
USOO6477632B1

(12) United States Patent (10) Patent No.: US 6,477,632 B1
Kikuchi (45) Date of Patent: Nov. 5, 2002

(54) STORAGE DEVICE AND ACCESSING 5,978,808 A * 11/1999 Wells et al. 707/100
METHOD 5.987,573 A * 11/1999 Hiraka 711/156

(75) Inventor: Shuichi Kikuchi, Iwate (JP) FOREIGN PATENT DOCUMENTS
JP 6-1872O5 7/1994

(73) Assignee: Tokyo Electron Device Limited, JP 7-134674 5/1995
Yokohama (JP) JP 8-249225 9/1996

WO WO 94/20906 9/1994
(*) Notice: Subject to any disclaimer, the term of this WO WO95/10083 4/1995

patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 0 days.

IBM Technical Disclosure Bulletin, US, IBM Corp. New
(21) Appl. No.: 09/319,621 York, “Linked List Search Table Array For Free Storage
(22) PCT Fed: Dec. 2, 1998 Blocks' vol. 3, No. 8, (Jan. 1, 1991) pp. 474-479.

a 1-9

(86) PCT No.: PCT/JP98/05441 * cited by examiner
Primary Examiner Do Hyun Yoo

RSR. Jul. 28, 1999 ASSistant Examiner Nasser Moazzami
s e a Vs (74) Attorney, Agent, or Firm-Luce, Forward, Hamilton &

(87) PCT Pub. No.: WO99/30239 Scripps LLP
PCT Pub. Date:Jun. 17, 1999 (57) ABSTRACT

oreign Application Priority Data in order to access a memory cell array , an address 30 Foreign Application Prioritv D In ord 11 1. did
translation table which Stores a correspondence between Dec. 5, 1997 (JP) ... ''” logical and physical addresses, and an empty block table

(51) Int. Cl. .. G06F 12/00 which Specifies locations of empty blocks, are Stored in an
(52) U.S. Cl. 711/203; 711/203; 365/185.29; ity the ity cell ty (1) i. In t .

365/185.33 of reading data from the memory cell array (l), a physica
address to read data IS attained With reference to the address (58) Field of Search 711/203, 5, 103; address to read data is attained with ref he add

365/185.33, 185.24, 230.03; 707/100 R al stored ". the story cell y (). Meanwhile, in the case of writing data, an empty block is
56 References Cited etected from the empty block table Stored in the memory (56) d d f h block tabl d in th

U.S. PATENT DOCUMENTS

5,388,248 A 2/1995 Robinson et al. 365/52

cell array (1), and data is written in the empty block.
Moreover, the address translation table and the empty block
table which have been updated are written in another empty
block.

27 Claims, 13 Drawing Sheets

5,524.230 A * 6/1996 Sakaue et al. 711/103
5,611,067 A 3/1997 Okamoto et al. 711/103
5,761,702 A * 6/1998 Matsufuji 711/103

O

FLASH MEMORY UNI

3X AX ROW 1
CONTRO

X X E.
ADDRESS AEDRESS TE MINA Trowct
BUFFER DECODER

se He

MEMORY CELL
ARRAY

4E te
SLOCK ...ERASE

38 SRESS CONTROL UNT
-- ECODER

Ess readcot Twitect Tdata
- BUFFER READ CONTROL TERMINAL

WRITE CONROL ERMINAL
2

IOBUFFER

CONTRO CIRCUIT 5
6

GLBAL BUFFER

BSYSIGNALS busyf
WRITE SIGNAL READY SIGNALS ready
Swrite

- LATCHSIGNALS latch
y y 20

CONTROLLER

&EAD END s
NCICE \ - COMMAND

cQMPUTER

U.S. Patent Nov. 5, 2002 Sheet 1 of 13 US 6,477,632 B1

F. G. 1

ROW
CONTROL
INPUT

X TERMINAL
ADDRESS
DECODER

Trowcont

MEMORY CELL
ARRAY

1e

ERASE
CONTROL UNIT

Twritecont Tdata

BLOCK
ADDRESS
DECODER

Treadcont

READ CONTROL TERMINAL
WRITE CONTROL TERMINAL

I/O BUFFER

CONTROL CIRCUIT

GLOBAL BUFFER

BUSY SIGNAL S busy/
READY SIGNALS ready WRITE SIGNAL

S write
LATCH SIGNAL Satch

COMPUTER

U.S. Patent Nov. 5, 2002 Sheet 3 of 13 US 6,477,632 B1

FIG 3

REDUNDANT
DATA AREA PORTION

PAGE 1.

PAGE 16

BLOCK 2

PAGE 1. :

BLOCK
1024

PAGE 16

US 6,477,632 B1 Sheet 4 of 13 Nov. 5, 2002 U.S. Patent

8ZI SSRICITV -------9 SSOEIRICICIV

I SSETRICIGIV

I SSOEINGICIV

U.S. Patent Nov. 5, 2002 Sheet 5 of 13 US 6,477,632 B1

F. G. 5

LOGICAL ADDRESS BLOCK ADDRESS PAGE NO.

U.S. Patent Nov. 5, 2002 Sheet 6 of 13 US 6,477,632 B1

F. G. 6

DATA READING PROCESS

CPU SUPPLIES COMMAND AND LOGICAL ADDRESS S101

CONTROLLER ACQUIRES LOGICAL ADDRESS S102

SUPPLY OF PHYSICAL ADDRESS OF LS103
ADDRESS TRANSLATION TABLE

FLASH MEMORY UNIT ACQUIREs PHYSICAL ADDREss-S104

READING OF LOGICAL/PHYSICAL ADDRESSES S105

S1 O6
MATCH

WITH ACQUIRED LOGICAL
ADDRESS 2

YES

SUPPLY OF TOP PAGE OF S108
TO-BE-READ DATA

SUPPLY OF DATA TO CONTROLLER

SUPPLY OF EDATA TO CPU

DATA
READ FINISHED

?ys S113
NOTIFICATION OF
END OF READING

DETECTION OF S114
END OF READING

INSTRUCTION
TO SELECT
NEXT PAGE
OF ADDRESS
TRANSLATION
TABLE

INSTRUCTION
TO SELECT
NEXT READING
TARGET PAGE

U.S. Patent Nov. 5, 2002 Sheet 7 of 13 US 6,477,632 B1

F. G. 7

PHYSICAL ADDRESS
DETERMINING PROCESS

SUPPLY COMMAND AND LOGICAL S2O1
ADDRESS

SPECIFY CORRESPONDING PHYSICAL S2O2
ADDRESS

S2O3 STORE SPECIFIED PHYSICAL ADDRESS

SUPPLY PHYSICAL ADDRESS OF S204
EMPTY BLOCK TABLE

ACQUIRE EMPTY BLOCK TABLE S2O5

S2O6 SPECIFY NEW PHYSICAL ADDRESS

END

U.S. Patent Nov. 5, 2002 Sheet 8 of 13 US 6,477,632 B1

F. G. 8

WRITING PROCESS

SUPPLY SPECIFIED PHYSICAL us211
ADDRESS

REQUEST TO-BE-WRITTEN DATAS212
FROM CPU

SUPPLY TO-BE-WRITTEN DATA
TO FLASH MEMORY UNIT

YES 512 BYTES
WRITTEN

NO

S215 REQUEST SUBSEQUENT DATA
FROM CPU

REQUEST NEXT
LOGICAL ADDRESS

TO STO2

CONTROL
CODE REPRESENTING
END OF WRITING

YES

TO 221

U.S. Patent Nov. 5, 2002 Sheet 9 of 13 US 6,477,632 B1

F. G. 9

OLD DATA ERASING PROCESS

SPECIFY PHYSICAL ADDRESS WHERE S221
OLD DATA EXISTS

READ DATA S222

SPECIFY NEW PHYSICAL ADDRESS S223

S224 WRITE DATA

SUPPLY SETUP COMMAND TO FLASH S225
MEMORY UNIT

SUPPLY ADDRESS OF ERASING TARGET uS226
BLOCK TO FLASH MEMORY UNIT

SUPPLY ERASE COMMAND TO FLASH S227
MEMORY UNIT

END

U.S. Patent Nov. 5, 2002 Sheet 10 Of 13 US 6,477,632 B1

PROCESS FOR UPDATING EMPTY F. G. 10
BLOCK TABLE ADDRESS
TRANSLATION TABLE

STORE EMPTY BLOCK TABLE TEMPORARILY S30

S302

TRANSLATE CONTENTS OF EMPTY BLOCK TABLE-S303

SUPPLY PHYSICAL ADDRESS OF TOPS304
PAGE TO FLASH MEMORY UNIT

SUPPLY FIRST 1 BYTE S305 S3O8

SUPPLY WRITE SIGNAL SUPPLY SUBSEQUENT
1 BYTE

PRESENCE
OF REMAINING PART

SUPPLY TOP PAGE OF ADDRESS LS30g
TRANSLATION TABLE

NO

STORE LOGICAL/ PHYSICAL ADDRESSES

PRESENCE
OF MATCHING LOGICAL

ADDRESS

YES S312

TRANSLATE PHYSICAL ADDRESS

WRITE 1-PAGE PORTION

WRITING
COMPLETED

NO

S315

SUPPLY NEXT
PHYSICAL ADDRESS

YES

STORE LOCATIONS OF EMPTY, BLOCKTABLE LS316
ADDRESS TRANSLATION TABLE

S317

END

U.S. Patent Nov. 5, 2002 Sheet 11 of 13 US 6,477,632 B1

F. G. 11

REDUNDANT
DATA AREA PORTION

E=-
BLOCK 391 392

D NO
BLOCK 392 SUBSEQUENT

EMPTY

BLOCK 611 897

BLOCK 897 391

611

U.S. Patent Nov. 5, 2002 Sheet 12 of 13 US 6,477,632 B1

F. G. 12

DATA WRITING PROCESS

SUPPLY TOP LOGICAL ADDRESS S501

STORE LOGICAL ADDRESS S502

SPECIFY ASSOCIATED PHYSICAL
ADDRESS

SPECIFY PAGE OF EMPTY BLOCK

DETERMINE WRITING TARGET PAGE

INSTRUCTION TO READ WRITING
TARGET PAGE

STORE EMPTY BLOCK INFORMATION

PRESENCE OF DATA
S508 END OF WRITING

WRITE DATA 1 PAGE

DATA END

U.S. Patent Nov. 5, 2002 Sheet 13 of 13 US 6,477,632 B1

F. G. 13

PROCESS FOR UPDATING EMPTY
BLOCK INFORMATION AND
ADDRESS TRANSLATION TABLE

SPECIFY TOP EMPTY BLOCK S601

SUPPLY PHYSICAL ADDRESS OF TOP OF SPECIFIED
EMPTY BLOCK S602

S603

UPDATE INFORMATION ON LOCATION OF TOP S604
EMPTY BLOCK

S605

S606

S607

EMPTY BLOCK

ACQUIRE INFORMATION ON REDUNDANT PORTION - S609

S610
PRESENCE

YES OF EMPTY BLOCK
S611 INFORMATION

?

SPECIFY NEXT NO
EMPTY BL OCK write information on Address S612

TRANSLATION TABLE, ETC.

ERASE S613

END

US 6,477,632 B1
1

STORAGE DEVICE AND ACCESSING
METHOD

TECHNICAL FIELD

This invention relates to a storage device and an accessing
method, and particularly to a block erase type Storage device
and an accessing method for the Same.

BACKGROUND ART

A block erase type Storage device is known which com
prises a block erase type Storage medium Such as a flash
memory, and which reads and writes information under the
control of a central processing unit (CPU) and a dedicated
controller.

The block erase type Storage medium indicates Such a
Storage medium that the Storage contents of a writing target
area need to be erased in advance in order to write data
therein and an erasing proceSS can be performed only in
units (generally called blocks) equal to or larger than the
Smallest unit (generally called a page, a segment or the like)
of the Storage capacity dealt in a writing process.

In order to manage an external access, the block erase
type storage device comprises an SRAM (Static Random
Access Memory) or the like which stores an empty block
table in which information representing the locations of
empty blockS is Stored and an address translation table in
which information showing the correspondence between
logical and physical addresses is Stored.
Upon reception of a write request, the block erase type

Storage device finds an empty block registered in the empty
block table, writes data in the found block, adds the corre
spondence between the physical and logical addresses of the
block to the address translation table, and furthermore,
erases the block from the empty block table.

Moreover, upon reception of a read request, the block
erase type Storage device Searches the address translation
table while using the logical address of to-be-read data as a
key, discriminates the physical address of the location at
which the to-be-read data has been Stored, and reads the data
from that location.

In to Such a storage device, the Volume of the entire
Storage device increases according to the Volume occupied
by the SRAM. Due to this, such a storage device when used
for purposes which require a Small Volume as in the case of
a JEIDA/PCMCIA card, etc., needs a volume suppressing
idea.

Furthermore, the SRAM consumes a large amount of
power, and if the SRAM is used to store a variety of tables,
the amount of power consumed by the entire Storage device
increases, entailing a drawback of the Storage device becom
ing unsuitable for being applied to purposes which require
low power consumption as in the case of a JEIDA/PCMCIA
card, etc.

DISCLOSURE OF INVENTION

This invention has been made in consideration of the
above-described circumstances, and an object thereof is to
provide a block erase type Storage device of a Small Volume
and low power consumption and an accessing method for
the same.

A Storage device according to the first aspect of this
invention having the above object is characterized by com
prising:

1O

15

25

35

40

45

50

55

60

65

2
Storage means (1), including a plurality of memory blocks

to which physical addresses have been assigned;
erasure means (1e) for batch erasing of Stored data from

the Storage means in units of memory blocks, and
writing means (4X, 4B, 5, 20), to which data and logical

addresses are input, for determining locations where
the data is to be Stored in the Storage means and for
Writing the data in the locations,

wherein the Storage means Stores an address translation
table which Stores information showing a correspon
dence between the logical addresses and physical
addresses of the Storage means, and

the writing means comprises means (4X, 4B, 5, 20) for
adding, to the address translation table, information
showing a correspondence between physical addresses
of the locations where the data has been written and the
input logical addresses, or for updating the address
translation table.

According to the Storage device having this structure, the
address translation table is Stored in the Storage means which
is a block erase type Storage medium. Therefore, a Storage
medium such as an SRAM or the like for storing the address
translation table is not required in addition to the aforemen
tioned Storage means. This ensures a block erase type
Storage device whose Volume is relatively Small and whose
power consumption is low.
The above-described Storage device may further comprise

reading means (4X, 4B, 5, 20) including:
means (20) for Storing a physical address of a block in

which the address translation table has been written;
physical address reading means (4X, 4B, 5, 20) for

accessing the block which contains the address trans
lation table Stored therein and for reading physical
addresses corresponding to logical addresses of to-be
read data; and

means (4X, 4B, 5, 20) for reading and outputting data
Stored at the physical addresses read by the physical
address reading means.

Using this reading means, the physical addresses of the
to-be-read data can be detected and read from the address
translation table Stored in the Storage means.
The aforementioned Storage means can Store an empty

block table which Stores information Specifying empty
blocks containing no data Stored therein.

By employing this structure, the used amount of memory
Such as an SRAM or the like, utilized in addition to the
Storage means, can be further reduced to promote a reduc
tion in the Volume and power consumption.
The empty block table which stores information specify

ing the empty block that has been existed until the data has
been Stored in the empty block is eliminated, and the empty
block table which Stores information Specifying empty
blocks that remain after the empty block writing means has
written the data in the empty block is Stored in the Storage
means. By So doing, information on the empty blockS
contained in the empty block table is updated So that the
up-to-date empty block information can be attained at any
time.
The aforementioned Storage means may comprise a plu

rality of chips or flash memories, for example. In this case,
the address translation table (and the empty block table) may
be stored in an arbitrary block of any one of the chips or flash
memories. And means may be provided for Storing infor
mation showing in which block of which chip the address
translation table and the empty block table have been stored.
The Storage means Stores the address translation table and

the empty block table in one block.

US 6,477,632 B1
3

According to this structure, the number of blocks for
Storing the address translation table and the empty block
table can be minimized to one, and the Storage capacity of
the Storage means can be used with efficiency. Moreover, the
management of the locations at which those tables have been
Stored becomes easy.

Further, a Storage device according to the Second aspect of
this invention is characterized by comprising:

Storage means (1), including a plurality of memory blocks
to which physical addresses have been assigned;

erasure means (1e) for batch erasing of Stored data from
the Storage means in units of memory blocks, and

writing means (4X, 4B, 5, 20), to which to-be-written data
and logical addresses are input, for determining loca
tions where the data is to be Stored in the Storage means
and for writing the data in the locations,

wherein the Storage means Stores empty block informa
tion Specifying empty blocks in which the data is not
Stored, and

the writing means writes the data in an empty block
Specified by the empty block information.

According to this Structure, the empty block information
is Stored in the Storage means which is a block erase type
Storage medium. Therefore, a storage medium Such as an
SRAM or the like for storing the empty block information is
not required in addition to the aforementioned Storage
means. This ensures a block erase type Storage device whose
Volume is relatively Small and whose power consumption is
low.

If the writing means further comprises updating means
(1e, 4X, 4B, 5, 20) for changing the empty block information
Stored in the Storage means to the empty block information
which specifies information on empty blocks that remain
after the writing means has written the data in the empty
block, the empty block information is updated So that the
up-to-date empty block information can be attained at any
time.

The empty block information may be stored in a portion
of each empty block, and includes chain information regis
tered to Specify another empty block in a chain manner. In
this case, the writing means may comprise means (4X, 4B,
5, 20) for detecting an empty block in accordance with the
chain information and for writing the data in the empty
block.

According to this structure, one block need not be used to
store the empty block table, and the efficiency of use of the
Storage medium is high. Moreover, Since a writing target
block is Specified based on the chain information on empty
blocks, the frequency of use of each block is uniformized.
When the empty block information includes the chain

information, top empty block storing means (20), etc. may
be provided for Storing an address of a first empty block;
data may be written in the empty block assigned the physical
address Stored in the top empty block Storing means, and the
contents of the top empty block Storing means can be
updated by the chain information registered in the block in
which the data has been written.

In the case where the Storing means comprises a flash
memory or the like, its Storage area comprises data areas and
redundant areas. In this case, the chain information can be
Stored in the redundant areas.

In Such a storage device, the chain information is written
in the redundant areas of the empty blocks, and the afore
mentioned data is overwritten in the empty blocks in which
the chain information has already been written.

In this case, the data areas and the redundant areas are
arranged So as not to overlap each other in the aforemen

15

25

35

40

45

50

55

60

65

4
tioned Storage area, thereby preventing the chain informa
tion from being destroyed due to the overwriting of the
aforementioned data.

Similarly in the Storage device according to the Second
embodiment, the Storage means may comprise a plurality of
chips or flash memories, for example. In this case, the chain
information may include information showing in which
block of which chip the next block has been stored.
An accessing method according to the third aspect of this

invention is a method for accessing a memory of a block
erase type in which data can be erased in units of blocks and
data can be written in empty blocks from which data has
been erased in advance, and the method is characterized by
comprising Steps of:

causing the memory itself to Store an address translation
table which Stores information showing a correspon
dence between physical addresses assigned to the
memory and logical addresses of data;

at a time of Supply of to-be-written data and their logical
addresses, making a determination based on the address
translation table as to whether data has already been
written at the logical addresses, and when it is deter
mined that data exists at the logical addresses, detecting
the empty blocks, writing the data in the empty blockS
and erasing blocks containing old data, while when it is
determined that no data exists at the logical addresses,
detecting the empty blocks, writing the data in the
empty blocks, and thereafter,

adding information showing a correspondence between
physical addresses of the blocks in which the data has
been written and the logical addresses to the address
translation table in the memory, or updating the infor
mation; and

at a time of Supply of logical addresses of to-be-read data,
accessing the address translation table in the memory,
detecting physical addresses of locations where the data
has been written, reading the data from the physical
addresses, and outputting the data.

An accessing method according to the fourth aspect of
this invention is a method for accessing a memory of a block
erase type in which data can be erased in units of blocks and
data can be written in empty blocks from which data has
been erased in advance, and the method is characterized by
comprising Steps of:

causing the memory to Store an empty block table speci
fying the empty blocks,

at a time of Supply of to-be-written data, detecting an
empty block on the basis of the empty block table in the
memory, and writing the data in the detected empty
block.

With the accessing methods according to the third and
fourth aspects, parts of the memory can be used as the
address translation table and the empty block table, and
another memory such as an SRAM or the like for storing
those tables need not be arranged, which contributes toward
a reduction in the capacity and power consumption.
An accessing method according to the fifth aspect of this

invention is a method for accessing a memory of a block
erase type in which data can be erased in units of blocks and
data can be written in empty blocks from which data has
been erased in advance, and the method is characterized by
comprising Steps of:

causing a block which the memory comprises to Store
empty block information specifying the empty blockS
of the memory;

at a time of Supply of to-be-written data, detecting an
empty block on the basis of the empty block

US 6,477,632 B1
S

information, writing the data in the detected empty
block, newly detecting an empty block on the basis of
the empty block information, erasing Storage contents
of the block in which the empty block information has
been Stored, and writing updated empty block infor
mation in the newly detected empty block.

With the accessing method according to the fifth aspect,
not only parts of the memory can be used as the address
translation table and the empty block table in order to
achieve a reduction in the Volume and power consumption,
but also the empty block information can be updated So that
the latest empty block information can be attained at any
time.
An accessing method according to the Sixth aspect of this

invention is a method for accessing a memory of a block
erase type in which data can be erased in units of blocks and
data can be written in empty blocks from which data has
been erased in advance, and the method is characterized by
comprising Steps of:

Storing, in a portion of each empty block of the memory,
empty block chain information which includes infor
mation that Sequentially Specifies another empty block,
and

at a time of Supply of to-be-written data, detecting a top
empty block in an empty block chain defined by the
empty block chain information, and writing the data in
the detected empty block.

With the accessing method according to the Sixth aspect,
a part of the memory can be used as the empty block table.
Furthermore, since the empty blocks in which data is to be
written are in the order of the chain defined by the chain
information, the writing frequency can be uniformized over
the entirety of the memory.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating the basic structure
of a storage device according to an embodiment of this
invention;

FIG. 2 is a diagram illustrating the Structure of a memory
cell array;

FIG. 3 is a diagram showing the logical Structure of a
Storage area,

FIG. 4 is a diagram exemplifying the Structure of an
empty block table;

FIG. 5 is a diagram exemplifying the Structure of an
address translation table;

FIG. 6 is a flowchart showing a data reading process,
FIG. 7 is a flowchart showing a physical address deter

mining proceSS,
FIG. 8 is a flowchart showing a writing process;
FIG. 9 is a flowchart showing an old data erasing process,
FIG. 10 is a flowchart showing a process for updating the

empty block table and the address translation table;
FIG. 11 is a conceptual diagram depicting a chain of

empty blocks in a storage device according to the Second
embodiment;

FIG. 12 is a flowchart showing a data writing proceSS in
the Storage device according to the Second embodiment; and

FIG. 13 is a flowchart showing a process for updating the
empty block information and the address translation table in
the Storage device according to the Second embodiment.

BEST MODE FOR CARRYING OUT THE
INVENTION

Storage devices according to the best modes for carrying
out this invention will now be explained.

15

25

35

40

45

50

55

60

65

6
(First Embodiment)
A Storage device according to this embodiment, which

Stores an address translation table, etc. in a flash memory
unit itself, comprises the flash memory unit 10 and a
controller 20, as illustrated in FIG. 1.
The flash memory unit 10 comprises a memory cell array

1, an I/O buffer 2, an X address buffer 3X, a block address
buffer 3B, an X address decoder 4X, a blockaddress decoder
4B, a control circuit 5 and a global buffer 6.
The memory cell array 1 comprises a plurality of memory

cells. Each memory cell is NAND type, for example, and has
a Storage capacity of 1 byte. Logically Speaking, those
memory cells are arranged in the form of a matrix having
16384 rows and 528 columns. Accordingly, the entire
memory cell array 1 has a storage capacity of 8.65 mega
bytes.

The memory cell array 1 has eight data input-output
terminals Talata, 16384 row control input terminals Trow
cont each being connected in common to the memory cells
of the corresponding row, a read control terminal Treadcont
and a write control terminal TWritecont both being common
to all memory cells, and an erase control circuit 1e for
erasing data.
When a control Signal is Supplied to a row control input

terminal Trowcont while a control signal is being input to the
read control terminal Treadcont of the memory cell array 1,
the first and Subsequent memory cells of the row Supplied
with the control Signal output their Storage contents 528
times in Sequence by the amount (i.e., 1 byte) corresponding
to one memory cell at a time to a data input-output terminal
Tdata.
On the other hand, while the control Signal is being input

to the Write control terminal TWritecont, the first and Sub
Sequent memory cells Sequentially Store, 528 times by 1 byte
at a time, data which has been input from the data input
output terminal Talata.

However, since each memory cell is NAND type, data
recording can be performed only in the direction of changing
a stored value from “1” to “0”, and a memory cell whose
stored value has been set at “0” once maintains the state of
the stored value being “0” until the reset of the storage
COntentS.

As shown in FIG. 2, each row in the matrix of memory
cells forms a page having a Storage capacity of 528 bytes.
Serial page addresses 1 through 16384 are assigned to pages,
while serial addresses 1 through 528 are assigned to memory
cells contained in each page.
As shown in FIGS. 2 and 3, each block comprises 16

pages. Each block has a Storage capacity of 8 kilobytes, and
the entire Storage area comprises 1024 blockS.

Moreover, each page has a data area which occupies an
area formed of the first to 512" bytes and a redundant
portion which occupies the remaining 16 bytes. The essen
tial data is Stored in the data area, while an error check code,
etc. are Stored in the redundant portion.
And when a control Signal as an instruction to erase data

from a specific block is input to the erase control circuit 1e
for data erase, the Storage contents of all memory cells
contained in the aforementioned block are reset (i.e. the
value stored in each memory cell becomes “1”).
The memory cell array 1 contains an empty block table

and an address translation table Stored therein for accessing
the memory cell array 1.
The top page of an arbitrary block of the memory cell

array 1 Stores the empty block table that Stores information
showing which blocks of the memory cell array 1 are empty
blocks (i.e., blocks in a reset State and containing no memory

US 6,477,632 B1
7

cells in which data “0” has been stored). Information on the
block having the empty block table stored therein is stored
in the control circuit 5, as will be explained later.
An example of the structure of the empty block table

when the memory cell array 1 has 1024 blocks in total is
illustrated in FIG. 4. This empty block table is made up of
memory cells of the first 128 bytes (i.e., the first to 1024"
bits) at the top of a specific block, and the first to 1024" bits
which are in one-to-one correspondence with blockS 1 to
1024 store “1” when the corresponding blocks are empty
blocks, and store “0” when the corresponding blocks are not
empty blockS.

The address translation table, Stored in the Second and
Subsequent pages of the block having the empty block table
Stored therein, Stores information representing logical
addresses assigned to the individual blocks of the memory
cell array 1.
When the Storage device is Subjected to reading and

Writing by the operations which will be explained later, a
CPU (Central Processing Unit)12 included in an external
computer 11, which will be explained later, and the control
ler 20, etc. recognize the logical addresses as a unit of data
to be read or written.

The total capacity of areas to which the logical addresses
have been assigned corresponds to a predetermined value
Smaller than the Storage capacity of the memory cell array 1,
the predetermined value being 16000 pages, for example,
while the Storage area occupied by each logical address
corresponds to the Storage area occupied by one page, for
example.

Specifically, in the case where a virtual Storage area,
having the size (e.g. 16000 pages) corresponding to a
predetermined value Smaller than the Storage capacity of the
memory cell array 1, is divided into Sections each being 512
bytes and when Serial numbers beginning with 0 are
assigned to the aforementioned Sections, those Serial
numbers, i.e., LBAS (Logic Block Addresses), serve as the
logical addresses.
An example of the Structure of the address translation

table is illustrated in FIG. 5. The address translation table
contains a plurality of records, a logical address is Stored at
the head of each record, and the number (block address)
assigned to a block in which the top page of an area
asSociated with the logical address is located and the number
assigned to the top page are Stored following the logical
address.
As illustrated in FIG. 1, the I/O buffer 2 is connected to

the global buffer 6, the data input-output terminals Todata of
the memory cell array 1 and the control circuit 5.

In accordance with instructions from the control circuit 5,
the I/O buffer 2 performs the operation of outputting, by 1
byte at a time, data stored in the global buffer 6 to the data
input-output terminals Todata of the memory cell array 1, as
well as the operation of outputting, by 1 byte at a time, data
which has been output from the data input-output terminals
Tdata, to the global buffer 6.

The X address buffer 3X, to which a row address signal
representing a row address (i.e., a page address) of the
memory cell array 1 has been input from the global buffer 6,
outputs the row address to the X address decoder 4X.

The X address decoder 4X Supplies a control Signal
having an active level to the row control input terminal
Trowcont for the row specified by the row address signal or
designated by the control circuit 5.

The block address buffer 3B, to which a block address
Signal representing an address of each block of the memory
cell array 1 has been input from the global buffer 6, outputs
the block address signal to the block address decoder 4.B.

15

25

35

40

45

50

55

60

65

8
The block address decoder 4B Supplies, to the erase

control circuit 1e, a Signal representing an instruction to
erase data from the block specified by the block address
Signal or designated by the control Signal 5.
The control circuit 5, to which a command is input from

the global buffer 6, analyzes the command and controls the
X address buffer 3X, the X address decoder 4X, the block
address decoder 4B and the I/O buffer 2 in accordance with
the result of the analysis.

Furthermore, a write Signal Swrite and a latch Signal
Slatch are supplied to the control circuit 5 from the control
ler 20. And the control circuit 5 controls the memory cell
array 1 and the global buffer 6 in accordance with those
Signals, as will be explained later. Moreover, the control
circuit 5 Supplies a busy Signal Sbusy and a ready Signal
Sready to the controller 20 at the timing which will be
explained later.

Further, when data stored in the global buffer 6 represents
a predetermined command Such as a Setup command, an
erasing command or the like which will be explained later,
the control circuit 5 executes the process designated by the
command.

In addition, the busy Signal Sbusy and the ready Signal
Sready may be transmitted through the same Signal line.
Then, for example, the control circuit 5 may Supply the busy
Signal Sbusy in the case where the control circuit 5 applies
a Voltage representing a binary logic value “1” to a prede
termined signal line, whereas in the case where the control
circuit 5 applies a Voltage representing a binary logical value
“0”, the control circuit 5 may supply the ready signal Sready.
The global buffer 6 is connected to the I/O buffer 2, the

control circuit 5 and the controller 20. And the global buffer
6 Stores, of Signals on the bus line 13 and the Storage
contents of the I/O buffer 2, one which is being supplied to
the global buffer 6 itself at the time of the Supply of the
control Signal output from the control circuit 5, and outputs
the contents as stored to the X address buffer 3X or the
control circuit 5, in accordance with the aforementioned
control Signal.
The controller 20 comprises a CPU, etc., and is connected

to the control circuit 5 of the flash memory unit 10, and is
connected also to the global buffer 6 of the flash memory
unit 10 and the CPU 12 of the computer 11 via the bus line
13. However, the CPU which the controller 20 comprises
may be identical with the CPU 12 of the computer 11;

In accordance with a command supplied from the CPU 12
or the like which the external computer 11 comprises, the
controller 20 Supplies the write signal Swrite and the latch
signal Slatch to the control circuit 5 as will be explained
later, and Supplies a physical address, to-be-written data, a
command, etc. to the global buffer 6, in order to control the
flash memory unit 10.

Furthermore, the controller 20 stores data representing the
locations of the address translation table, the location of the
empty block table and the location of the block which has
undergone writing most lately, and refers to the data which
the controller 20 has stored in itself, when executing a
process which will be explained later in accordance with a
command supplied from the CPU 12. Moreover, when the
amount (i.e., the number of bytes) of to-be-written data,
expressed in units of bytes, is Supplied to the controller 20
from the CPU 12, the controller 20 stores and refers to the
aforementioned amount during a proceSS which will be
explained later.
(Operation of First Embodiment)
A proceSS for writing data in this storage device will now

be explained with reference to FIGS. 6 to 10.

US 6,477,632 B1
9

FIG. 6 is a flowchart showing a data reading process,
FIG. 7 is a flowchart showing a physical address deter

mining process,
FIG. 8 is a flowchart showing a writing process;
FIG. 9 is a flowchart showing an old data erasing process,

and
FIG. 10 is a flowchart showing a process for updating the

empty block table and the address translation table.
(Data-Reading)

In the case of reading data from this Storage device, the
CPU 12 within the computer 11 executes the data reading
process shown in FIG. 6.
When the process is started, the CPU 12 outputs, onto the

bus line 13, a logical address where to-be-read data has been
Stored, and Supplies the controller 20 with a data read
command and the number of pages of the Storage area in
which the to-be-read data has been stored (FIG. 6, a step
S101).

In response to the command from the CPU 12, the
controller 20 acquires the logical address and the page
number supplied through the bus line 13, and stores both of
them (a step S102).

Then, the controller 20 Supplies the physical address of
the top page of the address translation table to the global
buffer 6, sends the latch signal Slatch to the control circuit
5, and waits for the Supply of the ready Signal Sready from
the control circuit 5 (a step S103).

In response to the latch Signal Slatch from the controller
20, the control circuit 5 Starts Supplying the busy Signal
Sbusy to the controller 20 and sends, to the global buffer 6,
an instruction to latch the physical address which the con
troller 20 is Supplying. In response to this instruction, the
global buffer 6 latches the physical address which the
controller 20 is Supplying (a step S104). Of the physical
address latched by the global buffer 6, a portion correspond
ing to a block address is Supplied to the block address
decoder 4B through the block address buffer 3B, while a
portion corresponding to a page address is Supplied to the X
address decoder 4X through the X address buffer 3X.

In order to read the address translation table, the control
circuit 5 gives an instruction to Select a page specified by the
page address to the X address decoder 4X to which the page
address has been supplied from the global buffer 6.

In response to the instruction from the control circuit 5,
the X address decoder 4X outputs a control Signal having an
active level to a row control input terminal Trowcont des
tined for a page where the address translation table has been
Stored. By So doing, that page of the address translation table
which has been designated by the controller 20 is selected.

Next, the control circuit 5 sends a data read instruction to
the read control terminal Treadcont of the memory cell array
1, Stops the Supply of the busy Signal Sbusy, and Supplies the
ready signal Sready to the controller 20. Meanwhile, the
memory cell array 1 Sequentially outputs, by 1 byte at a time,
the Storage contents of the aforementioned page of the
address translation table to the controller 20 through the I/O
buffer 2 and the global buffer 6.

Meanwhile, the controller 20 reads each logical address
Stored in the aforementioned page and the physical address
asSociated with each logical address by Sequentially reading
information supplied from the global buffer 6 (a step S105).

Then, the controller 20 determines whether the individual
logical addresses read from the address conversion table
include a logical address which matches with the logical
address acquired in the step S102 from the CPU 12 (a step
S106).
When the controller 20 determines the absence of a

matching logical address in the step S106, the controller 20

15

25

35

40

45

50

55

60

65

10
Supplies the physical address of the next page of the address
translation table to the global buffer 6 and sends the latch
signal Slatch to the control circuit 5 (a step S107), and this
Storage device returns the process to the Step S104.
On the other hand, when the controller 20 determines the

presence of a matching address in the Step S106, the Storage
device advances the process a step S108.

In the step S108, the controller 20 Supplies, to the global
buffer 6, the value of a physical address (i.e., the physical
address of the top one of pages containing to-be-read data)
shown by the logical address determined as being a match
ing address in the Step S106, and S end S the latch Signal
Slatch to the control circuit 5.

Then, the flash memory unit 10 performs substantially the
Same procedure as that in the case of responding to the latch
signal which the controller 20 has supplied in the step S103,
and the flash memory unit 10 Sequentially Supplies, by 1
byte at a time, the contents Stored at the physical address
which the controller 20 has supplied to the global buffer 6
(i.e., the contents of the top page of an unread part of the
to-be-read data) to the controller 20 via the global buffer 6
(a step S109).

Meanwhile, the controller 20 reads the to-be-read data by
Sequentially reading information Supplied Sequentially from
the global buffer 6 in the step S109, and supplies the read
data to the CPU 12 through the bus line 13 (a step S110).
And the controller 20 determines whether the number of

pages read after the start of the processing of the step S108
has reached the page number supplied from the CPU 12 and
which the controller 20 has stored in itself during the step
S102 (a step S111).
And when the controller 20 determines that the number of

pages has not yet reached the aforementioned page number,
the controller 20 supplies the next physical address where
the to-be-read data has been stored to the global buffer 6, and
sends the latch Signal Slatch to the control circuit 5 (a step
S112). Then, this storage device returns the process to the
step S109.
On the other hand, when the controller 20 determines that

the number of pages has reached the aforementioned page
number, the controller 20 notifies the CPU 12 about the end
of reading by way of sending an end code to the CPU 12
through the bus line 13 or Sending a non-illustrated control
signal to the CPU 12, for example (a step S113).
When the CPU 12 detects the end of reading (a step S114),

it terminates the reading process.
By the procedure of the steps S101 to S114, the location

of the physical address corresponding to a logical address is
found through the use of the address translation table which
the memory cell array 1 has Stored in itself, and data present
in that location is read Sequentially.

In the case where there are a plurality of logical read
addresses, the procedure of the steps S101 to S114 is
repeated the number of times corresponding to the number
of logical read addresses.
(Data Write: Determination of New Physical Address)

In the case of writing data in the memory cell array 1, this
Storage device conducts a physical address determining
process shown in FIG. 7, and executes a procedure for
determining physical data write addresses.

First of all, from the size of to-be-written data, for
example, the CPU 12 calculates the number of pages
required for writing, on the assumption that the Storage
capacity of one page is 512 bytes, and the CPU 12 deter
mines the logical write addresses.

Then, the CPU 12 sends, onto the bus line 13, the logical
address having the Smallest number assigned thereto among

US 6,477,632 B1
11

the logical write addresses, and Sends a data write command
to the controller 20 (a step S201).

In response to the command sent from the CPU 12 in the
step S201, the controller 20 performs substantially the same
procedure as that of the steps S103 to S107 included in the
process shown in FIG. 6 (S202).

Specifically, the contents of the address translation table
are read out from the flash memory unit 10, and a determi
nation is Sequentially performed as to whether the read
contents include an address which matches with the logical
address acquired from the CPU 12 in the step S201, thereby
Specifying the physical address associated with the logical
address acquired from the CPU 12.
When the physical address is specified in the step S202,

the controller 20 stores the specified physical address (a step
S203). Then, in order to read the empty block table, the
controller 20 Supplies the physical address of the empty
block table to the global buffer 6, and sends the latch signal
Slatch to the control circuit 5 (a step S204).
AS in the case where the latch Signal Slatch is Supplied in

the step S103, the control circuit 5 causes the X address
decoder 4X to Select a page which contains the empty block
table.
And when the page is Selected, the control circuit 5 Sends

a data read instruction to the read control terminal Treadcont
of the memory cell array 1. Upon reception of the
instruction, the memory cell array 1 Sequentially outputs, by
1 byte at a time, the Storage contents of the aforementioned
page containing the empty block table to the controller 20
through the I/O buffer 2 and the global buffer 6.
And the controller 20 sequentially reads information

Supplied from the global buffer 6, thereby acquiring the
empty block table (a step S205).

Next, based on the contents of the acquired empty block
table, the controller 20 specifies a physical address belong
ing to an arbitrary empty block (a step S206), and deter
mines to hereafter handle the physical address, Specified in
the step S206, as that shown by a logical write address.

However, any physical address which has already been
specified in the step S206 after the start of the process of
FIG. 7 is not specified in the step S206 again.

Furthermore, in the step S206, the block to which belongs
the physical address that has been specified in the step S206
after the start of the process of FIG. 7, is handled as an empty
block even after data has been written at the above
mentioned physical address.

Moreover, a physical address to which no logical address
has been assigned may be Selected as a physical write
address.
(Data Write: Writing into Flash Memory)

Having finished the processing of the step S206, the
controller 20 executes a writing process shown in FIG. 8.

That is, when the controller 20 specifies a physical
address by the procedure of the step S206, it supplies the
Specified physical address to the global buffer 6 and sends
the latch signal Slatch to the control circuit 5 (a step S211).

In response to the latch Signal Slatch, the control circuit
5 stops the Supply of the busy Signal Sbusy, and Starts the
supply of the ready signal Sready to the controller 20. Then,
the control circuit 5 causes the X address decoder 4X to
select the physical address specified in the step S206.

Meanwhile, in response to the ready Signal Sready, the
controller 20 requests the CPU 12 to supply to-be-written
data (a step S212), in response to which request the CPU 12
supplies the first 1 byte of the to-be-written data to the
controller 20 through the bus line 13.
And the controller 20 Stores and Supplies, to the global

buffer 6, the to-be-written data supplied from the CPU 12

15

25

35

40

45

50

55

60

65

12
through the bus line 13, and sends the write signal Swrite to
the control circuit 5 (a step S213).

In response to the write Signal Swrite, the control circuit
5 instructs the global buffer 6 to latch the to-be-written data
Supplied to the global buffer 6, Stops the Supply of the ready
Signal Sready, and restarts the Supply of the busy Signal
Sbusy to the controller 20. The global buffer 6 latches the
data on the bus line 13 and stores it in the I/O buffer 2.

Then, the control circuit 5 instructs the I/O buffer 2 to
output the data stored in the I/O buffer 2 to a data input
output terminal Talata. In response to the instruction, the I/O
buffer 2 outputs the data which the global buffer 6 has stored
in the I/O buffer 2 itself to the data input-output terminal
Tdata.

Next, the control circuit 5 outputs a write control Signal
having the active level to the write control terminal
TWritecont, in order to cause the memory cell array 1 to Store
the data which is being currently output to the data input
output terminal Talata. In response to the write control
Signal, the memory cell array 1 Stores the data, which is
being input to the data input-output terminal Talata, in the
first memory cell of the currently Selected page.

Having output the write control signal having the active
level to the write control terminal Twritecont of the memory
cell array 1, the control circuit 5 stops the Supply of the busy
Signal Sbusy and restarts the Supply of the ready Signal
Sready to the controller 20. Upon detecting the restart of the
Supply of the ready Signal Sready, the controller 20 advances
the process to a step S214.

In the step S214, the controller 20 sends a signal to request
the Subsequent data, and thereafter determines whether
512-byte data has been written in the currently selected
page, With reference to the Value of a byte counter.
And when the controller 20 determines that 512-byte data

has been written, it requests the CPU 12 to send the next
logical address (a step S215).

Then, the CPU 12 sends the next logical address onto the
bus line 13, and when the controller 20 acquires the logical
address, the controller 20 determines to handle the logical
address as one acquired in the Step S201, and returns the
process to the step S202 included in the process of FIG. 7.
On the other hand, when the controller 20 determines that

512-byte data has not been written, the controller 20 sends
a signal to request the Subsequent data to be written to the
CPU 12 (a step S216).

In response to this signal, the CPU 12 determines whether
there is any subsequent data to be written, and when the CPU
12 determines that there is no Subsequent data, it Supplies a
control code representing the end of writing to the bus line
13. On the other hand, when the CPU 12 determines that
there is the Subsequent data, it Supplies the Subsequent
1-byte data to the bus line 13.
When the Subsequent data or the control code represent

ing the end of writing is supplied from the CPU 12 after the
controller 20 has sent a signal to request the Subsequent data
in the step S206, the controller 20 determines whether the
Supplied one is the control code representing the end of
writing (a step S217).
When the controller 20 determines that the supplied one

is not the control code, it returns the process to the Step S213,
whereas when the controller 20 determines that the Supplied
one is the control code, it goes to an old data erasing process
shown in FIG. 9.

In addition, a method by which the CPU 12 notifies the
controller 20 of the absence of the to-be-written data is
arbitrary and is not limited to the Supply of the control code
through the bus ine 13; for example, a control Signal

US 6,477,632 B1
13

representing the absence of the to-be-written data may be
Sent to the controller through any other arbitrary control line.
(Data Write: Old Data Erase)

The controller 20, which has acquired the control code
representing the end of writing, executes the old data erasing
process shown in FIG. 9.
Upon start of the process shown in FIG. 9, the controller

20 firstly specifies a physical address belonging to the same
block as that of the physical address (i.e., the old physical
address which had been associated with a logical write
address until a new physical address was brought into
association with the logical write address in the step S206)
that the control 20 has s to red in itself during the step S203,
based on the contents of the address translation table which
has been read already (a step S221).
And this storage device uses each physical address Speci

fied in the Step S221 as one representing the top page of the
to-be-written data, and performs data reading in regard to
each physical address by the procedure of the steps S108 to
S114 shown in FIG. 6 (a step S222). Furthermore, the
controller 20 conducts Substantially the same procedure as
that of the steps S204 to S206, and specifies a physical
address where the data read by the step S222 is to be stored
(a step 223).

In the step S223, however, the controller 20 does not
Specify a physical address belonging to the same block as
that in which the read data has been stored.

Next, this Storage device writes the data read by the Step
S222 at the physical address specified by the step S223, in
accordance with the process shown in FIG. 8 (a step S224).

Following the above, the controller 20 Supplies, to the
global buffer 6, a predetermined Setup command for Speci
fying a block from which the Storage contents are to be
erased, and Sends the latch Signal Slatch to the control circuit
5 (a step S225).

The control circuit 5, when the latch signal Slatch is
supplied thereto by the step S225, detects that the data
Supplied to the global buffer 6 is the Setup command, and
determines to handle data, which will be supplied to the
global buffer 6 next, as the block address of the block from
which the Storage contents are to be erased.

Then, the controller 20 Supplies, to the global buffer 6, the
block address of the block (i.e., the block to which belongs
the physical address that the controller 20 has stored in itself
during the step S203) from which the storage contents are to
be erased, and Sends the latch Signal Slatch to the control
circuit 5 (a step S226).

In response to the latch Signal Slatch Supplied in the Step
S226, the control circuit 5 sends an instruction to the global
buffer 6 so as to cause the global buffer 6 to latch the block
address which the controller 20 is supplying. The block
address latched by the global buffer 6 is supplied to the block
address decoder 4B through the block address buffer 3B,
whereby the block from which the storage contents are to be
erased is Selected.

Next, the controller 20 Supplies a predetermined erase
command for erasing the Storage contents to the global
buffer 6, and sends the latch signal Slatch to the control
circuit 5 (a step S227).

The control circuit 5, when the latch signal Slatch is
supplied thereto in the step S227, detects that the data
Supplied to the global buffer 6 is the erasing command, and
instructs the block address decoder 4B to erase the Storage
contents of the selected block.

The block address decoder 4B which has received the
instruction Sends, to the erase control circuit 1e, a signal
representing an instruction to erase data from the block

15

25

35

40

45

50

55

60

65

14
Selected as an erasing target. As a result, the Storage contents
of the aforementioned block are erased.
By the procedure of the steps S221 to S227, data recorded

in the memory cell array 1 is erased, and data Stored in the
Same block as that of the erased data is Saved to other pages.

In addition, the old data erasing process is not necessarily
performed after the writing process. For example, therefore,
after a physical data write address is determined, the Storage
contents of a block with an old physical address, which had
been associated with a logical address until the logical
address was newly brought into association with the physi
cal data write address, may be deleted first, and then new
data may be written at the physical data write address.

Moreover, the Scene wherein data erase is effected is not
limited to that wherein data erase is performed as a part of
the data writing process as in the case of the above-described
steps S221 to S227.

Therefore, data erase can be performed without the writ
ing of new data being involved.
To be specific, the CPU 12, for example, firstly sends a

data erase command to the controller 20, and Supplies a
logical erase address to the controller 20 through the bus line
13.

In response to the command, the controller 20 conducts
the same procedure as that of the steps S201 to S203
included in the process of FIG. 7, and Specifies a physical
address (i.e., a physical erase address) designated by the
logical erase address.
And the controller 20 handles the specified physical erase

address as that specified by the step S203, and conducts the
procedure of the aforementioned steps S221 to S227. By so
doing, the Storage contents of the block to which the
physical erase address belongs are erased.

In addition, in the case of designating new physical write
addresses in the above-described data writing process, the
controller 20 may designate the new physical write
addresses So that data can be sequentially written in the
blocks following the empty block in which data has been
written last time and so that when those blocks include no
empty block, data may be sequentially written in any empty
blocks following the top block.
Due to this, Since empty blocks undergo writing

cyclically, a Specific block does not frequently undergo data
update, avoiding the situation in which the performance of
the Specific block only is deteriorated.
(Update of Empty Block Table and Address Translation
Table)
When data erase and data write are completed by the

above-described procedures, the controller 20 initiates the
process shown in FIG. 10 in order to update the empty block
table and the address translation table.

In the process of FIG. 10, in order to acquire the empty
block table from the flash memory unit 10, the controller 20
firstly conducts the Substantially the same procedure as that
of the steps S201 to S205 shown in FIG. 7, and stores the
empty block table temporarily (a step S301).

Then, based on the contents of the temporarily Stored
empty block table, the controller 20 specifies one empty
block in order to newly write the empty block table and the
address translation table, and Stores the top page of that
block (a step S302).

Then, of the temporarily stored empty block table, the
controller 20 translates, from “1” to “0”, bits representing
the empty block in which data has been written and the
empty block specified by the step S302, as well as bits
representing the blocks to which the physical addresses
specified by the steps S206 and S223 belong. Furthermore,

US 6,477,632 B1
15

the controller 20 translates, from “0” to “1”, a bit represent
ing the block in which the empty block table and the address
translation table are present currently and a bit representing
the block whose Storage contents have been erased by the
step S227 (a step S303).

Next, the controller 20 Supplies the physical address of the
top page of the block specified by the step S302 to the global
buffer 6, and sends the latch signal Slatch to the control
circuit 5 (a step S304).

In response to the latch Signal Slatch, the control circuit
5 stops the Supply of the busy Signal Sbusy, and Starts the
supply of the ready signal Sready to the controller 20. And
the control circuit 5 causes the X address decoder 4X to
select the physical address supplied from the controller 20 to
the global buffer 6.

Meanwhile, in response to the ready Signal Sready, the
controller 20 Supplies the first 1 byte of the empty block
table translated by the step S303 to the global buffer 6 (a step
S305), and sends the write signal Swrite to the control circuit
5 (a step S306).

In response to the write Signal Swrite, the control circuit
5 causes the global buffer 6 to latch the data supplied from
the controller 20 to the global buffer 6, stops the Supply of
the ready Signal Sready, and restarts the Supply of the busy
signal Sbusy to the controller 20. The global buffer 6 latches
the data on the bus line 13, and stores it in the I/O buffer 2.

Next, the control circuit 5 causes the I/O buffer 2 to supply
the data which the I/O buffer 2 has stored to a data
input-output terminal Talata, Supplies the write control Signal
having the active level to the write control terminal
TWritecont, and records the data which is being Supplied to
the data input-output terminal Talata in the first memory cell
of the currently Selected page.
And the control circuit 5 stops the Supply of the busy

Signal Sbusy, and restarts the Supply of the ready Signal
Sready to the controller 20.
When the controller 20 detects the restart of the ready

Signal Sready, it determines whether any part of the empty
block table, which the controller 20 has stored in itself,
remains unsupplied to the flash memory unit 10 (a step
S307).
And when the controller 20 determines that any part of the

empty block table remains unsupplied, the controller 20
Supplies the Subsequent 1 byte of the empty block table,
which the controller 20 has temporarily stored in itself, to
the global buffer 6 (a step S308) and returns the process to
the step S306.
On the other hand, when the controller 20 determines that

no part of the empty block table remains unsupplied, the
controller 20 Supplies the physical address of the top page of
the address translation table to the global buffer 6 in order to
update the address translation table, Supplies the latch Signal
Slatch to the control circuit 5, and waits for the Supply of the
ready signal Sready from the control circuit 5 (a step S309).

Then, the flash memory unit 10 stops the Supply of the
busy Signal Sbusy, Supplies the ready Signal Sready to the
controller 20, and provides the controller 20 with the storage
contents of that page of the address translation table which
has been designated by the controller 20, as in the case
where of the Supply of the latch signal in the step S103.

Meanwhile, similarly in the step S105, the controller 20
reads, from the flash memory unit 10, each logical address
Stored in the page corresponding to the physical address
which the controller 20 itself has supplied and the physical
address associated with each logical address, and the con
troller 20 temporarily Stores the read addresses (a step
S310).

15

25

35

40

45

50

55

60

65

16
Then, the controller 20 determines whether the tempo

rarily Stored logical addresses include an address which
matches with the logical address which the controller 20 has
Stored in itself as a target whose physical address allocation
needs to be changed (a step S311).
When the controller 20 determines that they include no

matching address, the controller 20 advances the process to
a step S313. When the controller 20 determines that they
include a matching address, the controller 20 translates,
among the physical addresses which the controller 20 has
temporarily Stored in itself, the physical address associated
with the logical address determined as being the matching
address into one which is to be newly associated with the
logical address (a step S312), and advances the process to
the step S313.

In the step S311, the logical address that the CPU 12 has
supplied to the controller 20 as a data write address, for
example, is determined as an address matching with the
logical address which the controller 20 has stored as the
target whose physical address allocation needs to be
changed. Then, in the Step S312, the physical address
designated by the aforementioned logical address is trans
lated from the old physical address Specified by the Step
S202 into the new physical address specified by the step
S206.

Then, this storage device performs Substantially the same
procedure as that of the steps S301 to S308, whereby that
1-page portion of the address translation table which the
Storage device has Stored in itself is written in the page
following that page of the memory cell array 1 which has
undergone writing most lately after the Start of the proceSS
shown in FIG. 10 (a step S313).
Upon completion of writing, the controller 20 determines

whether the number of pages as written in the step S313 is
equal to the total number of pages of the address translation
table, thereby determining whether the writing of the
address translation table has been completed or not (a step
S314).
When it is determined that the writing of the address

translation table has been completed, the process is
advanced to a step S316. When it is determined that the
Writing of the address translation table has not yet been
completed, the physical address of the next page of the
address translation table is supplied to the global buffer 6,
the latch signal Slatch is sent to the control circuit 5 (a step
S315), and the process is returned to the step S310.

In the step S316, the controller 20 stores the locations of
the empty block table and address translation table after
updated.
And this Storage device erases the Storage contents from

the logical addresses where the empty block table and the
address translation table before updated are present (a step
S317).

Incidentally, according to this Storage device, the corre
spondence between the logical and physical addresses of
data is written in the address translation table in the data
Writing order. At the time of reading the data, the correspon
dence between the logical and physical addresses is read
while Sequentially Searching the address translation table.
However, the following Speedy method can also be
employed to read the correspondence between the logical
and physical addresses.

For example, using a predetermined hash function, the
controller 20 may derive the location at which the corre
spondence between the logical and physical addresses is to
be stored in the address translation table from a logical
address which is sent from the CPU 12 at the data writing

US 6,477,632 B1
17

time, and the controller 20 may control the flash memory
unit 10 So as to Store the correspondence between the logical
and physical addresses at the derived location. And using the
aforementioned hash function also at the data-reading time,
the controller 20 may derive the storage location of the
correspondence between the logical and physical addresses
from the logical address sent from the CPU 12, and may read
the physical address from the location in the flash memory
unit 10 which location has been derived by the controller 20
itself.

In this case, collision can occur at the Storage location
derived from the logical address sent from the CPU 12; in
that case, however, the correspondence between the logical
and physical addresses may be Stored in the Storage location
next to the derived Storage location, or any special area may
be provided for Storage in the case of collision.
AS explained above, according to this storage device, the

address translation table and the empty block table are Stored
in the memory cell array 1, and data can be read and written
using those tables.

In addition, the size of each block is not limited to that
described previously. For example, each block is not nec
essarily constituted by 16 pages, and the size of each block
needs only be equal to an integer multiple of the Size of each
page, for example.

Furthermore, in the case where this Storage device is a
flash memory comprising a JEIDA/PCMCIA interface, for
example, the size of each page is, in general, determined by
the OS (Operating System) which is executed on the com
puter 11, but the size of each page may not necessarily be
determined by the OS.

Moreover, in general, the size of each block is a value
peculiar to this storage device, but the size of each block in
this Storage device can be designated by an external control.
(Second Embodiment)

In the Storage device of the first embodiment, information
representing the locations of empty blockS is Stored concen
trically in a specific area. However, the information repre
Senting the locations of the empty blockS is not necessarily
Stored concentrically in a specific area, and each empty
block may sequentially Store the information representing
the location of another empty block So that the management
of the empty blockS can be performed in the manner of
chaining the empty blockS.

The Storage device of the Second embodiment, compris
ing the empty blocks thus chained, and a proceSS for
managing the empty blocks, will now be described with
reference to FIGS. 11 to 13.

The basic structure of the Storage device according to this
embodiment is Substantially the same as that of the Storage
device according to the first embodiment. In this
embodiment, however, the address translation table is Stored
in the top area of an arbitrary blockS.

Moreover, in a predetermined location within a redundant
portion of each empty block, empty block information
representing the number that Specifies the nearest one of the
empty blocks which are, logically Speaking, located after t
he aforementioned empty block, is stored as shown in FIG.
11.
A chain of empty blocks, which chain is defined by the

empty block information, differs in order from a physical
arrangement of empty blockS. Further, the control circuit 5
Stores the empty block number Specifying the first one of the
empty blocks forming the chain. In the Storage device of this
embodiment, a data area and a redundant portion are
arranged in each page So as not to overlap with each other
as explained previously.

15

25

35

40

45

50

55

60

65

18
Due to this, even if the process of writing data in an empty

block in which the empty block information has already
been written is executed by Simply overwriting the data, the
empty block information written in the redundant portion of
the aforementioned empty block is not destroyed.
(Operation of Second Embodiment)
The procedures for writing data in this Storage device are

the same as those of the first embodiment, except the data
Writing process and the process for updating the empty block
information and the address translation table. Therefore, the
operation of this Storage device during mainly the data
Writing process and the process for updating the empty block
information and the address translation table, will now be
explained with reference to FIGS. 12 to 13.
(Data Write)
The proceSS for writing data in this Storage device Starts

from a step 501 shown in FIG. 12.
In the step S501, the CPU 12 specifies logical write

addresses, after which the CPU 12 Supplies, onto the bus line
13, the value of the logical address whose number is smallest
among the Specified logical write addresses, and provides a
data write command with the controller 20.

In response to the command supplied in the step S501, the
controller 20 Stores, as a logical write address, the logical
address supplied from the CPU 12 through the bus line 13
(a step S502).

Subsequently, the controller 20 performs substantially the
same procedure as that of the step S202 mentioned
previously, thereby Specifying the physical address associ
ated with the logical write address which the controller 20
has stored in itself (a step S503).

Then, the controller 20 specifies the top page of the top
empty block with reference to data which the controller 20
has stored in itself (a step S504). And the controller 20
determines to hereafter handle the physical address Specified
by the step S503 and a physical address belonging to the
page specified by the step S504, with both physical
addresses being replaced with each other (a step S505). As
a result, the physical address specified by the step S504 and
belonging to an empty block located at the top of the chain
becomes to Serve a physical write address.

Next, the controller 20 Supplies the physical address
determined as being the write address in the step S505 to the
global buffer 6, and instructs the control circuit 5 to read the
513" and subsequent bytes of the page designated by the
aforementioned physical address (a step S506).
The control circuit 5 instructs the X address decoder 4X

to select the page specified by the step S504, and thereafter
Sends a data read instruction to the read control terminal
Treadcont of the memory cell array 1. The memory cell
array 1 Sequentially Supplies, by 1 byte at a time, the empty
block information stored in the redundant portion of the
aforementioned page to the controller 20 through the I/O
buffer 2 and the global buffer 6.
When the controller 20 has read the empty block infor

mation supplied from the flash memory unit 10, the con
troller 20 stores the empty block information as information
on the location of the top empty block (a step S507). The
empty block information stored in the step S507 represents
the empty block which newly comes out at the top of the
chain as a result of the process shown in FIG. 12.

Subsequently, this Storage device performs Substantially
the same procedure as that of the above-described Steps
S211 to S217 in order to write data, while handling the
physical address belonging to the page and Specified as
being the write address in the step S505, as the physical
address specified by the step S206 of the first embodiment
(a step S508).

US 6,477,632 B1
19

And the controller 20 terminates the data writing proceSS
when the controller 20 determines, in the procedure which
corresponds to the Step S217 among the procedures carried
out in the step S508, that the control code representing the
end of writing has been supplied from the CPU 12.

Furthermore, when the controller 20 determines in the
procedure corresponding to the step S214 that 512-byte data
has been written at the currently Selected page, the controller
20 Sends a signal requesting the Supply of the next logical
address to the CPU 12, in response to which signal the CPU
12 sends the next logical address onto the bus line 13. And
when the controller 20 acquires the next logical address
from the CPU 12 through the bus line 13, the controller 20
Stores the logical address as the logical write address,
overwriting the logical address on the previously Stored
logical address, and returns the process to the step S503.
By the procedure of the steps S501 to S508 described

above, the physical address designated by the logical write
address is specified Sequentially from the top of the chain of
empty blocks, and data is written in the empty blocks as
Specified.
(Updating of Empty Block Information and Address Trans
lation Table)
When updating the empty block information and the

address translation table, the controller 20 initiates the
process of FIG. 13 from a step S601.

In the process shown in FIG. 13, the controller 20 firstly
Specifies the top page of the top empty block, with reference
to data which the controller 20 has stored in itself (a step
S601).

Next, the controller 20 Supplies the physical address of the
page specified by the step S601 to the global buffer 6, and
sends the latch signal Slatch to the control circuit 5 (a step
S602).

In response to the latch Signal Slatch, the control circuit
5 instructs the X address decoder 4X to select the page
designated by the physical address Supplied to the global
buffer 6, and sends the data read instruction to the read
control terminal Treadcont of the memory cell array 1 when
the page is Selected. The memory cell array 1 Sequentially
outputs, by 1 byte at a time, the Storage contents of the
aforementioned page to the controller 20 through the I/O
buffer 2 and the global buffer 6.
And the controller 20 sequentially reads the 513" and

Subsequent bytes of the Storage contents Supplied from the
global buffer 6, thereby acquiring the empty block informa
tion stored in the redundant portion of the read page (a step
S603).

Having read the empty block information, the controller
20 overwrites the empty block information on information
concerning the top page of the top empty block Specified by
the step S601. In other words, the controller 20 updates or
replaces information concerning the location of the top
empty block with information concerning the location of the
next empty block (a step S604).

Next, the controller 20 updates the address translation
table by executing the procedure of the above-described
steps S309 to S315 (a step S605), and stores the location of
the updated address translation table (a step S606).

However, the address translation table after updated is
written in the logical address corresponding to the currently
selected page specified by the step S601. Further, the infor
mation to be updated includes not only information con
cerning a physical block to which a new logical address has
been assigned, but also information concerning the result of
the physical address replacement performed in the Step
S505.

15

25

35

40

45

50

55

60

65

20
Next, in order to add the empty block information, the

controller 20 refers to the data stored in itself and specifies
the top page of the top empty block (a step S607).

Following the above, the controller 20 sends the physical
address of the page which the controller 20 itself is speci
fying currently to the global buffer 6, and sends the latch
signal Slatch to the control circuit 5 (a step S608).

In response to the latch Signal Slatch, the control circuit
5 causes the X address decoder 4X to Select the page
designated by the physical address Supplied to the global
buffer 6, and sends the data read instruction to the read
control terminal Treadcont of the memory cell array 1 So as
to cause the memory cell array 1 to Send the Storage contents
of the aforementioned page to the controller 20 through the
I/O buffer 2 and the global buffer 6.

Then, the controller 20 sequentially reads the 513" and
Subsequent bytes of information Supplied from the global
buffer 6, thereby acquiring information Stored in the redun
dant portion of the aforementioned page (a step S609).

Next, the controller 20 determines whether the empty
block information is contained in the information read by the
step S609 (a step S610).
When the empty block information is contained therein,

the controller 20 specifies the top page of the next empty
block designated by the empty block information (a step
S611), and returns the process to the step S608.
When no block information is contained therein, the

currently specified page is the top page of the last empty
block.
At that time, the controller 20 conducts substantially the

same procedure as that of the above-described steps S301 to
S308, and controls the flash memory unit 10 so that data
including information on the block whose first to 512" bytes
are empty and whose 513" and Subsequent bytes currently
Store, as the empty block information, the old address
translation table before updated, is written in the currently
Selected page (a step S612).
By so doing, the block in which the old address translation

block is Stored currently is incorporated into the end of the
chain of empty blockS.

Subsequently, this storage device erases the Storage con
tents of the block which contains the address translation
table before updated, in accordance with the same procedure
as that of the above-described steps S221 to S227 (a step
S613). As a result, the block in which the old address
translation block has been Stored becomes an empty block.
By the procedure of the steps S601 to S613 described

above, the empty block information and the address trans
lation table are updated.

In addition, when initializing the memory cell array 1, the
controller 20 erases the contents of all blocks of the memory
cell array 1 once, and thereafter controls the flash memory
unit 10 So as to write empty block chain information in the
redundant portion of each block.

In this case, the controller 20 writes the chain information
So that the empty blocks are chained randomly as shown in
FIG. 11. If data writing locations are distributed by thus
designing the chain information, the situation in which data
is repeatedly written in a Specific area only can be prevented.

In addition, this invention is not limited to the above
described embodiments, and various modifications and
applications are possible.

For example, according to the above embodiments, in
order to facilitate understanding, data is transferred in units
of 1 byte between the CPU 12 and the storage device.
However, data can be transferred in arbitrary units Such as
2 bytes, 4 bytes, etc. Similarly, the capacity of the memory
cells is not limited to 1 byte and may be 2 bytes or else.

US 6,477,632 B1
21

Furthermore, the memory cell array 1 used in the Storage
devices of the above-described embodiments is one chip
only. However, this invention can be applied also to a
Storage device comprising plural-chip flash memories. In
this case, the address translation table (and the empty block
table) may be stored in any one block of one of the
plural-chip flash memories; furthermore, the controller 20
may store information concerning the chip having the
address translation table (and the empty block table) stored
therein. Moreover, in the case where the empty block
information is structured as the chain information as in the
case of the Second embodiment, the chain information which
indicates the chip having the next empty block and the block
number may be written in a redundant area.

Further, according to the above embodiments, the
memory cell array 1 is NAND type. However, it may be
NOR type.

Moreover, according to the above embodiments, the con
trol circuit 5 is arranged within the Storage device. However,
access to the memory cell array 1 can be controlled without
the use of the control circuit 5 by causing the controller 20
and/or the CPU 12 to perform the operations which the
control circuit 5 executes. Access to the memory cell array
1 can also be controlled without the use of the controller 20
by causing the CPU 12 to perform the operations which the
controller 20 executes.

In the case where the CPU 12 executes the operations of
the control circuit 5 and controller 20, a program for
executing the above-described control operations is installed
into the computer 11 from a medium (a floppy disk, a
CD-ROM or the like) containing the program stored therein,
and the program is run on an OS (Operating System) to
execute the above-described processes.

According to this invention, as explained above, infor
mation representing the locations of the empty blocks and
information showing the correspondence between the logi
cal and physical addresses, etc. are Stored in a block erase
type Storage medium. This eliminates the need to provide
any other Storage medium for Storing the information rep
resenting the locations of the empty blockS and the infor
mation showing the correspondence between the logical and
physical addresses.
What is claimed is:
1. A Storage device comprising:
a non-volatile Semiconductor memory including a plural

ity of memory blocks to which physical addresses have
been assigned;

an erasure for batch erasing of Stored data from Said
memory in units of memory blocks, and

a writer, to which data and logical addresses are input,
which determines locations where Said data is to be
Stored in Said memory and which writes Said data in
Said locations,

wherein Said memory Stores an address translation table
which Stores information showing a correspondence
between Said logical addresses and physical addresses
of Said memory,

wherein Said writer adds, to Said address translation table,
information showing a correspondence between physi
cal addresses of the locations where Said data has been
written and the input logical addresses, or updates Said
address translation table, and

wherein the data and the address translation table are both
Stored in Said memory,

Said Storage device further comprising a reader that per
forms the following Steps:

5

15

25

35

40

45

50

55

60

65

22
Storing a physical address of a block in which Said

address translation table has been written;
accessing the block which contains Said address trans

lation table Stored therein and reading physical
addresses corresponding to logical addresses of
to-be-read data; and

reading and outputting data Stored at the physical
addresses read by Said reader,

wherein Said memory Stores an empty block table which
Stores information Specifying empty blocks containing
no data Stored therein;

Said writer comprises empty block Selector which
accesses a block which contains Said empty block table
Stored therein and Selects a writing target block from
the empty blockS registered in Said empty block table,
and empty block writer which writes to-be-written data
in the empty block Selected by Said empty block
Selector,

Said Storage device further comprising:
an eliminator which eliminates Said empty block table
which Stores information specifying Said empty block
that existed until said empty block writer has written
Said data in Said empty block, and
an empty block updater which causes Said memory to

Store Said empty block table which Stores informa
tion specifying empty blocks that remain after Said
empty block writer has written said data in Said
empty block.

2. The Storage device according to claim 1, wherein Said
memory Stores Said address translation table and Said empty
block table in one block.

3. A Storage device comprising:
a non-volatile Semiconductor memory including a plural

ity of memory blocks to which physical addresses have
been assigned;

an erasure for batch erasing of Stored data from Said
memory in units of memory blocks, and

a writer, to which data and logical addresses are input,
which determines locations where Said data is to be
Stored in Said memory and which writes Said data in
Said locations,

wherein Said memory Stores an address translation table
which Stores information showing a correspondence
between Said logical addresses and physical addresses
of Said memory,

wherein Said writer adds, to Said address translation table,
information showing a correspondence between physi
cal addresses of the locations where Said data has been
written and the input logical addresses, or updates Said
address translation table, and

wherein the data and the address translation table are both
Stored in Said memory,

wherein Said memory Stores an empty block table which
Stores information Specifying empty blocks containing
no data Stored therein; and

Said writer comprises empty block Selector which
accesses a block which contains Said empty block table
Stored therein and which Selects a writing target block
from the empty blockS registered in Said empty block
table, and empty block writer which writes to-be
written data in the empty block Selected by Said empty
block Selector,

Said Storage device further comprising:
an eliminator which eliminates Said empty block table
which Stores information Specifying Said empty

US 6,477,632 B1
23

block that existed until said empty block writer has
written Said data in Said empty block, and

an empty block updator which causes Said memory to
Store Said empty block table which Stores informa
tion specifying empty blocks that remain after Said
empty block writer has written said data in Said
empty block.

4. The Storage device according to claim 3, wherein Said
memory Stores Said address translation table and Said empty
block table in one block.

5. A Storage device comprising:
a non-volatile Semiconductor memory, including a plu

rality of memory blocks to which physical addresses
have been assigned;

an erasure which erases Stored data from Said memory in
units of memory blocks, and

a writer, to which to-be-written data and logical addresses
are input, which determines locations where Said data
is to be Stored in Said memory and writes Said data in
Said locations,

wherein Said memory Stores empty block information
Specifying empty blocks in which Said data is not
Stored, and

wherein Said writer writes Said data in an empty block
Specified by Said empty block information,

wherein Said writer further comprises an updater which
causes the empty block information Stored in Said
Storage means to the empty block information which
Specifies information on empty blocks that remain after
Said writer has written said data in Said empty block,

wherein:
Said empty block information is Stored in a portion of

each empty block, and includes chain information
registered to Specify another empty block in a chain
manner; and

Said writer detects an empty block in accordance with
Said chain information and writes Said data in Said
empty block.

6. The Storage device according to claim 5, wherein Said
memory has data areas and redundant areas, and Said chain
information is Stored in Said redundant areas.

7. A Storage device comprising:
a non-volatile Semiconductor memory, including a plu

rality of memory blocks to which physical addresses
have been assigned;

an erasure which erases Stored data from Said memory in
units of memory blocks, and

a writer, to which to-be-written data and logical addresses
are input, which determines locations where Said data
is to be Stored in Said memory and writes Said data in
Said locations,

wherein Said memory Stores empty block information
Specifying empty blocks in which Said data is not
Stored, and

wherein Said writer writes Said data in an empty block
Specified by Said empty block information,

wherein Said writer further comprises an updater which
causes the empty block information Stored in Said
Storage means to the empty block information which
Specifies information on empty blocks that remain after
Said writer has written said data in Said empty block,

wherein:
Said empty block information is Stored in a portion of

each empty block, and includes chain information
registered to Specify another empty block in a chain
manner; and

15

25

35

40

45

50

55

60

65

24
Said writer comprises top empty block Storage which

Stores a physical address of a first empty block in a
chain defined by Said chain information, and a Sec
ond writer writes Said data in the empty block having
Said physical address assigned thereto and causes
Said top empty block Storage to Store the chain
information registered in Said block.

8. The Storage device according to claim 7, wherein Said
memory has data areas and redundant areas, and Said chain
information is Stored in Said redundant areas.

9. A Storage device comprising:
a non-volatile Semiconductor memory, including a plu

rality of memory blocks to which physical addresses
have been assigned;

an erasure which erases Stored data from Said memory in
units of memory blocks, and

a writer, to which to-be-written data and logical addresses
are input, which determines locations where Said data
is to be Stored in Said memory and writes Said data in
Said locations,

wherein Said memory Stores empty block information
Specifying empty blockS in which Said data is not
Stored, and

wherein Said writer writes Said data in an empty block
Specified by Said empty block information,

wherein:
Said empty block information is Stored in a portion of

each empty block, and includes chain information
registered to Specify another empty block in a chain
manner; and

Said writer detects an empty block in accordance with
Said chain information and writes Said data in Said
empty block.

10. The storage device according to claim 9, wherein said
memory has data areas and redundant areas, and Said chain
information is Stored in Said redundant areas.

11. A Storage device comprising:
a non-volatile Semiconductor memory, including a plu

rality of memory blocks to which physical addresses
have been assigned;

an erasure which erases Stored data from Said memory in
units of memory blocks, and

a writer, to which to-be-written data and logical addresses
are input, which determines locations where Said data
is to be Stored in Said memory and writes Said data in
Said locations,

wherein Said memory Stores empty block information
Specifying empty blockS in which Said data is not
Stored, and

wherein Said writer writes Said data in an empty block
Specified by Said empty block information,

wherein:
Said empty block information is Stored in a portion of

each empty block, and includes chain information
registered to Specify another empty block in a chain
manner; and

Said writer comprises top empty block Storage which
Stores a physical address of a first empty block in a
chain defined by Said chain information, and a Sec
ond writer which writes said data in the empty block
having Said physical address assigned thereto and
causes Said top empty block Storage to Store the
chain information registered in Said block.

12. The Storage device according to claim 11, wherein
Said memory has data areas and redundant areas, and Said
chain information is Stored in Said redundant areas.

US 6,477,632 B1
25

13. A Storage device comprising:
Storage means, including a plurality of memory blocks to
which physical addresses have been assigned;

erasure means for batch erasing of Stored data from Said
Storage means in units of memory blocks, and

Writing means, to which data and logical addresses are
input, for determining locations where said data is to be
Stored in Said Storage means and for writing Said data
in Said locations,

wherein Said Storage means Stores an address translation
table which Stores information showing a correspon
dence between said logical addresses and physical
addresses of Said Storage means,

Said writing means comprises means for adding, to Said
address translation table, information showing a corre
spondence between physical addresses of the locations
where Said data has been written and the input logical
addresses, or for updating Said address translation table,
and

reading means including: means for Storing a physical
address of a block in which said address translation
table has been written; physical address reading means
for accessing the block which contains Said address
translation table Stored therein and for reading physical
addresses corresponding to logical addresses of to-be
read data, and means for reading and outputting data
Stored at the physical addresses read by Said physical
address reading means,

Said Storage means Storing an empty block table which
Stores information specifying empty blocks containing
no data Stored therein;

Said writing means comprising empty block Selecting
means for accessing a block which contains said empty
block table Stored therein and for Selecting a writing
target block from the empty blocks registered in Said
empty block table, and empty block writing means for
Writing to-be-written data in the empty block Selected
by Said empty block Selecting means, and

the Storage device further comprising: means for elimi
nating Said empty block table which Stores information
Specifying Said empty block that existed until Said
empty block writing means has written Said data in Said
empty block, and empty block updating means, com
prising means for causing Said Storage means to Store
Said empty block table which Stores information speci
fying empty blocks that remain after Said empty block
Writing means has written Said data in Said empty
block.

14. The Storage device according to claim 13, wherein
Said Storage means Stores said address translation table and
said empty block table in one block.

15. A Storage device comprising:
Storage means, including a plurality of memory blocks to
which physical addresses have been assigned;

erasure means for batch erasing of Stored data from Said
Storage means in units of memory blocks, and

Writing means, to which data and logical addresses are
input, for determining locations where said data is to be
Stored in Said Storage means and for writing Said data
in Said locations,

wherein Said Storage means Stores an address translation
table which Stores information showing a correspon
dence between said logical addresses and physical
addresses of Said Storage means, and

Said writing means comprises means for adding, to Said
address translation table, information showing a corre

15

25

35

40

45

50

55

60

65

26
spondence between physical addresses of the locations
where Said data has been written and the input logical
addresses, or for updating Said address translation
table;

wherein:
Said Storage means Stores an empty block table which

Stores information Specifying empty blocks contain
ing no data Stored therein; and

Said writing means comprises empty block Selecting
means for accessing a block which contains Said
empty block table Stored therein and for Selecting a
Writing target block from the empty blockS registered
in Said empty block table, and empty block writing
means for writing to-be-written data in the empty
block Selected by Said empty block Selecting means,
and

the Storage device further comprising: means for elimi
nating Said empty block table which Stores informa
tion Specifying Said empty block that existed until
Said empty block writing means has written Said data
in Said empty block, and empty block updating
means, comprising means for causing Said storage
means to Store Said empty block table which Stores
information Specifying empty blocks that remain
after Said empty block writing means has written Said
data in Said empty block.

16. The Storage device according to claim 15, wherein
Said Storage means Stores said address translation table and
said empty block table in one block.

17. A Storage device comprising:
Storage means, including a plurality of memory blockSto

which physical addresses have been assigned;
erasure means for batch erasing of Stored data from Said

Storage means in units of memory blocks, and
Writing means, to which to-be-written data and logical

addresses are input, for determining locations where
Said data is to be stored in Said Storage means and for
Writing Said data in Said locations,

wherein Said Storage means Stores empty block informa
tion Specifying empty blocks in which Said data is not
Stored, and

Said writing means writes Said data in an empty block
Specified by Said empty block information;

wherein:
Said writing means further comprises updating means

for changing the empty block information Stored in
Said Storage means to the empty block information
which specifies information on empty blocks that
remain after said writing means has written Said data
in Said empty block;

Said empty block information is Stored in a portion of
each empty block, and includes chain information
registered to Specify another empty block in a chain
manner; and

Said writing means comprises means for detecting an
empty block in accordance with Said chain informa
tion and for writing Said data in Said empty block.

18. The storage device according to claim 17, wherein
Said Storage means has data areas and redundant areas, and
Said chain information is Stored in Said redundant areas.

19. The storage device according to claim 17, wherein:
Said empty block information is Stored in a portion of each

empty block, and includes chain information registered
to Specify another empty block in a chain manner; and

Said writing means comprises top empty block Storing
means for Storing a physical address of a first empty

US 6,477,632 B1
27

block in a chain defined by Said chain information, and
means for writing Said data in the empty block having
Said physical address assigned thereto and for causing
Said top empty block Storing means to Store the chain
information registered in Said block.

20. The storage device according to claim 19, wherein
Said Storage means has data areas and redundant areas, and
Said chain information is Stored in Said redundant areas.

21. The Storage device according to claim 17, wherein:
Said empty block information is Stored in a portion of each

empty block, and includes chain information registered
to Specify another empty block in a chain manner; and

Said writing means comprises means for detecting an
empty block in accordance with Said chain information
and for writing Said data in Said empty block.

22. The Storage device according to claim 21, wherein
Said Storage means has data areas and redundant areas, and
Said chain information is Stored in Said redundant areas.

23. The Storage device according to claim 17, wherein:
Said empty block information is Stored in a portion of each

empty block, and includes chain information registered
to Specify another empty block in a chain manner; and

Said writing means comprises top empty block Storing
means for Storing a physical address of a first empty

15

28
block in a chain defined by Said chain information, and
means for writing Said data in the empty block having
Said physical address assigned thereto and for causing
Said top empty block Storing means to Store the chain
information registered in Said block.

24. The Storage device according to claim 23, wherein
Said Storage means has data areas and redundant areas, and
Said chain information is Stored in Said redundant areas.

25. The Storage device according to claim 13, wherein
each of Said blocks includes a plurality of memory pages,
each of memory pages includes memory cells, and data can
be read from and written into the memory cells of each of the
pages in Sequence.

26. The Storage device according to claim 15, wherein
each of Said blocks includes a plurality of memory pages,
each of memory pages includes memory cells, and data can
be read from and written into the memory cells of each of the
pages in Sequence.

27. The storage device according to claim 17, wherein
each of Said blocks includes a plurality of memory pages,
each of memory pages includes memory cells, and data can
be read from and written into the memory cells of each of the
pages in Sequence.

