
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0310536A1

US 20140310536A1

Shacham (43) Pub. Date: Oct. 16, 2014

(54) STORAGE DEVICE ASSISTED INLINE (52) U.S. Cl.
ENCRYPTION AND DECRYPTION CPC G06F2I/78 (2013.01)

USPC .. 713/193
(71) Applicant: Qualcomm Incorporated, San Diego,

CA (US)
(57) ABSTRACT

(72) Inventor: Assaf Shacham, Zichron Yaakov (IL)

(73) Assignee: Qualcomm Incorporated, San Diego, Various features pertain to inline encryption and decryption.
CA (US) In one aspect, inline read/write operations are performed by

configuring an off-chip storage device to provide parameters
(21) Appl. No.: 14/244,742 to facilitate inline encryption/decryption of data by a host

storage controller of a system-on-a-chip (SoC.) The param
(22) Filed: Apr. 3, 2014 eters provided by the storage device to the host storage con

O O troller include an identifier that is the same for read and write
Related U.S. Application Data operations for a particular block of data but differs from one

(60) Provisional application No. 61/812,616, filed on Apr. block of data to another. The host storage controller employs
16, 2013. the parameters as initial vectors to generate encryption keys

for use in encrypting/decrypting data. Exemplary read and
Publication Classification write operations of the host storage controller and the off-chip

storage device are described herein. Examples are also
(51) Int. Cl. described wherein the parameters are obtained from host

G06F2L/78 (2006.01) memory rather than from the storage device.

System-On-A-Chip (SoC)

Application Processing
Circuit 102
HOST

SOFTWARE

101

HOST
STORAGE

CONTROLLER

N. Encryption/
Decryption

100 1.

110

HOST
Memory Bus MEMORY
a1

112
- - - - - - - - - - - -

08 NStorage Bus

STORAGE
DEVICE

106

Patent Application Publication Oct. 16, 2014 Sheet 1 of 20 US 2014/0310536A1

system-On-A-Chip (SGC-100
Application Processing

101 Circuit 102

110
HOST

STORAGE
CONTROLLER HOST

Memory Bus MEMORY
le/

112

.

08 NStorage BuS

STORAGE
DEVICE

106

FIG. I.

US 2014/0310536A1 Oct. 16, 2014 Sheet 2 of 20 Patent Application Publication

Z '50IAI

Patent Application Publication Oct. 16, 2014 Sheet 4 of 20 US 2014/0310536A1

Exemplary Inline Encryption/Write Operation 400
Performed by Host Storage Controller 1

Receive a write command from a requesting host software
component to write data into an off-chip storage device such as a
universal flash storage (UFS) device that is external to a SoC 402
processing circuit incorporating the host storage controller.

Send a command descriptor block (CDB) write command to the L-1 404
off-chip storage device as a UFS protocol information unit (UPIU).

In response, receive a ready to transfer (RTT) request UPIU having 406
direct memory access (DMA) context data and configured with

discrete contiguous blocks including a packet header specifying one
or more parameters such as the logical blockaddress (LBA) of a
first block of the data to be stored along with an indication of the

number of blocks of data to be stored.

Generate or otherwise obtain an encryption key based, at least in 408
part, on the LBA of the first block of data by, for example,

generating an initial vector from the LBA, obtaining an initial key
from host memory and then generating the encryption key from the

initial key and the initial vector.

410
Encrypt the data using the encryption key and save a key index
within a UFS transfer request descriptor (UTRD) for the write

transaction.

412
Send the encrypted data to the storage device using one or more a

"data out" UPIUs and receive responsive UPIUs with status
information.

FIG. 4

Patent Application Publication Oct. 16, 2014 Sheet 5 of 20 US 2014/0310536A1

Exemplary Inline Encryption/Write Operations
500 0^

Host Storage 502
Controller 506 504

COMMAND UPIU

(WRITE CDB)

RTT UPIU

(DMA CONTEXT)

DATA OUT UPIU

(WRITE DATA)

RTT UPIU

(DMA CONTEXT)

514
DATA OUT UPIU
(WRITE DATA)

516

RESPONSE UPIU
(STATUS INFO)

508

FIG. 5

US 2014/0310536A1 Oct. 16, 2014 Sheet 7 of 20 Patent Application Publication

Z (5) I. H

LAVACI 9/WAGI SAAGI AA

CIGHARIGH SEIRI£AAGI
S[\LV JLS 'WIWNOOCIETARIHSHRIZAVACI [0;LIXGILAGÐICIGHARIGHS@HTRIIAAGI CI

00 ^

(CTRILO) NOLAINOSTIGI ISIQÕTRI AITHSNVNI CHIQ

Patent Application Publication Oct. 16, 2014 Sheet 8 of 20 US 2014/0310536A1

800 /

READY TO TRANSFER UPIU

O 2 3
XX1 1 000 lb Flags LUN Task Tag

4 5 6 7
RESERVED RESERVED RESERVED RESERVED

8 Total EHS 19 10 (MSB) 11 (LSB)
Length (00h) RESERVED Data Segment Length

12 (MSB) 13 14 15 (LSB)
Data Buffer Offset

16 (MSB) 17 18 19 (LSB)
Data Transfer Count

2 22 23 (LSB)
LBA31:0 804

25 26 27 806
RESERVED BLKCNTI7:0

29 30 31
RESERVED

Header E2ECRC (omit if HD = 0)

FIG. 8

Patent Application Publication Oct. 16, 2014 Sheet 9 of 20 US 2014/0310536A1

Exemplary Inline Decryption/Read Operation
Performed by Host Storage Controller -900

Receive a read command from a requesting host Software
component to read data from an off-chip storage device Such as a
UFS device external to the SoC processing circuit incorporating the 902

host storage controller.

Send a read command to the off-chip storage device as a UPIU La 1 904
identifying the data to be read with a CDB.

In response, receive one or more "data in" UPIU's again configured 906
with discrete contiguous blocks including packet headers specifying
one or more parameters such as the LBA of the first block of the
data to be retrieved along with an indication of the number of

blocks of data to be retrieved.

Generate a decryption key for the databased, at least in part, on the
LBA of the first block of data by, for example, generating an initial
vector from the LBA, obtaining an initial key from host memory 908

using the key lookup index and then generating the decryption key
from the initial key and the initial vector.

910
Decrypt the data received from the off-chip storage device using the

decryption key.

Provide the decrypted data to the requesting host software 912
component by, for example, writing the data to system or host

memory.

FIG. 9

Patent Application Publication Oct. 16, 2014 Sheet 10 of 20 US 2014/0310536A1

Exemplary Inline Decryption/Read Operations
1000

2/

Host Storage
Controller 1004

COMMAND UPIU

(READ CDB)

DATA IN UPIU
(READ DATA)

DATA IN UPIU
(READ DATA)

RESPONSE UPIU

(STATUS INFO)

FIG. I.0

Patent Application Publication Oct. 16, 2014 Sheet 11 of 20 US 2014/0310536A1

1 100

DATA IN UPIU

Task Tag XX1 1 000 lb Flags

RESERVED RESERVED RESERVED RESERVED

8 Total EHS 10 (MSB) 11 (LSB)
Length (00h) RESERVED Data Segment Length

12 (MSB) 13 14 15 (LSB)
Data Buffer Offset

16 (MSB) 17 18 19 (LSB)
Data Transfer Count

20 21 22 23

RESERVED

24 25 26 27 1 104

LBA31:0
29 30 31 1106

RESERVED BLKCNT7:0

62 LUN

Header E2ECRC (omit if HD = 0)

DataO Data 1 Data2 Data 3
k k & --

k-length-4 k+length-3 k+length-2 k+length-1
Data length-4) Data length-3 Data length-2 Data length-1)

Header E2ECRC (omit if DD = 0)

FIG. I. I

US 2014/0310536A1 Oct. 16, 2014 Sheet 12 of 20 Patent Application Publication

JQA100Sueu L
0 | Z |

00ZI

ZI "OICH

US 2014/0310536A1 Oct. 16, 2014 Sheet 13 of 20 Patent Application Publication

£I "AOIH

US 2014/0310536A1 Oct. 16, 2014 Sheet 14 of 20 Patent Application Publication

f’I ’AOI I

suononusu? indinO pubuuuu OO 9??JAA/pe3}}

Patent Application Publication Oct. 16, 2014 Sheet 15 of 20 US 2014/0310536A1

Host Storage Controller - Write Operation
1500
1.

Obtain a write command from a requesting host software
component to write data to a storage device external to 502

the host controller.

Send the write command to the storage device. 1. 1504

Obtain a parameter associated with the data from the storage device
wherein, in at least Some examples, the parameter provides an 1506
identifier that is the same for read and write operations for a
particular block of data but differs from one block of data

to another.

1508
Generate or otherwise obtain an encryption key based on the

parameter.

1510
Encrypt the data using the encryption key.

1512
Send the encrypted data to the storage device.

FIG. I.5

Patent Application Publication Oct. 16, 2014 Sheet 16 of 20 US 2014/0310536A1

Host Storage Controller - Read Operation
1600

Obtain a read command from a requesting host Software component 1602
to read data from the storage device.

Send the read command to the storage device. 1604

Obtain encrypted data and a parameter associated with the
encrypted data from the storage device wherein, in at least some 1606
examples, the parameter provides an identifier that is the same for
read and write operations for a particular block of data but differs

from one block of data to another.

1608
Generate or otherwise obtain a decryption key based on the

parameter.

1610
Decrypt the encrypted data using the decryption key.

1612
Provide the decrypted data to the requesting host software

component.

FIG. I6

Patent Application Publication Oct. 16, 2014 Sheet 17 of 20 US 2014/0310536A1

Storage Device - Write Operation
1700

Receive a write command from a host software controller 1702
indicating or identifying data to be written to the storage device.

Send a parameter associated with the data to the host storage 1704
controller to facilitate in-line encryption of the data by the host

storage controller wherein, in at least some examples, the parameter
provides an identifier that is the same for read and write operations

for a particular block of data but differs from one block of
data to another.

Receive the in-line encrypted data from the host storage controller.

1706

1708 Store the in-line encrypted data received from the host storage
controller.

FIG. I. 7

Patent Application Publication Oct. 16, 2014 Sheet 18 of 20 US 2014/0310536A1

1800
Storage Device - Read Operation 1.

Receive a read command from the host software controller 1802
indicating encrypted data to be read from the storage device.

1804
Retrieve the encrypted data. 1.

1806

Send the encrypted data to the host storage controller along with a
parameter associated with the encrypted data to facilitate in-line
decryption of the data by the host storage controller wherein, in at

least some examples, the parameter provides an identifier that is the
same for read and write operations for a particular block of data but

differs from one block of data to another.

FIG. I.3

Patent Application Publication Oct. 16, 2014 Sheet 19 of 20 US 2014/0310536A1

Host Storage Controller-Alternative Write Operation
1900

1.

Obtain a write command from a requesting host software
component to write data to a storage device external to 1902

the host controller.

Send the write command to the storage device. 1. 1904

Obtain a parameter from host memory wherein the parameter 1906
provides an identifier that is the same for read and write operations

for a particular block of data but differs from one block of data
to another.

1908
Generate or otherwise obtain an encryption key based on the

parameter.

1910
Encrypt the data using the encryption key.

1912
Send the encrypted data to the storage device.

FIG. I9

Patent Application Publication Oct. 16, 2014 Sheet 20 of 20 US 2014/0310536A1

Host Storage Controller — Alternative Read Operation
2000

11

Obtain a read command from a requesting host Software component
to read data from a storage device external to 2002

the host controller.

2004
Send the read command to the storage device.

Obtain encrypted data from the storage device and also obtain a
parameter from host memory wherein the parameter provides an 2006

identifier that is the same for read and write operations for a
particular block of data but differs from one block of data to

another.

2008
Generate or otherwise obtain a decryption key based on the

parameter.

2010
Decrypt the encrypted data using the decryption key.

2012
Provide the decrypted data to the requesting host software

component.

FIG. 20

US 2014/0310536A1

STORAGE DEVICE ASSISTED INLINE
ENCRYPTION AND DECRYPTION

CLAIM OF PRIORITY UNDER 35 U.S.C. S 119
0001. The present application for patent claims priority to
Provisional Application No. 61/812,616 entitled “DEVICE
ASSISTED INLINE STORAGE ENCRYPTION filed Apr.
16, 2013, which is assigned to the assignee hereof and hereby
expressly incorporated by reference herein.

BACKGROUND

0002 1. Field
0003. The present disclosure pertains to host storage con

trollers for use with external storage devices and, in particu
lar, to inline encryption and decryption of data.
0004 2. Background
0005. In order to secure data, such data is often encrypted
during transmission and/or when stored. In one example, the
data is stored in an external storage device connected via a
storage bus to a host system-on-a-chip (SoC.) A typical SoC
may include an application processing circuit and a host
storage controller, which is a hardware element of the SoC.
The application processing circuit executes host Software that
serves to initiate read/write transactions to/from an external
storage device. For example, the host software component
may order the host storage controller to issue the read/write
transactions to the external storage device. The host storage
controller, in turn, communicates with the external storage
device over the storage bus to copy data to/from the storage
device and then notifies the host software of completion of
Such operations. The host storage controller may also access
a host memory via a separate memory bus. Typically, the host
memory is a generally more secure memory protected from
malicious attacks, whereas the external storage device is a
generally less secure off-chip memory device vulnerable to
Such attacks. Hence, data stored in the external storage device
may need to be encrypted, whereas data stored in the host
memory generally need not be encrypted. The encryption
process may require parameters which are not available to the
host storage controller. Within Such systems, the host storage
controller typically operates as a channel with limited com
mand decoding (or none at all). The complexity of read/write
operations (e.g., command generation/decoding and access
optimization) resides in the host software and in firmware
executed by the storage device. Accordingly, to secure data
stored in the external storage device, encryption/decryption
of the data is typically performed by the host software and/or
the storage device, rather than by the host storage controller.
0006. However, a solution is needed that instead permits
efficient inline encryption/decryption by the host storage con
troller.

SUMMARY

0007. A method operational at a host storage controller to
encrypt data during a write operation to a storage device
external to the host storage controller includes: obtaining a
write command from a requesting host software component
to write data to the storage device; sending the write com
mand to the storage device; obtaining a parameter associated
with the data from the storage device; generating an encryp
tion key based on the parameter, and encrypting the data
using the encryption key.

Oct. 16, 2014

0008. In another aspect, a method operational at a host
storage controller to decrypt data during a read operation
from a storage device external to the host storage controller
includes: obtaining a read command from a requesting host
Software component to read data from the storage device;
sending the read command to the storage device; obtaining
encrypted data and a parameter associated with the encrypted
data from the storage device; generating a decryption key
based on the parameter, and decrypting the encrypted data
using the decryption key.
0009. In yet another aspect, a device includes a storage
device to store data and a processing circuit coupled to the
storage device, the processing circuit having a host storage
controller configured to: obtain a write command from a
requesting host Software component to write data to the Stor
age device; send the write command to the storage device;
obtain a parameter associated with the data from the storage
device; generate an encryption key based on the parameter;
and encrypt the data using the encryption key.
0010. In still yet another aspect, a device includes a stor
age device to store data and a processing circuit coupled to the
storage device, the processing circuit having a host storage
controller configured to: obtain a read command from a
requesting host Software component to read data from the
storage device; send the read command to the storage device;
obtain encrypted data and a parameter associated with the
encrypted data from the storage device; generate a decryption
key based on the parameter, and decrypt the encrypted data
using the decryption key.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 Various features, nature and advantages may
become apparent from the detailed description set forth below
when taken in conjunction with the drawings in which like
reference characters identify correspondingly throughout.
0012 FIG. 1 illustrates an exemplary system-on-a-chip
(SoC) with inline encryption/decryption.
0013 FIG. 2 illustrates an exemplary application process
ing circuit, a host storage controller and an external storage
device and information exchanged there-between.
0014 FIG. 3 illustrates an exemplary SoC in greater detail
wherein the SoC includes a host storage controller equipped
for storage device assisted inline encryption/decryption.
0015 FIG. 4 illustrates an exemplary inline encryption/
write operation that may be performed by the host storage
controller in conjunction with an off-chip storage device.
0016 FIG. 5 illustrates exemplary inline encryption/write
operations performed between a host storage controller and
an off-chip storage device.
0017 FIG. 6 illustrates exemplary register and host
memory spaces for use with transaction queuing for a univer
sal flash storage (UFS) implementation of the storage device
assisted inline encryption/decryption.
0018 FIG. 7 illustrates an exemplary UFS transfer request
descriptor (UTRD) for use with the implementation of FIG. 6
wherein the UTRD includes a key index.
0019 FIG. 8 illustrates an exemplary ready to transfer
(RTT) UFS protocol information unit (UPIU) for use with the
implementation of FIG. 6 wherein the UPIU includes a logi
cal blockaddress (LBA) indicator and a block count indictor.
0020 FIG. 9 illustrates an exemplary inline decryption/
read operation that may be performed by the host storage
controller in conjunction with the off-chip storage device.

US 2014/0310536A1

0021 FIG.10 illustrates exemplary inline decryption/read
operations performed between a host storage controller and
an off-chip storage device.
0022 FIG. 11 illustrates an exemplary “data in UPIU for
use with the implementation of FIG. 10 wherein the UPIU
includes an LBA indicator and a block count indictor.
0023 FIG. 12 is a block diagram illustrating an example of
a hardware implementation for an apparatus employing a
processing system that may exploit the systems, methods and
apparatus of FIGS. 1-11.
0024 FIG. 13 is a block diagram illustrating exemplary
components of the processing circuit of FIG. 12.
0025 FIG. 14 is a block diagram illustrating exemplary
instruction components of the machine-readable medium of
FIG. 12.
0026 FIG. 15 illustrates a method operational at the host
storage controller to encrypt data during a write operation
into a storage device.
0027 FIG. 16 illustrates a method operational at the host
storage controller to decrypt data during a read operation
from a storage device.
0028 FIG. 17 illustrates a method operational at a storage
device to facilitate data encryption during a write operation
by a host storage controller.
0029 FIG. 18 illustrates a method operational at a storage
device to facilitate data decryption during a read operation by
a host storage controller.
0030 FIG. 19 illustrates an alternative method operational
at the host storage controller to encrypt data during a write
operation into a storage device.
0031 FIG.20 illustrates an alternative method operational
at the host storage controller to decrypt data during a read
operation from a storage device.

DETAILED DESCRIPTION

0032. In the following description, specific details are
given to provide a thorough understanding of the various
aspects of the disclosure. However, it will be understood by
one of ordinary skill in the art that the aspects may be prac
ticed without these specific details. For example, circuits may
be shown in block diagrams in order to avoid obscuring the
aspects in unnecessary detail. In other instances, well-known
circuits, structures and techniques may not be shown in detail
in order not to obscure the aspects of the disclosure.
0033. The word “exemplary” is used hereinto mean “serv
ing as an example, instance, or illustration.” Any implemen
tation or aspect described herein as “exemplary' is not nec
essarily to be construed as preferred or advantageous over
other aspects of the disclosure. Likewise, the term “aspects'
does not require that all aspects of the disclosure include the
discussed feature, advantage or mode of operation.

Overview

0034 Several novel features pertain to storage device
assisted inline encryption and decryption. In one aspect,
inline read/write operations are performed by configuring an
off-chip storage device to provide parameters to facilitate
inline encryption/decryption of data by a host storage con
troller of a system-on-a-chip (So.C.) In various examples
described herein, the parameters obtained by the host storage
controller from the off-chip storage device provide an iden
tifier that is the same for read and write operations for a
particular block of data but differs from one block of data to

Oct. 16, 2014

another. A particular example of Such a parameter is the
logical blockaddress (LBA) obtained from the storage device
for the data to be encrypted/decrypted. However, other
parameters may be used in addition to, or instead of the LBA
to provide enhanced security. To providing concrete
examples herein of inline encryption/decryption procedures,
Some of the following descriptions are directed to implemen
tations where the LBA is used, but it should be understood
that other parameters may be used, in addition to, or as an
alternative to, the LBA.
0035. The host storage controller uses the parameters
obtained from the storage device to generate or otherwise
obtain keys for use in encrypting/decrypting data, thus alle
viating the need for other components of the SoC to perform
or control such functions to thereby provide more efficient
inline encryption/decryption. In an example where the LBA
is obtained by the host storage controller from the storage
device, the LBA is used as an initial vector (or initialization
vector) for use in encryption/decryption. This procedure is
distinct from inline encryption/decryption systems that
would otherwise obtain the initial vector from a source other
than the off-chip storage device, such as by attempting to
extract such information from read/write commands received
from host software. Note also that by using the LBA as the
initial vector, the initial vector will be the same for both
write/encryption operations and read/decryption operations,
thereby allowing the host storage controller to decrypt data
that had been previously encrypted and stored in the off-chip
storage device. Moreover, the initial vector will be different
for each block of data, thereby providing a unique initial value
for each block of data. Still further, by obtaining the LBA or
other suitable parameters from the off-chip storage device for
use as the initial vector, initial vector information need not be
stored in the on-chip memory, thus saving valuable on-chip
storage space. Note also that, typically, a host storage con
troller is not provided with the actual storage address used by
an off-chip storage device but is instead provided only with
the host memory address for the data, which can differ
between read and write operations to the same data. Hence,
host memory addresses typically cannot be used for inline
encryption/decryption. In this regard, the addresses used by
the storage device (whether physical or logical) are within a
different address space from the memory addresses used by
the host processor. Conventionally, the host storage controller
does not receive, and hence cannot use, storage addresses
from the off-chip storage device for use in encryption/decryp
tion.

0036 Some examples described herein include read and
write operations performed generally in accordance with
UFS host controller interface Standards of the JEDEC Solid
State Technology Association, formerly known as the Joint
Electron Device Engineering Council (JEDEC). See, for
example, the JESD220A and JESD223A standards docu
ments of June 2012. The JEDECUFS read and write opera
tions are modified, as described below, to provide various
features disclosed herein. It should be understood, however,
that at least some of the features described herein may be
implemented in other systems that do not generally conform
to JEDEC standards, including proprietary or other systems.
Exemplary Device(s) with Inline Write Encryption and Read
Decryption
0037 FIG. 1 broadly illustrates an exemplary system on a
chip 100 with inline encryption/decryption. Briefly, the SoC
100 includes an application processing circuit 101 equipped

US 2014/0310536A1

to execute host software or software components 102 and
further including a host storage controller 104. In this
example, the host storage controller 104 includes an inline
encryption/decryption module 105 that is capable of encrypt
ing data written into an external storage device 106 via the
storage bus 108 and/or decrypting data read from the storage
device 106 via the same storage bus. These operations may be
performed in conjunction with data or other parameters
stored within a host memory 110 accessed via a memory bus
112. To facilitate operations performed by the encryption/
decryption module 105, the storage device 106 is configured
to provide parameters (such as LBA values) to the host stor
age controller 104 during read and write operations.
0038 FIG. 2 provides a timing diagram 200 illustrating
exemplary read and write operations of an application pro
cessing circuit 202, a host storage controller 204 and an
external storage device 206 and particularly illustrating infor
mation exchanged there-between for use with inline encryp
tion/decryption. Processing begins with the application pro
cessing circuit 202 sending a write command 208 (on behalf
of requesting host software component not specifically
shown) to the host storage controller 204 via internal connec
tion lines that identifies data to be written to the external
storage device 206. The data may be identified by way of a
host memory address (wherein the host memory device is not
specifically shown in the figure to permit the other compo
nents to be more clearly illustrated.) The host storage con
troller 204 responds to the write command by sending a write
command request 210 to the external storage device 206 via a
storage bus (also not shown in FIG. 2) indicating the amount
of data to be stored. Particular examples of write command
requests and other parameters, data packets and commands
that may be exchanged between the various components are
provided below in connection with a JEDEC-based example.
0039. In response to the write command request, the exter
nal storage device 206 examines its memory to identify a
suitable location for storing the data. The location is identified
by its storage device LBA and by the number of blocks of data
to be stored beginning at that LBA (i.e. the block count.) The
number of blocks will depend on the amount of data to be
stored and the size of individual storage blocks within the
storage device. In some cases, the data will need to be stored
at several different locations within the external storage
device 206 and hence several LBA values and corresponding
block counts may need to be identified. For clarity in describ
ing the overall operation of the components of FIG. 2, an
example is presented where only a single LBA is needed. The
LBA and block count 212 are then sent from the external
storage device 206 to the host storage controller 204 (along
with other parameters discussed below with reference, for
example, to FIG.8.)
0040. At 214, the host storage controller 204 generates an
encryption key based on the LBA/block count and an initial
key, which it either generates itself or retrieves from host
memory. If the initial key is generated by the host storage
controller 204, it may save the initial key in host memory for
Subsequent use in decryption. Exemplary encryption key gen
eration techniques are discussed below where the LBA is
employed (alone or in combination with the block count) as
an initial vector for applying to an encryption function along
with the initial key to generate an encryption key. At 216, the
host storage controller 204 obtains the data to be stored in the
external storage device from internal host memory and
encrypts the data using the encryption key. The encrypted

Oct. 16, 2014

data 218 is sent to the external storage device 206 over the
storage bus where it is stored, at 219, by the external storage
device 206 at the LBA previously indicated. Note that the
process between 212 and 219 (inclusive) may be repeated any
number of times, if needed. Various acknowledgement indi
cators may be provided, not shown, by the storage device to
the host storage controller and by the host storage controller
to the application processing circuit. See below for these and
other exemplary implementation details.
0041 At a later time, the application processing circuit
202 may need to retrieve the data from the external storage
device on behalf of a requesting host Software component.
Accordingly, the application processing circuit 202 sends a
read command 220 to the host storage controller 204 that
identifies data to be read from the external storage device 206.
The data may again be identified by way of a host memory
address. The host storage controller 204 responds to the read
command by sending a read command 222 of its own to the
external storage device 206 identifying the data to be
retrieved. The external storage device 206 retrieves the
encrypted data from its memory at 223 and sends the
encrypted data and the corresponding LBA and block count,
at 224, to the host storage controller 204. Again, details of an
exemplary JEDEC-based implementation are presented
below. At 226, the host storage controller 204 generates a
decryption key for the databased on the LBA/block count and
the initial key (which may be retrieved from host memory.) At
228, the host storage controller 204 decrypts the data received
from the external storage device 206 using the decryption key
and, at 230, writes the decrypted data to the host memory, for
use by the requesting host software. Note that the process
between 223 and 230 (inclusive) also may be repeated any
number of times, if needed.
0042. The inline encryption/decryption systems and pro
cedures described herein can be exploited or used in a wide
range of devices and for a wide range of applications. In order
to provide a concrete example, an exemplary hardware envi
ronment will be described wherein a host storage controller
with an inline encryption/decryption module is provided on a
SoC processing circuit for use in a mobile communication
device having an off-chip storage device such as a UFS
device. Other exemplary hardware environments include
other communication devices and components and various
peripheral devices for use therewith, etc. Moreover, note that
as an alternative to receiving the aforementioned parameters
from the (non-secure) off-chip storage device. Such param
eters could instead be generated by the host storage controller
and maintained in secure memory for use in encryption/de
cryption and Such implementations are briefly described
below with reference to FIGS. 19 and 20.

Exemplary System-on-a-Chip Hardware Environment
0043 FIG. 3 illustrates a SoC processing circuit 300 of a
mobile communication device in accordance with one
example where various novel features may be exploited. The
SoC processing circuit may be a SnapdragonTM processing
circuit of Qualcomm Incorporated. The SoC processing cir
cuit 300 includes an application processing circuit 310, which
includes a multi-core CPU 312 equipped to operate in con
junction with various software components 313 (which, for
clarity of illustration, are shown as a separate block from the
CPU cores though it should be appreciated that the software
may run within the CPU cores 312.) The application process
ing circuit 310 typically controls the operation of all compo

US 2014/0310536A1

nents of the mobile communication device. In one aspect, the
application processing circuit 310 is coupled to a host storage
controller 350 equipped to perform inline encryption and
decryption using an encryption/decryption module 351. The
application processing circuit 310 may also include a boot
ROM 318 that stores boot sequence instructions for the vari
ous components of the SoC processing circuit 300. The SoC
processing circuit 300 further includes one or more peripheral
Subsystems 320 controlled by application processing circuit
310. The peripheral subsystems 320 may include but are not
limited to a storage Subsystem (e.g., read-only memory
(ROM), random access memory (RAM)), a video/graphics
Subsystem (e.g., digital signal processing circuit (DSP),
graphics processing circuit unit (GPU)), an audio Subsystem
(e.g., DSP, analog-to-digital converter (ADC), digital-to-ana
log converter (DAC)), a power management Subsystem, Secu
rity Subsystem (e.g., other encryption components and digital
rights management (DRM) components), an input/output
(I/O) Subsystem (e.g., keyboard, touchscreen) and wired and
wireless connectivity Subsystems (e.g., universal serial bus
(USB), Global Positioning System (GPS), Wi-Fi, Global Sys
tem Mobile (GSM), Code Division Multiple Access
(CDMA), 4G Long Term Evolution (LTE) modems). The
exemplary peripheral subsystem 320, which is a modem sub
system, includes a DSP 322, various other hardware (HW)
and software (SW) components 324, and various radio-fre
quency (RF) components 326. In one aspect, each peripheral
subsystem 320 also includes a boot ROM 328 that stores a
primary boot image (not shown) of the associated peripheral
subsystems 320.
0044) The SoC processing circuit 300 further includes
various internal shared HW resources 330, such as an internal
shared storage 332 (e.g. static RAM (SRAM), double-data
rate (DDR) synchronous dynamic (SD) RAM, DRAM, Flash
memory, etc.), which is shared by the application processing
circuit 310 and the various peripheral subsystems 320 to store
various runtime data or other parameters and to provide host
memory. In the example of FIG.3, the internal shared storage
332 includes a key/parameter storage element, portion or
component 333 that may be used to store encryption keys and,
in Some examples, to store the aforementioned parameters
used by the inline encryption/decryption module 351 (par
ticularly if those parameters are not provided by the off-chip
storage device.) In other examples, keys are stored elsewhere
within the mobile device or are generated as needed by the
host storage controller.
0045. In one aspect, the components 310, 318, 320, 328
and 330 of the SoC 300 are integrated on a single-chip Sub
strate. The SoC processing circuit 300 further includes vari
ous external shared HW resources 340, which may be located
on a different chip Substrate and may communicate with the
SoC processing circuit 300 via one or more buses. External
shared HW resources 340 may include, for example, an exter
nal shared storage 342 (e.g. DDR RAM or DRAM) and/or
permanent or semi-permanent data storage 344 (e.g., a Secure
Digital (SD) card, Hard Disk Drive (HDD), an embedded
multimedia card (e.MMC or e-MMC) device, a UFS device,
etc.), which may be shared by the application processing
circuit 310 and the various peripheral subsystems 320 to store
various types of data, such as an operating system (OS) infor
mation, system files, programs, applications, user data, audio/
video files, etc. At least some of the data stored within the
external resources and devices 340 may be encrypted by the

Oct. 16, 2014

host storage controller 350 during write operations and then
decrypted by the host storage controller during read opera
tions.

0046 When the mobile communication device incorpo
rating the SoC processing circuit 300 is activated, the SoC
processing circuit begins a system boot up process. In par
ticular, the application processing circuit 310 accesses boot
ROM 318 to retrieve boot instructions for the SoC processing
circuit 300, including boot sequence instructions for the vari
ous peripheral subsystems 320. The peripheral subsystems
320 may also have additional peripheral boot RAM328.

Exemplary Inline Encryption/Decryption Procedures

0047 FIG. 4 illustrates exemplary inline encryption/write
operations 400 that may be employed by the host storage
controller of the processing circuit of FIG. 3, or other suit
able-equipped components, devices, systems or processing
circuits. The procedure of FIG. 4 is performed generally in
accordance with JEDEC standards and protocols, modified to
provide for storage device assisted inline encryption. In this
example, the LBA is received from the storage device by the
host storage controller for use in generating an initial vector
but, as already explained, other parameters besides the LBA
may instead be used. At step 402, the host storage controller
receives a write command from a requesting host Software
component to write data into or onto an off-chip storage
device such as a UFS device that is external to a SoC process
ing circuit incorporating the host storage controller. The write
command may be received via internal SoC command trans
mission lines. At step 404, the host storage controller sends a
command descriptor block (CDB) write command via a stor
age bus to the off-chip storage device with the command
configured as a UFS protocol information unit (UPIU), gen
erally in accordance with JEDEC standards. At step 406, in
response, the host storage controller receives a ready to trans
fer (RTT) request UPIU from the off-chip storage device via
the storage bus wherein the RTT request UPIU has direct
memory access (DMA) context data and is configured with
discrete contiguous blocks including a packet header speci
fying one or more parameters such as the LBA of a first block
of the data to be stored along with an indication of the number
of blocks of data to be stored. Note that the RTT of step 406
need not be received immediately after step 404. Rather, the
RTT may be received at a later time. An exemplary RTT
request UPIU is shown in FIG. 8 and described below.
0048. At step 408, the host storage controller generates or
otherwise obtains an encryption key based, at least in part, on
the LBA of the first block of data and the indication of the
number of blocks by, for example, using the LBA (alone or in
combination with the block count) as an initial vector or by
generating the initial vector from the LBA. Note that, herein,
the term “obtaining broadly covers, e.g., calculating, com
puting, generating, acquiring, receiving, retrieving or per
forming any other Suitable corresponding actions. A wide
variety of encryption key generation techniques may be used
at step 408 depending upon the security needs of the overall
system. In at least some examples, the host storage controller
uses the LBA to generate an initial vector (or uses the LBA as
the initial vector.) The host storage controller also obtains an
initial key from host memory (such as from key storage 333 of
FIG. 3.) The host storage controller then generates the
encryption key from the initial key and the initial vector. For
example, the initial vector and the initial key may be applied

US 2014/0310536A1

to an Advanced Encryption Standard (AES) encryption func
tion to generate an encryption key (cipher).
0049. At step 410, the host storage controller encrypts the
data using the encryption key. A wide variety of particular
encryption techniques may be used at Step 410. In an AES
example, the encryption key (cipher) generated from the ini
tial vector and the initial key may be applied one or more
times to the data to be encrypted. Also at step 410, the host
storage controller saves a key index within a UFS transfer
request descriptor (UTRD) for the write transaction. An
exemplary host memory space having a queue of UTRDS is
shown in FIGS. 6 and 7 and described below for a UFS
example. At Step 412, the host storage controller sends the
encrypted data to the storage device for storage therein via the
storage bus using one or more a “data out UPIUs and
receives responsive UPIUs with status information confirm
ing the storage of the encrypted data.
0050 FIG. 5 further illustrates exemplary inline encryp
tion/write operations by way of a timing diagram/flow chart
500 that shows commands and other packets exchanged
between a host storage controller 502 and an off-chip storage
device 504 via the aforementioned storage bus. Initially, a
command UPIU 506 is transmitted from the host storage
controller to the off-chip storage device containing write
CDB information indicating that data needs to be written to
the off-chip storage device. In response, an RTTUPIU 508 is
then transmitted from the off-chip storage device to the host
storage controller indicating that the off-chip storage device
is ready to receive the data. As already explained, the RTT
UPIU includes DMA context data and is configured with
discrete contiguous blocks including a packet header speci
fying one or more parameters including the LBA of a first
block of the data to be stored along with an indication of the
number of blocks of data to be stored. Although not shown in
FIG. 5, following receipt of RTT UPIU 508, the host storage
controller encrypts the data to be written, as already
explained. One or more data out UPIUs 510 are transmitted
from the host storage controller to the off-chip storage device
containing encrypted data to be stored in the off-chip storage
device. In response to another RTT UPIU 512, the host stor
age controller sends one or more additional data out UPIUs
514 containing more encrypted data. Eventually, a response
UPIU 516 containing status info is sent from the off-chip
storage device to the host storage controller, generally in
accordance with JEDECUFS protocols. The response UPIU
may indicate, e.g., that the data was successfully stored.
0051 FIG. 6 illustrates the general architecture of an
exemplary UFS host controller interface (HCI) that uses a
memory space 600, in which various of the aforementioned
parameters and commands may be stored, maintained or pro
cessed. More specifically, the figure illustrates a host memory
space 602 and an input/output (IO) memory/register space
604. FIG. 6 also illustrates exemplary transaction queuing by
way of various lists, commands and data buffers. As the
overall features of FIG. 6 may be configured generally in
accordance with JEDECUFS standards, this figure will only
be described briefly with emphasis on the UTRDs, each of
which has a key index (KEYIDX.) The host memory space
602 maintains a UTP transaction request list 606 that lists
UTRDs, each of which includes a KEYIDX. The UTRDs
with KEYIDXs are denoted 608 in the figure. The details of
an individual exemplary UTRD with a key index is shown in
FIG. 7, described below. The UTRDs of FIG. 6 are received
via a UTP transaction request component 610 of the IO reg

Oct. 16, 2014

ister/memory space for queuing within UTP transaction
request list 606. The UTRDs of list 606 are then used to
generate corresponding command UPIUS for use with corre
sponding response UPIUS and physical region description
tables (PRDTs), in accordance with JEDEC standards. In
FIG. 6, each group of command UPIUs, response UPIUs and
PRDTs are denoted 612. At least some groupings may not
include a PRDT, as denoted by group 614. Data associated
with the PRDTs may be stored in data buffers 616. Addition
ally, the host memory space 602 includes a UTP task man
agement request list 618 for storing or queuing various TM
request UPIUS 620, which are received via a UTP manage
ment request 622 of the IO register/memory space 604. For
the sake of completeness, other components of the IO regis
ter/memory space 604 are noted and these include host con
troller capabilities 624, interrupt and host status indicators
626, UFS interconnect (UIC) commands 628 and vendor
specific values 630. See the aforementioned JEDEC docu
ments for further information regarding these and other com
ponents illustrated in FIG. 6.
0052 FIG. 7 illustrates an exemplary UTRD 700 that
includes the aforementioned key index, denoted 702. In this
example, the key index is an eight-bit ID: KEYIDX7:0.
Various other elements of the UTRD are shown for the sake of
completeness Such as a command type value, an overall com
mand status value, a UTP command descriptor base address
value (Stored in two separate portions as shown), a response
UPIU offset value, a response UPIU length value, a PRDT
offset value and a PRDT length value. Again, see the afore
mentioned JEDEC documents for further information regard
ing these and other values illustrated in FIG. 7.
0053 FIG. 8 illustrates an RTTUPIU 800 that includes the
aforementioned LBA, denoted 804, and the block count,
denoted 806. In this example, the LBA is a 32-bit value:
LBA31:0 and the block count is an eight-bit value:
BLKCNT7:0. Various other elements of the RTT UPIU are
shown for the sake of completeness such as a logic unit
number (LUN), a total extra header segment (EHS) length, a
data segment length, a data buffer offset, a data transfer count,
and an end to end cyclic redundancy check (E2ECRC)
header. As noted in the figure, the header may be omitted if an
HD bit is 1. When set to 1, the HD bit specifies that an
end-to-end CRC of all header segments is included within the
UPIU. The CRC fields include all fields within the header
area. The CRC is placed at the 32-bit word location following
the header. End-to-end CRC is not necessarily supported in
all versions of the JEDEC standard and so HD may be set to
0. See the aforementioned JEDEC documents for further
information regarding these and other values illustrated in
FIG 8.

0054) Note that rather than providing the LBA in the RTT
UPIU, one or more alternative parameters could instead be
provided. Generally speaking, a wide variety of parameters
can be employed, particularly parameters suitable for gener
ating an initial vector for use in encryption/decryption. In this
regard, the parameters should include an identifier that is the
same for read and write commands (so that data encrypted
during a write operation can be easily decrypted during a
Subsequent read operation) and should be unique from one
data block to another. The LBA is used hereinas an exemplary
parameter since it serves these requirements, but other values
may instead be used that provide additional security features,
particularly to thwart attacks that might change or corrupt the
LBA.

US 2014/0310536A1

0055 Turning now to FIGS. 9-11, inline decryption/read
operations will now be described for use in reading and
decrypting data previously encrypted and written to storage
using the techniques of FIGS. 4-8.
0056 FIG. 9 illustrates exemplary inline decryption/read
operations 900 that may be employed by the host storage
controller of the processing circuit of FIG. 3, or other suit
able-equipped components, devices, systems or processing
circuits. At step 902, the host storage controller receives a
read command from a requesting host Software component to
read data from an off-chip storage device such as a UFS
device that is external to a SoC processing circuit incorporat
ing the host storage controller. The read command may be
received via internal SoC command transmission lines. At
step 904, the host storage controller sends a CDB read com
mand via the storage bus to the off-chip storage device with
the command configured as a UPIU that identifies the data to
be read, generally in accordance with JEDEC standards. At
step 906, in response, the host storage controller receives one
or more “data in UPIUs from the off-chip storage device via
the storage bus wherein the UPIUs are again configured with
discrete contiguous blocks including packet headers specify
ing one or more parameters such as the LBA of the first block
of the data to be retrieved along with an indication of the
number of blocks of data to be retrieved. An exemplary data
in UPIU is shown in FIG. 11 and described below.

0057. At step 908, the host storage controller generates or
otherwise obtains the decryption key for the data to be read
from the key memory of the host memory of the SoC based,
at least in part, on the LBA of the first block of data and the
number of blocks of data in conjunction with the correspond
ing UTRD for the transaction (which, as already explained,
includes a key index value.) In one example, the host storage
controller generates an initial vector from the LBA (or uses
the LBA as the initial vector), obtains the initial key from
memory (in conjunction with the key index for the transac
tion) and then generates the decryption key from the initial
key and from the initial vector. Note that, depending upon the
particular type of encryption/decryption employed by the
system, the decryption key might be the same key as the
aforementioned encryption key, merely used for decryption
instead of encryption. In some implementations, however, the
decryption key may differ from the encryption key and So, for
the sake of generality, separate terms are used herein for the
encryption key and the decryption key. At step 910, the host
storage controller decrypts the data using the decryption key.
At step 912, the host storage controller provides or “sends'
the decrypted data to the requesting host Software component,
typically by writing the data to system memory (e.g. host
memory.)
0058 FIG. 10 further illustrates exemplary inline decryp
tion/read operations by way of a timing diagram/flow chart
1000 that shows commands exchanged between a host stor
age controller 1002 and an off-chip storage device 1004 via
the aforementioned storage bus. Initially, a command UPIU
1006 is transmitted from the host storage controller to the
off-chip storage device containing read CDB information
indicating that data needs to be read from the off-chip storage
device. In response, one or more data in UPIU's 1008 are
transmitted from the off-chip storage device to the host stor
age controller containing encrypted data. As already
explained, each data in UPIU is configured with discrete
contiguous blocks including a packet header specifying one
or more parameters such as the LBA of a first block of the data

Oct. 16, 2014

being read along with an indication of the number of blocks of
data being read. Eventually, a response UPIU 1010 contain
ing status info is sent from the host controller to the off-chip
storage device, generally in accordance with JEDEC UFS
protocols. The response UPIU may indicated, e.g., that the
data was successfully received by the host storage controller.
0059 FIG. 11 illustrates an exemplary data in UPIU 1100
that includes the aforementioned LBA, denoted 1104, and
block count, denoted 1106, as well as the encrypted data,
which begins on line 1108 of the UPIU of the figure. Again,
the LBA is a 32-bit value: LBA31:0 and the block count is
an eight-bit value: BLKCNTI7:0. Various other elements of
the UPIU are shown for the sake of completeness such as a
task tag, a total EHS length, a data segment length, a data
buffer offset, a data transfer count, and one or more headers
containing E2ECRC values. As noted in the figure the first
E2ECRC header may be omitted if an HD bit is 1. The second
E2ECRC header may be omitted if a DD bit is 0. When set to
1, the DD bit specifies that an E2ECRC of the data segment is
included with the UPIU. The 32-bit CRC is calculated overall
the fields within the data segment and may be placed at the
end of the data segment as the last word location of the UPIU.
As noted, end-to-end CRC is not necessarily Supported in all
versions of the JEDEC standard and so DD (as well as HD)
may be set to 0. See the aforementioned JEDEC documents
for further information regarding these and other values illus
trated in FIG. 11. Upon receipt of the UPIU, the host storage
controller extracts the encrypted data from the packet and
employs the LBA and BLKCNT values to obtain or generate
the decryption key for decrypting the data. The LBA may be
used as an initial vector to obtain or generate the decryption
key for the data contained in the data in UPIU. As already
noted, other parameters may be used besides, or in addition
to, the LBA. If other parameters are used, the parameters
should be selected and employed so that the parameters pro
vide an identifier that will be the same for read and write
operations for a particular block of data (to allow the host
storage controller to decrypt data that had previously been
encrypted) but will differ from one block of data to another (to
provide uniqueness.)

Exemplary Systems and Methods

0060 FIG. 12 illustrates an overall system or apparatus
1200 in which the systems, methods and apparatus of FIGS.
2-11 may be implemented. In accordance with various
aspects of the disclosure, an element, or any portion of an
element, or any combination of elements may be imple
mented with a processing system 1214 that includes one or
more processing circuits 1204 Such as the SoC processing
circuit of FIG. 3. For example, apparatus 1200 may be a user
equipment (UE) of a mobile communication system. Appa
ratus 1200 may be used with a radio network controller
(RNC). In addition to an SoC, examples of processing circuits
1204 include microprocessing circuits, microcontrollers,
digital signal processing circuits (DSPs), field programmable
gate arrays (FPGAs), programmable logic devices (PLDS),
state machines, gated logic, discrete hardware circuits, and
other suitable hardware configured to perform the various
functionality described throughout this disclosure. That is,
the processing circuit 1204, as utilized in the apparatus 1200,
may be used to implement any one or more of the processes
described above and illustrated in FIGS. 2-12 (and those
illustrated in FIGS. 15-20, discussed below), such as pro

US 2014/0310536A1

cesses to perform inline encryption and decryption of data
within the storage device 1205.
0061. In the example of FIG. 12, the processing system
1214 may be implemented with a bus architecture, repre
sented generally by the bus 1202. The bus 1202 may include
any number of interconnecting buses and bridges depending
on the specific application of the processing system 1214 and
the overall design constraints. The bus 1202 links various
circuits including one or more processing circuits (repre
sented generally by the processing circuit 1204), the storage
device 1205, and a machine-readable, processor-readable,
processing circuit-readable or computer-readable media (rep
resented generally by a non-transitory machine-readable
medium 1206.) The bus 1202 may also link various other
circuits such as timing Sources, peripherals, Voltage regula
tors, and power management circuits, which are well known
in the art, and therefore, will not be described any further. The
bus interface 1208 provides an interface between bus 1202
and a transceiver 1210. The transceiver 1210 provides a
means for communicating with various other apparatus over
a transmission medium. Depending upon the nature of the
apparatus, a user interface 1212 (e.g., keypad, display,
speaker, microphone, joystick) may also be provided.
0062. The processing circuit 1204 is responsible for man
aging the bus 1202 and for general processing, including the
execution of software stored on the machine-readable
medium 1206. The software, when executed by processing
circuit 1204, causes processing system 1214 to perform the
various functions described herein for any particular appara
tus. Machine-readable medium 1206 may also be used for
storing data that is manipulated by processing circuit 1204
when executing software.
0063. One or more processing circuits 1204 in the process
ing system may execute software or Software components.
Software shall be construed broadly to mean instructions,
instruction sets, code, code segments, program code, pro
grams, Subprograms, software modules, applications, soft
ware applications, software packages, routines, Subroutines,
objects, executables, threads of execution, procedures, func
tions, etc., whether referred to as software, firmware, middle
ware, microcode, hardware description language, or other
wise. A processing circuit may perform the necessary tasks. A
code segment may represent a procedure, a function, a Sub
program, a program, a routine, a Subroutine, a module, a
Software package, a class, or any combination of instructions,
data structures, or program statements. A code segment may
be coupled to another code segment or a hardware circuit by
passing and/or receiving information, data, arguments,
parameters, or memory or storage contents. Information,
arguments, parameters, data, etc. may be passed, forwarded,
ortransmitted via any Suitable means including memory shar
ing, message passing, token passing, network transmission,
etc.

0064. The software may reside on machine-readable
medium 1206. The machine-readable medium 1206 may be a
non-transitory machine-readable medium. A non-transitory
processing circuit-readable, machine-readable or computer
readable medium includes, by way of example, a magnetic
storage device (e.g., hard disk, floppy disk, magnetic strip), an
optical disk (e.g., a compact disc (CD) or a digital versatile
disc (DVD)), a Smartcard, a flash memory device (e.g., a card,
a stick, or a key drive), RAM, ROM, a programmable ROM
(PROM), an erasable PROM (EPROM), an electrically eras
able PROM (EEPROM), a register, a removable disk, a hard

Oct. 16, 2014

disk, a CD-ROM and any other suitable medium for storing
Software and/or instructions that may be accessed and read by
a machine or computer. The terms “machine-readable
medium', 'computer-readable medium”, “processing cir
cuit-readable medium' and/or “processor-readable medium’
may include, but are not limited to, non-transitory media Such
as portable or fixed storage devices, optical storage devices,
and various other media capable of storing, containing or
carrying instruction(s) and/or data. Thus, the various methods
described herein may be fully or partially implemented by
instructions and/or data that may be stored in a “machine
readable medium.” “computer-readable medium.” “process
ing circuit-readable medium' and/or “processor-readable
medium' and executed by one or more processing circuits,
machines and/or devices. The machine-readable medium
may also include, by way of example, a carrier wave, a trans
mission line, and any other Suitable medium for transmitting
Software and/or instructions that may be accessed and read by
a computer. The machine-readable medium 1206 may reside
in the processing system 1214, external to the processing
system 1214, or distributed across multiple entities including
the processing system 1214. The machine-readable medium
1206 may be embodied in a computer program product. By
way of example, a computer program product may include a
machine-readable medium in packaging materials. Those
skilled in the art will recognize how best to implement the
described functionality presented throughout this disclosure
depending on the particular application and the overall design
constraints imposed on the overall system.
0065 For example, the machine-readable storage medium
1206 may have one or more instructions which when
executed by the processing circuit 1204 causes the processing
circuit to: receive a write command from a requesting host
Software component to write data to the storage device; send
the write command to the storage device; receive a parameter
associated with data from the storage device; generate an
encryption key based on the parameter; and encrypt the data
using the encryption key. As another example, the machine
readable storage medium 1206 may have one or more instruc
tions which when executed by the processing circuit 1204
causes the processing circuitto: receive a read command from
a requesting host Software component to obtain data from the
storage device; send the read command to the storage device;
receive encrypted data and a parameter associated with the
encrypted data from the storage device; obtain a decryption
key based on the parameter, and decrypt the encrypted data
using the decryption key.
0.066 One or more of the components, steps, features,
and/or functions illustrated in the figures may be rearranged
and/or combined into a single component, step, feature or
function or embodied in several components, steps, or func
tions. Additional elements, components, steps, and/or func
tions may also be added without departing from the disclo
Sure. The apparatus, devices, and/or components illustrated in
the Figures may be configured to perform one or more of the
methods, features, or steps described in the Figures. The
algorithms described herein may also be efficiently imple
mented in software and/or embedded in hardware.

0067. The various illustrative logical blocks, modules, cir
cuits, elements, and/or components described in connection
with the examples disclosed herein may be implemented or
performed with a general purpose processing circuit, a digital
signal processing circuit (DSP), an application specific inte
grated circuit (ASIC), a field programmable gate array

US 2014/0310536A1

(FPGA) or other programmable logic component, discrete
gate or transistor logic, discrete hardware components, or any
combination thereof designed to perform the functions
described herein. A general purpose processing circuit may
be a microprocessing circuit, but in the alternative, the pro
cessing circuit may be any conventional processing circuit,
controller, microcontroller, or state machine. A processing
circuit may also be implemented as a combination of com
puting components, e.g., a combination of a DSP and a micro
processing circuit, a number of microprocessing circuits, one
or more microprocessing circuits in conjunction with a DSP
core, or any other Such configuration.
0068 Hence, in one aspect of the disclosure, processing
circuit 300 and/or 1204 illustrated in FIGS. 3 and 12 may be
a specialized processing circuit (e.g., an ASIC)) that is spe
cifically designed and/or hard-wired to perform the algo
rithms, methods, and/or steps described in FIGS. 4, 5, 9
and/or 10 (and/or FIGS. 15, 16, 17, 18, 19 and/or 20 discussed
below.) Thus, such a specialized processing circuit (e.g.,
ASIC) may be one example of a means for executing the
algorithms, methods, and/or steps described in FIGS. 4, 5, 9
and/or 10 (and/or FIGS. 15, 16, 17, 18, 19 and/or 20, dis
cussed below.) The machine-readable storage medium may
store instructions that when executed by a specialized pro
cessing circuit (e.g., ASIC) causes the specialized processing
circuit to perform the algorithms, methods, and/or steps
described herein.

0069 FIG. 13 illustrates selected and exemplary compo
nents of processing circuit 1204 having a host storage con
troller 1301 for use with storage device 1205. In particular,
the host storage controller 1301 of FIG. 13 includes a read/
write command input module/circuit 1300 operative to obtain
write commands from a requesting host software component
(not shown in the figure) for writing data to the storage device
and also operative to obtain read commands from the request
ing host software component for reading data from the Stor
age device. The host storage controller 1301 also includes: a
read/write command output module/circuit 1302 operative to
send read and write commands to the storage device 1205 and
an LBA/block count parameter input module/circuit 1304
operative to obtain one or more parameters associated with
data to be read/written to/from the storage device Such as an
LBA and a block count or other suitable parameters. The host
storage controller 1301 also includes: an inline encryption
module/circuit 1306 operative to encrypt data using the host
storage controller for storage in the storage device and an
inline decryption module/circuit 1308 operative to decrypt
data received from storage device. Still further the host stor
age controller 1301 includes: a key processing module? circuit
operative to obtain or otherwise generate encryption/decryp
tion keys based, at least in part, on the LBA or other param
eters obtained by the parameter input module/circuit 1304.
0070. The storage device 1205 of FIG. 13 includes a read/
write command input module/circuit 1312 operative to
receive read and/or write commands from the host storage
controller 1301 indicating encrypted data to be read/written.
An LBA/block count parameter output module/circuit 1314
is operative to output one or more parameters associated with
data to be read/written such as the LBA and the block count to
facilitate inline encryption/decryption of data within the host
storage controller 1301. The storage device 1205 also
includes an encrypted data input/output module? circuit
operative to receive encrypted data from the host storage
controller 1301 (in conjunction with a write command) and to

Oct. 16, 2014

output encrypted data to the host storage controller 1301 (in
conjunction with a read command.) An encrypted data Stor
age unit 1318 stores the encrypted data.
0071 FIG. 14 illustrates selected and exemplary instruc
tions of the machine-readable, computer-readable or process
ing circuit-readable medium 1206 for use with a host storage
controller such as the host storage controller 1301 of the
processing circuit 1204 of FIG. 12. The figure also illustrates
selected and exemplary instructions of a machine-readable,
computer-readable or processing circuit-readable medium
1401 for use with a storage device such as device 1205 of FIG.
12. Briefly, the machine-readable medium 1206 of FIG. 14
includes various instructions, which when executed by the
host storage controller 1301 of FIG. 12, cause the host storage
controller to control or perform inline encryption/decryption
operations. In particular, read/write command input instruc
tions 1400 are operative to cause the host storage controller to
obtain write commands from a requesting host software com
ponent (not shown in the figure) to write data to the storage
device and also instructions operative to cause the host stor
age controller to obtain read commands from the requesting
host software component to read data from the storage device.
The machine-readable medium 1206 also includes: read/
write command output instructions 1402 operative to cause
the host storage controller to send read and write commands
to the storage device 1205 and LBA/block count parameter
input instructions 1404 operative to cause the host storage
controller to obtain one or more parameters associated data to
be read/writtento/from the storage device such as an LBA and
a block count. The machine-readable medium 1206 also
includes: inline encryption instructions 1406 operative to
cause the host storage controller to encrypt data using a host
storage controller for storage in the storage device and inline
decryption instructions 1408 operative to cause the host stor
age controller to decrypt data received from storage device.
Still further the machine-readable medium 1206 includes:
key processing instructions operative to cause the host stor
age controller to obtain or otherwise generate encryption/
decryption keys based, at least in part, on the LBA or other
parameters obtained by execution of the parameter input
instructions 1404.

0072. The machine-readable medium 1401 of FIG. 14 for
use with the storage device of FIG. 12 includes read/write
command input instructions 1412, which when executed by
the circuitry of the storage device, cause the storage device to
receive read and/or write commands from the host storage
controller 1301 of FIG. 12 indicating encrypted data to be
read/written. LBA/block count parameter output instructions
1414 are operative to cause the storage device to output one or
more parameters associated with data to be read/written Such
as the LBA and the block count to facilitate inline encryption/
decryption of data within the host storage controller. The
machine-readable medium 1401 also includes encrypted data
input/output instructions operative to cause the storage device
to receive encrypted data from the host storage controller (in
conjunction with a write command) and to output encrypted
data to the host storage controller (in conjunction with a read
command.) An encrypted data storage unit 1418 stores the
encrypted data.
0073 FIG. 15broadly illustrates and summarizes methods
or procedures 1500 that may be performed by the host storage
controller 1301 of the processing circuit 1204 of FIG. 12 or
other Suitably equipped devices for inline encryption of data
during a write operation. At step 1502, the host storage con

US 2014/0310536A1

troller obtains a write command from a requesting host soft
ware component to write data to the storage device. At step
1504, the host storage controller sends the write command to
the storage device. At step 1506, the host storage controller
obtains a parameter associated with the data from the storage
device wherein, in at least Some examples, the parameter
provides an identifier that is the same for read and write
operations for a particular block of data but differs from one
block of data to another. At step 1508, the host storage con
troller generates or otherwise obtains an encryption key based
on the parameter and, at step 1510, encrypts the data using the
encryption key. At step 1512, the host storage controller sends
the encrypted data to the storage device.
0074 FIG.16 broadly illustrates and summarizes methods
or procedures 1600 that may be performed by the host storage
controller 1301 of the processing circuit 1204 of FIG. 12 or
other Suitably equipped devices for inline decryption of data
during a read operation. At step 1602, the host storage con
troller obtains a read command from a requesting host soft
ware component to read data from the storage device. At step
1604, the host storage controller sends the read command to
the storage device. At step 1606, the host storage controller
obtains encrypted data and a parameter associated with the
encrypted data from the storage device wherein, in at least
Some examples, the parameter provides an identifier that is
the same for read and write operations for aparticular block of
data but differs from one block of data to another. At step
1608, the host storage controller generates or otherwise
obtains a decryption key based on the parameter and, at step
1610, decrypts the encrypted data using the decryption key.
At step 1612, the host storage controller provides or “sends'
the decrypted data to the requesting host Software component.
0075 FIG. 17 broadly illustrates and summarizes methods
or procedures 1700 that may be performed by the storage
device 1205 of FIG. 12 or other suitably equipped devices for
receiving and storing encrypted data from a host storage
controller as part of a write operation. At step 1702, the
storage device receives a write command from a host Software
controller indicating data to be written to the storage device.
At step 1704, the host storage device sends a parameter asso
ciated with the data to the host storage controller to facilitate
in-line encryption of the data by the host storage controller
wherein, in at least some examples, the parameter provides an
identifier that is the same for read and write operations for a
particular block of data but differs from one block of data to
another. At step 1706, the storage device receives the in-line
encrypted data from the host storage controller and, at step
1708, stores the in-line encrypted data received from the host
storage controller.
0076 FIG. 18 broadly illustrates and summarizes methods
or procedures 1800 that may be performed by the storage
device 1205 of FIG. 12 or other suitably equipped devices for
retrieving and sending encrypted data to a host storage con
troller as part of a read operation. At step 1802, the storage
device receives a read command from a host Software con
troller indicating encrypted data to be read from the storage
device. At step 1804, the host storage retrieves the encrypted
data. At step 1806, the storage device sends the encrypted data
to the host storage controller along with a parameter associ
ated with the encrypted data to facilitate in-line decryption of
the data by the host storage controller wherein, in at least
Some examples, the parameter provides an identifier that is
the same for read and write operations for aparticular block of
data but differs from one block of data to another.

Oct. 16, 2014

0077 FIG. 19 broadly illustrates and summarizes alterna
tive methods or procedures 1900 that may be performed by
the host storage controller 1301 of the processing circuit 1204
of FIG. 12 or other suitably equipped devices for inline
encryption of data during a write operation for use in imple
mentations wherein the host storage controller does not
receive the aforementioned parameters from the storage
device from which encryption keys are generated. At step
1902, the host storage controller obtains a write command
from a requesting host software component to write data to
the storage device. At step 1904, the host storage controller
sends the write command to the storage device. At step 1906,
the host storage controller obtains a parameter from host
memory wherein the parameter provides an identifier that is
the same for read and write operations for aparticular block of
data but differs from one block of data to another. At step
1908, the host storage controller generates or otherwise
obtains an encryption key based on the parameter and, at step
1910, encrypts the data using the encryption key. At step
1912, the host storage controller sends the encrypted data to
the storage device.
0078 FIG. 20 broadly illustrates and summarizes alterna
tive methods or procedures 2000 that may be performed by
the host storage controller 1301 of the processing circuit 1204
of FIG. 12 or other suitably equipped devices for inline
decryption of data during a read operation for use in imple
mentations wherein the host storage controller does not
receive the aforementioned parameters from the storage
device from which decryption keys are generated. At step
2002, the host storage controller obtains a read command
from a requesting host software component to read data from
the storage device. At step 2004, the host storage controller
sends the read command to the storage device. At step 2006,
the host storage controller obtains encrypted data from the
storage device and also obtains a parameter from host
memory wherein the parameter provides an identifier that is
the same for read and write operations for aparticular block of
data but differs from one block of data to another. At step
2008, the host storage controller generates or otherwise
obtains a decryption key based on the parameter and, at step
2010, decrypts the encrypted data using the decryption key.
At step 2012, the host storage controller provides or “sends'
the decrypted data to the requesting host software component,
typically by writing the data to host memory.
0079. Note that the aspects of the present disclosure may
be described herein as a process that is depicted as a flow
chart, a flow diagram, a structure diagram, or a block diagram.
Although a flowchart may describe the operations as a
sequential process, many of the operations can be performed
in parallel or concurrently. In addition, the order of the opera
tions may be re-arranged. A process is terminated when its
operations are completed. A process may correspond to a
method, a function, a procedure, a Subroutine, a Subprogram,
etc. When a process corresponds to a function, its termination
corresponds to a return of the function to the calling function
or the main function.

0080 Those of skill in the art would further appreciate that
the various illustrative logical blocks, modules, circuits, and
algorithm steps described in connection with the aspects dis
closed herein may be implemented as electronic hardware,
computer software, or combinations of both. To clearly illus
trate this interchangeability of hardware and software, vari
ous illustrative components, blocks, modules, circuits, and
steps have been described above generally in terms of their

US 2014/0310536A1

functionality. Whether such functionality is implemented as
hardware or Software depends upon the particular application
and design constraints imposed on the overall system.
0081. The methods or algorithms described in connection
with the examples disclosed herein may be embodied directly
in hardware, in a software module executable by a processor,
or in a combination of both, in the form of processing unit,
programming instructions, or other directions, and may be
contained in a single device or distributed across multiple
devices. A software module may reside in RAM memory,
flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM,
or any other form of storage medium known in the art. A
storage medium may be coupled to the processor Such that the
processor can read information from, and write information
to, the storage medium. In the alternative, the storage medium
may be integral to the processor.
0082. The various features of the invention described
herein can be implemented in different systems without
departing from the invention. It should be noted that the
foregoing embodiments are merely examples and are not to
be construed as limiting the invention. The description of the
embodiments is intended to be illustrative, and not to limit the
Scope of the claims. As such, the present teachings can be
readily applied to other types of apparatuses and many alter
natives, modifications, and variations will be apparent to
those skilled in the art.
What is claimed is:
1. A method operational at a host storage controller to

encrypt data during a write operation to a storage device
external to the host storage controller, comprising:

obtaining a write command from a requesting host soft
ware component to write data to the storage device;

sending the write command to the storage device;
obtaining a parameter associated with the data from the

storage device;
generating an encryption key based on the parameter; and
encrypting the data using the encryption key.
2. The method of claim 1, further comprising sending the

encrypted data to the storage device.
3. The method of claim 1, wherein the parameter associated

with the data provides an identifier that is the same for read
and write operations for a particular block of data but differs
from one block of data to another.

4. The method of claim3, wherein the parameter associated
with the data comprises a logical blockaddress (LBA) for the
data to be stored.

5. The method of claim3, wherein the parameter associated
with the data further comprises an indication of a number of
blocks in the data.

6. The method of claim3, wherein the parameter associated
with the data is received from the storage device in a ready to
transfer (RTT) request data packet.

7. The method of claim 6, wherein the storage device is a
universal flash storage (UFS) device and wherein the param
eter associated with the data is received in a data packet
comprising an RTT UFS protocol information unit (UPIU).

8. The method of claim 1, further comprising maintaining
a transfer request list including a transfer request descriptor
having a key index associated with an individual write trans
action.

9. The method of claim 1, wherein generating the encryp
tion key comprises:

Oct. 16, 2014

generating an initial vector from the parameter obtained
from the storage device;

obtaining an initial key; and
generating the encryption key from the initial key and the

initial vector.
10. The method of claim 1, wherein the host storage con

troller is a component of a system-on-a-chip (SoC) and the
storage device is an off-chip storage device external to the
SoC and wherein the host storage controller performs in-line
data encryption of the data for storage in the off-chip storage
device.

11. A method operational at a host storage controller to
decrypt data during a read operation from a storage device
external to the host storage controller, comprising:

obtaining a read command from a requesting host Software
component to read data from the storage device;

sending the read command to the storage device;
obtaining encrypted data and a parameter associated with

the encrypted data from the storage device;
generating a decryption key based on the parameter, and
decrypting the encrypted data using the decryption key.
12. The method of claim 11, further comprising providing

the decrypted data to the requesting host software component.
13. The method of claim 11, wherein the parameter asso

ciated with the data provides an identifier that is the same for
read and write operations for a particular block of data but
differs from one block of data to another.

14. The method of claim 11, wherein the parameter asso
ciated with the encrypted data comprises a logical block
address (LBA) for the data to be read.

15. The method of claim 13, wherein the parameter asso
ciated with the encrypted data further comprises an indication
of a number of blocks in the encrypted data.

16. The method of claim 13, wherein the parameter asso
ciated with the encrypted data is received from the storage
device in a protocol information unit.

17. The method of claim 16, wherein the storage device is
a universal flash storage (UFS) device and wherein the param
eter associated with the encrypted data is received in a data
packet comprising a UFS protocol information unit (UPIU).

18. The method of claim 15, further comprising maintain
ing a transfer request list including a transfer request descrip
tor having a key index associated with an individual read
transaction.

19. The method of claim 11, wherein generating the
decryption key comprises:

generating an initial vector from the parameter obtained
from the storage device;

obtaining an initial key; and
generating the decryption key from the initial key and the

initial vector.
20. The method of claim 11, wherein the host storage

controller is a component of a system-on-a-chip (SoC) and
the storage device is an off-chip storage device external to the
SoC and wherein the host storage controller performs in-line
data decryption of encrypted data received from the off-chip
storage device.

21. A device comprising:
a storage device to store data;
a processing circuit coupled to the storage device, the pro

cessing circuit having a host storage controller config
ured to
obtain a write command from a requesting host Software
component to write data to the storage device;

US 2014/0310536A1

send the write command to the storage device;
obtain a parameter associated with the data from the

storage device;
generate an encryption key based on the parameter; and
encrypt the data using the encryption key.

22. The device of claim 21, wherein the host storage con
troller is further configured to send the encrypted data to the
storage device.

23. The device of claim 21, wherein the parameter associ
ated with the data provides an identifier that is the same for
read and write operations for a particular block of data but
differs from one block of data to another.

24. The device of claim 23, wherein the parameter associ
ated with the data further comprises an indication of a number
of blocks in the data.

25. The device of claim 21, wherein the host storage con
troller is a component of a system-on-a-chip (SoC) and the
storage device is an off-chip storage device external to the
SoC and wherein the host storage controller is configured to
perform in-line data encryption of the data for storage in the
off-chip storage device.

26. A device comprising:
a storage device to store data;
a processing circuit coupled to the storage device, the pro

cessing circuit having a host storage controller config
ured to

Oct. 16, 2014

obtain a read command from a requesting host Software
component to read data from the storage device;

send the read command to the storage device;
obtain encrypted data and a parameter associated with

the encrypted data from the storage device;
generate a decryption key based on the parameter; and
decrypt the encrypted data using the decryption key.

27. The device of claim 26, wherein the host storage con
troller is further configured to provide the decrypted data to
the requesting host software component.

28. The device of claim 26, wherein the parameter associ
ated with the data provides an identifier that is the same for
read and write operations for a particular block of data but
differs from one block of data to another.

29. The device of claim 28, wherein the parameter associ
ated with the encrypted data further comprises an indication
of a number of blocks in the encrypted data.

30. The device of claim 26, wherein the host storage con
troller is a component of a system-on-a-chip (SoC) and the
storage device is an off-chip storage device external to the
SoC and wherein the host storage controller is configured to
perform in-line data decryption of encrypted data received
from the off-chip storage device.

k k k k k

