

CONFÉDÉRATION SUISSE

(51) Int. Cl.3: C 10 J

OFFICE FÉDÉRAL DE LA PROPRIÉTÉ INTELLECTUELLE

3/70

Brevet d'invention délivré pour la Suisse et le Liechtenstein Traité sur les brevets, du 22 décembre 1978, entre la Suisse et le Liechtenstein

72 FASCICULE DU BREVET A5

619 486

(21) Numéro de la demande: 4449/77

(73) Titulaire(s): Union Carbide Corporation, New York/NY (US)

(22) Date de dépôt:

07.04.1977

30) Priorité(s):

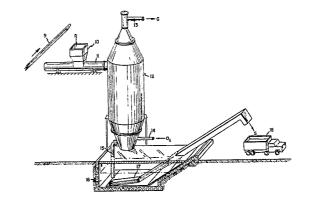
12.04.1976 US 675935

(72) Inventeur(s): John Erling Anderson, Katonah/NY (US)

(24) Brevet délivré le:

30.09.1980

(45) Fascicule du brevet publié le:


30.09.1980

(74) Mandataire: Kirker & Cie, Genève

[54] Procédé de traitement des ordures pour la production simultanée d'un gaz utile et d'un résidu solide.

(57) On introduit les ordures au sommet d'un four à cuve verticale (12), on introduit un gaz contenant de l'oxygène au fond du four, on pyrolyse les matières organiques des ordures, on fluidifie les matières minérales, on recueille les produits gazeux à partir du sommet du four et on fait couler les matières minérales fluidifiées du fond de ce dernier.

Afin d'éviter un colmatage du four par les ordures, en particulier lorsqu'elles sont préalablement dilacérées pour la récupération des métaux, les ordures sont introduites dans le four sous la forme de pastilles comprimées ayant une masse spécifique en kg/m³ supérieure à la valeur de l'expression 32'000/(100 - 0,8A), dans laquelle A est le pourcentage des matières minérales, et un rapport de la surface en m² au volume en m³ supérieur à la valeur de l'expression 8,7 (G/H) 0,625 dans laquelle G est le débit des ordures en t/jour/m² de section transversale du four et H est la hauteur du lit d'ordures dans le four en m.

REVENDICATIONS

1. Procédé de traitement d'ordures pour la production simultanée d'un gaz utile et d'un résidu solide inerte, qui consiste (a) à introduire les ordures dans la partie supérieure d'un four à cuve verticale, (b) à introduire un gaz contenant de l'oxygène au fond du four, (c) à pyrolyser la partie organique des ordures, (d) à fluidifier la partie minérale des ordures, (e) à recueillir les produits gazeux à partir du sommet du four et (f) à faire couleur la matière minérale fluidifiée du fond du four, procédé caractérisé en ce qu'il consiste à introduire les ordures dans le four sous forme de pastilles d'ordures tassées, les pastilles présentant une masse spécifique en kg/m3 supérieure à la valeur donnée par l'expression:

$$\not D \neq \frac{32\,000}{(100-0.8A)}$$

dans laquelle

A est le pourcentage des matières minérales contenues dans 20 la pastille d'ordures, et un rapport de la surface en m2 au volume en m³ supérieur à la valeur donnée par l'expression:

$$\cancel{p} \neq 8,7 \quad \left(\frac{G}{H}\right)$$

dans laquelle H est la hauteur du lit des ordures dans le four en mètres et G est le débit d'admission des ordures en t/jour/m2 de la surface de section transversale du four.

- 2. Procédé selon la revendication 1, caractérisé en ce que les ordures sont dilacérées avant d'être tassées sous forme de pastilles.
- 3. Procédé selon la revendication 2, caractérisé en ce que la 35 majeure partie du métal ferreux est séparée magnétiquement des ordures dilacérées avant que celles-ci soient pastillées.
- 4. Procédé selon la revendication 1, caractérisé en ce que la masse spécifique des pastilles est comprise entre 400 et 800 kg/m3.
- 5. Procédé selon la revendication 1, caractérisé en ce que le gaz contenant de l'oxygène contient au moins 40%d'oxygène, en volume, le rapport pondéral de l'oxygène aux ordures introduites dans le four étant maintenu entre 0,15 et 0,28:1.

Dans le passé, le procédé le moins coûteux pour éliminer des déchets solides a été de les déverser dans des décharges à ciel ouvert. Toutefois, les dépôts d'ordures non traitées posent de graves problèmes de pollution de l'eau souterraine par infiltration, de dévalorisation du terrain, de risques d'incendie et d'infestations par les rongeurs. Un monde opératoire plus acceptable, c'est-à-dire le remblayage sanitaire a atténué ces difficultés en compostant et en recouvrant les ordures avec de la terre. Néanmoins, dans les grandes régions urbaines, cette pratique a perdu de plus en plus son intérêt du fait de la rareté de plus en plus grande des sites acceptables. Ces deux modes opératoires ont été complétés par une incinération des ordures ou déchets avant le remblayage. Bien que l'incinération classique ait pour effet de réduire dans une large mesure le volume des ordures et d'atténuer la pollution provoquée par infiltration, elle soulève de nouvelles difficultés telles que la pollution 65 que se produisent la pyrolyse des ordures et l'oxydation du de l'air et, bien qu'une réduction volumique de 80 à 90% soit possible, les résidus ou cendres sont inactifs du point de vue biologique et, par conséquent, le remblayage est encore indis-

pensable. De plus, la récupération de substances intéressantes à partir de l'incinération classique a tendance à être minimale.

Une solution aux problèmes ci-dessus est décrite dans le brevet des Etats-Unis d'Amérique nº 3 729 298. En résumé, le 5 brevet des Etats-Unis d'Amérique nº 3 729 298 précité concerne un procédé qui consiste à introduire les ordures dans la partie supérieure d'un four à cuve verticale et de l'oxygène au fond de ce dernier. Le four (ou convertisseur) peut être considéré comme ayant trois zones: une zone de séchage au 10 sommet, une zone de décomposition thermique ou de pyrolyse au milieu et une zone de combustion et de fusion (ou foyer) au fond. Ces zones ne sont pas nettement séparées, c'est-à-dire qu'il n'y a pas une ligne précise qui les sépare. Au fur et à mesure que les ordures descendent dans le four, elles sont tout 15 d'abord séchées par les gaz chauds qui montent dans ce dernier, puis elles sont pyrolysées. La pyrolyse est un procédé dans lequel les matières organiques des ordures sont décomposées et craquées thermiquement dans une atmosphère pauvre en oxygène avec génération d'oxyde de carbone, d'hydrogène et d'une matière analogue à du charbon. Au fur et à mesure que les ordures descendent à travers la zone de pyrolyse, elles sont transformées en matières volatiles qui s'élèvent et deviennent du charbon qui descend dans la zone de combustion. Dans cette zone, le charbon est brûlé en présence d'oxygène pour engendrer de l'oxyde de carbone et de l'anhydride carbonique qui produisent la chaleur nécessaire pour la fusion des matières minérales contenues dans les ordures telles que le verre et les métaux. Le laitier en fusion est évacué continuellement du convertisseur et est refroidi dans un bain d'eau. Un gaz contenant au moins 50% (sur base sèche) d'un mélange d'oxyde de carbone et d'hydrogène est évacué du sommet du four. Après épuration, le gaz est prêt à être utilisé comme gaz combustible à pouvoir calorifique moyen ou pour une syn-

Du fait que les ressources naturelles se raréfient de plus en plus, on tend de plus en plus à les récupérer des déchets. On sait qu'une dilacération des déchets avant un autre traitement est nécessaire si l'on veut récupérer des ordures des métaux ferreux ainsi que d'autres matières, par exemple l'étain, l'aluminium ou le verre par une technique pratique et rentable. De tels procédés de récupération font appel aux champs magnétiques, au champs électriques ou à une classification pneumatique pour séparer les divers composants des ordures dilacérées. Le degré de dilacération varie considérablement en fonction de la nature du processus de séparation utilisé ainsi que des matières à récupérer à partir des ordures. Bien qu'un métal ferreux soit parmi les matériaux les plus faciles à récupérer des ordures dilacérées par séparation magnétique, il ne peut pas être extrait et purifié d'une façon aisée et rentable du résidu 50 comprenant un laitier et des métaux qui est produit par le procédé décrit dans le brevet des Etats-Unis d'Amérique nº 3 729 298 précité.

On a observé que lorsque les ordures dilacérées sont introduites dans un four à cuve et traitées selon le procédé du 55 brevet des Etats-Unis d'Amérique nº 3 729 298 précité, elles ont tendance à se tasser si fortement qu'elles entravent la circulation des gaz dans la cuve qui est nécessaire pour la mise en œuvre correcte du procédé. Ces difficultés sont particulièrement grandes si le four fonctionne pendant une longue 60 période. L'une des difficultés dues au tassement des ordures dilacérées est due au fait que le gaz qui s'élève du foyer ne passe pas uniformément sur toute la section transversale du lit des ordures et a tendance à se limiter à quelques passages ou cheminements. Ces passages s'agrandissent au fur et à mesure carbon résultant pour former finalement un grand canal par lequel la majeure partie des gaz s'écoule par la suite. Ce cheminement réduit considérablement l'efficacité du procédé, car

3 619 486

les gaz chauds s'élevant du foyer dans le canal ne disposent pas d'un temps et d'une surface de contact suffisants pour transférer la chaleur nécessaire à la mise en œuvre des processus de gazéification, de pyrolyse et de séchage. En consequence, les gaz quittent le sommet du four à une température élevée due à un moins bon rendement thermique, à une augmentation de la consommation d'oxygène et à une diminution du pouvoir calorifique du gaz produit.

La présente invention a pour but de modifier le procédé décrit dans le brevet des Etats-Unis d'Amérique n° 3 729 298 de façon à lui permettre de fonctionner efficacement en utilisant des ordures dilacérées comme matières d'alimentation.

Selon ses caractéristiques essentielles, la présente invention concerne un procédé de traitement des ordures produisant simultanément un gaz utile et un résidu solide inerte, procédé qui consiste (a) à introduire les ordures dans la partie supérieure d'un four à cuve verticale, (b) à introduire un gaz contenant de l'oxygène au fond du four, (c) à pyrolyser la partie organique des ordures, (d) à fluidifier la partie minérale des ordures, (e) à recueillir les produits gazeux à partir du sommet du four et (f) à faire couler la matière minérale fluidifiée du fond du four, procédé caractérisé en ce qu'il consiste à introduire les ordures dans le four sous la forme de pastilles d'ordures tassées, lesdites pastilles présentant:

1) une masse spécifique supérieure à la valeur donnée par l'expression:

$$p \neq \frac{32\,000}{(100-0.8A)}$$

dans laquelle:

A est le pourcentage des substances minérales contenues dans la pastille d'ordure, et

2) un rapport de la surface en m² au volume en m³ supérieur à la valeur donnée par l'expression:

$$\not P \neq 8.7 \left(\frac{G}{H}\right)$$

dans laquelle:

H = hauteur du lit des ordures dans le four en mètres

G= vitesse d'admission des ordures en $t/jour/m^2$ de surface de section transversale du four.

De préférence, le procédé est mis en œuvre en utilisant un gaz contenant au moins 40% d'oxygène (en volume) comme gaz d'alimentation contenant de l'oxygène. Il est également préférable que le rapport pondéral de l'oxygène à la charge d'ordures soit maintenu dans la plage comprise entre 0,15:1 et 0,28:1. Toutefois, le avantages résultant de la présente invention sont également intéressants pour le procédé lorsqu'il est mis en œuvre en dehors des conditions et plages préférées susmentionnées.

L'invention sera décrite plus en détail en regard des dessins annexés à titre d'exemple nullement limitatif et sur lesquels:

les figures 1a et 1b sont des schémas de principe illustrant le procédé de la présente invention. Il est bien entendu que le terme «ordures», tel qu'il est utilisé dans le présent mémoire, englobe tous déchets solides, c'est-à-dire tous types de déchets urbains, industriels, commerciaux ou agricoles. Une telle

matière se compose normalment de diverses quantités de matières organiques et minérales telles que le papier, les matières plastiques, le caoutchouc, le bois, le verre, des produits alimentaires, des feuilles l'eau, des boîtes en fer blanc et d'autres déchets métalliques. Il est également possible de mélanger une boue résiduaire avec les ordures de manière à éliminer également cette matière.

Tel qu'on l'utilise dans le présent mémoire, le terme «dilacéré», lorsqu'il s'applique aux ordures, est destiné à couvrir une grande plage granulométrique ainsi que n'importe quelle technique de fragmentation, étant donné que ces deux paramètres dépendent principalement de la nature du traitement préalable auquel les ordures peuvent être soumises à des fins de récupération avant la pyrolyse. Ainsi, la dilacération peut comprendre plusieurs étapes de broyage à une très petite granulométrie ou bien une légère désagrégation seulement de structure grossière ou la déchirure des sacs en matière plastique pour mettre leur contenu à découvert, par exemple au moyen d'un broyeur à marteaux. Au cas où les déchets solides bruts sont de par leur nature d'une grosseur suffisamment petite pour être soumis directement au pastillage, une simple séparation des objets surdimensionnés peut suffire; le principal critère étant la possibilité de tasser les ordures sous forme de pastilles robustes.

On comprendra mieux le fonctionnement global du procédé de la présente invention en se référant aux dessins. Les ordures sont normalement délivrées à l'installation d'élimination au moyen de camions de transfert 1 qui déversent les ordures dans une fosse 2. Une grue 3 brasse les ordures dans la fosse afin d'obtenir une matière relativement uniforme. Cette fosse doit avoir une capacité égale à plusieurs jours de fonctionnement en continu afin d'obtenir une charge de matière relativement uniforme et d'éviter une interruption du fonctionnement pendant les fins de semaine pendant lesquelles les ordures 35 ménagères des centres urbains ne sont habituellement pas collectées. La grue 3 charge les ordures sur un convoyeur 4 qui les déverse, telles qu'il les a reçues, dans une machine de dilacération 5 dans laquelle les ordures sont fragmentées à une grosseur d'environ 10 à 15 cm dans le sens de la plus grande dimension des particules déchargées de la machine 5. Les ordures dilacérées sont ensuite transportées par le convoyeur 6 vers un séparateur classique 7 à bande magnétique qui enlève environ 95% du métal ferreux des ordures. Le métal ferreux tombe sur un convoyeur 8 qui le transporte vers une 45 remorque de transfert (non représentée) qui l'achemine vers une installation de récupération des métaux. Le reste des ordures dilacérées, qui est sensiblement débarrassé des métaux magnétiques, tombe sur un convoyeur 9 qui transporte les ordures R dans une trémie 10 les déchargeant dans une pas-50 tilleuse à haute pression 11 située près du sommet d'un four 12. La pastilleuse 11 tasse les ordures à la dimension et à la densité voulues.

La pastilleuse 11 délivre aussi les pastilles d'ordures dilacérécs directement dans la partie supérieure du four à cuve 12. 55 Les pastilles d'ordures fortement tassées forment un joint empêchant les gaz de s'échapper du four par l'orifice d'entrée des ordures. Les gaz produits G sont évacués du sommet du four 12 par un conduit 13. Ces gaz contenant au moins 50% en volume de CO plus H2 (sur base sèche) peuvent être utilisés soit comme gaz combustibles soit comme gaz de synthèse pour un traitement chimique, par exemple pour le transformer en ammoniac. La base du four 12 contient le foyer qui comporte un dispositif destiné à injecter de l'oxygène par une ou plusieurs tuyères 14 et un jet de coulée du laitier pour décharger 65 le métal et le laitier fluidifiés qui coulent par un conduit 15 dans une cuve de refroidissement remplie d'eau 16. L'eau contenue dans la cuve de refroidissement, qui provoque la solidification du laitier et sa désagrégation en un résidu

dans laquelle:

4

minéral solide inerte finement diversé, forme également un joint hydraulique pour empêcher les gaz de s'échapper du four 12 qui fonctionne sous une légère pression. Un convoyeur de dragage 17 peut être utilisé pour retirer le résidu solidifié S de la cuve 16 et le déverser dans un récipient collecteur tel qu'un camion 18 à benne basculante.

La solidité des pastilles, qui dépend en particulier de leur masse spécifique, et le rapport de la surface au volume des pastilles ont une grande importance pour le fonctionnement correct du four. Les pastilles doivent être suffisamment robustes 10 pour rester intactes dans le four lorsqu'elles descendent dans les zones de séchage et de pyrolyse. Ceci est indispensable pour qu'elles constituent une structure poreuse à l'intérieur du four afin de permettre aux gaz de s'élever sur toute la section transversale du lit de manière à établir la grande surface de contact entre les gaz et les matières solides qui est nécessaire pour la transmission de chaleur. On a constaté de façon inattendue que le séchage augmente la solidité des pastilles. Par suite, la solidité des pastilles augmente au fur et à mesure qu'elles descendent dans le four à cuve. C'est la présence de ces pastilles cohérentes sur toute la hauteure du lit qui empêche celui-ci de former une masse solide imperméable aux gaz, tout en permettant aux pastilles de se déplacer les unes par rapport aux autres au fur et à mesure que les ordures sont consumées par la pyrolyse et la combustion qui se produisent dans le four. Le mouvement de pastilles les unes par rapport aux autres a tendance à fermer les grands canaux lorsque lesdites pastilles tombent dans ces derniers. En outre, le lit est continuellement réarrangé automatiquement au fur et à mesure que les ordures sont consumées, en empêchant ainsi qu'il se produise de brusques instabilités qui pourraient provoquer un affaissement du lit.

Une pastille d'ordure présentant une trop faible densité n'a pas une résistance mécanique suffisante et a tendance à se désagréger lorsqu'elle tombe dans le four. Il en résulte un phénomène identique à celui qui se produit lorsqu'on introduit des ordures dilacérées non pastillées dans le four.

On a constaté que pour réaliser une pastille d'ordure ayant une résistance mécanique suffisante pour rester à l'état cohérent dans le procédé ci-dessus, il faut qu'elle présente une masse spécifique supérieure à la valeur donnée par expression:

$$\not p \neq \frac{32\,000}{(100-0.8A)}$$

dans laquelle:

A est le pourcentage des matières minéales de la pastille d'ordure (%).

Lorsque les pastilles d'ordures sont suffisamment denses pour avoir la résistance mécanique nécessaire, les réactions de séchage et de pyrolyse sont limitées par la vitesse de transmission et de diffusion de chaleur dans la pastille. Pour un comportement optimal, le rapport de la surface en m2 au volume en m3 des pastilles doit être supérieur à la valeur donnée par l'expression:

$$\not x \neq 8.7 \left(\frac{G}{H}\right)$$

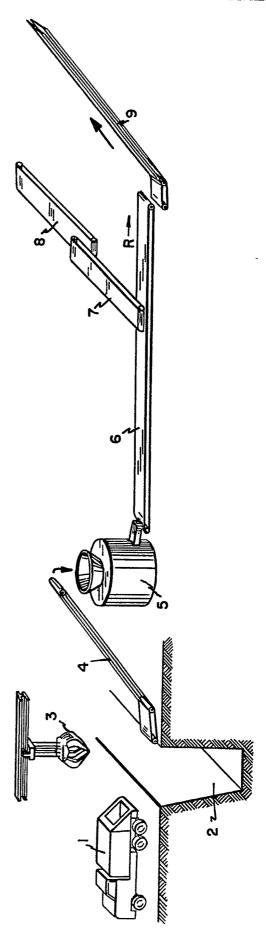
H = hauteur du lit d'ordures dans le four (mètres)

 $_{5}$ ' G= débit d'admission des ordures (t/jour/m² de la surface de section transversale du four).

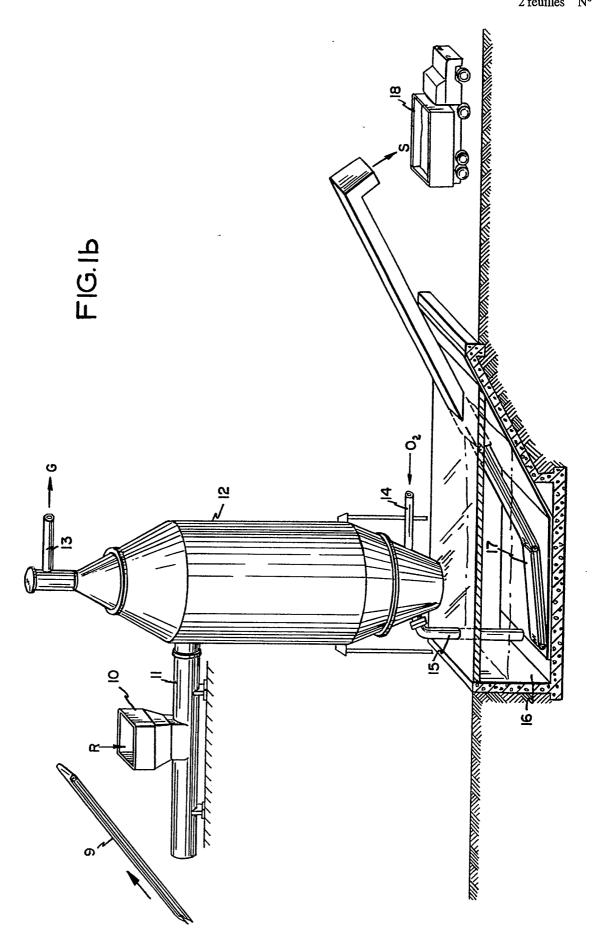
Si une pastille présente un rapport de la surface au volume qui est inférieur à celui calculé à l'aide de l'équation ci-dessus, l'énergie des gaz montant dans le four à cuve n'est pas suffisamment utilisée, ce qui se traduit par une élévation de la température des gaz produits et comme précédemment indiqué, une température si élevée des gaz d'échappement est la cause d'un fonctionnement inefficace en fonction de la plus forte consommation d'oxygène et de la production d'un gaz ayant un moins grand pouvoir calorifique.

Il faut distinguer les pastilles très denses que nécessite la présente invention des ordures tassées par des appareils ordinaires de tassement d'ordures ménagères ou déchets indus-20 triels. Ces appareils ne tassent normalement une matière qu'au tiers environ de son volume initial en utilisant des pistons exerçant des pressions de l'ordre de 2,1 kg/cm2. Un tel tassement ne convient pas pour produire des pastilles de la dimension et de la densité nécessaires dans le présent procédé. Un 25 appareil qui convient pour produire des pastilles du type nécessaire dans la présente invention est décrit dans la demande de brevet des Etats-Unis d'Amérique nº 675 934 déposée le 12 avril 1976 au nom de John F. Pelton.

Bien que la présente invention puisse utiliser d'une façon 30 satisfaire des pastilles produites à partir d'une forme quelconque d'ordures, à condition que ces dernières puissent être pastillées à la densité et au rapport de surface au volume indiqués, il est préférable de réaliser les pastilles avec des ordures dilacérées. Il est également préférable d'enlever la majeure 35 partie du métal ferreux des ordures dilacérées avant de les tasser sous forme de pastilles. La masse spécifique des pastilles est comprise de préférence entre 400 et 800 kg/m3.


Exemple

L'exemple suivant est destiné à illustrer le procédé de l'invention. Des pastilles cylindriques d'ordures ménagères présentant une masse spécifique de 480 à 640 kg/m³, un diamètre de 33 cm et une longueur variant de 13 à 20 cm, qui sont 45 produites par tassement sous des pressions comprises entre 28 et 70 kg/cm², sont introduites à un débit moyen d'environ 90 t/jour dans un four à cuve métallique verticale revêtue d'un garnissage réfractaire, présentant un diamètre interne de 3 mètres et un lit d'une hauteur globale d'environ 6 mètres. Le 50 rapport de la surface au volume des pastilles varie entre 22 et 28 m²/m³. La pression de tassement et la longueur des pastilles varient en fonction des variations du degré d'humidité des ordures et des variations de leur composition. Des conditions de régime permanent sont établies après un fonctionnement du 55 four de 24 heures environ. Le four fonctionne d'une façon régulière et efficace comme indiqué par le débit constant des gaz produits, une chute constante de la pression à travers le lit et la faible température (150-315°C) des gaz s'échappant du four. Le débit d'admission d'oxygène est maintenu pendant le 60 fonctionnement du four entre 0,17 et 0,22 tonne d'oxygène par


tonne d'ordures.

619 486 2 feuilles N° 1

619 486 2 feuilles N°:

