Title: END-PUMPED ALIGNMENT AND TEMPERATURE INSENSITIVE LASER TARGET DESIGNATOR AND MARKER

Abstract: A compact, lightweight, laser target designator uses a TIR bounce geometry to place an end-pumped gain element functionally in the center of the resonator path, thereby allowing the resonator path to be terminated by a pair of crossed Porro prisms, so that the designator produces a high quality beam that is insensitive to alignment and temperature, and is low in manufacturing cost. Some embodiments fold the Porro legs of the resonator path back toward the gain element for compactness. Embodiments use a single gain element as both an oscillator gain element with TIR and as an output amplifier gain element without TIR. Various embodiments use block optical elements in a planar layout on a standard support medium such as aluminum to facilitate automated manufacturing.
END-PUMPED ALIGNMENT AND TEMPERATURE INSENSITIVE LASER TARGET DESIGNATOR AND MARKER

Inventors:
John C. McCarthy
Katherine J. Snell
Christopher A. Miller

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/527232, filed August 25, 2011 which is herein incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

[0002] The invention relates to laser target designators, and more particularly, to laser target designators that incorporate end-pumped gain media.

BACKGROUND OF THE INVENTION

[0003] A laser designator is a laser light source which is used to designate a military target. Laser designators provide targeting for laser guided bombs, missiles, and precision artillery munitions. The designator is used to apply laser light to the target, causing the light to bounce off the target into the sky, where it is detected by the seeker on a laser guided munition, which steers itself towards the source of the reflected light.

[0004] Typically, when a target is marked by a designator, the beam does not shine continuously. Instead, a series of pulses of laser-light are fired, and the pulsing rate is used as an identifying code. This allows a plurality of targets to be simultaneously marked with different pulsing rates, so that each of a corresponding plurality of munitions can be programmed to recognize and be guided only by a laser designation having a specific pulsing rate.
[0005] A simplified diagram of a typical laser designator of the prior art is presented in Figure 1. A laser gain medium such as neodymium doped yttrium aluminum garnet (ND:YAG) 100 is located in the center of an optical resonator and is pumped from the side by pumping diodes 102. The optical resonator is terminated by a horizontal Porro prism 104 at one end and by a vertical Porro prism 106 at the other end. A passive or active Q-switch 108 located within the resonator causes the laser light to be emitted in pulses, and a quarter wave plate 110 in combination with a polarized reflector 112 and a mirror 114 provide output 116 from the resonator.

[0006] The use of Porro prisms 104, 106 instead of end mirrors to terminate the ends of the optical resonator path eliminates the need for critically accurate alignment of the resonator components. In addition, use of the Porro prisms 104, 106 significantly reduces the sensitivity of the resonator to thermal effects, such as thermal expansion of the mounting platform (not shown, typically aluminum), thermal lensing within the laser, thermal drift of the resonator components 110, 112, and thermal drift of the pulsing rate (in the case of a passive Q-switch 108).

[0007] Unfortunately, currently deployed laser designating systems such as the design illustrated in Figure 1 tend to be heavy and bulky, and require assembly in the field, thereby reducing their effectiveness, especially for dismounted observers. The bulk and weight of the units also prevents deployment of laser designating systems as one-man portable systems, for example by integrating the designator into a self-contained sight that also provides precision targeting data.

[0008] Much of the weight and bulk of the current designs arises from the use of a side-pumped laser gain element 100. Attempts have been made to design a more compact and lighter laser designator using an end-pumped gain element 100. An example is illustrated in Figure 2, where a Nd:YAG gain medium 100 is pumped from one end by pumping diodes 102. In this arrangement, a highly reflective mirror 204 deposited directly on the gain element itself 100 terminates the optical resonator path at one end, and a single partially transmitting mirror 202
terminates the resonator path at the other end. This approach minimizes the number of components, and reduces bulk and weight by using an end-pumped gain element 100.

[0009] However, since the highly reflective mirror 204 is deposited on the gain element 100 at one end of the resonator path, it is not possible to use a pair of Porro prisms as the terminators of both ends of the resonator path. As a result, the alignment of the resonator components 100, 108, 202 is highly critical.

[0010] In the design illustrated in Figure 2, “monoblock” construction is used to directly and rigidly bond and align all of the resonator elements on a common, temperature compensated, optical quality support rail 200. However, this approach significantly increases the cost of materials and of assembly. In addition, even if the internal temperature of the designator is regulated, the use of an optical-quality rail 200 does not compensate for thermal lensing of the gain medium 100 and the resulting mirror misalignments due to variations in average output power due to differing pulse rate codes.

[0011] In addition, the length of the gain medium 100 must be sufficient to provide both the required target designation brightness and the laser pulse width, which places a limit on the minimum length of the designator.

[0012] What is needed, therefore, is a high beam quality laser designator design that is insensitive to temperature and to alignment, compact and lightweight, and low in manufacturing cost.

SUMMARY OF THE INVENTION

[0013] A laser target designator includes a novel optical resonator design that uses a total internal reflection “bounce” geometry to place an end-pumped gain element functionally in the center of the resonator path, thereby allowing the resonator path to be terminated at both ends by a pair of Porro prisms and providing a high beam quality design that is insensitive to temperature and to alignment, compact, light in weight, and low in manufacturing cost. Embodiments
use the same gain medium as an oscillator gain medium and an amplifier gain medium.

[0014] In the present invention, light within the resonator enters the gain element at an angle and undergoes total internal reflection or “TIR.” Herein this is referred to as a “bounce” geometry. Upon entering the gain element at an angle, the oscillator light undergoes a plurality of internal reflections before emerging from the same end of the gain element at a symmetrically opposite angle. This bounce geometry requires that the beam be reflected back to the gain element from two locations, and thereby functionally places the gain element at the center of the resonator path.

[0015] By using this bounce geometry to place the gain element in the center of the optical resonator, the present design allows both ends of the resonator to be terminated by crossed Porro prisms, thereby providing the insensitivity to alignment and to temperature typically achieved by conventional designs that use side-pumped gain elements (see Figure 1), but with greatly reduced bulk and weight. Due to this alignment insensitivity, embodiments of the invention incorporate block optics in a planar layout that provides a suitable platform for automated assembly on a standard support media such as aluminum.

[0016] The bounce geometry of the present invention also limits the effective aperture of the gain element, thereby reducing beam divergence and improving the quality of the beam. The improved beam quality allows the transmit optic diameter to be minimized, thereby reducing the power required to achieve a desired target brightness, and further reducing the weight and size of the designator.

[0017] In addition, the internal reflectance of the light within the gain element causes the light to traverse an increased path length within the gain element. This allows the oscillator to be operated using a smaller mode volume to generate a high brightness beam, thereby providing gain that would be typical of a much
longer gain element that did not use a bounce geometry. As a result, the physical length of the gain element, and of the designator as a whole, is further reduced.

[0018] Certain embodiments of the present invention use a single gain element as both an oscillator gain element and an amplifier gain element. In some of these embodiments, the oscillator beam undergoes total internal reflection within the gain medium, while the extracted output beam passes twice more through the same gain medium without internal reflection, thereby maximizing the use of the gain element volume for increased laser energy without degrading the fundamental oscillator beam quality or efficiency.

[0019] One general aspect of the present invention is a laser target designator that includes a gain element having a primary axis terminated by a front end and a back end, a pumping source cooperative with the gain element and configured to transmit optical pumping energy into the gain element through its back end, a first Porro prism positioned to intercept light emerging at a first angle from the front end of the gain element and oriented to reflect the light back into the front end of the gain element, a second Porro prism positioned to intercept light emerging at a second angle from the front end of the gain element and oriented to reflect the light back into the front end of the gain element, the second Porro prism having a crossed orientation relative to the first Porro prism, the gain element and the first and second Porro prisms forming an optical resonator path in which light reflected by the first Porro prism travels through a first Porro leg, enters the front end of the gain element at the first angle, undergoes total internal reflection within the gain element and is amplified thereby, emerges from the front end of the gain element at the second angle, travels through a second Porro leg, and strikes the second Porro prism, the light being thereby reflected so that it substantially reverses its path and returns through the gain element to the first Porro prism, and a beam extraction mechanism intersecting the resonator path and configured to extract a portion of the light in the resonator path to form an output beam.
[0020] Embodiments further include a Q-switch intersecting the resonator path. In some embodiments the Q-switch is actively switched. In other embodiments the Q-switch is passively switched.

[0021] In various embodiments the gain element, the pumping source, the Porro prisms, and the extraction mechanism are all block optical elements configured in a planar layout.

[0022] In certain embodiments the gain element has a rectangular cross sectional shape normal to the primary axis. In some of these embodiments the pumping source includes pump diodes arranged in a two-dimensional array of quasi-continuous wave bars.

[0023] In some embodiments the pumping source includes a vertical-cavity surface-emitting laser. Other embodiments further include a first optical wedge configured to direct light from the front end of the gain element to the first Porro prism and a second optical wedge configured to direct light from the front end of the gain element to the second Porro prism.

[0024] Various embodiments further include a first adjustable circular wedge cooperative with the first Porro prism and configured to enable adjustment of the alignment between the resonator path and the first Porro prism, and a second adjustable circular wedge cooperative with the second Porro prism and configured to enable adjustment of the alignment between the resonator path and the second Porro prism.

[0025] Certain embodiments further include at least one reflective element that folds the first Porro leg back toward the gain element.

[0026] In some embodiments at least one of the Porro prisms is configured to undergo a variable rotation that adjusts a quality of the light reflected thereby.
[0027] In other embodiments the designator is incorporated into a self-contained sight that provides both precision targeting data and target marking capability.

[0028] And in certain embodiments the beam extraction mechanism is configured to direct the output beam toward the front end of the gain element so that the output beam passes twice through the gain element without internal reflection, thereby amplifying the output beam before it emerges from the designator.

[0029] The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] Figure 1 is a block diagram illustrating a side-pumped laser designator configuration of the prior art;

[0031] Figure 2 is a block diagram illustrating an end-pumped laser designator configuration of the prior art;

[0032] Figure 3 is a block diagram illustrating an embodiment of the present invention;

[0033] Figure 4 is a block diagram illustrating an embodiment similar to the embodiment of Figure 3, but with a folded geometry;

[0034] Figure 5A is a block diagram illustrating an embodiment of the present invention in which the same gain medium is used as both an oscillator gain medium and an amplifier gain medium;
[0035] Figure 5B is a block diagram illustrating only the oscillator portion of the embodiment of Figure 5A; and

[0036] Figure 5C is a block diagram illustrating only the amplifier portion of the embodiment of Figure 5A.

DETAILED DESCRIPTION

[0037] With reference to Figure 3, the present invention is a laser target designator having a novel optical resonator design that uses a bounce geometry to place an end-pumped gain element 100 functionally in the center of the resonator, thereby allowing the resonator to be terminated by a pair of Porro prisms 104, 106 and providing a high beam quality design that is insensitive to temperature, insensitive to alignment, compact, light in weight, and low in manufacturing cost.

[0038] As can be seen in Figure 3, the light within the resonator 300 enters the gain element 100 at an angle and undergoes total internal reflection or “TIR.” Herein this TIR configuration is referred to as a “bounce” geometry. After undergoing TIR, the oscillator light emerges from the gain element 100 at a symmetrically opposite angle.

[0039] This bounce geometry requires that the beam be reflected back to the gain element 100 from two locations, and thereby functionally places the gain element 100 at the center of the resonator.

[0040] By using a bounce geometry to place the end-pumped gain element 100 in the center of the optical resonator, the present invention allows both ends of the resonator to be terminated by Porro prisms 104, 106, thereby providing the insensitivity to alignment and to temperature typically achieved by conventional side-pumped designs (see Figure 1), but with greatly reduced bulk and weight. Due to this alignment insensitivity, embodiments of the invention incorporate block optics in a planar layout that provides a suitable platform for automated assembly.
[0041] The bounce geometry of the present invention also limits the effective aperture of the gain element (since the oscillator light enters the gain element 100 at an angle), thereby reducing output beam divergence and improving the quality of the beam. This improved beam quality allows the transmit optic diameter to be minimized, thereby requiring less power for a desired target optical brightness, and further reducing the weight and size of the designator.

[0042] The internal reflectance of the light 300 within the gain element causes the light to traverse an increased path length within the gain element, thereby providing oscillator gain that would be typical of a much longer gain element that did not use a bounce geometry. This allows the oscillator to be operated using a small mode volume to generate a high brightness beam. As a result, the physical length of the gain element, and of the designator as a whole, is further reduced.

[0043] In the embodiment of Figure 3, the block gain element 100 has a rectangular geometry, and is end-pumped with a standard pump diode stack 102 comprising a two-dimensional array of quasi-continuous wave bars. The rectangular geometry of the gain element 100 accommodates the asymmetric diode stack divergence to provide uniform pump deposition in the gain media. In embodiments, a combination of parallelepiped gain block geometry 100 and use of commercial “off the shelf” (COTS) elements provides uniform pump deposition using direct asymmetrical diode output. In similar embodiments, the gain block 100 is pumped with the symmetrical output of a vertical-cavity surface-emitting laser (VCSEL), which also creates a uniform pump deposition.

[0044] The embodiment of Figure 3 further includes a square wedge 302 in each Porro leg, with the wedge angle arranged to center the optical axis on the Porro prism knife edge. This configuration also allows each Porro prism to be rotated to adjust the phase retardation to compensate a portion of the induced birefringence in the gain block 100 and/or for setting the output coupling reflectivity, thereby allowing only one quarter wave-plate 110 to be used. The combination of the planer layout and block optics in the embodiment of Figure 3
is a suitable configuration for automated “pick and place” assembly onto a
standard mounting substrate such as aluminum, allowing for high volume, low
cost production. Depending on the precision of the automated assembly, an
additional adjustable circular wedge 304 is contained in each Porro leg to fine
tune the oscillator if needed.

[0045] In embodiments, the oscillator architecture of Figure 3 includes either a
passive Q-switch 108 or an active Q-switch 108. The roof angle orientations of
the Porro prisms 104, 106 with respect to the optical axis of the gain element 100
may be adjusted to homogenize special extraction of the output beam 116. The
roof angles may also be adjusted to provide beam phase control, allowing
elimination of a waveplate and/or to compensate for birefringence loss.

[0046] Figure 4 illustrates an embodiment wherein a partially transmitting
mirror 400 and a fully reflecting mirror 402 are used to fold the two Porro legs
back toward the gain element 100, thereby providing a highly compact geometry.
Embodiments using this approach can be incorporated into a self-contained sight
that provides both precision targeting data and target marking capability.

[0047] With reference to Figure 5A, certain embodiments of the present
invention use a single gain 100 element as both an oscillator gain element and an
amplifier gain element. In the embodiment of Figure 5A (as compared to Figure
3), a total reflectance mirror 114 has been replaced by a partially transmitting
mirror 502 and has been oriented to redirect the output beam 504 through a quarter
wave element 506 and into the gain element 100 before the beam 508 emerges 116
from the designator. The output beams 504, 508 entering and leaving the gain
element 100 have been offset from each other in the figure for clarity of
illustration. In fact, in the actual embodiment they overlap.

[0048] In the embodiment of Figure 5A, the oscillator beam undergoes
transverse internal reflection 300 within the gain element, while the extracted
output beam passes twice once more 500 through the same gain element 100
without internal reflection, thereby maximizing the use of the gain element
volume 100 for increased laser energy without degrading the fundamental oscillator beam quality or efficiency. In embodiments, the higher beam quality oscillator output is amplified as shown in Figure 5A to an equivalent pulse energy that would be obtained if the gain element was operated as a conventional fully extracted gain element 510.

[0049] Figure 5B and 5C are block diagrams illustrating only the oscillator portion and only the amplifier portion respectively of the embodiment of Figure 5A.

[0050] The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
CLAIMS

What is claimed is:

1. A laser target designator, comprising:
 a gain element having a primary axis terminated by a front end and a back
 end;
 a pumping source cooperative with the gain element and configured to
 transmit optical pumping energy into the gain element through its back end;
 a first Porro prism positioned to intercept light emerging at a first angle
 from the front end of the gain element and oriented to reflect the light back into
 the front end of the gain element;
 a second Porro prism positioned to intercept light emerging at a second
 angle from the front end of the gain element and oriented to reflect the light back
 into the front end of the gain element, the second Porro prism having a crossed
 orientation relative to the first Porro prism,
 the gain element and the first and second Porro prisms forming an optical
 resonator path in which light reflected by the first Porro prism travels through a
 first Porro leg, enters the front end of the gain element at the first angle,
 undergoes total internal reflection within the gain element and is amplified
 thereby, emerges from the front end of the gain element at the second angle,
 travels through a second Porro leg, and strikes the second Porro prism, the light
 being thereby reflected so that it substantially reverses its path and returns through
 the gain element to the first Porro prism; and
 a beam extraction mechanism intersecting the resonator path and configured
 to extract a portion of the light in the resonator path to form an output beam.

2. The designator of claim 1, further comprising a Q-switch intersecting the
 resonator path.

3. The designator of claim 1, wherein the Q-switch is actively switched.

4. The designator of claim 1, wherein the Q-switch is passively switched.
5. The designator of claim 1, wherein the gain element, the pumping source, the Porro prisms, and the extraction mechanism are all block optical elements configured in a planar layout.

6. The designator of claim 1, wherein the gain element has a rectangular cross sectional shape normal to the primary axis.

7. The designator of claim 6, wherein the pumping source includes pump diodes arranged in a two-dimensional array of quasi-continuous wave bars.

8. The designator of claim 1, wherein the pumping source includes a vertical-cavity surface-emitting laser.

9. The designator of claim 1, further comprising a first optical wedge configured to direct light from the front end of the gain element to the first Porro prism and a second optical wedge configured to direct light from the front end of the gain element to the second Porro prism.

10. The designator of claim 1, further comprising a first adjustable circular wedge cooperative with the first Porro prism and configured to enable adjustment of the alignment between the resonator path and the first Porro prism, and a second adjustable circular wedge cooperative with the second Porro prism and configured to enable adjustment of the alignment between the resonator path and the second Porro prism.

11. The designator of claim 1, further comprising at least one reflective element that folds the first Porro leg back toward the gain element.

12. The designator of claim 1, wherein at least one of the Porro prisms is configured to undergo a variable rotation that adjusts a quality of the light reflected thereby.

13. The designator of claim 1, wherein the designator is incorporated into a self-contained sight that provides both precision targeting data and target marking capability.
14. The designator of claim 1, wherein the beam extraction mechanism is configured to
direct the output beam toward the front end of the gain element so that the output beam
passes twice through the gain element without internal reflection, thereby amplifying the
output beam before it emerges from the designator.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - H01S 3/083 (2012.01)
USPC - 372/71
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - H01S 3/083, 3/091, 3/125 (2012.01)
USPC - 372/10, 71, 100

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Micropatent; Google Patent; Google Scholar

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 7,039,087 B2 (NETTLETON et al) 02 May 2006 (02.05.2006) entire document</td>
<td>1-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

- Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- Document member of the same patent family

Date of the actual completion of the international search: 18 September 2012
Date of mailing of the international search report: 04 OCT 2012

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenheaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)