

March 8, 1960
J. B. COULTER, JR

2,927,778
ROTARY DRILL CUTTERS
Filed July 5, 1956
3 Sheets-Sheet 2

March 8, 1960

Filed July 5, 1956
J. B. COULTER, JR

ROTARY DRILL CUTTERS
3 Sheets-Sheet 3

2,927,778
 ROTARY DRILL CUTTERS

John B. Coulter, Midland, Tex., assignor to Chicago Pneumatic Tool Company, New York, N.Y., a corporation of New Jersey

Application July 5, 1956, Jerial No. 595,982
11 Claims. (Cl. 255-349)

This invention relates to rock bits for deep well drilling and particularly to the tooth formation on the rotary cutters. It has especial, though not exclusive, application to cutters of the cone type which operate on the earth formation with an approximately true rolling action.
The usual cone type rock bit comprises three conical cutters each having widely spaced circumferential rows of teeth offset in relation to the corresponding rows on the other cutter to drill the formation at the bottom of the hole, the particles of detritus thus dislodged being removed by the action of a liquid flushing fluid or of pressurized air or gas. Cone bits in common use fall into two general classes, those having sharp chisel teeth and those in which the teeth are made of hardened inserts or plugs with an ovoid portion projecting beyond the cone surface. The chisel tooth operates with a chipping or slicing action and will drill in all but the very hardest formations. It is characterized by a sharp cutting edge or crest which extends radially of the cone from one circumferential groove to the next, the flanks of the teeth being separated from adjacent teeth in the same circumferential row by means of deep radial grooves, which aet to receive the loosened earth formation and permit deep penetration of the teeth. In extremely hard and abrasive formations such as quartzite, granite and flint, the chisel toothed cone will not drill effectively and is replaced by the inserted plug type of cutter which is so designed that the blunt areas of the tungsten carbide plugs engage the formation with a crushing action and thus fracture the formation rather than chisel it.
The inserted plug type of cutter has the disadvantage in that the cost is about five times that of a conventional chisel toothed cutter. A further disadvantage of the inserted plug type is that it loses much of its effectiveness when it reaches the end of an extremely hard formation for which it was designed and encounters softer formation. This is due to the fact that the projecting portions of the tungsten carbide plugs are necessarily very short and do not have the penetrating action required for softer formations. Still another disadvantage is that the plugs sometimes are dislodged from their sockets.
Ail object of this invention is a provision of a cutter having a novel form of tooth capable of drilling in extremely hard formation, but which can be manufactured at a fraction of the cost of the inserted plug cutter now used for the same purpose.
Another object is the provision of a rock bit adapted for drilling in both extremely hard and in relatively softer formations, without requiring the bit to be pulled and changed as the drill encounters a different stratum.
A further object is to increase the compressive strength of a cutter tooth thereby making it possible to case harden the cutter to a greater depth without the accompanying danger of chipping of the tooth crests.
A feature of this invention is a tooth formed integral with the cutter body, having a rounded or cylindrical crest capable of drilling with a crushing action and also later.
having a root portion lying below the crest which provides deep penetration.

In the accompanying drawings:
Fig. 1 is a fragmentary view of a rock bit showing in longitudinal section a conical cutter embodying this invention, and also showing in broken lines the interfitting positions of the remaining two cutters;

Fig. 2 is a fragmentary plan view of the heel portion of the cutter, looking at right angles to the axis of rotation thereof;
Fig. 3 is a fragmentary plan view of the tip or apex portion of the cutter, when viewed from the line $3-3$ in Fig. 1 in the direction of the arrows;
Fig. 4 is an end view of the illustrative cutter with the lower part broken away, looking along the axis of the cutter from the line $4-4$ in Fig. 1 in the direction of the arrows;
Fig. 5 is a fragmentary view in perspective of two adjacent teeth on said cutter;
Fig. 6 is a longitudinal section, partly broken away, of a modified form of cutter;
Fig. 7 is a half cross section along the line 7-7 in Fig.
6; showing a half row of the modified teeth in elevation;
Fig. 8 is a fragmentary section of one of the modified teeth along the line 8-8 in Fig. 6, showing the carburized case on the tooth;
Fig. 9 is a view similar to Fig. 8 showing a tooth having the exterior surface of a conventional chisel tooth but a carbunized case comparable in depth to the case of the coth in Fig. 8; and
Fig. 10 is a view of the tooth of Fig. 11 showing the cutting edge chipped off.
Referring to Fig. 1, a bit head 10 of the usual form is provided with a threaded shank 11 for attachment to the lower end of a drill stem (not shown), whereby the bit head may be retated about the vertical axis 12 of the bore hole. The bit head has three legs 13 (one shown) extending downwardly and outwardly toward the side wall 14 of the bore hole. Each leg supports, near its lower end, a spindle 15 which extends downwardly and inwardly. Each spindle 15 has an axis of rotation which lies in the same vertical plane as the axis of revolution 12 of the drill bit and is spaced 120° apart from the vertical plane of the axis of each remaining spindle. The spindle 15 provides a support for a conical cutter 16. Suitable rolling and friction bearings (not shown) are interposed between the cutter and the spindle according to the usual well-known arrangement.
The surface of the conical cutter 16 comprises a series of circumferentially extending rows of teeth $17 a, 17 b$, $17 c$ and $17 d$ of novel formation, separated by wide and deep circumferential grooves 18; also a row of similar teeth $17 e$ in radial alinement with teeth 17 d . Each circumferential groove has a conical bottom $18 b$ Figs. 4 and 5 and two straight sides $18 s$ diverging from the bottom. Connecting the straight sides 18s of two adjacent grooves is a rounded surface 19 which forms the crest portion of the teeth $17 b$ and $17 c$. In a longitudinal section as shown in Fig. 1, each tooth 176 or 17 c comprises a root portion bounded between the tapering straight sides 18 s and a tip or crest portion forming a half circle 19 connecting the sides. The root portion which lies below the center of the arc 19 has a substantial depth, being approximately equal to or even greater than the crest portion. This is an important feature of the invention as will be explained

The teeth are preferably formed on the face of the cutter by a machining operation which includes the removal of metal from the body of cutter 16 to form the circumferential grooves 18. The continuous circumferential ridges which lie between and adjacent to the circumferential grooves 18 are then broken up into rows of in-
dividual teeth. This is accomplished by cutting transverse or radial grooves 27 in each row to correspond to the number of teeth; for example, six teeth in row 17a, twelve teeth in row $\mathbf{1 7 b}$, twenty teeth in row $17 c$ and twenty-four teeth in each of rows $17 d$ and 17e. Referring to Figs. 4 and 5 , each radial groove comprises a curved bottom portion $27 b$ and two straight sides 27 s diverging from the bottom. A rounded surface 28 connects the straight sides of two adjacent radial grooves and forms part of the crest portion of the tooth 17. The sides 27s of the radial grooves 27 , which form the flanks of the teeth 17 are similar to the sides $18 s$ of the circumferential grooves, but the radial grooves are not as deep or as wide as the circumferential grooves 18. The center of curvature of the rounded bottom 27 b lies below (closer to the cutter axis than) the centers of curvature of rounded surfaces 19 and 28

Referring to Fig. 5, the individual tooth $17 c$ comprises a root portion of pyramidal shape having two tapered side walls $18 s$ lying between circumferential grooves 18 , and having two end walls or flanks $27 s$ lying between radial grooves 27. Above the root portion, the tooth has a crest portion, the exposed area of which is defined by the intersection of two approximately cylindrical surfaces 19 and 28. These two cylindrical surfaces intersect along approximately radial lines 29 . If desired, the lines 29 may be smoothed out by filling or grinding so as to present substantially a continuous convex surface, of approximately hemi-spherical shape, on the crest portion of the tooth.
The teeth $17 b$ are substantially of the same shape as the teeth $17 c$ except for a slight difference in size and proportions. The teeth $17 a$ are similar as to the rounded tip portions but are not provided with the pyramidal root portion due to space limitations. As seen in Figs. 1, 3 and 4 , the tip portion of the cone cutter immediately in front of row $17 a$ is provided with a dull blade 31 extending diametrically at the apex end of the cone. The blade is positioned to cut the center of the bore hole and thus perform the same function as the usual spear point but is so shaped as to avoid any sharp corners. Referring to Figs. 2 and 4, the teeth $17 d$ and $17 e$ are in line with each other and form practically a single row of teeth as they are separated by a relatively narrow circumferential groove 32. Radial grooves 33 extend between the teeth $17 d$ and part way through the outermost row $17 e$. Grooves 33 are similar to the radial grooves 27 but lose depth as they approach the heel of the cone cutter 16. The teeth $17 e$ are spaced from the heel 34 of the cone cutter leaving a marginal area between the side wall of the bore hole and the area cut by the outermost row of teeth $17 e$. This area, which is represented by the space between the broken lines 14 and 35 in Fig. 2, is cut by an offset shoulder 36 at the heel of the cone. The shoulder also constitutes an annular wall which terminates or closes the outer end of the radial grooves 33. The heel surface 34 rubs against the side wall 14 of the bore hole and maintains the gage of the hole, regardless of wear on the outermost row of teeth $17 e$. To resist wear the heel 35 is covered with hard facing material 37 such as tungsten carbide. To facilitate the application of such material, the heel may be provided with radially extending recesses 38 (Fig. 2).

As shown in Fig. 1, the peripheral surface of the cone cutter 16 is carburized and heat treated to provide a case hardened skin 39. In accordance with this invention, such carburizing is carried to a further degree and to a further depth of case as compared with standard practice. With the usual form of cutter, having chisel shaped teeth, any attempt to increase the percentage or depth of carburization would cause excessive brittleness with the result of the teeth being chipped and broken off along the sharp cutting edges. This, of course, would impair the cutting properties of the drill bit and shorten its life. With the present invention, however, it is feasible to increase the
degree and depth of case hardening beyond the normal safe limit and without any corresponding increase in the danger of chipping. This is made possible by the fact that the invention has eliminated sharp corners and inwith substituted a form of tooth whose surface merges with other teeth in the same row to present an undulating formation of generally knuckle shape. The relatively deep hard case 39 increases the hardness, wear resistance, and life of the cutters considerably. This result is necescase but such effects because the tuction may be tolerated without ill解 Referring to Fimpact loads without fracturing.
Referring to Fig. 1, the cutter or cone 16, which has been described in detail, cooperates with two complementary cutters 41 and 42 . Cutter 41 has circumferential rows of teeth $41 a, 41 b$ and $41 c$, arranged to cut an annular formation on the bottom of the hole closely surrounding the annular areas cut by the teeth $17 a, 17 b$ and in shape to the teeth $17 b$ and $17 c$. $41 b$ and $41 c$ are similar $41 c$ extend into the circumfe $17 c$. Teeth $41 a, 41 b$ and the rows of teeth 17 on cutter 16 . is provided with an outer row of Near its heel, cutter 41 track over the area cut by the row $17 e$, and also with to hard surfaced heel 43 arranged to cooperate with an annular offset shoulder 44 to cut the formation at the outer edge of the hole. Cutter 42 is provided with a similar hard surfaced heel 43 , offset shoulder 44 and outer row of teeth 42 d . Cutter 42 also has circumferential rows of teeth $42 a, 42 b$ and $42 c$, similar to the teeth $41 a, 41 b$ and 41c, and cutting an area immediately surrounding the annular area cut by the latter. Teeth $42 a$ and $42 b$ interfit within the grooves between the rows of teeth on both of the other two cutters, thus providing a self cleaning action.
In operation, the bit head 10 is revolved about its vertical axis 12 carrying with it the cutters 16,41 and 42 which roll over the bottom of the bore hole, each about its individual axis with an approximate true rolling motion. Due to the wide grooves 18 and the staggering of the teeth in one circumferential row ($\mathbf{1 7 c}$) out of radial alignment with the teeth in other rows ($17 a, b, d$) there are only a few teeth in contact with the bottom of the
hole at any one time. is extremely hard and absume that the earth formation cut by the conventional chisel to that it could not be at a relatively slow rate, say thirty. revolution is turned ute under tremendous pressure which may run as high as 100,000 pounds in a bit of the $83 / 4^{\prime \prime}$ size. This weight is concentrated upon a few minute areas at the bottom of the bore hole represented by the points of tangency with the curved crests 19, 28 of teeth $17(a, b, c, d)$ and the corresponding crests on the other two cutters. The effect is to fracture the hard rock at the bottom of the bore hole
with a detritus which action, thus dislodging small particles of the action of are carried to the surface of the hole by able ports 45 in flushing fluid discharged through suiton the rock has its counterpart in a reactive force which tends to crush the teeth $17 a, b, c, d, e$ but such pressure resisted by the arch-like construction of the teeth, which gives them great compressive strength. At the same time, abrasion on the teeth is resisted by the relatively deep hardened case 39 thus prolonging the life of the cutters.
As will be apparent from Fig. 1, the circumferential rows of knuckle shaped teeth $17 a, b, c, d$ on cutter 16, $41 a, b, c$ on cutter 41 and $42 a, b, c$ on cutter 42 are offset and spaced radially of the bore hole so that each cuts a separate annular area at the bottom of the hole, such areas being discrete and separated by annular spaces which are not in direct contact with the cutters. Such annular spaces, however, are broken away due to the fact that the action of the teeth on the rock formation has a crushing effect with the fracturing force being transmitted
laterally as well as downward on the rock. The space surrounded by the inner-most row of teeth $17 a$ is cut by the dull blade 31.
The heel rows of teeth $17 e, 41 d$ and $42 d$ roll over a common annular area near the side wall 14 of the bore hole. These teeth, however, are spaced from the wall 14 by about $1 / 16^{\prime \prime}$ leaving a thin marginal area which provides an open space to receive cuttings. This area is cut by the offset shoulders 36 and 44, each of which acts as a reamer to shave the side of the hole. Since the teeth in the heel rows $17 e, 41 d$ and $42 d$ do not at any time directly engage the side wall 14 , the wearing of the teeth in use will not affect the gage of the hole which is maintained by the tungsten carbide or hard facing 37 applied to the heel 34 of the cone.
Assume now that the rock bit when only partly worn reaches the end of the layer of extremely hard and abrasive formation and strikes a relatively softer formation such as a stringer of shale. Unlike the prior art hard formation bit of the inserted plug type, the rock bit of this invention need not be pulled and replaced by a chisel toothed bit. Instead it is permitted to continue to run, preferably at a higher speed but lower pressure. The cutter teeth of this invention, notwithstanding their blunt tips 19, 23, will continue to drill without "balling up" because the root portion $18 s$ provides sufficient length of tooth to permit them to penetrate deeply into the relatively soft earth formation. As shown in Fig. 1, the rows of teeth on one cutter project into the grooves 18 separating the teeth on another cutter and thus provide a self cleaning action to remove any formation adhering to the cutters.

From the foregoing description, it will be seen that the present invention will drill effectively in relatively soft and medium formations heretofore considered suitable for drilling only by chisel teeth but not by teeth of the inserted plug type; and also in extremely hard formations heretofore considered as suitable for drilling only by bits having short inserted plugs and not by chisel toothed bits. In short, the invention obviates the necessity of changing from one type of bit to the other and back again. The invention is particularly applicable to extremely hard limestones where shale stringers are interspersed between the hard rock strata. In cases such as this, the inserted carbide bit must be pulled out of the hole and a conventional chisel tooth bit run back in, and vice versa, with each bit, making only a few feet of hole. Where these formations are encountered the well is usually more than ten thousand feet deep and the time involved in changing a bit, or "making a round trip" is very considerable and adds greatly to the cost of drilling operations.
Even in uniform hard rock formations where there is no necessity for changing the bit before it is worn out, the invention has the advantage of economy in the cost of manufacture as its cost is only a fraction of that of the inserted carbide type of bit, although its performance compares favorably. Another advantage is that the teeth being an integral part of the cone cutter cannot fall out as happens with teeth of the inserted plug type.
Figs. 6, 7 and 8 disclose a modification of this invention which possesses some of the characteristics of the chisel tooth while retaining some of the advantages of the rounded crest. Fig. 6, which is a longitudinal section, is similar to a sectional view of a conventional chisel toothed cone. The cutter 46 shown therein is provided with circumferential rows of teeth $47(a, b, c, d)$ separated by circumferential grooves 48 ; the teeth in each row being divided $u p$ by transverse or radial grooves 49 . The sides of the circumferential grooves and, therefore, the sides of the teeth, extend along a straight line running from a point close to the bottom of the groove to a point at the crest of the tooth. The radial grooves 49 comprise a curved bottom portion $69 b$ and two straight side portions 49 s . Connecting the sides 49_{s} is a cylindrical surface 51 which constitutes the crest of the tooth 47 . The
crest 51 is generally in the shape of a cylinder, the axis of which is spaced further away from the axis of the cutter 46 than is the center of the are 496 , thus providing a tooth with a root portion and a novel crest portion lying above the root. It will be understood that the cutter of Fig. 6 is arranged in association with two complementary cutters, each having a heel row which tracks the heel row $47 d$ and also having inner rows in offset interfitting relation to the rows $47 a, b$ and c. The cutter shape of Figs. 6,7 and 8 is useful in formations somewhat softer than those for which the Fig. 1 cutter was designied, where it is desired to have more area at the bottom of the hole in contact with the cutting teeth. The modified cutter of Fig. 6 is capable of drilling with a combined crushing and chipping action and has a longer life than the conventional chisel tooth. This is made possible by the cylindrical shape of the crest of the tooth which permits application of case hardening to a skin 52 (Fig. 8) having a depth greater than the normally safe limit for chisel teeth.
Fig. 9 shows a chisel tooth 53 which has a conventional shape including a sharp cutting edge 54. The illustration in Fig. 13, however, differs from standard practice in that it shows a depth of case $\mathbf{5 2}$ comparable to that of the present invention. It will be seen that the shape of tooth is not suitable for a deep case because of the sharp edges. The result would be a chipping or breaking off of the sharp edge as shown in Fig. 10. For that reason, a deep case is generally avoided which prevents utilization of the cutters for a long life. The hard and deep case, with the resulting increase in hardness, wear resistance and cutter life is made possible by the present invention, due to the cylindrical crest 51 which merges with the radial grooves 49 to provide a smooth undulating surface resembling a knuckle gear, free from
sharp edges. sharp edges.
What is claimed is :

1. In an earth boring drill, a roller cutter of approximately conical shape, having a body adapted to be mounted for rotation on its axis, a plurality of rows of teeth integral with said body, said rows being separated by circumferential and radial grooves, each tooth having a root portion and a convex tip portion, the tip portion being semi-circular in section, the root portion having an altitude approximately equal to the altitude and the radius of curvature of the tip portion and being generally of the shape of the frustum of a pyramid, said root portion having two opposite sides adjacent the circumferential grooves and having two opposite flanks abutting the radial grooves, each side and each flank of the root portion being tangent to the adjacent surface of the tip portion, the tip portion being operable on the bottom of the earth formation with a crushing action and the root portion being effective to provide deep penetration.
2. In a rotary well drill, a conical culter having its cutting surface converging toward the central axis of the drill and mounted to contact the bottom of the hole with an approximately true rolling action, said cutter having a body and a plurality of teeth each of which projects integrally from the body and at an angle inclined toward the apex of the cutter so as to extend vertically downward when in contact with the bottom of the hole, said teeth being arranged in rows extending around the circumference of the cutter, one of said rows including a plurality of teeth each having a convex tip portion mounted upon a root portion lying below the tip portion, the opposite sides of said one row of teeth being bounded by circumferential grooves and the flanks of the individual teeth in said one row being separated by radial grooves extending below the tip portions and into the root portions, thus providing deep penetration of the tip portions into the earth formation, the surface of said convex tip portion having the shape of a semi-circle in a section taken transverse to the radial grooves, said
semi-circle being tangent at its ends with the flanks of the root portions, the radius of the semi-circle being approximately equal to the altitude of the tip portion, earth formation with a crushing action, the altitude of the root portion being approximately equal to the altitude of the tip portion.
3. In a rotary well drill having cutters with their cutting areas converging toward the central axis of the drill and mounted to contact the bottom of the hole with an approximately true rolling motion, cutting teeth formed on said cutters in circumferential rows separated by circumferential grooves, each of said teeth having a pyramidal root portion and a rounded tip portion, the rows of teeth on each cutter being offset relative to the teeth on adjacent cutters and adapted to interfit therewith, the opposite sides of each row of teeth being deeply cut and spaced apart to allow clearance between adjacent interfitting teeth, the tip portion of each of said teeth in one of the rows extending into the associated groove between the rows of teeth on each of the adjacent cutters, the tip portion being rounded on opposite sides, the surface of the tip portion forming in longitudinal section an arc extending from one circumferential groove to the next, said arc having a diameter approximately equal to the distance separating two adjacent circumferential grooevs and being tangent to the sides of the root portions of the teeth, thus presenting a blunt crest to engage the earth formation with a crushing action, the root portions of the teeth in each row being separated by radial grooves extending for a substantial depth below the tip portions adapted to provide deep penetration of the teeth into the earth formation.
4. A rotary well drill according to claim 3, in which the rows of teeth and body of the cone form an integral structure, the surface of the cutter including the teeth and grooved portions being case hardened to a substantial depth.
5. A rotary well drill according to claim 3, in which the flanks of the teeth which lie adjacent the radial grooves are connected by a crest surface which forms an arc in a section taken through the plane of the row of teeth, whereby the tip portion of each tooth is of approximately hemispherical shape.
6 . In an earth boring drill, a roller cutter according to claim 3, in which the tip portion is formed by the intersection of two half cylinders having axes at right angles to each other.
6. In an earth boring drill, a roller cutter of approximately conical shape having a body adapted to be mounted for rotation on its axis, the apex portion of the cutter lying adjacent the axis of rotation of the drill, a plurality of teeth on said body including a circumferential row of teeth on the apex portion, said last named teeth being of substantially hemispherical shape to engage the earth formation with a crushing action, and a blade formed at the apex end of the cutter, said blade extending diametrically of the circumferential row aforesaid and being in the shape of a half cylinder terminating at each end in a quarter sphcre to form a smooth, dull surface, said blade extending to and beyond the axis of rotation of the drill to engage the earth formation simultaneously on both sides of the center of the hole. 8. In an earth boring drill, a roller cutter of approxi-
mately conical shape, having a body mounted for rotation on its axis, a plurality of widely spaced rows of teeth integral with said body, circumferential grooves separating said rows, each tooth having a root portion and a convex tip portion, the tip portion of each tooth having an arcuate shape in a section taken through the plane of the row of teeth and also having an arcuate shape in the plane of the axis of rotation of the cutter, whereby the tip portions operate on the bottom of ing earth formation to fracture the latter with a crushing action in extremely hard formations, each root portoo having approximately parallel sides extending between the convex tip portion and the body of the cutter and being tangent to the arcuate surface of the tip portion, the root portions in each row of teeth being separated by radial grooves adapted to receive the earth formation in the spaces between the teeth whereby the root portions may penetrate deeply into relatively softer formations.
7. A roller cutter according to claim 8, characterized in that the root portion of the tooth has substantially the same altitude as the convex tip portion thereof.
8. In an earth boring drill, a roller cutter according to claim 8, the flanks of said root portions having approximately the shape of a trapezoid, one side of said trapezoid being defined by the inner edge of associated radial groove, another side being defined by a straight mentioned shorter than and parallel to the side first mental curved areas which are tangent to said thating segare tangent to said flanks and which join the latter along the entire length of the shorter line aforesaid, thus providing a substantially smooth surface covering the tip portion and the flanks.
9. A roller cutter of approximately conical shape, having a body mounted for rotation on its axis, a plufrom said body rows, each body, circumferential grooves separating said tows, each tooth having a root portion, the root por-
tions in each row of teeth being separated by grooves adapted to receive the earth formation in the spaces between the root portions, one or more of the teeth having a convex tip portion arranged to said the earth formation with a crushing action, characterized in that the surface of the convex tip portion comprise a pair of sectors forming portions of a toroidal surface extending circumferentially and a second pair of sectors forming portions of a cylindrical surface extending radially, the sectors in the first pair alternating with the sectors in the second pair, the adjacent sectors meeting each other along four radial lines.

References Cited in the file of this patent UNITED STATES PATENTS

8	Scott _--------------1935
2,043,142	Zublin --------------- June 2, 1936
2,066,853	Rea ---------------- Jan. 5, 1937
2,340,492	Scott ----------------- Feb. 1, 1944
2,388,108	Zublin ---------------- Oct. 30, 1945
2,526,489	Liddicoat -------------- Oct. 17, 1950
2,533,257	Woods et al. ------------ Dec. 12,1950
2,669,432	Dill et al. ---------------- Feb. 16, 1954
2,687,875	Morlan et al. ----------- Aug. 31, 1954
2,774,571	Morlan _--------------- Dec. 18,1956

