(54) Title: TRANSPORTER CONTAINER-LOADING BRIDGE

(54) Bezeichnung: CONTAINERBRÜCKE

(57) Abstract

The invention relates to a transporter container-loading bridge comprising a two-armed traveling support, a lifting gear, a traveling mechanism and at least one portal, characterized in that at least two trolleys travel on individual tracks of the traveling support on the transporter container-loading bridge with their paths crossing. According to the invention, the running track of one trolley is located above and inside the track of the other trolley, wherein both trolleys travel along both sides of their running tracks. The invention provides the advantage that several trolleys can travel independently from each other without having to transfer, rotate or surrender their load.

(57) Zusammenfassung

Die erfindungsgemäße Lösung betrifft eine Containerbrücke, beste-hend aus einem zweiarmigen Fahrträger, Hubwerk, einem Fahrwerk und mindestens einem Portal, welches dadurch gekennzeichnet ist, daß mindestens zwei Katzen auf jeweils eigenen Fahrbahnen des Fahrträgers an der Containerbrücke verfahren, wobei sich ihre Fahrwege kreuzen. Erfindungswesentlich ist, daß die Fahrbahn der einen Katze überhalb und innerhalb der Fahrbahn der anderen Katze angeordnet ist, wobei beide Katzen beidseitig auf ihren Fahrbahnen verfahren. Die Lösung bietet den Vorteil, daß mehrere Katzen unabhängig voneinander verfahren können, ohne ihre Lasten übergeben, drehen oder absetzen zu müssen.
**LEDIGLICH ZUR INFORMATION**

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.

Containerbrücke

Beschreibung


Weiterhin sind bei diesem Brückenkran die Fahrbahnen der Katzen außerhalb der Länge des zu transportierenden Containers angeordnet. Das hat den Nachteil, daß Probleme bei der Übernahme/Übergabe im Bereich der Schiffsbrücke entstehen können, wenn die Container sehr weit an die Brücke heranzustapeln sind.

vorhanden, bei der mehrere Laufkatzen mit ihrer Last völlig unabhängig voneinander arbeiten können.

Es ist daher Aufgabe der Erfindung, eine Containerbrücke zu entwickeln, an der mehrere Laufkatzen weitestgehend unabhängig voneinander, bei geringem Zeit- und Materialaufwand arbeiten können, wobei alle Laufkatzen mit einer Hubeinrichtung versehen sein sollen.


Die erfindungsgemäße Containerbrücke, bestehend aus einem zweiarmigen Fahrträger, einem Hubwerk, einem Fahrwerk und mindestens einem Portal, wobei die Katzen auf jeweils eigenen Fahrbahnen des Fahrträgers an der Containerbrücke verfahren und sich ihre Fahrwege kreuzen. Ausgehend von zwei Katzen, deren Fahrbahnen sich kreuzen, ist es vorteilhaft, wenn diese beidseitig auf ihren Fahrbahnen verfahren.

Erfindungsgemäß sind Fahrbahnen beider Katzen oberhalb der Katzen angeordnet. Das hat den Vorteil, daß die Katzen mit ihren Greifeinrichtungen unabhängig voneinander Container auch quer zur Fahrtrichtung transportieren können.

Es ist sinnvoll, die jeweils untere Katze U- oder waffenförmig auszubilden, so daß diese untere Katze einen Hohlraum aufweist, durch den die obere Katze mit ihrer Last, beispielsweise einem Container, hindurchfahren kann.

Jede der Katzen ist mit allen Einrichtungen, die für eine Längs-, Hub- und Greiffahrt notwendig sind, ausgestattet. Dazu gehört auch, daß jede der Katzen bei manuellem Betrieb über ein eigenes Führerhaus verfügt.

Beide Katzen können damit weitestgehend unabhängig voneinander Fahrzeuge und Lagerplätze be- und entladen, wobei jede der beiden Katzen den gesamten Bereich der Containerbrücke überfahren und bearbeiten kann.

Es ist weiterhin vorteilhaft, daß mindestens eine Seite des über das Portal hinausragenden Fahrträgers hochklappbar ist. Das ist vor allem dann von Vorteil, wenn anlandende Containerschiffe das erfordern oder aber dieser Bereich der Containerbrücke sich nicht im Einsatz befindet.

Eine weitere Ausführung der Erfindung sieht vor, daß die Fahrbahn der Katzen beidseitig eines einzigen Trägers verlaufen. Diese Ausführung ist besonders für Fälle geeignet, wo Container mit geringeren Lasten schnell zu transportieren sind.

Eine andere Ausführung der Erfindung sieht vor, daß jede Katze an einem jeweils anderen Träger verfahren kann.

Vorteilhaft ist es, die Fahrbahn der Katzen innerhalb der Containerlänge eines quer transportierten Containers anzuordnen. Dadurch können die Container ohne Probleme sehr weit an die Schiffsbrücke herangestapelt werden.

Im folgenden wird die erfindungsgemäße Containerbrücke an zehn Figuren und einem Ausführungsbeispiel näher erläutert. Die Figuren zeigen:

**Figur 1**  Ansicht der erfindungsgemäßen Containerbrücke beim Umschlagvorgang mit der Katze 17 in Übergabeposition an Land und der Katze 18 im Umschlagvorgang auf Schiff,

**Figur 2**  Ansicht der Figur 1 mit Kreuzungsvorgang der beiden Katzen 17 und 18 innerhalb der Portale 9 und 10,

**Figur 3**  Detail des Kreuzungsvorganges aus Figur 2 mit der innerhalb des Fahrträgers 12 fahrenden Katze 17 und der außerhalb des Fahrträgers fahrenden Katze 18,

**Figur 4**  Ansicht der Figur 1 mit Wechselstellung der beiden Katzen 17 und 18,

**Figur 5**  Längsdarstellung die Bewegungslinien 37, 38 für die Katzen 17 und 18,

**Figur 6**  Querschnitt mit Katze 17 und Container 1 am Fahrträger 12.

ERSATZBLATT (REGEL 26)
Figur 7  Querschnitt mit Katze 18 mit Container 1 am Fahrträger 12.

Figur 8  Querschnitt beider Katzen 17 und 18 mit je einem Container 1 im Kreuzungsbereich am Fahrträger 12.

Figur 9  Ansicht der Containerbrücke mit hochgeklapptem Ausleger und den beiden Katzen 17 und 18,

Figur 10  den zweiarmigen Fahrträger 12 mit der innerhalb der Fahrträger angeordneten Katze 17 über dem Schiff im Bereich der Schiffsbrücke 40.

Figur 11  Ansicht einer Containerbrücke, bei der zwei Katzen 17, 18 an einem Fahrträger 12 angeordnet sind,

Figur 12, 13  Ansicht einer Containerbrücke, bei der zwei Katzen 17, 18 aus zwei Fahrträgern 12 angeordnet sind, wobei jede Katze 17, 18 einen eigenen Fahrträger hat.

Die Figuren 1 bis 9 zeigen die erfindungsgemäße Containerbrücke 4 beim Umschlag von Container 1 von Schiff 2 zum Land 3. Je nach Größe des Schiffes 2 können mehrere Containerbrücken 4 gleichzeitig zum Einsatz kommen. An Land werden die Container 1 mit Transportmittel 5 weiter gehandhabt.


Bei der Katze 18 wird über ein Unterteil 33, zwei Seitenteile 34 und über Umlenkrollen 35 das Seil 28 zum Spreader 30 geführt. Das eigentliche Hubwerk 26 ist zweigeteilt.

Der Entladevorgang geht in folgender Weise vor sich:
Nach dem Anlegen des Schifves 2 wird die Containerbrücke 4 über die Fahrwerke 7 zum Entladen der Container 1 in Position gefahren. Die Katze 17 (Fig. 4) übernimmt mit dem Spreader 27 einen Container 1 vom Schiff 2 und zieht diesen in die oberste Endposition der Katze 17. Der Container ist hierdurch in einer stabilen Position, ein Pendeln des Containers 1 wird unterbunden.

Mit dem Katzefahrwerk 21 (Fig. 2) fährt die Katze 17 im Innenbereich des zweiarmigen Fahrträgers 12 in den Raum zwischen dem Containerbrückenportal 9, 10. Mit Erreichen dieser Position wird ein Signal zur Weiterfahrt an die zum Beispiel bereits wartende Katze 18 gemeldet. Beide Katzen bewegen sich aufeinander zu (Fig. 8), die Kreuzung findet statt. Die Katze 18 fährt dabei im Außenbereich des zweiarmigen Fahrträgers 12 und umfährt mit seinem wagenartigen Unterteil 33 und den Seitenteilen 34 den mit der Katze 17 zu transportierenden Container 1.

Beide Katzen 17 und 18 setzen ihre Fahrt unabhängig voneinander fort (Fig. 5), zum Beispiel die Katze 17 zur Abgabe des Containers 1 an Land und die Katze 18 zur Aufnahme eines Containers 1 im Schiff beziehungsweise bei gleichzeitigem Be- und Entladen zur Abgabe eines Containers 1.


Mit dem zweiarmigen Fahrträger 12, wie er in Figur 10 dargestellt ist, und der innerhalb des Fahrträgers 12 laufenden Katze 17 können Container bis unmittelbar an Seite Störkanten, z. B. Schiffsbrücken 40, gehandhabt werden. Bei größeren Abständen können auch hier die zweite Katze 18 zum Einsatz kommen.

Das Verfahren hat den Vorteil, daß auf dem gesamten Transportweg der Container mit dem jeweiligen Spreader verbunden bleibt, auch wenn sich die Fahrwege beider
Katzen kreuzen. Durch das Kreuzen innerhalb der Containerbrückenportale treten keine zusätzlichen Momente beziehungsweise Lasten auf die Kranschienen auf.

Weiterhin wird aus Figur 10 deutlich, daß dadurch, daß sich die Fahrbahnen 19, 20 der Katzen 17, 18 innerhalb der Containerlänge befinden, besonders weit an die Schiffsbrücke 40 herangestaptelt werden kann. Ausführungsvarianten, wie die erfindungsgemäße Containerbrücke auch ausgeführt werden kann, ist den Figuren 11 und 12 zu entnehmen.
# Liste der verwendeten Bezugszeichen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>34</th>
<th></th>
<th>37</th>
<th></th>
<th>39</th>
<th></th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Seitenteile der Katze 18</td>
<td></td>
<td>Umlenkrolle</td>
<td></td>
<td>Weg des oberen Containers</td>
<td></td>
<td>Schiffsbrücke</td>
</tr>
<tr>
<td>1</td>
<td>Last/Container</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Schiff</td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Land</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Containerbrücke</td>
<td>34</td>
<td>Seitenteile der Katze 18</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transportmittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>Fahrschiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fahrbahn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Kaikante</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Portal (wasserseitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Portal (landseitig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Versteifungsstreben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>zweiarmiger Fahrträger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Verbindungselement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Hubwerk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Seile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Umlenkrolle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Katze oben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Katze unten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fahrbahn oben</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fahrbahn unten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Längsfahrweg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Längsfahrweg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Energiezuführung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Energiezuführung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Hubwerk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Hubwerk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Seile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Seile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Spreader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Spreader</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Führerhaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Führerhaus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Unterteil der Katze 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patentansprüche

1. Containerbrücke, bestehend aus einem zweiarmigen Fahrträger, Hubwerk, einem Fahrweg, mindestens einem Portal und mindestens zwei Katzen (17, 18), die auf jeweils eigenen Fahrbahnen (19, 20) des Fahrträgers (12) an der Containerbrücke (4) verfahren, wobei sich ihre Fahrwege kreuzen, die Fahrbahnen (19, 20) der Katzen (17, 18) oberhalb der Katzen (17, 18) angeordnet sind, wobei jede Katze (17, 18) mit allen Einrichtungen für die Längs-, Hub- und Greifahrt ausgestattet ist.

2. Containerbrücke nach Anspruch 1, dadurch gekennzeichnet, daß der Abstand der beidseitigen Fahrbahnen (19, 20) der Katze (17, 18) zueinander geringer ist, als die Länge der längsten zu transportierenden Container (1).

3. Containerbrücke nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß das Hubwerk (26) der Katze (18) zweigeteilt neben dem Längsfahrwerk (22) angeordnet ist.

4. Containerbrücke nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Katzen (17, 18) mit Signaleinrichtungen ausgerüstet sind, die ein gegenseitiges Kollidieren verhindern.

5. Containerbrücke nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß mindestens eine Seite des über das Portal (9, 10) hinausragenden Fahrträgers (12) hochgeklappt werden kann.

6. Containerbrücke nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Fahrbahnen (19, 20) der Katzen (17, 18) beidseitig eines einzigen Trägers (12) verlaufen.

7. Containerbrücke nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß
jede Fahrbahn (19, 20) einer Katze (17, 18) an jeweils einem anderen Träger (12) verläuft.

8. Containerbrücke nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Fahrbahnen (19, 20) der Katzen (17, 18) innerhalb der Containerlänge liegen.