501 can be configured to genérate
a unique ID based on time, randomness, and/or VM data. For instance, the tattoo process
501.can be implémented using hashing functions to generate the unique ID (e.g., MD5 of
VM Content+metadata), or random code generation processes. The result of the tattoo
process 501 is a robust and universally uﬁiqﬁe ID for the VM. In the example shown, this
ID or tattoo is stored in database 509 and can be used throughoﬁt the managed system to
identify the VM, wherever it may be deployed. Other variations on the tattoo procéss 501

will be apparent in light of this disclosure, depending on factors such as the desired

37

WO 2008/049005 PCT/US2007/081646

uniqueness of the ID and computation complexity. For instance, the generated tattoo may
be based on a single layer of data or multiple layers (e.g., one hashing function operation,

or multiple such operations using aggregations).

[0082] A VM tattoo can be used in a numb,er of ways. One use is unique identification
as it relates to clones, which are copies of the same VM but in different formats (e.g.,
Vmware®, Xen™, and Microsoft® versions). This cloning may occuf, for example,
during the access process 700, if a requestor needs a particular VM buf in a format
~ different than the one in the VM repository 511. A second use of the VM ftattoo is
genealogy/family tree type handling. In general, when a new VM is derived or evolved, |
the tattoo/ID of the VM from which it was derived is kept embedded in the new VM and
a new tattoo is generated for the derived VM. Thus, each VM has embedded taftoos that
indicate familial relations. Over time, this allows for a trace back thru related VMs,
which may be helpful for a number of reasons. For example, if a VM is found to have
some major problem (e.g., virus or wrong softwére), the embedded chain/tree of tattoos
could be used to genefate a list of potentially affected offspring VMs that were derived
from the compromised VM. A third use of the VM tattoo is for uniquely identifying a
VM even though its explicit name (e.g., VM42) is renaimed in a file system. Thc
internally stored tattoo can be used to Verify the VM. A fourth use-of the VM tattoo is a
unique key in a database (e.g., CMDB, database 509, repository 511, registry 513, etc), as
well as in logs, eventing, and other structures/actions where a unique ID is helpful, that
uniquely identifies the VM, regardless of Ibgical names, tags, physical file names, or VM

formats.,

[0083] The metadata extraction process 503 is programmed or otherwise configured to
extract and/or create metadata from the VMs and/or host systems (such as guests/VMs
107 and hosts/VMMs 103) for use in managing the VMs. In accordance with one such ‘v
embodiment, the first step in creating/extracting metadata is making .the VM disk files
(such as disks 303) available to procesé 503, which is configured to understand the disk
format, the installed OS on the VM, and the semantics of the VM itself. Making the
disks available is generally referred to as mounting the disks. Such mounting can be

accomplished via utilities like vmware-mount by .VMWare®. Once a virtual drive/disk is

38

WO 2008/049005 PCT/US2007/081646

mounted, then the metadata extraction process 503 (which may include one or more
routines, such as a mounting routine, data mining/interrogation routine, and unmounting
routine) interrogétes the file system and reads any file or the directory information about
the file. In one particular embodiment, the metadata extraction process 503 is configured
to read several major drive types, such as NTFS for Windows®, FAT(12/16/32) for
Windows®, ext2, ext3 for Linux®, HFS/HFS+/HFSX for MacOS®, BSD UFS/UFS2 for
MacOS®, and other systems. Once the metadata extraction process 503 has read access
to the disks, it can perform OS-specific metadata extraction. For example, on Microsoft®
Windows® systems, extraction process 503 can read configuration files like *.ini files,
application installation files like *.MSI, and user and account information and the system
files (e.g., SYSTEM, USER, etc) that constitute the Windows® registry. On a Linux®
system, the extraction process 503 can read the etc/config files, application installation
files like *.RPM, etc/inittab indicating which applications will auto start, and other
information kept in the etc/* files (such as etc/password). From these files, the extraction
process 503 can determine what applications are installed, and which ones are
automatically started when the system is booted. The process 503 can also see what
accounts and users are defined, and can determine what system services/daemons are
present and will be executed (e.g., DHCP, PXE, Active Directory, SAMBA, Apache
Webserver, etc). The MBR can also be read by the metadata extraction process 503, to
determine what OS and disk will be used when the system is booted. Note that the MBR
is obtained outside of the normal file process because it is normally hidden to.programs

outside of the boot environment.

[0084] In one particular embodiment, the metadata extracted by process 503 includes‘
both physical and logical metadata. The physical metadata maps to phys'ical things on the
VM disk, such as the file system. The contents of a file can be interrogated and processed
physically without regard to what the file logically contains and a signature can be
derived for the file (e.g., MD5). Logical metadata can be obtained by mapping a logical
view to a physical file. For example, the Windows® registry is stored as a set of physical
files on a VM disk. Inside the registry is information about which applications and

services are automatically started when the system is started/booted. The metadata

39

WO 2008/049005 PCT/US2007/081646

extraction process 503 is configured to be aware of the different parts of the registry and
how to logically map the structure. Other metadata such as replication metadata, which
refers to information that describes the relationship between logical data identifiers and
one or more physical instances of the data, may also be created by the process 503. After
all the appropriate VM disk information is obtained by the extraction process 503, the
extraction process 503 operates to read the information kept in various host control files
and database. In one such embodiment, the extraction process 503 is configured to
extract information kept in the description files that each VM host vendor keeps about a
VM. For instance, on a Vmware® host, this file is the VMX file. This file may include,
for exampfé, device information, author, date/time information, number of disks, disk
sizes, etc. Such information can be extracted by the extraction process 503 and added to
the collected metadata. The extracted/created metadata can be stored for subsequent
intérrogation or use without incurring the extraction/processing overhead (e.g., mounting,
extraction, deriving/creation, unmountihg) described above. For example, the extraction
process 503 can store the extracted metadata externally in a database or directoi‘y, such as
in the database 509. Alternatively, or in addition to, the process 503 can store the
extracted metadata with the VM itself in the VM repository 511, or as a file or files on
one of the existing VM disks (e.g., on a disk 303), or with the VM on a separate disk
(e.g., on the SMP 309) within the VM. Other data can be stored as well (e.g., in database
509), such as intermediate signatures used to generate an overall signature, with all such
Signatures (e.g., initial, intermediate, and overall signatures) being available for
subsequent usé. The extraction process 503 could also be performed in real-time at the
time of the execution request, but would incur some time delay due to the processing such

as mounting and reading files.

[0085] As indicated/above, the metadata extraction process 503 can be configured to
generate signatures using the extracted physical and/or logical metadata. In one such
embodiment, the metadata extraction process 503 operates to read files on each VM disk
drive (such as disks 303), and then generates a content signature or sighature for each and
every file using a technique like MDS5 or other hashing function. The signatures

themselves can be stored in a data structure (e.g., tree structure reflective of the content)

40

WO 2008/049005 PCT/US2007/081646

or file. The metadata extraction process 503 may be further configured to derive a whole
physicél system signature by performing an MDS5 or similar on the data struéture (or other
aggregation of content signatures). The Master Boot Record (MBR) can-also be read and
captured into the signature generation process as well, vif so desired. Alternatively, or in
addiﬁon to, the metadata extraction process 503 can be configured to generate a signature
for logical metadata extracted from the VM and/or host. The metadata extraction process
503 then stores the logical metadata signatures in a structure and generates a logical
metadata system signature, using MDS5 or some other hashing function. Such a process is
useful for logical structures such as the Windows registry, which is hierarchical in nature.
The metadata extraction process 503 can further operate to generate an entire system
signature by combining both logical and physical system signatures, using MD5 or some

~other hashing function.

" [0086] The registry/naming process 505 is programmed or otherwise configured to
translate VM logical names to VM physical names (e.g., similar to a network DNS), and |
to store those names as well as the location (in repository 511) of corresponding VM bits
in the VM registry 513. This registered location could be, fqr example, where the VM is
sent after the registrétion process . is completed, or the location where the VM is
discovered. Thus, the VM.re‘gistry 513 assbciates the VM logical and physical names
with the location of the corresponding VM bits (within the VM repository 511, or some

other reported location).

[0087]v The security process 507 is programmed or otherwise configured to compress
and/or encrypt the VMs prior to storing them in the VM repository 511, if so desired. In
~one particular embodiment, the security process 507 implements VM compression using
the GZIP compression, and VM encryption using AES128 encryption. Complementary
decompression and decryption techniques can be used when accessing the stored VM:s for
deployment. Other techniques can be used to secure or otherwise disable the VM against
execution outside of a‘managed host environment (e.g., modifying first few line of VM

code to effectively disable).

[0088] Figure 6 illustrates a VM registration process 600 configured in accordance with

one embodiment of the present invention. This process 600 operates on a newly created

41

WO 2008/049005 PCT/US2007/081646

or newly‘ discovered VM, which may be an original VM or VM copy. In any case, the
VM being operated on by process 600 is generally referred to as the target VM, for

purposes of this discussion.

[0089] The process 600 includes registering 601 the target VM in a VM registry (e.g.,
registry 513, such as a UDDI registry or an SQL database). In one particular
embodiment, step 601 includes assigning a logical name or tag to the target VM (e.g.,
VMTag). Recall that the VM can later be implicitly requested via this logical néme,.

which is resolved into an explicit name.

[0090] The process 600 continues with extracting and/or deriving 603 physical (e.g.,
file system, registry, etc) and logical (e.g., installed applications, started service) content
metadata from the target VM, and creating 605 a VM tattoo or UUID for the target VM,

as previously described.

[0091] The process 600 continues with créating 605 VM genealogy metadata. In more
detail, and in accordance with an embodiment of the present invention, a VM’s genealogy
metadata indicates where the VM came from (so as to allow for tracing its existence back
to some original VM) énd what children and/or clones have been spawned from that VM.
For instancé, evefy time a VM is copied or translated, its genealogy metadata data is
updated (e.g., effectively: “I am a copy (or derivation) of VM 42 which is a copy of VM
7, which is a copy of VM1”). A corresponding entry would be made in lthe genealogy
metadata of each related VM (e.g., for VM1: “I was duplicated into VM7, which Was
duplicated into VM42”; for VM7: “I am a copy of VM1 and was duplicated into VM42”).
In one particular embodiment, the sarﬁe result is accomplished using VM tattoos, as
previously explained. In more detail, when a new VM is copied, derived, or evolved, the
tattoo/ID of the “parent” VM it was derived or cloned from is kept embedded in the new
“child” VM. Also, a tattoo is generated for the child VM, and stored into both the child
itself and the parent VM. Thus, the parent VM now has genealdgy metadata indicating its
children VMs, and the child has genealogy metadata indicating its pareﬁtage. Over time
this embedded genealogy metadatavprovides a full family tree for the VM. Other event
information can be maintained in the genealogy metadata as well, such as event dates and

specific VM formats. As the registration process is used to initiate many new VMs into

42

WO 2008/049005 PCT/US2007/081646

the managed system, such genealogy metadata can be readily created/added to the VM.
For those VMs that are discovered (as opposed to created), there may not be a complete
set of genealogy metadata (or simply none). In such a case, the target VM’s genealogy ‘
“may be detected or otherwise deduced from the target VM itself, as well as from other
VMs that list the target VM in their respective genealogies. For instance, recall that the
event handler 217 can effectively detect that a copying event has taken place (e.g., by
reading the. SMP of the post-event VM and reviewing managenient control points), so
that partlcular copying event can be detected and logged Such post-event detectlon can
also be used in detecting or otherw1$e creating VM gencalogy metadata. In another
particular embodlment, a family ID can be computed using the VM genealogy metadata
(e.g., via MD35) for all members of a particular VM family, because the VM genealogy or
family tree for each VM will effectively be the same. For instance, assume an example
family includes a parent VM (e.g., tatfoo equals ABC), a first child VM (e.g., tattoo
equals DEF), and a second child VM (e.g., tattoo equals GHI). Thus, when computlng a
family ID for any of these three related VMs, the tattoo values of ABC, DEF, and GHI
will be processed (e.g., MD5{ABC, DEF, GHI}) for each VM family member, thereby
providing each VM with the same family ID (Which will be unique to that particular
family). Tracking VM family members (e.g., for purposes of recall and remediation, or
other reasons) can be facilitated using this family ID. As will be appreciated in light of
this disclosure, note that a “child” VM may be an exact copy (clone) or a derivative
(partial clone) of its parent, and that a clone may eventually- evolve to be parﬁally or

completely different than its parent.

[0092] The process 600 continues with translating 607 the VM to other formats (e.g.,
common variant target host formats used in a given managed system) using tools like
PowerConvert apis from PlafeSpinTM, as well as similar conversion tools from
Vmware® and Microsoft®. The translated VMs can also be registered and/or stored for
immediate availability alongside the original VM in the VM repository 511. The process
600 continues with compressing and/or encrypting 609 the VM (e.g., GZIP compression
and AES128 encryption, of other suitable compression/encryption techniques). Such

43

WO 2008/049005 PCT/US2007/081646

compression/encryption can be used to ensure a secure and efficient transmission of the

VM to its intended location.

[0093] The process 600 continues with transferring/copying 611 the VM files (typically
in the form of bits (e.g., 8-bit bytes, 16-bit words, 32-bit long word, data blocks, packets,
- or other such digital expression) to a VM repository (e.g., reioository 511, such as a SAN
or file server repository). Alternatively, step 607 may be implemented in (\a more indirect
way, by string an address that points to a memory location where a “master” VM
resides. As an alternative to 611, in addition to 611, the process 600 may further include
staging 613 the VM to target host locations/domains (in anticipation of subsequent
requests from those locations/domains) using standard transmission protocols like HTTP,

HTTPS, and FTP.

VM Acquisition

[0094] Figure 7 illustrates a VM acquisition process 700 configured in accordance with
one embodiment of the present invention. This process 700 operates to acquire a
previously stored VM, which may be an original VM or VM copy. In any case, the VM
being acéessed by process 700 is generally referred to as the target VM, for purposes of
this discussion. | | |
[0095] The process 700 includes initiating 701 a registry look-up by’ implicitly
requestlng the target VM via logical name. The process 700 continues with resolving 703
the loglcal name into an explicit VM name, and locatmg 705 the storage location of the
target VM. In accordance with one embodiment, and as previously explained, a UDDI
registry or a SQL database look-up can be used to resolve the logical->physical VM name
and location(s) of the target VM bits. The target VM is then looked-up using the explicit
name to find the source location(s) of the physical VM bits. Consider the following
example in Table 1, in which tags are used to compose logical names that implicitly refer

to one or more VMs.

Tag VM
Production VM42
Production VM43
Production | VM44

Test VMI15

44

WO 2008/049005 PCT/US2007/081646

Test VM16
Oracle® VM42
Oracle® VM15

Web Server VM43
Web Server VM16
Oracle® VM44

Table 1

In more detail, Table 1 illustrates a number of tags, each of which corresponds to one or
more explicitly named VMs. Note that some VMs can correspond to more than one tag
(e.g., VM42 corresponds to Production and Oracle tags). The VMs can be specified, for
example, using a URL or URI. By implicitly requesting a VM via single logical name ot
“tag ” the explicit VMs associated with that tag are identified. By implicitly requesting a
multiplé tag logical name, only the explicit VMs associated with all requested tags are
identified. For instance, with regard to the example of Table 1, requesting all Production
VMs would result in the set of {VM42, VM43, VM44}; requesting all Oracle® VMs
would result in the set of {VM42, VM15, VM44}; requesting all Production Oracle VMs
would result in the set of {VM42, VM44}; requesting all Web Server VMs would result
~ in the set of {VM43, VM16}; requesting all Production Web Server VMs would result in
the set of {VM43}; and requesting all NON Oracle VMs would result in the set of |
{VM43, VM16}. The intersection pfocessing of a multi-tag query can be done either on
the server or client. For example, on the server, the logical name can be broken out into
rindbividual tags, and then each query made and the intersection of the resultant set of sets
~ would be returned to the requesting client. On the client, a request for each tag making
| up the logical name can be made, and the intersection processing then performed on that
client. k ‘

[0096] Note that such a tag-based registry look-up can also be used to locate all the
‘members of a VM fa‘mily. Consider, for example, the tagged VM families shown in
Table 2. Here, requesting all Family A VMs would result in the set of {VM4z2, VM43,
VM44}; requesting all Family B VMs would result in the sef of {VM15, VM163 VM17};
requesting all Family C VMs would result in the set of {VM17, VM44, VMSS; VM61};
and requesting all Family D VMs would result in the Set of {VM35}. Thus, if necessary.,‘

all VMs belonging to a particular family can be accessed if so desired (e.g., such as the

45

WO 2008/049005 PCT/US2007/081646

case when a family member is found to contain a virus or unlicensed software or is

otherwise compromised).

Tag VM
Family A VM42
 Family A VM43
Family A VM44
Family B - VM15
Family B VM16
Family C VM17
Family C VM44
Family C VM55
Family C VM61
Family D VM35
Table 2

[0097] The process 700 continues with transferring 707 the located VM bits to where
the target host environment exists. These bits of the target VM can be transferred to the
host environment using, for example, FTP, HTTP, HTTPS, or other such unicast of

multicast transmission protocols.

[0098] The process 700 continues with decompressing 709 the target VM (e.g., after |
transfer), assuming the VM was stored and transferred in ‘a compressed state. In one
particular embodifnent, the target VM is decompressed using GUNZIP decompression,
assuming GZIP was used to compress the VM. The process 700 continues with
decrypting and/or otherwise unlocking 711 the VM (e.g., after transfer), assuming the
VM was stored and transferred in an encrypted/locked state. In one particular
embodiment, the VM is decrypted and/or unlocked using AES128 décryption (assuming
AESlZS was uéed to encrypt the VM). Note that any decompression/decryption can be
carried out before transfer as well, if so desired. '

[0099] After transfer, the process 700 further includes translating 713 the target VM to
the target host format, if necessary. As previously explained, the VM can be translated to
the target host format using tools like PowerConvert apis from PlateSpin™, In
alternative embodiments, this translatior‘r can take place prior to trarisferr’ing the VM to
the target host. In such a case, the VM can be compressed and/or encrypted after it is

translated, if so desired. Further note that the translation can be performed offline (in

46

WO 2008/049005 PCT/US2007/081646

advance of request) or in real-time (at time of request). In the case of offline translation,
note that each specific VM format can have a unique explicit name and storage location,
thereby effectively eliminating or otherwise reducing the need for post-request translation

and reducing VM acquisition time.

[00100] The process 700 may further include other functionality as well. For instance,
the process may include caching the bits of the target VM at various target
locations/domains, in anticipation of subsequent requests for those VMs. In one
particular embodiment, the VM is cached using an LRU (least recently used) caching
scheme for subsequent requests in the térget location/domain. Numerous VM caching -
schemes can be used here, including predictive or otherwise informed caching based on
factors such as VM use history'(e. g., this VM is consistently used on host machine #12),
user permissions at a given location (e. g, the‘ user of this machine can only use VM #1
and VM #7, so don’t :cache any other VMs), and host environment restrictions (e.g., only
VM #s1-5 are currently authorized for use here, so cache no VMs). In this sénse, the
process 700 may include staging VMs at various locationsr, in anticipation of future
execution requests. Further note that sﬁch caching schemes can be updated as

permissions/authorizations change.

VM Policy Enforcement

[00101] . In accordance with another embodiment of the presAent invention, when a request
to initiate, start, boot (éxecuté) a VM is detected, the content metadata and/or other
aspects of the VM are checked against compliance policies, and a pre-execution
determination is made as to allow VM execution or prevent it. In certain cases VM
execution may be allowed with warnings issued to alert an operator console or auditing
system (e.g., “The license for App#1 will expire in two days” or “This system must be
upgraded to include SecurityApp#7 by tomorrow” or “A new security OS patch is now |
available, and will be automatically downloaded ‘and installéd”). In the case of execution
being prevented, an alert/event sequence with details about why the execution was
prevented, including the éxact policy or policies that disqualified the VM from execution
(e.g., “this VM must have SecurityPatch#1 installed prior to execution” in combination

with an automatic patch download and install sequence), can be issued. In some

47

WO 2008/049005 PCT/US2007/081646

embodiments, if the VM execution is not allowed due to policy non-compliance, the VM
could be allowed to either: execute and adjust or otherwise correct the violation to bring
itself into policy compliahce (e.g., download and install latest set of security pat-ches as
soon as booted), or execute with no or limited network connectivity (e.g., in a sandbox or
other limited execution environment) in order to perform problém isolation, recreation,

and/or remediation.

[00102] Policies can be defined and stored in ba, database, directory, file, or any
combination thereof (e.g., on SMP 309 and/or)storage 109, and/or storage 117). Policies
generally control when and how VMs can be executed. - For. instance, anti-malware
policies vcan be used to prevent the execution of VMs based on the presence of malware.
As is known, malware is software that can execufe on a computing system to effect
malicious intent of an attacker. Malware can take many fofms, such as viruses, infectious
~ worms, Trojan horse programs, rootkits (a type of Trojan horse, which is a collection of
tools that allows an attacker to provide a backdoor into a target computing system), and
spyware that monitors keystrokes and/or other user actions (e.g., surreptitious browser.
monitoring) on the computing system in order to capture sensitive information and/or to
display unsolicited content (e.g., advertisements). . Malware is usually imported into a
target system via communications (unbeknownst to the user), such as those that occur
when accessing and/or downloading from websites, or those received in the form of
emails or text/instant messages. Other types of malware can remotely operate on a target
system to conduct malicious or otherwise inappropriate activity (e.g., port scanning).
Malware may also include adware, which is | generally advertising/marketing méterial that
is embedded within a software program (e.g., banner ads and other such unsolicited

advertising).

- [00103] Some policies might specify, for example:

e No VM is allowed to execute if it contains malware (as detected by anti-
malware applications). '

No VM is allowed to execute if it contains a file named DOOM.EXE.

e No VM is allowed to execute if it contains a file having a signature of xyz321
(e.g., where xyz321 is an MD5 signature for known malware or inappropriate
content). ' - \

e No Windows® VM can be executed unless it has Service Pack 2 installed.

48

WO 2008/049005 PCT/US2007/081646

e No Linux® VM can be executed if it has WebSphere® installed.

No VM can be executed unless it is registered in Configuration Management
Database (or other suitable registry) with the correct MDS5 signature
information (or other suitable signature info).

e No VM can be executed if Installed Application = Oracle® and no
OracleLicense. TXT present. '

e No VM can execute with a system signature of 567abc.

e No super user (or other such superior account access and/or authority) status
for VMs having non-administrative context.

e No VMs having a test context can be operated in a production context.

e Certain production VMs cannot be executed on 2" and 3™ shifts (i.c., outside
of the 8am to 5pm work schedule) when full production support teams are not
available. : '

. @ No VM can be executed by unauthorized user and/or unmanaged host.

Note that the actual storing and specification of a policy can be much more cryptic. For
example there may be a DO_NOT_RUN file or database table containing entries like:
FILENAME = DOOM.EXE and FILEMDS5 = xyz321 (corresponding to the first two
éanﬁple policies above). | ‘ ,

[00104] The enforcement/compiiance scheme may also include a REQUIRED or
MANDATORY policy list, Where any VM/system that does not have the mandatory
content is denied execution (e.g., must have virus scanning software to be compliant).

Other policies may include:

o Regiétry Verification: check to see if VM is registered (e.g. in a CMDB) and if
registration is current; if not registered or current, then deny the execution and
initiate registration process.

o License verification: check license information against logical metadata indicating
which applications are "installed and/or started. If license count would be
exceeded by the VM executing with the typical/registered execution profile, then
deny or optionally wait for a license to become available.

If VM is compliant, then allow to execute or optionally request key to unlock the
encrypted VM, decrypt the VM, ahd then execute. If all conditions for execution are
satisfied except for a time based’ condition (e.g., not allowed to execute in requested
window or no license available now), then optionally allow VM to execute when

condition is cleared or otherwise satisfied (e.g., either queue or retry later).

[00105] Capturing signatures for the files allows for very fast comparison. For example,
to prevent DOOM.EXE from running on VMs of the managed system, a signature for the

49

WO 2008/049005 PCT/US2007/081646

DOOM.EXE file can be computed by performing an MDS5 calculation of the file. That
signature can then be compared against other file signatures very quickly using traditional
hash table lookups. For an entire system, a signature of the entire VM contents would
allow for quick system level comparison without having to compare all of the files or all
of thg sub-signatures. This would allow for a quick allowing/disallowing of a specific
7 systein based on its system signature, regardless of what the VM might be named. One
embodiment of the present invention generates a system signature by taking all the file
signatures and creating a file or structure containing those signatures, and then generating
a signature for that file or structure using an MD5 or similar process, as previously

explained with reference to Figure 5.

[00106] One way to handle signature-based policies is to use the concept of Blacklist,
Greylist, or Whi’selist used in network security applications. Instead of an IP address, a
VM file name, content signature, or system signature can be used in such lists. For
example, if a file name of DOOM.EXE is placed in the Blacklist ﬁle,v any VM system
containing it will not be allowed to execute. Likewise, the content signature for
DOOM.EXE could also be placed in the list, and any system containing that signature
will not be allosved to execute. Use of a signature (as opposed to an explicit name) will
ensure proper compliance even if someone has renamed the prohibited file. In a similar
manner, an entire system signature for a “good/compliant;’ VM can be placed in the
Whitelist, and only VM systems having that signature will be allowed to execute. In a
similar manner, entire system signatures for known “bad” VMs can be placed in the
Blacklist, and VMs on that list will not be allowed to execute. Thus, in this embodiment
the_ Whitelist would identify known good contents, the Blacklist would identify known
bad contents, and the Greylist (which is effectively a temporary Blacklist) could contain
dubious content, perhaps requirihg additional processing or operator intervention to allow

_ execution.

[00107] Figure 8a illustrates a policy enforcement process 800 for a virtual environment,
in accordance with one embodiment of the present invention. This process 800 operates

' to enforce policies against a VM, which may be an original VM or VM copy. In any case,

50

WO 2008/049005 PCT/US2007/081646

the VM being operated on by process 800 is generally referred to as the target VM, for

purposes of this discussion.

[00108] The process 800 includes getting 801 content metadata of the target VM. For
‘example, the VM content metadata can be extracted in real-time. Alternatively, the VM
content metadata can be pre-extracted metadata that is stored and accessible to the
process 800. The content metadata may- include, for example, both physical (e.g., file
system, registry, .index, etc) and logical (e.g., installed applications, started services)
- components. ~In more detail, and in accordance with’an embodiment of the present
invention, the content metadata on a VM containing Windows® or Linux® includes the
Master Boot Record (MBR) and the file system tree (e.g., names, sizes, permissions,
dates, tattoos, signatures, actual data backing each file). Also, and with particular regard
to a Windows® system, the content metadata includes embedded version information for
each executable and/or dynamic link library. Also, the content metadata includes the
registry from the file system. = Also, the content metadata includes system level
information (e.g., Service Pack, Patches, Build #), services, installed applications, auto-
started applications, accounts (e.g., Userids, Groups, Hbme Directory, Shell Program,
Quotas), network infofmation, and other such informatioﬁ from the Windows® Registry.
With particular regard to a Linux® system, the content metadata includes, for exaniple,
system level information, daemons or services (e.g., /etc/re.d/init.d/directory), accounts
(e.g., Userids, Groups, Home Directory, Shell Program, Quotas) such as /etc/passwd,
installed applications, auto-started applications, and network information. In addition,
recall that pre-extracted metadata can be stored locally to the target VM (e.g., in the SMP
309 or other dedicated partition) or remotely to the target VM (e.g., in storage 109 or
117). In one particular embodiment, the getting 801 step includes the following
sequence: attempt to read content metadata on the target VM; if not available on VM,
then attempt rto read content metadata stored elsewhere like storage 109 or 117 (e.g.,
CMDB); and if the content metadata is not available at alternate storage, then derive
content metadata in real-time (e.g., such as described with reference to metadata
extraction process 503). Additional details of the getting step will be discussed with
reference to Figures 8b-d.

51

WO 2008/049005 PCT/US2007/081646

[00109] tFhe process 800 further includes g’etting 803 compliance policies regarding VM
content, and arbitrating 805 the compliance policies for priority, conflict, or deadlocks.
The compliance policies can be read, for exarﬁple, from an SQL database or an LDAP
directory (e.g., such as from storage 109 or 117). An example arbitratidn scheme uses
_ +++,++,+,- --,--- as an attribute in each compliance policy for relative stréngth or priority
indicator to resolve conflicts and arbitrate on compliance policies (e.g., a policy having an -
attribute of “+++” would take priority over a policy having an attribute of “+”). In the
event of a tie (e.g., where two competing policies have an attribute of “+++7), a tie-
breaking mechanism can be used (e.g., older policy wins, or some other acceptable tie-

breaker). Attributes and tie-breakers can be set as desired by an administrator of the

managed system.

[00110] The process 800 continues with applying 807 the compliance poliéies égainst
the content metadata of VM. Example results of applying the policies against the cohtent
metadata include allow execution (i.e., conteﬁt metadata is compliant with policies),
disallow (i.e.; content metadata is non-compliant with policies); or retry based on what
content is required, allowed or disallowed. Comparisons performed by application of
polic;ies can require, for example, exact pattern matching. For example: If
Fileﬁamé.preSent (Doom.eXe) THEN NOEXEC or IF Filename.missing (LICENSE.*)
THEN NOEXEC). Recall that compliance can be tested by comparing signatures (e.g.,
MD5 or other hashes) of the content metadata against signatures of known blacklisted,
gréy listed, and white listed content. Fuzzy pattern matching may also be used, to allow
for degrees of matching (as opposed to exact pattern matching). As previously e“xplaihed,
the enforcement process 800 may also execute one or more plug-ins to assist in the
enforcement of the compliance scheme. Also, there may be exceptions to various policies
(e.g., vﬁles known to be secure are excused from the virus scanning p’rocess’es, or VM22 is
‘exempt from policies 2-5). |

[00111] Figure 8b illustrates a get VM content metadata process 801 configured in
accordance with one particular embodiment of the present invention. In this éxampl-e '
embodiment, process 801 .includes making 811 a copy of the target VM to operate on, and

injecting 813 the necessary amount of changes into the VM copy to execute the system

52

WO 2008/049005 PCT/US2007/081646

(e.g., minimal agentry to make the VM copy executable). The process 801 continues with
executing 815 the VM copy in a secure, isolated host or sandbox (e.g., rro network access,
no SAN, limited resource access). The process 801 continues with interrogating 817 the
now runnirrg VM copy using runtime interfaces (e.g., Windows® WMI) to gather the
corrtent metadata, and saving 819 that content metadata (e.g., to the SMP 309 or external
storage facility such as 109 or 117). The process 801 continues with stopping the system
and discarding 821 the VM copy. |

[00112] Figure 8c illustrates a gét VM content metadata process 801 configured in
accordance with another particular embodiment of the present invention. In this example
embodiment, process 801 includes exporting 831 the target VM to disk or other such
portable storage media (e.g., using VMware® Disktools Export or other such tools), and
then transferring 833 the VM disk to another location for analysis (e.g., using FTP or
other suitable transmission proto'col), such as a server system like server 115 or to the
enterprise VM manager 111. The process 801 proceeds with mounting 835 the VM disk
as a virtual drive at the other location via the local system (e.g., on é Windows® Server
sjrstem, issue a “vmware-mount V: vm.vindk” command), and interrogating 837 the
system using file system interfaces (e.g., read the file system or system registry of a
Windows® based VM) to gather the content metadata. The process 801 continues with -
saving 839 thé‘ content metadata (e.g., to the SMP 309 or other storage facility such as
109 or 117), and discarding 841 the target VM from the disk to which it was éxported.

[00113] Figure 8d illustrates a get VM content rhetadata process 801 configured in
~accordance with another particular embodiment of the present invention. In this example
embodiment, process 801 includes starting 851 an agent on the target VM host machine
(e.g., VMware® ESX Server), and mounting 853 the VM disk files to an NFS associated
with the host machine (NFS = Network File Systern, which is a protocol that alloWs a
machine to mount a disk of another machine locally or over a network). The process 801
continues with accessing 855 (via the agent) the VM disk from the same or other system
using file share (e.g., \\server\drive\file). The process 801 further includes interrogating
857 (via the agent) the system using file system direct(e.g., fopen, fclose) to gather the

-content metadata. The process 801 continues with saving 859 the content metadata (e.g., '

53

WO 2008/049005 PCT/US2007/081646

to the SMP 309 or other storage facility such as 109 or 117), and unmounting 861 the
disk files of the target VM from the NFS.

VM Adaptation

[00114] Figures 9 illustrates a VM adaptatien process configured in accordance with one
embodiment of the present invention. This process 900 operates to adapt a non-
compliant VM, Wthh may be an original VM or VM copy. This adaptation may be
temporary (where changes made are discarded post-execution) or permanent (where
changes made are committed to effectively evolve the VM). In any case, the VM being
operated on by process 900 is generally referred to as the target VM, for purposes of this _

discussion.

[00115] The first steps of process 900 are similar to those discussed with reference to
process 800, and include: getting 901 content metadata of the target VM; getting 903
compliance policies regarding VM content; arbitrating 905 the compliance policies for
priority, cenﬂict, or deadlocks; and applying 907 the content compliance policies against
the content metadata of VM. The previous discussion with reference to corresponding

steps 801, 803, 805, and 807 is equally applicable here.

[00116] In addition, when theVM does not satisfy one or more policies or is otherwise
found to be non-compliant, then process 900 continues with adapting 909 the VM to
conform. Adaptation can be, for example, via direct manipulation and/or insertion of
files, settings, and data inte the target VM (e.g., update virus definitions, install anti-virus '
software and/or security patches, run anti-virus scanning application (an other malware
detection/eradication applications),ﬂ enable firewall and/or adjust firewall settings, delete
unauthorized content, obtain necessary licensing or automatically issue email notification
to administrator to obtain additional licensing, and any other such remedial activity). The
adapting 909 may also include scheduling of other‘agents or processes to correct non-
compliances or otherwise carry out remedial action. For instance, the adapting 909 may
engage a download agent to fetch updates or security patches, and/or a virus scanning
agent to search for and eradicate viruses and/or other malware. The adapting 909 may
also include the scheduling of required VM start time processes (e.g., Windows®

RunOnce) to make adjustments. The adapting 909 may also include restricting or

54

WO 2008/049005 PCT/US2007/081646

otherwise adjusting access and/ot user permissions, so that the target VM can/cannot
access certain content, resources, or areas of the managed network. Numerous such
adaptations can be made, whether those adaptations operate to provide direct VM content
éhanges or indireét VM content changes. The adapting 909 can also interface with
.external processes and databases (e.g., to make sure that a particular VM is registered in a
CMDB or asset database). |

[00117] After adaptation is performed/scheduled, the process 900 may further include
validating 911 any changes made dliring the adaptation process. In one such
embodiment, a validation test is requested or otherwise performed to validate the chahges
were successfully made. For instance, the validation test inay include repeating steps
901, 903, 905, and" 907 (or some combination thereof, such as 901 and 907, since it may

not be necessary to repeat step 903 and 905).

Learn and Optimize

[00118] Figure 10 illustrates a combined learn' and optimization process 1000 in
accordance with one embodiment of the present invention. This process 1000 operates to
learn adaptations made to a VM (e.g., to achieve policy compliance or other desired
change), and to optimize the VMs so that future adaptations can be reduced (thereby
effectively evolving the VM). Such optimization/evolution is particularly useful for
adaptations that are consistently made over a period of time. In any case, the VM being '
operated on by process 1000 is generally referred to as the target VM, for purposes of this

discussion.

[00119] The process 1000 includes getting 1001 a pré-execution state of the target VM,
and getting 1003 a post-execution state of the target VM, and then computing 1005 the
delta to show éhanges made to the target VM. These changes to the target VM may have
been made during pre-execution adaptation as discussed herein. Alternatively, or in
addition to, changes to the target VM could have been made during execution (e.g., by the
user). In one parﬁcular embodiment, computing 1005 the delta between the pre- and
post- execution states includes differencing the content metadata or the actual content
itself. The differences can be captured into a profile database, so that changes can then be

analyzed. Alternatively, computing 1005 the delta includes reading a delta file created

55

WO 2008/049005 PCT/US2007/081646

during VM execution (e; g., redo, undo, diff ﬁles), which only has the differences. In any
case, and as previously explained, such captured dlfference data provides insight into
more efficient VM management. For example, such data can be analyzed to detect what
software that was installed, removed, or updated, as well as other system changes (e.g.,
paging file, accounts, event log). Also, regularly performed adaptations can be detected,
based on view of historical data (e.g., service packs that are reapplied during each VM
use session, and software that is cbnsisteﬁtly re-installed or removed during each VM use
session). | o

[00120] The process 1000 may continue with discarding 1007 one or more of the
adaptations made, if adaptation is found to be undesired or otherwise not appropriate for
permanent use. The process may further continue with suggesting and/or deriving 1009
variants of the target VM, so as to provide an optimized VM that will require fewer
adaptations going forward. For example, a new optimized VM can be derived without
previously installed under-utilized applications, thereby conserving license use.
Likewisé, a new optimized VM can be derived to permanently include a security patch or
other software that hés been historically and consistently installed during adaptation of a
VM. Thus, the optimization can be based on single or multiple executions of a VM.
Likewise, executiions/adaptations of multiple VMs included in a group can be analyzed to
determine the commonality of adaptations made. If changes are consisfently made to a
quorum (or any such metric that indicates consistency of the VM group) of the VMs
“included in the set analyzed, then optimizations can confidently be rhade to the entire set,

even if data for some of the VMs in the set is not available. In any case, optlmlzed VMs

are provided that pre-include all common delta items.

[00121] The foregoing description of the embodiments of the invention has been
presented for the purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many modifications
and variations are possible in light of this disclosure. For instance, numerous suitable
execution platforms and VM formats can be used as a host, and the term host is not
intended to limit the present invention to any particular environment, structure, fornﬁat, or

the like. Likewise, the term virtual machine as used herein is intended to include all -

56

WO 2008/049005 PCT/US2007/081646

virtual systems, including virtual appliances, virtual applications, special-purpose virtual
processing environments, and other such virtual manifestations that can benefit from the

management and/or control techniques discussed herein.

57

WO 2008/049005 PCT/US2007/081646

CLAIMS

What isr claimed is:

1. A method for optimizing virtual machines (VMs), comprising:

computing a delta between a pre-execution state of a target VM and a post-
execution state of the target VM to determine changes made to the target
VM during at least one of pre-execution compliance-based adaptation and
execution; and ,

in response to a change being desirable for permanent uée, suggesting and/or
deriving a variant of the target VM that permanently includes the desired

change..

2. . The method of claim 1 further comprising;:
in response to an adaptation being undesirable for permanent use, discarding that

adaptation.

3. The method of claim 1 wherein suggesting and/or deriving a variant of the
~target VM includes at least one of suggesting and deriving a VM without previously

installed under-utilized applications, thereby conserving license use.

4. The method of claim 1 wherein suggesting and/or deriving a variant of the
target VM includes at least one of suggesting and deriving a VM without unauthorized

content that is consistently removed by the pre-execution compliance-based adaptation.

5. The method of claim 1 wherein suggesting and/or deriving a vatiant of the
target VM includes at least one of suggesting and deriving a VM that permanently
includes security code that is consistently installed by the pre-execution compliance-

based adaptation.

58

WO 2008/049005 PCT/US2007/081646

6. The method of claim 1 further comprising:

analyzing adaptations of multiple VMs included in a group to determine
commonality of adaptatlons made; and

1ﬁ response to adaptations that are consistently made to a quorum of the VMs
1ncluded in the group, suggesting and/or deriving variants of all VMs in
the group that permanently include one or more of those adaptations

consistently made to a quorum.

7. . The method of claim 1 wherein deri\/fing a variant of the target VM

includes permanently committing one or more adaptations to the target VM.

8. The method of claim 1 wherein the pre-execution compliance-based
" adaptation includes epplying one or more signature-based compliance policies to one or
more signatures associated with the target VM, wherein the VM signatures are generated

from at least one of physical and logical metadata associated with the target VM.

9. The method of claim 1 wherein computing a delta between the pre-
execution state and the post-execution state comprises: ‘

differencing at least one of VM content metadata and VM content itself; and

capturing changes resulting from the differencing into a storage, so that the

changes can then be analyzed.

-

10. The method of claim 9 whereln the differencing is carried out using

content signature based comparlsons

11. The method of claim 10 wherein content signatures used in the

comparisons are computed using one or more hashing functions.

59

WO 2008/049005 PCT/US2007/081646

12 The method of claim 1 wherein computing a delta between the pre-
execution state and the post-execution state comprises:
reading delta data created during VM execution, the delta data indicating VM

differences between the pre-execiltion state and the post-execution state.

13. The method of claim 1 further comprising the preliminary steps of:
getting the pre-execution state of the target VM, and
getting the post-execution state of the target VM. |

14, The method of claim 1 further comprising:

computing a delta between a pre-execution state of.a target VM execution
platform and a post-execution state of thé target VM execution platform to
determine changes made to the target VM execution platform during at
least one of pre-execution compliance-basgd adaptation and VM
execution; and '

in response to an execution platform change being desirable for permanent use,
suggesting and/or deriving a variant of the target VM execution platform

that permanently includes the desired change.

15. The method of claim 1 further comprising: . : , |
intercepting a request to at least one of stop or suspend the target VM; and |
preventing the target VM from stopping or suspending until the target VM is

. 4
determined to be compliant with the VM compliance scheme.

16. The method of claim 1 wherein the target VM is a virtual application or a

virtual appliance. '

17. A system for optimizing virtual machines (VMs), comprising:
a learning module for computing a delta between a pre-execution state of a target

VM and a post-execution state of the target VM to determine changes

60

WO 2008/049005 PCT/US2007/081646

made to the target VM during at least one of pre-execution compliance-
based adaptation and execution; and e

an optimization module for, in response to a change being desirable for permanent
use,‘ suggesting and/or deriving a variant of the target VM that

permanently includes the desired change.

18. The system of claim 17 wherein the pre-exeéution compliance-based
adaptation is carried out by an adaptation module for applying one or more signature-
based compliance policies to one or more signatures associated with the target VM,
wherein the VM signatures are generated from at least one of physical and logical

metadata associated with the target VM.

19. The system of claim 17 wherein the learning module is further configured
for computing a delta between a pre-execution state of a target VM execution platfdrm
and a posf-execution state of the target VM execution platform to determine changes
made to the target VM execution platform during at least one of pre-execution
compliance-based adaptation and VM execution, and the optimization module is further
configured for, in response to an execution platform change being desirable for
permanent use, suggesting and/or deriving a variant of the target VM execution platform

that permaneritly includes the desired change.

20. One or more machine-readable mediums encoded with instructions, that
when executed by one or more processors, cause the processor tdcarry out a process for
optimizing virtual machines (VMs), the process comprising:

computing a delta between a pre-execution state of a target VM and a post-

execution state of the target VM to determine changes made to the target
VM during at least one of pre-execution compliance-based adaptation and
,. execution; and

in response to ‘a change being desirable for permanent use, suggesting and/or

deriving a variant of the target- VM that permanently includes the desired

change.

61

WO 2008/049005 PCT/US2007/081646

21. The one or more machine-réeadable mediums of claim 20, the pfocess
further comprising;: _

computing a delta between a pre-execution state of a target VM cxecution
platform and a post-execution state of the target VM execution platform to
determine changes made to the target VM execution platform during at
least one of pre-execqtion compliance-based adapt'atidn and VM
exccution; and

in response to an execution platform change being desirable for permanent use,
suggesﬁng and/or deriving a variant of the target VM execution platform

that permanently includes the desired change.

62

WO 2008/049005 PCT/US2007/081646

1/16

Enterprise

/,__,/___\

Execution Platform
101
Host/VMM
103
Guest/VM | | M-Agent
107 105
' Remote VM
Service Center
| | /
Execution Platform M
101 Management
Server
Host/VMM 115
103 \
Guest/VM | | M-Agent 4
107 105
VM

Management
Information
117

Enterprise /
Storage Facility |,/
(e.g., SAN, NAS)

109

A

A
Enterprise

VM Manager
111

Fig. 1

WO 2008/049005 PCT/US2007/081646
2/16
VM Management Module
(e.g., 105, 111, and/or 115))
|
|
|
! SMP Registration | | Access VM Enforce Event
: Generator Module Module Module Handler
| 201 203 205 207 217
|
A A A A
. ﬂ .
: A4 \ 4 A 4 A 4
|
| Adapt VM Learning Optimization Request
: /o E\?/Ioogdule Module Module Module Handler
[211 213 215 219
|
|
|
VMs and/or

VM Management Data
(e.g., To/From Network 113)

Fig. 2a

PCT/US2007/081646

WO 2008/049005

3/16

Ja|pueH
1U9A]

pJeoss|gAIuuwoD-
aziwndo-
uleoa-

UoRNooXg-1504d

paddoig
JUOIIND9X3-1S0d

101
NAASeND

<—

dojg 0}
1Sonbay

qg 614

pledsigAwwod- -
doig-
deug-
6o7-
puadsng-
MO~

TSUDIE A-UONOSX g

pauelg
/Bunnoaxgy

L01L
NAASEND

pJeods|g/AIWWoD-
uoljeydepy-
JusWwaslojug Aoljod-

{eyepejoly ‘oone] }
uoneqsibay-

gonnoaxJ-aig

paddo)g
Juonnoaxg-aid

= 01
WASEND

pels o}
1sonbay

PCT/US2007/081646

WO 2008/049005

4/16

oz "bi4

Aoijod INA INA

SIEIETel 3¥99yQ bel

INA INA

yepdn leuy un un

sabue

A 2| | Aowea || olod WA WA WA ebon
1depy JLIWoA Mosayn aoe|day nd Ja1s1bay dois dois
K K WA
NA NA Jllod ollod A WA INA [esi6o
9A|OA] ulea 129 ajealD =TS dnoom yels tﬂw

[I9US puewwo) Jayoiedsiq

\

6l¢

Ja|pueH 1senbay

WO 2008/049005 PCT/US2007/081646

5/16

Intercept Mechanism
(e.g., Event Handler 217,
Request Handler 219, or

Intercept-enabled platform 101)

L Managed
Request Request
Interception Interface
L % _______ o
e ¥ [
! o
Execution _ | ! Execution L
Platform 4+ - Platform | |
101 o 101 L
L o
| | |
' l
' |

'Fig. 2d

PCT/US2007/081646

WO 2008/049005

6/16

Go¢
94
uonduosa

SOl
Juaby-N
_
G0¢
Sl
uonduosaqg
WA
3
60¢ \
(dNs) Loz
uoniped lojelauan)
Juswebeuely dINS
SWIDISAG
N P4 101
€0¢ WAASENY
sYsIQ fenMIN

WA

RN

€0€
sysiQ [eNHIA

10¢

WAASOND
196ue 1

PCT/US2007/081646

WO 2008/049005

7/16

¥ "B14

<

0oLt
Ziwiid

OAA_&NOAA

0001
uieaT

<

cor
1noaxg

006
depy

008
aoJojug

- 00L Lop 009
SSa00Y Aloadg Jo1s160

<

\

00v
$$99014 [0J1U0D

pue juswebeuepy WA |[B49AD

PCT/US2007/081646

WO 2008/049005

8/16

Slig JO UONBO0T &=
pue saweN /\/ @

[ea1boT A

SIWA Pa0Cpe |

‘passaidwio)

sainjeubig
pue ‘elepelsy

‘SoopEe | NA

”
|
_
|
|
|
|
_
|
" pue ‘paidAioug
|
|
|
|
_
|
|
_
|

€Ls
Ansiboy

NA

LLS
Alojisoday

A

609
obeio)g

ele(] juswabeuepy
WA

A/ (Z11 Jo/pue g0l “69)

seallioe4/Al10e abelols

G "Bi4

L0S

S$S920.1d —~—

Anoeg @
AI\ \V

S0S
sse20.1d

PuiweN
J/Ansibay

€0S

LOS
$S900.1d

oope |

/ €0C

a|npoj uoneisibay

(=

SUOIJEOLIION
jusng AN

L0}
NAASIND

PCT/US2007/081646

WO 2008/049005

9/16

9 ‘B4

€19
SUONIB20T
O} SNA
abeig

LL9
Aioypsoday
0] siig NI

lajsued |
JAdoD

mco

E\Cocm_
10/pue
ssaJiduio

<

209
sjewlo
49yjo 01 AIA
sjejsuel |

€09
509 elepeon
elepelo JUBILOD
os1bojeausn) oAL(]
ayeal) bom.bxm_

L09
soaweN WA
|eoisAyd
© |eo1607
Jo15169y

h

009
$S90014 1018160y

PCT/US2007/081646

WO 2008/049005

10/11

A

M—F
Bm_mcﬂ 1

—._L.

v_oo_cD
ndAioaQ

<

60.
NA
ssaidwod

-2

L0L
lojsuel|

¢

+11) €0.L
mu‘_m_ SWweN NA
[eoisAyd
mumoo._ OA|0SDY

10L
dn-»007]
Ansiboy

\

00.
$S800.1d SS90y

PCT/US2007/081646

WO 2008/049005

11/11

eg "B
108 508 €08 108
Blepels Jusiuod saloljod saoIj0d eyepel1ain
jsuieby saoijod Jusjuo) JUSU0YD JuLju0n
Jusjuon Alddy djeliqiy WA 12D WA 1D

\

008
$S9820.1d 92.10Ju]

PCT/US2007/081646

WO 2008/049005

12/16

qag "bi4

4
Adoo WA
pleosiq 2

woisAs
dois

618
elepels
aneg

Am

Ll8

Buisn welsAs
ajebouialu|

oRISU| SWRUNY A

GL8
xogpueg
ut WA
a)noexg

€8
Aijuaby
uosu|

118
NA
Jo AdoD

Men

\

L0g SS©20.1d
elepejsi\
JUSIUOD 19D

PCT/US2007/081646

WO 2008/049005

13/16

<

og "Bi14
£eg
1€8 Geg LES
£d Lve mmwm SOOBLIBIU| WoISAS wIBISAsS J8yjo uo c“um_wmwmwn_ NSIa
9 NA EMWM W 8|l4 Buisn walsAg aAL(Q [enyiA se o1 4810 A 01 NA
pleOSIa S ajeboiieyu| MsiQ WA JUNOW ‘_ﬁm.cm._._. podx3g

\

LOg SS920.d
B1epRISIN
JUSIUOD 19D

PCT/US2007/081646

WO 2008/049005

14/16

pg ‘614

198
S4dN
woly sa|y

ASIp WA
junowun

658
elepels
aAeg

<

1S8
103.I(] WLISAS
9|4 Buisn wolIsAg
o1ebolisiu]

GG8
a|)\JonISS

se NA
SS900Y

€68
S4dN
0} sali
%SIP A
JUNOA]

LG8
JISOH INA
uo jusby

Helg

\

LO8 SSo20.d
elepeIs|\
JUSILOD 199

PCT/US2007/081646

WO 2008/049005

15/16

<

LL6
sobueyn

SlEPIEA

606
WIoJUOD
01 NA
Jdepy

<

106
Blepesn Jusuo)d
1suieBy saijod
jusuo) A|ddy

S06
seljod
jusuo)
ajeligly

€06
sololjod
JusjuoD
NA 199

L06
EJepeIoN
JuauoD
NA D

\

006
$S800.d 1depy

PCT/US2007/081646

WO 2008/049005

16/16

ol b1
6001 J00L €001 L0OL
sjueue ale o)e
lo/pue UNMM__U,Q a1ndwo)n uonnoaxy uonnoox3y
1sebbng P 'a -180d 199 -2id 199

\

0001L
$S900.d 9ziwndo pue uiea] pauiquiod)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings

