(57) Abstract: The present invention relates to a method for preparing (co)polymers that involves reacting non-polar olefin monomers and optionally α-olefins having a functional group in the presence of one or more transition metal compounds of the general formula (III) and optionally in the presence of a cocatalyst. In the formula (III), the substituents and indices are as follow: R1, R2 are hydrogen, C1-C10 alkyl, C3-C10 cycloalkyl, C6-C16 aryl, alkaryl with 1 to 10 carbon atoms in the alkyl portion and 6 to 14 carbon atoms in the aryl portion, Si(R3)3, N(R5)(R7), OR8, SR9, R3 and R2 form together with C, C0 and optionally C1 a five-, six- or seven-membered aliphatic or aromatic substituted or non-substituted carbon or hetero cycle; R2 and R3 are C4-C14 heteroaryl or C6-C14 aryl with halogeno, nitro, cyano, sulfonato or trihalogenmethyl substituents in both ortho-positions relative to N0 and N1; R5 is hydrogen, C1-C10 alkyl, C6-C16 aryl or alkaryl with 1 to 10 carbon atoms in the alkyl portion and 6 to 14 carbon atoms in the aryl portion; R4 and R8 are C1-C10 alkyl, C6-C16 aryl or alkaryl with 1 to 10 carbon atoms in the alkyl portion and 6 to 14 carbon atoms in the aryl portion; m is 0 or 1; M is a metal from the group VIIIb in the classification table; T and Q are neutral or monooammonio monodentate ligands or T and Q form together a C4 or C5 alkyl unit with a methylketone, a linear C1-C10 alkylester or a nitride end group; A is a non-coordinating or hardly coordinating anion; x and p are 0, 1, 2 or 3; and q and n are 1, 2 or 3.

(57) Zusammenfassung: Verfahren zur Herstellung von (Co)polymeren, bei dem man unpolare olefinische Monomere und gegebenenfalls α-Olefine, die über eine funktionelle Gruppe verfügen, in Gegenwart einer oder mehrerer Übergangsmetallverbindungen der allgemeinen Formel (III), in der die Substituenten und Indizes die folgende Bedeutung haben: R1, R2 Wasserstoff, C1− bis C10−Alkyl, C7− bis C20−Cycloalkyl, C6− bis C20−Aryl. Alkaryl mit 1 bis 10 C−Atomen im Alkyl− und 6 bis 14 C−Atomen im Arylteil, Si(R3)3, N(R5)(R7), OR8, SR9, R3 und R2 bilden gemeinsam mit C, C0 und gegebenenfalls C1 einen fünf-, sechs− oder siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus, R4, R8 sind C1− bis C10−Alkyl, C6− bis C20−Heteroaryl oder C7− bis C20−Aryl mit Halogeno-, Nitro−, Cyano−, Sulfonato− oder Trihalogenmethylsubstituenten in den beiden ortho−Positionen zu N0 und N1, R5 Wasserstoff, C1− bis C10−Alkyl, C6− bis C20−Aryl oder Alkaryl mit 1 bis 10 C−Atomen im Alkyl− und 6 bis 14 C−Atomen im Arylteil, R9, R2, C1− bis C10−Alkyl, C6− bis C20−Aryl oder Alkaryl mit 1 bis 10 C−Atomen im Alkyl− und 6 bis 14 C−Atomen im Arylteil, m 0 oder 1, M ein Metall der Gruppe VIIIb des Periodensystems der Elemente, T, Q neutral oder monoammoniatische monodentate Liganden oder T und Q bilden zusammen eine C4−.
(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (national): JP, KR, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht:

— Mit internationalem Recherchenbericht.
— Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

oder C₇-Alkyleneinheit mit einer Methylketon-, linearen C₁- bis C₇-Alkylester- oder Nitrilengruppe, A ein nicht oder schlecht koordinierendes Anion und x, p 0, 1, 2 oder 3; q, n 1, 2 oder 3 sowie gegebenenfalls in Gegenwart eines Cokatalysators umsetzt.
Verfahren zur (Co)polymerisation von Olefinen

Beschreibung

5
die vorliegende Erfindung betrifft ein Verfahren zur (Co)polymerisation von Olefinen mit Hilfe von Übergangsmetallverbindungen. Des weiteren betrifft die Erfindung diese Übergangsmetallverbindungen sowie ein Katalysatorsystem enthaltend dieselben. Außerdem betrifft die Erfindung die Verwendung dieser Übergangsmetallverbindungen als Katalysatoren für die (Co)polymerisation von unpolaren Olefinen und gegebenenfalls von α-Olefinen, die über eine funktionelle Gruppe verfügen.

Hilfe der bei Brookhart (s.o.) beschriebenen Bisiminkomplexe Copolymeren mit relativ enger Molekulargewichtsverteilung erzielt werden. Es wäre jedoch wünschenswert, auf Katalysatorsysteme mit hoher bzw. höherer Aktivität zurückgreifen zu können, die zugleich unter den jeweiligen Polymerisationsbedingungen hinreichend stabil sind und über eine lange Lebensdauer verfügen, so daß sie sich auch für den Einsatz in der großtechnischen Fertigung eignen.

Der Erfindung lag daher die Aufgabe zugrunde, ein Verfahren für die Herstellung von (Co)polymeren aus olefinischen Monomeren verfügbar zu machen, das sich durch hohe Aktivitäten auszeichnet, keine oder nur geringe Zusätze an Cokatalysator erfordert und unproblematisch auch großtechnisch eingesetzt werden kann. Des weiteren lag der Erfindung die Aufgabe zugrunde, eine Übergangsmetallverbindung zu finden, die unempfindlich sowie einfach zu handhaben ist und insbesondere unter den Polymerisationsbedingungen auch bei längeren Reaktionsdauern keine Einbußen bei der katalytischen Aktivität zeigt.

Demgemäß wurde ein Verfahren zur Herstellung von (Co)polymeren aus unpolaren olefinischen Monomeren (I) sowie ein Verfahren zur Herstellung von (Co)polymeren aus unpolaren olefinischen Monomeren (I) und α-Olefinen (II), die über mindestens eine funktionelle Gruppe verfügen, gefunden, bei denen das bzw. die Ausgangsmonomere in Gegenwart einer Übergangsmetallverbindung der allgemeinen Formel

\[
\begin{align*}
&C^b=N^b \\
&(C'(R^5)_2)_m \\
&C^a=N^a \\
&R^1 \\
&R^2 \\
&T \\
&M \\
&Q \\
&R^3 \\
&R^4 \\
&Q \\
&p^\oplus \\
&(A^-)^x \\

\end{align*}
\]

in der die Substituenten und Indizes die folgende Bedeutung haben:

- \(R^1, R^3\) Wasserstoff, \(C_1^-\) bis \(C_{10}^-\)-Alkyl, \(C_3^-\) bis \(C_{10}^-\)-Cycloalkyl, \(C_6^-\) bis \(C_{16}^-\)-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, \(Si(R^6)_3\), N\((R^6)(R^7)\), OR\(^{-}\), SR\(^{-}\) oder \(R^1\) und \(R^3\) bilden gemeinsam mit \(C^a, C^b\) und gegebenenfalls \(C'\) einen fünfr-, sechsr- oder
siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten CARBO- oder HETEROCYCLUS,

R², R⁴ C₄- bis C₁₆-Heteroaryl oder C₆- bis C₁₆-Aryl mit Halogeno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenmethylen-substituenten in den beiden ortho-Positionen zu N⁷ und N⁸,

R⁵ Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₆-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

R⁶, R⁷ C₁- bis C₁₀-Alkyl, C₆- bis C₁₆-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

m 0 oder 1, bevorzugt 0,

M ein Metall der Gruppe VIIIb des Periodensystems der Elemente,

T, Q neutrale oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C₂- oder C₃-Alkyleneinheit mit einer Methylketon-, linearen C₁- bis C₄-Alkylester- oder Nitrilengruppe,

A ein nicht oder schlecht koordinierendes Anion und

x, p 0, 1, 2 oder 3

q, n 1, 2 oder 3

sowie gegebenenfalls in Gegenwart eines Cokatalysators koordinativ polymerisiert werden.

Des weiteren wurde die Übergangsmetallverbindung (III) sowie ein Katalysatorsystem enthaltend als wesentliche Bestandteile die Übergangsmetallverbindung (III) sowie als Cokatalysator eine starke neutrale Lewis-Säure, eine ionische Verbindung mit einem Lewis-sauren Kation oder eine ionische Verbindung mit einer Brönsted-Säure als Kation gefunden. Außerdem wurde die Verwendung der Übergangsmetallverbindung (III) sowie des Katalysatorsystems enthaltend die Übergangsmetallverbindung (III) und einen Cokatalysator als wesentliche Bestandteile bei der Herstellung von Olefin(co)polymeren gefunden.
Als unpolare olefinische Monomere (I) kommen Verbindungen der allgemeinen Formel (Ia)

\[(R^8)HC=C(R^9)(R^{10})\] \hspace{1cm} (Ia)

in Frage, in der die Substituenten die folgende Bedeutung haben:

R^8 bis R^{10} unabhängig voneinander Wasserstoff, C_1- bis C_{10}-Alkyl, worunter lineare wie auch verzweigte Alkylreste zu verstehen sind, bevorzugt C_1- bis C_6-Alkyl wie Methyl, Ethyl, n-, i-Propyl, n-, i- oder t-Butyl, C_6- bis C_{16}-Aryl, worunter auch mit C_1- bis C_6-Alkylgruppen wie Methyl, Ethyl oder i-Propyl ein-, zwei- oder mehrfach substituierte Arylreste wie Tolyl zu verstehen sind, bevorzugt C_6- bis C_{10}-Aryl wie Phenyl oder Naphthyl, insbesondere Phenyl, Alkylaryl mit 1 bis 10, bevorzugt 1 bis 6 C-Atomen im Alkyl- und 6 bis 14, bevorzugt 6 bis 10 C-Atomen im Arylteil, z.B. Benzyl, oder Si(R^{11})_3 mit

R^{11} C_1- bis C_{10}-Alkyl, C_6- bis C_{16}-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 16 C-Atomen im Arylteil, wobei diese Reste die unter R^8 bis R^{10} angegebene bevorzugte bzw. spezielle Bedeutung annehmen können.

Geeignete unpolare olefinische Monomere können über eine, zwei oder mehrere endständige oder interne Doppelbindungen verfügen.

In einer Ausführungsform des erfindungsgemäßen Verfahrens werden als weitere Ausgangsmonomere α-Olefine (II), die über mindestens eine funktionelle Gruppe im Molekül verfügen, eingesetzt.
geeignete funktionelle Gruppen stellen z.B. die Carbonsäure-,
Carbonsäureester-, Carbonsäureamid-, Carbonsäureanhydrid-,
Hydroxy-, Epoxy-, Siloxy-, Ether-, Keto-, Aldehyd-, Amino-,
Nitril-, Oxazolin-, Sulfonsäure-, Sulfonsäureester- oder Haloge-
nefunktionalitäten dar. Bevorzugte funktionelle Gruppen gehen
wie zurück auf die Carbonsäureeinheit, auf Carbonsäureester-,
Carbonsäureamid- oder -anhydridreste sowie auf die Ether- oder
Ketogruppe.

10 Bevorzugt werden als Ausgangsmonomere (II) funktionalisierte
olefinisch ungesättigte Monomere der allgemeinen Formel

\[\text{CH}_2=\text{C} (\text{R}^{12}) (\text{R}^{13}) \]

(IIa)

15 eingesetzt, in der die Substituenten und Indizes die folgende
allgemeine Bedeutung haben:

\[\text{R}^{12} \quad \text{Wasserstoff, CN, CF}_3, \text{C}_1- \text{bis C}_{10}-\text{Alkyl}, \text{C}_{6}- \text{bis C}_{16}-\text{Aryl} \]
oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl und 6 bis
14 C-Atomen im Arylteil, Pyrrolidinyl oder Carbazolyl,

\[\text{R}^{13} \quad \text{CN, C(OR)}^{14}, \text{C(OR)}^{14}, \text{C(OR)}^{(R^{14}) (R^{15})}, \text{CH}_2\text{Si(OR)}^{16}_3, \]
\[\text{C(OR)}^{14}, \text{O-C(OR)}^{14}, \text{O-C}_{10}-\text{Alkyl}, \text{O-C}_{6}- \text{bis} \]
\[\text{O-C}_{16}-\text{Aryl mit} \]

\[\text{R}^{14}, \text{R}^{15} \quad \text{Wasserstoff, C}_{1}- \text{bis C}_{10}-\text{Alkyl}, \text{C}_{2}- \text{bis C}_{10}-\text{Alkenyl, C}_{6}- \text{bis C}_{16}-\text{Aryl} \]
or Alkylaryl mit 1 bis 10 C-Atomen im
Alkyl- und 6 bis 14 C-Atomen im Arylteil, eine Epoxy-
gruppe enthaltende C_{2}- bis C_{10}-Alkylgruppe, eine mit
einer Epoxygruppe substituierte C_{6}- bis C_{16}-Arylgruppe
or Si(R^{16})_3 und

\[\text{R}^{16} \quad \text{C}_{1}- \text{bis C}_{10}-\text{Alkyl, C}_{6}- \text{bis C}_{16}-\text{Aryl} \]
or Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Aryl-
teil.

Funktionalisierte olefinisch ungesättigte Comonomere (II) verfü-
gen über eine terminale Kohlenstoff/Kohlenstoff-Doppelbindung.
Unter diesen Verbindungen sind (Meth)acrylsäure sowie die Ester-
und Amid derivative der (Meth)acrylsäure, vorzugsweise der Acryl-
säure, sowie Acrylnitril oder Methacrylnitril oder deren
Mischungen besonders geeignet. Bevorzugt sind die C_{1}- bis C_{10}-,
insbesondere die C_{1}- bis C_{6}-Alkylester der Acryl- und Methacryl-
säure, also z.B. die Methyl-, Ethyl-, n-, i-Propyl-, n-, i-, t-
Butyl-, Hexyl-, Dicyclopentadienyl- oder 2-Ethyl-
exyl(meth)acrylat, wobei die Alkylreste linear oder verzweigt
sein können. Weiterhin bevorzugt sind (Meth)acrylate mit einer

Die Ausgangskonzentration der beschriebenen funktionalisierten Monomere (II) kann über einen weiten Bereich variiert werden und beispielsweise ohne weiteres Werte im Bereich von 3 bis 6 mol/l annehmen.

Soweit nicht an anderer Stelle ausdrücklich beschrieben, weisen die Reste C_1- bis C_{10}-Alkyl, C_3- bis C_{10}-Cycloalkyl, C_6- bis C_{16}-Aryl und Alkylaryl im Sinne der vorliegenden Erfindung als Substituenten die folgende allgemeine und bevorzugte Bedeutung auf. Unter C_1- bis C_{10}-Alkylreste fallen zum Beispiel die Methyl-, Ethyl-, n- oder i-Propyl, n-, i- oder t-Butyl- sowie die Pentyl-, Hexyl- oder Heptylgruppe in geradkettiger und verzweigter Form.

Unter C_1- bis C_{10}-Alkylreste fallen, abgesehen von Monomer (I), auch solche, die mit funktionellen Gruppen auf der Basis der Elemente der Gruppen IVA, VA, VIA oder VIIA des Periodensystems substituiert sind, also beispielsweise partiell oder perhalogenierte Alkylreste wie Trichlormethyl, Trifluormethyl, 2,2,2-Triflu-ethyl, Pentafluorethyl oder Pentachlorethyl sowie eine oder mehrere Epoxygruppen tragende Alkylreste, beispielsweise Propen-0xy. Im Sinne der vorliegenden Erfindung sind unter den C_1- bis C_{10}-Alkylresten regelmäßig die C_1- bis C_3-Alkylreste bevorzugt.

Unter geeignete C_3- bis C_{10}-Cycloalkylreste fallen Carbo- wie auch Heterocyclen, also beispielsweise substituiertes und unsubstituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cyclo-octyl, Pyrrol, Pyrrolidonyl oder Piperidinyl. Unter den substituierten cycloaliphatischen Resten seien exemplarisch 1-Methyl-cyclohexyl, 4-t-Butylcyclohexyl und 2,3-Dimethylcyclopropyl genannt.

Unter geeignete C_6- bis C_{16}-Arylgruppen fallen ganz allgemein substituierte und unsubstituierte Arylreste. Unter den unsubstituierten Arylresten sind die C_6- bis C_{10}-Arylgruppen wie Phenyl und Naphthyl bevorzugt. Phenyl ist besonders bevorzugt. Bei den unsubstituierten wie auch den substituierten C_6- bis C_{16}-Aryl-
gruppen weist die Angabe der Kohlenstoffatome (z.B. C₆⁻, C₁₀⁻ oder C₁₆⁻) auf die Anzahl der Kohlenstoffatome hin, die das aromatische System bilden. Kohlenstoffatome aus möglichen Alkyl- und/oder Arylsubstituenten sind mit dieser Angabe noch nicht erfasst. Die Angabe C₆⁻ bis C₁₆⁻ Aryl soll somit beispielsweise auch substituierte C₆⁻ bis C₁₆⁻ Arylreste wie substituiertes Anthracenyl umfassen. Unter C₆⁻ bis C₁₆⁻ Arylreste fallen, abgesehen von Monomer (I), auch solche Reste, die mit funktionellen Gruppen auf der Basis der Elemente aus den Gruppen IVA, VA, VIA und VIIA des Periodensystems der Elemente einfach, mehrfach oder persubstituiert sind. Geeignete funktionelle Gruppen sind C₁⁻ bis C₁₀⁻ Alkyl, bevorzugt C₁⁻ bis C₆⁻ Alkyl, C₆⁻ bis C₁₆⁻ Aryl, bevorzugt C₆⁻ bis C₁₀⁻ Aryl, Triorganosilyl wie Trimethyl-, Triethyl-, Triphenyl- oder t-Butyl-diphenylsilyl sowie Amino, beispielsweise NH₂, Dimethylamino, Di-i-propylamino, Di-n-butylamino, Diphenylamino oder Dibenzylamino, C₁⁻ bis C₁₀⁻ Alkoxy, bevorzugt C₁⁻ bis C₆⁻ Alkoxy, zum Beispiel Methoxy, Ethoxy, n- oder i-Propoxy, n⁻, i⁻ oder t-Butoxy, oder Halogen wie Fluorid, Chlorid oder Bromid.

Unter geeignete Alkylarylreste fallen solche mit 1 bis 10, bevorzugt 1 bis 6 C-Atomen im Alkyl- und 6 bis 14, bevorzugt 6 bis 10 C-Atomen im Arylteil, insbesondere die Benzylgruppe.

Die beschriebenen Ausgangsmonomere werden nach dem erfindungsgemäßen Verfahren übergangsmetallkatalysiert in Gegenwart einer Komplexverbindung der allgemeinen Formel (III)

\[
\begin{align*}
\text{(III)} & \quad p^+ \\
(C'(R^5)_2)_m & \quad (A^n)^x \\
\text{q} & \quad \text{M} \\
\end{align*}
\]

umgesetzt.

Die Reste R² und R⁴ stellen C₄⁻ bis C₁₆⁻ Heteroaryl- oder C₆⁻ bis C₁₆⁻ Arylgruppen dar, die jeweils in ihren beiden ortho-Positionen zu den Iminstickstoffatomen Na und Nb, d.h. ortho-ständig zur kovalenten Bindung zwischen dem Arylrest und dem Iminstickstoff elektronenziehende Reste wie Halogeno, Nitro, Cyano, Sulfonato oder Trihalogenomethyl tragen. Die ortho-Positionen in R² bzw. R⁴ können mit identischen wie auch mit voneinander verschiedenen elektronenziehenden Resten substituiert sein. Unter den Sulfona-
treten kommen insbesondere SO_3^2R^6, $\text{SO}_3\text{Si}(\text{R}^6)_3$ und $\text{SO}_3^+\text{(HN}(\text{R}^5)_3)^-$ in Frage. Besonders geeignet unter diesen sind jeweils SO_3Me, SO_3SiMe_3 und $\text{SO}_3^-\text{(HNEt}_3)^+$. Unter den Trihalogenmethylresten sind Trifluor, Trichlor und Tribrommethyl, insbesondere Trifluormethyl besonders geeignet. Besonders geeignete ortho-Substituenten sind Halogenreste wie der Fluor-, Chlor-, Brom- oder Iodrest. Bevorzugt werden Chlor- oder Bromreste als ortho-Substituenten eingesetzt. Des Weiteren sind die jeweiligen ortho-Positionen bevorzugt mit identischen Resten besetzt.

10 Die Heteroaryl- bzw. Arylreste R^2 und R^3 können neben den ortho-Resten einen oder mehrere weitere Substituenten aufweisen. Als solche Substituenten kommen beispielsweise funktionelle Gruppen auf der Basis der Elemente aus den Gruppen IVA, VA, VIA und VIIA des Periodensystems der Elemente in Frage. Geeignet sind beispielsweise geradlinig oder verzweigt C_1- bis C_{10}-Alkyl, bevorzugt C_1- bis C_6-Alkyl, wie Methyl, Ethyl, n- oder i-Propyl, n-, i- oder t-Butyl, partiell oder perhalogeniertes C_1- bis C_{10}-Alkyl, bevorzugt C_1- bis C_6-Alkyl, wie Trifluor- oder Tri-chlormethyl oder 2,2,2-Trifluorethyl, Triorganosilyl, wie Trimethyl-, Triethyl-, Tri-t-butyl-, Triphenyl- oder t-Butyl-di-phenylsilyl, die Nitro-, Cyano- oder Sulfonatogruppe, Amino, beispielsweise NH$_2$, Dimethylamino, Di-i-propylamino, Di-n-butylamino, Diphenylamino oder Dibenzylamino, C_1- bis C_{10}-Alkoxy, bevorzugt C_1- bis C_6-Alkoxy, wie Methoxy, Ethoxy, i-Propoxy oder t-Butoxy, oder Halogen, wie Fluorid, Chlorid, Bromid oder Iodid.

Unter den ortho-substituierten C_4^- bis C_{16}-Heteroarylresten R^2 und R^4 im Sinne der vorliegenden Erfindung sind ebenfalls substituierte und unsubstituierte Heteroarylereste zu verstehen, beispielsweise C_4^- bis C_{13}-Heteroaryl, bevorzugt C_4^- bis C_9-Heteroaryl, wie der Pyrrolidyl- (über ein Ringkohlenstoffatom mit dem Iminstickstoff verküpf) oder der Pyrrolidgruppe (über

Als Reste \(R^1 \) und \(R^3 \) in (III) kommen Wasserstoff, \(C_1^- \) bis \(C_{10}^- \)-Alkyl, \(C_3^- \) bis \(C_{10}^- \)-Cycloalkyl, \(C_6^- \) bis \(C_{16}^- \)-aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Aryleteil, einen Silyl- (Si\(R^6 \)_3), einen Amino- (N\(R^6 \)(R')\(R^7 \), einen Ether- (OR') oder einen Thioetherrest (SR') in Frage. Des weiteren können die Reste \(R^1 \) und \(R^3 \) zusammen mit C\(a \), C\(b \) und gegebenenfalls C' einen fünf-, sechs- oder siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus bilden. Unter den Resten \(R^1 \) und \(R^3 \) sind Wasserstoff, Methyl, Ethyl, i-Propyl, t-Butyl, Methoxy, Ethoxy, i-Prooxy, t-Butoxy, Trifluormethyl, Phenyl, Naphthyl, Tolyl, 2-i-Propylphenyl, 2-t-Butlyphenyl, 2,6-Di-i-proplyphenyl, 2-Trifluormethylphenyl, 4-Methoxyphenyl, Pyridyl oder Benzyl sowie insbesondere Wasserstoff, Methyl, Ethyl, i-Propyl oder t-Butyl bevorzugt. Liganverbindungen mit diesen Resten finden sich bei K. Vrieze und G. van Koten, Adv. Organomet. Chem., 1982, 21, 151-239, beschrieben. Unter den cyclischen Systemen, vorzugsweise aus \(R^1 \), \(R^3 \), C\(a \) und C\(b \), sind aromatische Systeme, insbesondere Phenanthren- und Camphersysteme bevorzugt (s.a. J. Matej, T. Lixandru, Bul. Inst. Politeh. Isai, 1967, 13, 245). Des weiteren sind als heterocyclische Systeme \(R^1 \), \(R^3 \), 1,4-Dithiane, wie in WO 98/37110 beschrieben, bevorzugt.

Der Rest \(R^5 \) stellt bevorzugt Wasserstoff oder Methyl, insbesondere Wasserstoff dar.

Als Metalle M in (III) kommen alle Elemente der Gruppe VIIIIB des Periodensystems der Elemente, also Eisen, Cobalt, Nickel, Ruthenium, Rhodium, Palladium, Osmium, Iridium oder Platin in Betracht. Bevorzugt werden Nickel, Rhodium, Palladium oder Platin eingesetzt, wobei Nickel und Palladium sowie insbesondere Palladium besonders bevorzugt sind. Eisen und Cobalt liegen in den Metallverbindungen (III) im allgemeinen zwei- oder dreifach positiv geladen, Palladium, Platin und Nickel zweifach positiv geladen und Rhodium dreifach positiv geladen vor.

T in (III) bedeutet bevorzugt monoionische Reste wie Chlorid, Bromid oder Jodid, Methyl, Phenyl, Benzyl oder ein C1- bis C10-Alkyl, das in β-Position zum Metallzentrum M keine Wasserstoffatome aufweist und über eine C1- bis C4-Alkylester- oder eine Nitrilengruppe verfügt. Besonders bevorzugt als Ligand T sind Chlorid und Bromid als Halogenidresten sowie Methyl als Alkylrest.

Q stellt bevorzugt Ligandreste wie Acetonitril, Benzonitril, Ethen, Triphenylphosphin als monodentate Phosphorverbindung, Pyridin als monodentate aromatische Stickstoffverbindung, Acetat, Propionat oder Butyrat, insbesondere Acetat als geeignetes Carboxylat, einen linearen Alkylether, z.B. einen linearen Di-C2- bis C6-Alkylether wie Diethylether oder Di-i-propylether, bevorzugt Diethylether, einen cyclischen Alkylether wie Tetrahydrofuran oder Dioxan, bevorzugt Tetrahydrofuran, einen linearen C1- bis C4-Alkylester, z.B. Essigsäureethylester, Dimethylsulfoxid, Dimethylformamid, Hexamethylphosphorsäuretrimid oder ein Halogenid dar. Im Fall von Nickelkomplexen (III) (M = Ni) ist Q vorzugsweise ein Halogenid, z.B. ein Chlorid, Bromid oder Jodid, insbesondere ein Bromid, im Fall von Palladiumkomplexen (M = Pd) ist Q vorzugsweise Acetonitril, Diethylether oder Ethen.

Des weiteren können die Reste T und Q gemeinsam eine C2- oder C3-Alkylenheit mit einer Methylketon-, einer linearen C1- bis C4-Alkylester- oder einer Nitrilengruppe darstellen. Bevorzugt stellen hierbei T und Q zusammen eine -(CH2CH2CH2C(O)OCH3)-Einheit dar und bilden auf diese Weise gemeinsam mit M einen sechsgliedrigen Cyclius. Während die endständige Methyleneinheit mit M eine Metall/Kohlenstoffbindung ausbildet, tritt die Carbonylgruppe koordinativ in Wechselwirkung mit M.

Unter den Nickelkomplexen (III) sind Nickeldihalogenid-, vorzugsweise Nickeldichlorid- oder Nickeldibromid-, oder Nickeldimethylkomplexe (p = 0) und unter diesen insbesondere die Nickeldibromidkomplexe bevorzugt. In bevorzugten Palladiumkomplexen stellt T einen Alkylrest, insbesondere Methyl, und Q einen neutralen
Lewis-Baseliganden, insbesondere Diethylether, Acetonitril oder Ethen dar.

Bevorzugte Übergangsmetallverbindungen (III) sind beispielsweise Bis-2,3-(2,6-dibromphenylimin)butan-palladium(methyl)chlorid, Bis-2,3-(2,6-dichlorphenylimin)butan-palladium(methyl)chlorid, Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-palladium(methyl)chlorid, Bis-2,3-(2,6-dichlor-4-methylphenylimin)butan-palladium(methyl)chlorid, Bis-2,3-(2,6-dibromphenylimin)butan-palladium(methyl)(acetonitril)-hexafluoroantimonat, Bis-2,3-(2,6-dichlorphenylimin)butan-palladium(methyl)(acetonitril)-hexafluoroantimonat, Bis-2,3-(2,6-dibrom-4-methyl-phenylimin)butan-palladium(methyl)(acetonitril)-hexafluoroantimonat, Bis-2,3-(2,6-dichlor-4-methyl-phenylimin)butan-palladium(methyl)(acetonitril)-hexafluoroantimonat, Bis-2,3-(2,6-dibromphenylimin)butan-palladium(methyl)(diethylether)-hexafluoroantimonat, Bis-2,3-(2,6-dichlorphenylimin)butan-palladium(methyl)(diethylether)-hexafluoroantimonat, Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-palladium(methyl)(diethylether)-hexafluoroantimonat, Bis-2,3-(2,6-dibromphenylimin)butan-palladium-η¹-O-methylcarboxypyropyl-hexafluoroantimonat, Bis-2,3-(2,6-dichlorphenylimin)butan-palladium-η¹-O-methylcarboxypyropyl-hexafluoroantimonat, Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-palladium-η¹-O-methylcarboxypyropyl-hexafluoroantimonat und Bis-2,3-(2,6-dichlor-4-methylphenylimin)butan-palladium-η¹-O-methylcarboxypyropyl-hexafluoroantimonat.
sowie die entsprechenden Nickel(II)-halogenidkomplexe, insbesondere Nickelandbromidkomplexe der hier genannten Diiminliganden. Anstelle von Hexafluoroantimonat als Gegenion A können in bevorzugten Übergangsmetallverbindungen (III) ebenfalls Tetra-
5
dekis-(3,5-bis-(trifluormethyl)phenyl)borat (B[CF₃H₃(CF₃)₂]₄⁻) oder Hexafluorophosphat (PF₆⁻) verwendet werden.

Die Übergangsmetallverbindungen (III) können in den erfindungs-
gemäßen Verfahren als Einzelverbindung oder in Form einer
10 Mischung aus mehreren unterschiedlichen Übergangsmetallver-
bindungen (III) als Katalysator eingesetzt werden.
Die Übergangsmetallverbindungen (III) weisen als ein wesentliches
15 Strukturelement einen zweizähnigen Bisiminchenatliganden auf (in Formel (III) dasjenige Strukturelement, das man unter Weglassung
der Komponenten M, T, Q und A erhält). Diese zweizähnigen Ligan-
den können z.B. aus Glyoxal oder Diacetyl durch Umsetzung mit
primären Aminen wie 2,6-Dibromanilin, 2,6-Dichloranilin,
2,6-Dibrom-4-methylphenylamin oder 2,6-Dichlor-4-methylphenylamin
20
Die Übergangsmetallverbindungen, in denen \(p = 1, 2 \) oder 3 bedeutet, sind z.B. aus solchen Komplexen zugänglich, in denen Q für ein Halogenid, insbesondere ein Chlorid, und T für Methyl stehen.
25 In der Regel behandelt man diese Komplexe in Gegenwart von Acetonitril, Benzonitril, Dimethylsulfoxid, Dimethylformamid, Hexa-
methylphosphorsäuretrimid oder einem linearen oder cyclischen Ether wie Diethylether mit einem Alkali- oder Silbersalz (M⁺⁺A⁻ mit A in der bezeichneten Bedeutung eines nicht- oder schlecht
koordinierenden Anions und M⁺⁺ z.B. in der Bedeutung eines Natrium-, Kalium-, Lithium-, Caesium- oder Silberkations, also z.B. Natrium-(tetra(3,5-bis-(trifluromethyl)phenyl)borat) oder Silberhexafluoroantimonat. Beispielsweise sei auf die bei
30 Mecking et al., J. Am. Chem. Soc. 1998, 120, 888 - 899 beschrie-
bene Herstellung von Verbindungen gemäß Formel (III) verwiesen.

Die Ausgangsverbindung, in der Q ein Halogenid darstellt, kann durch Behandlung eines entsprechenden Cyclooctadienkomplexes mit einem zweizähnigen Bisiminchenatliganden in einem nicht-koordi-
35 nierenden Lösungsmittel wie Dichlormethan erhalten werden. Derar-

Ausgangspunkt für die Herstellung der Übergangsmetallkomplexe (III) sind geeignete Metallsalze wie COBALT(II)chlorid, COBALT(II)bromid, EISEN(III)chlorid sowie insbesondere NICKEL(II)chlorid, RHODIUM(III)chlorid, Palladium(II)bromid, Palladium(II)chlorid oder PLATIN(II)chlorid. Besonders bevorzugt sind Nickel(II)bromid und Palladium(II)chlorid. Diese Metallsalze sowie deren Herstellung sind im allgemeinen literaturbekannt und häufig kommerziell erhältlich.

In einer weiteren Ausführungsform kann neben der Übergangsmetallverbindung (III) ein Cokatalysator mitverwendet werden. Geeignete Cokatalysatoren umfassen starke neutrale Lewis-Säuren, ionische Verbindungen mit Lewis-sauren Kationen und ionische Verbindungen mit Brönsted-Säuren als Kationen.

Als starke neutrale Lewis-Säuren sind Verbindungen der allgemeinen Formel

$$M^3X^1X^2X^3$$

IVa

bevorzugt, in der

$$M^2$$

ein Element der III. Hauptgruppe des Periodensystems bedeutet, insbesondere B, Al oder Ga, vorzugsweise B bedeutet und

$$X^1, X^2, X^3$$

unabhängig voneinander für Wasserstoff, lineares oder verzweigtes C₁⁻ bis C₁₀⁻Alkyl, bevorzugt C₁⁻ bis C₈⁻Alkyl, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, t-Butyl oder n-Hexyl, ein- oder mehr-
fach substituiertes C₁- bis C₁₀-Alkyl, bevorzugs C₁- bis C₆-Alkyl, z.B. mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, C₆- bis C₁₆-Aryl, vorzugsweise C₆- bis C₁₀-Aryl, z.B. Phenyl, das auch ein- oder mehrfach substituiert sein kann, beispielsweise mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, z.B. Pentafluorphenyl, Alkylaryl mit 1 bis 10 C-Atomen, bevorzugt 1 bis 6 C-Atomen im Alkylrest und 6 bis 14 C-Atomen, bevorzugt 6 bis 10 C-Atomen im Arylrest, z.B. Benzyl oder Fluor, Chlor, Brom oder Jod stehen.

Besonders bevorzugs unter den Resten X¹, X², X³ sind solche, die über Halogensubstituenten verfügen. Vorzugsweise ist Pentafluorphenyl zu nennen. Besonders bevorzugs sind Verbindungen der allgemeinen Formel (IVa), in denen X¹, X² und X³ identisch sind, vorzugsweise Tris(pentafluorphenyl)boran.

Als starke neutrale Lewis-Säure wird unter den Cokatalysatoren des weiteren bevorzugs auf Alumoxanverbindungen zurückgegriffen. Als Alumoxanverbindungen kommen grundsätzlich solche Verbindungen in Betracht, die über eine Al-C-Bindung verfügen. Besonders geeignet als Cokatalysatoren sind offenkettige und/oder cyclische Alumoxanverbindungen der allgemeinen Formel (IVb) oder (IVc)

\[
\begin{align*}
\text{IVb,} & \\
\text{IVc,} & \\
\text{in denen} & \\
R^{17} & \text{unabhängig voneinander eine C₁- bis C₄-Alkylgruppe bedeutet, bevorzugt eine Methyl- oder Ethylgruppe, und k für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25 steht.}
\end{align*}
\]

Die beschriebenen Alumoxane werden entweder als solche oder in Form einer Lösung oder Suspension, beispielsweise in aliphatischen oder aromatischen Kohlenwasserstoffen, wie Toluol oder Xylol, oder deren Gemischen eingesetzt.

 Geeignete ionische Verbindungen mit Lewis-sauren Kationen fallen unter die allgemeine Formel

\[G^{1+} \left(T X^4 X^5 X^6 X^7 \right)_{1-} \]

(IId),

in der

\[G \] ein Element der I. oder II. Hauptgruppe des Periodensystems der Elemente, wie Lithium, Natrium, Kalium, Rubidium, Cásius, Magnesium, Calcium, Strontium oder Barium, insbesondere Lithium oder Natrium, oder ein Silber-, Carbonium-, Oxonium-, Ammonium-, Sulphonium- oder 1,1'-Dimethylferrocenylkation,

\[T \] ein Element der III. Hauptgruppe des Periodensystems der Elemente bedeutet, insbesondere Bor, Aluminium oder Gallium, vorzugsweise Bor,

\[X^4 \text{ bis } X^7 \] unabhängig voneinander für Wasserstoff, lineares oder verzweigtes \(C_1 \) bis \(C_{10} \)-Alkyl, bevorzugt \(C_1 \) bis
C₆-Alkyl, wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, t-Butyl oder n-Hexyl, ein- oder mehrfach substituiertes C₁- bis C₁₀-Alkyl, bevorzugt C₁- bis C₆-Alkyl, z.B. mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, C₆- bis C₁₆-Aryl, vorzugsweise C₆- bis C₁₀-Aryl, z.B. Phenyl, das auch ein- oder mehrfach substituiert sein kann, beispielsweise mit Halogenatomen wie Fluor, Chlor, Brom oder Jod, z.B. Pentfluorphenyl, Alkylaryl mit 1 bis 10 C-Atomen, bevorzugt 1 bis 6 C-Atomen im Alkylrest und 6 bis 14 C-Atomen, bevorzugt 6 bis 10 C-Atomen im Arylrest, z.B. Benzyl, Fluor, Chlor, Brom, Jod, C₁- bis C₁₀-Alkoxy, bevorzugt C₁- bis C₆-Alkoxy, wie Methoxy, Ethoxy oder i-Propoxy, oder C₆- bis C₁₆-Aryloxy, bevorzugt C₆- bis C₁₀-Aryloxy, z.B. Phenoxy, stehen, und

1 oder 2 bedeutet.

Selbstverständlich können auch Mischungen der vorgenannten Cocatalysatoren eingesetzt werden.
Besonders geeignet für Komplexverbindungen (III) mit M = Ni sind offenkettige oder cyclische Alumoxanverbindungen als Cocatalysatoren.

Es hat sich als vorteilhaft erwiesen, insbesondere wenn in Gegenwart der funktionalisierten Comonomere (II) polymerisiert wird, in geringen Mengen Radikalinhibitoren zuzusetzen. Als Radikalinhibitoren kommen mit sterisch anspruchsvollen Gruppen abgeschirmte aromatische Monohydroxyverbindungen, bevorzugt Phenole,
die vicinal zur OH-Gruppe über mindestens eine sterisch anspruchsvolle Gruppe verfügen, in Betracht. Diese Radikalinhibitoren werden beispielsweise in der DE-A 27 02 661 (= US 4,360,617) beschrieben.

5

Exemplarisch für die Verbindungsklasse der sterisch gehinderten Phenole seien genannt Bis(2,6-tert-butyl)-4-methylphenol (BHT), 4-Methoxyethyl-2,6-di-tert-butylphenol, 2,6-Di-tert-butyl-4-hydroxyphenol, 1,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-benzol, 4,4′-Methylen-bis-(2,6-di-tert-butylphenol), 3,5-Di-tert-butyl-4-hydroxybenzoësäure, 2,4-di-tert-butylphenylester, 2,2-Bis-(4-hydroxyphenyl)propan (Bisphenol A),

4,4′-Dihydroxybiphenyl (DOD), 2,2′-Methylen-bis(4-methyl-6-tert-butyphenol), 1,6-Hexandiol-bis-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionat), Octadecyl-3-(3,5-bis(tert-butyl)-4-hydroxyphenyl)-propionat, 3,5-Di-tert-butyl-4-hydroxybenzyldimethylamin, 2,6,6-Trioxy-1-phosphabicyclo-(2.2.2)oct-4-yl-methyl-3,5-di-tert-butyl-4-hydroxyhydrozimtsäureester und N,N′-Hexamethylen-bis-3,5-di-tert-butyl-4-hydroxyhydrozimtsäureamid. Unter den genannten sterisch gehinderten Phenolen sind Bis(2,6-(C1- bis C10-alkyl)-4-(C1- bis C10-alkyl)phenole, insbesondere Bis(2,6-tert-butyl)-4-methylphenol und Bis(2,6-methyl)-4-methylphenol bevorzugt. Besonders bevorzugt ist Bis(2,6-tert-butyl)-4-methylphenol.

Daneben können anstelle der sterisch gehinderten Phenole oder auch als Zusatz zu diesen als Radikalinhibitoren Tetraalkylpiperidin-N-oxylradikale eingesetzt werden. Geeignet sind z.B. 2,2,6,6-Tetramethyl-1-piperidinloxy (TEMPO), 4-Oxo-2,2,6,6-tetramethyl-1-piperidinloxy (4-Oxo-TEMPO), 4-Hydroxy-2,2,6,6-tetramethyl-1-piperidinloxy, 2,2,5,5-Tetramethyl-1-pyrrolidinloxy, 3-Carboxy-2,2,5,5-tetramethyl-pyrrolidinloxy oder Di-tert-butylnitrooxid.

2,6-Diphenyl-2,6-dimethyl-1-piperidinloxy sowie 2,5-Diphenyl-2,5-dimethyl-1-pyrrolidinloxy können ebenfalls eingesetzt werden. Mischungen verschiedener N-Oxyl-Radikale sind selbstverständlich auch möglich.
Die beschriebenen Radikalinhibitorcn können entweder als solche oder gelöst in einem geeigneten inerten Lösungsmittel, z.B. Toluol oder einem halogenierten Kohlenwasserstoff wie Dichlormethan oder Chloroform, zugegeben werden.

In der Regel reichen bereits Mengen an einer mit sterisch anspruchsvollen Gruppen abgeschirmten aromatischen Monoxydverbindung oder einer mit sterisch anspruchsvollen Gruppen abgeschirmten N-Oxyl-Radikalverbindung kleiner 200, kleiner 100 oder sogar kleiner 20 ppm aus, bezogen auf die Ausgangsmenge an funktionalisierten olefinisch ungesättigten Monomeren, um einen einwandfreien Verlauf des erfindungsgemäßen Verfahrens zu gewährleisten. Dieses gelingt ebenfalls mit Mengen kleiner 10, 5 und sogar 2 ppm. Andererseits sind auch Konzentrationen an Radikal-Inhibitor zulässig, die die Konzentration der Übergangsmetallverbindung im Reaktionsgemisch um das doppelte, dreifache oder auch vierfache übersteigen.

Üblicherweise wird die Copolymerisation bei Temperaturen im Be-
reich von -40 bis 160°C, bevorzugt im Bereich von -20 bis 100°C und besonders bevorzugt von 0 bis 80°C durchgeführt. Die Reak-
tionszeiten liegen im allgemeinen in Abhängigkeit von den gewähl-
ten Reaktionsbedingungen zwischen 1 bis 2 Stunden und mehreren
Tagen. Gasförmige Reaktionskomponenten wie Ethen werden auf das
Reaktionsgemisch aufgepreßt.

Die Copolymerisation findet im allgemeinen bei einem Druck im Be-
reich von 0,1 bis 200 bar, bevorzugt von 0,5 bis 100 bar und be-
sonders bevorzugt von 1 bis 80 bar statt.

Die Konzentration an Übergangsmetallverbindung (III) wird im
allgemeinen auf Werte im Bereich von 10⁻⁶ bis 0,1, bevorzugt im
Bereich von 10⁻⁵ bis 10⁻² und besonders bevorzugt im Bereich von
5 x 10⁻⁵ bis 5 x 10⁻² mol/l eingestellt.

Die Ausgangskonzentration an unpolarem Olefin (I) liegt im allge-
meinen im Bereich von 10⁻³ bis 10 mol/l, bevorzugt im Bereich von
10⁻² bis 5 mol/l. Die Ausgangskonzentration an mit einer funkpe-
nellen Gruppe substituierten α-Olefin (II) liegt in der Regel im
Bereich von 10⁻⁵ bis 8 mol/l, bevorzugt von 10⁻³ bis 7 und beson-
ders bevorzugt von 10⁻¹ bis 6,8 mol/l.

Das molare Verhältnis von funktionalisiertem zu unpolarem Monomer
in der Ausgangsmischung liegt üblicherweise im Bereich von
10⁻³ : 1 bis 1000 : 1, bevorzugt im Bereich von 10⁻¹ : 1 bis
100 : 1, besonders bevorzugt von 0,1 : 1 bis 20 : 1.

Das molare Ausgangsverhältnis von Radikalinhibitoren zu funktio-
nalisiertem Monomer (II) bewegt sich im allgemeinen im Bereich
von 10⁻⁸ : 1 bis 10⁻¹ : 1, bevorzugt von 10⁻⁷ : 1 bis 10⁻² : 1 und
besonders bevorzugt von 5 x 10⁻⁷ : 1 bis 10⁻⁴ : 1.

Die Polymerisation kann durch Zugabe eines Desaktivierungsreagen-
zes wie Triphenylphosphin oder durch Zugabe eines niedermoleku-
len Alkohols wie Methanol oder Ethanol abgebrochen wer-
den.
Die gemäß dem erfindungsgemäßen Verfahren erhaltenen (Co)polymere weisen Molekulargewichtsverteilungen M_w/M_n im Bereich von 1,1 bis 2,5, bevorzugt von 1,1 bis 1,8 auf, sowie Glasübergangstemperaturen von regelmäßig $\leq -40^\circ C$, bevorzugt $\leq -50^\circ C$ und regelmäßig $\leq -20^\circ C$ im Fall der Nickelübergangsmetallverbindungen (III).

Die Anzahl der Alkylierverzweigungen pro 1000 C-Atome liegt bei den erhaltenen (Co)polymeren üblicherweise oberhalb von 100, wenn z.B. M = Pd in (III). Mit Übergangsmetallverbindungen (III), in denen M = Ni ist, werden dagegen (Co)polymere, zum Beispiel Polyethylene, mit einem sehr hohen Grad an Linearität erhalten.

Mit dem erfindungsgemäßen Verfahren lassen sich Homo- und Copolymer aus Monomeren (I) sowie Copolymer aus den Monomeren (I) und (II) erhalten. Das Verfahren läßt sich sowohl kontinuierlich wie auch diskontinuierlich durchführen.

Die Übergangsmetallverbindungen (III) zeichnen sich durch hohe Aktivitäten aus, weisen zudem auch bei längerer Polymerisations- dauer keine Aktivitätseinbußen auf und gewährleisten auf diese Weise hohe Produktivitäten.

Die vorliegende Erfindung wird nachfolgend anhand von Beispielen erläutert.

Beispiele

Die Gelpermeationschromatographie wurde an einem Gerät der Firma Waters (Styrage1) mit Tetrahydrofuran als Eluens gegen einen Polystyrolstandard durchgeführt. Die Detektion erfolgte über die Bestimmung der Brechungsindizes.

Die ^{13}C-NMR-Spektren wurden an einem Gerät der Firma Bruker (ARX 300) mit CDC13 bzw. C2D2Cl4 als Lösungsmittel aufgenommen. Die ^1H-NMR-Spektren wurden an einem Gerät der Firma Bruker (ARX 300) mit CDC13 bzw. C2D2Cl4 als Lösungsmittel aufgenommen.

Die DSC-Spektren wurden an einem Gerät der Firma Perkin-Elmer (Series 7) bei einer Heizrate von 20 K/min aufgenommen.

unter Rückfluß gehalten und vor jeder Polymerisationsreaktion frisch destilliert.

Glycidylacrylat wurde von der Firma Polysciences Inc. bezogen und 5 vor der Zugabe zum Reaktionsgemisch destilliert.

Natrium-tetra (3,5-bis-(trifluormethyl)phenyl)borat) wurde von der Firma Fluka bezogen.

10 A. Herstellung der Übergangsmetallverbindung (III)

1. Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-palladium-dichlord (Katalysator A)):
Bis-acetonitril-palladium-dichlorid (351 mg) und
Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan (780 mg) wurden 2 d in Dichlormethan (10 ml) bei Raumtemperatur gerührt. Das Lösungsmittel wurde in Vakuum entfernt und der feste Rückstand viermal mit Diethylether (je 10 ml) gewaschen. Im Hochvakuum wurde der Komplex von letzten Lösungsmittelresten befreit. \(^1\)H-NMR (CDCl\(_3\)) : \(\delta = 7.46\ (4H, s);\ 2.35\ (6H, s);\ 2.15\ (6H, s).

2. Bis-2,3-(2,6-dibromo-4-methylphenylimin)-butan-palladium(methyl)chlorid (Katalysator B)):
Zu einer Suspension des nach A. 1.) erhaltenen Feststoffs (1,34 mmol) in Dichlormethan (10 ml) gab man bei -35°C Zinn-tetramethyl (0,22 ml). Das Reaktionsgemisch wurde auf Raumtemperatur gebracht und durch Anlegen von Vakuum von flüchtigen Anteilen befreit. Der resultierende Feststoff wurde viermal mit Diethylether (je 10 ml) gewaschen. \(^1\)H-NMR (CDCl\(_3\)) : \(\delta = 7.49\ (2H, 2s);\ 7.44\ (2H, s);\ 2.37\ (3H, s);\ 2.34\ (3H, s);\ 2.09\ (3H, s);\ 2.01\ (3H, s);\ 0.57\ (3H, s).

3. Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-palladium(methyl)(acetonitril)-hexafluorantimonat (Katalysator C)):
Die gemäß A. 1.) erhaltenen Verbindung (1,34 mmol) und AgSbF\(_6\) (1,34 mmol) wurden zwei Stunden bei Raumtemperatur in Acetonitril (10 ml) gerührt. Gebildetes Silberchlorid wurde abfiltriert und die erhaltene Lösung in kalten Diethylether (100 ml) gegeben. Diethylether wurde vom ausgeschiedenen Feststoff abdekantiert und im Hochvakuum von letzten Lösungsmittelresten befreit.

4. Bi-2,3-(2,6-diisopropylphenylimin)butan-palladium(methyl)(acetonitril)-hexafluorantimonat (Katalysator D)):

5. Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan-nickeldibromid (Katalysator E)):
1,2-Dimethoxyethan-nickeldibromid (77 mg) wurde unter Stickstoffatmosphäre in Dichlormethan (15 ml) suspendiert und mit einer Lösung von Bis-2,3-(2,6-dibrom-4-methylphenylimin)butan (174 mg) in Dichlormethan (10 ml) versetzt. Die Mischung wurde 20 h bei Raumtemperatur gerührt. Flüchtigen Bestandteile wurden im Vakuum entfernt und der orangegelbe Rückstand mehrfach mit n-Pentan gewaschen. Letzte Lösungsmittelreste wurden im Hochvakuum entfernt.

6. Bis-2,3-(2,6-diisopropyl-phenylimin)butan-nickeldibromid (Katalysator F)):
Katalysator F) wurde analog Katalysator E) hergestellt mit dem Unterschied, daß als bidentater Chelatligand Bis-2,3-(2,6-diisopropylphenylimin)butan verwendet wurde.

B. Polymerisationsreaktionen

Nähere Angaben zu den eingesetzten Mengen, den Reaktionsbedingungen sowie den Produktparametern sind den nachfolgenden Tabellen 1 und 2 zu entnehmen.
<table>
<thead>
<tr>
<th>Versuch a), b)</th>
<th>Katalysator c)</th>
<th>Lösungsmittel d)</th>
<th>P_{Ethen}</th>
<th>Reaktionszeit [h]</th>
<th>Aktivität [kg_{polymer}/(mol_{HM}xh_xbar)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B (7,4)</td>
<td>CH₂Cl₂ (10)</td>
<td>10</td>
<td>1</td>
<td>7,5</td>
</tr>
<tr>
<td>2</td>
<td>B (7,4)</td>
<td>CH₂Cl₂ (10)</td>
<td>15</td>
<td>1</td>
<td>7,5</td>
</tr>
<tr>
<td>3</td>
<td>B (8,1)</td>
<td>CH₂Cl₂ (1000)</td>
<td>6</td>
<td>20</td>
<td>6,4</td>
</tr>
<tr>
<td>4</td>
<td>C (8,1)</td>
<td>CH₂Cl₂ (1000)</td>
<td>6</td>
<td>20</td>
<td>8,5</td>
</tr>
<tr>
<td>5</td>
<td>C (8,1)</td>
<td>CH₂Cl₂ (1000)</td>
<td>6</td>
<td>20</td>
<td>2,1</td>
</tr>
<tr>
<td>6e)</td>
<td>D (8,1)</td>
<td>CH₂Cl₂ (1000)</td>
<td>6</td>
<td>20</td>
<td>1,1</td>
</tr>
<tr>
<td>7</td>
<td>E (1,2)</td>
<td>Toluol (1000)</td>
<td>6</td>
<td>2</td>
<td>196</td>
</tr>
<tr>
<td>8e)</td>
<td>F (1,2)</td>
<td>Toluol (1000)</td>
<td>6</td>
<td>2</td>
<td>52</td>
</tr>
</tbody>
</table>

a) Die Versuche 1 und 2 wurden bei einer Reaktionstemperatur von 50°C, die Versuche 3 bis 6 bei 35°C und die Versuche 7 und 8 bei 40 °C durchgeführt.
b) Bei den Versuchen 5 und 6 wurde vor dem Druckaufbau mit Ethen Glycidylacrylat als Comonomer (30 ml) zum Reaktionsgemisch gegeben.
c) Bei den Versuchen 1 bis 3 wurde NaB[Ph(CF₃)₂]₄ als Cokatalysator in äquimolaler Menge, bezogen auf die eingesetzte Menge an Katalysator, zugesetzt. Bei den Versuchen 7 und 8 wurde Methylalumoxan (MAO) als 30%-ige Lösung in Toluol als Cokatalysator zugesetzt (Al: Ni-Verhältnis = 1000:1).
d) Die Versuche 1 und 2 wurden in einem 100 ml Autoklav, die Versuche 3 bis 8 in einem 2000 ml Autoklav durchgeführt.
e) Vergleichsversuch.
Tabelle 2: Analytik der Polymerproben

<table>
<thead>
<tr>
<th>Probe aus Versuch</th>
<th>(M_n \text{ a)}) [g/mol]</th>
<th>(M_w/M_n \text{ a)})</th>
<th>(T_g \text{ b)}) [°C]</th>
<th>(T_m \text{ b)}) [°C]</th>
<th>(\Delta H \text{ b)}) [J/g]</th>
<th>Alkyl-Verzweigungen pro 1000 C-Atome\text{ c)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 d)</td>
<td>1552</td>
<td>1,44</td>
<td>-87</td>
<td>-55,6</td>
<td>4,3</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1183</td>
<td>1,45</td>
<td>-94</td>
<td>-52,6</td>
<td>4,4</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>4925</td>
<td>1,65</td>
<td>-91</td>
<td>-50,3</td>
<td>4,8</td>
<td>39</td>
</tr>
<tr>
<td>6\text{ e)}</td>
<td>34810</td>
<td>2,69</td>
<td>-65</td>
<td>-33</td>
<td>6,4</td>
<td>36</td>
</tr>
<tr>
<td>7 d)</td>
<td>n.b.</td>
<td>n.b.</td>
<td>-20</td>
<td>32,9/114,5</td>
<td>133</td>
<td>-</td>
</tr>
<tr>
<td>8\text{ e)}</td>
<td>n.b.</td>
<td>n.b.</td>
<td>-50</td>
<td>1-20 (breit)</td>
<td>32</td>
<td>62,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Me</th>
<th>Et</th>
<th>Pr</th>
<th>Bu</th>
<th>Pentyl</th>
<th>C_6+</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>35</td>
<td>6</td>
<td>15</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>39</td>
<td>33</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>22</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>2,4</td>
<td>2,2</td>
<td>-</td>
<td>2,2</td>
<td>8,1</td>
</tr>
</tbody>
</table>

a) bestimmt mittels Gelpermeationschromatographie;
b) bestimmt mittels DSC;
c) bestimmt mittels \(^{13}\text{C}-\text{NMR}-\text{Spektroskopie};
d) die Alkylverzweigungen wurden nicht bestimmt;
e) Vergleichsversuch.
Patentansprüche

1. Verfahren zur Herstellung von (Co)polymeren aus unpolaren olefinischen Monomeren (I) und ggf. α-Olefinen (II), die über eine funktionelle Gruppe verfügen, dadurch gekennzeichnet, daß man das oder die Ausgangsmonomeren in Gegenwart einer oder mehrerer Übergangsmetallverbindungen (III) der allgemeinen Formel

\[
\begin{align*}
&\text{P}^\ominus \\
&C^b \equiv \text{N}^c \\
&(\text{C'}(\text{R}^5)_2)_m \quad \text{M} \quad \text{Q} \\
&C^a \equiv \text{N}^d \\
&\text{R}^3 \\
&\text{R}^4
\end{align*}
\]

(III)

in der die Substituenten und Indizes die folgende Bedeutung haben:

- \(R^1, R^3\): Wasserstoff, \(C_1\)- bis \(C_{10}\)-Alkyl, \(C_3\)- bis \(C_{10}\)-Cycloalkyl, \(C_6\)- bis \(C_{16}\)-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, \(\text{Si}(\text{R}^6)_3\), \(\text{N}(\text{R}^6)(\text{R}^7)\), \(\text{OR}^6\), \(\text{SR}^6\) oder \(R^3\) und \(R^3\) bilden gemeinsam mit \(C^a\), \(C^b\) und gegebenenfalls \(C'\) einen fünf-, sechs- oder siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus,

- \(R^2, R^4\): \(C_4\)- bis \(C_{16}\)-Hetero-Aryl oder \(C_6\)- bis \(C_{16}\)-Aryl mit Halogeno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenmethylen substituenten in den beiden ortho-Positionen zu \(N^a\) und \(N^b\),

- \(R^5\): Wasserstoff, \(C_1\)- bis \(C_{10}\)-Alkyl, \(C_6\)- bis \(C_{16}\)-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

- \(R^6, R^7\): \(C_1\)- bis \(C_{10}\)-Alkyl, \(C_6\)- bis \(C_{16}\)-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

- \(m\): 0 oder 1,
M ein Metall der Gruppe VIIIB des Periodensystems der Elemente,

T, Q neutral oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C_2^- oder C_3^-Alkylenheit mit einer Methylketon-, linearen C_1^- bis C_4^-Alkylester- oder Nitrilendgruppe,

A ein nicht oder schlecht koordinierendes Anion und

x, p 0, 1, 2 oder 3

q, n 1, 2 oder 3

sowie gegebenenfalls in Gegenwart eines Cokatalysators koordinativ polymerisiert.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als unpolare olefinische Monomere (I) Verbindungen der allgemeinen Formel (Ia)

\[(R^8)HC=C(R^9)(R^{10}) \quad (Ia)\]

verwendet, in der die Substituenten die folgende Bedeutung haben:

R^8 bis R^{10} unabhängig voneinander Wasserstoff, C_1^-bis C_{10}^-AlkyL, C_6^- bis C_{16}^-AryL, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und bis 14 C-Atomen im Arylteil oder Si(R^{11}), mit

R^{11} C_1^- bis C_{10}^-AlkyL, C_6^- bis C_{16}^-AryL oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil oder R^8 und R^9 oder R^8 und R^{10} bilden zusammen mit der C=C-Doppelbindung einen Carbocyclus.

3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß man als α-Olefine (II), die über eine funktionelle Gruppe verfügen, Verbindungen der allgemeinen Formel

\[CH_2=C(R^{12})(R^{13}) \quad (IIa)\]
einsetzt, in der die Substituenten und Indizes die folgende Bedeutung haben:
R^{12} Wasserstoff, CN, CF₃, C₁⁻ bis C₁₀-Alkyl, C₆⁻ bis C₁₆-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl und 6 bis 14 C-Atomen im Arylteil, Pyrrolidonyl, Carbazolyl.

5 R^{13} CN, C(O)R^{14}, C(O)OR^{14}, C(O)N(R^{14}(R^{15}), CH₂Si(OR^{16})₃, C(O)-O-C(O)R^{14}, O-C₁⁻ bis -O-C₁₀-Alkyl, O-C₆⁻ bis -O-C₁₆-Aryl mit

10 \textbf{R}^{14}, \textbf{R}^{15} Wasserstoff, C₁⁻ bis C₁₀-Alkyl, C₂⁻ bis C₁₀-Alkenyl, C₆⁻ bis C₁₆-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil, eine Epoxygruppe enthaltende C₂⁻ bis C₁₀-Alkylgruppe, eine mit einer Epoxygruppe substituierte C₆⁻ bis C₁₆-Arylgruppe oder Si(R^{16})₃ und

15 R^{16} C₁⁻ bis C₁₀-Alkyl, C₆⁻ bis C₁₆-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil.

20 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man als α-Olefine (II) (Meth)acrylsäure, die Ester oder Amide der (Meth)acrylsäure, Acrylnitril, Methacrylnitril oder deren Mischungen verwendet.

25 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man die Polymerisation in Gegenwart von Radikalinhibitoren durchführt.

30 6. Übergangsmetallverbindung der allgemeinen Formel

\[
\begin{array}{c}
\begin{array}{c}
\text{R}^{1} \quad \text{R}^{2} \\
\text{C}^{b} \quad \text{N}^{b} \\
(C'(R^{5})_{2})_{m} \\
\text{R}^{3} \quad \text{R}^{4} \\
\text{C}^{a} \quad \text{N}^{a}
\end{array}
\end{array}
\begin{array}{c}
p^{\oplus} \\
t \\
(A^a^-)_x \\
q
\end{array}
\]

(III)

in der die Substituenten und Indizes die folgende Bedeutung haben:

45 \textbf{R}^{1}, \textbf{R}^{3} Wasserstoff, C₁⁻ bis C₁₀-Alkyl, C₃⁻ bis C₁₀-Cycloalkyl, C₆⁻ bis C₁₆-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,
Si(R^6)_3, N(R^6)(R^7), OR^6, SR^6 oder R^1 und R^3 bilden gemeinsam mit C^a, C^b und gegebenenfalls C' einen fünf-, sechs- oder siebengliedrigen aliphatischen oder aromatischen, substituierten oder unsubstituierten Carbo- oder Heterocyclus,

R^2, R^4 C_4- bis C_{16}-Heteroaryl oder C_6- bis C_{16}-Aryl mit Halogeno-, Nitro-, Cyano-, Sulfonato- oder Trihalogenmethylishubstituenten in den beiden ortho-Positionen zu N^a und N^b,

R^5 Wasserstoff, C_1- bis C_{10}-Alkyl, C_6- bis C_{16}-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

R^6, R^7 C_1- bis C_{10}-Alkyl, C_6- bis C_{16}-Aryl oder Alkylaryl mit 1 bis 10 C-Atomen im Alkyl- und 6 bis 14 C-Atomen im Arylteil,

m 0 oder 1,

M ein Metall der Gruppe VIIIIB des Periodensystems der Elemente,

T, Q neutral oder monoanionische monodentate Liganden oder T und Q bilden zusammen eine C_2- oder C_3-Alkylenheit mit einer Methylketon-, linearen C_1- bis C_4-Alkylester- oder Nitrilengruppe,

A ein nicht oder schlecht koordinierendes Anion und

x, p 0, 1, 2 oder 3

q, n 1, 2 oder 3

7. Übergangsmetallverbindung nach Anspruch 6, dadurch gekennzeichnet, daß R^2 und R^4 unabhängig voneinander 2,6-Dibrom-, 2,6-Dichlor-, 2,6-Dibrom-4-methyl-, 2,6-Dichlor-4-methylphenyl oder 2,6-Dibrom- oder 2,6-Dichlorpyrrolid bedeuten und daß R^1 und R^3 Methyl, M Palladium oder Nickel und das Anion A B[C_6H_3(CF_3)_2]_4^-, SbF_6^- oder PF_6^- bedeuten.

8. Katalysatorsystem für die (Co)polymerisation von unpolaren olefinischen Monomeren und gegebenenfalls von α-Olefinen, die über eine funktionelle Gruppe verfügen, enthaltend als wesentliche Bestandteile eine Übergangsmetallverbindung gemäß den Ansprüchen 6 oder 7 und als Cokatalysator eine starke
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>C08F10/00</th>
<th>C08F220/18</th>
<th>C08F220/02</th>
<th>C08F4/70</th>
<th>C07F15/00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C07F15/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C07F15/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C07F15/06</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>C08F</th>
<th>C07F</th>
</tr>
</thead>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MCLAIN S J ET AL: "ADDITION POLYMERIZATION OF CYCLOPENTENE WITH NICKEL AND PALLADIUM CATALYSTS" MACROMOLECULES,US,AMERICAN CHEMICAL SOCIETY. EASTON, vol. 31, no. 19, 22 September 1998 (1998-09-22), pages 6705-6707, XP00078178 ISSN: 0024-9297</td>
<td>1,2,6,8,10</td>
</tr>
<tr>
<td>Y</td>
<td>Combination 6</td>
<td>3,4,9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patient family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

| 2 November 2000 |

Date of mailing of the international search report

| 22/11/2000 |

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Rodriguez, L
neutrale Lewis-Säure, eine ionische Verbindung mit einem Lewis-sauren Kation oder eine ionische Verbindung mit einer Brönsted-Säure als Kation.

10. Verwendung der Übergangsmetallverbindung gemäß den Ansprüchen 6 oder 7 oder des Katalysatorsystems gemäß den Ansprüchen 8 oder 9 für die (Co)polymerisation von Olefinen.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONALER RECHERCHENBERICHT

Inneneres Aktenzeichen: PCT/EP 00/006560

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES

IPK 7 C08F10/00 C08F220/18 C08F220/02 C08F4/70 C07F15/00
C07F15/02 C07F15/04 C07F15/06

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCIERTE GEBIETE

Recherchierte Mindestprästabzüge (Klassifikationstypen und Klassifikationssymbole)

IPK 7 C08F C07F

Recherchierte aber nicht zum Mindestprästabzüge gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, COMPENDEX

C. ALS WESENTLICH ANGEGEHEN UNTERLAGEN

Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>-/--</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind in der Fortsetzung von Feld C zu entnehmen

* Besondere Kategorien von angegebenen Veröffentlichungen:
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutungsvoll anzusehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung beiseite gestellt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beantragten Prioritätsdatum veröffentlicht worden ist
 T Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht identifiziert, sondern nur zum Verständnis der Erfindung zugrundeliegenden Prinzipien oder der ihr zugrundeliegenden Theorie angegeben ist
 X Veröffentlichung von besonderer Bedeutung; die beantragte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderische Tätigkeit beruhend betrachtet werden
 Y Veröffentlichung von besonderer Bedeutung; die beantragte Erfindung kann nicht als auf erfinderische Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

Abenddatum des internationalen Recherchenberichts: 22/11/2000

Name und Postanschrift der internationalen Recherchenerhöhe Welt Patentamt, P.B. 5816 Patentlaan 2 NL-2280 HV Rijswijk Tel.: +31-70 340-2040, Tx.: 31851 epo nl Fax: +31-70 340-3016

Bevollmächtigter Bediensteter: Rodriguez, L
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Formblatt PCT/EP 00/06560 (Fortsetzung von Blatt 2) (Juli 1992)