Z. L. HURD.
NON-SLIPPING FOOT FOR LADDER LEGS.
APPLICATION FILED SEPT. 4, 1920.

1,382,833. Patented June 28, 1921.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Inventor
Zenas L. Hurd.

By Watson E. Coleman
Attorney.
To all whom it may concern:

Be it known that I, ZENUS L. HURD, a citizen of the United States, residing at Nashville, in the county of Davidson and State of Tennessee, have invented certain new and useful Improvements in Non-Slipping Feet for Ladder-Legs, of which the following is a specification, reference being had to the accompanying drawings.

This invention relates to ladder attachments, and particularly to feet for ladders designed to prevent the ladder slipping, the present invention being an improvement over the ladder feet illustrated in my Patent No. 1,119,081, granted December 1, 1914.

The general object of my invention is to improve on the construction illustrated in the prior patent above referred to by doing away with the use of other means for holding the feet to the ladder and using instead ladder feet having laterally disposed spring clips resiliently engaging on the sides and ends of the ladder feet, these spring clips being of detailed construction as will be hereinafter stated.

Other objects will appear in the course of the following description.

My invention is illustrated in the accompanying drawing, wherein:

Figure 1 is a perspective view showing the forward and rear legs of the ladder equipped with the improved feet;

Fig. 2 is a perspective view of a foot for one of the front legs of the ladder;

Fig. 3 is a longitudinal sectional view thereof;

Fig. 4 is a transverse sectional view thereof;

Fig. 5 is an under side view thereof;

Fig. 6 is a perspective view of the foot for the rear ladder leg;

Fig. 7 is a longitudinal section thereof;

Fig. 8 is a transverse section thereof;

Fig. 9 is an under side plan view thereof.

Referring to these drawings, it will be seen that in Fig. 2 I have illustrated a foot such as will be secured to that leg A of the ordinary step ladder which supports the steps and which is inclined to the vertical.

The foot shown in Figs. 2 to 5 is formed of sheet metal, having a bottom 10, two oppositely disposed side walls 11 and 12, and oppositely disposed end walls 13 and 14. The end walls 13 and 14 are approximately straight and parallel to each other and extend upward at an angle to the horizontal.

The side walls 11 and 12 extend straight upward for a short distance, and the contracted upper portion or tongue of each side wall is outwardly turned, as at 15. To the plate 10 is attached a relatively thick rubber pad 16, the under face of which is corrugated, as at 17, these corrugations extending preferably at an angle to the length of the rubber pad, and this rubber pad is held to the plate 10 by means of rivets 18, the heads of which are disposed in the grooves on the under face of the cushion or pad 16, and the upper ends of which extend through the plate 10 and are overturned thereon.

It will be noted that the side walls 11 and 12 are formed in one piece or integral with the bottom 10 and with the ends 13 and 14, and that the side and end walls are sufficiently resilient to permit them to be forced apart when the device is being placed upon the leg of a step ladder, and that these side and end walls will resiliently grip the surface of the step ladder leg, holding the foot firmly in place thereon but permitting the removal of the foot whenever necessary.

In Fig. 6 I show the form of foot which is used for the bracing legs B, that is the rear legs of a step ladder. This also consists of a strip of metal formed to provide a bottom 19 having integral, upwardly turned ends 20 and integral, upwardly turned sides 21. The ends 20 are parallel and may extend approximately at right angles to the bottom, while the walls 21 are inclined inward and then outward. The pad 22 is likewise diagonally corrugated on its under face and held to the bottom 19 by means of rivets 23 as before described. For the feet adapted to engage the rear legs of the step ladder, the under face of the pad is preferably rounded lengthwise and the bottom 19 and the upper face of the pad 22 may be slightly concave.

These feet may be readily applied to any step ladder by simply pushing them into place and they will then be held in place by the resilience of the clamping walls 11 and 12 in Fig. 2 and 21 in Fig. 6. The end walls of the feet will resist any strain which is imparted to step ladders, and the feet will hold the step ladder firmly in place under all circumstances. The pads 22 being rounded on their under faces will permit the pad to properly engage the ground at various inclinations of the bracing leg B, while the inclination of the walls 13 and 14
causes the pad 16 to bear flat against the ground at the usual inclination of the legs A. The form of foot disclosed in Figs. 6, 7, 8 and 9 forms no part of the present invention.

What is claimed is:

A foot for step ladder legs comprising a base plate turned up at its ends to form parallel end walls, the side edges of the plate being formed with upwardly extending side walls, said side walls extending inwardly, then outwardly and being resilient, the side and end walls at their junction with the base plate being substantially conterminous with the side and end edges of the base plate and said side and end walls forming a socket to receive said leg, and a pad of rubber disposed against the under face of the base plate and riveted thereto, said end walls extending at an angle to the vertical and being parallel to each other.

In testimony whereof I hereunto affix my signature.

ZENUS L. HURD