

UK Patent Application GB 2503418

(43) Date of A Publication

(13) A

01.01.2014

(21) Application No: 1207546.1

(22) Date of Filing: 27.04.2012

(71) Applicant(s):

Imperial Innovations Limited
(Incorporated in the United Kingdom)
52 Princes Gate, South Kensington, LONDON,
SW7 2PG, United Kingdom

(72) Inventor(s):

Mustafa Gurcan

(74) Agent and/or Address for Service:

Kilburn & Strode LLP
20 Red Lion Street, LONDON, WC1R 4PJ,
United Kingdom

(51) INT CL:

H04B 7/06 (2006.01)

H04J 13/00 (2011.01)

(56) Documents Cited:

WO 2013/034875 A1

JP 2006340051 A

US 5781542 A

"Transmitter adaptation for CDMA systems via power control and code diversity"; Tat M. Lok; IEEE Military Communications Conference MILCOM 2001.
Communications for Network-Centric Operations: Creating the Information Force; Volume 2; Pages 1185 - 1189

(58) Field of Search:

INT CL H04B, H04J

Other: Online: EPODOC, WPI, INSPEC

(54) Title of the Invention: **Data transmission method and apparatus**

Abstract Title: **Spreading data symbols using a number of signature sequences selected in accordance with system values indicative of signal-to-noise ratios**

(57) A radio data transmission system having parallel single-input single-output (SISO) or multiple-input multiple-output (MIMO) channels over which data is transmitted as data symbols spread by a number of signature sequences. A system value for each of a plurality of signature sequences is determined, wherein the system value is indicative of a signal-to-noise ratio (SNR) of the associated signature sequence. A number of signature sequences to be used for spreading the data symbols are determined in accordance with the system values and selected signature sequences are used to spread the data symbols. Before selecting the signature sequences to be used, the signature sequences may be ordered from the signature sequence having the highest system value, indicative of a high SNR, to the signature sequence having the lowest system value. Additionally, data rates may be allocated to the selected signature sequences in accordance with system values, wherein the summation of the allocated data rates corresponds to a total data rate per symbol period.

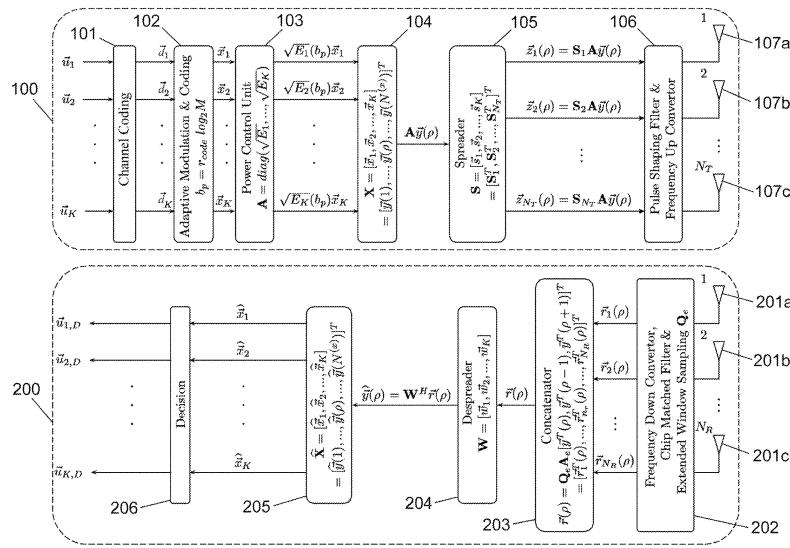
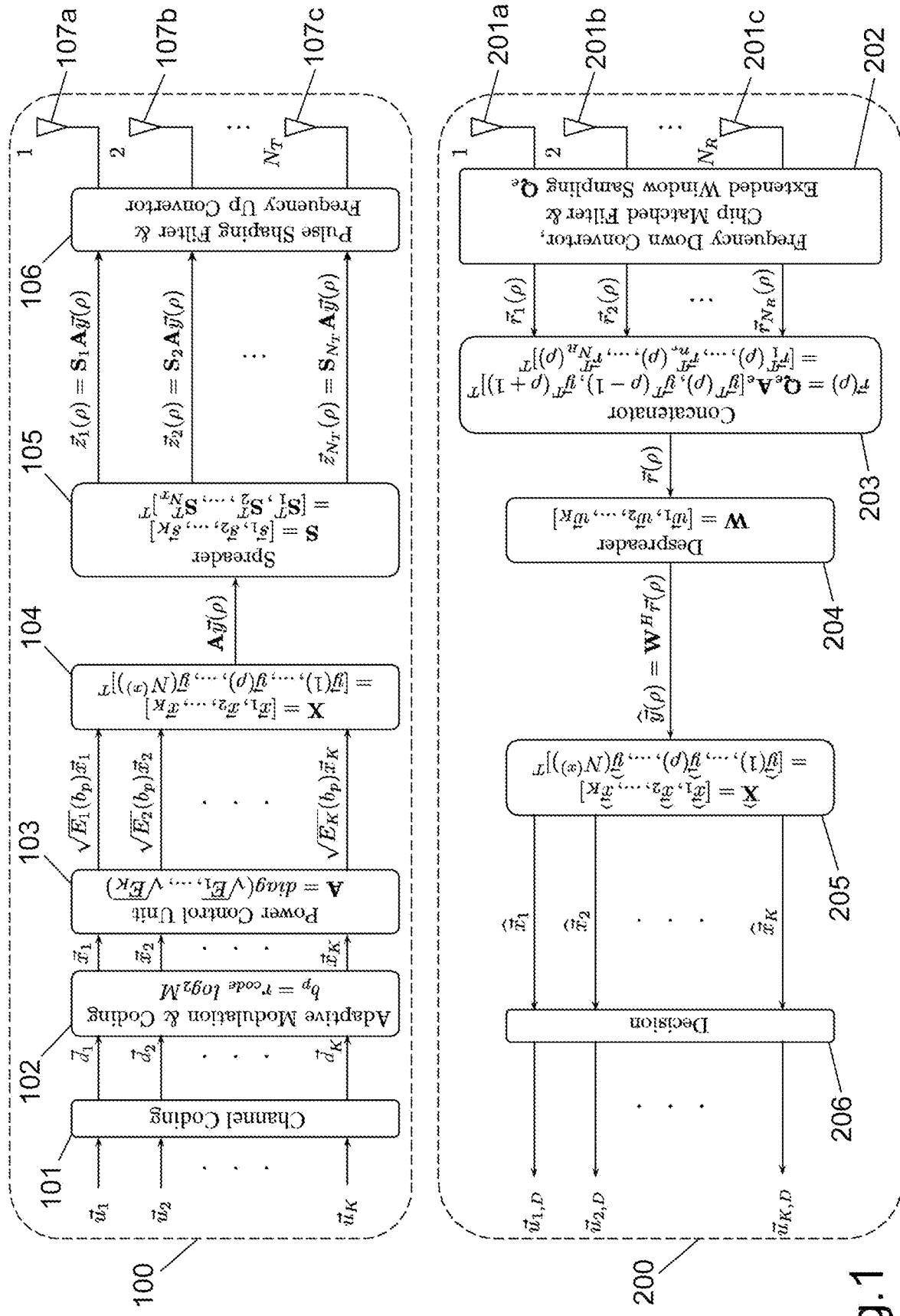



Fig. 1

GB 2503418 A

卷之三

Receiver without SIC

13 06 13

2/2

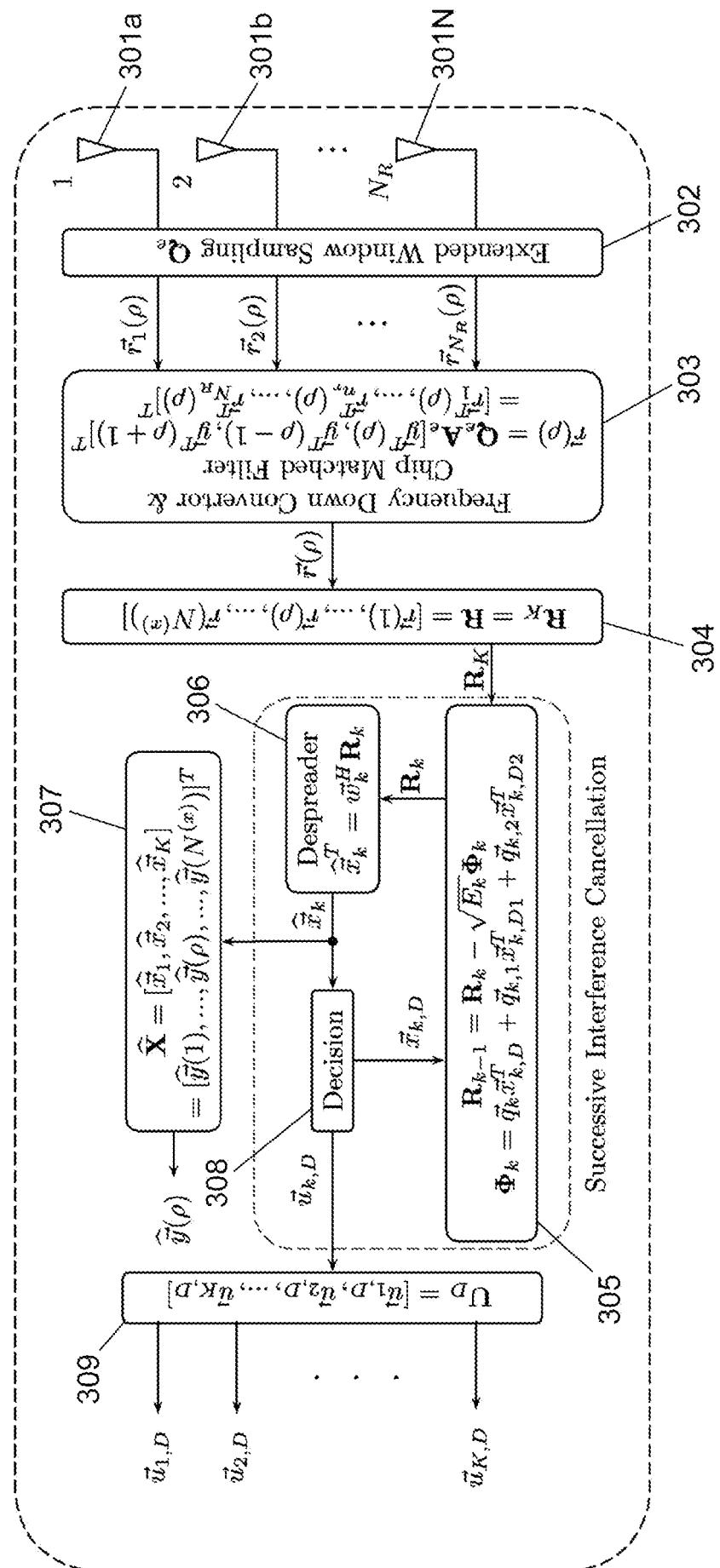


Fig. 2

DATA TRANSMISSION METHOD AND APPARATUS

Field of Invention

5 The present invention relates to the field of mobile radio system data transmission. More specifically, but not exclusively, embodiments of the present invention relate to methods for determining spreading sequences to be used to spread data symbols for transmission in a mobile radio system.

10 Background to the Invention

Mobile radio system technologies are continuously advancing with a general aim of increasing data rates. The third generation mobile radio system uses a code division multiple access transmission scheme and has been extensively adopted worldwide.

15 The third generation partnership project (3GPP) has developed the high speed down link packet access (HSDPA) system in the Release 5 specification of the Universal Mobile Telecommunications System (UMTS) as a multi-code wide-band code division multiple access (CDMA) system. The success of third generation wireless cellular systems is based largely on the efficient resource allocation scheme used by 20 the HSDPA system to improve the downlink throughput.

With the recent availability of enabling technologies such as adaptive modulation and coding and also hybrid automatic repeat request, it has been possible to introduce internet enabled smart phones for internet-centric applications. The trend for the 25 HSDPA system is to improve the downlink throughput for smart phones with high-data-rate applications. The throughput of the HSDPA downlink has been extensively evaluated. It has been found, in recent years, that the data throughput achievable in practice is significantly lower than the theoretical upper-bound when using the Multiple-Input Multiple-Output (MIMO) HSDPA system.

30

The downlink throughput optimization for the HSDPA multi-code CDMA system has been considered to be a two part problem. The first problem is that of the signature sequence and power allocation for downlink users. The second problem is the link throughput optimization for a given resource allocation.

The first problem involves the scheduling of users for transmission. This has been extensively examined for downlink transmission. Furthermore, signature sequence design and allocation have been studied in conjunction with power allocation in the context of sum rate maximization for downlink frequency selective channels. It has also been considered how design methods can be utilised to iteratively calculate the transmitter signature sequences and also the mean-square-error (MSE) minimizing receiver despreading filter coefficients. In addition, it has been shown that there exists an optimum set of signature sequences, which maximize the total link throughput for a given set of channel impulse responses between the transmitter and receiver antennas of a MIMO system. Furthermore, systems in which an optimum set of orthogonal signature sequences is identified for a given set of channel impulse responses have been considered.

The use of optimum spreading sequences requires that the channel state information (CSI) should be available both at the transmitter and the receiver. The CSI at the transmitter requires a lot of signalling overhead over both the downlink and the uplink channels. Various methods have therefore been considered to minimize the signalling overhead by enabling each MIMO downlink transmitter antenna to use the same set of orthogonal spreading sequences. An approach was considered by 3GPP and a method was standardized to use a given fixed set size of Orthogonal Variable Spreading Factor (OVSF) spreading sequences. A MIMO system requires a signature sequence set size higher than the given single set of OVSF signature sequences available for each antenna. 3GPP standardized a method which increases the OVSF set size by multiplying the given set with precoding weights and then concatenating the weighted sets of spreading sequences. Each transmission symbol is then spread with a different spreading sequence at each MIMO antenna before transmission. Hence, a unique pre-coded spreading sequence is produced by concatenating the spreading sequences used at each antenna for each transmission symbol. The concatenated spreading sequence is orthogonal to the remaining set of spreading sequences which are available at the transmitter for other transmission symbols. However, the spreading sequence orthogonality is lost at the receiving end after transmission over frequency selective multipath channels. It has been proposed that a linear MMSE equalizer followed by a despread could be used to restore the orthogonality of the spreading sequences at

each receiver and to recover the transmitted symbols after transmission over a multipath channel.

Recent developments have considered a self interference (SI) problem, which is present in linear MMSE equalizers, when operating over multipath channels. In such a problem, the aim is to reduce the large gap between the currently practical achievable rates and the theoretical upper bound for the HSDPA throughput. A receiver with an independent symbol level MMSE equalizer followed by a symbol level successive-interference-cancellation (SIC) scheme deals with the intra-cell self interference. It has been proposed that a hybrid linear equalizer/interference cancelling receiver tailored to the HSDPA standard could be utilised. Furthermore, it has been proposed that use of a SIC receiver in collaboration with either a chip or a symbol level MMSE equalizer for the HSDPA downlink throughput optimization could be used.

15

The use of a chip level MMSE linear equalizer followed by a despreader and a symbol level SIC is considered to suppress the inter-chip interference (ICI) and also all inter-stream interference. A channel matched filter (CMF) as a linear chip level MMSE equalizer has been shown to maximize the signal-to-noise ratio by collecting the energy at the multipath channel central tap. The chip level equalizer is used to produce an estimate of the transmitted chip sequence which is then despread by one of the transmitter spreading sequences to detect one of the transmitted symbol streams. The recovered symbol is then used to remove the interference iteratively at chip level. Each iteration requires the calculation of the chip level linear equalizer coefficients. 20 25 The total number of iterations is equal to the number of transmitted data streams.

The use of a receiver with the linear MMSE equalizer and a single stage SIC detector to solve the second downlink throughput maximization problem requires the joint optimization of the transmitter and receiver. Various transmission power allocation schemes can be derived over different data streams for a two stage successive interference cancellation scheme in multi-code MIMO systems. A two stage SIC detection scheme with the transmitter power optimization can improve the throughput performance for multi-code downlink transmission. However, each iteration of the SIC, the equalizer coefficient and the power allocation calculations requires an 30

inversion of a covariance matrix for the received signal. The dimension of the covariance matrix is usually large, and as such the iterative power allocation, the linear MMSE equalizer and the SIC implementations at the receiver become computationally expensive. Simplifications for the inversion of large matrices has 5 been examined to make the implementation of the linear MMSE equalizers followed by the symbol level SIC practically feasible.

Various attempts have been made to attempt to optimise transceiver design. Usually, different optimization criteria are used when allocating powers for the multi-code 10 downlink throughput optimization. Some techniques focus on the transceiver design optimization criteria and others concentrate on criteria for the joint rate and power allocation. Recently, a game theoretic approach has been introduced as an addition to the joint rate and power adaptation methods, which are generalized in *L. Zhao and J. Mark, “Joint rate and power adaptation for radio resource management in uplink wideband code division multiple access systems,” IET Communications, vol. 2, no. 4, pp. 562 –572, April 2008*, under three headings as follows:

1. The first criterion includes the systems which optimize the transmission power to maximize the rate for a given realization of channel gains. A typical 20 example is *L. Y. Hoon and K. S. Wu, “Generalized joint power and rate adaptation in ds-cdma communications over fading channels,” IEEE Transactions on Vehicular Technology, vol. 57, no. 1, pp. 603 –608, Jan. 2008* which optimizes the number of symbols and the number of bits per symbol. The aim is to maximize the total rate by iteratively adjusting the transmission 25 powers and spreading sequences whilst satisfying a target signal-to-interference-noise (SINR) ratio at each receiver. The transmission power can be iteratively adjusted to meet a target signal-to-noise ratio at each receiver. In addition the total transmission energy for a target signal-to-noise ratio (SNR) can be minimised at the output of each receiver. This type of optimization is known as the margin adaptive loading method. The transmission power and spreading sequences can be optimised to maximize 30 the total rate over multi-code parallel channels, whilst keeping the total transmission power below a given total power constraint. This type of iterative energy allocation is known as the rate adaptive loading method.

2. The second method aims to maintain the received power at a target level, whilst maximizing the total rate by jointly optimizing the transmission power, rate and signature sequences and also the linear MMSE equalizers at the receiver. One example of such a method is *S. Ulukus and A. Yener, “Iterative transmitter and receiver optimization for cdma networks,” IEEE Transactions on Wireless Communications, vol. 3, no. 6, pp. 1879 – 1884, Nov. 2004* which jointly optimizes a set of transmission spreading sequences and receivers with linear MMSE equalizers. The aim is to maximize the throughput or minimize the mean-square-error at each receiver, when each received signal power level is known to the transmitter.

10

3. The third method, one example of which is described in *L. Zhao and J. Mark, “Joint rate and power adaptation for radio resource management in uplink wideband code division multiple access systems,” IET Communications, vol. 2, no. 4, pp. 562 –572, April 2008*, uses the average system performance as an evaluation criterion which requires the distribution of the received and the interference signal powers.

15

20 In the first and second adaptation schemes and, in particular, in the margin and rate adaptive loading area it is assumed that the rate and power adaptation is much faster than the changes in the link gains due to users being mobile. In *T. Bogale, L. Vandendorpe, and B. Chalise, “Robust transceiver optimization for downlink coordinated base station systems: Distributed algorithm,” IEEE Transactions on Signal Processing,, vol. PP, no. 99, p. 1, 2011* a robust margin adaptive loading scheme is examined to minimize the total transmission power subject to per user (or per stream) MSE constraints for a MIMO downlink transmission. A rate adaptive loading scheme is given to maximize the total rate for a given fixed length of spreading sequences. A rate adaptive optimization method is presented in *N. Vucic, H. Boche, and S. Shi, “Robust transceiver optimization in downlink multiuser mimo systems,” IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3576 –3587, Sept. 2009* to minimize the weighted MSE of a downlink MIMO system when considering a constrained total transmission power. A rate adaptive loading scheme is given in *T. Bogale, B. Chalise, and L. Vandendorpe, “Robust transceiver optimization*

25

30

for downlink multiuser mimo systems,” IEEE Transactions on Signal Processing,, vol. 59, no. 1, pp. 446 –453, Jan. 2011 to minimize the weighted MSE with per base station antenna power constraint.

5 In the current HSDPA system specifications, an equal energy allocation scheme is used to load each channel with either a single rate or two discrete rates. Parameters of the MMSE receivers are usually optimized using either the max-min weighted SINR criterion or the total MSE minimization criterion. Recently, an iterative power adaptation method known as the two-group resource allocation scheme has been

10 developed as described in *Z. He, M. Gurcan, and H. Ghani, “Time-efficient resource allocation algorithm over hsdpa in femtocell networks,” in Personal, Indoor and Mobile Radio Communications workshops (PIMRC Workshops), 2010 IEEE 21st International Symposium on, Sept. 2010, pp. 197 –202, and Z. He and M. Gurcan, “Optimized resource allocation of hsdpa using two group allocation in frequency*

15 *selective channel,” in IEEE International Conference on Wireless Communications Signal Processing, 2009. WCSP 2009, Nov. 2009, pp. 1 –5.* In the method, two distinct discrete bit rates are loaded over the multi-code downlink channels subject to a constrained total transmission power.

20 Despite of the various developments in this field, the data throughput achieved in practice is still significantly lower than the theoretical upper-bound when using the Multiple-Input Multiple-Output (MIMO) HSDPA system.

Summary of Invention

25 Embodiments of the present invention attempt to mitigate at least some of the above-mentioned problems.

In accordance with an aspect of the invention there is provided a method for data transmission in a radio data transmission system having a plurality of parallel single-input single-output or multiple-input multiple-output channels over which the data is transmitted, the data represented by a plurality of data symbols, the data symbols being spread prior to transmission by a plurality of spreading sequences. The method

comprises determining a system value λ_k for each signature sequence k of a plurality of signature sequences K , wherein the system value λ_k is indicative of a signal-to-noise ratio of the associated signature sequence k ; determining a number of signature sequences K^* to be used for spreading the data symbols in accordance with the system values λ_k associated with the plurality of signature sequences K , selecting the signature sequences S to be used to spread the data symbols from the plurality of signature sequences K in accordance with the system values λ_k associated with the plurality of signature sequences K , wherein the number of signature sequences selected corresponds to the determined number of signature sequences K^* , and

5 spreading the data symbols using the selected signature sequences S .

10

The number of sequences K^* may be determined and the signature sequences S to be used to spread the symbols may be selected by: calculating the mean system value

$$\left[\bar{\lambda}_{mean} \right]_{K_{best}} = \frac{\sum_{k=1}^{K_{best}} \lambda_k}{K_{best}} \text{ for } K_{best} = K \text{ to } K_{best} = 1, \text{ wherein } K_{best} \text{ is an initial number of}$$

15 signature sequences utilised for calculating the mean system value $\left[\bar{\lambda}_{mean} \right]_{K_{best}}$, and wherein each signature sequence is assigned an equal transmission energy E_k for calculating the mean system values $\left[\bar{\lambda}_{mean} \right]_{K_{best}}$; determining the number of signature sequences K^* to be used for spreading the data symbols and selecting the signature sequences S to be used to spread the symbols in accordance with the mean system value vector $\vec{\lambda}_{mean}$, wherein the mean system value vector $\vec{\lambda}_{mean}$ comprises the

20

plurality of mean system values $\left[\bar{\lambda}_{mean} \right]_{K_{best}}$ for $K_{best} = 1$ to $K_{best} = K$.

The number of signature sequences K^* to be used for spreading the data symbols may also be determined to be equal to the initial number of signature sequences K_{best} when

25 the following equation is satisfied:

$$\lambda^* \left(b_{p_{K_{best}}} \right) \leq \left[\bar{\lambda}_{mean} \right]_{K_{best}} < \lambda^* \left(b_{p_{K_{best}} + 1} \right).$$

for $K_{best} = 1$ to $K_{best} = K$, wherein $\left[\bar{\lambda}_{mean} \right]_{K_{best}}$ is the mean system value, $b_{p_{K_{best}}}$ is a discrete data rate that can be allocated to each data symbol and is chosen from a

plurality of data rates from b_1 to b_p for integer values of p from $p=1$ to $p=P$ for a plurality of P discrete rates for a target system value $\lambda^*(b_p)$, the target system value $\lambda^*(b_p)$ being determined in terms of the data rate b_p by using the following equation:

$$\lambda^*(b_p) = \frac{\Gamma(2^{b_p} - 1)}{1 - \Gamma(2^{b_p} - 1)}$$

5 wherein Γ is the gap value for the modulation scheme and the selected signature sequences \mathbf{S} are the K^* signature sequences of the plurality of signature sequences K having the highest system values λ_k .

In addition, the number of sequences K^* may also be determined and the signature sequences \mathbf{S} to be used to spread the symbols may be selected by calculating the minimum system value $\left[\bar{\lambda}_{\min} \right]_{K_{opt}} = \min(\bar{\lambda})$ for $K_{opt} = K$ to $K_{opt} = 1$ wherein K_{opt} is an initial number of signature sequences utilised for calculating the minimum system value $\left[\bar{\lambda}_{\min} \right]_{K_{opt}}$, and each signature sequence is assigned an equal transmission energy E_k , determining the number of signature sequences K^* and selecting the signature sequences \mathbf{S} to be used to spread the data symbols in accordance with the minimum system value vector $\bar{\lambda}_{\min}$ comprising a plurality of minimum system values $\left[\bar{\lambda}_{\min} \right]_{K_{opt}}$ for $K_{opt} = K$ to $K_{opt} = 1$.

The number of signature sequences K^* to be used for spreading the data symbols may 20 also be determined to be equal to the initial number of signature sequences K_{opt} when the following equation is satisfied:

$$\lambda^*(b_{p_{K_{opt}}}) \leq \left[\bar{\lambda}_{\min} \right]_{K_{opt}} < \lambda^*(b_{p_{K_{opt}} + 1}).$$

for $K_{opt} = 1$ to $K_{opt} = K$, wherein $\left[\bar{\lambda}_{\min} \right]_{K_{opt}}$ is the minimum system value, $b_{p_{K_{opt}}}$ is a discrete data rate that can be allocated to each symbol and is chosen from a plurality 25 of data rates from b_1 to b_p for integer values of p from $p=1$ to $p=P$ for a plurality of P discrete rates for a target system value $\lambda^*(b_p)$, and the selected signature sequences \mathbf{S} are the K^* signature sequences of the plurality of signature sequences K having the highest system values λ_k .

The method may further comprise ordering, before selecting the signature sequences \mathbf{S} , the plurality of signature sequences K from the signature sequence k of the plurality of signature sequences K having the highest system value λ_k to the signature sequence k of the plurality of signature sequences K having the lowest system value λ_k , wherein a high system value λ_k is indicative of a high signal-to-noise ratio, and the selected signature sequences \mathbf{S} are the first K^* signature sequences of the ordered signature sequence.

10 In addition, the method may further comprise allocating data rates b_{p_k} to the plurality of selected signature sequences \mathbf{S} in accordance with the system value λ_k , wherein the summation of the allocated data rates b_{p_k} corresponds to a total data rate per symbol period. The data rates b_{p_k} may be allocated when determining the number of signature sequences K^* .

15

The total data rate may be determined by finding a maximum integer number m_{EE} that satisfies:

$$(K^* - m_{EE})\lambda^*(b_{p_{K^*}}) + m_{EE}\lambda^*(b_{p_{K^*+1}}) \leq K^*[\vec{\lambda}_{\min}]_K.$$

wherein the first group of signature sequences are $(K^* - m_{EE})$ used to transmit data at a discrete data rate $b_{p_{K^*}}$ and a second group of signature sequences comprising the remaining m_{EE} signature sequences are used to transmit data at a discrete rate $b_{p_{K^*+1}}$ for the case corresponding to equal energy allocation.

Furthermore, the total data rate may be determined by finding a maximum integer m_{ES} that satisfies:

$$(K^* - m_{ES})\lambda^*(b_{p_{K^*}}) + m_{ES}\lambda^*(b_{p_{K^*+1}}) \leq K^*[\vec{\lambda}_{mean}]_K.$$

wherein a first group of signature sequences $(K^* - m_{ES})$ are used to transmit data at a discrete data rate $b_{p_{K^*}}$ and a second group of signature sequences comprising the remaining m_{ES} signature sequences are used to transmit data at a discrete rate $b_{p_{K^*+1}}$.

5 The method may further comprise allocating transmission energies to the plurality of selected signature sequences K in accordance with the allocated transmission data rate b_{p_k} and the corresponding system values λ_k to maximize the total data rate per symbol period for the total transmission energy, wherein the summation of the allocated transmission energies corresponds to a total transmission energy E_T .

10

The transmission energies $E_{k,i}$ may be determined iteratively with the following equation based upon a receiver without a successive interference cancellation, SIC, scheme wherein the mean system value is used to determine the number of signature sequences K^* :

$$15 \quad E_{k,i} = \frac{\lambda^*(b_{p_{K^*}})}{q_k \mathbf{C}_{i-1}^{-1} \tilde{q}_k}$$

wherein i is the iteration number, \mathbf{C}_{i-1}^{-1} is an inverse covariance matrix which is determined by inverting covariance matrix \mathbf{C}_{i-1} , wherein the covariance matrix \mathbf{C}_{i-1} is expressed in terms of an extended matched filter signature sequence matrix \mathbf{Q}_e and an extended amplitude matrix $\mathbf{A}_{e,(i-1)} = \mathbf{I}_3 \otimes \mathbf{A}_{(i-1)}$ using the following equation

20 $\mathbf{C}_{i-1} = \mathbf{Q}_e \mathbf{A}_{e(i-1)}^2 \mathbf{Q}_e^H + 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$, wherein \otimes is the kronecker product and the amplitude matrix $\mathbf{A}_{(i-1)} = \text{diag}[\sqrt{E_{1,(i-1)}}, \sqrt{E_{2,(i-1)}}, \dots, \sqrt{E_{K^*,(i-1)}}]$ is expressed in terms of transmission energies, wherein $2\sigma^2$ is the noise variance, N_R is the number of receiver antennas, N is the processing gain, L is the multipath delay spread length, wherein the extended matched filter receiver sequence matrix \mathbf{Q}_e is expressed in accordance with the following equation $\mathbf{Q}_e = [\mathbf{Q}, \mathbf{Q}_1, \mathbf{Q}_2]$, wherein \mathbf{Q}_1 represents the matched filter sequences for the previous symbol period and \mathbf{Q}_2 represents the matched filter sequences for the next symbol period, and \mathbf{Q}_1 and \mathbf{Q}_2 are expressed in

accordance with $\mathbf{Q}_1 = [\mathbf{I}_{N_R} \otimes (\mathbf{J}_{N+L-1}^T)^W] \mathbf{Q} = [\vec{q}_{1,1}, \dots, \vec{q}_{k,1}, \dots, \vec{q}_{K^*,1}]$ and

$\mathbf{Q}_2 = [\mathbf{I}_{N_R} \otimes \mathbf{J}_{N+L-1}^N] \mathbf{Q} = [\vec{q}_{1,2}, \dots, \vec{q}_{k,2}, \dots, \vec{q}_{K^*,2}]$, wherein $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ are the ISI matched filter sequences for the previous and next symbol periods of the number of

signature sequences K^* , wherein $\mathbf{J}_{N+L-1} = \begin{bmatrix} \vec{0}_{(N+L-2)}^T & 0 \\ \mathbf{I}_{N+L-2} & \vec{0}_{N+L-2} \end{bmatrix}$ is the shift matrix,

5 wherein the matched filter despreading signature sequence matrix $\mathbf{Q} = [\vec{q}_1, \dots, \vec{q}_k, \dots, \vec{q}_{K^*}]$ is determined with the following equation $\mathbf{Q} = \mathbf{HS}$, wherein \vec{q}_k is the matched filter receiver despreading signature sequence for a plurality of transmission signature sequences $\mathbf{S} = [\vec{s}_1, \dots, \vec{s}_k, \dots, \vec{s}_{K^*}]$ of length N wherein \mathbf{H} is the MIMO system convolution matrix for a frequency selective multipath channel,

10 wherein the convolution matrix \mathbf{H} is expressed in accordance with the following

equation $\mathbf{H} = \begin{bmatrix} \mathbf{H}^{(1,1)} & \dots & \mathbf{H}^{(1,N_T)} \\ \vdots & \dots & \vdots \\ \mathbf{H}^{(N_R,1)} & \dots & \mathbf{H}^{(N_R,N_T)} \end{bmatrix}$, wherein N_T is the total number of transmitter

antennas, the channel convolution matrix $\mathbf{H}^{(n_r, n_t)}$ between each pair of receiver antenna n_r and transmitter antenna n_t with channel impulse response vector

$\vec{h}^{(n_r, n_t)} = [h_0^{(n_r, n_t)}, \dots, h_{L-1}^{(n_r, n_t)}]$ is expressed in terms of the following equation

15

$$\mathbf{H}^{(n_r, n_t)} = \begin{bmatrix} \vec{h}^{(n_r, n_t)} & 0 & \dots & 0 \\ 0 & \vec{h}^{(n_r, n_t)} & \dots & \vdots \\ \vdots & \dots & \ddots & 0 \\ 0 & 0 & \dots & \vec{h}^{(n_r, n_t)} \end{bmatrix}.$$

The transmission energies $E_{k,i}$ may also be determined iteratively by solving the following equation based upon a receiver with a successive interference cancellation, SIC, scheme wherein the mean system value is used to determine the number of 20 signature sequences K^* :

$$E_{k,i} = \frac{\gamma^*(b_{p_k})}{\xi - \frac{E_{k,(i-1)}|\xi_3|^2}{1+E_{k,(i-1)}\xi_1} - \frac{E_{k,(i-1)}(|\xi_4|^2 - 2\frac{E_{k,(i-1)}}{1+E_{k,(i-1)}\xi_1}\xi_6 + \left(\frac{E_{k,(i-1)}}{1+E_{k,(i-1)}\xi_1}\right)^2|\xi_5|^2|\xi_3|^2)}{1+E_k(\xi_2 - \frac{E_{k,(i-1)}}{1+E_{k,(i-1)}\xi_1}|\xi_5|^2)}$$

for a given inverse covariance matrix \mathbf{C}_{k-1}^{-1} wherein the inverse matrix \mathbf{C}_{k-1}^{-1} is the inverse of the covariance matrix \mathbf{C}_{k-1} wherein the covariance matrix \mathbf{C}_{k-1} is iteratively determined by solving the following equation:

$$5 \quad \mathbf{C}_k = \mathbf{C}_{k-1} + E_k \vec{q}_k \vec{q}_k^H + E_k \vec{q}_{k,1} \vec{q}_{k,1}^H + E_k \vec{q}_{k,2} \vec{q}_{k,2}^H$$

for $k = 1, \dots, K^*$ when using $\mathbf{C}_0 = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$, wherein the target SNR $\gamma^*(b_{p_k})$ is determined by using the following equation:

$$\gamma_k^*(b_{p_k}) = \Gamma\left(2^{\frac{b_{p_k}}{E_k}} - 1\right),$$

the weighting factors $\xi, \xi_1, \xi_2, \xi_3, \xi_4, \xi_5$, and ξ_6 are constructed from the SIC receiver covariance matrix \mathbf{C}_{k-1}^{-1} and $\vec{q}_k, \vec{q}_{k,1}$ and $\vec{q}_{k,2}$ using

$$\xi = \vec{q}_k^H \vec{d}, \quad \xi_1 = \vec{q}_{k,1}^H \vec{d}_1, \quad \xi_2 = \vec{q}_{k,2}^H \vec{d}_2, \\ \xi_3 = \vec{q}_k^H \vec{d}_1, \quad \xi_4 = \vec{q}_k^H \vec{d}_2, \quad \xi_5 = \vec{q}_{k,1}^H \vec{d}_2, \quad \xi_6 = \text{Real}(\xi_3 \xi_4^* \xi_5);$$

wherein the distance vectors $\vec{d}, \vec{d}_1, \vec{d}_2$ are determined using the following equations

$$\vec{d} = \mathbf{C}_{k-1}^{-1} \vec{q}_k, \quad \vec{d}_1 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,1}, \quad \vec{d}_2 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,2}.$$

15

For an inverse covariance matrix \mathbf{C}_{k-1}^{-1} with $\mathbf{C}_0^{-1} = \frac{1}{2\sigma^2} \mathbf{I}_{N_R(N+L-1)}$, and also for an energy allocation E_k and a set of MIMO system parameters with $\vec{q}_k, \vec{q}_{k,1}$ and $\vec{q}_{k,2}, E_k, \sigma^2$, the inverse covariance matrix \mathbf{C}_k^{-1} may be constructed for $k = 1, \dots, K^*$ starting at $k = 1$ using the inverse covariance matrix \mathbf{C}_{k-1}^{-1} and the energy E_k by determining the distance vectors, \vec{d}, \vec{d}_1 and \vec{d}_2 , determining the weighting factors $\xi, \xi_1, \xi_2, \xi_3, \xi_4, \xi_5$, and ξ_6 , and determining the weighted energy terms ζ_1 and ζ_2 by using the allocated energy E_k for $k = 1, \dots, K^*$ in the following equations:

$$\zeta_1 = \frac{E_k}{1 + E_k \xi_1}, \quad \zeta_2 = \frac{E_k}{1 + E_k \left(\xi_2 - \zeta_1 |\xi_5|^2 \right)};$$

determining the interim matrices \mathbf{Z}_1 , \mathbf{Z}_2 , \mathbf{Z}_3 by solving the following equations:

$$\mathbf{Z}_1 = \vec{d}_1 \vec{d}_1^H, \quad \mathbf{Z}_2 = \vec{d}_2 \vec{d}_2^H, \quad \mathbf{Z}_3 = \vec{d}_1 \vec{d}_2^H;$$

5 determining the inverse reduced covariance matrix \mathbf{D}_k^{-1} by solving the following equation:

$$\mathbf{D}_k^{-1} = \mathbf{C}_{k-1}^{-1} - \left(\zeta_1^2 \zeta_2 |\xi_5|^2 + \zeta_1 \right) \mathbf{Z}_1 - \zeta_2 \mathbf{Z}_2 + \zeta_1 \zeta_2 \left(\xi_5 \mathbf{Z}_3 + \xi_5^* \mathbf{Z}_3^H \right); \text{ and}$$

constructing the inverse of the covariance matrix \mathbf{C}_k^{-1} by using the following equation:

$$10 \quad \mathbf{C}_k^{-1} = \mathbf{D}_k^{-1} - \zeta \mathbf{Z}_4;$$

wherein the weighted energy term ζ is determined by solving the following equation:

$$\zeta = \frac{E_k}{1 + E_k \left(\xi - \frac{E_k |\xi_3|^2}{1 + E_k \xi_1} - \frac{E_k (|\xi_4|^2 - 2 \frac{E_k}{1 + E_k \xi_1} \xi_6 + \left(\frac{E_k}{1 + E_k \xi_1} \right)^2 |\xi_5|^2 |\xi_3|^2)}{1 + E_k \left(\xi_2 - \frac{E_k}{1 + E_k \xi_1} |\xi_5|^2 \right)} \right)}, \quad ;$$

wherein the interim matrix \mathbf{Z}_4 is determined by using the following equation:

$$\mathbf{Z}_4 = \vec{d}_3 \vec{d}_3^H; \text{ and}$$

15 wherein the distance vector \vec{d}_3 is determined using the following equation:

$$\vec{d}_3 = \mathbf{D}_k^{-1} \vec{q}_k.$$

The number of signature sequences K^* may be determined and the signature sequences S to be used to spread the data may be selected using an iterative water-filling based continuous bit loading method comprising determining the number of signature sequences K^* by determining the total number of signature sequences that maximize the total data rate $b_{T,K}$.

For a plurality of matched filter signature sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$, the iterative water-filling optimisation method may further comprise setting an initial number of

signature sequences K_{opt} , determining the system values λ_k associated with the initial number of signature sequences K_{opt} , determining a channel SNR vector \vec{g} using the following equation:

$$[\vec{g}]_k = \frac{\lambda_k}{E_k(1-\lambda_k)};$$

5 for an energy allocation E_k , determining a water filling constant K_{WF} using the following equation:

$$K_{WF} = \frac{1}{K_{opt}} \left(E_T + \Gamma \sum_{k=1}^{K_{opt}} \frac{1}{[\vec{g}]_k} \right);$$

wherein E_T is a total transmission energy, determining energies E_k to be allocated to each signature sequence k of the plurality of signature sequences K by using the
10 following equation:

$$E_k = K_{WF} - \frac{\Gamma}{[\vec{g}]_k}$$

reordering the matched filter signature sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ in accordance with the system values $[\vec{\lambda}]_k = \lambda_k$ associated with the initial number of signature sequences K_{opt} in an ascending order to provide an ordered list of matched filter
15 signature sequences, deleting the first matched filter sequences \vec{q}_1 , $\vec{q}_{1,1}$ and $\vec{q}_{1,2}$ of the ordered list of matched filter signature sequences, and setting $K_{opt} = K_{opt} - 1$ if the allocated energy E_1 is negative, repeating the above steps, determining a total number of bits $b_{T,K}$ to be transmitted by using:

$$b_{T,K} = \sum_{k=1}^{K_{opt}} \log_2 \left(1 + \frac{\lambda_k}{\Gamma(1-\lambda_k)} \right);$$

20 determining the number of signature sequences K^* of the plurality of signature sequences K under consideration by using $K^* = K_{opt}$.

The iterative water filling method may determine the number of signature sequences K^* by initially setting the total number of signature sequences $K^* = K$, determining a total data rate to be transmitted and the number of signature sequences
25

K^* for values of $K^* = K - 1$ until the number of signature sequences K^* reaches the value $K^* = 1$, and selecting the number of signature sequences K^* for the plurality of signature sequences K which maximises the total data rate.

5 The system value may be determined by the following equation:

$$\lambda_k = \gamma_k \varepsilon_k$$

wherein γ_k is the signal-to-noise ratio at an output of a de-spreading unit of an MMSE receiver, and ε_k is the mean-square-error at the output of the de-spreading unit, the mean-square-error relating to the system value by $\lambda_k = 1 - \varepsilon_k$.

10

Furthermore, the system value λ_k may be determined in accordance with the following equation based upon a receiver without a successive interference cancelling, SIC, scheme:

$$\lambda_k = E_k \vec{q}_k^H \mathbf{C}^{-1} \vec{q}_k$$

15 wherein \mathbf{C} is expressed in terms of the extended matched filter signature sequence matrix \mathbf{Q}_e and the extended amplitude matrix $\mathbf{A}_e = \mathbf{I}_3 \otimes \mathbf{A}$ using the following equation $\mathbf{C} = \mathbf{Q}_e \mathbf{A}_e^2 \mathbf{Q}_e^H + 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ wherein \otimes is the kronecker product and the amplitude matrix $\mathbf{A} = \text{diag}[\sqrt{E_1}, \sqrt{E_2}, \dots, \sqrt{E_K}]$, wherein the matched filter despreadsing signature sequence matrix $\mathbf{Q} = [\vec{q}_1, \dots, \vec{q}_k, \dots, \vec{q}_K]$ is formed to construct

20 the extended matched filter signature sequence matrix \mathbf{Q}_e by using the following equation $\mathbf{Q}_e = [\mathbf{Q}, \mathbf{Q}_1, \mathbf{Q}_2]$, wherein \mathbf{Q}_1 represents the matched filter sequences for the previous symbol period and \mathbf{Q}_2 represents the matched filter sequences for the next symbol period, wherein \mathbf{Q}_1 and \mathbf{Q}_2 are expressed in accordance with the following equations $\mathbf{Q}_1 = [\mathbf{I}_{N_R} \otimes (\mathbf{J}_{N+L-1}^T)^N] \mathbf{Q} = [\vec{q}_{1,1}, \dots, \vec{q}_{k,1}, \dots, \vec{q}_{K,1}]$ and

25 $\mathbf{Q}_2 = [\mathbf{I}_{N_R} \otimes \mathbf{J}_{N+L-1}^N] \mathbf{Q} = [\vec{q}_{1,2}, \dots, \vec{q}_{k,2}, \dots, \vec{q}_{K,2}]$, wherein $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ are the ISI matched filter sequences for the previous and next symbol periods.

The system value λ_k may also be determined in accordance with the following equation based upon a receiver having a successive interference cancelling, SIC, scheme:

$$\lambda_k = E_k \bar{q}_k^H \mathbf{C}_k^{-1} \bar{q}_k$$

5 wherein \mathbf{C}_{k-1} is a covariance matrix which is iteratively determined by solving the following equation:

$$\mathbf{C}_k = \mathbf{C}_{k-1} + E_k \bar{q}_k \bar{q}_k^H + E_k \bar{q}_{k,1} \bar{q}_{k,1}^H + E_k \bar{q}_{k,2} \bar{q}_{k,2}^H$$

for $k = 1, \dots, K^*$ when using $\mathbf{C}_0 = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ wherein $\bar{q}_{k,1}$ and $\bar{q}_{k,2}$ are the ISI matched filter sequences for the previous and next symbol periods and \bar{q}_k is the matched filter despreading signature sequence.

In accordance with another aspect of the invention apparatus is provided which is arranged to perform any of the methods described above. The apparatus may be a radio transmission base station.

15 In accordance with yet another aspect of the invention a computer readable medium is provided which is implementable on a computer and operable, in use, to perform any of the methods described above.

20 Embodiments of the invention provide a system model for the HSDPA MIMO system which is extended to model successive interference cancellation schemes. The scheme may be integrated with an iterative covariance matrix inversion method. This simplifies the inversions of covariance matrices. Such a method can be used iteratively to calculate the transmission energies and to allocate transmission data rates for each parallel channel in a given HSDPA MIMO system.

30 Embodiments of the invention provide a novel method to obtain the transmission bit rates before allocating the transmission energies. The allocated rates can be used in conjunction with the iterative covariance matrix inversions to calculate the transmission energies whilst optimizing the sum capacity for a given total transmission energy. The sum capacity can be improved by dynamically changing the number of spreading sequences. This scheme requires both the identification of the

optimum transmission numbers and also the spreading sequences to be used for a given transmission channel convolution matrix between the MIMO transmitter and receiver antennas.

5 Embodiments of the invention provide two different algorithms to find the optimum number of spreading sequences using the previously developed two group equal SNR algorithm and the equal energy allocation schemes.

10 Embodiments of the invention achieve a performance close to the system value upper bound, when using the proposed optimum number of spreading schemes and the spreading sequence selection scheme.

15 Embodiments of the invention provide a receiver with a symbol level linear MMSE equalizer followed by a single level SIC detector. Embodiments of the invention optimize the transmission power and the receiver for a single-user multi-code downlink transmission system. The receiver can advantageously suppress the ICI and ISI interferences iteratively without the need to invert a large covariance matrix for each iteration for multi-code downlink transmission over frequency selective channels.

20 Embodiments of the invention also provide an iterative transmission power/energy adaptation scheme to maximize the sum capacity of the downlink for a single user, when using discrete transmission rates and a constrained total transmission power.

25 Embodiments of the invention utilise an energy adaptation criterion known as the system value optimization criterion to maximize the total rate. The system value approach is a modified version of the total mean-square-error (MMSE) minimization criterion.

30 In embodiments of the invention the power/energy adaptation method is implemented iteratively without focusing either on the distribution of the received and interference powers or maintaining each destination's received signal power at a target level. The method can maximize the total transmission rate by optimizing the power allocated to

each channel to maintain the signal-to-noise-ratio at desired target levels using the linear MMSE and the SIC receiver.

In accordance with embodiments of the invention a system utilising a MIMO transmitter and receiver and multiple spreading sequences is considered. Data symbols may be spread using a plurality of spreading sequences prior to transmitting over a frequency selective multipath channel. At the receiver each spreading sequence \vec{s}_k may have an associated system value λ_k which is indicative of the signal to noise ratio γ_k at a receiver. The system value λ_k for each spreading sequence may depend on the transmission multipath channel. As such, the transmission system optimization disclosed herein may retain the spreading sequences with the highest system values and identify the number of spreading sequences to be used for a given total received signal-to-noise ratio corresponding to a given total transmission energy E_T .

15 Brief Description of the Drawings

Exemplary embodiments of the invention shall now be described with reference to the drawings in which:

20 Figure 1 provides a schematic illustration of an HSDPA MIMO transmitter and receiver arrangement; and

Figure 2 provides a schematic illustration of a Successive Interference Cancelling receiver.

25 Throughout the description and the drawings, like reference numerals refer to like parts.

Specific Description

30 A first embodiment of the invention shall now be described with reference to Figure 1.

In Figure 1, a transmitter 100 receives input vectors of \vec{u}_k for $k=1,\dots,K^*$ and this input data is encoded and mapped into encoding unit 101. The encoded data \vec{d}_k for $k=1,\dots,K^*$ produced by the encoding unit 101 is then processed by the adaptive modulation and coding unit 102 to transform the encoded data into symbol vectors $\vec{x}_k = [x_k(1), \dots, x_k(\rho), \dots, x_k(N^{(x)})]^T$ for each channel $k=1,\dots,K^*$. The transmission symbol energies are then adjusted using the power control unit 103. The energy weighted data symbols are transformed into a transmitted vector $\vec{A}\vec{y}(\rho) = A[y_1(\rho), \dots, y_k(\rho), \dots, y_{K^*}(\rho)]^T$ containing the weighted symbols over the symbol period $\rho=1,\dots,N^{(x)}$ using the vector generation unit of 104. The data symbols are then spread by a plurality of spreading sequences in the spreading unit 105. The spread symbols are next filtered using the pulse shaping filter 106 to produce transmission signals for transmission from the MIMO transmitters 107a, 107b, ..., 107N_T.

The transmitted signal is then received at the receiver 200 by the MIMO receivers 201a, 201b, ..., 201N. The received signal is then frequency down converted, filtered and sampled at chip period intervals by the chip matched filter unit 202. The sampled data vectors are then concatenated by the vector concatenation unit 203 and despread by the despreading unit 204 using the de-spreading sequences to estimate the transmitted data symbols for each symbol period. The estimated data symbols are then reorganised to produce the estimated data for each spreading sequence using the receiver vector mapping unit 205, and the decision unit 206.

Each of the above-mentioned units of the transmitter and receiver, apart from the actual MIMO transmitters 107a, 107b, ..., 107N and receivers 201a, 201b, ..., 201N are implemented in software.

The system of this embodiment of the invention is designed to determine which spreading sequences can be used in the above-mentioned data transmission apparatus in order to improve the overall data rate achievable by the system. Embodiments of the invention are based around the principle of utilising a system value in order to

determine which spreading sequences should be utilised for the spreading by the spreading unit 105 in order to increase the achievable data rates.

5 The system value is a variable which is indicative of the characteristics of the channel over which the data is to be transmitted. The system value is the normalized usable signal energy at the output the de-spreading unit. The difference between the normalised total energy of unity and the system value gives the mean square error at the output of the de-spreading unit. The ratio of the normalised energy, the system value, to the mean square error gives the signal-to-noise ratio at the output of the de-
10 spreading unit. Hence, the system value is indicative of a signal to noise ratio over the channel.

15 The system value allows for a determination to be made regarding which spreading sequences will be stronger and which will be weaker given the characteristics of the transmission channel. As such, weaker spreading sequences can be excluded from the transmission process, and consequently only the stronger spreading sequences are utilised to spread the data symbols, and therefore increased data rates are achieved.

20 The determination of the system value in accordance with the first embodiment of the invention is set-out below.

In this embodiment of the invention a multi-code CDMA downlink system as shown in Fig. 1 with a total of N_T and N_R transmitter and receiver antennas and also K spreading sequences, each of which is realizable with a bit rate of b_{p_k} bits per symbol
25 from a set of bit rates, $\{b_{p_k}\}_{p_k=1}^P$, for a given total energy E_T and $p = 1, 2, \dots, P$ is considered.

30 By excluding the weak channels corresponding to a specific set of spreading sequences, the number of parallel transmission channels is reduced to K^* spreading sequences to transmit a symbol per channel. The data for the intended symbol for each channel is placed in an $(N_U \times 1)$ -dimensional vector \vec{u}_k for $k = 1, \dots, K^*$. Each of these data packets is then channel encoded to produce a $(B \times 1)$ -dimensional vector

\vec{d}_k and mapped to symbols using a quadrature amplitude modulation scheme (QAM) with M constellations to transmit data at a rate $b = \log_2 M$ bits per symbol. The channel encoder rate is $r_{code} = \frac{N_U}{B}$ and the realizable discrete rates are given by $b_p = r_{code} \log_2 M$ for $p = 1, \dots, P$ where P is the number of available discrete data rates.

5

Data is transmitted in packets at a transmission-time-interval (TTI) and the number of symbols transmitted per packet is denoted as $N^{(x)}$ where $N^{(x)} = \frac{TTI}{NT_c}$ and N is the spreading sequence length, T_c is the chip period and NT_c is the symbol period. The transmission symbols, corresponding to each vector \vec{d}_k over the period $\rho = 1, \dots, N^{(x)}$, are used to produce the $(N^{(x)} \times 1)$ -dimensional symbol vector $\vec{x}_k = [x_k(1), \dots, x_k(\rho), \dots, x_k(N^{(x)})]^T$ for each channel $k = 1, \dots, K^*$. The entire block of transmission can be represented as an $(N^{(x)} \times K^*)$ dimensional transmit symbol matrix defined as:

$$15 \quad \mathbf{X} = [\vec{x}_1, \dots, \vec{x}_k, \dots, \vec{x}_{K^*}] \quad (1)$$

$$= [\vec{y}(1), \dots, \vec{y}(\rho), \dots, \vec{y}(N^{(x)})]^T. \quad (2)$$

The transmitted vector $\vec{y}(\rho) = [y_1(\rho), \dots, y_k(\rho), \dots, y_{K^*}(\rho)]^T$ contains the symbols, over the symbol period $\rho = 1, \dots, N^{(x)}$, with the unit average energy $E[y_k(\rho)y_k^*(\rho)] = 1$ for $k = 1, \dots, K^*$.

Power allocation is performed on the symbols before spreading. The energies for all K^* channels are stored in an amplitude matrix $\mathbf{A} = diag(\sqrt{E_1}, \dots, \sqrt{E_k}, \dots, \sqrt{E_{K^*}})$ subject to the total energy E_T such that $\sum_{k=1}^{K^*} E_k \leq E_T$.

25

After assigning energies, the amplitude weighted symbols are spread with $N \times K^*$ dimensional spreading sequences $\mathbf{S}_{n_t} = \left[\vec{s}_{n_t,1}, \dots, \vec{s}_{n_t,K^*} \right]$ for $n_t = 1, \dots, N_T$. For a MIMO system with a total of N_T transmitter antennas the signature sequence matrix of $N_T N \times K^*$ is formed as:

5

$$\mathbf{S} = \left[\vec{s}_1, \dots, \vec{s}_{K^*} \right] = \left[\mathbf{S}_1^T, \dots, \mathbf{S}_{n_t}^T, \dots, \mathbf{S}_{N_T}^T \right]^T \quad (3)$$

where $|\vec{s}_k|^2 = 1$. At every symbol period $\rho = 1, \dots, N^{(x)}$ the length N transmit vector:

10

$$\vec{z}_{n_t}(\rho) = \left[z_{n_t,1}(\rho), \dots, z_{n_t,N}(\rho) \right]^T = \mathbf{S}_{n_t} \mathbf{A} \vec{y}(\rho) \quad (4)$$

is generated at the input of n_t^{th} antenna for $n_t = 1, \dots, N_T$. Each element of vector $\vec{z}_{n_t}(\rho)$ is fed to a pulse shaping filter at integer multiples of the chip period T_c prior to being modulated using an up converter modulator to transmit the spread signal at the desired transmission carrier frequency using the n_t^{th} transmitter antenna.

At each TTI, pilot signals estimate the channel condition at each receiver and feed the estimates back to the transmitter. It is assumed that the channel condition does not change for that TTI. All symbols in block $N^{(x)}$ in all spread sequence channels from the n_t^{th} transmitter antenna to the n_r^{th} receiver antenna experience the same channel condition in multipath environment with L resolvable paths. This can be represented by a channel impulse response function $\vec{h}^{(n_r, n_t)} = \left[h_0^{(n_r, n_t)}, \dots, h_{L-1}^{(n_r, n_t)} \right]^T$ and its corresponding $((N+L-1) \times N)$ -dimensional channel convolution matrix $\mathbf{H}^{(n_r, n_t)}$ as follows:

25

$$\mathbf{H}^{(n_r, n_t)} = \begin{bmatrix} h_0^{(n_r, n_t)} & 0 & 0 \\ \vdots & h_0^{(n_r, n_t)} & \vdots \\ h_{L-1}^{(n_r, n_t)} & \vdots & \ddots & 0 \\ 0 & h_{L-1}^{(n_r, n_t)} & & h_0^{(n_r, n_t)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & h_{L-1}^{(n_r, n_t)} \end{bmatrix}. \quad (5)$$

The overall $(N_R(N+L-1) \times N_T N)$ -dimensional MIMO channel convolution matrix can be formed as:

5

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}^{(1,1)} & \dots & \mathbf{H}^{(1, N_T)} \\ \vdots & \ddots & \vdots \\ \mathbf{H}^{(N_R, 1)} & \dots & \mathbf{H}^{(N_R, N_T)} \end{bmatrix}. \quad (6)$$

At the receiver, the resultant multipath causes the despreading signature sequences to be longer than the spreading signature sequences at the transmit antenna as the channel impulse response convolves with the transmitter signature sequences \mathbf{S} . The $N_R(N+L-1) \times K^*$ dimensional receiver matched filter signature sequence matrix is obtained as:

$$\mathbf{Q} = \mathbf{HS} = \left[\vec{q}_1, \dots, \vec{q}_k, \dots, \vec{q}_{K^*} \right] \quad (7)$$

15 where the $N_R(N+L-1)$ -dimensional vector $\vec{q}_k = \mathbf{HS}_k$ is the receiver matched filter despreading sequence. This causes inter-symbol-interference and inter-code interference. At the receiver, the ISI can be dealt with by forming the $N_R(N+L-1) \times 3K^*$ dimensional extended matched filter matrix:

$$\mathbf{Q}_e = \left[\mathbf{Q}, \quad \left[\mathbf{I}_{N_R} \otimes (\mathbf{J}^T)^N \right] \mathbf{Q}, \quad \left[\mathbf{I}_{N_R} \otimes \mathbf{J}^N \right] \mathbf{Q} \right] \quad (8)$$

20

where the signature sequence matrices $\left[\mathbf{I}_{N_R} \otimes (\mathbf{J}^T)^N \right] \mathbf{Q} = \left[\mathbf{I}_{N_R} \otimes (\mathbf{J}^T)^N \right] \mathbf{HS}$ and $\left[\mathbf{I}_{N_R} \otimes \mathbf{J}^N \right] \mathbf{Q} = \left[\mathbf{I}_{N_R} \otimes \mathbf{J}^N \right] \mathbf{HS}$ are expressed as:

$$\mathbf{Q}_1 = \left[\mathbf{I}_{N_R} \otimes (\mathbf{J}^T)^N \right] \mathbf{H} \mathbf{S} = \left[\vec{q}_{1,1}, \dots, \vec{q}_{k,1}, \dots, \vec{q}_{K^*,1} \right] \text{ and } \quad (9)$$

$$\mathbf{Q}_2 = \left[\mathbf{I}_{N_R} \otimes \mathbf{J}^N \right] \mathbf{H} \mathbf{S} = \left[\vec{q}_{1,2}, \dots, \vec{q}_{k,2}, \dots, \vec{q}_{K^*,2} \right] \quad (10)$$

5 Both $\vec{q}_{k,1} = \left[\mathbf{I}_{N_R} \otimes (\mathbf{J}^T)^N \right] \vec{q}_k$ and $\vec{q}_{k,2} = \left[\mathbf{I}_{N_R} \otimes \mathbf{J}^N \right] \vec{q}_k$ are the receiver signature sequences corresponding to the previous and the next symbol periods and are used to handle the ISI. The $(N+L-1) \times (N+L-1)$ -dimensional matrix is defined as

$$\mathbf{J}_{N+L-1} = \begin{bmatrix} \vec{0}_{(N+L-2)}^T & 0 \\ \mathbf{I}_{(N+L-2)} & \vec{0}_{(N+L-2)} \end{bmatrix}. \text{ For simplicity the subscript will be dropped from the } \mathbf{J}$$

10 matrix notation. When the matrix \mathbf{J}^N operates on a column vector, it downshifts the column by N chips filling the top of the column with N zeros. Assuming the clocks at the transmitter and receiver are fully synchronized, the received signals are first down converted to the baseband. The signals at the output of each receiver chip matched filter is sampled at the chip period intervals T_c . The chip matched filter at the

$$n_r^{\text{th}}$$
 receiver has a total of $(N+L-1)$ samples $\vec{r}_{n_r}(\rho) = \left[r_{n_r,1}(\rho) \dots r_{n_r,(N+L-1)}(\rho) \right]^T$

15 to be processed for the symbol period of ρ . The n_r^{th} received signal matrix is given as $\mathbf{R}_{n_r} = \left[\vec{r}_{n_r}(1), \dots, \vec{r}_{n_r}(\rho), \dots, \vec{r}_{n_r}(N^{(x)}) \right]$. The received matched filter containing all antenna elements at a symbol period is given by the vector $\vec{r}(\rho) = \left[\vec{r}_1^T(\rho), \dots, \vec{r}_{n_r}^T(\rho), \dots, \vec{r}_{N_R}^T(\rho) \right]^T$ of size $N_R(N+L-1)$ for $\rho = 1, \dots, N^{(x)} - 1$. The received signal vector over the symbol period, ρ , is given in terms of the transmitter 20 vector $\vec{y}(\rho)$ as:

$$\vec{r}(\rho) = \mathbf{Q}_e \left(\mathbf{I}_3 \otimes \mathbf{A} \begin{bmatrix} \vec{y}(\rho) \\ \vec{y}(\rho-1) \\ \vec{y}(\rho+1) \end{bmatrix} \right) + \vec{n}(\rho) \quad (11)$$

where \otimes is the Kronecker product and the $N_R(N+L-1)$ dimensional noise vector $\vec{n}(\rho)$ has the noise covariance matrix $E \left[\vec{n}(\rho) \vec{n}^H(\rho) \right] = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ with the one

dimensional noise variance $\sigma^2 = \frac{N_0}{2}$. The $N_R(N+L-1) \times N^{(x)}$ dimensional received signal matrix for the MIMO receiver is given as $\mathbf{R} = [\vec{r}(1), \dots, \vec{r}(\rho), \dots, \vec{r}(N^{(x)})] = [\mathbf{R}_1^T, \dots, \mathbf{R}_{n_r}^T, \dots, \mathbf{R}_{N_R}^T]^T$.

5 The received signal vector $\vec{r}(\rho)$ over the symbol period, ρ , is used to produce the size K^* column vector $\hat{\vec{y}}(\rho) = [\hat{\vec{y}}_1(\rho), \dots, \hat{\vec{y}}_k(\rho), \dots, \hat{\vec{y}}_{K^*}(\rho)]^T$ as an estimate of the transmitted symbol vector $\vec{y}(\rho)$ using $\hat{\vec{y}}(\rho) = \mathbf{W}^H \vec{r}(\rho)$.

10 The $N_R(N+L-1) \times K^*$ dimensional matrix $\mathbf{W} = [\vec{w}_1, \dots, \vec{w}_k, \dots, \vec{w}_{K^*}]$ has the MMSE linear equalizer despreading filter coefficients \vec{w}_k for $k = 1, \dots, K^*$. In order to ensure that $\vec{w}_k^H \vec{q}_k = 1$ and the cross-correlations $\vec{w}_k^H \vec{q}_j$ are minimized for $j \neq k$, a normalized MMSE despreading filter coefficient vector is given by:

$$\vec{w}_k = \frac{\mathbf{C}^{-1} \vec{q}_k}{\vec{q}_k^H \mathbf{C}^{-1} \vec{q}_k} \text{ with} \quad (12)$$

$$15 \quad \mathbf{C} = \mathbf{Q}_e \left(\mathbf{I}_3 \otimes \mathbf{A}^2 \right) \mathbf{Q}_e^H + 2\sigma^2 \mathbf{I}_{N_R(N+L-1)} \quad (13)$$

Where $\mathbf{C} = E[\vec{r}(\rho) \vec{r}^H(\rho)]$ is the $N_R(N+L-1) \times N_R(N+L-1)$ dimensional covariance matrix of the received signal vector $\vec{r}(\rho)$. The covariance matrix \mathbf{C} , given in (13), can be iteratively calculated using:

20

$$\mathbf{C}_k = \mathbf{C}_{k-1} + E_k \vec{q}_k \vec{q}_k^H + E_k \vec{q}_{k,1} \vec{q}_{k,1}^H + E_k \vec{q}_{k,2} \vec{q}_{k,2}^H \quad (14)$$

for $k = 1, \dots, K^*$ when using $\mathbf{C}_0 = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ and $\mathbf{C} = \mathbf{C}_{K^*}$.

At the output of each receiver, the mean-square-error $\varepsilon_k = E\left[\left|\hat{y}_k(\rho) - y_k(\rho)\right|^2\right]$

between the transmitted signal $y_k(\rho)$ and the estimated signal $\hat{y}_k(\rho)$ is given as

$$\varepsilon_k = 1 - E_k \bar{q}_k^H \mathbf{C}^{-1} \bar{q}_k = \frac{1}{1 + \gamma_k} = 1 - \lambda_k \text{ for } k = 1, \dots, K. \text{ Where } \gamma_k = \frac{1 - \varepsilon_k}{\varepsilon_k}$$

to-noise-ratio (SNR) at the output of each receiver and λ_k is the system value given

5 as:

$$\lambda_k = 1 - \varepsilon_k = \frac{\gamma_k}{1 + \gamma_k} = E_k \bar{q}_k^H \mathbf{C}^{-1} \bar{q}_k. \quad (15)$$

Now that the system value has been defined, the method of determining the weak channels in accordance with the system value to improve the overall system 10 performance shall be discussed in more detail.

The main objective of the MIMO downlink sum capacity optimization is to minimize the total MMSE $\varepsilon_T = \sum_{k=1}^{K^*} \varepsilon_k$ using the total MMSE minimization criterion based on the Lagrangian dual objective function:

15

$$L(\varepsilon_k, E_k, \lambda) = \sum_{k=1}^{K^*} \varepsilon_k + \lambda \left(\sum_{k=1}^{K^*} E_k - E_T \right) \quad (16)$$

with the Lagrangian multiplier λ . The objective function maximizes the total rate

$$b_T = \sum_{k=1}^{K^*} b_{p_k} \text{ where } b_{p_k} \text{ is the number of bits allocated to each spreading sequence}$$

20 symbol for $k = 1, \dots, K^*$. Once the energies are allocated, the corresponding rates can be determined. If the terms ε_k and E_k are expressed as functions of the rate b_{p_k} the

optimization, given in (16), provides solutions for E_k and λ subject to the energy

constraint $\sum_{k=1}^{K^*} E_k \leq E_T$. The mean square error energy ε_k is given in terms of the system values λ_k as $\varepsilon_k = 1 - \lambda_k$. The energy E_k in (16) is related to the system value

25 λ_k by means of $E_k = \frac{\lambda_k}{\bar{q}_k^H \mathbf{C}^{-1} \bar{q}_k}$ as identified in (15). The bit rates b_{p_k} to be

transmitted over each channel is related to the SNR $\gamma_k = \frac{\lambda_k}{1-\lambda_k}$ in terms of

$b_{p_k} = \log_2 \left(1 + \frac{\gamma_k}{\Gamma} \right)$ where Γ is the gap value. The target SNR $\gamma^*(b_{p_k})$ is given by:

$$\gamma_k^*(b_{p_k}) = \Gamma \left(2^{b_{p_k}} - 1 \right), \quad (17)$$

5

and the target system value λ_k^* required to transmit b_{p_k} bits per symbol is given by:

$$\lambda_k^*(b_{p_k}) = \frac{\Gamma \left(2^{b_{p_k}} - 1 \right)}{1 + \Gamma \left(2^{b_{p_k}} - 1 \right)}. \quad (18)$$

10 As the optimization parameters are all expressed in terms of the system values, in this embodiment of the invention the system values can be calculated using $\lambda_k = E_k \bar{q}_k^H \mathbf{C}^{-1} \bar{q}_k$ given in (15). However, as will be appreciated in other embodiments, where a SIC scheme is utilised, a different system value determination will be used. In accordance with this embodiment of the invention, the mean system
15 value will therefore be:

$$\lambda_{mean} = \frac{\lambda_T}{K^*} = \frac{\sum_{k=1}^{K^*} \lambda_k}{K^*} \quad (19)$$

where the total system value λ_T has its maximum value when $E_k = \frac{E_T}{K^*}$ for $k = 1, \dots, K^*$. For the MMSE receivers with and without the proposed SIC scheme, the total system capacity is:

20

$$C_T = \sum_{k=1}^{K^*} \log_2 \left(1 + \frac{\lambda_k}{\Gamma(1 - \lambda_k)} \right) = K^* \log_2 \left(1 + \frac{\lambda_{mean}}{\Gamma(1 - \lambda_{mean})} \right) \quad (20)$$

where Γ is the gap value. In (20), the multiplication of the total channel number with the capacity corresponding to the mean system value λ_{mean} gives a very close approximation to the total capacity.

5 In this first embodiment of the invention an iterative bit loading method is produced to allocate discrete rates without the need for a prior energy allocation. This iterative method operates with a given total energy E_T when using a MIMO system without the proposed SIC scheme by iterating for a given total number I_{max} . However, when used with a SIC scheme, a similar approach is applied. The system parameters are
10 considered to be $N_R, N_T, \sigma^2, K^*, L, \mathbf{H}$. The signature sequences $\mathbf{S} = [\vec{s}_1 \dots \vec{s}_K]$ will be available for the purpose of constructing the matrices \mathbf{Q}, \mathbf{Q}_1 , and \mathbf{Q}_2 . At the start, each iterative method will produce the sequences $\vec{q}_k, \vec{q}_{k,1}$ and $\vec{q}_{k,2}$ using $\vec{q}_k = [\mathbf{Q}]_k, \vec{q}_{k,1} = [\mathbf{Q}_1]_k$, and $\vec{q}_{k,2} = [\mathbf{Q}_2]_k$ to generate the initial system values λ_k for $k = 1, \dots, K$.

15

The multipath channels cause the system values λ_k to have randomly varying amplitudes. This may lead to the inclusion of some of the spreading sequences as bad channels which may degrade the total rate by excluding the good channels which can otherwise be used to transmit higher data rates. A signature sequence selection
20 scheme based on the use of the system values may be incorporated to identify the weak signature sequences to exclude them.

The iterative method will select a sub set of the sequences from \mathbf{S} to identify the optimum number K^* of signature sequences and the order in which they will appear.

25 The method varies the total number of sequences from $K = K$ to $K = 1$. The method initially takes a total of $K = K$ spreading sequences and calculates all the associated system values by allocating the total available energy equally to each spreading sequence. The system values and corresponding spreading sequences are ordered to have the system values in an ascending order. The mean system value and also the
30 signature sequence set are recorded for the corresponding number of spreading sequences. The spreading sequence corresponding to the minimum system value is

removed and the number of spreading sequences is reduced using $K = K - 1$ and the corresponding system values, the mean system value calculations and signature sequence ordering and removal processes are repeated for the reduced number of spreading sequences by varying the number of spreading sequences from $K = K$ to 5 $K = 1$. For varying number of spreading sequences, from $K = 1$ to $K = K$, the mean system values are used to calculate the data rate b_p to be transmitted over each spreading sequence if all the spreading sequences use the same transmission rate. The number of spreading sequences which maximizes the multiplication of the data rate b_p and the corresponding number of spreading sequence is chosen to be the optimum 10 number K^* of spreading sequences. The recorded signature sequence set corresponding to the optimum number of signature sequences is chosen to be the ordered set of signature sequences. The data rate b_p corresponding to the optimum number of spreading sequences and the next data rate b_{p+1} that is available in the discrete data rates set of $\{b_p : p = 1, \dots, P\}$ and the corresponding target system values 15 will be used to determine the number of channels $K^* - m$ that will be used to transmit data at the rate b_p bits per symbol and the number of channels m that will be used to transmit data at the rate b_{p+1} by considering the mean system value corresponding to the optimum number of signature sequences. After having determined the data rates b_p and b_{p+1} and the number of spreading sequences $K^* - m$ and m the energies 20 required to transmit the data at the required rates b_p and b_{p+1} are calculated iteratively for a given total energy constraint $\sum_{k=1}^{K^*} E_k \leq E_T$.

The details of determining the optimum number of sequences and the order they appear and also the data rate and energy allocations are given next.

25

The method will dynamically adjust the energies E_k for $k = 1, \dots, K^*$ and also K^* by starting at $K^* = K$ to return the allocated energies and the numbers of the ordered signature sequences as the elements of the size K^* vector \vec{k}_{order} . The vector \vec{k}_{order} will be initialized using $[\vec{k}_{order}]_k = k$ for $k = 1, \dots, K^*$. At the start a set of system

values λ_k , given in (15), for $k=1,\dots,K^*$ will be produced as the elements of the size K^* vector $\vec{\lambda} = [\lambda_1, \dots, \lambda_{K^*}]$ using $E_k = \frac{E_T}{K^*}$ and \mathbf{C}^{-1} , given in (13). The vector $\vec{\lambda}$ will then be used to reorganize the match filter sequences using $\vec{q}_k = \vec{q}_{a_k}$, $\vec{q}_{k,1} = \vec{q}_{a_k,1}$ and $\vec{q}_{k,2} = \vec{q}_{a_k,2}$ and the vector \vec{k}_{order} using $[\vec{k}_{order}]_k = [\vec{k}_{order}]_{a_k}$ for $k=1,\dots,K^*$ where a_k is the index number of the k^{th} smallest element of $\vec{\lambda}$.

At the start of each iteration, a set of system values λ_k for $k=1,\dots,K^*$, given in (15) will be constructed by using the variables N, L, N_R, σ^2 and an updated set of energies E_k and the vectors \vec{q}_k , $\vec{q}_{k,1}$, $\vec{q}_{k,2}$ and \vec{k}_{order} and also using \mathbf{C}^{-1} , given in (13).

10 Within each iteration loop the system values, given in $\vec{\lambda} = [\lambda_1, \dots, \lambda_{K^*}]$ will be reordered in an ascending order. As required the optimum number K^* and the corresponding energies will be updated. The index number of the k^{th} smallest element of $\vec{\lambda}$ will be used to re-order the sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$, the allocated energies E_k and the elements of the vector \vec{k}_{order} . The iterative algorithms will reduce the number of sequences \vec{q}_k , $\vec{q}_{k,1}$, $\vec{q}_{k,2}$ and the energies and also the size of vector \vec{k}_{order} when required as the iterations progress. Upon reaching a given number of iterations, the iterative loop will terminate otherwise the iteration will be repeated by starting at the beginning.

15 20 Upon completing the iterations, the data rates b_{p_k} , the energies and also a set of re-sequenced signature sequences \vec{s}_k for $k=1,\dots,K^*$ are returned. The resultant energies E_k and the matrix \mathbf{C}^{-1} involved in the construction of the system values λ_k will be available to calculate the MMSE filter coefficients \vec{w}_k for $k=1,\dots,K^*$ using (12). The total system value, λ_T , and the mean system value, λ_{mean} , and also the sum capacity for each iterative method can be calculated using (19) and (20) respectively.

This approach for maximizing the total capacity by allocating discrete rates first and finding the optimum number of sequences without the need to allocate energies prior to rates shall now be discussed in more detail.

5 With the target system values identified in (18) in terms of the available discrete rates, a margin adaptive (MA) loading algorithm will be considered initially for either an equal SNR loading to transmit the same data rate over each channel such that the total transmission rate is $R_T = Kb_{p_k}$. The equal SNR loading scheme operates under the same energy constraint that $\sum_{k=1}^{K^*} E_k \leq E_T$. The equal energy loading is the adapted strategy for the current HSDPA standards and it produces varying SNRs at the receivers which makes it simpler to implement than the equal SNR loading scheme. The equal SNR loading requires adjustment of the transmission energies to achieve a fixed SNR at each receiver to deliver a higher total bit rate.

10 The numbers of sequences K_{SNR}^* for the equal SNR case will be optimized to maximize the total rate $R_{T,SNR}$. The algorithm will initially set the temporary optimum number $K_{opt} = K$ and will use the vectors \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ for $k = 1, \dots, K_{opt}$ and \vec{k}_{order} and also the parameters E_T , N_T, N_R, σ^2 , K , L . A size K vector with the initial values $\vec{b}_{mean} = \vec{0}_K$ and an $N_T K \times K$ dimensional matrix $\mathbf{K}_{sequences}$ with the initial values $\mathbf{K}_{sequences} = \vec{0}_{K \times K}$ will be generated as part of the following iterative process.

15

1. $[\mathbf{K}_{sequences}]_{k,K_{opt}} = [\vec{k}_{order}]_k$ for $k = 1, \dots, K_{opt}$. By setting $E_k = \frac{E_T}{K_{opt}}$ the system values λ_k are produced for $k = 1, \dots, K_{opt}$ using (15) for the system under consideration without SIC. The K_{opt}^{th} elements of two size K vectors are produced by setting $[\vec{\lambda}_{mean}]_{K_{opt}} = \frac{\sum_k^{K_{opt}} \lambda_k}{K_{opt}}$ and $[\vec{\lambda}_{min}]_{K_{opt}}$ equal to the minimum of the system values. The size K_{opt} system value vector $\vec{\lambda}$ is constructed using $\vec{\lambda} = [\lambda_1, \dots, \lambda_{K_{opt}}]^T$.

20

2. Next the term a_k is used as the index number of the k^{th} smallest element of the system value vector $\vec{\lambda}$. The index number a_k is employed to re-sequence the vectors \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ and to reorder the elements of the vector \vec{k}_{order} using $\vec{q}_k = \vec{q}_{a_k}$, $\vec{q}_{k,1} = \vec{q}_{a_k,1}$ and $\vec{q}_{k,2} = \vec{q}_{a_k,2}$ and $[\vec{k}_{\text{order}}]_k = [\vec{k}_{\text{order}}]_{p_k}$ for $k = 1, \dots, K_{\text{opt}}$. The total number, K_{opt} , of sequences \vec{q}_k , $\vec{q}_{k,1}$, $\vec{q}_{k,2}$ and the size, K_{opt} , of the vector \vec{k}_{order} are reduced from $K_{\text{opt}} + 1$ to K_{opt} using $\vec{q}_k = \vec{q}_{k+1}$, $\vec{q}_{k,1} = \vec{q}_{(k+1),1}$ and $\vec{q}_{k,2} = \vec{q}_{(k+1),2}$ and also $[\vec{k}_{\text{order}}]_k = [\vec{k}_{\text{order}}]_{k+1}$ for $k = 1, \dots, K_{\text{opt}}$.

10

3. By setting $K_{\text{opt}} = K_{\text{opt}} - 1$ the steps are repeated starting at step 1 if $K_{\text{opt}} \geq 1$ otherwise the following steps are run.

15 4. The k^{th} element of the vector \vec{b}_{mean} is set to be $[\vec{b}_{\text{mean}}]_k = b_{p_k}$ for $k = 1, \dots, K$ where the discrete bit value b_{p_k} is chosen to satisfy the inequalities:

$$\lambda^*(b_{p_k}) \leq [\vec{\lambda}_{\text{mean}}]_k < \lambda^*(b_{p_k+1}) \quad (21)$$

20

The optimum number K_{SNR}^* of the transmission sequences for the equal SNR loading system is given by $K_{\text{SNR}}^* = \arg \left(\max_{1 \leq k \leq K} (k [\vec{b}_{\text{mean}}]_k) \right)$ where K_{SNR}^* is the integer number maximizing $k [\vec{b}_{\text{mean}}]_k$ for $k = 1, \dots, K$. The total rate is $R_{T,\text{SNR}} = K_{\text{SNR}}^* b_{p_k}$ where $b_{p_k} = [\vec{b}_{\text{mean}}]_{K_{\text{SNR}}^*}$. The total rate can be further improved by loading a certain number of channels m with the next available rate b_{p_k+1} and transmitting a total number of bits per symbol using:

$$R_{T,SNR} = (K_{SNR}^* - m)b_{p_k} + mb_{p_{k+1}} \quad (22)$$

for the integer m which satisfies the following inequalities:

$$5 \quad (K_{SNR}^* - m)\lambda^*(b_{p_k}) + m\lambda^*(b_{p_{k+1}}) \leq K_{SNR}^* [\vec{\lambda}_{mean}]_{K_{SNR}^*}. \quad (23)$$

Thus $R_T = (K_{SNR}^* - m)b_{p_k} + mb_{p_{k+1}}$ can be determined prior to the energy allocation.

10

5. The signature sequences $\mathbf{S}^{(SNR)} = \begin{bmatrix} \vec{s}_1^{(SNR)} & \cdots & \vec{s}_{K_{SNR}^*}^{(SNR)} \end{bmatrix}$ for the equal SNR loading scheme are constructed using the original sequence matrix $\mathbf{S} = \begin{bmatrix} \vec{s}_1 & \dots & \vec{s}_K \end{bmatrix}$ and setting $\vec{s}_k^{(SNR)} = \vec{s}_{a_k}$ where $a_k = \lfloor \mathbf{K}_{sequences} \rfloor_{k, K_{SNR}^*}$ for $k = 1, \dots, K_{SNR}^*$.

15

An iterative energy adjustment method is presented below as the proposed method maximizing the total rate $R_{T,SNR} = (K_{SNR}^* - m)b_{p_k} + mb_{p_{k+1}}$ relies on maintaining two specific SNRs at the output of despreading units.

20. For the optimum number of codes K^* and the allocated bit rates b_{p_k} or $b_{p_{k+1}}$ for each channel, the transmission energies E_k for $k = 1, \dots, K^*$, can be iteratively calculated for a MIMO system without the SIC scheme. It is assumed that the matched filter sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ for $k = 1, \dots, K^*$ are available for the ordered sequences. For the systems without the SIC scheme, the transmission energies can be calculated 25 iteratively as follows:

$$E_{k,i} = \frac{\lambda_k^*}{\vec{q}_k^H \mathbf{C}_{i-1}^{-1} \vec{q}_k} \text{ for } k = 1, \dots, K^* \quad (24)$$

by using (15) and the target system values λ_k^* given in (18) for the chosen rates b_{p_k} and b_{p_k+1} . The term i is the iteration number and the term \mathbf{C}_{i-1}^{-1} in (24) is calculated using (13) and $E_{k,(i-1)}$ for $k = 1, \dots, K$ by initially allocating $E_{k,0} = \frac{E_T}{K^*}$ for all channels. This iteration continues until the energies converge to fixed values or a maximum number of iterations, I_{\max} , is reached.

A second embodiment of the invention shall now be described in which a SIC-based receiver is utilised. The features of the first and second embodiments of the invention are very similar and as such those features of the second embodiment of the invention that are the same as the first embodiment of the invention shall not be described in detail.

Figure 2 illustrates the system of the second embodiment of the invention in which a SIC-based receiver is utilised. Like in Figure 1, the receiver 300 comprises a plurality of MIMO receivers 301a, 301b,301N_R. The receiver chip matched filter 302 down converts the received radio frequency signals and filters the down converted signals to produce the sampled signal vectors $\bar{r}_{n_r}(\rho) = \begin{bmatrix} r_{n_r,1}(\rho) & \dots & r_{n_r,(N+L-1)}(\rho) \end{bmatrix}^T$ to be processed for the symbol period of ρ at the output of each receiver antenna. The received vector concatenator unit 303 concatenates signal vectors $\bar{r}_{n_r}(\rho) = \begin{bmatrix} r_{n_r,1}(\rho) & \dots & r_{n_r,(N+L-1)}(\rho) \end{bmatrix}^T$ to produce the received matched filtered signal samples corresponding to all antenna elements at a symbol period $\bar{r}(\rho) = \begin{bmatrix} \bar{r}_1^T(\rho), \dots, \bar{r}_{n_r}^T(\rho), \dots, \bar{r}_{N_R}^T(\rho) \end{bmatrix}^T$ for $\rho = 1, \dots, N^{(x)} - 1$. The received signal matrix generator 304 produces the received signal matrix $\mathbf{R}_{k^*} = [\bar{r}(1), \dots, \bar{r}(N^{(x)})]$. The successive interference cancellation (SIC) receiver consisting of units 305, 306 and 308 is an iterative receiver producing the reduced data matrix \mathbf{R}_{k-1} iteratively for $k = 1, \dots, K^*$ using $\mathbf{R}_{k-1} = \mathbf{R}_k - \sqrt{E_k} \Phi_k$ starting with the matrix \mathbf{R}_{K^*} , the combined SIC receiver consisting of units 305, 306 and 308 uses the depredding unit 306 to produce the despread signal vector of $\hat{x}_k = \bar{w}_k^H \mathbf{R}_k$ for $k = K^*, (K^* - 1), \dots, 1$. The

decision unit 308 uses the despread signal to produce an estimate of the corresponding transmitted bit stream \hat{u}_k and also the transmitted symbol vector $\vec{x}_{k,D}$. The detected data stream $\vec{x}_{k,D}$ at the output of the decision unit 308 is used by the contribution estimator unit 305 to produce the contributions matrix Φ_k for use in the reduced data matrix \mathbf{R}_{k-1} calculation when using $\mathbf{R}_{k-1} = \mathbf{R}_k - \sqrt{E_k} \Phi_k$. The detected data stream is then ordered by the data ordering unit 309 to produce the detected data sequence. The symbol matrix generation unit 307 uses the estimated symbols vectors \hat{x}_k to produce the received symbols matrix $\vec{\mathbf{X}}$.

10 When a SIC-based receiver is utilised the definition and determination of the system value λ_k also change. The determination of the system value λ_k in accordance with a system utilising a SIC-based receiver is therefore set out below.

15 Use of a successive interference cancellation (SIC) scheme has many benefits including improved received signal-to-noise ratio for a given total transmission energy E_T requiring less energy E_k per channel for $k = 1, \dots, K^*$ to achieve a given bit rate.

20 An SIC scheme, which operates as shown in Fig. 2, constructs a unique covariance matrix \mathbf{C}_k for $k = 1, \dots, K^*$ using the iterative covariance matrix relationship given in (14) and calculates \mathbf{C}_k^{-1} for use in the detection process.

25 The operation of the SIC receiver depends on the design of the MMSE linear equalizer coefficients \vec{w}_k which are produced by re-formulating (12) as follows for $k = 1, \dots, K^*$:

$$\vec{w}_k = \frac{\mathbf{C}_k^{-1} \vec{q}_k}{\vec{q}_k^H \mathbf{C}_k^{-1} \vec{q}_k}. \quad (25)$$

In the SIC receiver implementation, the received signal vectors $\vec{r}(\rho)$, given in (11), are collected for $\rho = 1, \dots, N^{(x)}$ to form the received signal matrix $\mathbf{R} = [\vec{r}(1), \dots, \vec{r}(N^{(x)})]$ and the receiver is operated by setting $\mathbf{R}_{K^*} = \mathbf{R}$ to produce a $N_R(N+L-1) \times N^{(x)}$ dimensional reduced data matrix \mathbf{R}_{k-1} iteratively using

5 $\mathbf{R}_{k-1} = \mathbf{R}_k - \sqrt{E_k} \Phi_k$ for $k = K^*, (K^* - 1), \dots, 1$. The $N_R(N+L-1) \times N^{(x)}$ dimensional matrix Φ_k is given by $\Phi_k = \vec{q}_k \vec{x}_{k,D}^T + \vec{q}_{k,1} \vec{x}_{k,D1}^T + \vec{q}_{k,2} \vec{x}_{k,D2}^T$. The size $N^{(x)}$ column vector $\vec{x}_{k,D}$ is the detected data stream and $\vec{x}_{k,D1} = \mathbf{J}_{N^{(x)}} \vec{x}_{k,D}$ and $\vec{x}_{k,D2} = \mathbf{J}_{N^{(x)}}^T \vec{x}_{k,D}$ are the row vectors containing ISI symbols received in the previous and the next symbol periods respectively. The contribution of the detected data stream $\vec{x}_{k,D}$ to the reduced

10 signal matrix \mathbf{R}_k for channel k is estimated using $\sqrt{E_k} \Phi_k$. The estimated symbol vector $\vec{x}_{k,D}$ is generated by using each MMSE despreading vector \vec{w}_k which is calculated using (25) to yield a despread signal vector of $\hat{\vec{x}}_k = \vec{w}_k^H \mathbf{R}_k$ and also an

15 estimate of the corresponding transmitted bit stream $\hat{\vec{u}}_k$. The decoded bit vectors $\hat{\vec{u}}_k$ are re-coded at the receiver and re-modulated to regenerate the transmitted symbol vector $\vec{x}_{k,D}$ at the output of the decision device. For each channel k , the receiver then re-spreads the estimated data symbols $\vec{x}_{k,D}$ and the re-spread data stream is then passed through the channel under consideration to produce Φ_k . Once \mathbf{R}_{k-1} is generated, the received symbol vector for each channel is then iteratively generated

20 using $\hat{\vec{x}}_{k-1} = \vec{w}_{k-1}^H \mathbf{R}_{k-1}$ until all the transmitted data streams are estimated for $k = K^*, \dots, 1$. The SIC based MMSE receiver will then have the following modified system values for $k = 1, \dots, K^*$ as:

$$\lambda_k = E_k \vec{q}_k^H \mathbf{C}_k^{-1} \vec{q}_k \quad (26)$$

25 and the best performance can be achieved for the SIC based receivers if the system values are ordered in an ascending order.

Use of an iterative covariance matrix inversion method with the SIC receiver further reduces the receiver detection complexity. The iterative matrix inversion method is also used to produce the SIC system values λ_k , $k = 1, \dots, K^*$ for use in the maximization of the summation of the discrete transmission rate $b_T = \sum_{k=1}^{K^*} b_{p_k}$ where

5 b_{p_k} is the discrete number of bits allocated to each spreading sequence symbol for $k = 1, \dots, K^*$. The SIC system values λ_k will also be used for the optimum allocation of energies subject to the energy constraint $\sum_{k=1}^{K^*} E_k \leq E_T$.

10 The main complexity issue for a successive interference cancellation receiver is the number of matrix inversions \mathbf{C}_k^{-1} involved in calculating the despreaders \vec{w}_k given in (25) and the system value λ_k given in (26) for $k = 1, \dots, K^*$. This motivates the formulation of an iterative covariance matrix inversion. The objective is to eliminate the covariance matrix inversions required for the despreaders and the system value calculations such that the inverse matrix \mathbf{C}_k^{-1} is a function of \mathbf{C}_{k-1}^{-1} . By reorganizing
15 (14) as $\mathbf{C}_k = \mathbf{D}_k + E_k \vec{q}_k \vec{q}_k^H$ where $\mathbf{D}_k = \mathbf{C}_{k-1} + E_k \vec{q}_{k,1} \vec{q}_{k,1}^H + E_k \vec{q}_{k,2} \vec{q}_{k,2}^H$ and using the matrix inversion lemma $(\mathbf{A} + \mathbf{UBV})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1} \mathbf{U} (\mathbf{B}^{-1} + \mathbf{V} \mathbf{A}^{-1} \mathbf{U}) \mathbf{V} \mathbf{A}^{-1}$ the inverse matrices \mathbf{C}_k^{-1} and \mathbf{D}_k^{-1} can be calculated as:

$$20 \quad \mathbf{D}_k^{-1} = \mathbf{C}_{k-1}^{-1} - \left(\zeta_1^2 \zeta_2 |\zeta_5|^2 + \zeta_1 \right) \mathbf{Z}_1 - \zeta_2 \mathbf{Z}_2 + \zeta_1 \zeta_2 \left(\zeta_5 \mathbf{Z}_3 + \zeta_5^* \mathbf{Z}_3^H \right) \text{ and} \quad (27)$$

$$25 \quad \mathbf{C}_k^{-1} = \mathbf{D}_k^{-1} - \zeta \mathbf{Z}_4 \quad (28)$$

where we define the distance vectors \vec{d} , \vec{d}_1 , \vec{d}_2 , and \vec{d}_3 as:

$$25 \quad \vec{d} = \mathbf{C}_{k-1}^{-1} \vec{q}_k, \quad \vec{d}_1 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,1}, \quad \vec{d}_2 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,2}, \quad \vec{d}_3 = \mathbf{D}_k^{-1} \vec{q}_k. \quad (29)$$

The weighting functions ξ , ξ_1 , ξ_2 , ξ_3 , ξ_4 , ξ_5 , and ξ_6 are produced using:

$$\begin{aligned}
\xi &= \vec{q}_k^H \vec{d}, \quad \xi_1 = \vec{q}_{k,1}^H \vec{d}_1, \quad \xi_2 = \vec{q}_{k,2}^H \vec{d}_2, \\
\xi_3 &= \vec{q}_k^H \vec{d}_1, \quad \xi_4 = \vec{q}_k^H \vec{d}_2, \quad \xi_5 = \vec{q}_{k,1}^H \vec{d}_2, \quad \xi_6 = \text{Real}(\xi_3 \xi_4^* \xi_5)
\end{aligned} \tag{30}$$

The weighted energy terms ζ , ζ_1 and ζ_2 are given as:

5

$$\begin{aligned}
\zeta &= \frac{E_k}{1 + E_k \left(\xi - \frac{E_k |\xi_3|^2}{1 + E_k \xi_1} - \frac{E_k (|\xi_4|^2 - 2 \frac{E_k}{1 + E_k \xi_1} \xi_6 + \left(\frac{E_k}{1 + E_k \xi_1} \right)^2 |\xi_5|^2 |\xi_3|^2)}{1 + E_k (\xi_2 - \frac{E_k}{1 + E_k \xi_1} |\xi_5|^2)} \right)}, \\
\xi_1 &= \frac{E_k}{1 + E_k \xi_1}, \quad \xi_2 = \frac{E_k}{1 + E_k \left(\xi_2 - \xi_1 |\xi_5|^2 \right)}.
\end{aligned} \tag{31}$$

We further define the interim matrices \mathbf{Z}_1 , \mathbf{Z}_2 , \mathbf{Z}_3 and \mathbf{Z}_4 as follows:

10

$$\mathbf{Z}_1 = \vec{d}_1 \vec{d}_1^H, \quad \mathbf{Z}_2 = \vec{d}_2 \vec{d}_2^H, \quad \mathbf{Z}_3 = \vec{d}_1 \vec{d}_2^H, \quad \mathbf{Z}_4 = \vec{d}_3 \vec{d}_3^H. \tag{32}$$

For a given energy allocation E_k for $k = 1, \dots, K^*$ and a given set of MIMO system

parameters with \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$, E_k , σ^2 and also $\mathbf{C}_0^{-1} = \frac{1}{2\sigma^2} \mathbf{I}_{N_R(N+L-1)}$, the matrix

15 \mathbf{C}_k^{-1} and the system values λ_k are constructed as follows starting at $k = 1$.

1. The distance vectors, \vec{d} , \vec{d}_1 and \vec{d}_2 are produced using (29). The weighting factors ξ , ξ_1 , ξ_2 , ξ_3 , ξ_4 , ξ_5 , and ξ_6 , given in (30), are calculated to produce the weighted energy terms ζ , ζ_1 , and ζ_2 using (31) and the allocated energy E_k for $k = 1, \dots, K^*$. The interim matrices \mathbf{Z}_1 , \mathbf{Z}_2 and \mathbf{Z}_3 , given in (32), are calculated to construct \mathbf{D}_k^{-1} employing (27).

20

2. The distance vector \vec{d}_3 and the corresponding matrix \mathbf{Z}_4 , given by (29) and (32), are used to construct \mathbf{C}_k^{-1} given in (28).

3. The system value is obtained using $\lambda_k = E_k \vec{q}_k^H \mathbf{C}_{k-1}^{-1} \vec{q}_k$.

4. Stop the algorithm if $k = K^*$. Otherwise by setting $k = k + 1$, the steps are

5 repeated starting at step 1.

The system value λ_k given in (26) is reorganized using (28) to simplify the signal to noise ratio γ_k at the output of the k^{th} SIC receiver to the following form:

10
$$\gamma_k = \frac{\lambda_k}{1 - \lambda_k} = E_k \vec{q}_k^H \mathbf{D}_k^{-1} \vec{q}_k \quad (33)$$

using the relationships given in (29), (30), (31) and (32). The proposed SIC-based iterative method calculates \mathbf{C}_k^{-1} starting with the first channel $k = 1$ using (27) and

(28) and \mathbf{C}_{k-1}^{-1} which is constructed in the previous iteration starting at

15 $\mathbf{C}_0^{-1} = \frac{1}{2\sigma^2} \mathbf{I}_{N_R(N+L-1)}$. This iterative covariance matrix inversion method will be used to produce the signal-to-noise ratio γ_k and the system values λ_k for $k = 1, \dots, K^*$ which will be ordered in an ascending order to maximize the SIC based HSDPA downlink sum-capacity performance.

20 The energy of the k^{th} channel, $E_{k,i}$, which is updated using (24) and \mathbf{C}_{i-1}^{-1} which needs to be updated using energies of all K channels at $(i-1)^{\text{th}}$ iteration. This motivates the formulation of an iterative energy allocation $E_{k,i}$ that only depends on $E_{k,i-1}$ such that the covariance matrix inverse \mathbf{C}_k^{-1} only needs to be updated once per channel using E_k .

25

A method for calculating the energies iteratively E_k , without the need to invert any matrix per energy iteration, according to an alterantive embodiment of the invention is set-out below.

By reorganizing (33) as follows:

$$E_{k,i} = \frac{\gamma_k^*}{\vec{q}_k^H \mathbf{D}_{k,(i-1)}^{-1} \vec{q}_k} \quad (34)$$

5 to produce $E_{k,i}$ in terms of $E_{k,i-1}$ and the parameters constructed from \mathbf{C}_{k-1}^{-1} and \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$. For this purpose the term $\vec{q}_k^H \mathbf{D}_k^{-1} \vec{q}_k$ given in (34) is simplified using (27) to reformulate (34) as follows:

$$E_{k,i} = \frac{\gamma_k^*}{\xi - \frac{E_{k,(i-1)} |\xi_3|^2}{1 + E_{k,(i-1)} \xi_1} - \frac{E_{k,(i-1)} (|\xi_4|^2 - 2 \frac{E_{k,(i-1)}}{1 + E_{k,(i-1)} \xi_1} \xi_6 + \left(\frac{E_{k,(i-1)}}{1 + E_{k,(i-1)} \xi_1} \right)^2 |\xi_5|^2 |\xi_3|^2)}{1 + E_k (\xi_2 - \frac{E_{k,(i-1)} |\xi_5|^2}{1 + E_{k,(i-1)} \xi_1})} \quad (35)$$

10

where the weighting factors $\xi, \xi_1, \xi_2, \xi_3, \xi_4, \xi_5$, and ξ_6 are constructed from \mathbf{C}_{k-1}^{-1} and \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ using (30) and the distance vectors, \vec{d}, \vec{d}_1 and \vec{d}_2 given in (29) and by setting $\mathbf{C}_0^{-1} = \frac{1}{2\sigma^2} \mathbf{I}_{N_R(N+L-1)}$ and the starting channel number to be $k=1$. This iterative energy calculation requires the use of the target SNR values $\gamma^*(b_{p_k})$ and $15 \gamma^*(b_{p_{k+1}})$ from (17) for the desired transmission rates b_{p_k} and $b_{p_{k+1}}$. The initial value for the energy E_k is set to be $E_k = \frac{E_T}{K^*}$ and then it is iteratively updated using (35) for the target SNR γ_k^* corresponding to the chosen transmission rate b_{p_k} for channel k . The iterations continue until the energy converges to a fixed value or a given number of iteration number I_{\max} is reached. Once the energy E_k is produced, the construction of \mathbf{C}_k^{-1} in terms of $E_{k,i}$ and \mathbf{C}_{k-1}^{-1} requires the interim matrices $\mathbf{Z}_1, \mathbf{Z}_2$ and \mathbf{Z}_3 which are calculated using (32) to construct \mathbf{D}_k^{-1} using (27) and then to produce $\vec{d}_3 = \mathbf{D}_k^{-1} \vec{q}_k$ using (29) and also \mathbf{Z}_4 using (32). The weighted energy term ζ

20

is next calculated using $\zeta = \frac{E_k}{1 + \gamma_k^*}$. Using the resultant \mathbf{D}_k^{-1} , \mathbf{Z}_4 and ζ the inverse matrix \mathbf{C}_k^{-1} is constructed using (28). This process is repeated for each channel until all the energies and inverses of the covariance matrices are produced for all the channels for $k = 1, \dots, K^*$. Once the energies are allocated the transmitter provides the receiver with the allocated energies.

In accordance with a third embodiment of the invention the selection of the spreading sequences may be achieved by means of a minimum system value based discrete bit loading algorithm. The minimum system value based approach replaces the mean system value based approach discussed in respect of the first and second embodiments of the invention. As such, the third embodiment of the invention is applicable for either the non-SIC based receiver of the first embodiment of the invention, or the SIC-based receiver of the second embodiment of the invention. Only those features of the third embodiment of the invention that differ to either of the first or second embodiments of the invention shall be discussed in detail.

The numbers of sequences K_{EE}^* , for the equal energy cases will be optimized to maximize the total rate $R_{T,EE}$. The algorithm will initially set the temporary optimum number $K_{opt} = K$ and will use the vectors \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ for $k = 1, \dots, K_{opt}$ and \vec{k}_{order} and also the parameters E_T , N_T, N_R, σ^2 , K , L . A size K vector with the initial values $\vec{b}_{\min} = \vec{0}_K$ and an $N_T K \times K$ dimensional matrix $\mathbf{K}_{sequences}$ with the initial values $\mathbf{K}_{sequences} = \mathbf{0}_{K \times K}$ will be generated as part of the following iterative process after having run the first three steps outlined as part of the first embodiment of the invention.

25

1. The k^{th} element of the minimum bit rates vector \vec{b}_{\min} is set to $[\vec{b}_{\min}]_k = b_{p_k}$ for $k = 1, \dots, K$ by choosing the discrete bit value b_{p_k} to satisfy the inequalities:

$$\lambda^*(b_{p_k}) \leq \left[\bar{\lambda}_{\min} \right]_k < \lambda^*(b_{p_{k+1}}) \quad (36)$$

2. The optimum number K_{EE}^* is given by $K_{EE}^* = \arg\left(\max_{1 \leq k \leq K} \left(k \left[\bar{b}_{\min} \right]_k\right)\right)$ and the total rate is $R_{T,EE} = K_{EE}^* b_1^{(\min)}$ where $b_1^{(\min)} = \left[\bar{b}_{\min} \right]_{K_{EE}^*}$ for the equal energy loading scheme. The total number of bits can be further increased by identifying a total of m channels which maximizes $m = \arg\left(\max_{1 \leq k \leq (K - K_{EE}^*)} \left(k \left[\bar{b}_{\min} \right]_k\right)\right)$ with the rate $b_2^{(\min)} = \left[\bar{b}_{\min} \right]_m$ to transmit a total number of bits:

$$10 \quad R_{T,EE} = (K_{EE}^* - m) b_1^{(\min)} + m b_2^{(\min)}. \quad (37)$$

2. The signature sequences $\mathbf{S}^{(EE)} = \left[\vec{s}_1^{(EE)}, \dots, \vec{s}_{K_{EE}^*}^{(EE)} \right]$ for the equal energy loading scheme is constructed using the original sequence matrix $\mathbf{S} = \left[\vec{s}_1 \ \dots \ \vec{s}_K \right]$ and setting $\vec{s}_k^{(EE)} = \vec{s}_{c_k}$ where $c_k = \left[\mathbf{K}_{sequences} \right]_{k, K_{EE}^*}$ for $k = 1, \dots, K_{EE}^*$.

15

For the equal energy loading scheme, the energy is set to $E_k = \frac{E_T}{K_{EE}^*}$ for each channel $k = 1, \dots, K_{EE}^*$.

According to a fourth embodiment of the invention an iterative water-filling based continuous bit loading method is utilised in place of the mean system value bit loading method of the first embodiment of the present invention. Again, the fourth embodiment of the invention can be utilised with either the non-SIC based receiver of the first embodiment of the invention, or the SIC-based receiver of the second embodiment of the invention. Furthermore, only those features of the fourth embodiment of the invention that differ to the previously described embodiments of the invention shall be discussed in detail.

The method will initially set the optimum number K^* of channels to be $K^* = K$. At the start, a set of system values λ_k , given in (15), for $k = 1, \dots, K^*$ will be produced as

the elements of the size K^* vector $\vec{\lambda} = [\lambda_1, \dots, \lambda_{K^*}]$ using $E_k = \frac{E_T}{K^*}$ and \mathbf{C}^{-1} , given in

(13). The vector $\vec{\lambda}$ will then be used to reorganize the match filter sequences using

5 $\vec{q}_k = \vec{q}_{a_k}$, $\vec{q}_{k,1} = \vec{q}_{a_k,1}$ and $\vec{q}_{k,2} = \vec{q}_{a_k,2}$ and the vector \vec{k}_{order} using $[\vec{k}_{order}]_k = [\vec{k}_{order}]_{a_k}$

for $k = 1, \dots, K^*$ where a_k is the index number of the k^{th} smallest element of $\vec{\lambda}$.

Next the iterations will start. During each iteration the system values will be calculated either using (26) or (15) and the system values and corresponding signature sequences will be ordered such that the system values will appear in an ascending

10 order. The system values will then be used to calculate the channel SNR values and the water filling constant. The channel SNRs and the water filling constant will be used to allocate energies to each channel. If the energy for the first spreading sequence is negative the first spreading sequence will be removed and the above steps will be repeated until the first energy allocation is positive. For a positive first energy

15 allocation the system value calculations, reordering of signature sequences and system values, the channel SNR and water filling calculations and also the energy allocation calculations will be repeated for a given number of iterations. With the final energy allocations the corresponding system values will be used to calculate the signal to noise ratio for each spreading sequence. The SNR values will be used to determine the

20 rate allocated to each spreading sequence.

The water filling algorithm is iterated as follows:

1. The loop counter, I , is set to to be $I = 1$. If $K^* < K$ the number of energies

25 E_k and the sequences \vec{q}_k , $\vec{q}_{k,1}$, $\vec{q}_{k,2}$ and hence the size, K^* , of vector \vec{k}_{order} are reduced from $K^* + 1$ to K^* using $E_k = E_{k+1}$ and $\vec{q}_k = \vec{q}_{k+1}$, $\vec{q}_{k,1} = \vec{q}_{(k+1),1}$ and $\vec{q}_{k,2} = \vec{q}_{(k+1),2}$ and also $[\vec{k}_{order}]_k = [\vec{k}_{order}]_{k+1}$ for $k = 1, \dots, K^*$.

2. For the system under consideration a set of system values λ_k are produced

30 using either (26) or (15) to construct the size K^* channel SNR vector \vec{g}

using $[\vec{g}]_k = \frac{\lambda_k}{E_k(1-\lambda_k)}$, for $k = 1, \dots, K^*$. The water filling constant is

calculated as $K_{WF} = \frac{1}{K^*} \left(E_T + \Gamma \sum_{k=1}^{K^*} \frac{1}{[\vec{g}]_k} \right)$. The energies are allocated using

$$E_k = K_{WF} - \frac{1}{[\vec{g}]_k} \text{ for } k = 1, \dots, K^*.$$

5 3. Next the term a_k is used as the index number of the k^{th} smallest element of \vec{g} . The index number a_k is employed to re-sequence the vectors, the energies and also the elements of the vector \vec{k}_{order} using $\vec{q}_k = \vec{q}_{a_k}$, $\vec{q}_{k,1} = \vec{q}_{a_k,1}$ and $\vec{q}_{k,2} = \vec{q}_{a_k,2}$ and $E_k = E_{a_k}$ and also $[\vec{k}_{order}]_k = [\vec{k}_{order}]_{a_k}$ for $k = 1, \dots, K^*$.

10

4. If $E_1 < 0$, the number of channels to be used is set to be $K^* = K^* - 1$ and the steps are repeated starting with step 1. Otherwise the counter is increased using $I = I + 1$ and then if $I < I_{max}$ the steps are repeated starting at step 2.

15 The iterative water filling algorithm returns the non-discrete rates and also the reordered signature sequences using $\vec{s}_k^{(WF)} = \vec{s}_{a_k}$ where $a_k = [\vec{k}_{order}]_k$ for $k = 1, \dots, K^*$. The iterative water filling sum capacity upper bound can be obtained using the system values identified during the last iteration $I = I_{max}$.

20 After having run the water filling algorithm to determine the optimum number of sequences and also the order of sequences, this algorithm is then re-run by reducing the total number of available codes from K to 1 in steps of 1. The total number of codes which results in the highest total rate is then chosen to be the optimum number of codes.

25

While the above-mentioned embodiments of the invention all relate to MIMO-based systems it will be appreciated that in accordance with alternative embodiments of the

invention, SISO-based systems are utilised. In SISO-based systems it will be appreciated that $N_T = 1$ and $N_R = 1$.

5 It will be appreciated that the terms spreading sequence and channel can be interchangeable.

10 The various methods described above may be implemented in hardware or by a computer program. When implemented by a computer program a computer could be provided having a memory to store the computer program, and a processor to implement the computer program. The computer program may include computer code arranged to instruct a computer to perform the functions of one or more of the various methods described above. The computer program and/or the code for performing such methods may be provided to an apparatus, such as a computer, on a computer readable medium. The computer readable medium could be, for example, 15 an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, or a propagation medium for data transmission, for example for downloading the code over the Internet. Non-limiting examples of a physical computer readable medium include semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid 20 magnetic disc, and an optical disk, such as a CD-ROM, CD-R/W or DVD.

25 An apparatus such as a computer may be configured in accordance with such computer code to perform one or more processes in accordance with the various methods discussed above.

30 It will be appreciated that any of the above-mentioned embodiments may be combined with one another where appropriate. Furthermore, it will be appreciated that the above-described embodiments of the invention are provided as example only and as such the scope of the invention is only limited by the scope of the appended claims.

Claims:

1. A method for data transmission in a radio data transmission system having a plurality of parallel single-input single-output or multiple-input multiple-output channels over which the data is transmitted, the data represented by a plurality of data symbols, the data symbols being spread prior to transmission by a plurality of spreading sequences, the method comprising:

5 determining a system value λ_k for each signature sequence k of a plurality of signature sequences K , wherein the system value λ_k is indicative of a signal-to-noise ratio of the associated signature sequence k ;

10 determining a number of signature sequences K^* to be used for spreading the data symbols in accordance with the system values λ_k associated with the plurality of signature sequences K ;

15 selecting the signature sequences S to be used to spread the data symbols from the plurality of signature sequences K in accordance with the system values λ_k associated with the plurality of signature sequences K , wherein the number of signature sequences selected corresponds to the determined number of signature sequences K^* ; and

20 spreading the data symbols using the selected signature sequences S .

2. The method according to claim 1, wherein the number of sequences K^* is determined and the signature sequences S to be used to spread the symbols are selected by:

25 calculating the mean system value $[\lambda_{mean}]_{K_{best}} = \frac{\sum_{k=1}^{K_{best}} \lambda_k}{K_{best}}$ for $K_{best} = K$ to

30 $K_{best} = 1$, wherein K_{best} is an initial number of signature sequences utilised for calculating the mean system value $[\lambda_{mean}]_{K_{best}}$, and wherein each signature sequence is assigned an equal transmission energy E_k for calculating the mean system values $[\lambda_{mean}]_{K_{best}}$;

determining the number of signature sequences K^* to be used for spreading the data symbols and selecting the signature sequences S to be used to spread the

symbols in accordance with the mean system value vector $\vec{\lambda}_{mean}$, wherein the mean system value vector $\vec{\lambda}_{mean}$ comprises the plurality of mean system values $[\vec{\lambda}_{mean}]_{K_{best}}$ for $K_{best} = 1$ to $K_{best} = K$.

5 3. The method according to claim 2, wherein:

the number of signature sequences K^* to be used for spreading the data symbols is determined to be equal to the initial number of signature sequences K_{best} when the following equation is satisfied:

$$\lambda^*(b_{p_{K_{best}}}) \leq [\vec{\lambda}_{mean}]_{K_{best}} < \lambda^*(b_{p_{K_{best}}+1}).$$

10 for $K_{best} = 1$ to $K_{best} = K$, wherein $[\vec{\lambda}_{mean}]_{K_{best}}$ is the mean system value, $b_{p_{K_{best}}}$ is a discrete data rate that can be allocated to each data symbol and is chosen from a plurality of data rates from b_1 to b_p for integer values of p from $p=1$ to $p=P$ for a plurality of P discrete rates for a target system value $\lambda^*(b_p)$, the target system value $\lambda^*(b_p)$ being determined in terms of the data rate b_p by using the following equation:

$$15 \lambda^*(b_{p_k}) = \frac{\Gamma(2^{b_p} - 1)}{1 - \Gamma(2^{b_p} - 1)}$$

wherein Γ is the gap value for the modulation scheme; and

the selected signature sequences \mathbf{S} are the K^* signature sequences of the plurality of signature sequences K having the highest system values λ_k .

20 4. The method according to claim 1, wherein the number of sequences K^* is determined and the signature sequences \mathbf{S} to be used to spread the symbols are selected by:

calculating the minimum system value $[\vec{\lambda}_{min}]_{K_{opt}} = \min(\vec{\lambda})$ for $K_{opt} = K$ to $K_{opt} = 1$ wherein K_{opt} is an initial number of signature sequences utilised for calculating the minimum system value $[\vec{\lambda}_{min}]_{K_{opt}}$, and each signature sequence is assigned an equal transmission energy E_k ;

determining the number of signature sequences K^* and selecting the signature sequences \mathbf{S} to be used to spread the data symbols in accordance with the minimum

system value vector $\vec{\lambda}_{\min}$ comprising a plurality of minimum system values $\vec{\lambda}_{\min}|_{K_{opt}}$ for $K_{opt} = K$ to $K_{opt} = 1$.

5. The method according to claim 4, wherein:

the number of signature sequences K^* to be used for spreading the data symbols is determined to be equal to the initial number of signature sequences K_{opt} when the following equation is satisfied:

$$\lambda^*(b_{p_{K_{opt}}}) \leq \vec{\lambda}_{\min}|_{K_{opt}} < \lambda^*(b_{p_{K_{opt}}+1}).$$

for $K_{opt} = 1$ to $K_{opt} = K$, wherein $\vec{\lambda}_{\min}|_{K_{opt}}$ is the minimum system value, $b_{p_{K_{opt}}}$ is a

10 discrete data rate that can be allocated to each symbol and is chosen from a plurality of data rates from b_1 to b_p for integer values of p from $p = 1$ to $p = P$ for a plurality of P discrete rates for a target system value $\lambda^*(b_p)$; and

the selected signature sequences S are the K^* signature sequences of the plurality of signature sequences K having the highest system values λ_k .

15

6. The method according to any preceding claim, further comprising:

ordering, before selecting the signature sequences S , the plurality of signature sequences K from the signature sequence k of the plurality of signature sequences K having the highest system value λ_k to the signature sequence k of the plurality of

20 signature sequences K having the lowest system value λ_k ; wherein

a high system value λ_k is indicative of a high signal-to-noise ratio, and

the selected signature sequences S are the first K^* signature sequences of the ordered signature sequence.

25 7. The method according to any preceding claim, further comprising:

allocating data rates b_{p_k} to the plurality of selected signature sequences S in accordance with the system value λ_k , wherein the summation of the allocated data rates b_{p_k} corresponds to a total data rate per symbol period.

8. The method according to claim 7, wherein the data rates b_{p_k} are allocated when determining the number of signature sequences K^* .

9. The method according to claim 7 or 8 when depending from claim 2 or 3, 5 wherein the total rate is determined by finding a maximum integer number m_{EE} that satisfies:

$$(K^* - m_{EE})\lambda^*(b_{p_{K^*}}) + m_{EE}\lambda^*(b_{p_{K^*+1}}) \leq K^* \lfloor \bar{\lambda}_{\min} \rfloor_K.$$

wherein the first group of signature sequences are $(K^* - m_{EE})$ used to transmit data at a discrete data rate $b_{p_{K^*}}$ and a second group of signature sequences comprising the

10 remaining m_{EE} signature sequences are used to transmit data at a discrete rate $b_{p_{K^*+1}}$ for the case corresponding to equal energy allocation.

10. The method according to claim 7 or 8 when depending from claim 4 or 5, wherein the total rate is determined by finding a maximum integer m_{ES} that satisfies:

$$(K^* - m_{ES})\lambda^*(b_{p_{K^*}}) + m_{ES}\lambda^*(b_{p_{K^*+1}}) \leq K^* \lfloor \bar{\lambda}_{\text{mean}} \rfloor_K.$$

wherein a first group of signature sequences $(K^* - m_{ES})$ are used to transmit data at a discrete data rate $b_{p_{K^*}}$ and a second group of signature sequences comprising the remaining m_{ES} signature sequences are used to transmit data at a discrete rate $b_{p_{K^*+1}}$.

20 11. The method according to any one of claims 7 to 10, further comprising:
allocating transmission energies to the plurality of selected signature sequences K in accordance with the allocated transmission data rate b_{p_k} and the corresponding system values λ_k to maximize the total data rate per symbol period for the total transmission energy, wherein the summation of the allocated transmission energies corresponds to a total transmission energy E_T .
25

12. The method according to claim 11, wherein the transmission energies $E_{k,i}$ are determined iteratively with the following equation based upon a receiver without a

successive interference cancellation, SIC, scheme wherein the mean system value is used to determine the number of signature sequences K^* :

$$E_{k,i} = \frac{\lambda^*(b_{p_{K^*}})}{\overrightarrow{q_k} \mathbf{C}_{i-1}^{-1} \overrightarrow{q_k}}$$

wherein i is the iteration number, \mathbf{C}_{i-1}^{-1} is an inverse covariance matrix which is

5 determined by inverting covariance matrix \mathbf{C}_{i-1} , wherein the covariance matrix \mathbf{C}_{i-1}

is expressed in terms of an extended matched filter signature sequence matrix \mathbf{Q}_e and

an extended amplitude matrix $\mathbf{A}_{e,(i-1)} = \mathbf{I}_3 \otimes \mathbf{A}_{(i-1)}$ using the following equation

$$\mathbf{C}_{i-1} = \mathbf{Q}_e \mathbf{A}_{e,(i-1)}^2 \mathbf{Q}_e^H + 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$$

wherein \otimes is the kronecker product and the amplitude matrix $\mathbf{A}_{(i-1)} = \text{diag}[\sqrt{E_{1,(i-1)}}, \sqrt{E_{2,(i-1)}}, \dots, \sqrt{E_{K^*,(i-1)}}]$ is expressed in terms of

10 transmission energies, wherein $2\sigma^2$ is the noise variance, N_R is the number of

receiver antennas, N is the processing gain, L is the multipath delay spread length,

wherein the extended matched filter receiver sequence matrix \mathbf{Q}_e is expressed in

accordance with the following equation $\mathbf{Q}_e = [\mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3]$, wherein \mathbf{Q}_1 represents the

matched filter sequences for the previous symbol period and \mathbf{Q}_2 represents the

15 matched filter sequences for the next symbol period, and \mathbf{Q}_1 and \mathbf{Q}_2 are expressed in

accordance with $\mathbf{Q}_1 = [\mathbf{I}_{N_R} \otimes (\mathbf{J}_{N+L-1}^T)^N] \mathbf{Q} = [\vec{q}_{1,1}, \dots, \vec{q}_{k,1}, \dots, \vec{q}_{K^*,1}]$ and

$\mathbf{Q}_2 = [\mathbf{I}_{N_R} \otimes \mathbf{J}_{N+L-1}^N] \mathbf{Q} = [\vec{q}_{1,2}, \dots, \vec{q}_{k,2}, \dots, \vec{q}_{K^*,2}]$, wherein $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ are the ISI

matched filter sequences for the previous and next symbol periods of the number of

signature sequences K^* , wherein $\mathbf{J}_{N+L-1} = \begin{bmatrix} \vec{0}_{(N+L-2)}^T & 0 \\ \mathbf{I}_{N+L-2} & \vec{0}_{N+L-2} \end{bmatrix}$ is the shift matrix,

20 wherein the matched filter despreading signature sequence matrix

$\mathbf{Q} = [\vec{q}_1, \dots, \vec{q}_k, \dots, \vec{q}_{K^*}]$ is determined with the following equation $\mathbf{Q} = \mathbf{HS}$, wherein

\vec{q}_k is the matched filter receiver despreading signature sequence for a plurality of

transmission signature sequences $\mathbf{S} = [\vec{s}_1, \dots, \vec{s}_k, \dots, \vec{s}_{K^*}]$ of length N wherein \mathbf{H} is the

MIMO system convolution matrix for a frequency selective multipath channel,

25 wherein the convolution matrix \mathbf{H} is expressed in accordance with the following

equation $\mathbf{H} = \begin{bmatrix} \mathbf{H}^{(1,1)} & \dots & \mathbf{H}^{(1,N_T)} \\ \vdots & \dots & \vdots \\ \mathbf{H}^{(N_R,1)} & \dots & \mathbf{H}^{(N_R,N_T)} \end{bmatrix}$, wherein N_T is the total number of transmitter

antennas, the channel convolution matrix $\mathbf{H}^{(n_r, n_t)}$ between each pair of receiver antenna n_r and transmitter antenna n_t with channel impulse response vector

$\vec{h}^{(n_r, n_t)} = [h_0^{(n_r, n_t)}, \dots, h_{L-1}^{(n_r, n_t)}]$ is expressed in terms of the following equation

$$5 \quad \mathbf{H}^{(n_r, n_t)} = \begin{bmatrix} \vec{h}^{(n_r, n_t)} & 0 & \dots & 0 \\ 0 & \vec{h}^{(n_r, n_t)} & \dots & \vdots \\ \vdots & \dots & \ddots & 0 \\ 0 & 0 & \dots & \vec{h}^{(n_r, n_t)} \end{bmatrix}.$$

13. The method according to claim 11, wherein the transmission energies $E_{k,i}$ are determined iteratively by solving the following equation based upon a receiver with a successive interference cancellation, SIC, scheme wherein the mean system value is 10 used to determine the number of signature sequences K^* :

$$E_{k,i} = \frac{\gamma^*(b_{p_k})}{\xi - \frac{E_{k,(i-1)}|\xi_3|^2}{1+E_{k,(i-1)}\xi} - \frac{E_{k,(i-1)}(|\xi_4|^2 - 2\frac{E_{k,(i-1)}}{1+E_{k,(i-1)}\xi_1}\xi_6 + \left(\frac{E_{k,(i-1)}}{1+E_{k,(i-1)}\xi_1}\right)^2|\xi_5|^2|\xi_3|^2)}{1+E_k(\xi_2 - \frac{E_{k,(i-1)}|\xi_5|^2}{1+E_{k,(i-1)}\xi_1})}}$$

for a given inverse covariance matrix \mathbf{C}_{k-1}^{-1} wherein the inverse matrix \mathbf{C}_{k-1}^{-1} is the inverse of the covariance matrix \mathbf{C}_{k-1} wherein the covariance matrix \mathbf{C}_{k-1} is iteratively determined by solving the following equation:

$$15 \quad \mathbf{C}_k = \mathbf{C}_{k-1} + E_k \bar{q}_k \bar{q}_k^H + E_k \bar{q}_{k,1} \bar{q}_{k,1}^H + E_k \bar{q}_{k,2} \bar{q}_{k,2}^H$$

for $k = 1, \dots, K^*$ when using $\mathbf{C}_0 = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$, wherein the target SNR $\gamma^*(b_{p_k})$ is determined by using the following equation:

$$\gamma_k^*(b_{p_k}) = \Gamma\left(2^{b_{p_k}} - 1\right),$$

the weighting factors $\xi, \xi_1, \xi_2, \xi_3, \xi_4, \xi_5$, and ξ_6 are constructed from the SIC receiver 20 covariance matrix \mathbf{C}_{k-1}^{-1} and \bar{q}_k , $\bar{q}_{k,1}$ and $\bar{q}_{k,2}$ using

$$\begin{aligned}\xi &= \vec{q}_k^H \vec{d}, \quad \xi_1 = \vec{q}_{k,1}^H \vec{d}_1, \quad \xi_2 = \vec{q}_{k,2}^H \vec{d}_2, \\ \xi_3 &= \vec{q}_k^H \vec{d}_1, \quad \xi_4 = \vec{q}_k^H \vec{d}_2, \quad \xi_5 = \vec{q}_{k,1}^H \vec{d}_2, \quad \xi_6 = \text{Real}(\xi_3 \xi_4^* \xi_5);\end{aligned}$$

wherein the distance vectors \vec{d} , \vec{d}_1 , \vec{d}_2 are determined using the following equations

$$\vec{d} = \mathbf{C}_{k-1}^{-1} \vec{q}_k, \quad \vec{d}_1 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,1}, \quad \vec{d}_2 = \mathbf{C}_{k-1}^{-1} \vec{q}_{k,2}.$$

5

14. The method according to claim 13, wherein for an inverse covariance matrix \mathbf{C}_{k-1}^{-1} with $\mathbf{C}_0^{-1} = \frac{1}{2\sigma^2} \mathbf{I}_{N_R(N+L-1)}$, and also for an energy allocation E_k and a set of MIMO system parameters with \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$, E_k , σ^2 , the inverse covariance matrix \mathbf{C}_k^{-1} is constructed for $k = 1, \dots, K^*$ starting at $k = 1$ using the inverse covariance matrix \mathbf{C}_{k-1}^{-1} and the energy E_k by:

determining the distance vectors, \vec{d} , \vec{d}_1 and \vec{d}_2 ;
determining the weighting factors ξ , ξ_1 , ξ_2 , ξ_3 , ξ_4 , ξ_5 , and ξ_6 , and
determining the weighted energy terms ζ_1 , and ζ_2 by using the allocated energy E_k for $k = 1, \dots, K^*$ in the following equations:

$$15 \quad \zeta_1 = \frac{E_k}{1 + E_k \xi_1}, \quad \zeta_2 = \frac{E_k}{1 + E_k (\xi_2 - \zeta_1 |\xi_5|^2)};$$

determining the interim matrices \mathbf{Z}_1 , \mathbf{Z}_2 , \mathbf{Z}_3 by solving the following equations:

$$\mathbf{Z}_1 = \vec{d}_1 \vec{d}_1^H, \quad \mathbf{Z}_2 = \vec{d}_2 \vec{d}_2^H, \quad \mathbf{Z}_3 = \vec{d}_1 \vec{d}_2^H;$$

determining the inverse reduced covariance matrix \mathbf{D}_k^{-1} by solving the following equation:

$$\mathbf{D}_k^{-1} = \mathbf{C}_{k-1}^{-1} - (\zeta_1^2 \zeta_2 |\xi_5|^2 + \zeta_1) \mathbf{Z}_1 - \zeta_2 \mathbf{Z}_2 + \zeta_1 \zeta_2 (\xi_5 \mathbf{Z}_3 + \xi_5^* \mathbf{Z}_3^H); \text{ and}$$

constructing the inverse of the covariance matrix \mathbf{C}_k^{-1} by using the following equation:

$$\mathbf{C}_k^{-1} = \mathbf{D}_k^{-1} - \zeta \mathbf{Z}_4;$$

25 wherein the weighted energy term ζ is determined by solving the following equation:

$$\zeta = \frac{E_k}{1 + E_k \left(\xi - \frac{E_k |\xi_3|^2}{1 + E_k \xi_1} - \frac{E_k (|\xi_4|^2 - 2 \frac{E_k}{1 + E_k \xi_1} \xi_6 + \left(\frac{E_k}{1 + E_k \xi_1} \right)^2 |\xi_5|^2 |\xi_3|^2)}{1 + E_k (\xi_2 - \frac{E_k}{1 + E_k \xi_1} |\xi_5|^2)} \right)} ;$$

wherein the interim matrix \mathbf{Z}_4 is determined by using the following equation:

$$\mathbf{Z}_4 = \vec{d}_3 \vec{d}_3^H ; \text{ and}$$

wherein the distance vector \vec{d}_3 is determined using the following equation:

$$5 \quad \vec{d}_3 = \mathbf{D}_k^{-1} \vec{q}_k.$$

15. The method according to claim 1, wherein the number of signature sequences K^* is determined and the signature sequences S to be used to spread the data are selected using an iterative water-filling based continuous bit loading method comprising:

determining the number of signature sequences K^* by determining the total number of signature sequences that maximize the total data rate $b_{T,K}$.

16. The method according to claim 15, wherein for a plurality of matched filter

15 signature sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$, the iterative water-filling optimisation method further comprises:

setting an initial number of signature sequences K_{opt} ;

determining the system values λ_k associated with the initial number of signature sequences K_{opt} ;

20 determining a channel SNR vector \vec{g} using the following equation

$$[\vec{g}]_k = \frac{\lambda_k}{E_k (1 - \lambda_k)};$$

for an energy allocation E_k ;

determining a water filling constant K_{WF} using the following equation:

$$K_{WF} = \frac{1}{K_{opt}} \left(E_T + \Gamma \sum_{k=1}^{K_{opt}} \left[\frac{1}{\vec{g}} \right]_k \right);$$

wherein E_T is a total transmission energy;

determining energies E_k to be allocated to each signature sequence k of the plurality of signature sequences K by using the following equation:

$$E_k = K_{WF} - \left\lceil \frac{\Gamma}{g_k} \right\rceil$$

5 reordering the matched filter signature sequences \vec{q}_k , $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ in accordance with the system values $\lceil \vec{\lambda} \rceil_k = \lambda_k$ associated with the initial number of signature sequences K_{opt} in an ascending order to provide an ordered list of matched filter signature sequences;

10 deleting the first matched filter sequences \vec{q}_1 , $\vec{q}_{1,1}$ and $\vec{q}_{1,2}$ of the ordered list of matched filter signature sequences; and

setting $K_{opt} = K_{opt} - 1$ if the allocated energy E_1 is negative;

repeating the above steps;

determining a total number of bits $b_{T,K}$ to be transmitted by using

$$b_{T,K} = \sum_{k=1}^{K_{opt}} \log_2 \left(1 + \frac{\lambda_k}{\Gamma(1 - \lambda_k)} \right);$$

15 determining the number of signature sequences K^* of the plurality of signature sequences K under consideration by using $K^* = K_{opt}$.

17. The method according to claim 16, wherein the iterative water filling method determines the number of signature sequences K^* by:

20 initially setting the total number of signature sequences $\mathbf{K}^* = \mathbf{K}$;

determining a total data rate to be transmitted and the number of signature sequences K^* for values of $K^* = K - 1$ until the number of signature sequences K^* reaches the value $K^* = 1$; and

25 selecting the number of signature sequences K^* for the plurality of signature sequences K which maximises the total data rate.

18. The method according to any preceding claim, wherein the system value is determined by the following equation:

$$\lambda_k = \gamma_k \varepsilon_k$$

wherein γ_k is the signal-to-noise ratio at an output of a de-spreading unit of an MMSE receiver, and ε_k is the mean-square-error at the output of the de-spreading unit, the mean-square-error relating to the system value by $\lambda_k = 1 - \varepsilon_k$.

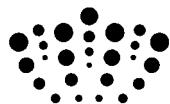
5

19. The method according to any one of claims 1 to 11 and 14 to 17, wherein the system value λ_k is determined in accordance with the following equation based upon a receiver without a successive interference cancelling, SIC, scheme:

$$\lambda_k = E_k \vec{q}_k^H \mathbf{C}^{-1} \vec{q}_k$$

10 wherein \mathbf{C} is expressed in terms of the extended matched filter signature sequence matrix \mathbf{Q}_e and the extended amplitude matrix $\mathbf{A}_e = \mathbf{I}_3 \otimes \mathbf{A}$ using the following equation $\mathbf{C} = \mathbf{Q}_e \mathbf{A}_e^2 \mathbf{Q}_e^H + 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ wherein \otimes is the kronecker product and the amplitude matrix $\mathbf{A} = \text{diag}[\sqrt{E_1}, \sqrt{E_2}, \dots, \sqrt{E_K}]$, wherein the matched filter despreading signature sequence matrix $\mathbf{Q} = [\vec{q}_1, \dots, \vec{q}_k, \dots, \vec{q}_K]$ is formed to construct 15 the extended matched filter signature sequence matrix \mathbf{Q}_e by using the following equation $\mathbf{Q}_e = [\mathbf{Q}, \mathbf{Q}_1, \mathbf{Q}_2]$, wherein \mathbf{Q}_1 represents the matched filter sequences for the previous symbol period and \mathbf{Q}_2 represents the matched filter sequences for the next symbol period, wherein \mathbf{Q}_1 and \mathbf{Q}_2 are expressed in accordance with the following equations $\mathbf{Q}_1 = [\mathbf{I}_{N_R} \otimes (\mathbf{J}_{N+L-1}^T)^N] \mathbf{Q} = [\vec{q}_{1,1}, \dots, \vec{q}_{k,1}, \dots, \vec{q}_{K,1}]$ and 20 $\mathbf{Q}_2 = [\mathbf{I}_{N_R} \otimes \mathbf{J}_{N+L-1}^N] \mathbf{Q} = [\vec{q}_{1,2}, \dots, \vec{q}_{k,2}, \dots, \vec{q}_{K,2}]$, wherein $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ are the ISI matched filter sequences for the previous and next symbol periods.

20. The method according to any one of claims 1 to 10 and 12 to 17, wherein the system value λ_k is determined in accordance with the following equation based upon 25 a receiver having a successive interference cancelling, SIC, scheme:


$$\lambda_k = E_k \vec{q}_k^H \mathbf{C}_k^{-1} \vec{q}_k$$

wherein \mathbf{C}_{k-1} is a covariance matrix which is iteratively determined by solving the following equation:

$$\mathbf{C}_k = \mathbf{C}_{k-1} + E_k \vec{q}_k \vec{q}_k^H + E_k \vec{q}_{k,1} \vec{q}_{k,1}^H + E_k \vec{q}_{k,2} \vec{q}_{k,2}^H$$

for $k = 1, \dots, K^*$ when using $\mathbf{C}_0 = 2\sigma^2 \mathbf{I}_{N_R(N+L-1)}$ wherein $\vec{q}_{k,1}$ and $\vec{q}_{k,2}$ are the ISI matched filter sequences for the previous and next symbol periods and \vec{q}_k is the matched filter despreading signature sequence.

- 5 21. Apparatus arranged to perform the method of any one of claims 1 to 20.
22. The apparatus according to claim 21, wherein the apparatus is a radio transmission base station.
- 10 23. A computer readable medium implementable on a computer and operable, in use, to perform the method of any one of claims 1 to 20.

Application No: GB1207546.1
Claims searched: 1 to 23

Examiner: Dan Hickery
Date of search: 28 October 2013

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance
A,E	-	WO 2013/034875 A1 (IMP INNOVATIONS)
A	-	US 5781542 A (TANAKA)
A	-	JP 2006340051 A (MATSUSHITA)
A	-	"Transmitter adaptation for CDMA systems via power control and code diversity"; Tat M. Lok; IEEE Military Communications Conference MILCOM 2001. Communications for Network-Centric Operations: Creating the Information Force; Volume 2; Pages 1185 - 1189

Categories:

X	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC^X :

Worldwide search of patent documents classified in the following areas of the IPC

H04B; H04J

The following online and other databases have been used in the preparation of this search report

Online: EPODOC, WPI, INSPEC

International Classification:

Subclass	Subgroup	Valid From
H04B	0007/06	01/01/2006
H04J	0013/00	01/01/2011