06/019496 A 1 I 1K OO0 O OO0 1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 February 2006 (23.02.2006)

‘ﬂm A 00 O

(10) International Publication Number

WO 2006/019496 Al

(51) International Patent Classification : GOG6F 12/02
(21) International Application Number:
PCT/US2005/021846

(22) International Filing Date: 17 June 2005 (17.06.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
10/897,049
11/022,369

21 July 2004 (21.07.2004)
23 December 2004 (23.12.2004)

Us
Us

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 140 Caspian Court,
Sunnyvale, California 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CONLEY, Kevin
M. [US/US]; 5983 Alvarado Court, San Jose, California
95120 (US). SINCLAIR, Alan Welsh [GB/GB]; The Cot-
tages, Broadhead, Candie, Maddiston Falkirk FK2 OBU

(74)

(81)

(84)

(GB). SMITH, Peter John [GB/GB]; 21 Bonnyrigg Road,
Eskbank, Midlothian Scotland EH22 3HA (GB).

Agents: PARSONS, Gerald, P. et al.; Parsons, Hsue &
de Runtz LLP, 655 Montgomery Street, Suite 1800, San
Francisco, California 94111 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

(54) Title: FAT ANALYSIS FOR OPTIMIZED SEQUENTIAL CLUSTER MANAGEMENT

@opy Management Method

250

Y

Host uses a non-volatile memory device to store
information for use by a host’s filing system

\252

y

Controller uses the information stored by the host to determine whether
clusters or sectors within clusters are currently allocated to any valid files

\254

Y

Controller ensures that clusters or sectors within clusters not
allocated to any valid file is not copied from one location to another
during a garbage collection operation within memory

\‘256

/

End

& (57) Abstract: Techniques for managing data in a non-volatile memory system (e.g., Flash Memory) are disclosed. A controller
can use information relating to a host’s file system, which is stored by the host on non-volatile memory, to determine if one or more
O clusters (or sectors with clusters) are currently allocated. The controller can use the information relating to the host’s file system to
identify when the host is sending data to the next free cluster and to store such data in a sequential format by copying data from other

locations in the non-volatile memory.

WO 2006/019496 A1 IINH10 Y A0VOH0 00 0O A0

SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-
Published: ning of each regular issue of the PCT Gazette.

— with international search report

WO 2006/019496 PCT/US2005/021846

FAT ANALYSIS FOR OPTIMIZED SEQUENTIAL CLUSTER MANAGEMENT

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to data storage systems for use with
computing systems and, more particularly, to techniques for maintaining data on

non-volatile memory storage device.

[0002] There are many commercially successful non-volatile memory products
being used today, particularly in the form of small form factor cards, which employ
an array of flash EEPROM (Electrically Erasable and Programmable Read Only
Memory) cells formed on one or more integrated circuit chips. Typically, a memory
controller on a separate integrated circuit chip is provided as an interface to a host.
The host can use the controller to perform various operations (e.g., read, write) on the
non-volatile memory. A controller typically includes a microprocessor, some non-
volatile read-only-memory (ROM), a volatile random-access-memory (RAM) and
one or more special circuits such as one that calculates an error-correction-code
(ECC) from data as they pass through the controller during the programming and
reading of data. Some of the commercially available cards are CompactFlash™ (CF)
cards, MultiMedia cards (MMC), Secure Digital (SD) cards, Smart Media cards,
personnel tags (P-Tag) and Memory Stock cards. Hosts include personal computers,
notebook computers, personal digital assistants (PDAs), various data communication
devices, digital cameras, cellular telephones, portable audio players, automobile
sound systems, and similar types of equipment. Besides a memory card
implementation, non-volatile memory can alternatively be embedded into various

types of host systems.

[0003] As in most integrated circuit applications, the pressure to shrink the silicon
substrate area required to implement éome integrated circuit function also exists with
flash EEPROM memory cell arrays. It is continually desired to increase the amount
of digital data that can be stored in a given area of a silicon substrate, in order to
increase the storage capacity of a given size memory card and other types of

packages, or to both increase capacity and decrease size. One way to increase the

WO 2006/019496 PCT/US2005/021846

storage density of data is to store more than one bit of data per memory cell and/or per
storage unit or element. This is accomplished by dividing a window of a storage
element charge level voltage range into more than two states. The use of four such
states allows each cell to store two bits of data, either states store three bits of data per
storage element, and so on. Multiple state flash EEPROM structures using floating
gates and their operation are described in United States Patent Nos. 5,043,940 and
5,172,338, and for structures using dielectric floating gates in the aforementioned
United States Patent Application Publication No. 2003/0109093. Selected portions
of a multi-state memory cell array may also be operated in two states (binary) for
various reasons, in a manner described in United States Patent Nos. 5,930,167 and

6,456,528.

[0004] Memory cells of a typical flash EEPROM array are divided into discrete
"blocks" of cells that are erased together. Each erase block typically stores one or
more pages of data, the page being the minimum unit of programming and reading,
although more than one page may be programmed or read in parallel in different
sub-arrays or planes. Each page typically stores one or more sectors of data, the size
of the sector being defined by the host system. An example sector includes 512 bytes
of user data, following a standard established with magnetic disk drives, plus some
number of bytes of overhead information about the user data and/or the erase block in
which they are stored. Such memories are typically configured with 32, 128 or more
pages within each erase block, and each page stores one or just a few host sectors of
data. It should also be noted that in order to re-write data to a block, the block

should be erased first.

[0005] In order to increase the degree of parallelism during programming user data
into the memory array and read user data from it, the array is typically divided into
sub-arrays, commonly referred to as planes, which contain their own data registers
and other circuits to allow parallel operation such that sectors of data may be
programmed to or read from each of several or all the planes simultaneously. An array
on a single integrated circuit may be physically divided into planes, or each plane may
be formed from a separate one or more integrated circuit chips. Examples of such a
memory implementation are described in United States Patent No. 5,798,968 and
5,890,192.

WO 2006/019496 PCT/US2005/021846

[0006] To further efficiently manage the memory, erase blocks may be logically
linked together to form virtual blocks or metablocks. That is, each metablock is
defined to include one erase block from each plane. Use of the metablock is
described in International Patent Application Publication No. WO 02/058074. The
metablock is identified by a host logical block address as a destination for
programming and reading data. Similarly, all erase blocks of a metablock are
erased together. The controller in a memory system operated with such large blocks
and/or metablocks performs a number of functions including the translation between
logical block addresses (LBAs) received from a host, and physical block numbers
(PBNs) within the memory cell array. Individual pages within the blocks are
typically identified by offsets within the block address. Address translation often
involves use of intermediate terms of a logical block number (LBN) and logical page.
Thus, a block in a memory array may consist of a single erase block or may consist of

two or more erase blocks that are logically linked to form a metablock.

[0007] From the perspective of a host application, flash memory can be divided into
a logical address space starting from a logical address zero (0) and ending with a
logical address N. Fig. 1 illustrates a host's logical address space 102, which is
partitioned into "logical sectors". The host groups several (e.g., from four to sixty-
four (4-64)) logical sectors into a cluster. As shown in Fig. 1, a host may divide the
logical address space 102 into clusters that include clusters A, B, C, D, E, F, G and
H. As such, each of these clusters may represent a predetermined number of sectors
(e.g., from four to sixty-four (4-64) logical sectors per cluster). In any case, the host
allocates data in a logical unit of data, which can be referred to as a "cluster". For
example, clusters A, B and C may be used to allocate a file 1, while cluster D is used
to allocate a file 2. It should be noted that the host allocates filés in clusters. However,
not all the logical sectors in a cluster need to contain data for a file. By way of
example, only a portion (e.g., only one logical sector) of cluster C may have data.
Nevertheless, the host typically allocates an entire cluster to a file even though not all

the logical sectors in the cluster are needed.

[0008] A host can use a File Allocation Table (FAT) 104 to keep track of files. The
File Allocation Table (FAT) 104 effectively represents a logical file structure and also

indicates what cluster has been allocated for each of the files in the logical file

3.

WO 2006/019496 PCT/US2005/021846

structure. The host maintains the logical file structure by updating the File Allocation
Table (FAT) 104. By way of example, when a new file is allocated, the File
Allocation Table (FAT) 104 is updated to, among other things, indicate what
cluster(s) has been allocated for the new file. Also, when a file or directory is
deleted, the host updates the File Allocation Table (FAT) 104. It should be noted
that clusters may be deallocated by the host as a result of an update. By way of
example, when the host deletes file 1, an updated File Allocation Table (FAT) 106
may result where the host effectively deallocates clusters A, B, and C, which were

allocated for storing file 1.

[0009] In contrast to a host's logical address space, the logical address space of a
flash-memory controller is divided into "logical blocks". In other words, the same
logical address space 102 may be represented as a logical address space 103 for the
controller. The fundamental unit for both logical address space 102 and logical
address space 103 is a sector in this example. As shown in Fig. 1, the logical address
space 103 may be divided into various logical blocks, including logical block 1 and
logical block 2, each logical block comprising multiple sectors of data that are
mapped to a single block of the memory array. These logical blocks are mapped into
blocks of memory that can be erased as a unit, for example, a single erase block or a
metablock. Thus there is a one-to-one correspondence between logical blocks and
blocks of the memory array, where all the sectors in a logical block are stored in a
single block. For example, logical block 1 may be mapped into block 2, and so on.
In summary, the host and controller use different logical units of memory. The host
divides the logical address space into clusters while the controller divides the logical
address space into logical blocks. It should also be noted that typically host clusters
are applied to logical address space allocated for application data and sub-directory
entries only. In addition, logical address space allocated for other system data may
not be managed by the host as clusters. It should also be noted that the first cluster is
not normally located at the beginning of the logical address space. Clusters and

logical blocks may therefore not align with each other.

[0010] A conventional controller, however, is not aware of the logical organization
used by the host. Conventionally, the controller simply maps the logical address 102
used by the host to a logical address 103 and then into a physical address 110. This

-4 -

WO 2006/019496 PCT/US2005/021846

means that a conventional controller does not consider the host's logical organization
of data or consequences that a host operation may have had on data. By way of
example, when a new file is allocated, the logical file system 104 is updated to,
among other things, indicate what cluster(s) has been allocated for the new file. Also,
when a file or directory is deleted, the host updates the logical file system 104.
Moreover, one or more clusters may be deallocated by a host. By way of example,
when the host deletes file 1, the updated File Allocation Table 106 indicates that the
host has effectively deallocated clusters A, B, and C which were previously allocated
for storing file 1 (i.e., file 1 is no longer represented in updated File Allocation Table
106). Although clusters A, B, and C have been deallocated by the host and can be
erased, a conventional controller does not "garbage collect” that data corresponding
to deallocated clusters A, B, and C. This means that the data will persist on
memory. Garbage collection is an operation that copies valid sectors of data from an
original block that contains obsolete sectors of data to an update block. When all
valid sectors of data have been copied, the original block may be marked for erase.
Typically, data is consolidated from two or more blocks to a single block in this
way, thus storing data more efficiently and freeing space in the memory array.
Unnecessary copying of data during garbage collection reduces the efficiency of
such operations. In addition, the deallocated data may be copied a number of times
when blocks are updated during garbage collection when data in two blocks may be

consolidated into one block.

[0011] To further illustrate, an original block 120 is depicted in Fig. 1. For
simplicity, it is assumed that the original block 120 includes data corresponding to
logical clusters A, B, C and D used by the host to allocate files 1 and 2. Also, further
assuming that the host has later deallocated file 1 (clusters A, B and C), the original
block 120 still contains all the logical clusters A, B, C and D because the controller
has no way of knowing that file 1 has been deallocated by the host. The host,
however, has requested the controller to update data portion D of the original block
120. In other words, at some point the host may want to change file 2, so it sends a
write request using the logical address it knows for data corresponding to one or
more logical sectors that should be updated. The controller determines that these

logical sectors addressed by the host correspond to sectors that already have been

WO 2006/019496 PCT/US2005/021846

written to by the host (i.e., Cluster D), so an update block 122 is used partly because
data in original block 120 cannot be overwritten. This means that two blocks may be
used to represent a logical block for some time until the update block 122 is "closed"
(i.e., all data in original block 120 is copied to block 122). The original block 120
and the update block 122 may be combined, for example, during a garbage collection
cycle, so that the update block 122 becomes an "original” block 122 and the previous
original block 120 is erased and returned to a pool of available memory blocks. In
any case, it should be noted that data corresponding to the deallocated clusters (A, B, and
C) are copied sooner or later to the update block 122 so that update block 122 can be
closed and original block 120 can be erased. The controller may maintain a mapping
table within volatile memory or non-volatile memory defining the allocation of
memory blocks to logical blocks of data. Copying data stored in non-volatile memory
takes a significant amount of time and resources. However, copying deallocated data
(e.g., deallocated clusters A, B, and C) is not necessary. Thus, system performance
can be further enhanced if deallocated data is not copied. In general, it is desirable to
enhance system performance as much as possible while adhering to the addressing

conventions that are widely used.

[0012] Accordingly, alternative non-volatile memory management techniques would

be useful.

SUMMARY OF THE INVENTION

[0013] Broadly speaking, the invention pertains to techniques for managing data in a
non-volatile memory system (e.g., Flash Memory). In accordance with one aspect
of the invention, a controller can use information relating to a host's. file system,
which is stored by the host on non-volatile memory, to determine if one or more
clusters (or one or more sectors within one or more clusters) are currently allocated.
As will be appreciated, the controller can use the information relating to the host's file
system, among other things, to ensure that one or more clusters (or one or more
sectors) are not copied from one location to another location in the memory, for
example, during a garbage collection cycle. As a result, some unnecessary
operations (e.g., copying data), which are conventionally performed, can be avoided

and system performance is enhanced.

WO 2006/019496 PCT/US2005/021846

[0014] It will also be appreciated that the controller may directly use the information
normally written by the host in a File Allocation Table (FAT) to determine whether
one or more previously allocated clusters have been deallocated. Alternatively, the
controller may use the information written in the root directory, subdirectories, and
File Allocation Table (FAT) to generate and/or maintain its own information about
cluster allocation, for example, in a Data Allocation Table (DAT). However, it
should be clear that the invention may be implemented to make use of the information
normally stored in the File Allocation Table (FAT). As such, it is not necessary for
the controller to maintain its own information or to generate any additional data
structures (e.g., Data Allocation Table). However, as will be described below,
maintaining a Data Allocation Table (DAT) may offer more advantages than solely
relying on the information obtained from File Allocation Table (FAT). Therefore, a
Data Attribute Store (DAS) which may, for example, be implemented as a Data
Allocation Table (DAT) will also be further illustrated.

[0015] In general, a Data Attribute Store (DAS), which includes one or more
attributes of data, can be maintained by the controller in the non-volatile memory. A
data attribute can provide useful information about data (e.g., allocation or
deallocation status, size, priority). As such, the Data Attribute Store (DAS) can be
used to manage data more intelligently. Another aspect of the invention pertains to

techniques for managing data using the Data Attribute Store (DAS).

[0016] In one embodiment, the Data Attribute Store (DAS) is implemented as an
Allocation Store (AS). The Allocation Store (AS) can, for example, be implemented
as a table, or a Data Allocation Table (DAT) that provides an allocation status for
each cluster (host's logical unit) of data. A cluster represents a logical unit that the
host uses in order to logically organize data. To achieve better memory management,
a controller of the non-volatile memory system can access the Data Allocation Table
(DAT). As such, the Data Allocation Table (DAT) effectively provides a bridge
between the logical organization used by the host and the controller. This allows the
controller to effectively understand the logical organization of the host. In addition,
the controller monitors host activities to determine, for example, whether the host has
deallocated a cluster. By way of example, root directory, File Allocation Table

(FAT), and subdirectories of a DOS compliant system may be monitored to detect

-7 -

WO 2006/019496 PCT/US2005/021846

deallocation of a cluster of data by the host. A change in the root directory, File
Allocation Table (FAT) or a subdirectory may be caused, for example, as a result of a
file or a portion of the file being deleted by the host. In any case, when deallocation
of one or more clusters of data have been detected, the controller updates the Data
Allocation Table (DAT). Thus, the Data Allocation Table (DAT) can provide updated
information about data. This information can be used to manage data more
intelligently. By way of example, a deallocation status can be used to determine
whether data should be copied during garbage collection. Data that has been
deallocated need not be copied. As a result, some unnecessary operations, which are

conventionally performed, can be avoided and system performance can be enhanced.

[0017] In another embodiment, information stored by the host in a FAT or in a DAS
may be used to determine how a portion of data sent by a host should be stored. Data
that is received non-sequentially may be stored non-sequentially, or alternatively, may
be stored sequentially by copying data from elsewhere to fill any gaps in the received
data. One case where such sequential storage is advantageous is where the host writes
to available (free or deallocated) portions of logical address space (e.g. clusters). Such
writing of data indicates that the host is storing new data and does not indicate any
reason to store the data non-sequentially. By comparing the logical addresses of
sectors of data that are sent by the host with logical address ranges of free clusters, the
controller may determine if the host is writing to the next free cluster. Based on this

determination, the controller may select a storage scheme for the sectors.

[0018] In one embodiment, a determination is made as to whether a sector or sectors
received from a host indicate that the host is writing to the next free cluster. If so, the
data is written in a block in sequential form, with any gaps in the data being filled by
data copied from elsewhere in the memory array. If not, additional criteria may be
considered to determine whether to store the data sequentially or non-sequentially.
For example, if sectors are received from a host with a jump in logical address
between sectors, the size of the jump may determine the storage scheme. If the jump
is small, the resulting gap may be filled with copied data and the updated data may be
kept in sequential format. In another example, where an update block is sequential
and is close to being full, the update block may be filled with data to keep it

sequential rather than writing a non-sequentially received sector. Storage schemes

-8-

WO 2006/019496 PCT/US2005/021846

may be chosen based on information directly obtained from a copy of FAT in the non-
volatile memory or may be chosen based on information in a DAS or similar structure

that is derived from the FAT.

[0019] The invention can be implemented in numerous ways, including as a method,
system, device, apparatus, or computer readable medium. Other aspects and
advantages of the invention will become apparent from the following detailed
description, taken in conjunction with the accompanying drawings, illustrating by way

of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The invention is illustrated by way of example, and not by way of limitation,
in the figures of the accompanying drawings and in which like reference numerals

refer to similar elements and in which:

[0021] Fig. 1 illustrates a logical address space, which can be partitioned into several

logical sectors.

[0022] Fig. 2A depicts a copy management method in accordance with one

embodiment of the invention.

[0023] Fig. 2B depicts a computing environment in accordance with one embodiment

of the invention.

[0024] Figs. 3A depict a data allocation table (DAT) in accordance with one

embodiment of the invention.

[0025] Fig. 3B depicts an entry of a data allocation table (DAT) table in accordance

with one embodiment of the invention.

[0026] Fig. 3C depicts a host's logical data organization which may be used by a

controller in accordance with one embodiment of the invention

[0027] Fig. 4 depicts a method for providing a flash-memory controller with
information about data that is stored on flash-memory in accordance with one

embodiment of the invention.

WO 2006/019496 PCT/US2005/021846

[0028] Fig. 5 illustrates a flash-memory maintenance method in accordance with one

embodiment of the invention.

[0029] Fig. 6 illustrates a monitoring method in accordance with one embodiment of

the invention.

[0030] Fig. 7 depicts an exemplary garbage collection method in accordance with one

embodiment of the invention.

[0031] Fig. 8 depicts a Data Allocation Table (DAT) in accordance with one
embodiment of the invention. ’

[0032] Figure 9A shows an example of a File Allocation Table (FAT).

[0033] Figure 9B shows a DAT that his derived from the FAT of Figure 9A.

[0034] Figure 9C shows an example of the correspondence between clusters and

sectors for a portion of host data.

[0035] Figure 9D shows non-sequential data being stored in a chaotic block and later

copied to a sequential block.

[0036] Figure 9E shows non-sequential data being stored directly in a sequential

block.

[0037] Figure 10 shows a flowchart for selecting a storage scheme for a'portion of

host data according to an embodiment of the present invention.

[0038] Figure 11 shows a flowchart for selecting a storage scheme for a portion of

host data according to another embodiment of the present invention.

[0039] Figure 12A shows an example of non-sequential data that is stored

sequentially.

[0040] Figure 12B shows a first example of non-sequential data that is stored non-

sequentially.

-10-

WO 2006/019496 PCT/US2005/021846

[0041] Figure 12C shows a second example of non-sequential data that is stored non-

sequentially.

[0042] Figure 12D shows a third example of non-sequential data that is stored non-

sequentially.

DETAILED DESCRIPTION OF THE INVENTION

[0043] The invention pertains to techniques for managing data in a non-volatile
memory system (e.g., Flash Memory). In accordance with one aspect of the
invention, a controller can use information relating to a host's file system, which is
stored by the host on non-volatile memory, to determine if one or more clusters (one
or more sectors within one or more clusters) are currently allocated. As will be
appreciated, the controller can use the information relating to the host's file system,
among other things, to ensure that one or more clusters (or one or more sectors within
the cluster) are not copied from one location to another location in the memory, for
example, during a garbage collection cycle. As a result, some unnecessary
operations (e.g., copying data), which are conventionally performed, can be avoided

and system performance can be enhanced.

[0044] It will also be appreciated that the controller may directly use the information
normally written by the host in a File Allocation Table (FAT) to determine whether
one or more previously allocated clusters have been deallocated. Alternatively, the
controller may use the information written in a root directory, subdirectories, and
File Allocation Table (FAT) to generate and/or maintain its own information about
cluster allocation, for example, in a Data Allocation Table (DAT). However, it
should be clear that the invention may be implemented to make use of the
information normally stored in the File Allocation Table (FAT). As such, it is not
necessary for the controller to maintain its own information or to generate any
additional data structures (e.g., Data Allocation Table (DAT)). However, as will be
described below, maintaining a Data Allocation Table (DAT) may offer more

advantages than solely relying on the information obtained from File Allocation Table

-11 -

WO 2006/019496 PCT/US2005/021846

(FAT). Therefore, a Data Attribute Store (DAS) which may, for example, be
implemented as a Data Allocation Table (DAT) will also be further illustrated.

[0045] In general, a Data Attribute Store (DAS), which includes one or more
attributes of data, can be maintained by the controller in the non-volatile memory. A
data attribute can provide useful information about data (e.g., allocation or
deallocation status, size, priority). As such, the Data Attribute Store (DAS) can be
used to manage data more intelligently. Another aspect of the invention pertains to

techniques for managing data using the Data Attribute Store (DAS).

[0046] In one embodiment, the Data Attribute Store (DAS) is implemented as an
Allocation Store (AS). The Allocation Store (AS) can, for example, be implemented
as a table, or a Data Allocation Table (DAT) that provides an allocation status for
each cluster (host's logical unit) of data. A cluster represents a logical unit that the
host uses in order to logically organize data. To achieve better memory
management, a controller of the non-volatile memory system can access the Data
Allocation Table (DAT). As such, the Data Allocation Table (DAT) effectively
provides a bridge between the logical organization used by the host and the controller.
This allows the controller to effectively understand the logical organization of the
host. In addition, the controller monitors host activities to determine, for example,
whether the host has deallocated a cluster. By way of example, root directory, File
Allocation Table (FAT) and subdirectories of a DOS compliant system may be
monitored to detect deallocation of a cluster of data by the host. A change in the root
directory, File Allocation Table (FAT) or a subdirectory may be caused, for example,
as a result of a file or a portion of the file being deleted by the host. In any case, when
deallocation of one or more clusters of data have been detected, the controller updates
the Data Allocation Table (DAT). Thus, the Data Allocation Table (DAT) can provide
updated information about data. This information can be used to manage data more
intelligently. By way of example, a deallocation status can be used to determine
whether data should be copied during garbage collection. Data that has been
deallocated need not be copied. As a result, some unnecessary operations, which are

conventionally performed, can be avoided and system performance can be enhanced.

-12-

WO 2006/019496 PCT/US2005/021846

[0047] Embodiments of the invention are discussed below with reference to Figures
2A-8. However, those skilled in the art will readily appreciate that the detailed
description given herein with respect to these figures is for explanatory purposes as
the invention extends beyond these limited embodiments. For example, although the
description refers to flash-memory, other types of non-volatile memory can be used.
Other types of non-volatile memory include Magnetoresistive RAM (MRAM),
Ferroelectric RAM, and phase change memory (also known as Ovonics Unified

Memory or OUM).

[0048] As noted above, a controller can use information relating to a host's file
system, which is stored by the host on non-volatile memory, to determine if one or
more clusters (or sectors within clusters) are currently allocated in accordance with
one aspect of the invention. The controller can use the information relating to the
host's file system, among other things, to ensure that one or more clusters (or a sector
within a cluster) are not copied from one location to another location in the memory
during a garbage collection cycle. To further illustrate, Fig. 2A depicts a copy
management 250 in accordance with one aspect of the invention. Initially, the host
uses a non-volatile memory device to store (252) information for use by a file
system. Next, the controller uses the information stored (252) by the host to determine
(254) if one or more clusters (or one or more sectors within one or more clusters) are
currently allocated to any valid files. As will be appreciated by those skilled in the art,
the controller may directly use the information normally written by the host in a File
Allocation Table (FAT) in order to determine (254) if one or more clusters (or one or
more sectors within one or more clusters) are currently allocated to any valid files.
Alternatively, the controller may use the information written in a root directory,
subdirectories, and FAT together with the sequence of logical sectors written by host
to the device, in order to generate and maintain its own information about cluster
allocation. For example, the controller may generate and/or maintain its own Data
Allocation Table (DAT). In any case, the controller ensures (256) that any cluster
(or sectors within a cluster) which are determined (254) to be currently NOT allocated
are not copied from one location to another during a garbage collection operation

within memory. In other words, a cluster or (a sector within a cluster) is only copied

-13 -

WO 2006/019496 PCT/US2005/021846

if it is determined (254) that the cluster (or a sector within a cluster) is currently

allocated. The copy management method 250 ends following operation 256.

[0049] As noted above, maintaining a Data Allocation Table (DAT) may offer more
advantages than solely relying on the information obtained from File Allocation Table
(FAT). As will become apparent to those skilled in the art, the FAT may not always
indicate that a cluster has been deallocation. For example, chains of cluster entries

may exist in the FAT without being linked to any file reference in a directory.

[0050] When a file is deleted, its directory entry is modified by the file system in the
host (first character of filename changed. to 0XES) to signify that the file has been
deleted. However, the cluster entries in the FAT may retain their chaining information
as if they were still allocated to a file. Algorithms for reusing clusters, and for
updating a FAT cluster entry to "0x0000" to signify unused, are typically a function
of the specific file system implementation in the host. The DAT can use changes in
directory or subdirectory information to allow cluster attribute to reflect the current
allocation status of that cluster to a file, without relying on the host file system. For
some environments, implementation of DAT may even be safer than solely relying
on FAT. When FAT is solely used to ascertain allocation status of clusters, a
memory system may not know about allocation of a cluster to a file until the host
updates the FAT at the end of the file. Therefore, if a host modifies part of a file
already written, before writing the FAT, the controller may discard some valid data
that still has a deallocated status. Implementation of a DAT can effectively address

this issue.

[0051] In addition, a Data Allocation Table (DAT) provided in accordance with the
principles of the invention may also provide features that are not typically provided
by FAT. For example, the FAT defines a single allocation status for a cluster. A
DAT, however, can be implemented to, for example, allow a multi-bit status to be
recorded, allowing allocation status to be resolved to a sector, or group of sectors,
within a cluster. This allows the controller to avoid copying unallocated sectors
between files, where the last cluster of the first file is only partially used. Given the
advantages and additional features that a DAT may provide, the embodiments

described below further illustrate a controller that maintains its own information in a

-14-

WO 2006/019496 PCT/US2005/021846

Data Attribute Store (DAS) (e.g., a DAT). However, it should be evident that a
controller may solely rely on the FAT to determine allocation status associated with
various files used by the host without departing from the scope and spirit of the

invention.

[0052] Fig. 2B depicts a computing environment 200 in accordance with one
embodiment of the invention. In the computing environment 200, flash-memory
controller 202 allows a host application 204 to access a non-volatile memory (e.g.,
flash memory 206). In other words, the host application 204 uses the flash memory
controller 202 as an interface to the flash memory 206. Hence, the host application
204 can request that the flash-memory controller 202 perform various access
operations (e.g., read, write) on the flash memory 206. The host application 204 can
use a logical address space to address data. The flash-memory controller maps the
host's logical address space into a controller logical address space, which is in turn,

mapped to a physical address space on the flash-memory 206.

[0053] Moreover, the flash-memory can build and maintain a Data Attribute Store
(DAS) 208. The DAS 208 includes information about various attributes associated
with data stored in flash-memory 206. By way of example, the attributes of data
stored in Data Attribute Store (DAS) 208 can include allocation status of data, size of
allocated data, priority. In general, the Data Attribute Store (DAS) 208 can store any
desirable data attribute and represents the attribute with one or more bits of
information. It should be noted that the flash-memory controller 204 provides a data
attribute monitor 208 to monitor the activity of the host application 204. The data
attribute monitor 208 can interpret the activities of the host application 204 with
respect to data stored on flash-memory 206. This means that the data attribute monitor
208 can determine where a data attribute should be changed and update the data
attribute in the DAS 208 accordingly.

[0054] To further illustrate, Fig. 3A depicts Data Attribute Store (DAS) 208 in
accordance with one embodiment of the invention. In this embodiment, the data
attribute 208 is implemented as a Data Allocation Table (DAT) 308. As such, DAT
308 provides information about allocation/deallocation status of various data portions

of a non-volatile memory system. As will be appreciated, these various data portions

-15 -

WO 2006/019496 PCT/US2005/021846

can be organized in accordance with a logical data organization, namely, the logical
data organization used by the host application 204. As noted above, a host application
may organize data into host logical units, which can be referred to as clusters. The

DAT 308 can be partitioned into units that represent these clusters.

[0055] This means that each of the logical clusters used by a host application can be
represented as an entry in the DAT 308. For example, cluster 1 can be represented by
the first (1) entry, cluster 10 by the tenth (10™) entry, and so on. Moreover, each
entry of the DAT 308 can indicate the Allocation/Deallocation status of a cluster. For
example, one bit can be used for each entry of the DAT 308 to indicate whether a
logical cluster is currently allocated or deallocated. It should be noted that several bits
can be used to provide more information about an attribute and/or information about
several attributes. In any case, the DAT 308 allows for better management of data.
By way of example, based on allocation/deallocation status of a data portion, the
flash-memory controller may avoid copying data, which has been deallocated by a

host application.

[0056] To further illustrate, Fig. 3B depicts an entry 302 of the DAT 208 in
accordance with one embodiment of the invention. The table entry 302 includes 4
bits wherein the first bit (bit 0) can provide an allocation/deallocation status, and three
(3) other bits (bits 1 - 3) collectively can indicate how much data has been allocated
(e.g., "100" to indicate half full, and "111" to indicate full, etc.). Similarly, more bits
may be used to provide information about another attribute of the cluster. By way of
example, each cluster can be represented by four (4) bits, wherein one (1) bit
represents a deallocation status and three (3) bits indicate what portion of the cluster
has been deallocated. As will be apparent to those skilled in the art, multiple bits for a
cluster may be defined in numerous other ways. For example, the polarity (or order)
can be revered or more bits can be used (e.g., 6, 8, 12). Alternatively, all bits can be
allocated to indicate the number of "sub-clusters" of sectors that are fully deallocated

and a fully allocated cluster may, for example, be marked with ail bits set to zero (0).

[0057] As noted above, a data attribute monitor 210 monitors the activity of a host
application 204. Based on this monitoring, the data attribute monitor 259 can update a

Data Attribute Store (DAS) 208. As shown in Fig. 2, in order to interpret the activities

-16 -

WO 2006/019496 PCT/US2005/021846

of the host application 204, the data attribute monitor 210 needs to realize the logical
organization of data, which the host understands and uses. To further illustrate, Fig.
3C depicts a host's logical data organization, which may be used by a controller in
accordance with one embodiment of the invention. As shown in Fig. 3C, a host may
divide the logical address space into a system 310 and a user space 312. The system
data 310 may include: a File Allocation Table 1 (FAT1), FAT2 (a copy of FATI),
and Root Directory information, which all may be stored as system data 310. The
user space may include information about subdirectories. The data attribute monitor
210 may monitor FAT1, FAT2, Root Directory, and the subdirectories to determine
whether the host application 202 has deallocated any data (e.g., removed a file, made
a file shorter, etc.). The monitoring of data will also be described below with

reference to Fig. 6.

[0058] However, referring now to Fig. 4, a method 400 for providing a flash-memory
controller with information about data stored on flash-memory is depicted in
accordance with one embodiment of the invention. The information about data can
be used by the flash-memory controller, for example, to make informed decisions
about data during data maintenance (e.g., garbage collection). The method 400 can,

for example, be used by the flash-memory controller 202 of Fig. 2.

[0059] Initially, a Data Attribute Store (DAS) is generated (402) for a controller of a
flash-memory storage device. The Data Attribute Store (DAS) provides one or
more attributes for each of a plurality of data portions in a flash-memory storage
device. The activity of a host that uses the controller to access data is monitored
(404). Next, based on the monitoring (404), it is determined (406) whether an attribute
relating to a data portion of the flash memory storage device should be updated.
Accordingly, at least one attribute relating to at least one data portion is updated (408)
if it is determined (406) that an update should be performed for at least one data
portion of the flash-memory storage device. After the update (408), the activity of the
host is monitored 404. Thereafter, the method 400 can proceed in a similar manner as

described above until monitoring of data is no longer desired or needed.

[0060] As noted above, a Data Attribute Store (DAS) can be provided and used by the

flash-memory controller to perform maintenance operations (e.g., garbage collection).

-17 -

WO 2006/019496 PCT/US2005/021846

Fig. 5 depicts a flash-memory maintenance method 500 in accordance with one
embodiment of the invention. Initially, it is determined 502 whether a flash-memory
controller needs to perform a maintenance operation on a portion of data stored on
the flash-memory storage device. If it is determined 502 that the controller needs to
perform a maintenance operation, it is determined 504 what portion of a Data
Attribute Store (DAS) provides information about the portion of data that is to be
maintained. Accordingly, at least one attribute relating to the data portion is read 506
from the Data Attribute Store (DAS). Finally, the operation is performed 508 based
on the at least one data attribute. It should be appreciated that the maintenance
operation can be performed more intelligently based on the information that is

provided by the at least one data attribute.

[0061] Fig. 6 depicts a monitoring method 600 in accordance with one embodiment
of the invention. The monitoring method 600 illustrates some exemplary operations
that can be performed during monitoring and updating operations illustrated in Fig. 4
(i.e., operations 404, 406 and 408 of Fig. 4). The monitoring method 600 can, for
example, be performed by a flash-memory controller. Initially, it is determined (602)
that a request for a write operation is received. Next, it is determined whether the
write operation addresses a designated address space. By way of example, the
designated address space can include FAT1, FAT2, a root directory and subdirectories
of a logical address space addressed by a host operating in a DOS environment.
Designated address space for subdirectories may be determined from information in
the root directory and in other subdirectories. In general, a designated address space
represents an address space where the host activities may indicate that data has been
deallocated operation (e.g., removing or modifying directories of files, editing files,
etc.). In any case, if it is determined at operation 604 that the write operation is to a
designated address space, the data currently stored in the designated address space is
read (606). Next, the write operation is performed (608). After the write operation is
performed (608), the old data which is previously read (606) is compared (610) to
data written (608). Accordingly, it is determined (612) whether there is a change in
data. If it is determined (612) that there is no change in data, it is determined (602)

whether a request for a write operation is received.

-18-

WO 2006/019496 PCT/US2005/021846

[0062] Alternatively, in a flash memory system in which updated data is written in a
different location from the old data, comparison (610) may be made directly between

data at the old and new locations, without performing previous read (606).

[0063] However, if it is determined (612) that a change to data has been detected, the
change is interpreted (614) to determine (616) whether one or more clusters have been
deallocated. If it is determined that no cluster has been deallocated, it is determined
(602) whether a request for a write operation is received. However, it should be noted
that if it is determined (616) that one or more clusters have been deallocated, the
status of the one or more clusters in a Data Allocation Table (DAT) is changed to
indicate a "deallocated" status. Accordingly, the monitoring method 600 effectively
updates (618) a Data Allocation Table (DAT) when a change in data in a designated

address space is perceived (616) to have resulted in deallocation of data.

[0064] On the other hand, if it is determined (604) that the write operation is not to a
designated address space, the write operation is performed (620). In addition, the
clusters that have been written in are identified (622), so that the status of one or more
identified clusters can be set to "allocated". As will be appreciated, this operation
ensures that entries of a DAT that represent the identified clusters are set to
"allocated" when a write operation is performed in the non-designated address space.
After setting (624) of the status of the clusters represented in DAT to "allocated", it

can be determined (602) whether a request for a write operation has been received.

[0065] As noted above, a Data Attribute Store (DAS) can, for example, be used to
perform maintenance operations. To further illustrate, Fig. 7 depicts an exemplary
garbage collection method 700 in accordance with one embodiment of the invention.
As will be appreciated, the garbage collection method 700 utilizes a Data Allocation
Table (DAT), to enable better updating of blocks during update operations. Initially,
when it is determined (702) initially that an update block is to be closed, it is
determined whether all sectors of the update block have been written to. If all logical
sectors of the update block have been written into, the update block can effectively
replace the original block. Accordingly, the update block is marked (706) as the
original block, and the previous original block is erased (708) so that it can be used

later.

-19-

WO 2006/019496 PCT/US2005/021846

[0066] On the other hand, if it is determined (702) that all sectors of the update block
have not been written into, the logical sectors that correspond to the unwritten sectors
are identified (710). The identified (710) logical sectors are then mapped (712) to
clusters. The clusters are looked up (714) in the Data Allocation Table (DAT).
Accordingly, it is determined 716 whether the DAT indicates that all of the identified
(710) clusters have deallocated. If DAT indicates that all clusters are deallocated, the
update block is marked (706) as the original and the old block is erased (708).

[0067] It should be noted that one or more clusters are not copied when DAT
indicates (716) that all clusters have been deallocated. Data that remains allocated is
copied (718) to the update block only when DAT table indicates that one or more
clusters are still allocated. In any case, it should be noted that an update block may
be closed immediately or at a later time when it is full. The update block can be
marked 706 and the previous original block (old block) is erased 708, but unnecessary
copying of unallocated data is avoided. The garbage collection method 700 ends

following erasure (708).

[0068] As will be appreciated, flash-memory can be used to implement a Data
Attribute Store (DAS) in accordance with one embodiment of the invention. To
further illustrate, Fig. 8 depicts a Data Allocation Table (DAT) 800 in accordance
with one embodiment of the invention. A memory portion 801 is used to implement
the Data Allocation Table (DAT) 800. Memory portion 801 may be a block that is
erasable as a unit. The memory portion 801 is larger than memory needed to
represent the Data Allocation Table (DAT) 800. Each section may be located in one

or more pages, where a page is the minimum unit of programming of the memory.

[0069] As shown in Fig. 8, the Data Attribute Store (DAS) 800 can be portioned into
a plurality of sections, namely, original sections DAS1 (802), DAS2 (804), DAS3
(806) and DAS4 (808) which are originally written at the beginning of the memory
portion 801. Each of these original sections can represent a plurality of clusters which
are used by a host to logically organize data. When a data attribute associated with
a cluster needs to be updated, the corresponding section of the Data Attribute Store
(DAS) 800 can be updated by writing an update section for the appropriate original
section of the Data Attribute Store (DAS) 800. This update section is written after the

-20 -

WO 2006/019496 PCT/US2005/021846

last original section, namely DAS4 (808). By way of example, original DAS3 (806) is
updated by writing a new section 816. Similarly, when there is a need to update
original DAS1 (802), a new section 812 can be written. A new section 818 is written

to represent original DAS4 (818), and so on.

[0070] In addition, an indexing scheme can be used to maintain the Data Allocation
Table (DAT) 800. As shown in Fig. 8, each section of memory includes an index
portion (li-U). This index portion of the last entry (806) references the current
sections of the Data Attribute Store (DAS) 800. This means that indexes 820, 830,
840 and 850 respectively point to the first, second, third and fourth current sections
(DAS1, DAS2, DAS3, DAS4) of the Data Attribute Store (DAS) 800. The memory
portion 801 can be garbage collected, for example, when the memory 801 is
essentially full so that the current sections (DAS1, DAS2, DAS3, DAS4) are

reproduced as original sections.

[0071] It should also be noted that the invention can be implemented so that the use
of the Data Attribute Store (DAS) is discretionary. The use of Data Attribute Store
(DAS) can, for example, be dependent on system compliance, which is determined by
a verification process to ensure that the host's actual logical organization of data
adheres to an expected data organization for a particular operating environment (e.g.,
DOS). Alternatively, use of Data Attribute Store (DAS) may be enabled by the
transmission of a command by the host to signify that it complies with data
organization for a particular operating environment. It should be noted that it is not
necessary for the Data Allocation Table (DAT) to change the status of a cluster (or
sectors within a clusters) as soon as an allocated cluster is deallocated. In other words,
believing that a cluster is still allocated when it has been deallocated does not pose a
serious problem. As such, it is possible to wait to set an allocation status to
deallocated. As will be appreciated, setting the allocation status to deallocated for a
group of clusters at one time, rather than one by one at different times, may further
enhance system performance. On the other hand, those skilled in the art will
appreciate that the status information for a valid, allocated cluster should always be
strictly accurate and current (i.e., an allocated cluster should always be marked as
allocated). To ensure that allocated clusters are correctly marked, allocation status of

a cluster can automatically be set to allocated every time a host writes data to the

221 -

WO 2006/019496 PCT/US2005/021846

cluster. Also, it will be appreciated that information in the Data Allocation Table
(DAT) may be updated at the same time as the information in a mapping table,
defining allocation of physical memory blocks to logical blocks of data, to record

sectors or clusters recently written.

[0072] In addition, it will be appreciated that the Data Attribute Store (DAS) can be
used for many other maintenance operations. By way of example, when the Data
Attribute Store (DAS) indicates that all clusters corresponding to a block has been
deallocated, the block can be erased. This erasure may, for example, be performed as

a background to further enhance performance.

[0073] In another embodiment, information stored by the host in a non-volatile
memory may be used to determine how data received from a host should be stored. In
one example, information stored by a host in FAT and directories may be used to
determine whether data should be stored in a sequential manner or in a non-sequential

(chaotic) manner.

[0074] Certain memory systems use different storage schemes for storing data
received from a host depending on whether the data is sequential or non-sequential.
For example, U.S. patent application number 10/750,155 entitled “Non-volatile
memory and method with block management system,” filed on December 30, 2003,
and hereby incorporated by reference in its entirety, describes certain techniques for
dealing with data that is sent by a host in a non-sequential manner. In particular,
sequential updates may be assigned to sequential update blocks while non-sequential
updates may be assigned to chaotic update blocks in which data may be stored in any
order. While storage of data in chaotic update blocks offers advantages for certain
types of data updates, it may cause inefficiency for other types of data updates. For
this reason, application number 10/750,155 describes techniques for storing certain
non-sequentially received data in a sequential manner where predetermined criteria
are met. In an embodiment of the present invention, criteria for determining whether
to sequentially or non-sequentially write data to the non-volatile memory when data is
received non-sequentially may be determined from analysis of information stored by
the host in non-volatile memory. U.S. patent application number 10/749,831, entitled

“Management of non-volatile memory systems having large erase blocks,” filed on

-22.

WO 2006/019496 PCT/US2005/021846

December 30, 2003, and hereby incorporated by reference in its entirety, describes
additional methods of management of data sent by a host for storage in a non-volatile
memory array. In particular, methods for managing data that is updated by a host in a
non-sequential manner are described. Different designated blocks may be used for

data according to predetermined criteria.

[0075] In an embodiment of the present invention, the logical address of a data
portion (for example, a sector) being written by a host may be compared with the
FAT, root directory and subdirectory (or similar host data stored in non-volatile
memory) or may be compared with derived information such as information stored in
a DAS, to determine whether the data portion being written has a logical address in
the next free cluster. If the data portion has an address in the next free cluster, this
indicates that the host is storing new data at the next available location. In a storage
pattern such as this, it may be advantageous to store the data sequentially and fill any
gaps in the update blocks by copying data that is already stored in the non-volatile
memory, as opposed to storing the data in a non-sequential order and later copying it

to a location where it is sequentially stored.

[0076] Figure 9A shows an example of a FAT table 900. Each cluster 0-8 has an entry
in the FAT table that indicates the next cluster in a file. Thus, the entry for cluster 0 is
a “1” indicating that the next cluster for this file is in cluster 1. The entry in cluster 1
is a “5” indicating that the next cluster is cluster 5. The entry in cluster 5 is a “6”
indicating that the next cluster is cluster 6. The entry in cluster 6 is “EOF” indicating
“End Of File,” or that no more clusters contain data for this file. Another file is
similarly stored in clusters 3 and 4. Clusters 4, 7 and 8 are indicated to be “Free” or
not allocated. This may be the result of deallocation by the host, for example where a
file is made obsolete. It should be noted that deallocation by the host does not
necessarily mean that the data is erased in the non-volatile memory, the logical
address range used to store the file is simply made available for storage of new data.
The obsolete data may remain physically stored in the non-volatile memory until
some later time. Clusters containing obsolete control information may also be
deallocated. A root directory or subdirectory also stored by the host in non-volatile

memory may indicate the first cluster of a file.

-23.

WO 2006/019496 PCT/US2005/021846

[0077] Figure 9B shows a DAT 910 that is derived from FAT 900, along with
information contained in the root directory and subdirectories. DAT 910 contains an
entry for each cluster indicating whether the cluster is allocated or free. Additional
data may also be stored in DAT 910 as previously described. A DAT may be
maintained so that the information stored in the DAT is more current than the
information in FAT and directories. A DAT may be updated as soon as the host sends
new data for storage, before the updated FAT or directory information are written by
the host. Similarly, other information in a DAS may be maintained so that it is

current.

[0078] Figure 9C shows the correspondence between sectors and clusters for a
portion of the logical address range of FAT 900. In this example, a cluster has four
sectors of data. Clusters having different numbers of sectors may also be used.
Typically, clusters contain between 4 and 64 sectors. Cluster 4 has sector X, sector
X+1, sector X+2 and sector X+3. While allocation of a range of logical addresses by a
host is generally done on a cluster-by-cluster basis, the memory controller generally
deals with data in sectors. Generally, a cluster is allocated as a single unit so that even
if the entire logical address range of the cluster is not used for storage of data, the
entire logical address range of the cluster is made unavailable for later storage of other
data. Figure 9C shows sectors from allocated clusters 5 and 6 as shaded to indicate

that these logical addresses are not available to the host for storage of data.

[0079] Figures 9D and 9E show two alternative schemes for storage of data received
from a host non-sequentially. Both drawings show sectors X to X+3 and X+12 to
X+15 being received from a host for storage in non-volatile memory. These sectors
correspond to clusters 4 and 7 of Figure 9C. In Figure 9D the received data is written
to a chaotic update block 920. This block is chaotic because sector X+12 is written
immediately after sector X+3 so that there is a jump in logical address range from
sector X+3 to sector X+12. Chaotic block 920 may start out being a sequential update
block when it contains sectors X to X+3 and then be converted to a chaotic update
block when sector X+12 is stored. In general, where the host sends data in a non-
sequential manner a chaotic (non-sequential) block will be used. The valid data in
chaotic block 920 of Figure 9D is eventually relocated to a sequential block 922,

where it is stored with sectors X+4 to X+11, which may be copied from another

-24 -

WO 2006/019496 PCT/US2005/021846

location. This is generally done as part of a consolidation operation. Sequential blocks
are generally preferable for long-term storage because sectors are arranged in a
predetermined manner and thus no indexing of sectors within a block may be
required. After all the valid data in chaotic block 920 is copied to another location,

chaotic block 920 may be marked as obsolete and may be erased.

[0080] Figure 9E shows the non-sequential data, sectors X to X+3 and X+12 to X+15,
being updated in a sequential manner in sequential block 930. Sectors X to X+3 may
be written first so that block 930 is a sequential block at this point. When sector X+12
is received, a determination may be made to store the data sequentially, even though it
is received non-sequentially. Sequential storage may be achieved by copying sectors
X+4 to X+11 (corresponding to clusters 5 and 6) from an original block to fill the
logical address range between the sectors received from the host. Sectors X+4 to
X+11 may be considered padding sectors because they are used to fill or “pad out” the
gap in the sectors sent by the host. Sectors X+4 to X+11 are valid sectors of data
copied from another location. In this way, the received sectors are stored in sequential
block 930 without going through an intermediate storage stage in a chaotic block.
Thus, the main difference between these two techniques is that writing sectors X to
X+3 and X+12 to X+15 to chaotic block 920 and later erasing chaotic block 920 is
unnecessary in the example of Figure 9E. Sectors X to X+3 and X+12 to X+15 are
written once and sectors X-+4 to X+12 are still copied in this example. This requires
eight fewer sector writes and one less erase operation, thus improving the efficiency

of data storage.

[0081] The determination as to whether to store non-sequentially received data
sequentially or non-sequentially may be based on various criteria. Certain data is
more suited to non-sequential storage, particularly data that is likely to be updated
again soon. For example, control data or frequently updated portions of host data may
be more efficiently stored in chaotic blocks. Certain data is more suited to sequential
storage, particularly if the data is not likely to be updated again soon. While non-
sequentially received data may generally be stored non-sequentially, in some cases it
is advantageous to write it sequentially. Because intermediate storage in a chaotic
block is avoided, there is no need to garbage collect a chaotic block to get data in 2

sequential format. This avoids the consolidation operation that is shown in Figure 9D

-25-

WO 2006/019496 PCT/US2005/021846

and thus reduces overhead and improves performance. When a host writes to the next
free cluster it is an indication that the host is simply writing new data at the next
available location and is generally not an indication that the logical address range is to
be updated again soon. Therefore, selecting a sequential update scheme such as that
shown in Figure 9E may be more efficient than selecting a chaotic update scheme
such as that shown in Figure 9D. Thus, the storage scheme used may be determined
according to whether the data is from the next free cluster or not. When the data is
from the next free cluster as in Figure 9E, sequential storage may be selected. Thus,

the storage scheme of Figure 9D would not be selected for this data in this example.

[0082] Figure 10 is a flowchart showing the selection of a storage scheme according
to an embodiment of the present invention. When non-sequential data is received
from a host, a determination is made by the controller as to whether the data is from
the next free cluster 10. This determination may be made by directly looking at FAT
and directory information stored by the host in the non-volatile memory or by looking
at information derived from FAT and directory information, such as information
stored in a DAS or DAT. If the presently addressed cluster is not the next free cluster,
then the data is stored in the normal way according to a default scheme 12. This may
mean that the data is stored non-sequentially, or in some examples there may be other
criteria that would cause it to be written sequentially. If the presently addressed
cluster is the next free cluster, then a sequential write is selected. In this case, valid
clusters of data are copied from an original metablock to the current sequential
metablock 14 to pad the logical address gap between the last written cluster and the
currently addressed cluster. Then, the received data from the currently addressed
cluster is written to the current sequential metablock. Thus, the current metablock 16

remains sequential.

[0083] Figure 11 is a flowchart showing the selection of a storage scheme for a sector
received from a host in one embodiment. Similar storage scheme selection flowcharts
are shown in application number 10/750,155. If there is an open update block 20, the
update block is sequential 22 and the sector is sequential to the last sector in the
update block 24, then the sector is written 26 to the update block. If the sector is not
sequential to the last sector in the update block then a determination is made as to

whether a forced sequential write should be performed 27. If the address jump from

-26 -

WO 2006/019496 PCT/US2005/021846

the last sector in the update block to the received sector is not greater than a
predetermined amount (Cg) 28, then the gap between the last sector and the received
sector may be padded with copied sectors 30 to maintain the update block as a
sequential block as previously described. If the number of unfilled physical sectors in
the update block is not greater than a predetermined amount (Cc) 32, then the update
block may be closed 34 to maintain it as a sequential block and a new update block
may be allocated 36 as previously described. The third case that causes a forced
sequential write is when the host is writing to the next available cluster 40. When such
a write occurs the gap between the received sector and the last sector in the update
block is padded with sectors copied from elsewhere in the non-volatile memory 30 so
that the update block may be maintained as a sequential block. If none of these criteria
for writing data in sequential form are met, the update block may be converted to a
chaotic update block 42. Thus, the selection criteria for choosing a storage scheme
may include an attribute derived from data stored in the non-volatile memory by the

host.

[0084] Figure 12A shows an example of data being received non-sequentially from a
host by a memory system that stores the data sequentially in update block 50. Sectors
A of cluster 2 are received and subsequently sectors B of cluster 7 are received. When
sectors A are received they may be the first sectors of update block 50 and update
block 50 is considered sequential if it contains only sectors A. Alternatively, as shown
in Figure 12A, update block 50 may be sequential because sectors A are stored
sequentially with sectors previously stored in update block 50. Assuming update
block 50 is sequential prior to receiving sectors B, a determination is made when
sectors B are received as to whether to maintain update block 50 as a sequential
update block or to store sectors B directly after the last sectors written to update block
50 (sectors A) and thereby convert update block 50 to a chaotic block. In this
example, cluster 7 is the next free cluster following sectors A. Therefore, when
sectors B from cluster 7 are received, a forced sequential write occurs and sectors are
copied to update block 50 to fill the gap between sectors A and sectors B. Thus, in
update block 50 of Figure 12A the data is stored sequentially.

[0085] Figure 12B shows an example of data being received non-sequentially from a

host by a memory system that stores the data non-sequentially in update block 52.

-27-

WO 2006/019496 PCT/US2005/021846

Sectors A are received first as in Figure 12A. Sectors A are stored sequentially so that
update block 52 is sequential when sectors A are programmed. Then, sectors X are
received. Sectors X are not written to the next free cluster. Sectors X are written to an
allocated cluster and therefore do not cause a forced sequential write to be performed.
Sectors X may be written non-sequentially, or may be written sequentially if there is
some other reason to do so (e.g. the logical gap between sectors X and sectors S is
less than a threshold). Here, sectors X are shown being written to the next available
space in update block 52. Thus, update block 52 becomes chaotic. In a second
example in Figure 12C, sectors Y are received after sectors A. Update block 54 is
sequential before sectors Y are received. Sectors Y are not from the next free cluster
because there is a free cluster (cluster 7) between the last written sector in the update
block (sectors A) and sectors Y. Therefore, sectors Y do not cause a forced sequential
write and they may be written to the update block 54 without padding, causing update
block 54 to become chaotic. In a third example shown in Figure 12D, sectors Z are
received after sectors A. Update block 56 is sequential prior to receipt of sectors Z.
Sectors Z are from cluster 0 and thus they are not from the next free cluster because
cluster 0 is before cluster 2 and therefore, given the order shown, cluster 0 is not the
next free cluster. Thus, sectors Z may be written immediately after clusters A thereby

causing the update block 56 to become chaotic.

[0086] The advantages of the invention are numerous. Different embodiments or
implementations may yield one or more of the following advantages. It should be
noted that this is not an exhaustive list and there may be other advantages, which are
not described herein. One advantage of the invention is that performance of non-
volatile memory system can be improved. Another advantage of the invention is that
it can be implemented using widely used conventions. Yet another advantage of the
invention is that it can be implemented as a relatively small attribute table in flash-
memory. In other implementations, no table is necessary. Still another advantage is
that the invention can be implemented for discretionary use and/or for use during

background maintenance operations.

[0087] The various aspects or features of the invention described above can be used
alone or in various combinations. The invention can also be implemented by

hardware or a combination of hardware and software. The invention can also be

-28 -

WO 2006/019496 PCT/US2005/021846

embodied as computer readable code on a computer readable medium. The
computer readable medium is any data storage device that can store data, which can
thereafter be read by a computer system. Examples of the computer readable
medium include read-only memory, random-access memory, CD-ROMs, DVDs,
magnetic tape, optical data storage devices, and carrier waves. The computer
readable medium can also be distributed over network-coupled computer systems so

that the computer readable code is stored and executed in a distributed fashion.

[0088] The many features and advantages of the invention are apparent from the
written description, and thus, it is intended by the appended claims to cover all such
features and advantages of the invention. Further, since numerous modifications
and changes will readily occur to those skilled in the art, it is not desired to limit the
invention to the exact construction and operation as illustrated and described. Hence,
all suitable modifications and equivalents may be resorted to as falling within the

scope of the invention.

-29-

WO 2006/019496 PCT/US2005/021846

CLAIMS

1. A method of storing portions of data, in an adaptive manner, in a memory
system that includes a controller and a non-volatile memory array, comprising:

the controller obtaining an attribute of a logical address range from
information stored by a host in a File Allocation Table or directory in the non-volatile
memory array;

the controller selecting a storage scheme from a plurality of storage schemes
for a portion of data having a logical address within the logical address range
according to the attribute of the logical address range; and

the controller storing the portion of data according to the selected storage

scheme.

2. The method of claim 1 wherein the attribute of the logical address range is that

the logical address range is the next free logical address range for storage of host data.

3. The method of claim 2 wherein the storage scheme selected includes storage

of the portion of data in a sequential update block.

4. The method of claim 1 wherein the attribute of the logical address range is that
the logical address range is not the next free logical address range for storage of host

data.

5. The method of claim 4 wherein the storage scheme selected includes storage

of the portion of data in a chaotic update block.

6. The method of claim 1 wherein the portion of data is previously stored at a
first location in the non-volatile memory array, the attribute of the logical address
range is that the logical address range is allocated by the host and the storage scheme
selected includes copying the portion of data from the first location to a second

location in the non-volatile memory array.

-30 -

WO 2006/019496 PCT/US2005/021846

7. The method of claim 6 wherein the portion of data is previously stored at a
first location in the non-volatile memory array, the attribute of the logical address
range is that the logical address range is deallocated by the host and the storage
scheme selected maintains the portion of data at the first location without copying the

portion of data from the first location to a second location

8. The method of claim 1 wherein the attribute that is obtained from a Data
Attribute Store that is derived from the File Allocation Table or directory.

9. A method of storing data received from a host in a non-volatile memory array,
comprising:

receiving one or more addressable units of data from the host;

analyzing information stored by the host in the non-volatile memory array to
identify a plurality of logical address ranges available to the host for storage of data;

comparing the plurality of logical address ranges available to the host with
Jogical addresses of the one or more addressable units of data to determine if the one
or more addressable units of data are allocated to the next range of logical addresses
available to the host; and

storing the one or more addressable units of data in a manner that is dependent

on the determination.

10. The method of claim 9 wherein the manner of storing the one or more
addressable units is a sequential manner if the one or more addressable units are
assigned to the next sequential locations available, and the manner of storing is a non-
sequential manner if the one or more addressable units are not assigned to the next

sequential locations available.

11. The method of claim 9 wherein storing the one or more addressable units of
data is in a manner that is dependent on additional factors including whether a logical
address gap between the logical addresses of the one or more addressable units of data
and the logical address of the last written addressable unit of data exceeds a

predetermined amount.

-31-

WO 2006/019496 PCT/US2005/021846

12. The method of claim 11 wherein an additional factor is whether an update
block for storing the one or more addressable units of data contains more than a

predetermined amount of data in a sequential form.

13. A memory device for storing data in non-volatile memory, the data being
received from a host in addressable units of data, comprising:

a non-volatile memory array that contains a copy of a host File Allocation
Table; and

a memory controller in communication with the non-volatile memory array,
the memory controller monitoring the contents of the copy of the host File Allocation
Table, the memory controller determining an allocation state of a portion of logical
address space from the copy of the host File Allocation Table and, the memory
controller selecting a data management scheme for an addressable unit of data having
a logical address within the portion of logical address space in response to the

allocation state.

14. The memory device of claim 13 wherein the memory device forms part of a

removable memory card that is removably connected to a controller.

15. The memory device of claim 13 wherein the memory controller records the

allocation state of the portion of logical address space in a Data Attribute Store.

16. The memory device of claim 13 wherein the addressable unit of data is
received from a host for storing in the non-volatile memory array, the data
management scheme comprises storage in a sequential block if the portion of logical
address space is the next free portion and the data management scheme comprises
storage in a chaotic block if the portion of logical address space is not the next free

portion.

17. The memory device of claim 13 wherein the addressable unit of data is stored
in a first location in the non-volatile memory array when the memory device carries
out a garbage collection operation, the data management scheme is copying the

addressable unit of data to a second location in the non-volatile memory array if the

-32-

WO 2006/019496 PCT/US2005/021846

portion of logical address space is allocated and the data management scheme is
maintaining the addressable unit of data in the first location without copying if the

portion of logical address space is not allocated.

18. A computer readable medium including program code for selecting between
alternative storage schemes available to a memory controller for storage of host data
in a non-volatile memory, comprising:

computer program code that identifies an allocation status of a plurality of
portions of logical address space from information stored by a host in the non-volatile
memory and provides the allocation status to the memory controller; and

computer program code that selects a data management scheme for a portion
of host data according to an allocation status of a portion of logical address space that

includes the logical address of the portion of data.

19. The computer readable medium of claim 18 further comprising computer
program code that operates on the portion of host data according to the selected
management scheme to store the portion of data in a sequential block if the portion of
logical address space is the next portion of logical address space that is not allocated

and store the portion of data in a chaotic block otherwise.

20. The computer readable medium of claim 18 further comprising computer
program code that operates on the portion of host data according to the selected
management scheme to copy the portion of data from an old location to a new
location if the portion of logical address space is allocated and to leave the portion of
data in the old location without copying to a new location if the portion of logical

address space is not allocated.
21. The computer readable medium of claim 18 further comprising computer

program code that provides a Data Attribute Store containing the allocation status of

the plurality of portions of logical address space.

-33-

WO 2006/019496 PCT/US2005/021846
1/12
Host Logical Controller Logical Physical
Address Space Address Space Address Space
102 103 110
{o . ;
= 1A =
File 19 B{ = — | Logical Block 1
= }C = (Block 1
D{E }File2 =
= }E =
F{E Logical] E
= }G Block2) [E
H{ E =
N
File Allocation
Table (FAT) Updated FAT
104 106
Fle1 V Fle2 |~
A->B->C D
File 2 File 3
D E->F
Original Block Update Block Original Block i
120 122 2
A 4 D1 4 D1 4
B A
C / - > B
D C

FIG._ 1

WO 2006/019496 PCT/US2005/021846

2/12

Copy Management Method)\
C Py g¢ 250

Host uses a non-volatile memory device to store N\
information for use by a host’s filing system 252

!

Controller uses the information stored by the host to determine whether
clusters or sectors within clusters are currently allocated to any valid files

\254

Y

Controller ensures that clusters or sectors within clusters not
allocated to any valid file is not copied from one location to another
during a garbage collection operation within memory

End

FIG._2A

\256

WO 2006/019496 PCT/US2005/021846

3/12
200
/
Flash Memory
204 Controller [202
Host Flash
Application DATA Memory
Attribute
Monitor k2‘06
Host’s Logical Data \ DATA Attribute
Organization Store (DAS)
\-210
! _208
|
FIG._2B
I
I
| N
FAT1 ~ 310
FAT2 SYSTEM
DATA
Root Directory | J
Subdirectories
- 312
USER
DATA
DATA
Cluster 1 Cluster Cluster Allocation Table
302 10 24 308
‘ F \ / 30 2\ 012 3

|
Cluster 96 J

FIG._3A FIG._3B

WO 2006/019496 PCT/US2005/021846

4712

CProviding a controller with information about data Method)\ 400

Y

Generate a Data Attribute Store for a \
controller of a Flash Memory Storage Device | ~402

el

Y

Monitor the activity of a Host that uses the controller as an interface in
order to access data stored in the Flash Memory Storage Device

k404

Update an
attribute relating to a data
portion of the Flash Memory

Storage Device
?

No

FIG._4

Y

408
/

Update at least one attribute relating to at least one
data portion of the Flash Memory Storage Device

CFlash Memory Maintenance Method)\ 500

502

Controller

needs to perform a maintenance operation

(e.g., Garbage Collection) on a data portion of data stored

in a flash memory storage device
?

Yes
I

Determine what portion of the Data Attribute Store provides attributes \
about the data portion that is to be maintained by the controller 504

Y
Read at least one attribute relating to the data portion from the Data Atiribute Store K 506

|

Perform the maintenance operation based on the least one attribute |_ 508

FIG._5 il

WO 2006/019496

PCT/US2005/021846

5/12

(Monltorlng Method)\ 600

602

Received a request
for a write operation

604

Write
operation to a designated

N
° address (e.g., FAT, Root Directory,

or subdirectories)
l s 620 2
Perform the
, : 6
write operation s 60
l f622 Read data currently stored in the designated address

Identify clusters that
have been written into

l F624

Set the status of the
one or more cluster

in the Allocation
Table to “Allocated”

FIG._6

Y

Perform the vinte operation _ 608
Compare old data and the new data [_ 610

612

Change in data No -
?
Yes
Interpret change to data [_ 614
616

One or
more clusters have been

deallocated
?

f618

Set the status of the one or more cluster in
a Data Allocation Table to “Deallocated”

WO 2006/019496 PCT/US2005/021846

6/12

bage Collecti MthoD\
(Gar age Collection Metho 700

-t

702

Update block to
be closed

704

sectors of the update Yes

block have been written
?

Y 710
Identify unwritten o
logical sectors
l 712
va | 706
Map the unwritten logical y
sectors to clusters Mark the update block as
the original block
vV 714 |
Look up clusters in the Y 708
a Data Allocation Table Erase the previous original
(DAT) block (old block)

716

DAT
indicates that the
clusters have been

deallocated
?

End

C FIG._7

Copy only the allocated
clusters to the update block

WO 2006/019496 PCT/US2005/021846

7/12 Index | /800

—

Original DAR1 802 |1 |L[l3]l])
Original DAR 2 804
Original DAR 3 806
Original DAR 4 808
—P—> Updated DAR3 816
Updated DAR1 812 4850
Updated DAR 4 818 -
820 J

830 j \ 801

840

Y

Y

A

S
FIG._8
EAT e 900 DAT e 910

Cluster 0 1 Cluster 0 | Allocated
Cluster 1 5 Cluster 1| Allocated
Cluster 2 3 D Cluster2 | Allocated
Cluster 3 EOF Cluster 3| Allocated
Cluster 4 Free Cluster 4 Free

Cluster 5 6 Cluster 5| Allocated

U

Cluster 6 EoF Cluster 6 Allooated

Cluster 7 Free Cluster 7 Free

Cluster 8 Free Cluster 8 Free

FIG._9A FI1G._9B

WO 2006/019496

PCT/US2005/021846

8/12
Chaotic Block 920 Sequential Block 922
X X X
X+1 X+1 X+1
X+2 —_— X+2 —_— X+2
X+3 X+3 X+3
X+12
X+12
Y13 > X+13
x+14 X+14
i X+15
X+15
X+12
X+13
X+14
X+15
A\ J
FIG.. 9D
o 930
/‘
Sequential Block
X X X
Cluster 4 S X+ Xt
X+2 X+2 —_— X+2
.Xf"s. X+3 X+3

— v — t— t——

X+12 X+12 X+12

X+13 X+13 R X+13

X+14 X+14 g X+14

X+15 X+15 X+15
-

FIG._9C

FIG. 9E

WO 2006/019496 PCT/US2005/021846

9/12

Write block assign for
non-sequential data

11

presently addressed

cluster next free cluster
2

Yes

v

Copy valid clusters from
original metablock to
current sequential
metablock

y ¢
Write presently
addressed cluster to
current sequential
metablock

'\ 12
Default block
assign algorithm

i

\

(Return ’

FIG._10

WO 2006/019496 PCT/US2005/021846

10/12
Request to write sector in LG,
(Logical Group x)
20
Does Is
open update block for No - number of update
LGx exist blocks > Cp
? ?
Yes
22
No update block
sequential Close least
? active among
Yes update blocks
25
Is
sector sequential -
?
~~ 27
Yes| ———————p————————————— [
| Forced Sequential :
l |
| No I
| |
l |
! |
| |
: |
| number of unfiled phys.~No___ 1 |
I sectors > C I
| ? |
| 34
| Yes 40 30 W | :
: Y Close |1
e N Write sequential | |
: hosttr}ot W“;“”? to 0 padding update ||
) Qextiree cluster sectors block for | !
i LGx !
| Yes 1
_______________________ ——
36
Convert to chaotic | ~42 A Y
update block S Allocate update
block for LG,
Y Y 2%y
Write sector

FIG._11

WO 2006/019496

PCT/US2005/021846

11/12
Cluster 0 | Allocated
Cluster 1 | Allocated
Cluster 2 Free AJlAJA}—
Cluster 3 | Allocated
Cluster 4 | Allocated
Cluster 5 | Allocated
Cluster 6 | Allocated
Cluster 7 Free B | B —
Cluster 8 Free
Update Block 50
N ' (Sequential)
FIG._12A
Cluster 0 Free
Cluster 1 | Allocated
Cluster 2 Free AlAJA]|] —
Cluster 3 | Allocated
Cluster 4 | Allocated
Cluster 5| Allocated XX EEE——
Cluster 6 | Allocated
Cluster 7 Free
Cluster 8 Free
Update Block 52
N (Chaotic)

>
FIG._12B

WO 2006/019496

PCT/US2005/021846

12/12
Cluster 0 Free
Cluster 1 | Allocated
Cluster 2 Free AlALA
Cluster 3| Allocated
Cluster 4 | Allocated
Cluster 5| Allocated
Cluster 6 | Allocated
Cluster 7 Free
Cluster 8 Free Y'Y
Update Block 54
N (Chaotic)
FIG._12C
Cluster 0 Free Z\Z | Z ——
Cluster 1 | Allocated
Cluster 2 Free AJlALJTALJA] —
Cluster 3| Allocated
Cluster 4 | Allocated
Cluster 5| Allocated
Cluster 6 | Allocated
Cluster 7 Free
Cluster 8 Free
Update Block 56
\ (Chaotic)

FIG.. 12D

INTERNATIONAL SEARCH REPORT

Internzemmwal Application No

PCT/US2005/021846

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F12/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, PAJ, INSPEC, IBM-TDB

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 6 189 081 B1 (FUJIO RYOSUKE)
13 February 2001 (2001-02-13)
A column 2, Tine 21 - Tline 22

column 4, line 6 - line 26

figure 8

A US 5 682 497 A (ROBINSON ET AL)

28 October 1997 (1997-10-28)

column 1, Tine 20 - 1ine 21

column 7, line 66 - column 8, line 3
column 11, line 23 - line 24

column 11, Tine 44 - 1ine 49

figure 2

1,2,4,9

3,5-8,
10-12

13-21

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or afterthe international
filing date

invention

which is cited to establish the publication date of another
citation or other special reason (as specified)

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, TX. 31 651 epo nl,

*O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
4 October 2005 13/10/2005
Name and mailing address of the ISA Authorized officer

Fax: (+31-70) 340-3016 Jonsson, S

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internzmmmr—al Application No

PCT/US2005/021846
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6189081 Bl 13-02-2001 JP 9319645 A 12-12-1997
US 5682497 A 28-10-1997 NONE

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

