(12) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
(43) 国際公開日
2014 年 9 月 4 日（04.09.2014）

(51) 国際特許分類:
H01M 4/525 (2010.01)
H01M 2/16 (2008.01)
H01M 4/131 (2010.01)
H01M 4/06 (2008.01)

(21) 国際出願番号:
PCT/JP2014/008411
(54) Title: POSITIVE-ELECTRODE ACTIVE SUBSTANCE, POSITIVE-ELECTRODE MATERIAL, POSITIVE-ELECTRODE, AND NONAQUEOUS-ECTROLYTE SECONDARY CELL

(55) 発明の名称 正極活性物質、正極材料、正極および非水電解質二次電池

(57) Abstract: [Problem] To provide, in a nonaqueous-electrolyte secondary cell, a means for suppressing capacity reduction when used for a long period of time, the means being capable of improving cycle characteristics. [Solution] A positive-electrode active substance for a nonaqueous-electrolyte secondary cell that is a lithium-nickel-manganese-cobalt composite oxide, the true density being 4.40-4.80 g/cm³.

(57) 要約：[問題] 非水電解質二次電池において、長期間使用した場合の容量低下を抑制し、サイクル特性を向上させる手段を提供すること。 [解決手段] リチウム-ニッケル-マンガン-カボルト複合酸化物であり、真密度が4.40-4.80 g/cm³である、非水電解質二次電池用正極活性物質。
明細書
発明の名称:
正極活物質、正極材料、正極および非水電解質二次電池
技術分野
[0001] 本発明は、正極活物質、正極材料、正極および非水電解質二次電池に関する。
背景技術
[0002] 現在、携帯電話などの携帯機器向けに利用される、リチウムイオン二次電池をはじめとする非水電解質二次電池が商品化されている。非水電解質二次電池は、一般的に、正極活物質等を集電体に塗布した正極と、負極活物質等を集電体に塗布した負極とが、セパレータに非水電解液または非水電解質ゲルを保持した電解質層を介して接続された構成を有している。そして、リチウムイオン等のイオンが電極活物質中に吸収・放出されることにより、電池の充放電反応が起こる。
[0003] ところで、近年、地球温暖化に対処するために二酸化炭素量を低減することが求められている。そこで、環境負荷の少ない非水電解質二次電池は、携帯機器等だけでなく、ハイブリッド自動車（H E V）、電気自動車（E V）、および燃料電池自動車等の電動車両の電源装置にも利用されつつある。
[0004] 電動車両への適用を指向した非水電解質二次電池は、高出力および高容量であることが求められる。電動車両用の非水電解質二次電池の正極に使用する正極活物質としては、層状複合酸化物であるリチウムコバルト複合酸化物が、4 V級の高電圧を得ることができ、かつ高いエネルギー密度を有することから、既に広く実用化されている。しかし、その原料であるコバルトは、資源的にも乏しく高価であるため、今後も大幅に需要が拡大してゆく可能性を考えると、原料供給の面で不安がある。また、コバルトの原料価格が高騰する可能性もある。そこで、コバルトの含有比率の少ない複合酸化物が望まれている。
リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と同様に層状構造を有し、リチウムコバルト複合酸化物と比較して安価であり、また、理論放電容量においてもリチウムコバルト複合酸化物に匹敵する。このような観点から、リチウムニッケル複合酸化物は、実用的な大容量の電池を構成できるものとして期待されている。

リチウムニッケル複合酸化物を正極活物質に用いたリチウムイオン二次電池においては、ニッケル複合酸化物にリチウムイオンが脱離・挿入されることにより充電・放電が行われる。このとき、リチウムイオンの脱離・挿入に伴って、複合酸化物が収縮－膨張するため、結晶構造の崩壊等の要因から、充放電サイクルを重ねるにつれて大きな容量低下を生じ、電池を長期間使用した場合の容量低下が著しくなるといった問題があった。

かような課題に鑑み、例えば、特開２００１－８５００６号公報では、放電容量およびサイクル特性の向上を目的として、リチウムニッケル複合酸化物において、２次粒子を構成する１次粒子を比較的大きなもので構成することを特徴としている。

発明の概要

発明が解決しようとする課題

しかししながら、特開２００１－８５００６号公報に記載の技術においてもサイクル特性の向上は十分なものではなかった。

そこで、本発明の目的は、非水電解質二次電池において、長期間使用した場合の容量低下を抑制し、サイクル特性を向上させる手段を提供することである。

課題を解決するための手段

本発明者らは、鋭意研究を積み重ねた。その結果、非水電解質二次電池用正極活物質であるリチウムニッケルマンガン－コバルト複合酸化物において、真密度を特定の範囲とすることにより、上記課題が解決することを見出した。
図面の簡単な説明

[001 1] [図1A] コアーシェル型正極材料の一実施形態を示す断面概略図である。
[図1B] コアーシェル型正極材料の他の一実施形態を示す断面概略図である。
[図2] 非水電解質リチウムイオン二次電池の一実施形態である、扁平型（積層型）の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。
[図3] 二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である

発明を実施するための形態

[001 2] 本発明の第一実施形態は、リチウムニッケルマンガン・コバルト複合酸化物であり、真密度が4. 40 ～ 4. 80 g / cm^3である非水電解質二次電池用正極物質である。好ましくは、さらに、比表面積が0. 30 ～ 1. 0 m^2 / gである、非水電解質二次電池用正極物質である。

[001 3] リチウムニッケルマンガン・コバルト複合酸化物（以下、単にNMC複合酸化物とも称する）は、リチウム原子層と遷移金属（MnとNi、及びCoが秩序正しく配置）原子層とが酸素原子層を介し交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。加えて、LiNiO_2よりも高い熱安定性を有しているため、正極物質として用いられるニッケル系複合酸化物の中でも特に有利である。

[001 4] しかしながら、ニッケルを含有する複合酸化物においては、リチウムイオンが脱離・挿入されることにより充電・放電が行われる際に、リチウムイオンの脱離・挿入に伴って、複合酸化物が収縮・膨張する。このため、結晶構造の崩壊等の要因から、充放電サイクルを重ねるにつれて大きな容量低下を生じ、電池を長期間使用した場合の容量低下（サイクル特性の低下）が著しくなるといった問題があった。

[001 5] このようなサイクル特性の低下は、積層構造電池、特に車載用電池において
て一層顕著となる。積層構造電池、特に車載用電池では一般に携帯電話やモ/フィルパソコンに用いられる電池と異なり大型ゆえ、積層内部と外部とで大
きな温度差が生まれることが懸念される。積層構造電池は積層方向内部が最
も温度が上がらず、端部に向かうに従い、外装からの放熱により温度が
低下すると考えられる。NMC複合酸化物のような層状岩塩型構造を有する
正極材料は、反応に温度依存性があり、温度上昇に伴い、結晶構造の崩壊が
起きやすくなる。これは、温度が上昇するにつれてリチウムの挿入・脱離反
応が進行しやすくなるのに伴い、複合酸化物の収縮-膨張頻度が高くなるた
めと考えられる。つまり、積層型電池では、積層方向に温度ムラが生じやす
いため、正極材料の膨張収縮度合いにも不均一性が生じる。電池が長期間使
用されるようになると、温度荷重の高い部分には、正極活物質材料の膨張-
収縮による粒子の剥がれが生じやすくなり、これにより、電池容量が低下す
るものと考えられる。

[0016] さらに、かような複合酸化物を非電解質二次電池、特に車載用電池に適
用する場合、従来の電気・携帯電子機器用途から桁違いの長寿命化が必要と
なってくる。例えば、従来の電気・携帯電子機器用途ではせいぜい500サ
イクル程度で充分であるが、車載用電池では、1000～1500サイクル
というサイクル数においても、一定以上の容量が維持されることが必要とな
る。このような長期サイクルに耐えうるNMC複合酸化物についてはこれま
で十分に検討されていなかった。

[0017] 加えて、非電解質二次電池が車両の動力源などとして用いられる場合、
航続距離をさらに長くするために高い体積エネルギー密度を有していること
が必要である。

[0018] 本発明者らは、このような厳しい要求を伴う車載用電池を含頭におき、サ
イクル特性を向上させつつ、高い体積エネルギー密度を有する二次電池に用
いることができるNMC複合酸化物の検討を行った。

[0019] その結果、正極活物質の真密度がこれらの性能に重要な役割を果たすこと
を見出し、さらに、中でも特定の範囲の真密度を有するNMC複合酸化物が
サイクル特性が高く、高い体積エネルギー密度を有することを見出したものである。正確な作用機序は不明であるが、真密度が4.80 g/cm³以下であることで、正極活物質内に適度な空隙が存在し、充放電サイクルに伴う膨張収縮による構造のゆがみを抑制できるため、上記効果が発揮されると考えられる。また、真密度が4.40 g/cm³以上であることで、活物質同士が適度に密着するため、体積エネルギー密度が向上するものと考えられる。

本発明の非水電解質二次電池用正極活物質によれば、活物質内に適度な空隙が存在することで充放電サイクルに伴う膨張収縮による構造のゆがみを抑制できる。このため、温度負荷の高い部分の膨張・収縮による粒子の剥がれが抑制でき、長期間使用した場合の容量低下が少なく、サイクル特性に優れる非水電解質二次電池が得られるものと考えられる。したがって、積層構造型の車載用電池のように長期間使用されることが前提の電池においても、長期間使用による容量の低下が抑制される。

さらに、本発明の正極活物質は、比表面積が0.30〜1.0 m²/gであることが好ましい。活物質の比表面積が大きな範囲にあることで、活物質の反応面積が確保され、電池の内部抵抗が小さくなるため、電極反応時の分極発生を最小限に抑えることができる。分極の発生により、電解液の分解や、電極材料の表面が酸化分解など、副反応が生じるため、分極の発生を最小限に抑えることが好ましい。より好ましくは、比表面積が0.30〜0.70 m²/gである。

比表面積の値および真密度の値は後述の実施例に記載の方法で測定された値を採用する。

本発明のNMC複合酸化物は、遷移元素の一部が他の金属元素により置換されている複合酸化物を含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり
より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。

[0025] リチウム—ニッケル—マンガン—コバルト複合酸化物は、理論放電容量が高いことから、好ましくは、一般式 (1) : Li\textsubscript{a}Ni\textsubscript{b}Mn\textsubscript{c}Co\textsubscript{d}M\textsubscript{x}\textsubscript{2}（但し、式中、a、b、c、d、xは、0.9 ≤ a ≤ 1.2、0 < b < 1.0 < c ≤ 0.5、0 < d ≤ 0.5、0 ≤ x ≤ 0.3、b + c + d = 1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である）で表される。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式 (1)において、0.4 ≤ b ≤ 0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ (ICP) 発光分析法により測定できる。

[0026] 一般に、ニッケル (Ni)、コバルト (Co) 及びマンガン (Mn) は、材料の純度向上及び電気伝導性向上という観点から、容量及び出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式 (1)において0 < x ≤ 0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。

[0027] NMC複合酸化物において、本願発明者らは、例えば、LiNi\textsubscript{0.5}Mn\textsubscript{0.3}Co\textsubscript{0.2}\textsubscript{2}のように、ニッケル、マンガンおよびコバルトの金属組成が不均一であると、上記充放電時の複合酸化物のひずみ/割れの影響が大きくなくなることを見出した。これは、金属組成が不均一であるために、膨張収縮時に粒
子内部にかかる応力にひずみが生じ、複合酸化物に割れがより生じやすくなるためであると考えられる。したがって、例えば、Niの存在比がリッチである複合酸化物（例えば、LiNi₀.₃Mn₀.₃Co₂O₃）と比較して、長期サイクル特性の低下が顕著となる。本発明においては、LiNi₀.₉Mn₀.₁Co₀.₉O₂のように金属組成が不均一である複合酸化物においても、驚くべきことに、特定の真密度にある複合酸化物を用いると、サイクル特性の低下が抑制されることを見出したものである。

本発明の正極活物質は、1次粒子が凝集して2次粒子を形成している。2次粒子中には各1次粒子同士の間の空隙が存在する。本発明においては、サイクル特性および体積エネルギー密度の観点から、2次粒子における空隙率が2〜10％未満であることが好ましい。ここで、空隙率は、2次粒子の断面における1次粒子の存在部分と空隙部分の面積の合計に対する空隙部分の面積比を指す。

正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは2次粒子径で6〜11μm、より好ましくは7〜10μmである。また、1次粒子の平均粒子径は、0.4〜0.6μm、より好ましくは0.4〜0.5μmである。なお、本明細書における「粒子径」とは、粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。また、「平均粒子径」の値としては、走査型電子顕微鏡（SEM）や透過型電子顕微鏡（TEM）などの観察手段を用い、数〜数十観察中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。

本発明のNMC複合酸化物は、共沈法、スプレードライ法、など、種々公知の方法を選択して調製することができる。本発明の複合酸化物の調製が容易である。
易であることから、共沈法を用いることが好ましい。具体的には、例えば、特開2011-105588号（米国特許出願公開第2013/045421号明細書に相当）に記載の方法のように、共沈法によりニッケル－コバルト－マンガン複合水酸化物を製造した後、ニッケル－コバルト－マンガン複合水酸化物と、リチウム化合物とを混合して焼成することにより得ることができる。

[0032]以下、具体的に説明する。

[0033]複合酸化物の原料化合物、例えば、Ni化合物、Mn化合物およびCo化合物を、所望の活物質材料の組成となるように水などの適用な溶媒に溶解させる。Ni化合物、Mn化合物およびCo化合物としては、例えば、当該金属元素の硫酸塩、硝酸塩、炭酸塩、酢酸塩、シユウ酸塩、酸化物、水酸化物、ハロゲン化合物などが挙げられる。具体的には、Ni化合物、Mn化合物およびCo化合物としては、例えば、硫酸ニッケル、硫酸コバルト、硫酸マンガン、酢酸ニッケル、酢酸コバルト、酢酸マンガンなどが挙げられるが、これらに制限されるものではない。この過程で、必要に応じて、さらに所望の活物質材料の組成になるように、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素として、例えば、Ti、ZにNb、W、P、Al、Mg、V、Ca、SrおよびCr等の少なくなとも1種の金属元素を含む化合物を更に混入させてもよい。

[0034]上記原料化合物とアルカリ溶液とを用いた中和、沈殿反応により共沈反応を行うことができる。これにより、上記原料化合物に含まれる金属を含有する金属複合水酸化物、金属複合炭酸塩が得られる。アルカリ溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア等の水溶液を用いることができるが、中和反応用に水酸化ナトリウム、炭酸ナトリウム又はそれらの混合溶液を用いることが好ましい。加えて、錯体反応用にアンモニア水溶液やアンモニア塩を用いることが好ましい。

[0035]中和反応に用いるアルカリ溶液の添加量は、含有する全金属塩の中和分に対して当量比1.0でよいが、pH調整のためにアルカリ過剰分を合わせて
添加することが好ましい。

[0036] 錯体反応に用いるアンモニア水溶液やアンモニウム塩の添加量は、反応液中のアンモニア濃度が0.01〜2.00 mol/lの範囲で添加することが好ましい。反応溶液のpHは10.0〜13.0の範囲に制御することが好適である。また、反応温度は30℃以上が好ましく、より好ましくは30〜60℃である。

[0037] 共沈反応で得られた複合水酸化物は、その後、吸引ろ過し、水洗して、乾燥することが好ましい。

[0038] 次いで、ニッケル－コバルト－マンガン複合水酸化物をリチウム化合物と混合して焼成することによりリチウム－ニッケル－マンガン－コバルト複合酸化物を得ることができる。Li化合物としては、例えば、水酸化リチウムまたはその水和物、過酸化リチウム、硝酸リチウム、炭酸リチウム等がある。

[0039] 焼成処理は、2段階（仮焼成および本焼成）で行うことが好ましい。2段階の焼成により、効率よく複合酸化物を得ることができる。仮焼成条件としては、特に限定されるものではないが、昇温速度は室温から1〜20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700〜1000℃であることが好ましく、650〜750℃であることがより好ましい。さらに、焼成時間は3〜20時間であることが好ましく、4〜6時間であることがより好ましい。本焼成の条件としては、特に限定されるものではないが、昇温速度は室温から1〜20℃/分であることが好ましい。また、雰囲気は、空気中ないし酸素雰囲気下であることが好ましい。また、焼成温度は、700〜1000℃であることが好ましく、850〜1100℃であることがより好ましい。さらに、焼成時間は3〜20時間であることが好ましく、8〜12時間であることがより好ましい。

[0040] 必要に応じて、活物質材料を構成する層状のリチウム金属複合酸化物の一部を置換する金属元素を微量添加する場合、該方法としては、あらかじめ二
ニッケル、コバルト、マンガ酸塩と混合する方法、ニッケル、コバルト、マンガ酸塩と同時に添加する方法、応途中で反応溶液に添加する方法、Li化合物とともにニッケル—コバルト—マンガ複合酸化物に添加する方法などいずれの手段を用いても構わない。

0041 本発明の複合酸化物は、反応溶液のpH、反応温度、反応濃度、添加速度、摂拌出力、摂拌速度などの反応条件を適宜調整することにより製造することができる。

0042 本発明の第二実施形態は、第一実施形態の正極活性物質を含むコア部と、前記正極活性物質と異なるリチウム金属系複合酸化物を含むシェル部と、を有するコアーシェル型正極材料である。

0043 図1Aは、コアーシェル型正極材料の実施形態であって、粒子内が異なる活性物質材料によりコアーシェル型構造となっている様子を表した活物質粒子の断面模式図である。図1Aおよび図1Bにおいて、1は正極材料のシェル部、2は正極材料のコア部、3は正極材料を示す。このようなコアーシェル構造によって、非水電解質二次電池のサイクル特性が向上する。本発明者らの研究において、サイクル性能試験後のNMC複合酸化物の粒子を分析したところ、粒子表面部のみNi価数の低下が確認された。このことから、本発明者らは、粒子表面部においてはNiが不活性化して実質的に充放電に寄与できなくなっている可能性があるとの仮説を設定した。そのうえで、このような簡易局所部にNi濃度の低いNMC複合酸化物やNi以外の材料を配置することがサイクル特性の一層の向上に繋がると考え、これを実証したものである。

0044 コア部は、1層（単層）であってもよいし、2層以上で構成していてもよい。コア部を2層以上で構成する実験には、(1)コア部の表面から中心部に向けて、同心円状に複数層層された構造、(2)コア部の表面から中心部に向けて連続的に含有量が変化するような構造も含まれる。これらの場合には、例えば、各層ごとに材料を変えたり、2種以上の活性物質材料の混合比率を変えるなどして、コア部の表面から中心部に向けて容量や出力等の性能が
増加ないし減少するように変化（機能傾斜）させることができる。さらに、本発明では、2種以上の材料を用いた造粒技術により製造可能なものが含まれる。例えば、(3)マトリックス材料内に島状に別の材料が点在して配置されてなるような海島構造であってもよい。また(4)コア粒子の半球部分ごとに異なる材料が配置されたような構造であってもよい。さらに(5)異なる材料からなる微粒子群を寄せ集めて固めて造粒したような2次粒子（凝集）構造であってもよい。さらに、上記(1)〜(5)を適当に組み合わせた構造などが挙げられる。製造容易性、材料点数及び製造工数の削減（材料及び製造コストの低減）などの観点からは、1層（単層）で構成するのが望ましい。

[0045]コア部の形状としては、特に制限されるものではなく、例えば、球状、立方体形状、直方体、楕円球状、針状、板状、角状、柱状、不定形状などが挙げられる。好ましくは球状および楕円球状である。

[0046]シエル部は、コア部の外側（外層）に形成されてなるものであればよく、1層（単層）であっても良いし、2層以上で構成していてもよい。

[0047]また、シエル部はコア部全体を被覆する形態に限られず、一部被覆する形態であってもよい（すなわち、シエル部の複合酸化物がコア部の複合酸化物表面に点在するように配置され、コア部表面の一部が露出したままの状態であってもよい）。

[0048]また、シエル部は、コア部の表面全体を被覆するように局状に配置されていてもよいし（図1A参照）、あるいはコア部の表面全体を多数の微粒子（粉末）を用いて覆う（塗着する）ように配置されていてもよい（図1B参照）。

[0049]シエル部を2層以上で構成する態様には、上記コア部で記載した(1)〜(5)の構造が挙げられる。

[0050]シエル部に含有されるリチウム複合酸化物としては、第一実施形態の正極活物質と異なるリチウム金属複合酸化物であれば特に限定されず、具体的には、例えば、LiMn$_2$O$_4$等のスピネル構造のマンガン酸リチウム、LiM
ニオブおよびリチウムマンガン酸、第一実施形態の正極活物質とは異なる組成のリチウムニッケルマンガン＝コバルト複合酸化物、
リチウムネッケルリチウム、リチウムニッケルリチウム、リチウムニッケルマンガン＝コバルト複合酸化物、リチウム＝ニッケル＝マンガン＝コバルト複合酸化物、リチウム＝ニッケル＝マンガン＝コバルト複合酸化物（好適には、一般式（2）：Li_a

N i_b' C o_c' M n_d' M x' O_2（但し、式中、a'、b'、c'、d'、x'は、0.9 ≤ a' ≤ 1.2、0 < b' < 1、0 < c' ≤ 0.5、0 < d' ≤ 0.5、0 ≤ x' ≤ 0.3、b + c + d = 1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Srから選ばれる元素で少なくとも1種類を含む）で表される。）であることがより好ましい。

さらに、セラミック部に含まれる正極活物質が、一般式（1）において、b、cおよびdが、0.44 ≤ b ≤ 0.51、0.27 ≤ c ≤ 0.31、0.19 ≤ d ≤ 0.26である複合酸化物であり、セラミック部に含まれる複合酸化物が第一実施形態の正極活物質とは異なる組成のリチウム＝ニッケル＝マンガン＝コバルト複合酸化物であることが好ましい。

さらに、セラミック部に含まれる複合酸化物としては、一般式（2）において、0.3 ≤ b' ≤ 0.45であることが好ましい。このような組成のリチウム＝ニッケル＝マンガン＝コバルト複合酸化物は、容量の低下が最小限でありながら、サイクル特性が向上し、さらに熱的安定性に優れる（発熱開始温度が高い）ため好ましい。

これらセラミック部に含まれる複合酸化物は、1種单独で用いてもよいし、2種以上を混合して用いてもよい。セラミック部を2層以上で構成する場合には、各層ごとに活物質材料を1種单独で用いてもよいし、2種以上を混合して用いてもよい。
このようなコア−シェル型構造をとる正極材料にあっては、コア部100重量%に対してシェル部が5〜20重量%であることが好ましく、1〜15重量%であることがより好ましい。

また、コア−シェル型正極材料は、(1) 真密度が4.40〜4.80 g/cm³である、または(2) 比表面積が0.30〜1.0 m²/gである、少なくとも一方を満たすことが好ましく、(1) および(2) の双方を満たすことが好ましい。

コア−シェル型正極物質は、特開2007−213866号に記載の方法により製造することができる。

本発明の第三実施形態は、第一実施形態の正極活物質と、スピネル系マンガン正極活物質とを含む正極材料である。本発明者らは、NMC複合酸化物が低温での高出力放電時の電圧低下が大きく、例えば寒冷地においては車両の出力不足が生じるといった課題があることを見出した。そして、スピネル系マンガン正極活物質と混合することによって、低温での高出力放電時の電圧低下が少なく、例えば、寒冷地においても車両の出力不足が少なくなることを見出したものである。

第一実施形態の正極活物質と、スピネル系マンガン正極活物質との混合比率は、サイクル特性の観点から、第一実施形態の正極活物質：スピネル系マンガン正極活物質=50:50〜90:10であることが好ましく、容量、寿命、熱安定性的バランスから、70:30〜90:10であることがより好ましい。

第三実施形態の正極材料は、(1) 真密度が4.40〜4.80 g/cm³である、または(2) 比表面積が0.30〜1.0 m²/gである、少なくとも一方を満たすことが好ましく、(1) および(2) の双方を満たすことが好ましい。

本発明の他の方形によって、正極集電体の表面に、第一実施形態の正極活物質、第二実施形態の正極材料、および第三実施形態の正極材料からなる群から選択される少なくとも1種を含む正極活物質層が形成されてなる正極が
提供される。

なお、正極において活物質の役割を果たす他正極活物質を含んでいても
よいことはもちろんある。正極活物質 100 重量%に対して、第一実施形
態の正極活物質、第二実施形態の正極材料、および第三実施形態の正極材料
からなる群から選択される少なくとも一種が 80～100 重量%であることが
好ましく、95～100 重量%であることがより好ましく、100 重量%
であることがさらに好ましい。

正極活物質層は活物質の他、必要に応じて、導電助剤、バインダー、電解
質（ポリマーマトリックス、イオン伝導性ポリマー、電解液など）、イオン
伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。

正極活物質層中、正極活物質の含有量は、85～99.5 重量%であるこ
とが好ましい。

（バインダー）

正極活物質層に用いられるバインダーとしては、特に限定されないが、例
えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチ
レンテレフタレート（P E T）、ポリエチルテレフタレート、ポリプロピレン
、ポリアミド、ポリアジエン、セラロース、カルボキシメチルセルロース
（C M C）およびその塩、エチレン＝酢酸ビニル共重合体、ポリ塩化ビニール
、ステレン・プタジエンゴム（S B R）、イソブレンゴム、プタジエンゴム
、エチレン・プロピレンゴム、エチレン・プロピレン・ジェン共重合体、ステ
レン・プタジエン・ステレンブロック共重合体およびその水素添加物、ステ
レン・イソブレン・ステレンブロック共重合体およびその水素添加物など
の熱可塑性高分子、ポリフッ化ビニリデン（P V d F）、ポリテトラフルオ
ロエチレン（P T F E）、テトラフルオロエチレン・ヘキサフルオロプロピ
レン共重合体（F E P）、テトラフルオロエチレン・パーフォロアルキル
ビニルエーテル共重合体（P F A）、エチレン・テトラフルオロエチレン共
重合体（E T F E）、ポリクロロトリフルオロエチレン（P C T F E）、エ
チレン・クロロトリフルオロエチレン共重合体（E C T F E）、ポリフッ化
ビニル（PVF）等のフッ素樹脂、ビニリデンオライド=ヘキサフルオロプロピレン系フッ素ゴム（VDF=HFP系フッ素ゴム）、ビニリデンオライド=ヘキサフルオロプロピレン－テトラフルオロエチレン系フッ素ゴム（VDF=HFP=TFE系フッ素ゴム）、ビニリデンオライド－ヘキサフルオロプロピレン系フッ素ゴム（VDF=HFP=TFE系フッ素ゴム）、ビニリデンオライド－ヘキサフルオロプロピレン系フッ素ゴム（VDF=HFP=TFE系フッ素ゴム）、ビニリデンオライド－ヘキサフルオロプロピレン系フッ素ゴム（VDF=HFP=TFE系フッ素ゴム）等のフッ素ゴムが挙げられる。イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド（PEO）等のポリマーや、ポリスルホン酸ナトリウム（NaSO₃）、ポリスルホン酸カリウム（K₂SO₄）、ポリスルホン酸アンチモン（Sb₂O₃）、ポリスルホン酸カドミウム（CdSO₄）、ポリスルホン酸亜鉛（ZnSO₄）、ポリスルホン酸鉄（Fe₂O₃）等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。
正極活性層および後述の負極活性層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活性層の厚さについても特に制限はなく、電池についての従来公知の知見を適宜参照されうる。一例を挙げると、各活性層の厚さは、2〜100μm程度である。

本発明のさらに他の形態によれば、上述した正極と、負極集電体の表面に負極活性層が形成されてなる負極と、セパレータと、を含む発電要素を有する非水電解質二次電池が提供される。

以下、非水電解質二次電池の好ましい実施形態として、非水電解質リチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。

図2は、扁平型（積層型）の双極型ではない非水電解質リチウムイオン二次電池（以下、単に「積層型電池」ともいう）の基本構成を模式的に表した断面概略図である。図2に示すように、本実施形態の積層型電池10は、実際には充放電反応が進行する略矩形の発電要素21が、外装体である電池外装材29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構造を有している。なお、セパレータ17は、非水電解質（例えば、液体電解質）を内蔵している。正極は、正極集電体12の両面に正極活性層15が配置された構造を有する。負極は、負極集電体11の両面に負極活性層13が配置された構造を有する。具体的には、1つの正極活性層15とこれに隣接する負極活性層13ともが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図2に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてな
る構成を有するともいえる。
なお、発電要素21の両最外層に位置する最外層負極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図2とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面または両面に正極活物質層が配置されているようにしてもよい。
正極集電体12および負極集電体11は、各電極（正極および負極）と導通される正極集電板（タブ）27および負極集電板（タブ）25がそれぞれ取り付けられ、電池外装材29の端部に挟まれるようにして電池外装材29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード（図示せず）を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接等により取り付けられていてもよい。
なお、図2では、扁平型（積層型）の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。
以下、各部材について、さらに詳細に説明する。
[負極活物質層]
負極活物質層は活物質を含み、必要に応じて、導電助剤、バインダー、電解質（ポリマーマトリックス、イオン伝導性ポリマー、電解液など）、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。導電助剤、バインダー、電解質（ポリマーマトリックス、イオン伝導性ポリマー、電解液など）、イオン伝導性を高めるためのリチウム塩などのその他の
添加剂については、上記正極活物質層の欄で述べたものと同様である。

[0079] 負極活物質層においては、少なくとも水系バインダーを含むことが好ましい。水系バインダーは、結着力が高い。また、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。

[0080] 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。

[0081] 水系バインダーとしては、具体的にはスチレン系高分子（スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等）、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、（メタ）アクリル系高分子（ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート（メタクリル酸メチルゴム）、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリウレタンアクリレート、ポリエチルヘキシルメタクリレート、ポリエチルヘキシルメタクリレート、ポリラウリンアクリレート、ポリラウリンメタクリレート等）、ポリテトラフルオロエチレン、ポリフェチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリオキシプロピロヒドリン、ポリテフロンアセトン、ポリエチレントリル、ポリスチレン、エチレン-プロピレンジェン共重合体、ポリビニルブリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール（平均重合度は、好
適には 200 〜 4000、より好適には、1000 〜 3000、ケン化度は好適には 80 モル%以上、より好適には 90 モル%以上）およびその変性体（エチレン/酢酸ビニル = 2/98 〜 30/70 モル比の共重合体の酢酸ビニル単位のうちの 1/80 モル%ケン化物、ポリビニルアルコールの 1/50 モル%部分アセタール化物等）、テンプンおよびその変性体（酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等）、セルロース誘導体（カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等）、ポリアクリル酸（塩）、ポリエチレングリコール、（メタ） アクリルアミドおよび／または（メタ）アクリル酸塩の共重合体 [（メタ） アクリルアミド重合体、（メタ）アクリルアミドー（メタ）アクリル酸塩共重合体、（メタ）アクリル酸アルキル（炭素数 1 〜 4）エステルー（メタ）アクリル酸塩共重合体など]、スチレン―メレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂（尿素―ホルマリン樹脂、メラミン―ホルマリン樹脂等）、ポリアミドポリアミンもしくはジアルキルアミン―エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクトース誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは 1 種単独で用いてもよいし、2 種以上併用して用いてもよい。

[0082] 上記水系バインダーは、結着性の観点から、スチレン―バチジェンゴム、アクリロニトリル―バチジェンゴム、メタクリル酸メチル―バチジェンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも 1 つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン―バチジェンゴムを含むことが好ましい。

[0083] 水系バインダーとしてスチレン―バチジェンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン―バチジェンゴムと併用することが好適な水溶性高分子としては、ポリビニルア
ルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体（カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、およびこれらの塩等）、ポリビニリチル、ポリアクリル酸（塩）、またはポリエチレンリコールが挙げられる。中でも、バインダーとして、ステレンーブタジエンゴムと、カルボキシメチルセルロース（塩）を組み合わせることが好ましい。ステレンーブタジエンゴムと、水溶性高分子との含有重量比は、特に制限されるものではないが、ステレンーブタジエンゴム：水溶性高分子=1：0.1〜1.0であることが好ましく、0.5〜2であることがより好ましい。

[0084] 負極活動物質層に用いられるバインダーのうち、水系バインダーの含有量は80〜100重量%であることが好ましく、90〜100重量%であることが好ましく、100重量%であることが好ましい。

[0085] 負極活動物質としては、例えば、グラファイト（黒鉛）、ソフトカーボン、ハードカーボン等の炭素材料、リチウム—遷移金属複合酸化物（例えば、Li_{4}Ti_{5}O_{12}）、金属材料、リチウム合金系負極材料などが挙げられる。場合によっては、2種以上の負極活動物質が併用されてもよい。好ましくは、容重、出力特性の観点から、炭素材料またはリチウム－遷移金属複合酸化物が、負極活動物質として用いられる。なお、上記以外の負極活動物質が用いられてもよいことは勿論である。

[0086] 負極活動物質の平均粒子径は特に制限されないが、高出力化的観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。

[0087] [セパレータ（電解質層）]

セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。

[0088] セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。

[0089] ポリマーなしご繊維からなる多孔性シートのセパレータとしては、例えば
、微多孔質（微多孔膜）を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン（P E）、ポリプロピレン（P P）などのポリオレフィン；これを複数積層した積層体（例えば、P P／P E／P Pの3層構造をした積層体など）、ポリイミド、アラミド、ポリッフ化ビニリデン－ヘキサフルオロプロピレン（P V d F－H FP）等の炭化水素系樹脂、ガラス繊維などからなる微多孔質（微多孔膜）セパレータが挙げられる。

[0090] 微多孔質（微多孔膜）セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車（E V）やハイブリッド電気自動車（H E V）、燃料電池自動車（F C V）などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4～66μmであることが望ましい。前記微多孔質（微多孔膜）セパレータの微細孔径は、最大で1μm以下（通常、数μm程度の孔径である）であることが望ましい。

[0091] 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル；PP、PEなどのポリオレフィン；ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5～200μmであり、特に好ましくは10～100μmである。

[0092] また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。ゲルポリマー電解質を用いることにより、電極間距離の安定化が図られ、分極の発生が抑制され、耐久性（サイクル特性）が向上する。

[0093] 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解液層を構成する液体電解質は、可塑剤である有機溶媒に支持塩であるリチウ
ラム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート（EC）、プロピレンカーボネート（PC）、ジメチルカーボネート（DMC）、ジェチルカーボネート（DEC）、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li（CF₃SO₂）₂N、Li（C₂F₅SO₂）₂N、LiPF₆、LiBF₄、LiClO₄、LiAsF₆、LiTaF₆、LiCF₃SO₂等の電極の活物質層に添加される化合物が同様に採用されることもある。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。このような化合物の具体例としては、例えば、ピニレンカーボネート、メチルピニレンカーボネート、ジメチルピニレンカーボネート、フエニルピニレンカーボネート、ジフェニルピニレンカーボネート、ジェチルピニレンカーボネート、ピニルエチレンカーボネート、ジピニルエチレンカーボネート、メチルピニレンカーボネート、ピニルエチレンカーボネート、ピニルメチルピニレンカーボネート、アリルオキシメチルエチレンカーボネート、アリルオキシメチルアリルエチレンカーボネート、メタクリロキシメチルエチレンカーボネート、エチルアルコリルエチレンカーボネート、プロパルギルエチレンカーボネート、ピニルエチレンカーボネート、ピニルエチレンカーボネートなどが挙げられる。なかでも、ピニレンカーボネート、メチルピニレンカーボネート、ピニルエチレンカーボネートが好ましく、ピニレンカーボネート、ピニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
る。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。
マトリックスポリマー（ホストポリマー）として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド（PEO）、ポリプロピレンオキシド（PPO）、ポリエチレングリコール（PEG）、ポリアクリロニトリル（PAN）、ポリフッ化ビニリデンヘキサフルオロプロピレン（PVdF-HEP）、ポリ（メチルメタクリレート（PMMA）およびこれらの共重合体等が挙げられる。

[0095] ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー（例えば、PEOやPPO）に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。

[0096] また、セパレータとしては多孔質基体に耐熱絶縁層が積層されたセパレータ（耐熱絶縁層付セパレータ）であることが好ましい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層付セパレータは、融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを使い、耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られると。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破壊が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。

[0097] 耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物（SiO₂、Al₂O₃、ZrO₂、TiO₂）、水酸化物、および窒化物、ならびにこれらの複合
体が挙げられる。これらの無機粒子は、ベーマイ、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ（SiO₂）またはアルミナ（Al₂O₃）を用いることが好ましく、アルミナ（Al₂O₃）を用いることがより好ましい。

耐熱性粒子の目付けは、特に限定されることではないが、5 〜 15 g/m²であることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。

耐熱絶縁層におけるバインダーは、無機粒子と樹脂、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダーによって、耐熱絶縁層が安定に形成され、また多孔質基体層および耐熱絶縁層の間の剥離を防止する。

耐熱絶縁層に使用されるバインダーは、特に制限はなく、例えば、カルボキシメチルセルロース（CMC）、ポリアクリロニトリル、セルロース、エチレン—酢酸ビニル共重合体、ポリ塩化ビニル、スチレン—ブタジエンゴム（SBR）、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン（PVDF）、ポリテトラフルオロエチレン（PTFE）、ポリフッ化ビニル（PVF）、アクリル酸メチルなどの化合物がバインダーとして用いられる。このうち、カルボキシメチルセルロース（CMC）、アクリル酸メチル、またはポリフッ化ビニリデン（PVDF）を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。

耐熱絶縁層におけるバインダーの含有量は、耐熱絶縁層100重量%に対して、2〜20重量%であることが好ましい。バインダーの含有量が2重量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダー
—の含有量が20重量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。

耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm²条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材料を用いることで、正極発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。

集電体
集電体を構成する材料に特に制限はないが、好適には金属が用いられる。

具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。

集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度を要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1〜100μm程度である。

正極集電板および負極集電板
集電板（25、27）を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼（SUS）、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極
集電板 27 とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。

[0107] [正極 リードおよび負極 リード]
また、図示は省略するが、集電体 11 と集電板（25、27）との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用される。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品（例えば、自動車部品、特に電子機器等）に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。

[0108] [電池外装体]
電池外装体29としては、公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への力の圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミネートラミネートがより好ましい。

[0109] [セルサイズ]
図3は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を示した斜視図である。

[0110] 図3に示すように、扁平なリチウムイオン二次電池50では、長方形形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、リチウムイオン二次電池50の電池外装材52によって包まれ、その周囲は熱融着されてお
り、発電要素 5 7 は、正極タブ 5 8 および負極タブ 5 9 を外部に引き出した状態で密封されている。ここで、発電要素 5 7 は、先に説明した図 2 に示すリチウムイオン二次電池 1 0 の発電要素 2 1 に相当するものである。発電要素 5 7 は、正極（正極活性物質層） 1 5 、電解質層 1 7 および負極（負極活性物質層） 1 3 で構成される単電池層（単セル） 1 9 が複数積層されたものである。

なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを变形させて、長方形状の扁平な形状にしたものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装材に、ラミネートフィルムを用いてもよいし、従来の円筒缶（金属缶）を用いてもよいなど、特に制限されるものではない。好ましいのは、発電要素がアルミニウムラミネートフィルムで外装される。当該形状により、軽量化が達成される。

また、図 3 に示すタブ 5 8 、 5 9 の取り出しに関しても、特に制限されるものではない。正極タブ 5 8 と負極タブ 5 9 とを同じ辺から引き出すようにしてもよいし、正極タブ 5 8 と負極タブ 5 9 をそれぞれ複数に分けて、各辺から取り出そうにしてもよいなど、図 3 に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶（金属缶）を利用して端子を形成すればよい。

自動車用途などにおいては、昨今、大型化された電池が求められている。そして、充放電サイクルに伴う膨張収縮に伴う構造のゆがみを抑制することでサイクル特性を向上させるという本発明の効果は、大面積電池の場合により効果的にその効果が発揮される。したがって、本発明において、発電要素を外装体で覆った電池構造体が大型であることが本発明の効果がより発揮されるという意味で好ましい。具体的には、負極活性物質層が長方形形状であり、当該長方形の短辺の長さが 1 0 0 m m 以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、負極活性物質層のか
短辺の長さとは、各電極の中で最も長さが短い辺を指す。電池構造体の短辺の長さの上限は特に限定されるものではないが、通常250mm以下である。

[01 14] また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積（電池外装体まで含めた電池の投影面積）の比の値が5cm²/A h以上であり、かつ、定格容量が3A h以上である電池においては、単位容量当たりの電池面積が大きいため、充電サイクルに伴う膨張収縮による活物質粒子のゆがみに起因する電池特性（サイクル特性）の低下の問題がよりいつそう顕在化しやすい。したがって、本形態に係る非水電解液二次電池は、上述したような大型化された電池であることが、本発明的作用効果の発現によるメリットがより大きいという点で、好ましい。

[01 15] さらに、体積エネルギー密度や単セル定格容量などによって電池の大型化を規定することもできる。例えば、一般的な電気自動車では、一回の充電による走行距離（航続距離）は100kmが市場要求である。かような航続距離を考慮すると、単セル定格容量は20Wh以上であることが好ましく、かつ、電池の体積エネルギー密度は153Wh/L以上であることが好ましい。なお、体積エネルギー密度および定格放電容量は下記実施例に記載の方法で測定される。さらに、矩形状の電極のアスペクト比は1〜3であることが好ましく、1〜2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、充電時に発生したガスが面方向に均一に排出されることが可能となるため、好ましい。

[01 16] [組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可
電池が複数、直列に又は並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両（電気自動車）の電池容量や出力に応じて決まればよい。

[0118] [車両]
本発明の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。

[0119] 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いブラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリッド車、燃料電池車、電気自動車（いずれも四輪車（乗用車、トラック、バスなどの商用車、軽自動車など）のほか、二輪車（バイク）や三輪車を含む）に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの戴用電源として利用することも可能である。
実施例

[01 20] 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。

[01 21] [実施例 1]

(1) 正極活物質の作製

硫酸ニッケル、硫酸コバルトおよび硫酸マンガンを溶解した溶液 (1.0 m o l / L ) にp H 1 1 . 0 と なるように水酸化ナトリウムおよびアンモニアを連続的に供給し、共沈法によりニッケルとコバルトおよびマンガンのモル比が50:20:30で固溶してなる金属複合水酸化物を作製した。

[01 22] この金属複合酸化物と炭酸リチウムを、L i 以外の金属 (N i 、C o 、M n ) の合計のモル数とL i のモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5°C／m i n で昇温し、空気雰囲気で900°C、2時間仮焼成した後、昇温速度3°C／m i n で昇温し、920°Cで10時間本焼成し、室温まで冷却してN M C 複合酸化物を得た。N M C 複合酸化物の平均1次粒子径は0.5 μ m であり、平均2次粒子径は10.0 μ m であった。

[01 23] なお、正極活物質の真密度、および比表面積は、下記の方法により測定した。

[01 24] 真密度:

測定方法 液相置換法 (ビクノメーター法)
測定装置 株式会社セイシン企業製、オートトウルーデンサー MAT—7000

(置換媒体にエタノールを用いて測定温度25±5°Cで測定した値)

比表面積:

ユアサオニックス株式会社製カントソープQ S —10を用い、予備乾燥のために350°Cに加熱し、15分間窒素ガスを流した後、窒素ガス吸着によるB E T 1点法によって測定した。

[01 25] N i 、M n 、C o 組成、真密度、比表面積の値を表1に示す。

[01 26] (2) 正極の作成
（1）で得られた正極活物質を90重量%、導電助剤としてケチエンプラック（平均粒子径：300nm）5重量%、バインダーとしてポリフッ化ビニリデン（PVDVF）5重量%，およびスラリー粘度調整溶媒であるNメチル_2_ビロリドン（NMP）を適量混合して、正極活物質スラリーを作製し、得られた正極活物質スラリーを集電体であるアルミニウム箔（厚さ：20μm）に塗布し乾燥させた。その後、プレス処理を行い正極活物質層を片面に有する正極を作製した。

[0127]（3）電解液の調合

1. 0M LiPF_6をエチレンカーボネート（EC）とジメチルカーボネート（DMC）との混合溶媒（体積比1：1）に溶解した溶液を作成した。これにビニレンカーボネートを電解液重量に対して2重量%に相当する量を添加し電解液とした。なお、「1.0MのLiPF_6」とは、当該混合溶媒およびリチウム塩の混合物におけるリチウム塩（LiPF_6）濃度が1.0Mであるという意味である。

[0128]（4）負極の作成

負極活物質として表面をアモルファス炭素で被覆した天然黒鉛用えた炭素負極活物質を調合し、負極活物質96.5重量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.5重量%およびステレン－プタジエン共重合体ラテックス2.0重量%を精製水中に分散させてスラリーを調製した。

[0129]このスラリーを負極集電体となる箔箔（厚さ10μm）に塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。

[0130]（5）ラミネートセルの作製

集電用素材を備えた正極板および負極板をそれぞれセパレーター（ポリプロピレン微多孔膜、厚さ25μm）を介して交互に積層（正極20層、負極21層）するることで電極素材を作成した。これをラミネートフィルムに格納した後、所定量の電解液を注入することで長さ280mm、幅210mm、厚み7mmのラミネート電池を作製した。
実施例2〜8、比較例1〜4

実施例1に記載の共沈法において調製条件を適宜変更して製造された、表1に記載のNi、MnおよびCo組成比、真密度および比表面積を有する正極活物質を用いたこと以外は、実施例1と同様にしてラミネート電池を作製した。

評価方法

（1）定格放電容量（Wh）および体積エネルギー密度（Wh/L）

各実施例および比較例で作製した電池を24時間放置し、開回路電圧（CV：Open Circuit Voltage）が安定した後、正極に対する電流密度を0.2mA/cm²としてカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を定格放電容量（Wh）とした。また、これを元に体積当たりのエネルギー密度（体積エネルギー密度）を算出した。

（2）初回充放電効率（%）

アルゴン雰囲気下のグローブボックス内で、各実施例および比較例で作製した正極を直径14mmの円盤形状に打ち抜き、コインセル用の正極とした。負極として、金属リチウムを直径15mmの円盤形状に打ち抜いたものを用いた。また、電解液として、1OMLiPF₆をエチレンカーボネート（EC）とジメチルカーボネート（DMC）との混合溶媒（体積比1：1）に溶解した溶液を準備した。正極と負極をセパレータ（材質：ポリプロピレン、厚さ：25μm）を介して積層し、コインセル容器内に入れ、電解液を注入し、上蓋をすることにより評価用コインセルを作製した。作製した電池は24時間放置し、開回路電圧（CV：Open Circuit Voltage）が安定した後、正極に対する電流密度を0.2mA/cm²としてカットオフ電圧4.25Vまで充電して初期充電容量とした。また、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を測定した。初期充電容量に対する放電容量比を初回充放電効率（%）とした。

（3）サイクル容量維持率（%）
正極に対する電流密度を2 mA / cm²として、各実施例および比較例で作製した電池をカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この充放電サイクルを1000回繰返した。初期放電容量に対する1000サイクル目の放電容量を容量維持率とし、サイクル耐久性として評価した。結果を表1にまとめる。

[実施例9]

(1) 正極材料の作製

硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液（1.0 mol/L）にpH 11.0となるように水酸化ナトリウムおよびアンモニアを供給し、共沈法によりニッケル、コバルト、およびマンガンのモル比が1/3:1/3:1/3で固溶してなる金属複合水酸化物を作成した。この金属複合酸化物と炭酸リチウムを、Li以外の金属（Ni、Co、Mn）の合計のモル数とLiのモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5℃/minで昇温し、空気雰囲気で920℃で10時間焼成し、室温まで冷却し、シェル材料となるLiNi1/3Mn1/3Co1/3を得た。

次に、実施例1で作製したLiNi0.50Mn0.30Co0.20100重量%に対して、重量百分率が5重量%となるようにLiNi1/3Mn1/3Co1/3を混合し、粉碎機を用いて30分機械的処理を行った後、再度空気雰囲気下、930℃で10時間焼成し、核（コア）となるLiNi5Mn0.3Co0.2の二次粒子表面にLiNi1/3Mn1/3Co1/3が5重量%被覆した正極材料を得た。

上記正極材料を実施例1の正極活性物質に代えて用いたこと以外は、実施例1と同様にしてラミネート電池を作製した。

[実施例10〜13]

実施例9と同様の方法にて表2に記載の組成のシェル材料を用い、表2に記載のシェル被覆量の正極材料を用いたこと以外は実施例9と同様にしてラ
ミネーテ電池を作製した。

[0139] [評価方法]
(5) 発熱開始温度
4. 25 V 充電状態における示差熱分析 (DSC) を行い、発熱開始温度を求めた。

[0140] 結果を表 2 に示す。

[0141] [実施例 14]
電解二酸化マンガン、水酸化アルミニウムを混合し、750 ℃で熱処理し、三酸化マンガンとした後、Li/ (Mn + Al) モル比が 0.55 となるように炭酸リチウムを加え混合し、850 ℃で 20 時間焼成してスピネルマンガン酸リチウムを得た。

[0142] 実施例 3 で作製した LiNiO.50MnO.33CoO.20 および上記で作製したスピネルマンガン酸リチウムの混合物（混合重量比 LiNiO.50MnO.33CoO.20：スピネルマンガン酸リチウム = 1：1）の正極材料（正極材料中のスピネルマンガン酸リチウム含有重量比 = 0.5）を、実施例 3 の正極活物質の代わりに用いたこと以外は実施例 3 と同様にしてラミネート電池を作製した。

[0143] [実施例 15 ～ 19]
正極材料中のスピネルマンガン酸リチウムの含有重量比が表 3 のようになるように、LiNiO.50MnO.33CoO.20 およびスピネルマンガン酸リチウムの混合物の正極材料を用いたこと以外は実施例 14 と同様にしてラミネート電池を作製した。

[0144] [評価方法]
(6) 低温負荷特性
評価方法 (1) 初回充放電効率 (%) 棟に記載の方法と同様にしてコインセルを作製し、各コインセルについて—20 ℃の温度条件の下、上限電圧4.25 V の定電圧定電流 0.4 mA / cm² で充電した後、放電終止電圧 3.0 V までの定電流放電を行った。その後、同じコインセルについて今度は電
流4. 0 mA/cm²の条件で定電流充電を行い、放電終止電圧3.0Vまでの定電流放電を行った。そして、電流0.4 mA/cm²の条件で充放電を行ったときの容量に対する電流4.0 mA/cm²の条件で充放電を行った時の容量の割合を算出して低温特性を評価した。

[0145] 結果を表3に示す。

[0146] [実施例20～36]
実施例3のラミネート電池のセルサイズを表4に記載の寸法に変更したこと以外は、実施例3と同様にしてラミネート電池を作製した。

[0147] 結果を表4に示す。

[0148] [実施例37]
実施例1と同様に金属複合酸化物を作成した後、炭酸リチウムとZrO₂を
\[ a = 1.0, b + c + d = 0.009, x = 0.001 (LiₐNbₕCo₃Mn₉M₀₂) \]
になるように混合し、昇温速度5℃/minで昇温し、空気雰囲気で900℃、2時間仮焼成した後、昇温速度3℃/minで昇温し、920℃で10時間本焼成し、室温まで冷却した。

[0149] Zrの添加量の確認はICPで行った。

[0150] 上記のように複合酸化物を作製したこと以外は、実施例1と同様にしてラミネート電池を作製した。

[0151] [実施例38～44]
実施例37において添加元素および添加率が表5に記載となるように実施例37と同様にして複合酸化物を作製したこと以外は、実施例37と同様にしてラミネート電池を作製した。

[0152] 結果を表5に示す。

[0153] [実施例45]
実施例3のラミネートセルの作製において、下記のようにゲル電解質を用いたこと以外は実施例3と同様にラミネート電池を作製した。

[0154] 集電用素子を備えた正極板および負極板を、あらかじめゲルを形成するマトリックスポリマー（ポリフッ化ビニリデン－ヘキサフルオロプロピレン共
重合体）を塗布した耐熱セパレータを介して積層することで電極素子を作成した。これをラミネートフィルムに格納した後、所定量の電解液を注入し、さらに加熱処理することで長さ 280 mm 幅 210 mm 厚み 7 mm のラミネート電池を作成した。

[01 55] 結果を表 6 に示す。
[01 56] [実施例 4 6]

耐熱セパレータの作製

無機粒子であるアルミナ粒子（BET 比表面積：5 m²/g、平均粒径 2 μm）95 重量% およびバインダーであるカルボキシメチルセルロース（バインダー重量あたりの含有水分量：9.12 重量%）5 重量部を水に均一に分散させた水溶液を作製した。該水溶液をグラビアコーティングを用いてポリエチレン（PP）微多孔膜（膜厚：20 μm、空隙率：55%）の両面に塗工した。次いで、60℃にて乾燥して水を除去し、多孔膜の両面に 3.5 μm ずつ耐熱絶縁層が形成された、総膜厚 25 μm の多層多孔膜である耐熱絶縁層付セパレータを作製した。この時の耐熱絶縁層の目付は 15 g/m² である。

[01 57] 上記セパレータを使用したこと以外は実施例 3 と同様にしてラミネート電池を作製した。

[01 58] [評価方法]

（7）信頼性試験

ラミネート電池を 150℃ の高温層中で放置し、電池の機能が失われるまでの時間を測定し、高温時における信頼性試験を実施した。

[01 59] 結果を表 7 に示す。

[01 60]
<table>
<thead>
<tr>
<th>実施例</th>
<th>Li_{(Ni+Mn+Co)}</th>
<th>Ni</th>
<th>Mn</th>
<th>Co</th>
<th>密度 (g/cm³)</th>
<th>比表面積 (m²/g)</th>
<th>体積エネルギー密度 (Wh/L)</th>
<th>定格放電容量 (Wh)</th>
<th>定格放電容量 (Ah)</th>
<th>定格容量に対する電池面積の比 (cm²/Ah)</th>
<th>初期充放電効率 (%)</th>
<th>1000サイクル後容量保持率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>365</td>
<td>148</td>
<td>41</td>
<td>15</td>
<td>89%</td>
<td>83%</td>
</tr>
<tr>
<td>実施例2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.5</td>
<td>0.45</td>
<td>365</td>
<td>148</td>
<td>41</td>
<td>15</td>
<td>89%</td>
<td>84%</td>
</tr>
<tr>
<td>実施例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.6</td>
<td>0.4</td>
<td>369</td>
<td>150</td>
<td>41</td>
<td>14</td>
<td>90%</td>
<td>87%</td>
</tr>
<tr>
<td>実施例4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.8</td>
<td>0.5</td>
<td>361</td>
<td>146</td>
<td>40</td>
<td>15</td>
<td>87%</td>
<td>90%</td>
</tr>
<tr>
<td>実施例5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4.67</td>
<td>0.43</td>
<td>365</td>
<td>148</td>
<td>41</td>
<td>15</td>
<td>89%</td>
<td>88%</td>
</tr>
<tr>
<td>実施例6</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4.63</td>
<td>0.53</td>
<td>361</td>
<td>146</td>
<td>40</td>
<td>15</td>
<td>88%</td>
<td>84%</td>
</tr>
<tr>
<td>実施例7</td>
<td>1</td>
<td>42</td>
<td>42</td>
<td>16</td>
<td>4.55</td>
<td>0.63</td>
<td>353</td>
<td>143</td>
<td>39</td>
<td>15</td>
<td>86%</td>
<td>90%</td>
</tr>
<tr>
<td>実施例8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>4.58</td>
<td>0.4</td>
<td>361</td>
<td>146</td>
<td>40</td>
<td>15</td>
<td>88%</td>
<td>78%</td>
</tr>
<tr>
<td>比較例1</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.3</td>
<td>0.2</td>
<td>337</td>
<td>137</td>
<td>38</td>
<td>16</td>
<td>85%</td>
<td>64%</td>
</tr>
<tr>
<td>比較例2</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.3</td>
<td>1.2</td>
<td>322</td>
<td>130</td>
<td>36</td>
<td>17</td>
<td>85%</td>
<td>64%</td>
</tr>
<tr>
<td>比較例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.83</td>
<td>0.2</td>
<td>307</td>
<td>125</td>
<td>34</td>
<td>17</td>
<td>85%</td>
<td>83%</td>
</tr>
<tr>
<td>比較例4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.83</td>
<td>1.2</td>
<td>293</td>
<td>119</td>
<td>33</td>
<td>18</td>
<td>85%</td>
<td>65%</td>
</tr>
</tbody>
</table>

* 実施例1〜4、比較例1〜4で用いた複合酸化物→LiNi_{0.5}Mn_{0.5}Co_{0.5}O_{2}
実施例5で用いた複合酸化物→LiNi_{0.4}V_{0.4}Co_{0.2}O_{2}
実施例6で用いた複合酸化物→LiNi_{0.6}Mn_{0.4}Co_{0.2}O_{2}
実施例7で用いた複合酸化物→LiNi_{0.4}Mn_{0.4}Co_{0.2}O_{2}
実施例8で用いた複合酸化物→LiNi_{0.3}Mn_{0.3}Co_{0.3}O_{2}
<table>
<thead>
<tr>
<th>材料番号</th>
<th>0.1</th>
<th>1.0</th>
<th>5.0</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>40</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li+</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mn+2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Co+3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ni+2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fe+3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

[表2]
<table>
<thead>
<tr>
<th>実施例</th>
<th>Li_2 (Ni+Mn+Co)</th>
<th>Ni</th>
<th>Mn</th>
<th>Co</th>
<th>真密度 (g/cm³)</th>
<th>比表面積 (cm⁴/g)</th>
<th>体積エネルギー密度 (Wh/cm³)</th>
<th>定格放電容量 (Wh)</th>
<th>定格放電容量に対する電池面積の比 (m²/Wh)</th>
<th>電流密度に対する電池容量 (Ah)</th>
<th>助力電流密度 (mA)</th>
<th>初回充電効率 (%)</th>
<th>1000サイクル後容量保持率 (%)</th>
<th>初期放電容量保持率 (%)</th>
<th>-20°C放電容量保持率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.65</td>
<td>0.4</td>
<td>369</td>
<td>159</td>
<td>41</td>
<td>14</td>
<td>90%</td>
<td>87%</td>
<td>257</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>実施例4</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.5</td>
<td>4.65</td>
<td>0.4</td>
<td>356</td>
<td>126</td>
<td>26</td>
<td>10</td>
<td>90%</td>
<td>60%</td>
<td>234</td>
<td>60%</td>
</tr>
<tr>
<td>実施例5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.4</td>
<td>4.67</td>
<td>0.49</td>
<td>340</td>
<td>128</td>
<td>27</td>
<td>18</td>
<td>93%</td>
<td>84%</td>
<td>235</td>
<td>67%</td>
</tr>
<tr>
<td>実施例6</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.3</td>
<td>4.68</td>
<td>0.53</td>
<td>342</td>
<td>129</td>
<td>27</td>
<td>15</td>
<td>92%</td>
<td>85%</td>
<td>239</td>
<td>69%</td>
</tr>
<tr>
<td>実施例7</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.2</td>
<td>4.55</td>
<td>0.63</td>
<td>347</td>
<td>141</td>
<td>28</td>
<td>15</td>
<td>91%</td>
<td>89%</td>
<td>241</td>
<td>65%</td>
</tr>
<tr>
<td>実施例8</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.1</td>
<td>4.58</td>
<td>0.4</td>
<td>351</td>
<td>142</td>
<td>29</td>
<td>15</td>
<td>92%</td>
<td>88%</td>
<td>244</td>
<td>64%</td>
</tr>
<tr>
<td>実施例9</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0.1</td>
<td>4.60</td>
<td>0.5</td>
<td>362</td>
<td>147</td>
<td>28</td>
<td>15</td>
<td>95%</td>
<td>79%</td>
<td>252</td>
<td>72%</td>
</tr>
<tr>
<td>実施例</td>
<td>Li</td>
<td>Ni</td>
<td>Mn</td>
<td>Co</td>
<td>密度 [g/cm³]</td>
<td>比表面積 [m²/g]</td>
<td>体積エネルギー密度 [Wh/L]</td>
<td>定格放電容量 [Ah]</td>
<td>定格放電容量に対する電池表面積の比 (cm²/Ah)</td>
<td>初期充電効率 [%]</td>
<td>1000サイクル後容量保持率 [%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>365</td>
<td>148</td>
<td>41</td>
<td>15</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例19</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>352</td>
<td>155</td>
<td>37</td>
<td>16</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例20</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>343</td>
<td>121</td>
<td>33</td>
<td>18</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例21</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>333</td>
<td>108</td>
<td>30</td>
<td>20</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例22</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>320</td>
<td>94</td>
<td>26</td>
<td>23</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例23</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>313</td>
<td>97</td>
<td>24</td>
<td>25</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例24</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>305</td>
<td>81</td>
<td>22</td>
<td>26</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例25</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>296</td>
<td>74</td>
<td>20</td>
<td>29</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例26</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>286</td>
<td>67</td>
<td>18</td>
<td>32</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例27</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>275</td>
<td>61</td>
<td>17</td>
<td>35</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例28</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>262</td>
<td>54</td>
<td>15</td>
<td>40</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例29</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>246</td>
<td>47</td>
<td>13</td>
<td>45</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例30</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>230</td>
<td>40</td>
<td>11</td>
<td>54</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例31</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>206</td>
<td>34</td>
<td>9</td>
<td>63</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例32</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>183</td>
<td>27</td>
<td>7</td>
<td>79</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例33</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>153</td>
<td>20</td>
<td>5</td>
<td>197</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例34</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>114</td>
<td>13</td>
<td>4</td>
<td>165</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例35</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>85</td>
<td>7</td>
<td>2</td>
<td>307</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例36</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>0.3</td>
<td>55</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>実施例</td>
<td>セル寸法</td>
<td>セルx寸法 (mm)</td>
<td>セルy寸法 (mm)</td>
<td>セルz寸法 (vmm)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>実施例3</td>
<td>280</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例20</td>
<td>260</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例21</td>
<td>240</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例22</td>
<td>220</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例23</td>
<td>200</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例24</td>
<td>190</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例25</td>
<td>180</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例26</td>
<td>170</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例27</td>
<td>160</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例28</td>
<td>150</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例29</td>
<td>140</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例30</td>
<td>130</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例31</td>
<td>120</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例32</td>
<td>110</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例33</td>
<td>100</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例34</td>
<td>90</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例35</td>
<td>80</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>実施例36</td>
<td>70</td>
<td>210</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

[0165]
<table>
<thead>
<tr>
<th>実施例</th>
<th>Li-(Ni-Mn-Co)</th>
<th>Ni</th>
<th>Mn</th>
<th>Co</th>
<th>添加元素</th>
<th>添加率(m%)</th>
<th>密度(g/cm³)</th>
<th>比表面積(m²/g)</th>
<th>体積エネルギー密度(Wh/L)</th>
<th>定格放電容量(Wh)</th>
<th>定格放電容量(Ah)</th>
<th>電池面積の比</th>
<th>充放電効率(%)</th>
<th>初回充放電効率(%)</th>
<th>1000サイクル後の容量保持率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Zr</td>
<td>0.01</td>
<td>4.4</td>
<td>0.3</td>
<td>365</td>
<td>148</td>
<td>41</td>
<td>15</td>
<td>89</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>実施例37</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Zr</td>
<td>0.01</td>
<td>4.3</td>
<td>0.3</td>
<td>361</td>
<td>147</td>
<td>40</td>
<td>15</td>
<td>88</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>実施例38</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Zr</td>
<td>0.01</td>
<td>4.5</td>
<td>0.45</td>
<td>360</td>
<td>146</td>
<td>40</td>
<td>15</td>
<td>89</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>実施例39</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Zr</td>
<td>0.2</td>
<td>4.8</td>
<td>0.4</td>
<td>358</td>
<td>145</td>
<td>40</td>
<td>15</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>実施例40</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Mg</td>
<td>0.2</td>
<td>4.8</td>
<td>0.5</td>
<td>358</td>
<td>145</td>
<td>40</td>
<td>15</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>実施例41</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Cr</td>
<td>0.2</td>
<td>4.8</td>
<td>0.5</td>
<td>358</td>
<td>140</td>
<td>40</td>
<td>15</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>実施例42</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>P</td>
<td>0.2</td>
<td>4.8</td>
<td>0.5</td>
<td>358</td>
<td>145</td>
<td>40</td>
<td>15</td>
<td>87</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>実施例43</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Al</td>
<td>0.2</td>
<td>4.8</td>
<td>0.5</td>
<td>358</td>
<td>145</td>
<td>40</td>
<td>15</td>
<td>87</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>実施例44</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>Ti</td>
<td>0.2</td>
<td>4.8</td>
<td>0.5</td>
<td>358</td>
<td>145</td>
<td>40</td>
<td>15</td>
<td>87</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>実施例3</td>
<td>実施例45</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Li: (Ni+Mn+Co)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>真密度 (g/cm^3)</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>比表面積 (m^2/g)</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>初画効率 (%)</td>
<td>89%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>体積エネルギー密度 (Wh/L)</td>
<td>365</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>定格放電容量 (Wh)</td>
<td>148</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>定格容量に対する充放電効率 (%)</td>
<td>41</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>電極面積の比 (cm^2/Ah)</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>初回充放電効率 (%)</td>
<td>89%</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td>1000サイクル後容量保持率 (%)</td>
<td>87%</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実施例3</th>
<th>実施例45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li: (Ni+Mn+Co)</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>5</td>
</tr>
<tr>
<td>Mn</td>
<td>3</td>
</tr>
<tr>
<td>Co</td>
<td>2</td>
</tr>
<tr>
<td>真密度 (g/cm^3)</td>
<td>4.4</td>
</tr>
<tr>
<td>比表面積 (m^2/g)</td>
<td>0.3</td>
</tr>
<tr>
<td>初画効率 (%)</td>
<td>89%</td>
</tr>
<tr>
<td>体積エネルギー密度 (Wh/L)</td>
<td>365</td>
</tr>
<tr>
<td>定格放電容量 (Wh)</td>
<td>148</td>
</tr>
<tr>
<td>定格容量に対する充放電効率 (%)</td>
<td>41</td>
</tr>
<tr>
<td>電極面積の比 (cm^2/Ah)</td>
<td>15</td>
</tr>
<tr>
<td>初回充放電効率 (%)</td>
<td>89%</td>
</tr>
<tr>
<td>1000サイクル後容量保持率 (%)</td>
<td>87%</td>
</tr>
</tbody>
</table>
以上の結果より、本発明の正極活物質または正極材料を用いた実施例1～46

<table>
<thead>
<tr>
<th>実施例</th>
<th>Li: (Ni+Mn+Co)</th>
<th>Ni</th>
<th>Mn</th>
<th>Co</th>
<th>真密度 (g/cm³)</th>
<th>比表面積 (m²/g)</th>
<th>削減エネルギー密度 (W/m²)</th>
<th>定格放電容量 (Wh)</th>
<th>定格放電容量 (Ah)</th>
<th>定格容量に対する電池表面積の比 (m²/Ah)</th>
<th>初回充放電効率 (%)</th>
<th>1000サイクル後容量保持率 (%)</th>
<th>構成性評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>実施例3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.65</td>
<td>0.4</td>
<td>-</td>
<td>30</td>
<td>369</td>
<td>150</td>
<td>41</td>
<td>14</td>
<td>90</td>
</tr>
<tr>
<td>実施例46</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4.65</td>
<td>0.4</td>
<td>15</td>
<td>7</td>
<td>389</td>
<td>150</td>
<td>41</td>
<td>14</td>
<td>90</td>
</tr>
</tbody>
</table>
46の電池は、比較例1〜4の電池と比較して、サイクル特性が高く、また、体積エネルギー密度が高いものであった。

本出願は、2013年2月28日に出願された日本特許出願番号2013-040109号に基づいており、その開示内容は、参照され、全体として、組み入れられている。

符号の説明

1 正極材料のシェル部、
2 正極材料のコア部、
3 正極材料、
10、50 リチウムイオン二次電池、
11 負極集電体、
12 正極集電体、
13 負極活物質層、
15 正極活物質層、
17 セパレータ、
19 単電池層、
21、57 発電要素、
25 負極集電板、
27 正極集電板、
29、52 電池外装材、
58 正極タブ、
59 負極タブ。
請求の範囲

[請求項1] リチウム—ニッケル—マンガン—コバルト複合酸化物であり、真密度が4.40〜4.80 g/cm³である、非水電解質二次電池用正極活物質。

[請求項2] 比表面積が0.30〜1.0m²/gである、請求項1に記載の正極活物質。

[請求項3] 前記リチウム—ニッケル—マンガン—コバルト複合酸化物は、一般式：LiₐNiₐMnₓCoₐMₓO₂（但し、式中、a、b、c、d、x は、0.9 ≤ a ≤ 1.2、0 < b < 1、0 < c < 0.5、0 < d ≤ 0.5、0 ≤ x ≤ 0.3、b + c + d = 1 を満たす。M は Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr および C「からなる群から選ばれる少なくとも 1 種である」で表される、請求項1または2に記載の正極活物質。

[請求項4] 前記b、cおよびdが、0.44 ≤ b ≤ 0.51、0.27 ≤ c ≤ 0.31、0.19 ≤ d ≤ 0.26である、請求項3に記載の正極活物質。

[請求項5] 請求項1〜4のいずれか1項に記載の正極活物質を含むコア部と、前記正極活物質と異なるリチウム金属系複合酸化物を含むシェル部と、を有する非水電解質二次電池用正極材料。

[請求項6] 請求項1〜4のいずれか1項に記載の正極活物質と、スピネル系マンガン正極活物質を含む非水電解質二次電池用正極材料。

[請求項7] 前記正極活物質と、前記スピネル系マンガン正極活物質との混合重量比率が、正極材料：スピネル系マンガン正極活物質 = 50：50〜90：10である、請求項6に記載の正極材料。

[請求項8] 正極集電体の表面に、請求項1〜4のいずれか1項に記載の正極活物質、および請求項5〜7のいずれか1項に記載の正極材料からなる群から選択される少なくとも1種を含む正極活物質層が形成されてなる非水電解質二次電池用正極。
[請求項9] 請求項8に記載の正極と、
負極集電体の表面に負極活物質層が形成されてなる負極と、
セパレータと、
を含む発電要素を有する非水電解質二次電池。

[請求項10] 定格容量に対する電池面積（電池外装体まで含めた電池の投影面積）の比が5cm²/Ah以上であり、かつ、定格容量が3Ah以上である、請求項1〜9のいずれか1項に記載の非水電解質二次電池。

[請求項11] 矩形状の正極活物質層の縦横比として定義される電極のアスペクト比が1〜3である、請求項1〜10のいずれか1項に記載の非水電解質二次電池。

[請求項12] 前記セパレータが耐熱絶縁層付セパレータである、請求項9に記載の非水電解質二次電池。
A. CLASSIFICATION OF SUBJECT MATTER

H 01M 4/525 (2010.01)i, H 01M 2/16 (2006.01)i, H 01M 4/131 (2010.01)i, H 01M 4/36 (2006.01)i, H 01M 4/505 (2010.01)i, H 01M 1/0052 (2010.01)i, C 01G 53/00 (2006.01)n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H 01M 4/525, H 01M 2/16, H 01M 4/131, H 01M 4/36, H 01M 4/505, H 01M 1/0052, C 01G 53/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched


Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-094406 A (Dainippon Printing Co., Ltd.), 17 May 2012 (17.05.2012), paragraphs [0021] to [0026] (Family: none)</td>
<td>5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  *A* document defining the general state of the art which is not considered to be of particular relevance
  *E* earlier application or patent but published on or after the international filing date
  *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  *O* document referring to an oral disclosure, use, exhibition or other means
  *P* document published prior to the international filing date but later than the priority date claimed

**T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

**X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

**Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search 11 April 1, 2014 (11.04.14)

Date of mailing of the international search report 22 April 1, 2014 (22.04.14)

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2010-050079 A (Sanyo Electric Co., Ltd.), 04 March 2010 (04.03.2010), examples 9, 11 &amp; US 2009/0239146 A</td>
<td>6, 7</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (IPC))

Int.Cl. H01M4/525 (2010. 01) i, H01M2/16 (2006. 01) i, H01M4/13 1(2010. 01) i, H01M4/36 (2006. 01) i, H01M4/505 (2010. 01) i, H01M10/052 (2010. 01) i, C01G53/00 (2006. 01) n

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int.Cl. H01M4/525. H01M2/16, H01M10/052, H01M4/505, H01M10/052, C01G53/00

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>W0 2010/116839 A1 (日立マクセル株式会社) 2010. 10. 14, [0001] , 1-4, 8-11</td>
<td></td>
</tr>
<tr>
<td>A &amp; KR 10-2011-0049861 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>JP 2011-228073 A (日立マクセルエンジニア株式会社) 2011. 11. 10, 1-4, 8-11</td>
<td></td>
</tr>
<tr>
<td>A &amp; KR 10-2011-0116972 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☑ c 欄の続きにも文献が挙げられている。

パワントファミリーに関する別紙を参照。

引用文献のカテゴリー

「X」特に関連する文献ではなく、一般的な技術水準を示すもの

「E」国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの

「E」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「X」口頭による開示、使用、展示等に言及する文献

「X」国際出願 日前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献

「X」国際出願 日は優先 日後に公表された文献であって出願と矛盾するものではない、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献の発表の新規性又は進歩性がないと考えられるもの

「X」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

一般は同一パワントファミリー文献

国際調査を完了した日

11. 04. 2014

国際調査報告の発送日

22. 04. 2014

国際調査機関の名称及びあて先

日本国特許庁 (ISA / JP)

郵便番号 010-0915

東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限のある職員)

富士 美香

電話番号 03-3581-1101 内線 3477

様式 PCT／ISA／210 (第2ページ) (2009年7月)
国際調査報告

国際出願番号 PCT／JP2014／054841

Y (続き) 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2012-094406 A（大日本印刷株式会社）2012. 05. 17， D021 ] - D026 ] (ファミリーなし)</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2010-050079 A（三洋電機株式会社）2010. 03. 04，（実施例9），（実施例11） &amp; US 2009/0239146 Al</td>
<td>6, 7</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き） (2009年7月)