(12) STANDARD PATENT

(11) Application No. AU 2010202213 B2

(19) AUSTRALIAN PATENT OFFICE

(54) Title

Thermally insulating transport container

(51) International Patent Classification(s)

B65D 88/52 (2006.01)

B65D 90/06 (2006.01)

B65D 88/74 (2006.01)

GB0909249.5

(21) Application No: **2010202213**

(22) Date of Filing:

2010.05.29

(30) Priority Data

(31) Number

(32) Date

(33) Country

2009.05.29

GB

(43) Publication Date: 2010.12.16
 (43) Publication Journal Date: 2010.12.16
 (44) Accepted Journal Date: 2013.01.10

(71) Applicant(s)

Softbox Systems Limited

(72) Inventor(s)

Tattam, Edwin Francis; Jones, Richard William

(74) Agent / Attorney

A J PARK, L 11 60 Marcus Clarke St, Canberra, ACT, 2601

(56) Related Art

WO 2007/034901

GB 1228572

US 4531278

AU 40031/78

Gb 2013625

FR 2521689

15

20

ABSTRACT

TRANSPORT CONTAINER

The present invention relates to a transport container which provides mechanical and thermal stability for a In the field of logistics, containers have been developed which safely protect from physical damage a variety of product. Food and pharmaceutical products not only need protection from physical shock and pressures but also require temperature stability during transportation. The present invention seeks to provide a transport container which can maintain goods within a narrow temperature range, can displace a considerably reduced volume before erection, is economical manufacture, can readily and easily be constructed. accordance with the invention, there is provided transport container fabricated from at least one set of co-operating first and second panels, channel associated with one panel (31) being arranged resiliently receive and retain an edge portion of the second panel (33).

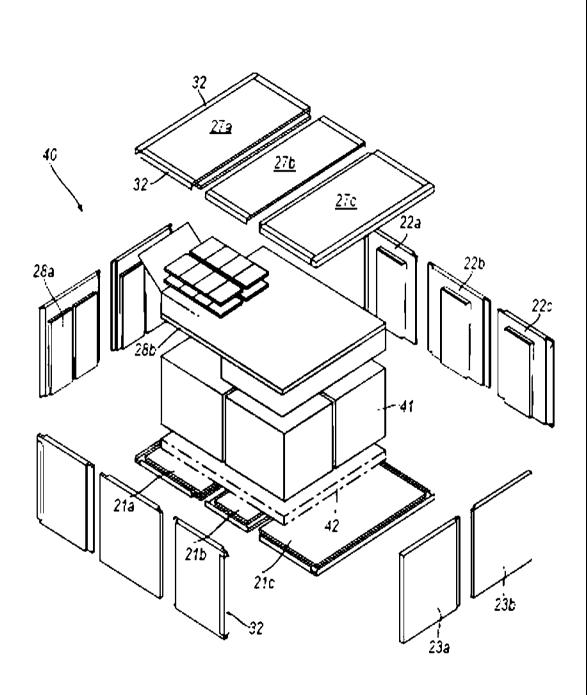


Fig.4

20

THERMALLY INSULATING TRANSPORT CONTAINER

Field of Invention

5 The present invention relates to a transport container which provides mechanical and thermal stability for a load and which container is fabricated as the container is loaded. In particular, the present invention relates to a container which can be readily transported on aircraft, such as an aircraft container.

Background to the Invention

In the field of logistics, that is the field of movement and supply of produce and materials, in particular in the intermediate and finished transport of products, containers have been developed which safely protect from physical damage a wide variety of product. Food and pharmaceutical products not only need protection from physical shock and pressures but also require temperature stability during transportation; otherwise goods can be damaged and be unusable, whether such damage is apparent or not.

25 For example, in the pharmaceutical industry, product often needs to be maintained within a temperature range: product may be packed in relatively small containers, which containers are relatively fragile - accordingly insulation must provide both physical and thermal stability. Equally, in the food industry, fish suppliers will often have chilled fish boxes which are designed to accept, say 20Kg of product. The fish must be maintained at low temperatures, yet will be placed in containers

30

which require a high degree of strength to prevent spillage.

standards of living increases, in developed As the in Europe markets, for example and North tropical foods - that is foods grown in far-away tropical places - are increasingly being stocked by supermarkets, delicatessens and the like. Short pick to distribution centre times in the producing country are matched by air carriers taking goods to the countries of consumption in similar lengths of time, whereby it is not uncommon for fruit to be on the plates of householders within two to three days of having been picked in a far-away country.

15 However, air transport poses a particular problem: Goods can be transported in tropical heat, packaged and placed upon pallets and the like containers whereby they are presented in aircraft style containers. Such goods may be left on runways at extreme temperatures (+40 $^{\circ}$ C) and 20 then placed within a hold where low pressures and low temperatures exist during flight. Αt a destination airport the temperatures may well be sub-zero. corollary to this is the production of temperature sensitive pharmaceuticals in a "developed" country which 25 pharmaceuticals must be transported to another side of the world with similar temperature variations.

Both the above scenarios place transport managers in difficult positions. For air haulage, containers should weigh little, make use of non-rectangular hold spaces within aircraft; for the goods, they must be protected from shock, be maintained within a narrow temperature range, sometimes being equipped with temperature data loggers whereby a record of temperature within a

10

15

20

25

30

container may determine whether or not a pharmaceutical is destroyed prior to use because of poor temperature handling. Refrigeration units may be provided with a container whereby temperatures maybe maintained, but then a source of electrical power or fuel for a powered generator is required.

To simplify transport with respect to airports, planes and handling equipment, there have been developed aircraft Unit Load Devices (ULDs) which comprise any type of pallet or container that can easily be loaded to the aircraft by a ground handler. Aircraft ULDs are units which interface directly with an aircraft loading and system, restraint without the use of supplementary equipment. There are pre-defined ULDs, such as LD3, LD7, which correspond to standard configurations and can be utilised on certain types of aircraft. There are still further ULDs that are shaped such that they have a rectangular base yet are not generally cylindrical, that is to say they extend outwardly, beyond the sides of the base, as they extend upwardly from the base. also an increasing demand for many containers, especially aircraft ULDs that they are transported from a supplier in a flat-pack fashion and they are constructed prior to use. This enables warehousing requirements to be reduced by typically 66 - 75%.

EP1025405 provides a container which has its cavity bounded by boundary elements, comprising a roof element, floor element, side walls and an end element. The boundary elements contain wall cores of hard foam plastics such as polyurethane. The rail core is edged with edging beams of fibre-reinforced plastics. The boundary elements are fixed rigidly to each other on

10

15

20

connecting surfaces in the region of the edge beams. Standard doors can be used. Glass-fibre-reinforced plastics panels are combined with steel components to provide an assembly which whilst strong is not capable of being dismantled.

US4266670 provides a collapsible, reinforced, four sided container attached to a rigid base, of the type for transporting heavy products, such as iron. This design is collapsible whereby on a return journey it may be shipped in reduced size for reuse. This container is manufactured from reinforced corrugated cardboard. example of this teaching is shown in Figure 1, which container 10 comprises a pallet base 40, upon which are placed side panels 10 - 13. Each of the side panels have complementary edges having mortise and tenon elements, with an aperture running through, whereby stakes 107 -110 may be inserted to enable the sides to The panels provide а limited amount temperature insulation, especially taking into account the relatively large size of the cardboard panels, being approximately 15cm thick. One side may be easily opened for loading or unloading.

US2556418 provides a thermally insulated container and pallet. Telescopic tubes are mounted upon each of the four corners of a pallet to provide an enclosure frame which is built up with canvas straps and subsequently insulated. Refrigerant gasses may be introduced into the enclosure once a canvas wrap is positioned around the container.

GB1382230 provides a heat-insulating protective cover for temperature-sensitive goods comprises a carrier frame

15

20

25

adapted to be positioned over the top surface of the goods, which rest on a pallet, and provided with support legs for this purpose. Walls of flexible heat-insulating material extend around the carrier frame and can be lowered from a retracted position to a lowered position, the walls being connected at their upper edges to a layer of heat-insulating material. Lift ropes are attached to edges of the walls and extend up through eyelets to a common pull rope so as to permit simultaneous lifting of all the walls to an position adjacent the carrier frame. The lower edges of the walls are provided with rings adapted to be hooked on to co-operating hooks on the pallet to provide a heat insulating space between the pallet and the carrier frame.

US 3,955,700 teaches of an aircraft container which has a moulded reinforced fibreglass enclosure, which has two removable panels on one side which provide access to the interior. Whilst this solution provides a strong and rigid - yet resilient - container, when empty the container takes as much space as when full, which is not acceptable for many supply industries. Furthermore, by providing an enclosure, limitations are placed with respect to the order of packing and the addition of goods to be despatched, which can provide complications and expense to any freight manager.

It is notable that there are few thermally insulating 30 cargo containers; either they are rigid yet not collapsible or are collapsible yet easily damaged when shifted by fork-lifts and other and/or are complex to assemble.

10

15

20

25

30

Object of the Invention

The present invention seeks to provide a solution to the problems addressed above. The present invention seeks to provide a transport container which can be manufactured at low cost and can readily and easily be constructed. The present invention seeks to provide a transport container which can be erected at point of use. Furthermore, the present invention seeks to provide a container that when completed can maintain goods within a narrow temperature range.

The present invention further seeks to provide a transport container which is compatible with standard Unit Load Device specifications.

Statement of Invention

In accordance with a general aspect of the invention, there is provided a thermally insulating collapsible transport container fabricated from at least one set of co-operating first and second panels arranged substantially at right angles to one another, the first second panels having first (outside) and second (inside) major surfaces and a circumferential portion, wherein a first panel defines a rebated channel an inside face of the panel, the channel being adjacent to at least one edge, the rebate being defined in cross-section by an edge face of the panel and a general L-shape, a first arm of the L-shape section defining, in use, part of the outside wall of the first member, the second arm of the L-shape section having an inside face opposing said edge face of the panel, whereby to define a rebate into which an edge portion of the second panel can be received and resiliently retained therein. By having separate panels resiliently retained, air passage between an inside and an outside of a container is prevented.

5

10

15

20

Conveniently, the container comprises at least a base and upstanding wall panels, wherein the base corresponds to the first panel type and the wall panels correspond to the second panel type. Conveniently, the panels are of rectangular shape in plan view. container can have a variety of forms, but a rectangular box would be the most frequently employed, even though it would be possible to have square section or cylindrical section boxes; indeed, the walls could be non-vertical, Preferably, the container further at least in part. comprises one or more insulating cover panels, which insulating cover panels correspond in type with either the first or second panel type, whereby the cover panel can be resiliently retained with respect to an upstanding panel. By having separate panels resiliently retained, air passage between an inside and an outside of a container is prevented.

The insulating panels can be fabricated from one or more 25 including extruded polystyrene, types of panel polyurethane foam, expanded polystyrene, cardboard, laminated polyurethane foam, laminated expanded polystyrene, or moulded plastics. The laminate face can comprise one of card, plywood, polypropylene, aluminium 30 or steel. The L-section of the panel may be formed as an integral part of the panel when, for example it moulded, part of a reinforced plastics (resin) moulding or, formed by the addition of an "L" section member to an

insulating panel, for example, an inside face of an "L"

section member is attached by adhesive (for example) to an outside edge of the insulating panel, a second inside edge of the "L" section member facing an edge portion, rebated or otherwise, of the insulating panel member. The separate L-shape members can conveniently be made from one of wood pulp, polypropylene, aluminium, glass fibre, resin, carbon fibre. The edge portion of the first panel can be stepped, wherein, in use, the edge portion of the second panel abuts against a portion of the step.

10

15

20

25

30

In use, the base member may be positioned upon a pallet and subsequently placed upon an aircraft container base. In the alternative, feet depend from the base so as to dispense with a pallet, which is beneficial in certain loading environments, where natural products such as wood pallets are not welcome in view of the possible contamination in clean-area loading bays.

Conveniently, a weatherproof sheet is arranged about the assembled container in use. Preferably, the weatherproof sheet provides a thermal barrier. Conveniently the weatherproof sheet is retained by a cargo net, which attaches within a recess of a pallet base to provide an integrated weatherproof container system. A thermal sheet can surround the panels and can be retained by a cargo net. Conveniently, the cargo net comprises any one or more of webbing or elasticised cords. Conveniently, the net has feet which locate into channels defined along peripheral edges of the base or into an aircraft unit load base formed with sheet aluminium, aluminium alloy or alternative material.

In accordance with another aspect of the invention, there is provided a method of fabricating a transport

10

15

20

25

30

AJ Park

collapsible container, wherein the container comprises at least one set of co-operating first and second panels arranged substantially at right angles to one another, the first and second panels having first outside and second inside major surfaces and a circumferential edge portion, wherein a first panel having a general L-shape crosssection element defines a rebate along an edge portion and is operable to accept an edge portion of the second panel, a first arm of the L-shape section comprising part of the outside wall of the first member, the second arm of the Lshape section opposing an edge face of the first pane, wherein the method includes the step of introducing an edge portion of a second panel into the rebate, urging an outer face of the second panel against an inside face of the upstanding arm of the L-shape member, until the edge of the second panel abuts an inside rebate surface, whereby first and second panels can be resiliently retained, one with respect to another. By repeating the steps with respect to associated adjacent edges, a container can be simply formed.

Conveniently, the container comprises base elements and wall panels wherein the base and wall panels cooperate with respect to each other as first and second panels. first and second wall elements about a corner section can cooperate with respect to each other as first and second Preferably, the container further includes top panels, wherein the container comprises top and wall panels cooperate with respect to each other as first and second panels.

The base, sidewall and top members are conveniently flat panels, made of extruded polystyrene, expanded polyurethane polyethylene foam. or Conveniently, the foam

15

20

panels are laminated whereby to provide optimum rigidity, light weight, with good thermal barrier with а properties. Ideally, the edges of any adjoining coplanar panel members have complimentary rebates. advantage arising from the use of materials such polyethylene foam means that thermal insulation and physical shock protection is extremely high with regard to known container systems. The L-section member can be integrally moulded, using a glass reinforced plastics material exterior laminate, which is secured to plastics foam elements, for insulation.

In accordance with a still further aspect of the invention, there is provided a container having on an inside surface of a wall an envelope for supporting a temperature control pack, the envelope comprising an aperture having a width and a depth to accommodate one or more temperature control packs, the temperature control pack being spaced from a product within the container by a spacer element.

Brief Description of the Figures

For a better understanding of the present invention,
25 reference will now be made, by way of example only, to
the Figures as shown in the accompanying drawing sheets,
wherein:-

Figure 1 illustrates a prior-art transport container;

Figure 2a & 2b illustrate a first embodiment of the invention in assembled form, upon an air pallet and with weatherproofing in place;

Figure 3a details a base member in accordance with the invention:

10

Figure 3b details a base member per Fig 3a with a side member partly inserted;

Figure 3c details a base member per Fig 3a with a side member fully inserted;

Figure 3d details an alternative arrangement;

Figure 4, 5a & 5b show exploded views of the first, second and third embodiments;

Figure 5c -e shows a first, second and third thermal mass envelopes or sleeves;

Figure 6, 6a & 6b shows a pallet base and details thereof:

Figure 7 shows a fourth embodiment;

Figures 8 & 9 show view of the base in upturned and normal positions; and,

15 Figure 10 & 11 show further views of the fourth embodiment.

Detailed description of the Preferred Embodiments

There will now be described, by way of example only, the best mode contemplated by the inventor for carrying out the present invention. In the following description, numerous specific details are set out in order to provide a complete understanding to the present invention. It will be apparent to those skilled in the art, that the present invention may be put into practice with variations of the specific.

Figure 2 shows a first embodiment 20 of the invention in an assembled state. Whilst a base panel is not shown in any detail, outwardly extending the L-section corner sections (to be referred to as L-members hereinafter) 32 depending from the base panel are shown. These L-members are derived from corner guards as used in the packaging

industry, (where they are also referred to as V-boards) which are typically retained in place with plastics wrapping film and or polystyrene mouldings about a package.

5

10

15

20

25

The top panels, in this embodiment correspond from an outward perspective, to the base panel, each comprise three panels, which are made from an insulating material as extruded polystyrene, polyurethane, expanded polystyrene or may comprise a composite panel, as will be discussed below. Similarly, the long sides of container comprise three panels, 23a, 23b, 23c. The outer edges of the panels 23 a and 23 c each have an L-member 32 attached thereto. The short sides of the container comprise two panels 23a, 23b. Conveniently, either the outer panels of the long side, 22a, 22c have an L-member as shown, or the panels 23a, 23b have an L-member. used with an air pallet, to comprise a ULD shipment, the container in accordance with the invention will be placed upon such an air pallet 25 and a cargo net 26 will be strapped around the container as shown in Figure 2b. Whilst the insulating panels closely fit together prevent gaseous exchange - and this heat transfer - it is common for thermally insulating outer bags to be employed in the transport of temperature sensitive produce and such a bag could be placed around the container and be secured by the cargo net 26. The cargo net will have ground anchor devices which locate into an air cargo pallet as will be detailed later.

30

Figure 3a shows part of a base member 31. Conveniently, the material would comprise extruded polystyrene or polyurethane foam and have a thickness of approximately 50 - 80 mm. Reference numeral 32 refers to an L-member

15

20

25

30

in accordance with the invention, the member being rigid and is fabricated from a number of possible materials, such as wood-pulp, aluminium, steel, polypropylene, glass fibre, carbon fibre, for example. The thickness of the Lmember is dependent upon the material form which it is manufactured, but for wood-pulp, a thickness of 4 - 6 mm typical. Importantly, this will not have appreciable affect upon the manner of the base sitting upon a pallet etc., for example. The exact dimension of the L-member will vary upon application, but for the shown, the horizontal arm is 90mm and vertical arm, at 50mm corresponds with the height of the insulating base material - primarily since the container will be loaded prior to erection of the sided walls and therefore the vertical arm should not extend above the the insulating material since of it otherwise be susceptible of being damaged by the forks of a forklift truck as the load is placed upon the base. the load were to be lifted by crane, for example, then the height of the vertical arm would not be so critical. It has been found that the L-member can be attached to the insulating panel by a double-sided tape, such Thorn-Carless product 95623-M, which is a solvent-free modified acrvlic adhesive and has а thickness approximately 0.23 mm. In figure 3b, there is shown a lower edge of a side panel 33 being inserted between the L-member and the insulating material of the base, the upstanding arm of the L-member being urged outwardly in the direction shown by arrow A, to enable insertion of the panel 33. Conveniently, the internal angle of the Lmember is less than 90° , for example in the range of 82° - 88° , whereby the side member is resiliently retained within the rebate defined by the base insulating member and the L-member, as shown in Figure 3c, the upstanding

leg of the L-member acting towards the upstanding panel in the direction shown by arrow B. To attach the Lfor example, screws could compromise the member by, thermal insulation properties of the insulating material, but may be preferred in certain circumstances. Figure 3d shows an alternative, wherein the base member comprises a stepped rebate; other variations are also possible. Notwithstanding the above, the side members may be introduced into the channel or rebate defined between the L-member and the base (or other co-operating wall -wall wall-top sections) such that the tongue of introduced panel member is resiliently squeezed, without causing the L member to be urged outwardly or to be urged outwardly relatively insignificantly. The portion of the tongue of the panel that is introduced into the rebate may be coated with a plastics coating such as a Teflon ® spray, which increases the durability of the tongue, in the event that repeated use of the same panel occurs.

20

25

30

10

15

It will be appreciated that variations of the insulating base and L-member are possible. For example, the base material may comprise a rebated portion and the L-section arm is coplanar with the outside face of the panel. the provision of such an arrangement, goods can be placed upon a base prior to erection of walls of the container, with a subsequent erection of the walls by the simple act of inserting them within a channel defined in part by the L-members, without fear of the wall collapsing. This has found to enable а rapid loading of air-cargo pallets, for example. It will be appreciated that a rapid transfer of product shortens the time that product will not be in a temperature-controlled environment. a most simple embodiment of the invention, only the base

15

20

25

30

insulating member L-members extending from the outside edges thereof. Notwithstanding this, it is preferred that at least the top portions of the container have panels with the L-members extending from outer edges, whereby to enable the goods to be covered in an equally simple fashion. In the alternative, straps could be placed around the top of the container and around the but many of the advantages of the speed erecting the containers will be lost. Equally, the corner elements of the sidewall should similarly be protected.

Figure shows in some detail how a container accordance with the invention can be utilised. Container 40 includes four load boxes 41 mounted upon pallets 42, which are, in turn placed upon base members 22a, 22b and 22c, as described above, with trim members 32 around the peripheral edges. The long-side panels 23a - 23c have interlocking features between themselves, conveniently by way of corresponding rebates, whereby to minimise the presence of any gaps there between. Panels 23a and 23c similarly the short-side have vertical L-members 32; panels 24a, 24b interlock with each other and with adjacent panels of the long-sides, the L-member ensuring that there are no gaps between the corners edges between adjacent side wall panels. The upper insulating panels 27b and 27c, as mentioned above are generally similar to the base panels and engage with the upper edges of the side-wall panels, the L-members assisting in maintenance of gap-free edges between the side panels. It will be appreciated that the tongues of a first panel tightly fitting within the rebate defined between inside wall of a the L-member on one side of the tongue and between an edge portion of the panel on the other

15

20

side of the tongue

Figure 4 also shows cardboard envelopes 28a and boxes 28b which can retain gel packs, for example, which have a high heat capacity whereby to assist in the maintenance of a particular temperature. The load is contained in boxes 41, mounted upon pallets 42. The base, side and top panels may all be manufactured from plastics foam sheets, such as extruded polystyrene or polyurethane. However, in certain circumstances, the panels comprise expanded polystyrene sheathed with, for example, polypropylene sheeting or other types sheathing. In use, the containers can be disposed of after their first use, due in part to the one-way nature of the cargo involved, be it agricultural produce, say from farms in Africa to Europe or the delivery of pharmaceutical goods. The invention provides a simple to fabricate container which can retain goods reliably within a specific temperature range, achieved, in part, through the use of suitable gel packs filled substances with a high thermal capacity, together with the inherently low thermal conductivity of the container and the relative air-tightness of the joins between the panels.

25

30

Figure 5a refers to a first variant in that the container is a half LD7 load; there is a single base panel 21a and top panel 27a, with L-members 32 attached to peripheral edges. There are two side panels 22a, 22b along the long side; the shorter side panels comprise a single element 23a which possesses L-members 32 along both vertically oriented edges. The bas panel of the container sits upon a pallet 42. Figure 5b shows a still further embodiment: this container varies form the embodiment of Figure 5a in

15

20

that the external dimensions are different and that each of the four sides comprise a single side panel.

The conveniently of foam panels are а laminated construction, whereby, using different densities of foam lightweight yet stiff structure can be provided. be provided by commercially Conveniently these can available HCFC-free expanded Polyethylene sheet (LDPE), where there is a closed cell structure with extrusion skin. This provides a low water absorption and watervapour transmission rate. The foam has a high resiliency flexibility, excellent cushioning behaviour excellent thermal insulation properties, with temperature stability of -40 to +70 °C. Commercially available foams of such construction are manufactured by companies such as Knauf Insulation Ltd., Sealed Air Inc. etc.. It has also been found that when laminated panels of differing density are employed, there is a reduced tendency of the product panels to bow. Through appropriate choice of materials, lightweight panels can be selected to provide a resilient container which can elastically deform and return to an original position, albeit in a limited fashion.

25 Referring now to Figure 5c, there is shown a more detailed view of envelope 28a, which is attached to an inside face of a side panel. It is typical for refrigerant packs or gel packs (and other types materials) to be employed as a refrigerant, to maintain a 30 product within a specified temperature range, to maintain a thermal environment in an insulated shipping container sufficient to meet the product's temperature requirements. A few thermodynamic concepts are involved here: heat transfer, heat absorption, and phase change.

15

20

25

30

These principles are some of the components of "zeroth law" of thermodynamics. That is, all systems attempt to reach a state in which heat energy is equally distributed. If an object with a higher temperature comes contact with a lower-temperature object, transfer heat to the lower-temperature object. It is to be noted that certain goods must be maintained below ambient temperature; others at above ambient temperature and some at elevated temperature. Such packs have been placed loosely in the container, sometimes within boxes. disadvantages arise in that the packs congregate in a specific area(s), providing an uneven temperature distribution within a container, perhaps damaging product which comes into contact with the gel packs; the gel-packs or similar may become damaged and rupture, potentially spoiling the contents container. The refrigerant envelope can comprise in a simple embodiment a cardboard enclosure, having a rear wall which is attached to a wall of a container, for example by double sided tape - conveniently the same type of tape as employed in the attachment of the L-shaped Two open - ended enclosures are defined by the members. envelope. A first enclosure 51 is for placement of gel packs 53 and similar objects with a high thermal capacity located such that, in use, it lies adjacent container wall 54; a second enclosure 52 provides a minimum distance between the gel - packs and the product. Apertures 55 can be provided in a wall of the first enclosure to enable the position of a gel pack within to Equally, such aperture may assist be determined. allowing convection currents to flow

The gel-packs comprise units of a solid, being of a generally rectangular shape; Figure 5d shows how a gel

15

20

25

30

pack 53 can be inserted into a first enclosure of an envelope or pocket 28a mounted upon a container wall Applicants have determined that by reducing panel 23a. the width of the enclosure 51 from the top w1 to a width w2, where w2 is less than (say 95%) the width of a gel pack w3, then the gel packs can be safely inserted into an enclosure without fear of the pack becoming dislodged as a panel is erected (it will be appreciated, since the a unit height of а side panel of load device order frequently of the of 2m or more, that the subsequent insertion of a gel pack is ill-advised, since the gel pack could be liable of not being placed properly within its designated place, if any). This could also be of advantage in use of the container, to prevent spillage. The envelope may be placed such that it has a gap between a floor of the container, whereby to assist in the use of convection currents to provide a uniform temperature within the atmosphere of the container. 5e shows a still further embodiment with envelope 50 having a solid insulating foam material 57 51 and product, which, between the gel pack packaged, will be in close proximity to the envelope unit including spacer 52, 57. Whilst the dimensions of the gel pack can vary, a pack size that has been found to be of a convenient size and weight (3Kq) is dimensioned 44.7cm x 28.6cm x 3.6cm. The envelope is conveniently manufactured from corrugated cardboard. Three or more gel packs may be inserted within an envelope. Since it is a commonly used material in the packaging industry and the skills for fabricating and attaching the envelopes are well known. A length of tape may be attached to an upper section of an aperture, in the middle of a face of the aperture; by placing a lower side of a gel pack contact with the tape, the pack may be lowered in a

controlled fashion. A gel pack may have an indentation upon an edge to assist in this procedure, without fear of the gel pack slipping either side of the tape.

5 It has been found that using three panels for the top section for the LD7, then the size and weight of the panels is not too great to prevent easy handling of the panels by manual workers. This size of panel e.g. 2x3m for an LD7 container can be utilised in corresponding 10 pro-rata sizes for smaller Load Device models or, indeed, fewer panels can be employed - what is of particular note is that the modular design of panel size can be utilised for many variants of Load Device container styles.

15 Figure 6 shows an air pallet 60 in plan view. The sizes of these air pallets vary from $1.5 \times 2m$ to $2.5m \times 4m$. The pallet comprises of a rectangular base, conveniently made from an aluminium alloy. Perimeter extrusions 64, 66 are fitted along the major sides, with cast metal 20 (alloy) or moulded plastics corner pieces assisting in maintenance of the integrity of the structure, the extrusions being screw-fastened or riveted to the base plate. Figure 6a shows the extrusion in plan view; Figure 6b shows a section through A-A per Figure 6a. Base 60 is 25 clearly visible, as are the fastening means 63. A corner element connects the two edge extrusion pieces. figures detail channel 62, which channel exists around the perimeter to provide locating means retaining straps (cargo net) and/or for the thermal 30 blanket or sheet. With reference to Figure 62 has sides which define parallel portions interspersed by short lengths of increased width, whereby feet of a cargo net having a width greater than the

15

20

25

channel width of the parallel sections of the channel can be inserted within the channel.

By the use of foam panels of a low thermal conductivity, little, if any, additional amount of insulation needs to be provided by any boxes within the container: this, in turn, means that there is more effective load space. Equally, the container enables certain goods to be better protected by being individually placed within a container.

In accordance with a further aspect of the invention, and with reference to Figures 7 - 11, the base can integrally combine a pallet base. In the preferred embodiment, shown in perspective views from above, there completed container and a container base separated from an otherwise complete container. Two sides 72, 73 of the base element 70 are shown, each base element exposing apertures 74 being the openings to channels operable to accept the forks of a fork-lift truck (not whereby to enable the container to be raised - or indeed, just the base be raised, prior to movement to a specific loading or unloading area. These channels 75 are best seen in Figure 8, which shows the underside of a base in perspective view. Equally, Figure 11 shows channels 75 defined by the cross-section of a shorter width of the base.

The base can be made such that a relatively rigid 30 plastics material is utilized with a foam plastics, to provide a rigid body. Figure 9 shows the base in an orientation of normal operation. The channel 76 comprising a rebate on the upper surface of the base 70 can be defined in such an outer plastics sheath member,

10

15

glass reinforced plastics or similarly rigid such Other foam plastics materials could also be material. employed; for example the base 70 may comprise a foamed plastics of uniform density, in which case separate "L" shape members will be attached and comprise a separate element, formed from mdf, or other appropriate materials, with reference the first described to embodiments. By having the base constructed such that i dispenses with the need of a separate pallet, typically formed from wood, then this removes a problem that is apparent where certain industry sectors require transport containers and ancillary packaging materials to be free from organic products. This is a particular issue with certain pharmaceutical requirement for certain types of load, where integrated with a pallet base and manufacture

In a still further variation, the base member may be fixedly associated with the aluminium sheet base 60 as shown in Figures 6 - 6b, whereby to enable the effective base area of the container, once constructed, to be increased, whereby to enable a greater volume per unit load device to be achieved.

25 The invention provides a simple to fabricate collapsible container which can retain goods reliably at a specified temperature due to the use of suitable agents, such as gel packs with high thermal capacities, together with inherently low thermal conductivity of the container and 30 good levels of sealing between panels. A container in accordance with the present invention may be assembled in a rapid and expeditious manner. The parts making up our box may be stacked for storage in a relatively small space. distinct benefit οf the present invention is

from a plastics material.

that the construction permits different sized boxes to have common parts to provide more cost-effective construction and/or different functionality.

5

10

AJ Park

24

CLAIMS

thermally insulating collapsible transport container fabricated from at least one set of operating first and second panels arranged substantially at right angles to one another, the first and second panels having first and second major surfaces and a circumferential edge portion, wherein a first defines a rebated channel on an inside face of the panel wherein a first panel defines a rebated channel on an inside face of the panel, the channel being adjacent to least one edge, the rebate being defined crosssection by an edge face of the panel and a general Lshape, a first arm of the L-shape section defining, in use, part of the outside wall of the first member the second arm of the L-shape section having an inside face opposing said edge face of the panel whereby, to define a rebate into which an edge portion of the second panel can be resiliently received and retained therein.

20

15

- 2. A thermally insulating transport container according to claim 1 wherein the container comprises at least a base and upstanding wall panels, wherein the base panel correspond to the first panel type and the wall panels correspond to the second panel type.
- 3. A thermally insulating transport container according to claim 2, wherein the container further comprises one or more insulating cover panels.

30

25

4. A thermally insulating transport container according to claim 3, wherein the or a number of insulating cover panels correspond in type with either the first or second

30

AJ Park

25

panel type, whereby the cover panel can be resiliently retained with respect to an upstanding wall panel. A thermally insulating transport container according to any one of claims 1-4, wherein the base member comprises a unitary moulded member, with the rebate and L-section being defined from a single plastics moulding.

- 6. A thermally insulating transport container according to any one or more of claims 1-4, wherein the L-shape member is made from a material selected from the group comprising: wood pulp, polypropylene, aluminium, glass fibre, resin and carbon fibre.
- 7. A thermally insulating transport container according to claim 6, wherein the L-shape member is attached by adhesive to the first panel.
- 8. A thermally insulating transport container according to any one of claims 1 7, wherein the base member,
 20 having an upper load bearing surface and an underside, is provided with channels within the underside.
- 9. A thermally insulating transport container according to any one of claims 1 8, further comprising an envelope attached to an inside surface of a wall of the container, the envelope comprising an aperture having a width and a depth to accommodate one or more temperature control packs, the temperature control pack being spaced from a product within the container by a spacer element.

10. A thermally insulating transport container according to claim 9, wherein the envelope has, in use, an upper section and a lower section, the internal width of the

10

15

26

upper section being dimensioned to allow the passage of a temperature control pack into the aperture of the envelope, the internal width of the aperture at the lower section being less than the width of a temperature control pack.

- 11. A thermally insulating transport container according to claim 9 or 10, wherein the envelope has apertures in its walls whereby to enable the contents of the envelope to be viewed.
- 12. A thermally insulating transport container according to any one of claims 9 to 11, wherein the spacer element comprises one of a solid insulating element and a space defined between two spaced apart parallel walls of the envelope.
- 13. A thermally insulating transport container according to any one of claims 1 to 9, wherein the insulating 20 panels are fabricated from one or more types of panel including extruded polystyrene, polyurethane foam, expanded polystyrene, cardboard, laminated polyurethane foam and laminated expanded polystyrene.
- 25 14. A thermally insulating transport container according to any one of claims 1 to 9, wherein the panel is laminated and the outer laminate is selected from one or more materials of the group comprising: card, plywood, polypropylene, aluminium and steel.

30

15. A thermally insulating transport container according to any one or more of claims 1-14, wherein the edge portion of the first panel is stepped, wherein the edge

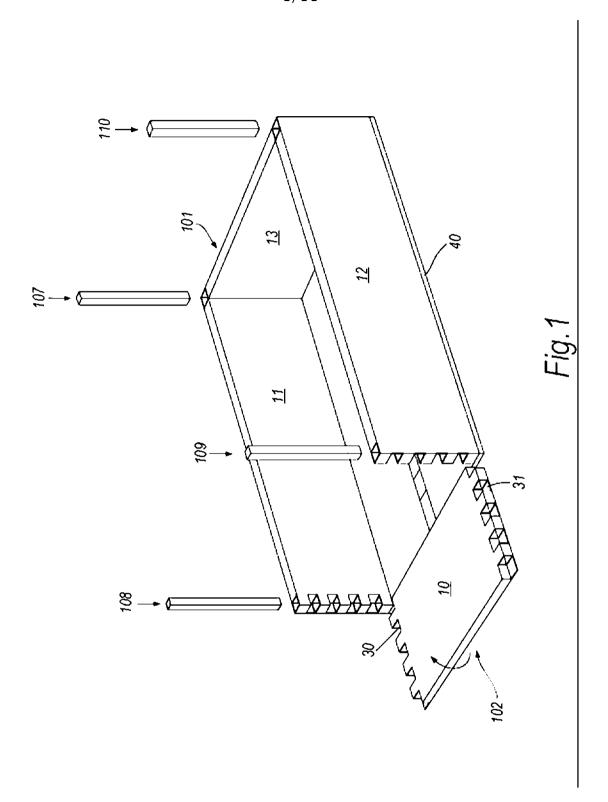
15

20

25

30

27


portion of the second panel abuts against a portion of the step.

- 16. A container according to any one of claims 1 to 14, wherein a weatherproof sheet is arranged to protect an assembled container in use from temperature variation and/or precipitation.
- 17. A container according to claim 1, wherein the edges of adjoining co-planar panel members have complimentary rebates.
 - fabricating a thermally insulating method of collapsible container, wherein the container comprises at least one set of a co-operating first and second panels arranged substantially at right angles to one another, the first and second panels having first and second major surfaces and a circumferential edge portion, wherein a first panel defines a rebate in conjunction with a member of a general L-shape cross section operable to accept an edge portion of the second panel, a first arm of the Lshape member being attached to the outside wall of the first member, the second arm of the L-shape member opposing an edge face of the first member whereby to define a rebate, wherein the method includes the step of introducing an edge portion of a second panel into the rebate, urging an outer face of the second panel against the upstanding arm of the L-shaped member, until the edge the second panel abuts an inside rebate surface, and second panels can be resiliently whereby first retained, one with respect to another.
 - 19. A method of fabricating a thermally insulating container according to claim 18, wherein the container

AJ Park

28

comprises base elements and wall panels wherein at least one of the base and wall panels; first and second wall elements or a top and wall panels cooperate with respect to each other as first and second panels.

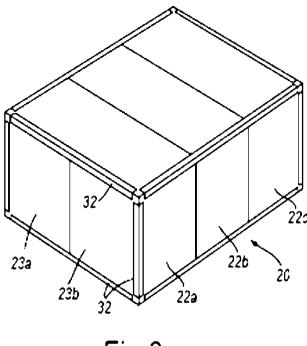


Fig.2a

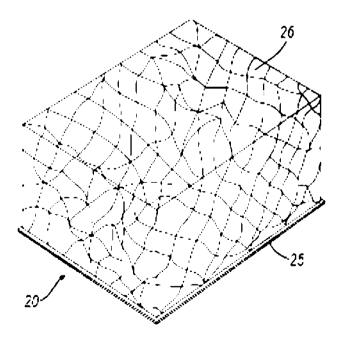
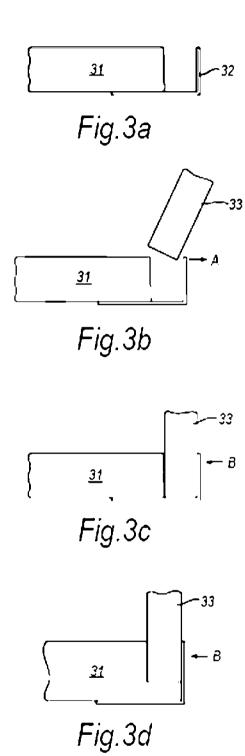



Fig.2b

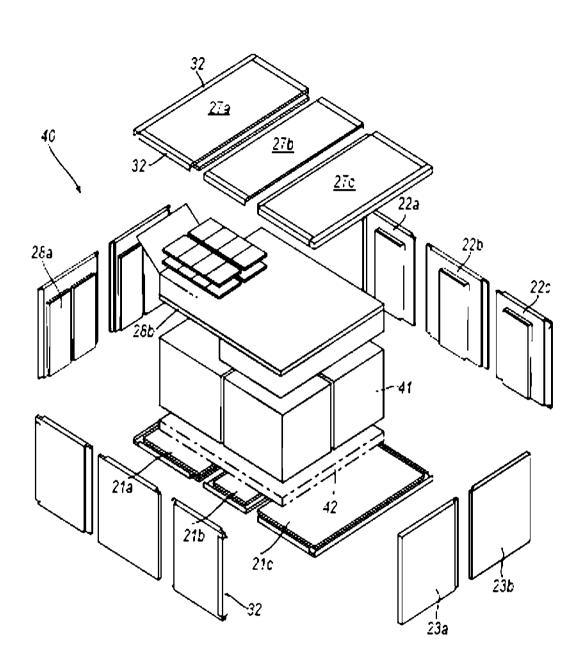


Fig.4

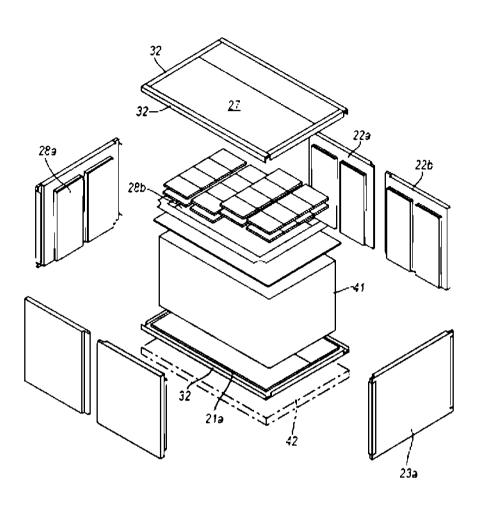


Fig.5a

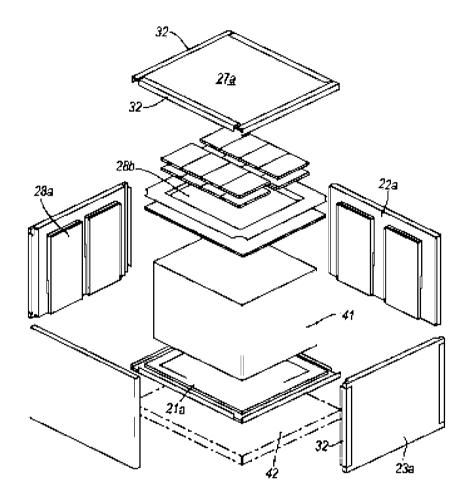


Fig.5b

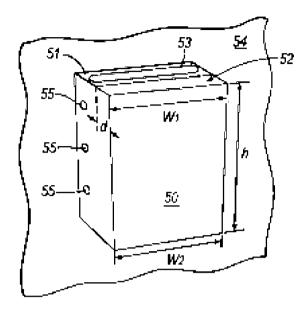


Fig.5c

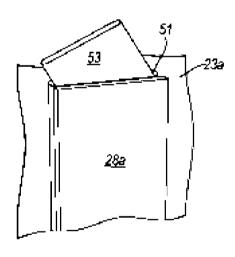


Fig.5d

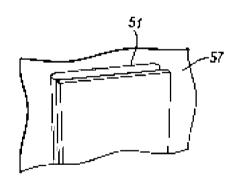


Fig.5e

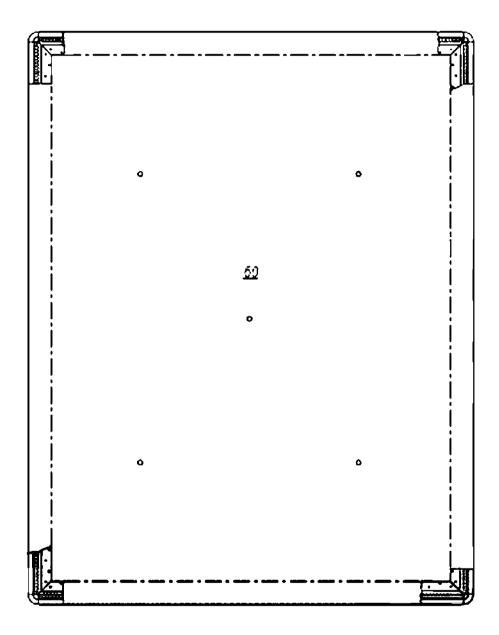
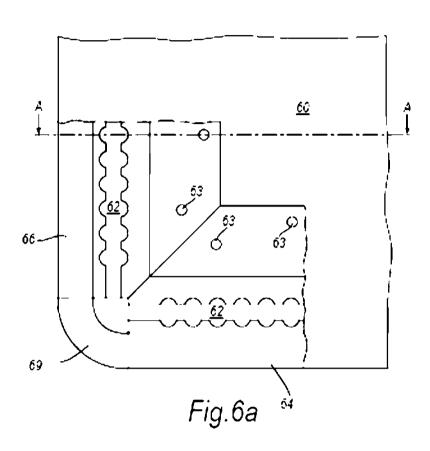



Fig.6

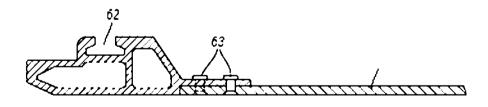
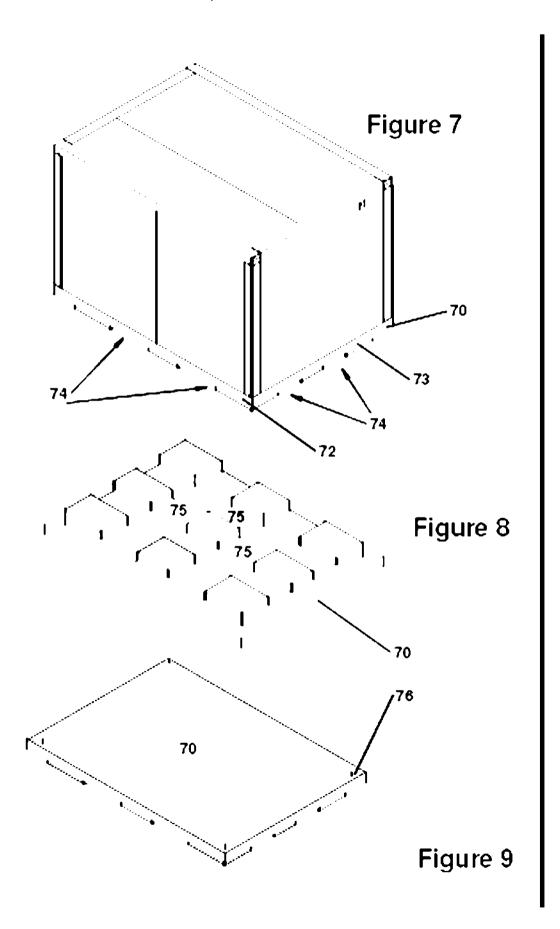



Fig.6b

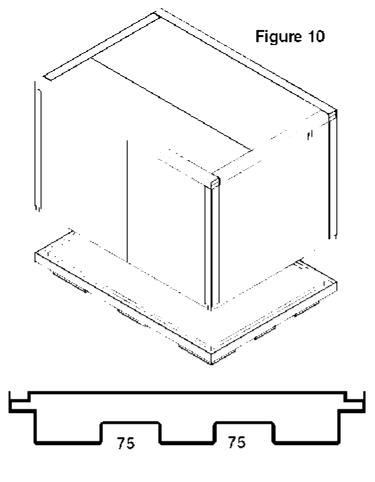


Figure 11