

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 June 2012 (14.06.2012)

(10) International Publication Number
WO 2012/078591 A8

(51) International Patent Classification:
A61K 31/47 (2006.01)

Dan [IL/IL]; 10 Havazelet Street, 52365 Ramat-Gan (IL).
KOFLER, Dina [IL/IL]; Hadafna 24, Kadima-Zoran (IL).

(21) International Application Number:
PCT/US2011/063460

(74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 30
Rockefeller Plaza, New York, NY 10112 (US).

(22) International Filing Date:
6 December 2011 (06.12.2011)

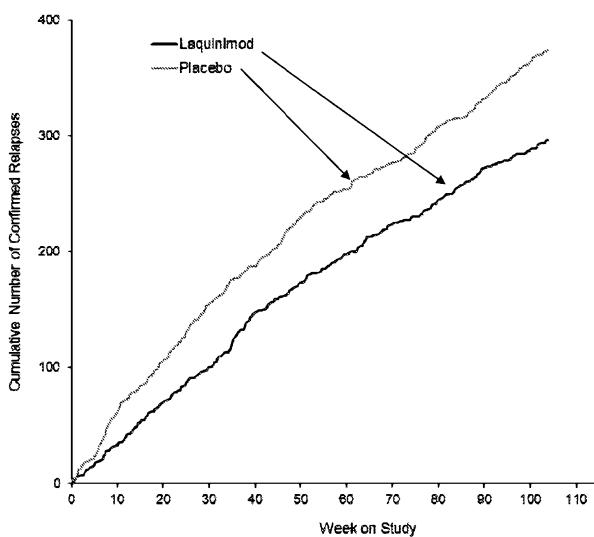
(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/420,742 7 December 2010 (07.12.2010) US
61/542,996 4 October 2011 (04.10.2011) US

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

(71) Applicant (for all designated States except BB, US):
TEVA PHARMACEUTICAL INDUSTRIES LTD.
[IL/IL]; 5 Basel Street, P.O. Box 3190, 49131 Petach-Tikva (IL).

(71) Applicant (for BB only): TEVA PHARMACEUTICALS
USA, INC. [US/US]; 1090 Horsham Road, North Wales,
PA 19454 (US).


(72) Inventors; and

(75) Inventors/Applicants (for US only): TARCIC, Nora
[IL/IL]; Migdal David 29/1, Modiin (IL). BAR-ZOHAR,

[Continued on next page]

(54) Title: USE OF LAQUINIMOD FOR REDUCING FATIGUE, IMPROVING FUNCTIONAL STATUS, AND IMPROVING
QUALITY OF LIFE IN MULTIPLE SCLEROSIS PATIENTS

FIGURE 1

(57) Abstract: The subject invention provides methods for reducing or inhibiting progression of the level of fatigue in a multiple sclerosis human patient, for improving or inhibiting deterioration of the functional status of a multiple sclerosis human patient, and for improving or inhibiting deterioration of the general health of a multiple sclerosis human patient, comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof. The subject invention also provides a method for providing neuroprotection to a human subject, the method comprising orally administering to the human subject laquinimod or a pharmaceutically acceptable salt thereof.

WO 2012/078591 A8

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (48) **Date of publication of this corrected version:**
GW, ML, MR, NE, SN, TD, TG).

2 August 2012

Published:

— *with international search report (Art. 21(3))*

(15) Information about Correction:

see Notice of 2 August 2012

**USE OF LAQUINIMOD FOR REDUCING FATIGUE, IMPROVING FUNCTIONAL STATUS,
AND IMPROVING QUALITY OF LIFE IN MULTIPLE SCLEROSIS PATIENTS**

This application claims priority of U.S. Provisional Applications Nos. 61/542,996, filed October 4, 2011 and 61/420,742, filed 5 December 7, 2010, the contents of each of which are hereby incorporated by reference.

Throughout this application, various publications are referred to by first author and year of publication. Full citations for these publications are presented in a References section immediately 10 before the claims. Disclosures of the publications cited in the References section in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as of the date of the invention described herein.

Background

15 Multiple Sclerosis (MS) is a neurological disease affecting more than 1 million people worldwide. It is the most common cause of neurological disability in young and middle-aged adults and has a major physical, psychological, social and financial impact on subjects and their families, friends and bodies responsible for 20 health care. (EMEA Guideline, 2006)

It is generally assumed that MS is mediated by some kind of autoimmune process possibly triggered by infection and superimposed upon a genetic predisposition. It is a chronic inflammatory condition that damages the myelin of the Central Nervous System 25 (CNS). The pathogenesis of MS is characterized by the infiltration of autoreactive T-cells from the circulation directed against myelin antigens into the CNS. (Bjartmar, 2002) In addition to the inflammatory phase in MS, axonal loss occurs early in the course of the disease and can be extensive over time, leading to the 30 subsequent development of progressive, permanent, neurologic impairment and, frequently, severe disability. (Neuhaus, 2003) Symptoms associated with the disease include fatigue, spasticity, ataxia, weakness, bladder and bowel disturbances, sexual dysfunction, pain, tremor, paroxysmal manifestations, visual impairment,

psychological problems and cognitive dysfunction. (EMEA Guideline, 2006)

Various MS disease stages and/or types are described in Multiple Sclerosis Therapeutics. (Duntiz, 1999) Among them, relapsing-remitting multiple sclerosis (RRMS) is the most common form at the time of initial diagnosis. Many subjects with RRMS have an initial relapsing-remitting course for 5-15 years, which then advances into the secondary progressive MS (SPMS) disease course. Relapses result from inflammation and demyelination, whereas restoration of nerve conduction and remission is accompanied by resolution of inflammation, redistribution of sodium channels on demyelinated axons and remyelination. (Neuhaus, 2003; Noseworthy, 2000)

In April 2001, an international panel in association with the National MS Society of America recommended diagnostic criteria for multiple sclerosis. These criteria became known as the McDonald Criteria. The McDonald Criteria make use of MRI techniques and are intended to replace the Poser Criteria and the older Schumacher Criteria. (McDonald, 2001) The McDonald Criteria was revised in March 2005 by an international panel. (Polman, 2005)

Intervention with disease-modifying therapy at relapsing stages of MS is suggested to reduce and/or prevent accumulating neurodegeneration. (Hohlfeld, 2000; De Stefano, 1999) There are currently six disease-modifying medications approved for use in relapsing MS (RMS), which includes RRMS and SPMS. (The Disease Modifying Drug Brochure, 2006) These include interferon beta 1-a (Avonex® and Rebif®), interferon beta 1-b (Betaseron®), glatiramer acetate (Copaxone®), mitoxantrone (Novantrone®) and natalizumab (Tysabri®). Most of them are believed to act as immunomodulators. Mitoxantrone and natalizumab are believed to act as immunesuppressants. However, the mechanisms of action of each have been only partly elucidated. Immunosuppressants or cytotoxic agents are used in some subjects after failure of conventional therapies. However, the relationship between changes of the immune response induced by these agents and the clinical efficacy in MS is far from settled. (EMEA Guideline, 2006)

Other therapeutic approaches include symptomatic treatment which refers to all therapies applied to improve the symptoms caused by the disease (EMEA Guideline, 2006) and treatment of acute relapses with corticosteroids. While steroids do not affect the course of MS over time, they can reduce the duration and severity of attacks in some subjects.

Laquinimod

Laquinimod sodium is a novel synthetic compound with high oral bioavailability, which has been suggested as an oral formulation for the treatment of MS. (Polman, 2005; Sandberg-Wollheim, 2005)

Studies have shown laquinimod to reduce development of active MRI lesions in relapsing MS. (Polman, 2005) However, the clinical significance of MRI brain lesion reduction alone is still unsettled. Although MRI lesions are used as the primary outcome measure in some studies, others have suggested that correlation between MRI abnormalities and clinical disease activity in patients with RRMS is weak and that such measurement should be used as secondary outcomes rather than as surrogate markers of clinical responses. (Rudick, 1999; Miki, 1999; Barkhof, 1999) Further, according to pharmaceutical regulatory bodies such as the European Medicines Agency (EMEA), the correlation between MRI results and clinical outcomes has not been proved strong enough so as to accept MRI results as validated surrogate endpoint in pivotal studies. Therefore, according to the EMEA, the relevant efficacy parameter for clinical trials is the accumulation of disability and relapse rate (for RRMS). (EMEA Guideline, 2006) Thus, relapse rate and progression of disability are the currently accepted indicators of the effectiveness of a treatment for RRMS, but these have not previously been established for laquinimod.

The EMEA MS clinical trials guideline further states that the annual relapse rate in RRMS is usually low and that, generally, progression of disability takes years. Consequently, confirmatory studies with products intended to modify the course of the disease should be large scale and long enough to have a substantial proportion of patients suffering relapses or showing progression of disability.

Two years is considered the minimum duration to demonstrate efficacy. (EMEA Guideline, 2006)

Furthermore, existing literatures reached different conclusions as to the effective dose of laquinimod for the treatment of MS. The 5 0.3mg/day oral dose was shown to reduce development of active MRI lesions in relapsing MS (which includes RRMS and SPMS) in one study (Polman, 2005), while another study showed the same dose to have neither MRI nor clinical effect as compared to placebo. (Comi, 2007)

Summary of the Invention

The subject invention provides a method for reducing or inhibiting progression of the level of fatigue in a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby reduce or inhibit progression of the level of fatigue in the multiple sclerosis human patient.

The subject invention also provides a method of improving or inhibiting deterioration of the functional status of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the functional status of the multiple sclerosis human patient.

The subject invention also provides a method of improving or inhibiting deterioration of the general health of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the general health in the multiple sclerosis human patient.

The subject invention also provides a method for providing neuroprotection to a human subject, the method comprising orally administering to the human subject laquinimod or a pharmaceutically acceptable salt thereof so as to thereby provide neuroprotection to the human subject.

Brief Description of the Drawings

Figure 1: ALLEGRO Result - Cumulative number of confirmed relapses: Number of confirmed relapses over time for laquinimod and placebo-treated patients.

5 **Figure 2:** ALLEGRO Result - Time to 3-month confirmed disability progression: survival plot for the risk of 3-month confirmed EDSS progression for both laquinimod and placebo-treated patients.

10 **Figure 3:** ALLEGRO Result - Number of GdE lesions: Number of GdE lesions at baseline, at 12 and 24 months, and cumulative at 24 months.

Figure 4: ALLEGRO Result - Percent brain volume change: Percent change in brain volume for laquinimod and placebo-treated patients.

Detailed Description of the Invention

The subject invention provides a method for reducing or inhibiting progression of the level of fatigue in a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby reduce or inhibit progression of the level of fatigue in the multiple sclerosis human patient. In one embodiment, the patient is a relapsing-remitting multiple sclerosis human patient.

In one embodiment, the level of fatigue is assessed by the patient's Modified Fatigue Impact Scale (MFIS) score. In another embodiment, the administration of laquinimod decreased the human patient's MFIS score, compared to a patient not receiving the laquinimod treatment. In another embodiment, the administration of laquinimod decreased the human patient's MFIS score, compared to the patient at the start of the laquinimod treatment. In yet another embodiment, the MFIS score decreased within 24 months of the start of laquinimod treatment.

The subject invention also provides a method of improving or inhibiting deterioration of the functional status of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the functional status of the multiple sclerosis human patient. In one embodiment, the patient is a relapsing-remitting multiple sclerosis human patient.

In one embodiment, the functional status of the patient is measured by the patient's Short-Form General Health survey (SF-36) Subject-Reported Questionnaire score. In another embodiment, the administration of laquinimod decreased the human patient's SF-36 score, compared to a patient not receiving the laquinimod treatment. In another embodiment, the administration of laquinimod decreased the human patient's SF-36 score, compared to the patient at the start of the laquinimod treatment. In another embodiment, the patient's SF-36 mental component summary score (MSC) is decreased. In another embodiment, the patient's SF-36 physical component

summary score (PSC) is decreased. In yet another embodiment, the SF-36 score is decreased within 24 months of the start of laquinimod treatment.

The subject invention also provides a method of improving or 5 inhibiting deterioration of the general health of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the general health in the multiple sclerosis human patient. In one 10 embodiment, the patient is a relapsing-remitting multiple sclerosis human patient.

In one embodiment, the general health of the patient is assessed by the patient's EQ-5D Standardized Questionnaire score. In another embodiment, the administration of laquinimod increased the human 15 patient's EQ-5D score, compared to a patient not receiving the laquinimod treatment. In another embodiment, the administration of laquinimod increased the human patient's EQ-5D score, compared to the patient at the start of the laquinimod treatment. In yet another embodiment, the EQ-5D score increased within 24 months of 20 the start of laquinimod treatment.

In one embodiment, laquinimod is administered at a daily dose of 0.3-0.9 mg laquinimod. In another embodiment, laquinimod is administered at a daily dose of 0.6 mg laquinimod. In another embodiment, the laquinimod is administered in the form of laquinimod sodium. In yet 25 another embodiment, the administration is for a period of greater than 24 weeks.

The subject invention also provides a method for providing neuroprotection to a human subject, the method comprising orally administering to the human subject laquinimod or a pharmaceutically 30 acceptable salt thereof so as to thereby provide neuroprotection to the human subject.

In one embodiment, laquinimod is administered at a daily dose of greater than 0.6 mg laquinimod. In another embodiment, laquinimod is administered at a daily dose of less than 0.6 mg laquinimod. In

another embodiment, laquinimod is administered more often than once daily. In another embodiment, laquinimod is administered less often than once daily.

In one embodiment, the subject is afflicted with a progressive form 5 of multiple sclerosis. In another embodiment, the subject is not afflicted with relapsing-remitting multiple sclerosis. In another embodiment, the subject is not afflicted with insulin-dependent diabetes mellitus, systemic lupus erythematosis, lupus nephritis, lupus arthritis, rheumatoid arthritis, inflammatory bowel disease, 10 crohn's disease, psoriasis, inflammatory respiratory disorder, atherosclerosis, stroke, Alzheimer's disease, or a BDNF-related disease.

In an embodiment, the BDNF-related disease is Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, a depressive 15 disorder, an anxiety disorder, retinitis pigmentosa, erectile dysfunction, a memory disorder, Rett syndrome, Alzheimer's disease, bipolar disorder or acute mania. In another embodiment, the depressive disorder is depression, depression in cancer patients, depression in Parkinson's disease patients, postmyocardia infarction 20 depression, depression in patients with human immunodeficiency virus (HIV), subsyndromal symptomatic depression, depression in infertile women, pediatric depression, major depression, single episode depression, recurrent depression, child abused-induced depression, post-partum depression, DSM-IV major depression, treatment-refractory 25 major depression, severe depression, psychotic depression, post-stroke depression, neuropathic pain, manic depressive illness including manic depressive illness with mixed episodes and manic depressive illness with depressive episodes, seasonal affective disorder, bipolar depression BP I, bipolar depression BP II, or major 30 depression with dysthymia. In yet another embodiment, the anxiety disorder is generalized anxiety, panic disorder, phobia, post traumatic stress disorder, obsessive compulsive disorder, separation anxiety, or childhood anxiety.

In one embodiment, the subject is experiencing an onset of relapse. 35 In another embodiment, the subject is not ambulatory. In another

embodiment, the subject has a converted Kurtzke EDSS score of more than 5.5. In another embodiment, the subject has not experienced any of: a) at least one documented relapse in the 12 months prior of the start of laquinimod treatment, b) at least two documented relapses 5 in the 24 months prior of the start of laquinimod treatment, or c) one documented relapse between 12 and 24 months prior of the start of laquinimod treatment with at least one documented T₁-Gd enhancing lesion in an MRI performed within 12 months prior of the start of laquinimod treatment. In another embodiment, the subject has disease 10 duration of less than 6 months from the first symptom prior of the start of laquinimod treatment. In another embodiment, the subject is younger than 18 years old or older than 55 years old.

In an embodiment, the administration of laquinimod reduces neuronal dysfunction, reduces neuronal injury, reduces neuronal degeneration, 15 and/or reduces neuronal apoptosis. In another embodiment, the administration of laquinimod reduces neuronal dysfunction in the Central Nervous System, reduces neuronal injury in the Central Nervous System, reduces neuronal degeneration in the Central Nervous System, an/or reduces neuronal apoptosis in the Central Nervous 20 System. In yet another embodiment, the administration of laquinimod reduces neuronal dysfunction in the peripheral nervous system (PNS) consists, reduces neuronal injury in the peripheral nervous system (PNS), reduces neuronal degeneration in the peripheral nervous system (PNS), an/or reduces neuronal apoptosis in the peripheral 25 nervous system (PNS).

The subject invention also provides laquinimod for use in maintaining or reducing the level of fatigue in a multiple sclerosis human patient, for use in maintaining or improving the functional status of a multiple sclerosis human patient, for use in maintaining or 30 improving the general health of a multiple sclerosis human patient, and for use in providing neuroprotection to a human subject.

The subject invention also provides a method of reducing the relapse rate in a relapsing-remitting multiple sclerosis human patient, the method comprising orally administering to the patient laquinimod or a

pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby reduce the relapse rate.

In one embodiment, the relapse rate is reduced by at least 30%. In another embodiment, the relapse rate is reduced by at least 70%. In 5 one embodiment, the laquinimod is administered in the form of laquinimod sodium.

In one embodiment, the laquinimod is administered as monotherapy for relapsing-remitting multiple sclerosis. In another embodiment, the laquinimod is administered as adjunct therapy with an other 10 relapsing-remitting multiple sclerosis treatment. In yet another embodiment, the other relapsing-remitting multiple sclerosis treatment is administration of interferon beta 1-a, interferon beta 1-b, glatiramer acetate, mitoxantrone or natalizumab.

In one embodiment, the administration is for a period of greater 15 than 24 weeks.

The subject invention also provides a method of reducing the likelihood that a relapsing-remitting multiple sclerosis human patient would experience a confirmed relapse within a predetermined time period, the method comprising orally administering to the 20 patient laquinimod or a pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby reduce the likelihood that the relapsing-remitting multiple sclerosis human patient would experience a confirmed relapse within the predetermined period. In one embodiment, the predetermined time 25 period is 12 months. In another embodiment, the predetermined time period is 24 months.

In one embodiment, the relapse rate or the likelihood (risk) of relapse is reduced by at least 20%, compared to a patient not receiving the laquinimod treatment. In another embodiment, the 30 relapse rate or the likelihood (risk) of relapse is reduced by at least 25%, compared to a patient not receiving the laquinimod treatment. In another embodiment, the relapse rate or the likelihood (risk) of relapse is reduced by at least 30%, compared to a patient not receiving the laquinimod treatment. In yet another embodiment,

the relapse rate or the likelihood (risk) of relapse is reduced by at least 70%, compared to a patient not receiving the laquinimod treatment.

5 In one embodiment, the relapse is a severe relapse requiring hospitalization or IV-steroid treatment. In another embodiment, the patient's annualized rate of relapses requiring hospitalization is reduced by at least 20%, or at least 25%, compared to a patient not receiving the laquinimod treatment.

10 The subject invention further provides a method of decreasing the severity or duration of a relapse in a relapsing-remitting multiple sclerosis human patient, the method comprising orally administering to the patient laquinimod or a pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby decrease the severity or duration of the relapse in the relapsing-15 remitting multiple sclerosis human patient.

20 In an embodiment the administration of the laquinimod increased the odds of the patient to be relapse-free. In another embodiment, the patient receiving laquinimod had approximately 55% better odds to be relapse-free, compared to a patient not receiving the laquinimod treatment.

In further embodiments of the invention, the patient's annualized relapse rate for the first year of treatment is reduced, compared to a patient not receiving the laquinimod treatment. In one embodiment, the reduction is by at least 20%.

25 In an embodiment, the risk of the patient experiencing a relapse severe enough to require hospitalization is reduced, compared to a patient not receiving the laquinimod treatment. In another embodiment, the risk is reduced by at least 20% or at least 30%. In another embodiment, the risk of the patient experiencing a relapse 30 severe enough to require IV-steroids treatment is reduced, compared to a patient not receiving the laquinimod treatment. In another embodiment, the risk is reduced by at least 20% or at least 30%, compared to a patient not receiving the laquinimod treatment.

The subject invention also provides a method for improving quality of life and general health of a relapsing-remitting multiple sclerosis human patient, the method comprising orally administering to the patient laquinimod or a pharmaceutically acceptable salt thereof at a 5 daily dose of 0.6 mg laquinimod so as to thereby improve quality of life and general health of the patient.

The subject invention also provides a method of reducing the accumulation of physical disability in a relapsing-remitting multiple sclerosis human patient, the method comprising orally 10 administering to the patient laquinimod or a pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby reduce the accumulation of physical disability in the remitting multiple sclerosis human patient.

In one embodiment, the accumulation of physical disability is 15 assessed by the progression of the subject's MS Functional Composite (MSFC) score. In another embodiment, patient's MSFC score improves within 3 months of first laquinimod treatment. In another embodiment, patient's MSFC score improves within 6 months of first laquinimod treatment. In another embodiment, patient's MSFC score 20 improves within 12 months of first laquinimod treatment. In another embodiment, patient's MSFC score improves within 18 months of first laquinimod treatment. In another embodiment, patient's MSFC score improves within 24 months of first laquinimod treatment.

In one embodiment, the accumulation of physical disability is 25 assessed by the time to confirmed disease progression as measured by Kurtzke Expanded Disability Status Scale (EDSS) score.

In one embodiment, the patient had an EDSS score of 0-5.5 prior to administration of laquinimod. In another embodiment, confirmed disease progression is a 1 point increase of the EDSS score. In one 30 embodiment, the patient had an EDSS score of 5.5 or greater prior to administration of laquinimod. In another embodiment, confirmed disease progression is a 0.5 point increase of the EDSS score.

In one embodiment, time to confirmed disease progression is increased by at least 30%, compared to a patient not receiving the

laquinimod treatment. In another embodiment, time to confirmed disease progression is increased by 20-60%, compared to a patient not receiving the laquinimod treatment. In another embodiment, time to confirmed disease progression is increased by 30-50%, compared to a patient not receiving the laquinimod treatment. In another embodiment, time to confirmed disease progression is increased by at least 50%, compared to a patient not receiving the laquinimod treatment.

In one embodiment, the administration of laquinimod reduces patient's risk for a confirmed progression by at least 30%, compared to a patient not receiving the laquinimod treatment. In another embodiment, the administration of laquinimod reduces patient's risk for a confirmed progression by at least 35%, compared to a patient not receiving the laquinimod treatment. In another embodiment, the administration of laquinimod reduces patient's risk for a confirmed progression by at least 40%, compared to a patient not receiving the laquinimod treatment. In an embodiment, the risk reduction occurred within 3 months of first laquinimod treatment. In another embodiment, the risk reduction occurred within 6 months of first laquinimod treatment. In another embodiment, the risk reduction occurred within 12 months of first laquinimod treatment. In another embodiment, the risk reduction occurred within 18 months of first laquinimod treatment. In another embodiment, the risk reduction occurred within 24 months of first laquinimod treatment.

In one embodiment, the laquinimod is administered in the form of laquinimod sodium. In one embodiment, the laquinimod is administered as monotherapy for relapsing-remitting multiple sclerosis. In another embodiment, the laquinimod is administered as adjunct therapy with an other relapsing-remitting multiple sclerosis treatment. In yet another embodiment, the other relapsing-remitting multiple sclerosis treatment is administration of interferon beta 1-a, interferon beta 1-b, glatiramer acetate, mitoxantrone or natalizumab.

In one embodiment, the administration is for a period of greater than 24 weeks. In another embodiment of any of the methods described

herein, the administration is for a period of greater than 36 weeks. In another embodiment of any of the methods described herein, the administration is for a period of greater than 48 weeks.

The subject invention also provides a pharmaceutical oral unit dosage 5 form of 0.6 mg laquinimod for use in reducing the relapse rate in a relapsing-remitting multiple sclerosis human patient, or for reducing the likelihood that the relapsing-remitting multiple sclerosis human patient would experience a confirmed relapse within a predetermined time period, or for reducing the severity or duration 10 of a relapse in the relapsing-remitting multiple sclerosis human patient.

The subject invention also provides a pharmaceutical oral unit dosage form of 0.6 mg laquinimod for use in reducing the accumulation of physical disability in a relapsing-remitting multiple sclerosis 15 human patient.

The subject invention also provides a method of reducing progression of brain atrophy in a relapsing-remitting multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof at a 20 daily dose of 0.6 mg laquinimod so as to thereby reduce progression of brain atrophy in the human patient.

The subject invention also provides a pharmaceutical oral unit dosage form of 0.6 mg laquinimod for use in reducing brain atrophy in a relapsing-remitting multiple sclerosis human patient.

25 The subject invention also provides a method of reducing MRI-monitored disease activity in a relapse-remitting multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby reduce 30 MRI-monitored disease activity in the relapse-remitting multiple sclerosis human patient.

In an embodiment, the MRI-monitored disease activity is the cumulative number of enhancing lesions on T₁-weighted images, the

cumulative number of new hypointense lesions on T₁-scans, and the cumulative number of new T₂ lesions. In another embodiment, the MRI-monitored disease activity is the mean cumulative number of Gd-Enhancing lesions, Gd-enhanced lesion counts, change in T₂ visible lesion or change in brain volume.

In a further embodiment of the invention, oral administration of laquinimod or a pharmaceutically acceptable salt thereof to the relapse-remitting multiple sclerosis human patient at a daily dose of 0.6 mg laquinimod improves the odds of the patient being free of disease or disease activity. In one embodiment, the patient's odds of being disease free is increased by at least 50% or at least 55%, compared to a patient not receiving the laquinimod treatment. In another embodiment, the patient's odds of being free of disease activity is increased by at least 40% or at least

The subject invention also provides a method of reducing MRI-monitored disease activity in a relapse-remitting multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof at a daily dose of 0.6 mg laquinimod so as to thereby reduce MRI-monitored disease activity in the relapse-remitting multiple sclerosis human patient.

In an embodiment, the MRI-monitored disease activity is the cumulative number of enhancing lesions on T₁-weighted images, the cumulative number of new hypointense lesions on T₁-scans, and the cumulative number of new T₂ lesions. In another embodiment, the MRI-monitored disease activity is the mean cumulative number of Gd-Enhancing lesions, Gd-enhanced lesion counts, change in T₂ visible lesion or change in brain volume.

The subject invention also provides a pharmaceutical oral unit dosage form of 0.6 mg laquinimod for use in reducing MRI-monitored disease activity in a relapse-remitting multiple sclerosis a human patient.

In a further embodiment of the invention, oral administration of laquinimod or a pharmaceutically acceptable salt thereof to the relapse-remitting multiple sclerosis human patient at a daily dose of

0.6 mg laquinimod improves the odds of the patient being free of disease or disease activity. In one embodiment, the patient's odds of being disease free is increased by at least 50% or at least 55%, compared to a patient not receiving the laquinimod treatment. In 5 another embodiment, the patient's odds of being free of disease activity is increased by at least 40% or at least 45%, compared to a patient not receiving the laquinimod treatment.

For the foregoing embodiments, each embodiment disclosed herein is contemplated as being applicable to each of the other disclosed 10 embodiment.

A pharmaceutically acceptable salt of laquinimod as used in this application includes lithium, sodium, potassium, magnesium, calcium, manganese, copper, zinc, aluminum and iron. Salt formulations of laquinimod and the process for preparing the same are described, 15 e.g., in U.S. Patent Application Publication No. 2005/0192315 and PCT International Application Publication No. WO 2005/074899, which are hereby incorporated by reference into this application.

A dosage unit may comprise a single compound or mixtures of compounds thereof. A dosage unit can be prepared for oral dosage 20 forms, such as tablets, capsules, pills, powders, and granules.

Laquinimod can be administered in admixture with suitable pharmaceutical diluents, extenders, excipients, or carriers (collectively referred to herein as a pharmaceutically acceptable carrier) suitably selected with respect to the intended form of 25 administration and as consistent with conventional pharmaceutical practices. The unit will be in a form suitable for oral administration. Laquinimod can be administered alone but is generally mixed with a pharmaceutically acceptable carrier, and co-administered in the form of a tablet or capsule, liposome, or as an 30 agglomerated powder. Examples of suitable solid carriers include lactose, sucrose, gelatin and agar. Capsule or tablets can be easily formulated and can be made easy to swallow or chew; other solid forms include granules, and bulk powders. Tablets may contain suitable binders, lubricants, diluents, disintegrating agents,

coloring agents, flavoring agents flow-inducing agents, and melting agents.

Specific examples of the techniques, pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms of the present invention are described, e.g., in U.S. Patent Application Publication No. 2005/0192315, PCT International Application Publication Nos. WO 2005/074899, WO 2007/047863, and 2007/146248.

General techniques and compositions for making dosage forms useful in the present invention are described in the following references:

7 Modern Pharmaceutics, Chapters 9 and 10 (Banker & Rhodes, Editors, 1979); Pharmaceutical Dosage Forms: Tablets (Lieberman et al., 1981); Ansel, Introduction to Pharmaceutical Dosage Forms 2nd Edition (1976); Remington's Pharmaceutical Sciences, 17th ed. (Mack

Publishing Company, Easton, Pa., 1985); Advances in Pharmaceutical Sciences (David Ganderton, Trevor Jones, Eds., 1992); Advances in Pharmaceutical Sciences Vol 7. (David Ganderton, Trevor Jones, James McGinity, Eds., 1995); Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms (Drugs and the Pharmaceutical Sciences, Series 36

(James McGinity, Ed., 1989); Pharmaceutical Particulate Carriers: Therapeutic Applications: Drugs and the Pharmaceutical Sciences, Vol 61 (Alain Rolland, Ed., 1993); Drug Delivery to the Gastrointestinal Tract (Ellis Horwood Books in the Biological Sciences. Series in Pharmaceutical Technology; J. G. Hardy, S. S. Davis, Clive G.

25 Wilson, Eds.); Modern Pharmaceutics Drugs and the Pharmaceutical Sciences, Vol. 40 (Gilbert S. Banker, Christopher T. Rhodes, Eds.). These references in their entireties are hereby incorporated by reference into this application.

Tablets may contain suitable binders, lubricants, disintegrating agents, coloring agents, flavoring agents, flow-inducing agents, and melting agents. For instance, for oral administration in the dosage

30 unit form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic, pharmaceutically acceptable, inert carrier such as lactose, gelatin, agar, starch, sucrose, glucose,

35 methyl cellulose, dicalcium phosphate, calcium sulfate, mannitol,

sorbitol, microcrystalline cellulose and the like. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn starch, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, povidone, carboxymethylcellulose, 5 polyethylene glycol, waxes, and the like. Lubricants used in these dosage forms include sodium oleate, sodium stearate, sodium benzoate, sodium acetate, sodium chloride, stearic acid, sodium stearyl fumarate, talc and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, 10 croscarmellose sodium, sodium starch glycolate and the like.

Terms

As used herein, and unless stated otherwise, each of the following terms shall have the definition set forth below.

A "dose of 0.6 mg laquinimod" means the amount of laquinimod acid in 15 a preparation is 0.6 mg, regardless of the form of the preparation. Thus, when in the form of a salt, e.g. a laquinimod sodium salt, the weight of the salt form necessary to provide a dose of 0.6 mg laquinimod would be greater than 0.6 mg due to the presence of the additional salt ion.

20 "Relapsing-Remitting Multiple Sclerosis" or "RRMS" is characterized by clearly defined acute attacks with full recovery or with sequelae and residual deficit upon recovery, where periods between disease relapses are characterized by a lack of disease progression. (Lublin, 1996)

25 "Confirmed Relapse" is defined as the appearance of one or more new neurological abnormalities or the reappearance of one or more previously observed neurological abnormalities wherein the change in clinical state lasts at least 48 hours and is immediately preceded by an improving neurological state of at least thirty (30) days from 30 onset of previous relapse. This criterion is different from the clinical definition of relapse which requires only 24 hours duration of symptoms. (EMEA Guideline, 2006) Since "in study" relapse definition must be supported by an objective neurological evaluation

as discussed below, a neurological deficit must sustain long enough to eliminate pseudo-relapses.

An event is a relapse only when the subject's symptoms are accompanied by observed objective neurological changes, consistent

5 with at least one of the following: an increase of at least 0.5 in the EDSS score as compared to the previous evaluation, an increase of one grade in the score of 2 or more of the 7 FS functions as compared to the previous evaluation, or an increase of 2 grades in the score of one FS as compared to the previous evaluation.

10 In addition, the subject must not be undergoing any acute metabolic changes such as fever or other medical abnormality. A change in bowel/bladder function or in cognitive function must not be entirely responsible for the changes in EDSS or FS scores.

"Relapse Rate" is the number of confirmed relapses per unit time. 15 "Annualized relapse rate" is the mean value of the number of confirmed relapses of each patient multiplied by 365 and divided by the number of days that patient is on the study drug.

"Expanded Disability Status Scale" or "EDSS" is a rating system that is frequently used for classifying and standardizing the condition 20 of people with multiple sclerosis. The score ranges from 0.0 representing a normal neurological exam to 10.0 representing death due to MS. The score is based upon neurological testing and examination of functional systems (FS), which are areas of the central nervous system which control bodily functions. The 25 functional systems are: Pyramidal (ability to walk), Cerebellar (coordination), Brain stem (speech and swallowing), Sensory (touch and pain), Bowel and bladder functions, Visual, Mental, and Other (includes any other neurological findings due to MS). (Kurtzke JF, 1983)

30 A "confirmed progression" of EDSS, or "confirmed disease progression" as measured by EDSS score is defined as a 1 point increase from baseline EDSS if baseline EDSS was between 0 and 5.0, or a 0.5 point increase if baseline EDSS was 5.5. In order to be considered a confirmed progression, the change (either 1 point or 0.5 points) must

be sustained for at least 3 months. In addition, confirmation of progression cannot be made during a relapse.

“Adverse event” or “AE” means any untoward medical occurrence in a clinical trial subject administered a medicinal product and which 5 does not have a causal relationship with the treatment. An adverse event can therefore be any unfavorable and unintended sign including an abnormal laboratory finding, symptom, or disease temporally associated with the use of an investigational medicinal product, whether or not considered related to the investigational medicinal 10 product.

“Ambulation Index” or “AI” is a rating scale developed by Hauser et al. to assess mobility by evaluating the time and degree of assistance required to walk 25 feet. Scores range from 0 (asymptomatic and fully active) to 10 (bedridden). The patient is 15 asked to walk a marked 25-foot course as quickly and safely as possible. The examiner records the time and type of assistance (e.g., cane, walker, crutches) needed. (Hauser, 1983)

“EQ-5D” is a standardized questionnaire instrument for use as a measure of health outcome applicable to a range of health conditions 20 and treatments. It provides a simple descriptive profile and a single index value for health status that can be used in the clinical and economic evaluation of health care as well as population health surveys. EQ-5D was developed by the “EuroQoL” Group which comprises a network of international, multilingual, 25 multidisciplinary researchers, originally from seven centers in England, Finland, the Netherlands, Norway and Sweden. The EQ-5D questionnaire is in the public domain and can be obtained from EuroQoL.

“Gd-enhancing lesion” refers to lesions that result from a breakdown 30 of the blood-brain barrier, which appear in contrast studies using gadolinium contrast agents. Gadolinium enhancement provides information as to the age of a lesion, as Gd-enhancing lesions typically occur within a six week period of lesion formation.

"Magnetization Transfer Imaging" or "MTI" is based on the magnetization interaction (through dipolar and/or chemical exchange) between bulk water protons and macromolecular protons. By applying an off resonance radio frequency pulse to the 5 macromolecular protons, the saturation of these protons is then transferred to the bulk water protons. The result is a decrease in signal (the net magnetization of visible protons is reduced), depending on the magnitude of MT between tissue macromolecules and bulk water. "MT" or "Magnetization Transfer" refers to the 10 transfer of longitudinal magnetization from the hydrogen nuclei of water that have restricted motion to the hydrogen nuclei of water that moves with many degrees of freedom. With MTI, the presence or absence of macromolecules (e.g. in membranes or brain tissue) can be seen. (Mehta, 1996; Grossman, 1994)

15 "Magnetization Resonance Spectroscopy" or "MRS" is a specialized technique associated with magnetic resonance imaging (MRI). MRS is used to measure the levels of different metabolites in body tissues. The MR signal produces a spectrum of resonances that correspond to different molecular arrangements of the isotope being "excited". 20 This signature is used to diagnose certain metabolic disorders, especially those affecting the brain, (Rosen, 2007) as well as to provide information on tumor metabolism. (Golder, 2007)

25 "Modified Fatigue Impact Scale" or "MFIS" is a validated specific subject-reported outcome measure developed to evaluate the impact of fatigue on the lives of people with MS. This instrument provides an assessment of the effects of fatigue in terms of physical, cognitive, and psychosocial functioning. The full-length MFIS consists of 21 items while the abbreviated version has 5 items. (Fisk et al, 1994)

30 "MS Functional Composite" or "MSFC" is a clinical outcome measure for MS. The MSFC comprises quantitative functional measures of three key clinical dimensions of MS: leg function/ambulation, arm/hand function, and cognitive function. Scores on component measures are converted to standard scores (z-scores), which are averaged to form a single MSFC score. (Fischer, 1999)

“SF-36” is a multi-purpose, short-form health survey with 36 questions which yields an 8-scale profile of functional health and well-being scores as well as psychometrically-based physical and mental health summary measures and a preference-based health utility 5 index. It is a generic measure, as opposed to one that targets a specific age, disease, or treatment group. The survey is developed by and can be obtained from QualityMetric, Inc. of Providence, RI.

“T1-weighted MRI image” refers to an MR-image that emphasizes T1 contrast by which lesions may be visualized. Abnormal areas in a 10 T1-weighted MRI image are “hypointense” and appear as dark spots. These spots are generally older lesions.

“T2-weighted MRI image” refers to an MR-image that emphasizes T2 contrast by which lesions may be visualized. T2 lesions represent new inflammatory activity.

15 A “pharmaceutically acceptable carrier” refers to a carrier or excipient that is suitable for use with humans and/or animals without undue adverse side effects (such as toxicity, irritation, and allergic response) commensurate with a reasonable benefit/risk ratio. It can be a pharmaceutically acceptable solvent, suspending 20 agent or vehicle, for delivering the instant compounds to the subject.

It is understood that where a parameter range is provided, all 25 integers within that range, and tenths thereof, are also provided by the invention. For example, “5-10%” includes 5.0%, 5.1%, 5.2%, 5.3%, 5.4% etc. up to 10.0%.

This invention will be better understood by reference to the Experimental Details which follow, but those skilled in the art will readily appreciate that the specific experiments detailed are only 30 illustrative of the invention as described more fully in the claims which follow thereafter.

Experimental Details**EXAMPLE 1: Clinical Trial (Phase III) - Assessment of Oral Laquinimod in Preventing Progression of MS**

A multinational (24 countries), multicenter (approximately 139 sites), randomized, double-blinded, parallel-group, placebo-controlled clinical trial ("ALLEGRO" or MS-LAQ-301) was conducted to evaluate the efficacy, safety and tolerability of daily oral administration of laquinimod 0.6 mg in subjects with relapsing remitting multiple sclerosis (RRMS) for a 24 months duration.

One thousand one hundred and six (1106) patients were equally randomized to either laquinimod 0.6mg or placebo and treated in a double-blind manner and baseline characteristics were balanced between groups. The primary endpoint of the study was the number of confirmed relapses during the double-blind treatment period, which corresponds to the annualized relapse rate (ARR - number of relapses divided by total exposure of all patients). Secondary endpoints included disability as measured by Expanded Disability Status Scale (EDSS) changes confirmed at 3 months, and cumulative number of gadolinium enhancing (GdE) and new/enlarging T2 MRI lesions.

20 *Study Title*

A multinational, multicenter, randomized, double-blind, parallel-group, placebo-controlled study, to evaluate the safety, tolerability and efficacy of daily oral administration of laquinimod 0.6 mg in subjects with relapsing remitting multiple sclerosis (RRMS).

Study Duration

Screening phase: 1 month.

Double blind treatment phase: 24 months of once-daily oral administration of daily dose of 0.6 mg laquinimod or matching placebo.

Upon blinded variance and power reassessment of the population progression (planned prior to first subject completes the 20 months of treatment), the double blind study duration may be extended to 30 months. This is planned in order to enhance the statistical power 5 to detect the effect of laquinimod on disability accumulation. The recommendation to extend the study duration is based on a pre-defined rule.

Study Population

Relapsing Remitting Multiple Sclerosis (RRMS).

10 *Study Design*

Eligible subjects were equally randomized 1:1 into one of the following treatment arms:

1. Laquinimod capsules 0.6 mg: One 0.6 mg laquinimod capsule was administered orally once daily. The 0.6 mg laquinimod capsules 15 contain 0.6 mg of Laquinimod Acid per capsule with meglumine, and were manufactured according to the method disclosed in PCT International Application Publication No. WO/2007/146248, published December 21, 2007 (see, page 10, line 5 to page 11, line 3).

20 2. Matching placebo for laquinimod arm: one capsule is administered once daily.

Subjects were evaluated at study sites for 12 scheduled visits of the double blind phase at months: -1 (screening), 0 (baseline), 1, 2, 3, 6, 9, 12, 15, 18, 21 and 24 (termination/early discontinuation).

25 In case of the 6 months extended study, subjects were evaluated at study sites at months 27 and 30 (termination/early discontinuation of extended study), in this case month 24 was a regular scheduled visit.

EDSS was assessed every 3 months, MSFC every 6 months, and MRI was 30 performed annually in all patients. A subgroup of patients (n=189) underwent additional MRI scans at months 3 and 6. Subjects successfully completing the study were offered the opportunity to

enter into a 1-year open label extension. Patients who discontinued the study underwent a final termination visit and were not further evaluated, except for those who discontinued due to adverse events.

The following assessments were performed at specified time points:

- 5 1. Vital signs were measured at each study visit.
2. A physical examination is performed at months -1 (screening), 0 (baseline) 1, 3, 6, 12, 18 and 24 (termination/early discontinuation core study). In case of the 6 months extended study, additional examination was performed at month 30 10 (termination/early discontinuation of extended study).
3. The following safety clinical laboratory tests were performed:
 - 15 a. Complete blood count (CBC) with differential - at all scheduled visits. A reticulocyte count was added to the CBC at months 0 (baseline) and 24/30 (termination/early discontinuation).
 - b. Serum chemistry (including electrolytes, liver enzymes, direct and total bilirubin and pancreatic amylase and CPK), and urinalysis - at all scheduled visits.
 - c. A rapid urine β -hCG test was performed in women of child-bearing potential at baseline (month 0) and at each 20 scheduled study visit thereafter (at site).
 - d. β -hCG in women of child-bearing potential was performed at all scheduled visits.
 - e. Starting after visit Month 3 a rapid urine β -hCG test was 25 performed in women of child-bearing potential every 28 (± 2) days. The subject was contacted by telephone within 72 hours after the test was scheduled to be performed and asked specific questions regarding the test. In case of suspected pregnancy (positive urine β -hCG test result), the caller made sure that the study drug has been 30

discontinued and the subject was instructed to arrive at the site as soon as possible with all study drugs.

4. Markers of inflammation (serum conventional C-reactive protein and fibrinogen) - at screening, baseline and all scheduled visits thereafter.
5. During the first 3 months periodical phone calls were placed by the site personnel every two weeks. A list of predefined questions relating to signs/symptoms suggestive of vascular thrombosis was presented to the subjects.
- 10 6. ECG was performed at months -1 (screening; additional recording, up to 30 minutes apart is performed if QT_c is less than 450 msec), (baseline; three recordings, 15 minutes apart), 1, 2, 3, 6, 12, 18 and 24 (termination/early discontinuation). In case of the 6 months extended study, ECG is performed at month 30 (termination/early discontinuation of the extended study).
- 15 7. Chest X-ray is performed at months -1 (screening), (if not performed within 7 months prior to the screening visit).
8. Adverse Events (AEs) are monitored throughout the study.
- 20 9. Concomitant medications are monitored throughout the study.
10. Neurological evaluations, including Expanded Disability Status Scale (EDSS), 25 foot walk test/Ambulation Index (AI), Functional systems (FS) are performed at months -1 (screening), 0 (baseline) and every 3 months during the study and the 25 extended study period.
11. MS functional Composite (MSFC) was assessed at months -1 (screening) (three practices for training purposes only), at month 0 (baseline), 6, 12, 18 and 24 (termination/early discontinuation). In case of the 6 months extended study, the last MSFC was performed at months 30 (termination/early discontinuation of the extended study).

12. Subject-reported fatigue was assessed by the Modified Fatigue Impact Scale (MFIS) at months 0, 6, 12, 18, and 24 (termination/early discontinuation). In case of the 6 months extended study, additional MFIS was performed at month 30 (termination/early discontinuation of the extended study).

5
13. The general health status was assessed by the EuroQoL (EQ5D) questionnaire at month 0 (baseline) and month 24 (termination/early discontinuation of the study). In case of the 6 months extended study, the last EuroQoL (EQ5D) was performed at month 30 (termination/early discontinuation of the extended study) instead of month 24.

10
14. The general health status was assessed by the Short-Form general health survey (SF-36) subject-reported questionnaire at month 0 (baseline) and every 6 months thereafter, until 15
termination/early discontinuation.

15
16. The subject underwent 5 assessments of binocular low-contrast visual acuity using the 100%, 2.5% and 1.25% contrast level charts [Sloan letter or Tumbling-E] in each assessment, at months 0 (baseline), 6, 12, 18 and 24 (termination/early 20
discontinuation). In case of extending the study for 6 months, additional binocular low-contrast visual acuity assessment is performed at month 30 (termination/early discontinuation of the extended study).

25
17. Serum samples were collected from all subjects in order to investigate the potential mechanism of action of laquinimod and additional biomarkers of inflammation and potential biomarkers of MS disease at months: 0, 1, 12 and 24. In case of extending the study for 6 months the last serum sample is performed at month 30 (termination/early discontinuation of 30
the extended study) instead of month 24.

18. The subjects underwent 3 MRI scans at months 0 (baseline), 12 and 24 (termination/early discontinuation). In case of the 6 months extended study, an additional MRI was performed at

month 30 (termination/early discontinuation of the extended study).

18. Population PK study (PPK): Blood samples for PPK evaluation were collected from all subjects at months 1, 12 and 24. In 5 case of extending the study for 6 months the last PPK evaluation was performed at month 30 (termination/early discontinuation of the extended study) instead of month 24.

19. Relapses were confirmed/monitored through the study. Since the "in study" relapse definition must be supported by an 10 objective neurological evaluation, a neurological deficit must sustain long enough to eliminate pseudo-relapses. Therefore, in this clinical trial, a relapse was the appearance of one or more new neurological abnormalities or the reappearance of one or more previously observed neurological abnormalities wherein 15 the change in clinical state lasts at least 48 hours and is immediately preceded by an improving neurological state of at least thirty (30) days from onset of previous relapse.

20. The allowed treatment for a relapse was intravenous Methylprednisolone 1 gr/day for up to 5 consecutive days.

20 Baseline Disease Characteristics of Patients is shown in Table 1 below:

Table 1:

Characteristic	Laquinimod 0.6 mg daily (n=550)	Placebo (n=556)	All (N = 1106)
Relapses in last year prior to screening			
Mean (SD)	1.2 (0.7)	1.3 (0.7)	1.2 (0.7)
Median	1.0	1.0	1.0
Range	0.0 to 4.0	0.0 to 5.0	0.0 to 5.0
Relapses in last 2 years prior to screening			
Mean (SD)	1.9 (1.0)	1.9 (1.0)	1.9 (1.0)
Median	2.0	2.0	2.0
Range	0.0 to 7.0	0.0 to 7.0	0.0 to 7.0
EDSS			
Mean (SD)	2.6 (1.3)	2.6 (1.3)	2.6 (1.3)
Median	2.5	2.5	2.5
Range	0.0 – 5.5	0.0 - 6.0	0.0 to 6.0
Time from first symptom			

(years)	8.7 (6.9)	8.7 (6.7)	8.6 (6.8)
Mean (SD)	7.0	7.0	7.0
Median	0.5 to 34.5	0.4 to 32.8	0.4 to 34.5
Range			
History of disease-modifying treatment			
Number (%)	206 210 (38.2%)	212 221 (39.7%)	418 431 (38.9%)
Interferon beta-1a	132	123	
Interferon beta-1b	76	82	
Interferon	4	3	
Glatiramer acetate	84	89	
Number of T1 GdE lesions			
Mean (SD)	1.7 (3.9)	2.0 (5.7)	1.9 (4.9)
Median	0.0	0.0	0.0
Range	0.0 – 30.0	0.0 – 84.0	0.0 – 84.0
T2 lesion volume, mm³			
Geometric mean (CV%)	7.27 (46.1)	7.31 (44.8)	7.29 (45.5)
Median	6.3	6.8	
Range	0.0 to 82.1	0.0 to 77.5	
Normalized brain volume, cm³			
Mean (SD)	1578.9 (94.3) 1578.0	1584.7 (92.1)	1581.3 (93.2)
Median	1312.0 to 1823.0	1590	1583.0
Range		1299.0 to 1824.0	1299.0 to 1824.0

Re-consent criteria

Upon a confirmed diagnosis of MS relapse, (as defined in the protocol) or an increase in EDSS in ≥ 2.0 points, sustained for ≥ 3

5 months, the following actions were taken:

1. The subject was reminded of the current available MS medications and the opportunity to terminate the study as written in the informed consent form.

2. The subject was requested to re-sign an informed consent form if he/she chooses to continue to participate in the study, in 10 the same treatment assignment.

Safety stopping rules were set in place for the management of: 1) elevated liver enzymes, 2) inflammatory events, 3) thrombotic events and 4) pancreatitis.

Ancillary studies:

1. Frequent MRI (selected countries and sites only): The cumulative number of T_1 -Gd enhancing lesions taken from scans obtained at months 0, 3, 6, 12, and 24, and in case the study is be extended, 30. Additional MRIs for the ancillary study are performed at months 3 and 6.

5 2. Magnetization Transfer (MT) (selected countries and sites only): the change from baseline to month 12 and 24/30 months in magnetization transfer MRI. MT was assessed at months 0 (baseline), 12 and 24 (termination/early discontinuation). In 10 case of the 6 months extended study, the last MT was performed at month 30 (termination/early discontinuation of the extended study) instead of month 24.

15 3. Magnetization Resonance Spectroscopy (MRS) (selected countries and sites only): Change from baseline to 24/30 in Magnetic Resonance Spectroscopy (NAAS: Cr ratio in lesions, normally-appearing white matter). MRS was assessed at months 0 (baseline), and 24 (termination/early discontinuation). In 20 case of the 6 months extended study, the last MRS was performed at month 30 (termination/early discontinuation of the extended study) instead of month 24.

4. Pharmacogenetic (PGx) assessment: Blood samples for PGx parameters were collected from all subjects at screening.

25 5. Brain atrophy, as defined by the percentage of change from one scan to the subsequent scan in brain volume, in addition to the measurements done in the main study (Frequent MRI Cohort).

30 6. Whole blood and serum samples (selected countries and sites only) were collected for evaluation of the immunological response to treatment with laquinimod and further investigation of the potential mechanism of action. Whole blood samples were collected at months: 0, 1, 3, 6, 12 and 24. Serum samples were collected at month: 0, 1, 6, 12 and 24 (even if the study is extended to month 30).

7. Relationship between PGx and response to laquinimod in terms of clinical, MRI and safety parameters.

Inclusion/Exclusion Criteria

Inclusion Criteria

- 5 1. Subjects must have a confirmed and documented diagnosis as defined by the Revised McDonald Criteria (Polman, 2005), with relapsing-remitting disease course.
2. Subjects must be ambulatory with converted Kurtzke EDSS score of 0-5.5.
- 10 3. Subjects must be in a stable neurological condition and free of corticosteroid treatment [intravenous (iv), intramuscular (im) and/or per os (po)] 30 days prior to screening (month -1).
4. Subjects must have experienced one of the following:
 - 15 a. At least one documented relapse in the 12 months prior to screening.
 - b. At least two documented relapses in the 24 months prior to screening.
 - c. One documented relapse between 12 and 24 months prior to screening with at least one documented T1-Gd enhancing lesion in an MRI performed within 12 months prior to screening.
5. Subjects must be between 18 and 55 years of age, inclusive.
6. Subjects must have disease duration of at least 6 months (from the first symptom) prior to screening.
- 20 7. Women of child-bearing potential must practice an acceptable method of birth control. Acceptable method of birth control in this study include: surgical sterilization, intrauterine devices, oral contraceptive, contraceptive patch, long-acting

injectable contraceptive, partner's vasectomy or double barrier method (condom or diaphragm with spermicide).

8. Subjects must be able to sign and date a written informed consent prior to entering the study.

5 9. Subjects must be willing and able to comply with the protocol requirements for the duration of the study.

Exclusion Criteria

1. Subjects with progressive forms of MS.

2. An onset of relapse, unstable neurological condition or any treatment with corticosteroids [(iv), intramuscular (im) and/or per os (po)] or ACTH between months -1 (screening) and 0 (baseline).

10 3. Use of experimental or investigational drugs, and/or participation in drug clinical studies within the 6 months prior to screening.

15 4. Use of immunosuppressive including mitoxantrone (Novantrone[®]) or cytotoxic agents within 6 months prior to screening visit.

5. Previous use of any one of the following: natalizumab (Tysabri[®]), caldribine, laquinimod.

20 6. Previous treatment with glatiramer acetate (copaxone[®]) Interferon- β (either 1a or 1b) or intravenous immunoglobulin (IVIG) within 2 months prior to screening visit.

7. Systemic corticosteroid treatment of ≥ 30 consecutive days duration within 2 months prior to screening visit.

25 8. Previous total body irradiation or total lymphoid irradiation.

9. Previous stem cell treatment, autologous bone marrow transplantation or allogenic bone marrow transplantation.

10. A known history of tuberculosis.

11. Acute infection two weeks prior to baseline visit.
12. Major trauma or surgery two weeks prior to baseline.
13. Use of inhibitors of CYP3A4 within 2 weeks prior to baseline visit (1 month for fluoxetine).

5 14. Use of amiodarone within 2 years prior to screening visit.

15. Pregnancy or breastfeeding.

16. A $\geq 3 \times \text{ULN}$ serum elevation of either ALT or AST at screening.

17. Serum direct bilirubin which is $\geq 2 \times \text{ULN}$ at screening.

18. A QTc interval which is 450 msec (according to machine output) obtained from:

10 a. Two ECG recordings at screening visit, or

b. The mean value calculated from 3 baseline ECG recordings.

19. Subjects with clinically significant or unstable medical or surgical condition that would preclude safe and complete study participation, as determined by medical history, physical examination, ECG, laboratory tests or chest X-ray. Such conditions may include:

15 a. A cardiovascular or pulmonary disorder that cannot be well-controlled by standard treatment permitted by the study protocol.

20 b. A gastrointestinal disorder that may affect the absorption of study medication.

c. Renal or metabolic diseases.

d. Any form of chronic liver disease.

25 e. Known human immunodeficiency virus (HIV positive status).

f. A family history of Long- QT syndrome.

- g. A history of drug and/or alcohol abuse.
- h. Major psychiatric disorder.

20. A known history of sensitivity to Gd.

21. Inability to successfully undergo MRI scanning.

5 22. Known drug hypersensitivity that would preclude administration of laquinimod, such as hypersensitivity to: mannitol, meglumine or sodium stearyl fumarate.

Outcome Measures

10 Neurological evaluations, including safety assessments, were performed at screening, baseline and every three months up to month 24. Patient neurological assessments and general medical evaluations were conducted by two neurologists in order to minimize the possibility of unblinding; a specially trained and certified examining neurologist assessed neurological condition, and the 15 treating neurologist determined whether a subject had experienced a relapse based on EDSS/Functional Systems scores.

The primary endpoint was the number of confirmed relapses during the double-blind study period. A relapse was defined as the appearance of one or more new neurological abnormalities or the reappearance of 20 one or more previously observed neurological abnormalities lasting for at least 48 hours and after an improved neurological state for at least 30 days. An event was counted as a relapse if the subject's symptoms were accompanied by observed objective neurological changes consistent with at least one of the following: an increase of at 25 least 0.5 in the EDSS score; an increase of one grade in two or more of the seven functional systems; or an increase of two grades in one functional system. Standardized treatment of relapses was intravenous methylprednisolone 1g/day for up to five consecutive days based on the treating neurologist's decision.

30 Secondary endpoints were disability progression as measured by the EDSS and the Multiple Sclerosis Functional Composite (MSFC). Confirmed disability progression was defined as an increase of ≥ 1.0

EDSS point from baseline if baseline EDSS was between 0 and 5.0, or an increase of ≥ 0.5 point if baseline EDSS was ≥ 5.5 . In order to confirm EDSS progression, these increases had to be sustained for at least three months. Additional predefined disability endpoints 5 include the proportion of patients without confirmed disability progression at 24 months; confirmed disability progression (defined as change in EDSS scores ≥ 1.0 points for baseline EDSS 0 to 5.0 or ≥ 5.5) sustained for six months; the accumulation of physical disability as measured by mean EDSS and the mean change in EDSS from 10 baseline to last observed value (LOV).

For the MSFC, the measure was the total MSFC z score at 24 months (including patients who terminated after 12 months). The 9-hole peg test (9HPT) and the Paced Auditory Serial Addition Test (PASAT) were performed three times at screening to reduce confounding training 15 effects during the trial.

MRI related secondary endpoints were the cumulative number of GdE lesions at months 12 and 24; and the cumulative number of new T2 lesions (relative to previous scan) at months 12 and 24; MRI exploratory endpoints included percent change of brain volume using 20 SIENA.¹⁰

Additional MRI methodological details are as follows: In all patients, MRI scans were performed at 0, 12, and 24 months. Before a site could enrol study participants they were required to image a volunteer patient with definite MS twice with repositioning 25 according to a strict study imaging protocol using scanners with a minimum field strength of 1.5T. Fast/turbo spin echo (repetition time [TR] = 2200-3500ms, echo time [TE] = 14-50/90-120ms, echo train length = 2-7, slice thickness = 3mm, and contiguous axial slices = 44) sequences were used to obtain proton density and T2-weighted 30 images. High resolution pre-contrast 3D T1-weighted sequences (TR = 8-15ms, TE = 3-5ms, inversion time = 1.1 s, number of slices 160, slice thickness 1.2 mm, flip angle [FA] = 10-15, orientation sagittal) were acquired for quantification of brain atrophy. Finally, T1-weighted images (1.5 T scanners: conventional spin echo 35 sequence; TR = 600-650ms, TE = 10-20ms, slice thickness = 3mm, and

contiguous axial slices = 44; 3.0 T scanners: 3D sequence; TR = 5-9ms, TE = 2-5ms, FA=15, slice thickness = 3mm, and contiguous axial slices = 44) were obtained 5 minutes after injection of 0.1mmol/kg of gadolinium. A series of axial, coronal, and sagittal images was 5 obtained to create an axial reference scan for subsequent careful repositioning of each patient at the follow-up session. Axial slices were positioned to run parallel to a line joining the most inferioanterior and inferioposterior parts of the corpus callosum.

Image quality was reviewed at the MRI-AC using predetermined 10 criteria. The identification of GdE and T2-hyperintense lesions was done by consensus of two experienced observers. The number of total and new GdE lesions and new/enlarging T2-hyperintense lesions were counted. The identified lesions were then outlined by trained 15 technicians using a semiautomated segmentation technique based on local thresholding (JIM 4.0; XINapse System, Leicester, UK) and lesion volumes were calculated automatically. Percentage brain volume changes and cross-sectional normalized brain volumes were measured on postcontrast T1-weighted images, with Structural Image Evaluation of Normalized Atrophy (SIENA) software and a cross- 20 sectional method (SIENAX) (available from the FMRIB Software Library, Oxford University, Oxford, UK; <http://www.fmrib.ox.ac.uk/analysis/research/siena/siena>).

Primary Outcome Measure

The number of confirmed relapses (and Annualized relapse rate) 25 during the double blind study period.

Secondary Outcome Measures

1. Accumulation of physical disability measured by the time to confirmed progression of EDSS during the study period (A confirmed progression of EDSS is defined as a 1 point increase 30 from baseline on EDSS score if baseline EDSS was between 0 and 5.0, or a 0.5 point increase if the baseline EDSS was 5.5, confirmed 3 months later. Progression cannot be confirmed during a relapse).

2. Disability, as assessed by the MSFC score at the end of the treatment period (month 24/30).
3. The cumulative number of new T2 lesions on scans taken on months 12 and 24 (and 30 in the case of the 6 months extended study).
- 5 4. The cumulative number of enhancing lesions on T1-weighted images taken on months 12 and 24 (and 30 in case of extending the study for 6 months.)

Safety and Tolerability Outcome Measures

- 10 1. Adverse events.
2. Vital signs.
3. Weight.
4. Physical examination.
5. Electrocardiogram (ECG) findings.
- 15 6. Clinical laboratory parameters.
7. Proportion of subjects (%) who prematurely discontinued from the study, reason of discontinuation and the time to withdrawal.
8. Proportion of subjects (%) who prematurely discontinued from 20 the study due to AEs and the time to withdrawal.

Additional Exploratory Endpoints

The following assessments are performed in an exploratory manner:

1. To assess the cumulative number of new hypointense lesions on enhanced T₁ scans at months 12 and 24 (and 30 in case of 25 extending the study for 6 months).
2. Subject-reported fatigue as assessed by the Modified Fatigue Impact Scale (MFIS).

3. General health status by the EuroQoL (EQ5D) questionnaire.

4. The general health status assessed by the Short-Form general health survey (SF-36) subject-reported questionnaire.

5. The time to the first confirmed relapse during the study period.

6. The rate of confirmed relapses during the study period, requiring hospitalization and/or IV steroids.

7. The proportion of relapse free subjects.

10 8. The change in T₂-lesion volume as defined by the change from baseline to month 12, from month 12 to month 24/30 and from baseline to month 24/30.

9. The change in T₁-hypointense lesion volume as defined by the change from baseline to month 12, from month 12 to month 24/30 and from baseline to month 24/30.

15 10. Brain atrophy as defined by the percentage of change from baseline to month 12, from month 12 to month 24/30 and from baseline to month 24/30 in brain volume.

20 11. Serum samples are collected from all subjects in order to investigate the potential mechanism of action of laquinimod and additional biomarkers of inflammation and potential biomarkers of MS disease. These samples are collected at months: 0 (baseline), 1, 12 and 24 (even if the study is extended to month 30).

25 12. Population PK - fitness of a population model to different covariates is evaluated. (covariates such as: gender, age, concomitant medications, weight, AE profile, habits).

30 13. The change from baseline to month 24/30 (termination/early discontinuation) in binocular visual acuity, as assessed by the number of letters read correctly from 2 meters distance on 100%, 2.5% and 1.25% contrast level Sloan letter/Tumbling-E charts.

Statistical Analysis

The analysis of the total number of confirmed relapses during the study period is based on baseline adjusted Quasi-Likelihood (over-dispersed) Poisson Regression. Using the Poisson regression with the 5 treatment group as a covariate, the ARR of each group was calculated for the intent-to-treat (ITT) cohort as the total number of confirmed relapses for all patients in each group divided by the total patient years in that group. In addition to the treatment group, the following covariates were included: baseline EDSS score, 10 log of the (prior 2-year number of relapses +1) and country or geographical region.

The analysis of the accumulation of physical disability is based on Cox's Proportional Hazard model. The analysis of MSFC is based on baseline-adjusted Analysis of Covariance. The analysis of the 15 secondary MRI endpoints is based on baseline-adjusted Negative Binomial Regression. To control against type-I error, the secondary endpoints were analyzed only after a significant effect was found for the primary endpoint. Likewise, the study's overall type-I error was further controlled in the analysis of the secondary endpoints by 20 applying the following gate-keeping approach: both the cumulative number of new/enlarging T2 and the cumulative number of GdE lesions at months 12 and 24 were tested simultaneously and needed to be statistically significant at $p < 0.05$, or one needed to be significant at $p < 0.025$ if the other endpoint was not statistically 25 significant at the 5% level. If the above condition was met, the study then proceeded to the analysis of the confirmed EDSS progression endpoint, if this endpoint was significant at 5% level, the analysis was done for the total MSFC z-scores.

Sample size calculations were based on assumptions that the number 30 of confirmed relapses in one year reflects an over-dispersed Poisson distribution, and that the expected ARR was 0.65 in untreated subjects, 0.6 in the placebo group due to a placebo effect, and 0.45 in the laquinimod group based on 25% or more reduction in relapse rate compared to placebo. A simulation study showed that 830 35 subjects (415 subjects per arm) would provide approximately 90%

power to detect a significant change in the ARR. To correct for anticipated 20% withdrawal over 24 months, the sample was adjusted to 1000 subjects (500 subjects per arm).

The analysis of risk to confirmed disability progression using the
5 ITT cohort was based on Cox's Proportional Hazard model adjusted to
baseline EDSS, log of the prior 2 year number of relapses +1 and
geographical region. The MSFC at month 24 was analyzed using a
baseline-adjusted ANCOVA (SAS@PROC GLM) with baseline MSFC as 1
degree of freedom covariate and baseline EDSS score, log of the 2-
10 year prior relapse rate +1 and country or geographical region as
additional covariates. Analyses of the MSFC z score at 24 months and
the secondary MRI endpoints included only patients who did not
discontinue from the trial prior to month 12 visit.

Analyses of the secondary MRI endpoints of the cumulative number of
15 GdE and new/enlarging T2 lesions at 12 and 24 months involved a
baseline-adjusted negative binomial regression with an "offset"
employing the log of the relative exposure to adjust for early-
terminated patients. The model included as covariates the number of
enhancing lesions at baseline, and country or geographical region.
20 In the case of new/enlarging T2 lesion analysis, the baseline T2
lesion volume was also added. The MRI secondary endpoints analyses
were tested simultaneously with an overall type I error of 5%, using
the Hochberg's step-up modification to Bonferroni's method to the
two P-values obtained from the analyses of these two endpoints. The
25 analysis of the brain atrophy endpoint involved a baseline-adjusted
analysis of covariance (ANCOVA). The covariates were the number of
GdE lesions at baseline and the country or region. The exploratory
endpoints were all analyzed at a significance level of 5%.

Results

30 The results of the ALLEGRO trial indicated that laquinimod
treatment effectively reduced annualized relapse rates, slowed the
progression of disability, reduced brain atrophy, and reduced the
development of new lesions. A summary of the study results is
presented in Table 2 below:

Table 2:

	Laquinimod, 0.6 mg daily (n = 550)	Placebo (n = 556)	Effect
Relapses			
Annualized relapse rate^a			23% reduction
Adjusted means (SE) Risk ratio (95% CI)	0.304 (0.022) 0.770 (0.650 – 0.911))	0.394-0.395 (0.027)	
Relapse-free during study^b			55% increase odds to be relapse free
Adjusted proportions Odds ratio (95% CI)	62.90 % 1.550 (1.205 – 1.994)	52.24 %	
Risk of first confirmed relapse^c			
Hazard ratio (95% CI) 95% Confidence Interval	0.718 0.595 – 0.866		
Annualized rate of relapses requiring hospitalization and/or IV steroids^d			27% reduction
Adjusted Mean (SE) Risk Ratio (95% CI)	0.242 (0.020) 0.723 (0.606-0.862)	0.334 (0.025)	
Time to 1st confirmed relapse			28% reduction for the risk of 1 st confirmed relapse
Disability			
Risk for EDSS progression confirmed at 3 months^e			
Hazard Ratio (95% CI)	0.641 (0.452–0.908)		
Time to confirmed (3 Ms) progression – EDSS	9.8% progressed	14% progressed	36% reduction of risk to progress
Patients with no confirmed disability progression (%) at LOV^f	496 (90.2%)	478 (86.0%)	
Risk for EDSS progression confirmed at 6 months^g			
Hazard Ratio (95% CI)	0.516 (0.337 – 0.790)		
Mean EDSS score at LOV (SE)^h	2.68 (0.046) 95% Confidence Interval Median Range	2.790 (0.046) (2.59 - 2.77) 2.5 0.0 to 8.0	
MSFC			
Total z scores at 24 months (including early terminations after 12 months)ⁱ			34% reduction of risk to progress
Mean (95% CI)	0.056 (-0.000 to 0.112)	0.0376 (-0.020 to 0.94)	
MRI			
Cumulative number of GdE lesions at months 12 and 24^j			37% reduction

No of patients with data	479	464	
Mean (SE)	1.332 (0.14)	2.119 (0.22)	
Median	0.00	1.00	
Range	0 to 49	0 to 91	
Risk ratio (95% CI)	0.629 (0.488-0.809)		
Cumulative number of new/enlarging T2 lesions at 12 and 24 months^k			30% reduction
No. of patients with data	479	464	
Mean (SE)	5.032 (0.079)	7.148 (0.075)	
Risk ratio (95% CI)	0.704 (0.584-0.849)		
Percent change of brain volume from baseline to month 24^l			32.8% reduction
No. of patients with data	382	381	
Adjusted mean change at month 24	-0.871	-1.297	
Adjusted mean difference (95% CI)	0.426 (0.267 – 0.585)		
BA at month 12	-0.358%	-0.763%	53% reduction
T2 volume month 0	7.27	7.315	
T2 volume month 12	8.005	8.441	5%
T2 volume month 24	8.111	8.509	5%
BL to M24	11.5%	16%	
Hypointense T1 volume month 0	2.65	2.65	
Hypointense T1 volume month 12	2.805	2.894	~1%
Hypointense T1 volume month 24	2.829	2.891	~1%
BL to M24	7%	9%	
Cumulative new Hypointense T1 months 12 + 24	1.468	2.002	27% reduction

^a Baseline adjusted Quasi-likelihood (over-dispersed) Poisson Regression analysis, including baseline EDSS score, log of the prior 2-year relapse rate +1 and country or geographical region as covariates.

^b Baseline adjusted logistic regression analysis with covariates baseline EDSS, log of the prior 2-year number of relapse +1 and country or geographical region.

^c Cox model regression analysis adjusted to baseline EDSS, log of the prior 2-year number of relapses +1 and geographical region.

^d Baseline adjusted Quasi-likelihood (over-dispersed) Poisson Regression analysis, including baseline EDSS score, log of the prior 2-year relapse rate +1 and country or geographical region as covariates.

^e Cox Model regression analysis adjusted to baseline EDSS, log of the prior 2-year number of relapses +1 and geographical region.

^f The p-value was calculated using the chi square test.

^g Cox Model regression analysis adjusted to baseline EDSS, log of the prior 2-year number of relapses +1 and geographical region.

^h Baseline adjusted ANCOVA with geographical region, EDSS at baseline and the log of the prior 2-year relapse rate +1 as covariates.

ⁱ Baseline adjusted ANCOVA with baseline MSFC as 1 degree of freedom covariate and baseline EDSS score, log of the prior 2-year relapse +1 and country or geographical region as covariates.

^j Baseline-adjusted Negative Binomial Regression with an offset to adjust for early termination lack of exposure and baseline GdE lesions, and country or geographical region as covariates.

^k Baseline-adjusted Negative Binomial Regression with an offset to adjust for early termination lack of exposure and baseline GdE lesions, and country or geographical region as covariates.

^l Baseline-adjusted ANCOVA with the number of baseline GdE lesions, and country or geographical region as covariates.

A summary of the post-hoc study results is presented in Table 3 below:

Table 3:

	Placebo	Laquinimod	Effect
ARR 1 st year	0.452	0.343	24% reduction
No recovery	0.08	0.06	24% reduction
Full recovery	0.179	0.155	13% reduction
ARR for dropouts	0.872	0.640	26% reduction
Unconfirmed relapses	0.112	0.094	17% reduction
Relapses requiring hospitalization	0.114	0.071	38% reduction
Relapses requiring IV steroids	0.359	0.263	27% reduction
ARR by median relapse duration:			

≤ 34 days	0.243	0.153	37% reduction
> 34 days (n~100)	0.976	0.964	1.3% reduction
New-T1 Hypointense Lesions			
- M12	1.461	1.074	27% reduction
- M24	1.806	1.230	32% reduction
T1 Hypointense Lesion free			
- M12	50.2%	56.3%	28% odds
- M24	43.1%	52.8%	47% odds
BA from M12 to M24	-0.561	-0.548	
BA for pts with all scans:			
Change BL to M12	-0.746	-0.337	60%
to M24	-1.268	-0.855	57%
% BVC BL to M24			
MRI free YES	-1.078	-0.533	45.5%
NO	-1.346	-1.001	65.5%
GdE counts			
M12	1.142	0.731	36% reduction
M24	0.793	0.482	39% reduction
GdE lesion free M12	59.9%	69%	49% odds
M24	62.8%	74.5%	72% odds
GdE volume			
M12	1.109	1.058	4.5%
M24	1.091	1.045	4.7%
T2 lesion free			
M12	24.2%	30.8%	39% odds
M24	15.4%	20.3%	40% odds
New T2 lesion #M12	4.23	2.81	33.5%
M24	6.50	4.45	31.5%
% BV change M24			
GdE =0	-1.218	-0.859	30% reduction
GdE > 0	-1.380	-0.881	37% reduction
Cum # T1 GdE by previous medications:			
- naïve	1.937	1.135	42% reduction
- not naïve	2.562	1.746	32% reduction
Cum New T2 by previous medications:			
- naïve	7.403	4.967	33% reduction
- not naïve	6.661	5.075	24% reduction
T1 hypointense by previous medications:			
- naïve	2.189	1.585	28% reduction
- not naïve	1.627	1.217	25% reduction
% BV change by previous medications:			
- naïve	-1.327	-0.82	38% reduction
- not naïve	-1.241	-0.954	23% reduction
Time to confirmed (3 Ms) progression – EDSS	14% progressed	9.8% progressed	36% reduction of risk to progress
MSFC at M24	0.037	0.056	34% reduction of risk to progress

* Recover refers to EDSS before and after attack

Oral Laquinimod Reduced Severe Relapses and Slowed Disability Progression

Relapse Endpoints:

The ARR during the 24-month treatment period was significantly reduced in the laquinimod patients compared to placebo patients (0.304 ± 0.022 vs 0.395 ± 0.027 , $p = 0.0024$, Table 2). This result was robust and consistent in all analysis sets. Other relapse-related measures, such as time to first relapse and relapse free rates were also positively changed following laquinimod treatment as compared to placebo. The percentage of relapse-free patients was 62.9% for laquinimod and 52.24% for placebo subjects ($p = 0.0006$, Table 2), corresponding to an increase of 55% in the odds to be relapse-free. The time to the first relapse was prolonged for laquinimod patients compared to placebo participants (increase of 28.2% in the time to first relapse, $p=0.0005$) and the risk for relapse was significantly reduced. The annualized rate of relapses requiring hospitalizations and/or intravenous steroid treatment, an exploratory endpoint of the study, was found to be significantly lower for patients treated with laquinimod compared with those in the placebo arm ($p = 0.0003$). The annualized rate of relapses requiring IV steroids was 27% lower for laquinimod patients (.263 vs .359, $p<0.0001$). The annualized rate of relapses requiring hospitalization was .071 vs. 0.114, $p<0.0001$, a 38% reduction for laquinimod patients. Based on the reduction in relapse rate, it can be said that laquinimod reduces the likelihood that a relapsing-remitting multiple sclerosis human patient would experience a confirmed relapse within a predetermined time period.

Disability Endpoints:

The ALLEGRO results clearly show that laquinimod reduced both relapse severity and accumulation of disability in patients with RRMS.

In this study, secondary endpoint on disability included the risk to disability progression (change in EDSS score ≥ 1.0 points if baseline EDSS 0-5.0 or change ≥ 0.5 point if baseline EDSS ≥ 5.5) confirmed at

3 months. Predefined additional disability endpoints included the risk of disability progression confirmed at 6 months, the risk of disability progression at last observed value (LOV), and the proportion of patients with confirmed disability progression 5 sustained for 3 months.

EDSS scores confirmed after 3 months was significantly decreased by 36% for laquinimod patients (hazard ratio = 0.641, 95%CI: 0.452-10 0.908, p = 0.0122; Table 2 and Figure 2). There was also a 48% decrease in the risk for 6 month confirmed EDSS progression (HR=0.516, 95%CI: 0.337-0.790, p=0.0023). This observation was reinforced by the 35% reduction in risk of confirmed progression 15 using the more stringent approach requiring the persistence of EDSS change at the last available visit (hazard ratio = 0.656, p = 0.036). The proportion of patients with confirmed EDSS progression after 24 months was 9.8% for laquinimod and 14.0% for placebo (p = 0.038; Table 2). A post-hoc subgroup analysis indicated that 33/54 (61.1%) laquinimod and 53/78 (67.9%) placebo patients who progressed also had a relapse during the study. There was little overall change in the MSFC scores from baseline to month 24 and no significant 20 differences were found between the adjusted mean total MSFC z scores for laquinimod and placebo treated patients at 24 months (z scores = 0.056 and 0.037, respectively, p = 0.5893). The significant decrease in time to and risk for confirmed progression disease activity, as measured by, e.g., the EDSS score of the patient, is suggestive of 25 laquinimod having a neuroprotective property.

This clinical finding was supported by MRI measures (defined as exploratory endpoints), such as progression of brain atrophy and T1-hypointense lesion counts. The MRI results are discussed in more detail below.

30 Oral Laquinimod Reduced MRI Markers Of Neurodegeneration

Secondary endpoints of the ALLEGRO trial included disease activity as measured by MRI, including counts of Gadolinium enhancing T1 lesions and new-T2 hyperintense lesions. The study evaluated laquinimod's effects on a variety of conventional (T1 hypointensity 35 and brain volume) and advanced (magnetization transfer (MT) imaging

and proton magnetic resonance spectroscopy (¹H-MRS)) MRI measures of tissue damage. Conventional MRI scans for new T1 hypointense lesions, and brain volume using SIENA were performed at baseline, 12 and 24 months. At 10 sites (n = 93), MT MRI was obtained at the three time 5 points and at 6 sites (n=39), NAA/Cr ratios from ¹H-MRS were obtained from a volume of interest (VOI) placed in the central white matter at baseline and last study visit.

Laquinimod was found to reduce the mean cumulative number of GdE lesions compared to placebo by 37% (risk ratio = 0.629, p = 0.0003; 10 Figure 3). The mean cumulative number of new/enlarged T2 lesions at months 12 and 24 was also reduced in laquinimod patients by 30% (risk ratio = 0.704, p = 0.0002). The mean cumulative number (at month 12 and 24 – termination/early termination after month 12) of new hypointense T1 lesions was reduced by 26.7% in the laquinimod 15 group compared to placebo group (1.47 vs 2.00 respectively, p = 0.0039). Change in mean MTR whole brain from baseline to last observed value (LOV) decreased for placebo patients (n=40) by -0.438 and on the contrary remained stable for laquinimod patients (+ 0.045 change, n=44), representing a difference of 0.483 (p=0.0180). In 20 the same direction, the average MTR of T2 visible lesions was decreased by -0.335 for placebo patients (n = 40) and stable for laquinimod patients (-0.005 change, n=43), representing a difference of 0.330 (p=0.1007). The adjusted mean change in NAA/Cr from baseline to month 24 was 0.087 for laquinimod (n=12) and -0.145 for 25 placebo (n=15) patients (p=0.1738).

The percent change in brain volume progressed at a greater rate in the placebo group compared to the laquinimod group from baseline to 12 months, -0.763 vs. -0.358 and from baseline to 24 months -1.297 vs -0.871, (adjusted mean difference = 0.426, p <0.0001, Figure 4) 30 respectively, reflecting a 51.7% and 32.8% reduction in brain atrophy by laquinimod treatment.

The MRI data show that laquinimod had a clear effect in preventing irreversible tissue loss and is consistent with its impact on disability progression.

Laquinimod Maintained or Improved Fatigue and Functional Status Of Patients

As patient-reported exploratory endpoints, fatigue was assessed using the Modified Fatigue Impact Scale (MFIS) and functional status 5 using the short-form (SF)-36 general health survey. Both measures were completed at the baseline, 6, 12, 18 and 24 month clinic visits and were analyzed using an ANCOVA adjusted for baseline EDSS, 2-year prior relapse rate and country/region. A summary of the quality of life (QOL) results is presented in Table 4 below:

10 Table 4:

Exploratory	Placebo	Laquinimod	Effect	p
MFIS Subject-Reported Fatigue -the Modified Fatigue Impact Scale	34.4	31.9	-2.53	0.004
<p><i>While the mean total MFIS score for those treated with laquinimod 0.6 mg at Month 24 remained stable, the mean total MFIS score for those treated with placebo had increased reflecting increased functional disability due to fatigue. From the patients' perspectives, laquinimod 0.6 mg was, on average, associated with less functional disability due to fatigue than placebo at Month 24</i></p>				
SF36 – SFMHD Mental component summary	-2.314	-0.47	1.848	0.001
<p><i>The MCS score at Month 24 for those treated with laquinimod 0.6 mg remained stable while the MCS score for those treated with placebo declined. The patients' self-assessment of their mental health status with laquinimod 0.6 mg was, on average, better than with placebo at Month 24</i></p>				
SF36 – SFPHD Physical component summary	-1.169	-0.519	0.65	0.1354
<p><i>The PCS score at Month 24 for those treated with laquinimod 0.6 mg remained stable while the PCS score for those treated with placebo declined. The patients' self-assessment of their mental health status with laquinimod 0.6 mg was, on average, better than with placebo at Month 24</i></p>				
EQ5D General Health Status by the Euroqol Questionnaire was assessed with the 5 dimension EQ-5D descriptive profile (Mobility, Self Care, Usual Activities, Pain or Discomfort, and Anxiety or Depression)	68.6	71.0	-2.366	0.0267
<p><i>The results of the individual EQ-5D dimensions analyses show that those treated with laquinimod 0.6 mg maintained their health status at Month 24 while those treated with placebo reported a decline, on average, in health status. Dimensions with the most variation in health status between treatments at Month 24 were Mobility, Self-Care, and Anxiety or Depression</i></p>				

Mobility			1.497	0.0181
Self care			2.251	0.0337
Usual activities			1.129	0.4051
Pain discomfort			1.036	0.8024
Anxiety or Depression			1.425	0.0113

At baseline fatigue was more than twice the published mean scores for healthy individuals: 31.1(.79) for laquinimod and 30.6(.73) for placebo patients. Fatigue worsened in placebo patients during the 5 trial with an adjusted mean score at 24 months of 34.4 (0.71) compared to those treated with laquinimod of 31.9 (0.71), a treatment effect for laquinimod of -2.53, (p=0.004). Changes in adjusted mean MFIS subscale scores from baseline showed a significant improvement in the laquinimod group: cognitive at 24 10 months (p=0.05); physical at 24 months (p=0.02); and psychosocial at 12 months (p=0.02). For the SF-36, the adjusted treatment effect difference between laquinimod and placebo on the mental component summary was 1.68 (p=0.004), with the subscales for vitality, social functioning and role emotional contributing to this effect. Although 15 the physical component summary (PCS) remained stable for laquinimod over 24 months and the PCS for the placebo group declined, the difference did not reach statistical significance (p=.13). Two of the PCS subscales: physical functioning (p=0.016) and role physical (p=0.010) showed improvement over 24 months with laquinimod versus 20 placebo.

The results of the ALLEGRO trial suggest that fatigue and functional status of patients treated with laquinimod was maintained or improved compared to that of placebo patients and that these effects support the robust clinical effects seen on disability progression 25 and relapse rate.

Safety and Tolerability

No deaths occurred in the laquinimod group and 3 deaths occurred in the placebo group (injury, suicide and complications related to pneumonia). A total of 122 serious adverse events (SAEs) were

reported for laquinimod and 90 for placebo patients. A higher incidence of appendicitis was reported in laquinimod treated patients (5 cases versus 1 in the placebo group). In all cases appendectomy was performed without additional complications and 5 patients continued with study treatment. Overall, there were 14 cases of neoplasms evenly distributed across both arms (8 in laquinimod and 6 in placebo groups) with a large variability in the type of cancers.

There were 3309 and 2965 adverse events in the laquinimod and 10 placebo arms with 87% and 81% of patients reporting 1 or more events, respectively. The 3 most common adverse events in the laquinimod group compared to placebo (excluding liver enzyme elevations discussed below) were abdominal pain (n = 32, 5.8% vs. n = 16, 2.9%), back pain (n = 90, 16.4% vs. n = 50, 9%) and cough (n = 41, 7.5% vs 15 n = 25, 4.5%). These adverse events were rarely associated with study discontinuation, (3% of laquinimod and 1% of placebo patients). More laquinimod patients (n = 27, 4.9%; vs n = 11, 2.0% in placebo) showed a shift to abnormal values in the liver aminotransferases, specifically, alanine aminotransferase (ALT) \geq 3 times upper limit 20 normal (3xULN) and < 5xULN during the study. Treatment discontinuation occurred in 7 laquinimod and 2 placebo patients due to ALT \geq 3 and < 5xULN. By contrast, ALT elevations \geq 5xULN occurred equally often in both groups (8 vs. 8) and led to equal 25 rates of discontinuation. Elevations up to 5xULN usually occurred within the first 6 months and all were reversible either without study discontinuation or within 2 months of withdrawal. There were no cases of liver failure and no cases of liver insufficiency as evidenced by concomitant elevations of bilirubin or coagulation tests (Hy's Law) (Temple, 2006).

30 **Discussion**

Laquinimod is a promising a treatment for relapsing remitting MS, based on its effects on the accumulation of tissue damage, as indicated by consistent effects on clinical measures of disability and MRI measures of disease burden, its oral route of administration 35 and its safety profile.

Laquinimod had a significant effect on inflammatory activity which characterizes the relapsing remitting course of MS. The effect was seen in the reduction of relapse rate, the primary end point of the study, as well as reduction of active MRI lesions. The reduction of 5 relapse rate was highly consistent with effects seen on MRI measures of disease activity, which has not always been the case for other disease modifying treatments (DMTs) (The IFNB Multiple Sclerosis Study Group, 1993; Jacobs, 1996; PRISMS Study Group, 1998). Moreover, laquinimod had a significant effect on confirmed disability 10 progression, which is considered a core outcome measure in MS. Although the overall proportion of patients with disease progression in the placebo arm was modest, the reduction in the laquinimod arm was a real phenomenon, as the effect was confirmed by sensitivity analyses including the more stringent criteria of disability 15 progression, such as the 6 month confirmation period and the persistence of the EDSS change at the last available visit. Subgroup analyses showed that disability progression in both groups was predominantly due to attacks, which were less severe and followed by a better recovery in laquinimod treated patients. This is in line 20 with preclinical studies which show a moderate effect of the drug on lesion numbers and a pronounced effect on the axonal damage inside the lesions (Thöne, 2011). The peculiar property of laquinimod to reduce the accumulation of irreversible tissue damage in MS is further supported by the significant decrease in the progression of 25 brain tissue loss which was similar in magnitude to what has been reported previously for other DMTs (Kappos, 2010; Rudick, 1999; Sormani, 2004; Miller, 2007) that have a larger impact on inflammatory activity. No significant effects were observed for MSFC, likely due to the very small mean longitudinal changes seen in both 30 arms. A practice effect may have obscured longitudinal changes of the MSFC components as there was an improvement of the MSFC scores in the placebo arm, whereas other trials have shown a deterioration (Kappos, 2010; Cohen, 2010).

The ALLEGRO study further confirmed the very good safety profile of 35 laquinimod demonstrated in phase II. There were no increased rates of serious adverse events in the trial. One safety signal was liver enzyme elevations which occurred two times more frequently in the

laquinimod treated arm. These elevations occurred mostly in the first treatment period and were usually modest; values exceeding 5xULN occurred equally often in the laquinimod and placebo arms. The liver enzyme elevations were always reversible even in patients 5 with ≥ 3 xULN and were never associated with clinical, imaging or laboratory signs of liver insufficiency or failure. One potential signal of a tolerability issue was abdominal pain which occurred more frequently and resulted in treatment discontinuation more frequently in the laquinimod arm. As with ALT elevations, abdominal 10 pain was reported in the early phases of treatment exposure. It is worth noting that the safety concerns previously seen with roquinimex (Noseworthy, 2000) such as serositis, cardiovascular events and thrombosis did not emerge as signals in the ALLEGRO study.

15 The results seen in this study are unique. Data obtained from pivotal studies of other drugs with proven effect on progression of disability in a placebo-controlled setting, shows a magnitude of effect which is correlated with the effect on relapses. With all other drugs to date, the effect on progression of disability has been equal or lower than the effect on the ARR.

20 In comparison, the results of this study show that the effect of laquinimod on the progression of disability, which is a more important long-term measure of Multiple Sclerosis is considerably higher than other drugs, suggesting that the effect of laquinimod is not necessarily a derivative of its anti-inflammatory properties but 25 also composed of pure neuroprotection, as seen in animal models. Therefore, this study shows that laquinimod is not only effective for treating MS by the way of its anti-inflammatory properties, it also provides neuroprotection to protect neural cells against neuronal injury or degeneration.

30 **Conclusion**

This phase III study supports laquinimod as a new option for the treatment of RRMS with reductions in relapses and disability progression and no safety signals other than a transient elevation 35 of liver enzymes. No apparent increases was seen in infections or malignancies. Treatment with laquinimod was associated with

reduction of annualized relapse rate from $.395 \pm 0.027$ for placebo patients to 0.304 ± 0.022 for laquinimod patients ($p=0.0024$) and with a lower risk of confirmed EDSS progression (Hazard ratio = 0.641, 95% CI:0.452-0.908, $p=0.0122$). Mean cumulative number of GdE and 5 new/enlarging T2 lesions were lower for laquinimod ($p=0.0003$ and $p=0.0002$), and the rate of brain volume reduction was reduced ($p<0.0001$) at month 24.

EXAMPLE 2: Clinical Trial (Phase III) - Benefit-Risk Assessment of Avonex® and Laquinimod

10 A multinational, multicenter, randomized, parallel-group, clinical trial is performed in subjects with RRMS ("BRAVO"). BRAVO is conducted to assess the efficacy, safety and tolerability of laquinimod over placebo in a double-blinded and rater-blinded design and of a reference arm of Interferon β -1a (Avonex®). The study is 15 also conducted to perform a comparative benefit/risk assessment between oral laquinimod and injectable Interferon β -1a (Avonex®).

20 The primary objective of the study is to assess the efficacy of 0.6 mg daily dose of laquinimod in subjects with RRMS as measured by the number of confirmed relapses during the treatment period. Secondary objectives of the study include assessing the effect of 0.6 mg daily dose of laquinimod on the accumulation of disability, as assessed by the MSFC score at the end of the treatment period; assessing the effect of 0.6 mg daily dose of laquinimod on the development of brain atrophy as defined by the percent brain volume change from 25 baseline at the end of the treatment period; and assessing the effect of 0.6 mg daily dose of laquinimod on the accumulation of physical disability as measured by the time to confirmed progression of EDSS during the treatment period.

30 The 2006 EMEA Guidelines for MS clinical trials states that active control parallel group trials comparing the new treatment to an already approved treatment are needed in order to give the comparative benefit/risk ratio of the new treatment, at least in those treatment intended to prevent relapses. Three-arm studies with placebo, test product and active control are a preferred design.

Avonex® (Interferon beta-1a) is a 166-amino acid glycoprotein produced by recombinant DNA technology using genetically engineered Chinese Hamster ovary cells into which the human interferon beta gene has been introduced. The amino acid sequence of Avonex® is 5 identical to that of natural human interferon beta.

Avonex® is a marketed drug indicated for the treatment of patients with relapsing forms of MS to slow the accumulation of physical disability and decrease the frequency of clinical exacerbations. Patients with multiple sclerosis in whom efficacy has been 10 demonstrated include patients who have experienced a first clinical episode and have MRI features consistent with MS.

The recommended dosage of Avonex® is 30mcg injected intramuscularly once a week.

Study Title

15 A multinational, Multicenter, Randomized, Parallel-Group study performed in subjects with Relapsing-Remitting Multiple Sclerosis (RRMS) to assess the efficacy, safety and tolerability of laquinimod over placebo in a double-blind design and of a reference arm of Interferon β-1a (Avonex®) in a rater-blinded design.

20 ***Study Duration***

Screening phase: 1 month or up to 30 days.

Treatment phase: 24 months of once-daily oral administration of laquinimod 0.6 mg, matching oral placebo or once-weekly intramuscular administration of Interferon β-1a (Avonex®) 30 mcg.

25 Subjects successfully completing the study are offered the opportunity to enter into a 1-year open-label extension in which laquinimod 0.6 mg/d are administered.

A month is defined as 30±4 days in this study.

Study Population

30 Subjects with RRMS.

Number of Subjects

Approximately 1200 subjects.

Prior to the end of the recruitment period, a blinded relapse rate and sample size reassessment is performed. Based on the newly 5 estimated relapse rate of the population, the sample size may be increased.

Dropouts are not replaced.

Study Design**Treatment Arms**

10 Eligible subjects are randomized in a 1:1:1 ratio (oral laquinimod: oral placebo: Avonex[®]) and assigned to one of the following three treatment arms:

1. Laquinimod 0.6 mg per os once daily (400 subjects).
2. Matching placebo (for laquinimod) per os once daily (400 15 subjects).
3. Interferon β -1a (Avonex[®]) 30 mcg intramuscular injection once weekly (400 subjects).

Route and Dosage Form

0.6mg arm: one capsule containing 0.6 mg laquinimod is administered 20 orally once daily. The 0.6 mg laquinimod capsule contains 0.6 mg of Laquinimod Acid per capsule with meglumine.

The 0.6 mg laquinimod capsule is manufactured according to the method disclosed in PCT International Application Publication No. WO/2007/146248, published December 21, 2007 (see, page 10, line 5 to 25 page 11, line 3).

Matching placebo for laquinimod arm: one capsule is administered once daily.

Blinding

Subjects on oral treatment are managed in a double-blind manner. Subjects assigned to injectable treatment with Avonex® and their Treating Neurologist/Physician are unblinded to the treatment 5 assignment, but assessed neurologically by an Examining Neurologist/Physician in a blinded manner (potential IM injection sites are covered).

Assessments At Specified Time Points

During the treatment phase, subjects are evaluated at study sites 10 for a total of 12 scheduled visits at months: -1 (screening), 0 (baseline), 1, 2, 3, 6, 9, 12, 15, 18, 21 and 24 (termination/early discontinuation).

During the study, the following assessments are performed (regardless of the treatment assignment) at the specified time 15 points:

1. Vital signs (temperature, pulse, blood pressure) are measured at each study visit.

2. A physical examination is performed at months -1 (screening), 0 (baseline) 1, 3, 6, 12, 18 and 24 (termination/early 20 discontinuation).

3. The following safety clinical laboratory tests are performed:

a. Hematology and Complete blood count (CBC) with differential - at all scheduled visits. A reticulocyte count is added to the CBC at months 0 (baseline) and 24 (termination/early discontinuation) as well as in 25 occasions of significant decrease in hemoglobin.

b. Serum chemistry (including electrolytes, liver enzymes, direct and total bilirubin, CPK and pancreatic amylase), and urinalysis - at all scheduled visits.

c. Serum TSH, T3 and Free T4 are measured at months 0 (baseline), 6, 12, 18 and 24 (termination/early discontinuation).

5 d. A rapid urine β -hCG test is performed in women of child-bearing potential at baseline (month 0; all subjects) and at each scheduled study visit thereafter (at site; only subjects assigned to oral treatment).

10 e. β -hCG in women of child-bearing potential are performed at each study visit.

15 f. Starting after visit Month 3 a rapid urine β -hCG test is performed in women of child-bearing potential (only those assigned to oral treatment) every 28 (± 2) days. The subject is contacted by telephone with 72 hours after the test is scheduled to be performed and asked specific questions regarding the test. In case of suspected pregnancy (positive urine β -hCG test result), the caller makes sure that the study drug has been discontinued and the subject is instructed to arrive to the site as soon as possible with all study drugs.

20 4. Markers of inflammation (serum conventional C-reactive protein and fibrinogen) are measured at all scheduled visits.

5. Serum samples are collected for evaluation of immunological parameters and response to treatment with either laquinimod or Avonex[®], as well as further investigation of the potential mechanisms of action of laquinimod or for the detection of infectious agents. These samples are collected at months 0, 25 12 and 24.

30 6. During the first 3 months of the study, periodical phone calls are placed by the site personnel every two weeks and fourteen (± 2) days post month 1 and month 2 visits, the patient is asked questions relating to signs or symptoms suggestive of vascular thrombosis is presented to the subject and a list of predefined questions relating to signs/symptoms suggestive of

vascular thrombosis is presented to the subject. In case of suspected thrombotic event, the subject is requested to arrive at the site immediately for further evaluation. Fourteen (\pm 2) days post month 1 and month 2 visits, the patient is asked 5 questions relating to signs or symptoms suggestive of vascular thrombosis is presented to the subject.

7. ECG is performed at months -1 (screening; additional recording, up to 30 minutes apart are performed if QTc is $>$ 450 msec), 0 (baseline; three recordings, 15 minute apart), 1, 2, 3, 6, 12, 10 18 and 24 (termination/early discontinuation).
8. Chest X-ray is performed at month -1 (screening) (if not performed within 6 months prior to screening visit).
9. Adverse Events (AEs) are monitored throughout the study and recorded.
- 15 10. Concomitant medications are monitored throughout the study.
11. Neurological evaluations, including Neurostatus [Functional Systems (FS), Expanded Disability Status Scale (EDSS; Converted scale), Ambulation Index (AI)] and Timed-25 foot walk test are performed at months -1 (screening), 0 (baseline) 20 and every 3 months thereafter, until termination/early discontinuation. (At screening visit, the Timed-25 foot walk test is performed 3 times, for practicing purposes, as a part of the MSFC).
12. MS Functional Composite (MSFC) is assessed at months -1 (screening) (three practices for training purposes only), 0 25 (baseline), 6, 12, 18 and 24 (termination/early discontinuation).
13. The general health status is assessed by the EuroQoL (EQ5D) questionnaire at months 0 (baseline) and 24 (termination/early 30 discontinuation).
14. The general health status and quality of life parameters are assessed by the Short-Form general health survey (SF-36)

subject-reported questionnaire at month 0 (baseline) and every 6 months thereafter until termination/early discontinuation, inclusive.

15. Subject-reported fatigue is assessed by the Modified Fatigue Impact Scale (MFIS) at months 0 (baseline), 2, 6, 12, 18 and 24 (termination/early discontinuation).
5
16. All subjects undergo 3 MRI scans at months 0 (13-7 days prior to baseline visit), 12 and 24 (termination/early discontinuation). Subjects undergo MRI scan before and after 10 Gadolinium administration (month 12).
10
17. All subjects undergo 5 assessment of binocular low-contrast visual acuity using the 1.25%, 2.5% and 100% contrast level charts [Sloan letter or Tumbling-E] in each assessment, at months 0 (baseline), 6, 12, 18 and 24 (termination/early discontinuation).
15
18. Blood test for Factor V Leiden mutation (FVLM) is performed at screening visit.
19. Serologies for Hepatitis B and C viruses are performed at screening visit.
20. Relapses are confirmed/monitored/evaluated throughout the study. Since the "in study" relapse definition must be supported by an objective neurological evaluation, a neurological deficit must sustain long enough to eliminate pseudo-relapses. Therefore, in Bravo, a confirmed relapse is 25 the appearance of one or more new neurological abnormalities or the reappearance of one or more previously observed neurological abnormalities wherein the change in clinical state lasts at least 48 hours and is immediately preceded by an improving neurological state of at least thirty (30) days 30 from onset of previous relapse.
21. The allowed treatment for a relapse is intravenous methylprednisolone 1 gr/day for up to 5 consecutive days.

22. Assessment of the effect of general health and symptom severity on work, using the work productivity and activities impairment - General Health (WPAI-GH) questionnaire (months 3, 6, 9, 12, 15, 18 and 21) (this assessment is performed in all subjects from US sites only).

5 23. The sequence of assessments performed during the visits is as follows:

a. Short-Form general health survey (SF-36) subject-reported questionnaire (months 6, 12 and 18)

10 b. Modified Fatigue Impact Scale (MFIS) (months 2, 6, 12 and 18)

c. The work productivity and activities impairment - General Health (WPAIGH) questionnaire (applicable only to US sites, months 3, 6, 9, 12, 15, 18 and 21)

15 d. The 9-Hole Peg and PASAT components of the MSFC (Timed 25 Foot walk may be performed later) (months 6, 12 and 18)

24. The rest of the visit activities, as described above

25. For subjects who are assigned to oral treatment, the last dose of study drug is taken one day prior to the Termination visit day.

20 26. For subjects who are assigned to injections, the study drug (Avonex[®]) is not administered on Termination visit day.

Safety Parameters - Adverse Events

Adverse events are recorded from when a subject has signed the
25 Informed Consent Form and throughout the study, until 30 days following the termination visit.

Safety Parameters - Safety Laboratory Evaluations

The following tests are performed:

1. Serum Chemistry: Glucose, Creatinine, Bilirubin (direct and total), Urea, AST (SGOT), ALT (SGPT), GGT, Pancreatic Amylase, Lipid profile (once in the study either at screening or baseline visits; 12-hours-fasting is mandatory: Total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides), Total Protein Albumin, CRP (C reactive protein, conventional assay), Alkaline Phosphatase, CPK, T3, Free T4, and TSH [only at months 0 (baseline), 6, 12, 18 and 24 (termination/early discontinuation)].
2. Electrolytes: Sodium, Potassium, Calcium, and Phosphorous.
3. Coagulation: Fibrinogen and INR (performed in a local laboratory)
- 15 4. Hematology: Hemoglobin, MCH, MCV, MCHC, Hematocrit, Red Blood Cells count (RBC), White Blood Cells count + differential, Platelet count, and a reticulocyte count is added to the CBC at months 0 (baseline) and 24 (termination/early discontinuation visit), and in any case of a ≥ 2 g/dL decrease in hemoglobin, as compared to baseline level. In such cases, measurement of reticulocyte count continues with each CBC test until the difference between hemoglobin value and baseline hemoglobin is < 2 g/dL.
- 20 5. Factor V Leiden Mutation: This sample (for this mutation only) is collected at screening visit and stored frozen in the central laboratory. This sample may be analyzed upon request of the DMC at any time during the study. If, from any reason, the subject is a screening failure, this sample is destroyed.
- 25 6. Pregnancy tests
- 30 7. Urinalysis: glucose, ketones, erythrocytes, leukocytes and protein

8. Serology (to be performed only for a confirmed abnormality of liver enzymes): anti-Hepatitis A IgM antibodies, hepatitis B Surface antigen, anti-Hepatitis B Core IgM antibodies, anti-Hepatitis C IgG antibodies, anti-nuclear antibodies, anti-Smooth Muscle (Sm) antibodies, and anti-Liver-Kidney Microsomes (LKM)-1 antibodies

Safety and Pharmacovigilance

A new condition or the worsening of a pre-existing condition is considered an AE. Stable chronic conditions that are present prior to study entry and does not worsen during the study are not considered AEs.

The date of onset, a description of the AE, severity, seriousness, action taken, relationship to the study drug, outcome of the event and date of resolution is recorded.

15 Monitoring

Safety monitoring plan and stopping rules are set in place for the management of: 1) elevated liver enzymes, 2) inflammatory events, 3) thrombotic events and 4) pancreatitis.

Ancillary studies

20 Pharmacogenetic (PGt) assessment: Upon the approval of this ancillary study by EC/IRB, blood samples for PGt parameters are collected from all subjects who signed the informed consent form at month 0 (baseline).

25 Relationship between PGt and response to laquinimod or to Avonex® in terms of clinical, MRI and safety parameters is assessed in all sites.

The effect of general health and symptom severity on work is assessed by the work productivity and activities impairment - General Health (WPAI-GH) questionnaire at month 0 (baseline) and 30 every 3 months thereafter, until month 24 (termination/early

discontinuation) visit (this assessment is performed in all subjects from the U.S. sites only).

Inclusion/Exclusion Criteria

Inclusion Criteria

- 5 1. Subjects must have a confirmed and documented MS diagnosis as defined by the Revised McDonald Criteria [Ann Neurol 2005;58:840-846], with a relapsing-remitting disease course.
2. Subjects must be ambulatory with Converted EDSS score of 0-5.5 in both screening and baseline visits.
- 10 3. Subjects must be in a stable neurological condition and free of corticosteroid treatment [intravenous (IV), intramuscular (IM) and or per os (PO)] 30 days prior to screening (month -1) and between screening (month -1) and baseline (month 0) visits.
4. Subjects must have had experienced one of the following:
 - 15 a. At least one documented relapse in the 12 months prior to screening, or
 - b. At least two documented relapses in the 24 months prior to screening, or
 - c. One documented relapse between 12 and 24 months prior to screening with at least one documented T1-Gd enhancing lesion in an MRI performed within 12 months prior to screening.
- 20 5. Subjects must be between 18 and 55 years of age, inclusive.
6. Women of child-bearing potential must practice an acceptable method of birth control. Acceptable methods of birth control in this study include: surgical sterilization, intrauterine devices, oral contraceptive, contraceptive patch, long-acting injectable contraceptive, partner's vasectomy or a double-barrier method (condom or diaphragm with spermicide).

7. Subjects must be able to sign and date a written informed consent prior to entering the study.
8. Subjects must be willing and able to comply with the protocol requirements for the duration of the study.

5 Exclusion Criteria

1. An onset of relapse or any treatment with corticosteroid (intravenous [IV], intramuscular [IM] and/or per os [PO]) or ACTH between month -1 (screening) and 0 (baseline).
2. Subjects with progressive forms of MS.
- 10 3. Use of experimental or investigational drugs, and/or participation in drug clinical studies within the 6 months prior to screening.
4. Use of immunosuppressive (including Mitoxantrone (Novantrone®)) or cytotoxic agents within 6 months prior to the screening visit.
- 15 5. Previous use of either of the following: natalizumab (Tysabri®), cladribine, laquinimod, Interferon beta-1a (Avonex® or Rebif®), Interferon beta beta-1b (Betaseron®/Betaferon®) or any other experimental Interferon-beta for MS.
- 20 6. Previous treatment with glatiramer acetate (Copaxone®) or IVIG within 2 months prior to screening visit.
7. Chronic (more than 30 consecutive days) systemic (IV, PO or IM) corticosteroid treatment within 2 months prior to screening visit.
- 25 8. Previous total body irradiation or total lymphoid irradiation.
9. Previous stem-cell treatment, autologous bone marrow transplantation or allogenic bone marrow transplantation.
10. A known history of tuberculosis.
11. Acute infection within 2 weeks prior to baseline visit.

12. Major trauma or surgery within 2 weeks prior to baseline visit.
13. Known human immunodeficiency virus (HIV) positive status.
14. Use of inhibitors of CYP3A4 within 2 weeks prior to baseline visit.
- 5 15. Use of amiodarone within 2 years prior to screening visit.
16. Pregnancy or breastfeeding.
17. A $\geq 3 \times \text{ULN}$ serum elevation of either ALT or AST at screening.
18. Serum direct bilirubin which is $\geq 2 \times \text{ULN}$ at screening.
19. A QTc interval which is > 450 msec (according machine output),
10 obtained from:
 - a. Two ECG recordings at screening visit, or
 - b. The mean value calculated from 3 baseline ECG recordings.
20. Subjects with a clinically significant or unstable medical or surgical condition that, in the Investigator's opinion, would preclude safe and complete study participation, as determined by medical history, physical examination, ECG, laboratory tests or chest or chest X-ray. Such conditions may include:
 - a. A cardiovascular or pulmonary disorder that cannot be well-controlled by standard treatment permitted by the study protocol.
 - b. A gastrointestinal disorder that may affect the absorption of study medication.
 - c. Renal, metabolic or hematological diseases.
 - d. Thyroid disease: a subject with hyperthyroidism is not permitted to participate in the study. A subject with hypothyroidism may be permitted to participate in the study provided that he/she is clinically euthyroid and considered stable.

- e. Liver disease, such as cirrhosis.
- f. A family history of Long-QT syndrome.
- g. A history of drug and/or alcohol abuse.
- h. A current major psychiatric disorder, including schizophrenia or severe depression, with or without suicidal ideation.
- i. A history of seizure disorder, with the last convulsion occurring within 12 months prior to screening visit.

21. A known history of sensitivity to Gadolinium.

10 22. Inability to successfully undergo MRI scanning.

23. A known drug hypersensitivity that would preclude administration of laquinimod, such as hypersensitivity to: mannitol, meglumine or sodium stearyl fumarate.

15 24. A known history of hypersensitivity to natural or recombinant interferon beta, human albumin, or any other component of the formulation of Avonex®.

20 Additional disallowed concomitant medications/therapies: interferons, glatiramer acetate (Copaxone®), Natalizumab (Tysabri®), inhibitors of CYP3A4, Mitoxantrone (Novantrone®), oral steroids, parenteral steroids (except as given as allowed for treatment of an acute relapse), chemotherapeutic agents, 4-amino pyridine or 3,4 diaminopyridine, IV Immunoglobulin (Ig) and any other experimental agents, and other Immunosuppressive or immunomodulating agents.

25 A partial list of CYP3A4 inhibitors (disallowed 2 weeks prior and during treatment period) is listed below:

Cardiac drugs/antiarrhythmic agents such as amiodaronec, diltazem, nifedipine, verapamil, or mibepradil; Antimicrobial agents such as Erythromycin, Clarithromycin, Troleandomycin, Telithromycin, Fluconazole, Itraconazole, Ketoconazole, Miconazole, or Voriconazole; 30 HIV drugs such as Delavirdine or Protease Inhibitors, such as

indinavir, ritonavir and others; Antidepressants such as fluoxetine, fluvoxamine, or nefazodone; and other CYP3A4 inhibitors such as isoniazid, quinine, cimetidine, zileuton, or aprepitant.

Statistical Considerations

5 The sample size considerations for the study are based on the following assumptions:

1. An individual subject's number of confirmed relapses during a one year period reflects a Poisson process with an individual rate of λ_i , and this individual subject rates λ_i are

10 exponentially distributed with mean $1/\theta$, where θ is the population's annualized relapse rate. This approach models the total number of confirmed relapses as an Over Dispersed Poisson distribution.

2. The expected annualized relapse rate in an untreated patient

15 population is $\theta = 0.65$ relapses per year.

3. In the placebo treatment group, the expected annualized relapse rate is $\theta = 0.6$ relapses per year, due to a placebo effect.

4. Treatment with laquinimod reduces the patient population

20 annualized relapse rate by 25% or more when compared to the placebo group. That is, the expected annualized relapse rate of the laquinimod treated population is $\theta = 0.45$ relapses per year or less.

A simulation study accounting for the above underlying assumptions

25 used the Quasi-likelihood (over-dispersed) Poisson regression (SAS® PROC GENMOD), revealed that a total of 666 subjects (333 subjects per arm) provides approximately 80% power to detect a statistically significant reduction of 25% in the total number of confirmed relapses between the placebo group and the laquinimod group. This

30 sample size also enables 92% power to detect a statistically significant reduction of 30% in the total number of confirmed

relapses between the laquinimod 0.6 mg treatment group and the placebo group.

The analysis of the total numbers of confirmed relapses during the treatment period is based on baseline adjusted Quasi-Likelihood
5 (over-dispersed) Poisson Regression. The analysis of disability as assessed by MSFC at the end of the treatment period, and the analysis of brain atrophy as defined by the percent brain volume change from baseline to the end of the treatment period is based on the baseline adjusted Analysis of Covariance. The analysis of the
10 accumulation of physical disability measured by the time to a confirmed progression of EDSS is based on Cox' Proportional Hazard model.

Route and Dosage Form

Laquinimod arm: one capsule containing laquinimod 0.6 mg is
15 administered orally once daily, preferably at the same hour every day with a glass of water.

The 0.6 mg laquinimod capsule is manufactured according to the method disclosed in PCT International Application Publication No. WO/2007/146248, published December 21, 2007 (see, page 10, line 5 to
20 page 11, line 3).

Matching placebo for laquinimod arm: one capsule is administered orally once daily, preferably at the same hour every day with a glass of water.

Avonex® arm: one injection of Interferon β-1a (Avonex®) 30 mcg is
25 administered intramuscularly once weekly, preferably on the same day.

Outcome Measures

Primary Outcome Measure

The number of confirmed relapses during the treatment period.

Secondary Outcome Measures

Type-I error is controlled by employing the Hierarchical Approach, (i.e. each endpoint is analyzed only in case the preceding endpoint has a p-value less or equal to 0.05 for laquinimod 0.6 mg over 5 placebo comparison) according to the following order:

1. Disability, as assessed by the MSFC score at the end of the treatment period.
2. Brain atrophy as defined by the percent brain volume change from baseline at the end of the treatment period.
- 10 3. Accumulation of physical disability measured by the time to confirmed progression of EDSS (A confirmed progression of EDSS is defined as a 1 point increase from baseline on EDSS score if baseline was between 0 and 5.0, or a 0.5 point increase if baseline EDSS was 5.5, confirmed 3 months later. Progression 15 cannot be confirmed during a relapse).

Safety and Tolerability Outcome Measures

1. Adverse events.
2. Vital signs.
3. ECG findings.
- 20 4. Clinical laboratory parameters.
5. Proportion of subjects (%) who prematurely discontinued from the study, reason of discontinuation and the time to withdrawal.
- 25 6. Proportion of subjects (%) who prematurely discontinued from the study due to AEs and the time to withdrawal.

Benefit/Risk Assessment

The Avonex® reference arm is compared to the placebo treatment group with respect to the same endpoints as for the comparison between the laquinimod group and the placebo group.

These endpoints include:

1. The number of confirmed relapses during the treatment period.
2. Disability measures based on EDSS and MSFC neurological scales.
3. MRI parameters.
- 5 4. Safety as assessed by adverse events, vital signs, ECG and clinical laboratory parameters.
5. Tolerability
6. Quality of life scales such as: Modified Fatigue Impact Scale (MFIS), General health status, as assessed by the EuroQoL 10 (EQ5D) questionnaire and the Short-Form general Health survey (SF-36) subject-reported questionnaire.

The comparative assessment of the benefit/risk ratio between the two active arms (laquinimod and Avonex®) is based on the following aspects:

- 15 1. Efficacy parameters (Disability, MRI parameters, other relapse-related endpoints).
2. Safety and tolerability.
3. Quality of life.

Additional Exploratory Endpoints

- 20 1. The following assessments are presented in an exploratory manner:
 1. The total number of enhancing lesions on T1-weighted images taken at months 12 and 24 (termination/early discontinuation).
 2. The number of enhancing lesions on a T1-weighted image taken at month 12.
 - 25 3. The number of enhancing lesions on a T1-weighted image taken at month 24 (termination/early discontinuation).

4. The total number of new hypointense lesions ("black holes") on enhanced T1 scans taken at months 12 and 24 (termination/early discontinuation).
5. The total number of new hypointense lesions ("black holes") on an enhanced T1 scan taken at month 12.
6. The total number of new hypointense lesions ("black holes") on an enhanced T1 scan taken at month 24 (termination/early discontinuation).
7. The total number of new/newly enlarging T2 lesions on scans taken at months 12 and 24 (termination/early discontinuation).
8. The number of new/newly enlarging T2 lesions on a scan taken at month 12.
9. The total number of new/newly enlarging T2 lesions on scans taken at month 24 (termination/early discontinuation).
10. 10. The change in T2-lesion volume between months 0 (baseline) and 24 (termination/early discontinuation).
11. The volume of T-2 lesions at termination/early discontinuation of treatment period.
12. The change from baseline to month 24 (termination/early discontinuation) in the volume of hypointense lesions on enhanced T1 scans.
13. Brain atrophy as defined by the percent brain volume change from: 1) baseline to month 12 and b) month 12 to month 24 (termination/ early discontinuation).
- 25 14. The change from baseline to month 24 (termination/early discontinuation) in binocular visual acuity, as assessed by the number of letters read correctly from 2 meters distance on 1.25%, 2.5% and 100% contrast level Sloan letter/Tumbling-E charts.

15. Subject-reported fatigue, as assessed by the Modified Fatigue Impact Scale (MFIS).
16. The time to the first confirmed relapse during the treatment period.
- 5 17. The proportion of relapse-free subjects.
18. The rate of confirmed relapses during the treatment period requiring hospitalization and/or IV steroids.
19. The general health status, as assessed by the EuroQoL (EQ5D) questionnaire.
- 10 20. The general health status and health-related quality of life, as assessed by the Short-Form general health survey (SF-36) subject-reported questionnaire.

Assessment Methods

15 Neurostatus - A complete neurological assessment is performed at months -1 (screening), 0 (baseline) and every 3 months thereafter until termination/early discontinuation of the study. The neurological assessment is a standardized neurological examination and assessment of Kurtzke's functional systems and expanded disability status.

20 The MS Functional Composite consists of 3 clinical examinations, the results of which are combined using z-scores. The three clinical examinations include the PASAT, Timed 25 Foot walk and 9-Hole Peg Test. The PASAT and 9-Hole Peg tests are performed at months -1 (screening) (only for training purposes), 0 (baseline), 6, 12, 18 and 25 24 (termination/early discontinuation) visits. The Timed 25 Foot walk test is performed each time the Neurostatus is performed.

The low-contrast visual acuity is assessed binocularly at months 0 (baseline), 6, 12, 18 and 24 (termination/early discontinuation) visits, along with the MSFC assessments.

30 All subjects undergo 3 MRI scans (before and after gadolinium administration) at months: 0 (baseline), 12 and 24

(termination/early discontinuation). The following parameters are assessed on each relevant scheduled scan:

Number of Gd-enhancing lesions on T1-weighted MRI scans, number of new/newly enlarging T₂ hyperintense lesions (with reference to the 5 previous scan), volume of T₂ hyperintense lesions, number of new hypointense lesions on gadolinium-enhanced T₁-weighted MRI scans ('black holes') (with reference to the previous scan), volume of hypointense lesions on gadolinium-enhanced T₁-weighted MRI scans, percent brain volume change (with reference to previous scan), and 10 normalized brain volume (at baseline). All MRI data is evaluated and quantified by the MRI-AC.

Subject-reported fatigue assessed by the Modified Fatigue Impact Scale (MFIS) at months 0, 2, 6, 12, 18 and 24 (termination/early discontinuation).

15 The general health status is assessed by the EuroQoL (EQ5D) questionnaire at months 0 (baseline) and 24 (termination/early discontinuation).

20 The general health status is also assessed by the Short-Form general health survey (SF-36) subject-reported questionnaire at month 0 (baseline) and every 6 months thereafter, until termination/early discontinuation. The SF-36 is a generic, self-administered health-related quality of life instrument. In this study the instrument is self-administrated during the visit.

25 Pharmacogenetic (PGt) assessment (ancillary study) is performed using an 8.5 ml blood sample taken at baseline visit.

30 Economic Impact is assessed by the Work Productivity and Activities Impairment (WPAIGH) Questionnaire (Ancillary Study, US sites only). The WPAI-GH was developed for assessing productivity losses by measuring the effect of general health and symptom severity on work as well as usual activity productivity. This questionnaire is administered at month 0 (baseline) and every 3 months thereafter, until month 24 (termination/ early discontinuation) visit. This assessment is performed in all subjects from US sites only.

-75-

Serum samples are collected from all subjects at months 0 (baseline), 12 and 24 (termination/early discontinuation). They are collected for evaluation of immunological parameters and response to treatment with either laquinimod or Avonex®, as well as for further 5 investigation of the potential mechanism of action of laquinimod.

Vital signs (temperature, pulse and blood pressure) are measured at all scheduled and unscheduled visits. At baseline visit, blood pressure and pulse are measured 30 and 60 minutes after the first drug administration. Blood pressure and pulse are recorded in a 10 sitting position after resting for 5 minutes.

Weight is measured at screening and month 24 (termination/early discontinuation) visits. Height is measured at month -1 (screening) visit only.

ECGs are performed at months -1 (screening) (additional recording, 15 up to 30 minutes apart are performed if QTc is >450msec according to the machine output), 0 (baseline), 1, 2, 3, 6, 12 18 and 24 (termination/early discontinuation). At baseline visit, three ECGs are performed at 15 minutes intervals to serve as integrated baseline ECG, by averaging baseline interval results for comparison 20 to on-treatment values.

The subject rests for at least 10 minutes before measurement is taken. Twelve-lead ECG is performed following the subject being in a supine position for 5 minutes.

A physical examination is performed at months -1 (screening), 0 25 (baseline) 1, 3, 6, 12, 18 and 24 (termination/early discontinuation).

A chest X-ray is performed at screening (month -1) if not performed within 6 months prior to screening and provided a report thereof can be obtained.

Results

The study demonstrates that daily oral administration of 0.6 mg laquinimod improves the condition of patients as measured by the study endpoints as described herein. Specifically:

5 Daily oral administration of 0.6 mg laquinimod reduces the number of confirmed relapses, which is directly related to the relapse rate, in relapse-remitting multiple sclerosis patients.

Daily oral administration of 0.6 mg laquinimod also reduces the accumulation of physical disability in relapse-remitting multiple 10 sclerosis patients, as measured by the MSFC score at the end of the treatment period, and time to confirmed progression of EDSS.

Daily oral administration of 0.6 mg laquinimod also reduces brain atrophy in relapse-remitting multiple sclerosis patients, as measured by percent brain volume change from baseline to at the end of the 15 treatment period.

Daily oral administration of 0.6 mg laquinimod also improves the general health status of relapse-remitting multiple sclerosis patients, as assessed by a Short-Form general health survey (SF-36).

Daily oral administration of 0.6 mg laquinimod also prevents or 20 delays relapses in relapse-remitting multiple sclerosis patients.

Daily oral administration of 0.6 mg laquinimod also reduces the rate of severe relapses or the severity of relapses in relapse-remitting multiple sclerosis patients, wherein severe relapses are relapses requiring hospitalization or intravenous steroid treatment.

25 Daily oral administration of 0.6 mg laquinimod also reduces the fatigue in relapse-remitting multiple sclerosis patients, as assessed by the Modified Fatigue Impact Scale (MFIS).

Daily oral administration of 0.6 mg laquinimod also improves the quality of life of relapse-remitting multiple sclerosis patients, as 30 assessed by a EuroQoL (EQ5D) questionnaire.

The results stated above are an improvement over the placebo.

The results stated above are an improvement over the Interferon β -1a (Avonex $^{\circledR}$) reference arm.

Daily oral administration of 0.6 mg laquinimod to relapse-remitting multiple sclerosis patients also has a favorable safety and
5 tolerability profile compared to weekly administration of 30 mcg Interferon β -1a (Avonex $^{\circledR}$).

Daily oral administration of 0.6 mg laquinimod to relapse-remitting multiple sclerosis patients also offers a favorable benefit/risk ratio when compared to weekly administration of 30 mcg Interferon β -
10 1a (Avonex $^{\circledR}$).

Daily oral administration of 0.6 mg laquinimod to relapse-remitting multiple sclerosis patients results in fewer adverse effects, less severe adverse effects, and is less likely to result in discontinuation of use due to adverse effects compared to weekly
15 administration of 30 mcg Interferon β -1a (Avonex $^{\circledR}$).

References

1. PCT International Application Publication No. WO 2007/047863, published April 26, 2007, international filing date October 18, 2006.
- 5 2. PCT International Application Publication No. WO 2007/146248, published December 21, 2007, international filing date June 12, 2007.
3. Barkhof, F. (1999) "MRI in Multiple Sclerosis: Correlation with Expanded Disability Status Scale (EDSS)", Multiple Sclerosis.
10 5 (4):283-286 (Abstract).
4. Bjartmar and Fox (2002) "Pathological mechanisms and disease progression of multiple sclerosis: therapeutic implication", Drugs of Today. 38:7-29.
5. Brex et al. (2002) "A longitudinal study of abnormalities on
15 MRI and disability from multiple sclerosis", N Engl J Med. Jan 17, 2002 346(3):158-64.
6. Brunmark et al. (2002) "The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis", J
20 Neuroimmunology. 130:163-172.
7. Cohen et al. (2010) "Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis". N Eng J Med; 362:402-415.
8. Comi et al. (2007) LAQ/5062 Study Group. "The Effect of Two
25 Doses of Laquinimod on MRI-Monitored Disease Activity in Patients with Relapsing-Remitting Multiple Sclerosis: A Multi-Center, Randomized, Double-Blind, Placebo-Controlled Study", Presented at: 59th Annual Meeting of the American Academy of Neurology; April 28-May 5, 2007; Boston, MA.
- 30 9. Comi et al. (2008) "Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple

sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study", Lancet. 371:2085-2092.

10. Comi et al. (2009) for the LAQ/5062 Clinical Advisory Board and Study Group. Long-term open extension of oral laquinimod in patients with relapsing multiple sclerosis shows favorable safety and sustained low relapse rate and MRI activity. 5 [Ectrims abstract P443]. Mult Scler. 15(Suppl 2):S127.

11. Comi et al. (2010) for the LAQ/5062 Clinical Advisory Board and Study Group. The effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a double-blind active extension of the multicentre, randomised, double-blind, parallel-group placebo-controlled study. Mult Scler. 16:1360-1366. 10

12. Cutter et al. (1999) "Development of a multiple sclerosis functional composite as a clinical trial outcome measure", Brain. 122:871-882. 15

13. De Stefano et al. (1999) "Evidence of early axonal damage in patients with multiple sclerosis", Neurology. 52(Suppl 2):A378.

14. Dunitz. M. (1999) Multiple sclerosis therapeutics, Ed. Rudick and Goodkin. London: Taylor & Francis, 1999. 20

15. Durelli et al. and the Independent Comparison of Interferon (INCOMIN) Trial Study Group. (2002) "Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis: results of a 2-year prospective randomised multicentre study (INCOMIN)", Lancet. 359:1453-60. 25

16. EMEA Guideline on Clinical Investigation of Medicinal Products for the Treatment of Multiple Sclerosis (CPMP/EWP/561/98 Rev. 1, Nove.2006).

17. EPAR, Rebif®, Scientific Discussion.

18. Fischer et al. (1999) "The Multiple Sclerosis Functional Composite measure (MSFC): an integrated approach to MS clinical outcome assessment" Multiple Sclerosis. 5(4):244-250.

19. Fisk et al. (1994) "Measuring the Functional Impact of Fatigue: 5 Initial Validation of Fatigue Impact Scale", Clin Inf Dis. 18 Suppl 1:S79-83.

20. Fisk et al. (1994) "The Impact of Fatigue on Patients with Multiple Sclerosis", Can J Neurol Sci. 21:9-14.

21. Frohman et al. (2003) "The utility of MRI in suspected MS: 10 report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology", Neurology. Sep 9, 2003, 61(5):602-11.

22. Giovannoni et al. (2010) "A placebo-controlled trial of oral 15 cladribine for relapsing multiple sclerosis", N Eng J Med. 362:416-426.

23. Golder W. (2007) "Magnetic resonance spectroscopy in clinical oncology", Onkologie. 27(3): 304-9.

24. Grossman et al. (1994) Magnetization transfer: theory and 20 clinical applications in neuroradiology", RadioGraphics. 14:279-290.

25. Hartung et al. (2005) "Significance of neutralizing antibodies to interferon beta during treatment of multiple sclerosis: expert opinions based on the Proceedings of an International Consensus Conference", Eur J Neurol. 12:588-601.

26. Hauser et al. (1983) "Intensive immunosuppression in 25 progressive multiple sclerosis", New Engl J Med. 308:173-180.

27. Hohlfeld et al. (2000) "The neuroprotective effect of inflammation: implications for the therapy of multiple sclerosis", J Neuroimmunol. 107:161-166.

28. Jacobs et al. (1996) "Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis", Ann Neurol. 39:285-294.

29. Kappos et al. (2010) "A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis", N Eng J Med. 362:387-401.

30. Kurtzke JF. (1983) "Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS)", Neurology 33(11):1444-1452.

10 31. Lublin and Reingold (1996) "Defining the clinical course of multiple sclerosis", Neurol. 46:907-911.

32. McDonald, (2001) "Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis" Ann. Neurol. 50:121-127.

15 33. Mehta et al. (1996) "Magnetization transfer magnetic resonance imaging: a clinical review", Topics in Magnetic Resonance Imaging 8(4):214-30.

34. Miki et al. (1999) "Relapsing-Remitting Multiple Sclerosis: Longitudinal Analysis of MR Images - Lack of Correlation between Changes in T2 Lesion Volume and Clinical Findings", Radiology. 213:395-399.

20 35. Miller et al. (2007) "MRI outcomes in a placebo-controlled trial of natalizumab in relapsing MS", Neurology. 68:1390-1401.

36. Neuhaus et al. (2003) "Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection", Trends Pharmacol Sci. 24:131-138.

25 37. Noseworthy et al. (2000) "Multiple sclerosis", N Engl J Med. 343:938-952.

38. Noseworthy et al. (2000) "Linomide in relapsing and secondary progressive MS. Part 1: Trial Design and clinical results", Neurology. 54:1726-1733.

30

39. Panitch H, Goodin DS, Francis G, Chang P, Coyle PK, O'Connor P, Monaghan E, Li D, Weinsjenker B, for the EVIDENCE (Evidence of Interferon Dose-response: European North American Comparative Efficacy) Study Group and the University of British Columbia MS/MRI Research Group. (2002) "Randomized comparative study of interferon β -1a treatment regimens in MS", The EVIDENCE Trial. *Neurology*. 59:1496-1506.

5 40. Polman et al. (2005) "Diagnostic criteria for multiple sclerosis: 2005 revisions to the McDonald Criteria", *Annals of Neurology*, Volume 58 Issue 6, Pages 840 - 846.

10 41. Polman et al. (2005) "Treatment with laquinimod reduces development of active MRI lesions in relapsing MS", *Neurology*. 64:987-991.

42. Polman et al. (2006) "A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis", *N Eng J Med*. 15 354:899-910.

43. Poser et al. (1983) "New Diagnostic Criteria for Multiple Sclerosis: Guidelines for Research Protocols", *Annals of Neurology*, March 1983, 13(3):227-230.

20 44. Preiningerova J. (2009) "Oral laquinimod therapy in relapsing multiple sclerosis", *Expert Opin Investig Drugs*. 18:985-989.

45. PRISMS Study Group. Randomized double-blind placebo-controlled study of interferon β -1a in relapsing/remitting multiple sclerosis. *Lancet* 1998;352:1498-1506.

25 46. Rosen Y. (2007) "The Recent advances in magnetic resonance neurospectroscopy", *Neurotherapeutics*. 27(3): 330-45.

47. Rudick et al. (1999) "Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS: Multiple Sclerosis Collaborative Research Group". *Neurology*. 30 53:1698-1704.

48. Rudick, R. (1999) "Disease-Modifying Drugs for Relapsing-

Remitting Multiple Sclerosis and Future Directions for Multiple Sclerosis Therapeutics", Neurotherapeutics. 56:1079-1084.

49. Runström et al. (2002) "Laquinimod (ABR-215062) a candidate drug for treatment of Multiple Sclerosis inhibits the development of experimental autoimmune encephalomyelitis in IFN- β knock-out mice", (Abstract), Medicon Valley Academy, Malmö, Sweden.

50. Sandberg-Wollheim et al. (2005) "48-week open safety study with high-dose oral laquinimod in patients", Mult Scler. 11:S154 (Abstract).

51. SIENA and SIENAX available from the FMRIB Software Library, Oxford University, Oxford, UK; <http://www.fmrib.ox.ac.uk/analysis/research/siena/siena>.

15 52. Sorenson PS. (2006) "Neutralising antibodies to interferon- β - measurement, clinical relevance, and management", J Neurol. 253[Suppl 6]:VI/16-VI/22.

53. Sormani et al. (2004) "Measurement error of two different techniques for brain atrophy assessment in multiple sclerosis", Neurology. 62:1432-1434.

20 54. Temple R. (2006) "Hy's law: predicting serious hepatotoxicity", Pharmacoepidemiol Drug Saf. 15(4):241-3.

55. The IFNB Multiple Sclerosis Study Group. (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology; 43:655-661.

25 56. The IFNB Multiple Sclerosis Study Group. (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology; 43:662-667.

30

57. The National MS Society (USA), The Disease Modifying Drug Brochure, October 19, 2006.

58. Thöne and Gold (2011) "Laquinimod: a promising oral medication for the treatment of relapsing-remitting multiple sclerosis", Expert Opin Drug Metab Toxicol. 2011 Mar; 7(3): 365-70.

5 59. US Food and Drug Administration, Center for Drug Evaluation and Research. Peripheral and Central Nervous System (PCNS) Advisory Committee. US Department of Health and Human Services 2006. Briefing Document. Biogen Idec Biologics Marketing Application STN 125104/15. Natalizumab (Tysabri) for Multiple Sclerosis. Dated February 9, 2006. Pages 45-48.

10 60. Yang et al., (2004) "Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF- β in Lewis rats", J. Neuroimmunol. 156:3-9.

15 61. Zou et al. (2002) "Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue", Neuropharmacology. 42:731.

What is claimed is:

1. A method for reducing or inhibiting progression of the level of fatigue in a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby reduce or inhibit progression of the level of fatigue in the multiple sclerosis human patient.
2. The method of claim 1, wherein the patient is a relapsing-remitting multiple sclerosis human patient.
3. The method of claims 1 or 2, wherein the level of fatigue is assessed by the patient's Modified Fatigue Impact Scale (MFIS) score.
4. The method of claim 3, wherein the administration of laquinimod decreased the human patient's MFIS score, compared to a patient not receiving the laquinimod treatment.
5. The method of claims 3 or 4, wherein the administration of laquinimod decreased the human patient's MFIS score, compared to the patient at the start of the laquinimod treatment.
6. The method of claims 4 or 5, wherein the MFIS score decreased within 24 months of the start of laquinimod treatment.
7. A method of improving or inhibiting deterioration of the functional status of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the functional status of the multiple sclerosis human patient.
8. The method of claim 7, wherein the patient is a relapsing-remitting multiple sclerosis human patient.
9. The method of claims 7 or 8, wherein the functional status of the patient is measured by the patient's Short-Form General Health survey (SF-36) Subject-Reported Questionnaire score.

10. The method of claim 9, wherein the administration of laquinimod decreased the human patient's SF-36 score, compared to a patient not receiving the laquinimod treatment.
11. The method of claims 9 or 10, wherein the administration of laquinimod decreased the human patient's SF-36 score, compared to the patient at the start of the laquinimod treatment.
12. The method of claims 10 or 11, wherein the patient's SF-36 mental component summary score (MSC) is decreased.
13. The method of any one of claims 10-12, wherein the patient's SF-36 physical component summary score (PSC) is decreased.
14. The method of any one of claims 10-13, wherein the SF-36 score is decreased within 24 months of the start of laquinimod treatment.
15. A method of improving or inhibiting deterioration of the general health of a multiple sclerosis human patient, the method comprising orally administering to the human patient laquinimod or a pharmaceutically acceptable salt thereof so as to thereby improve or inhibit deterioration of the general health in the multiple sclerosis human patient.
16. The method of claim 15, wherein the patient is a relapsing-remitting multiple sclerosis human patient.
17. The method of claims 15 or 16, wherein the general health of the patient is assessed by the patient's EQ-5D Standardized Questionnaire score.
18. The method of claim 17, wherein the administration of laquinimod increased the human patient's EQ-5D score, compared to a patient not receiving the laquinimod treatment.
19. The method of claims 17 or 18, wherein the administration of laquinimod increased the human patient's EQ-5D score, compared to the patient at the start of the laquinimod treatment.

20. The method of claims 18 or 19, wherein the EQ-5D score increased within 24 months of the start of laquinimod treatment.
21. The method of any one of claims 1-20, wherein laquinimod is administered at a daily dose of 0.3-0.9 mg laquinimod.
22. The method of claim 21, wherein laquinimod is administered at a daily dose of 0.6 mg laquinimod.
23. The method of any one of claims 1-22, wherein the laquinimod is administered in the form of laquinimod sodium.
24. The method of any one of claims 1-23, wherein the administration is for a period of greater than 24 weeks.
25. A method for providing neuroprotection to a human subject, the method comprising orally administering to the human subject laquinimod or a pharmaceutically acceptable salt thereof so as to thereby provide neuroprotection to the human subject.
26. The method of claim 25, wherein laquinimod is administered at a daily dose of greater than 0.6 mg laquinimod.
27. The method of claim 21, wherein laquinimod is administered at a daily dose of less than 0.6 mg laquinimod.
28. The method of any one of claims 25-27, wherein laquinimod is administered more often than once daily.
29. The method of any one of claims 25-27, wherein laquinimod is administered less often than once daily.
30. The method of any one of claims 25-29, wherein the subject is afflicted with a progressive form of multiple sclerosis.
31. The method of any one of claims 25-29, wherein the subject is not afflicted with relapsing-remitting multiple sclerosis.
32. The method of any one of claims 25-31, wherein the subject is not afflicted with insulin-dependent diabetes mellitus,

systemic lupus erythematosis, lupus nephritis, lupus arthritis, rheumatoid arthritis, inflammatory bowel disease, crohn's disease, psoriasis, inflammatory respiratory disorder, atherosclerosis, stroke, Alzheimer's disease, or a BDNF-related disease.

33. The method of any one of claims 25-32, wherein the subject is experiencing an onset of relapse.
34. The method of any one of claims 25-33, wherein the subject is not ambulatory.
35. The method of any one of claims 25-34, wherein the subject has a converted Kurtzke EDSS score of more than 5.5.
36. The method of any one of claims 25-35, wherein the subject has not experienced any of:
 - a) at least one documented relapse in the 12 months prior of the start of laquinimod treatment,
 - b) at least two documented relapses in the 24 months prior of the start of laquinimod treatment, or
 - c) one documented relapse between 12 and 24 months prior of the start of laquinimod treatment with at least one documented T₁-Gd enhancing lesion in an MRI performed within 12 months prior of the start of laquinimod treatment.
37. The method of any one of claims 25-36, wherein the subject has disease duration of less than 6 months from the first symptom prior of the start of laquinimod treatment.
38. The method of any one of claims 25-37, wherein the subject is younger than 18 years old or older than 55 years old.
39. The method of any one of claims 2, wherein the administration of laquinimod reduces neuronal dysfunction, reduces neuronal injury, reduces neuronal degeneration, or reduces neuronal apoptosis.

40. The method of claim 39, wherein the administration of laquinimod reduces neuronal dysfunction in the Central Nervous System, reduces neuronal injury in the Central Nervous System, reduces neuronal degeneration in the Central Nervous System, or reduces neuronal apoptosis in the Central Nervous System.
41. Laquinimod for use in maintaining or reducing the level of fatigue in a multiple sclerosis human patient.
42. Laquinimod for use in maintaining or improving the functional status of a multiple sclerosis human patient.
43. Laquinimod for use in maintaining or improving the general health of a multiple sclerosis human patient.
44. Laquinimod for use in providing neuroprotection to a human subject.

FIGURE 1

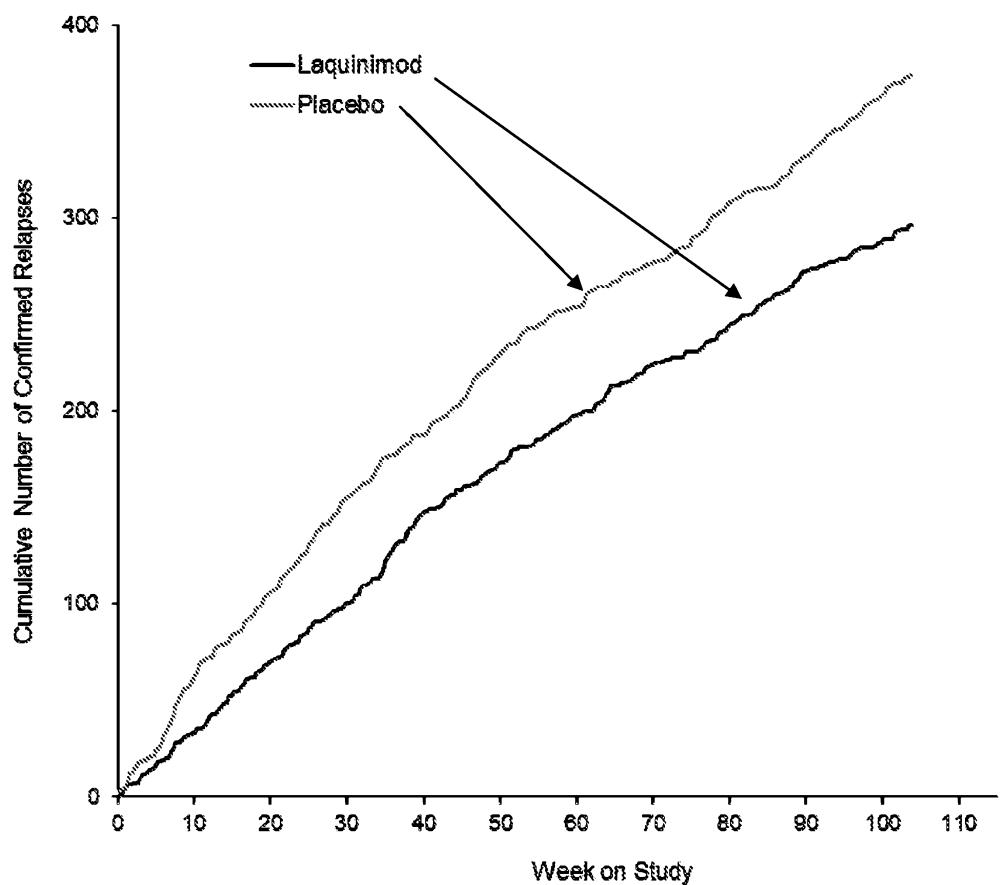


FIGURE 2

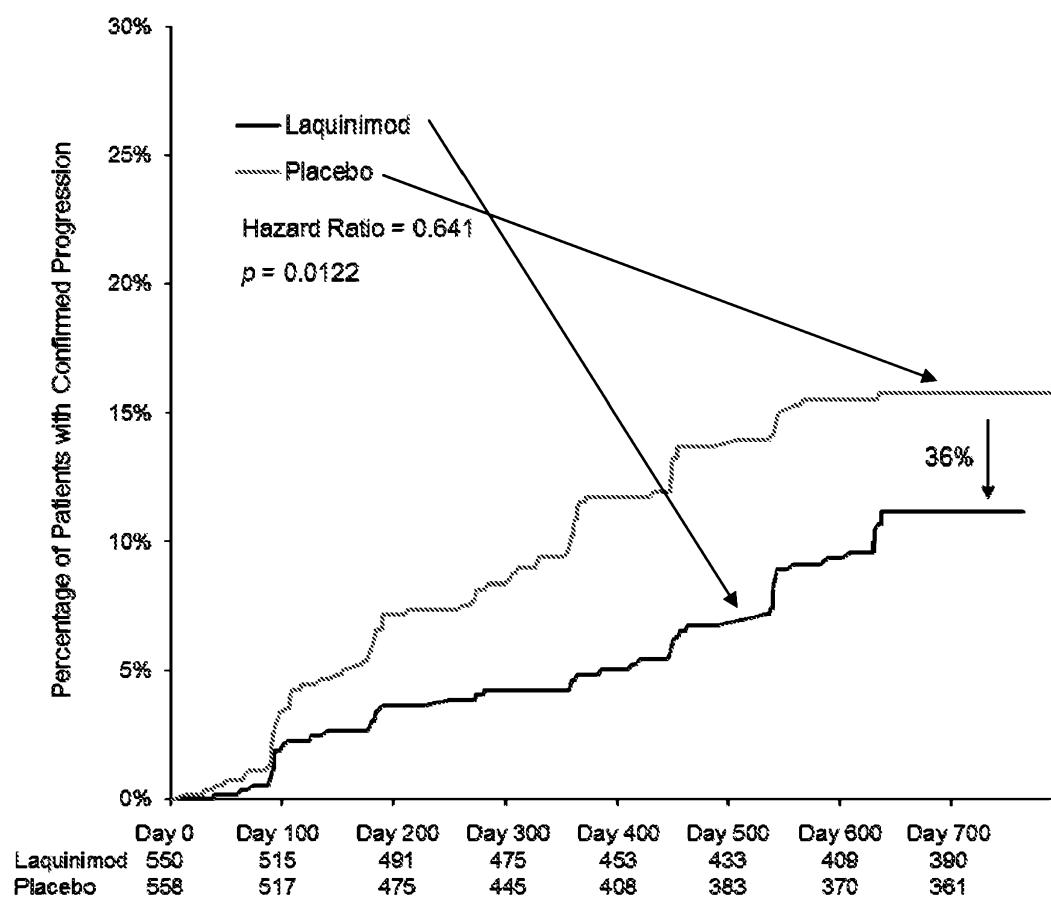


FIGURE 3

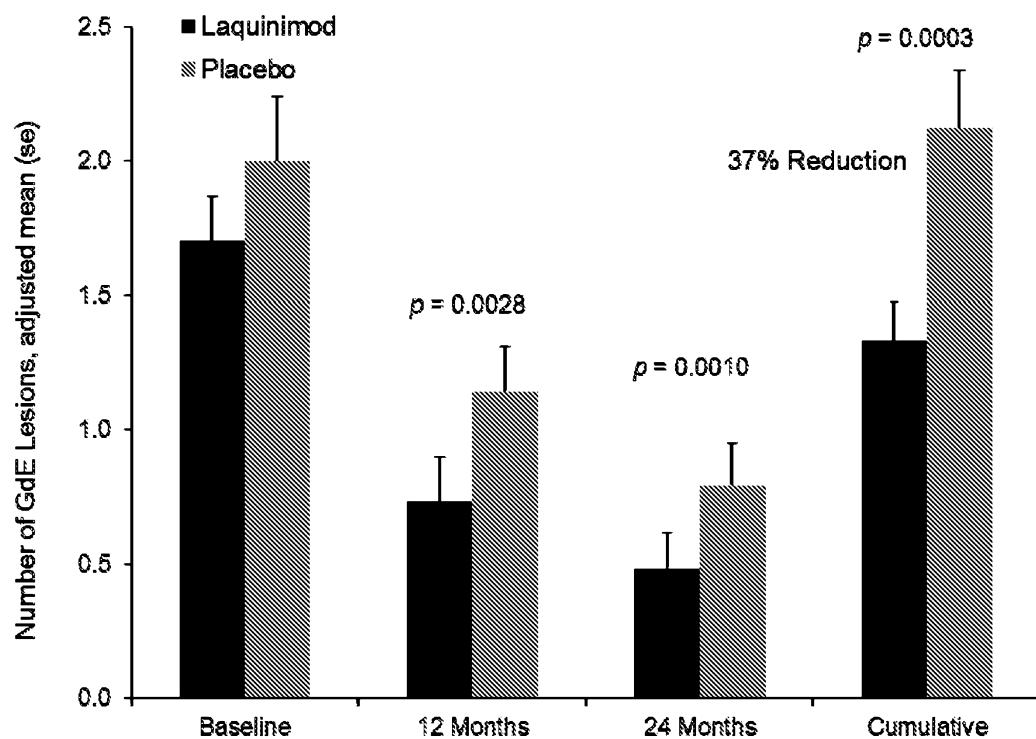
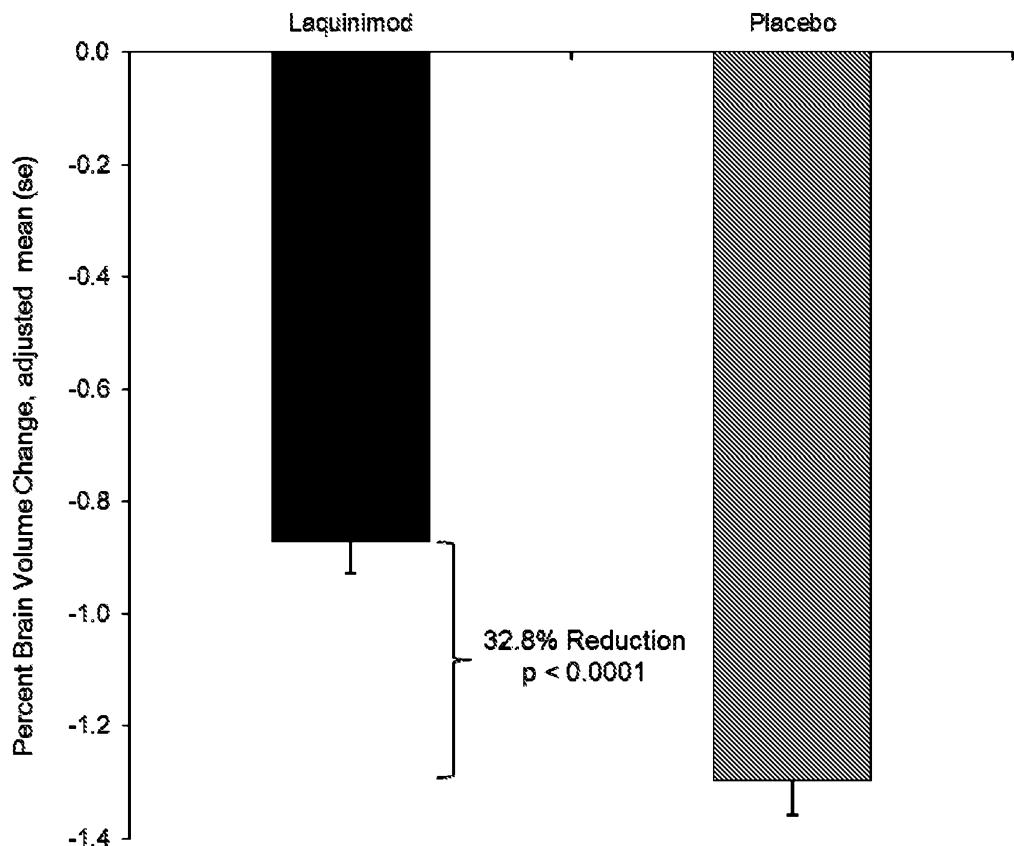



FIGURE 4

