

US 20150306210A1

(19) United States

(12) Patent Application Publication Thirion et al.

(10) **Pub. No.: US 2015/0306210 A1** (43) **Pub. Date:** Oct. 29, 2015

(54) VACCINE AGAINST BETA-HERPESVIRUS INFECTION AND USE THEREOF

(71) Applicants: Christian Thirion, Munich (DE); Ulrich Koszinowski, Feldafing (DE); Christian A. Mohr, Munchen (DE); Zsolt Ruzsics, Diessen am Ammersee (DE)

(72) Inventors: Christian Thirion, Munich (DE); Ulrich Koszinowski, Feldafing (DE); Christian A. Mohr, Munchen (DE); Zsolt Ruzsics, Diessen am Ammersee (DE)

(21) Appl. No.: 14/734,415

(22) Filed: Jun. 9, 2015

Related U.S. Application Data

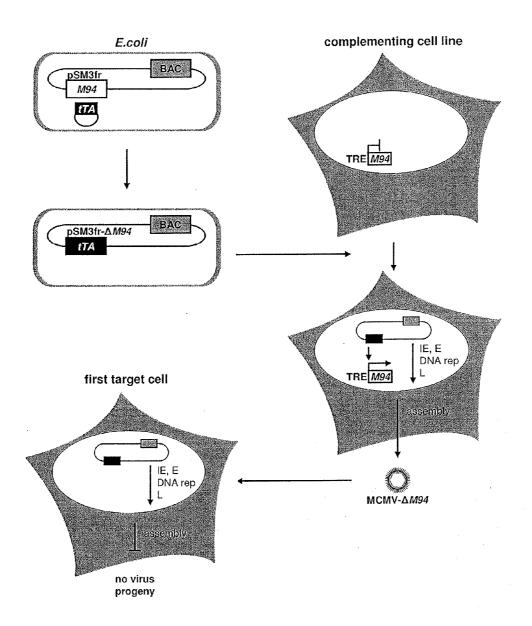
(62) Division of application No. 13/695,668, filed on Dec. 14, 2012, now Pat. No. 9,078,867, filed as application No. PCT/EP2011/002252 on May 5, 2011.

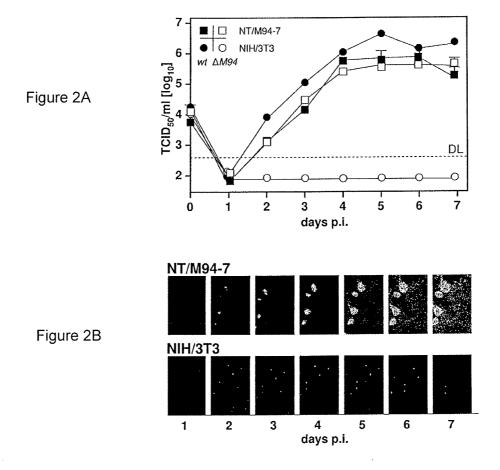
(30) Foreign Application Priority Data

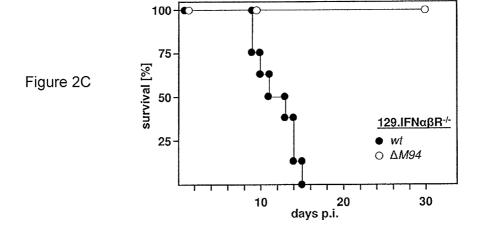
May 5, 2010	(EP)	 10004751.3
May 12, 2010	(EP)	 10005045.9

Publication Classification

(51) **Int. Cl.**A61K 39/245 (2006.01)


C12N 7/00 (2006.01)


2710/16121 (2013.01); *C12N 2710/16171* (2013.01); *A61K 2039/525* (2013.01)


(57) ABSTRACT

The present invention is related to a beta-herpesvirus, wherein the beta-herpesvirus is spread-deficient.

Figure 1

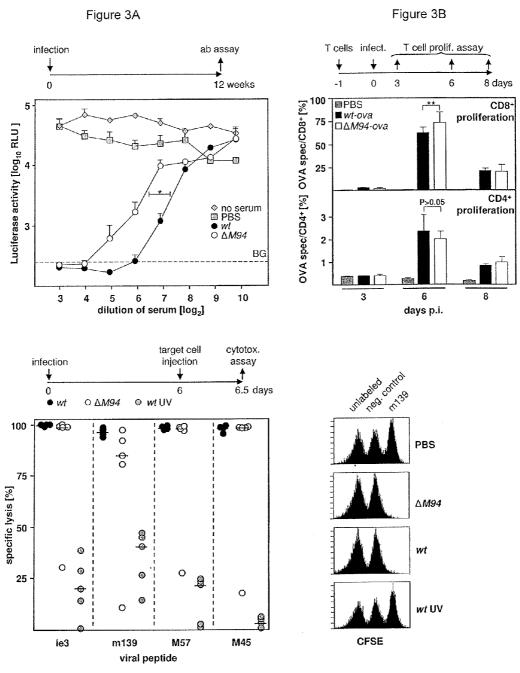
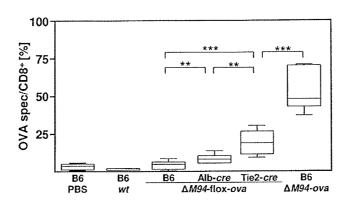
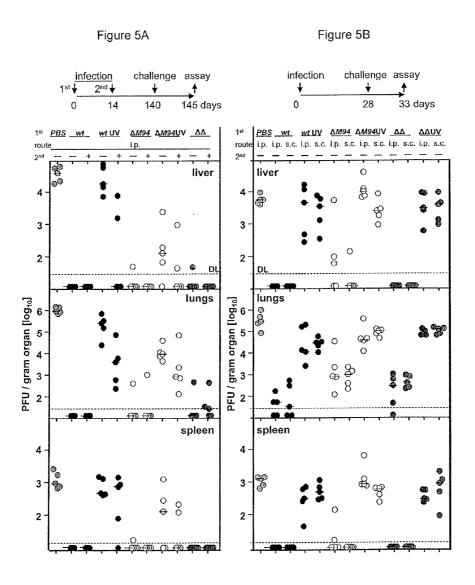
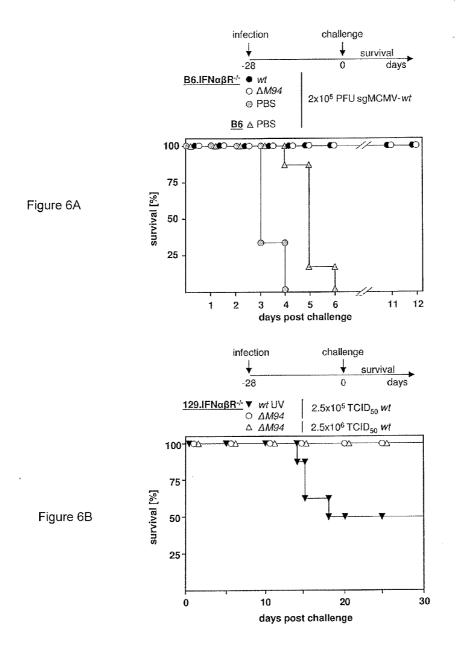





Figure 3C

Figure 4

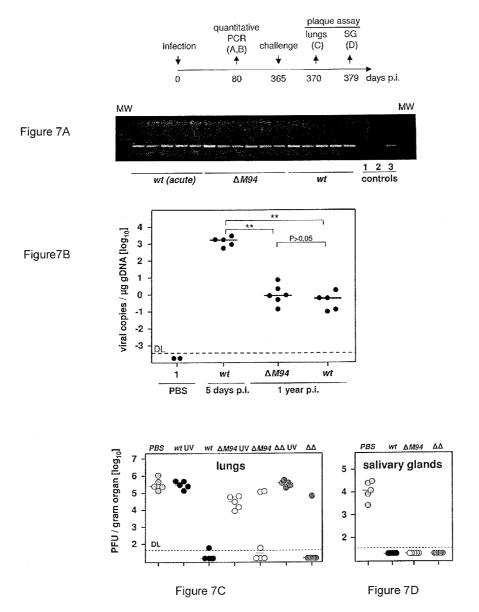
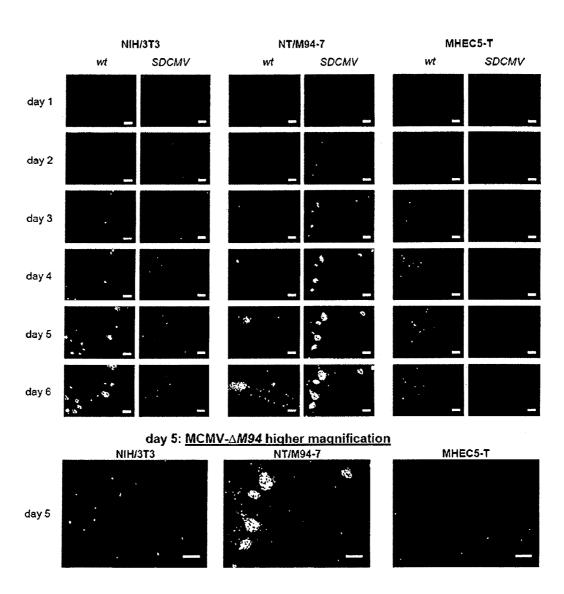



Figure 8

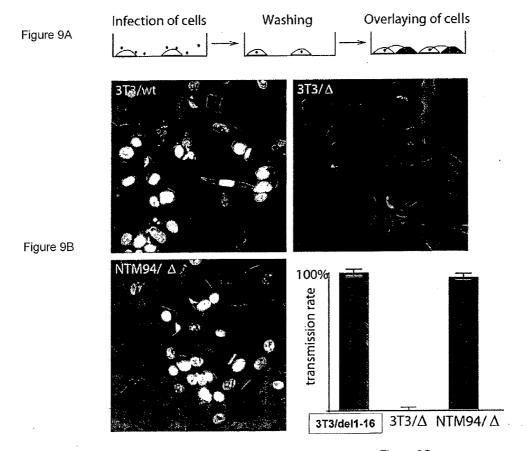


Figure 9C

VACCINE AGAINST BETA-HERPESVIRUS INFECTION AND USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of U.S. patent application Ser. No. 13/695,668 filed Dec. 14, 2012, which is a national stage application of PCT/EP2011/002252 filed May 5, 2011, the entirety of which prior filed applications are hereby incorporated by reference.

[0002] The present invention is related to a beta-herpesvirus, preferably a recombinant beta-herpesvirus, the use of the beta-herpesvirus for the manufacture of a medicament, the use of the beta-herpesvirus for the manufacture of a vaccine, a nucleic acid coding for the beta-herpesvirus, a vector comprising the nucleic acid coding for the beta-herpesvirus, and a host cell comprising the nucleic acid coding for the beta-herpesvirus or the vector. In a preferred embodiment, the beta-herpesvirus is a human cytomegalovirus.

[0003] Human cytomegalovirus (CMV), a member of the beta-herpesvirus subfamily is the medically most significant herpesvirus infecting humans (Arvin et al. 2004 Clin. Infect. Dis. 39:233-239; Stratton et al. 1999 Vaccines for the 21st Century: A Tool for Decisionmaking National Academy Press). Most of the human CMV infection is acquired without symptomatic disease via breast feeding or saliva/urine contact in early childhood. This results in nearly 100% prevalence of HCMV in developing countries. In industrialized countries about 30% of the population gets infected in the childhood and the prevalence of human CMV infection increases up to ~50% by early adulthood.

[0004] Human CMV can also be transmitted from the mother to the fetus during pregnancy leading to mental retardation and developmental disabilities in the infected child. Human CMV is the most important causative agent of congenital infections in industrialized countries with one out of 1000 newborn affected. To date 30,000-40,000 infants are annually born with congenital cytomegalovirus infection in the United States, making cytomegalovirus by far the most common and important of all congenital infections. The likelihood of congenital infection and the extent of disease in the newborn depend on the maternal immune status. If primary maternal infection occurs during pregnancy, the average rate of transmission to the fetus is 40%; about 65% of these newborns will have congenital inclusion disease (CID). With recurrent maternal infection going along with reactivation from latency, the risk of transmission to the fetus becomes lower ranging only from 0.5 to 1.5% and the majority of these infants will also be symptomless. Although natural infections before pregnancy cause a risk of reactivation associated fetomaternal transmission the induced immunity is a major protective factor against CID.

[0005] The infection at birth bears the risk of serious complications; the primary infection with HCMV is generally symptomless in immunologically competent individuals. The major risk groups comprise organ transplant recipients and acquired immunodeficiency syndrome (AIDS) patients in which human CMV induces life-threatening inflammatory diseases with high probability. Moreover, after primary infection at any age, CMV establishes lifelong latency, leaving the infected individuals at danger of later reactivation upon immune suppression.

[0006] Although enormous progress has recently been made in molecular biology and immunology of cytomega-

loviruses (Murphy et al. 2008 Curr. Top. Microbiol. Immunol. 325:1-19), to date there is no commercially available vaccine and the single hit chemotherapy is the only way of controlling acute HCMV infection (Mocarski et al. 2007, p. 2701-2772 in D. M. Knipe and P. M. Howley (eds.), Fields Virology, Lippincott Williams and Wilkins, a Wolters Kluwer Business, Philadelphia, Pa.). This chemotherapy causes severe side effects and application is often restricted to the most severe

[0007] The development of vaccines against CMV infection is reviewed in Schleiss et al. (Schleiss et al. 2005 Herpes. 12:66-75; Schleiss et al. 2008 Curr. Top. Microbiol. Immunol. 325:361-382).

[0008] One strategy for the development of a human CMV vaccine is the use of live attenuated HCMV. Live attenuated CMV are generated by multiple cell culture passages. In accordance therewith, in live attenuated vaccines the administered viruses are infectious. However due to the adaptation to the cell culture a loss of functional genes occurs whereby the lost genes are not required for virus propagation in vitro, but are important for virus infection in vivo. Such live attenuated CMV are therefore less pathogenic to the host.

[0009] The first human CMV vaccine candidate which was tested in clinical trials was a live attenuated vaccine. This was the AD169 strain of HCMV which was attenuated by extensive tissue culture passages in human primary fibroblasts. This attenuation is a result of a selective adaptation of the virus to the conditions of the cell and cell culture. It is likely that the loss of virulence is the result of affecting genes not relevant for the in vitro situation but important for the virus in its natural host. Therefore, it is not surprising that AD169, extensively passaged on fibroblasts, lost its ability to infect endothelial cells and monocytes. The majority of seronegative adults inoculated with AD169 vaccine developed HCMV specific immune response. This vaccine was found to be safe and generally well tolerated. However, injection site reactions were common, and several patients developed mild systemic symptoms consisting of fever, headache, fatigue and myalgia. [0010] Since the AD169 strain was too aggressive, a more attenuated preparation of laboratory adapted HCMV, the Towne strain, was developed in a manner similar to AD169 as a potential live attenuated vaccine. This strain was more

[0011] The initial human trial showed that, as expected, the Towne strain was much better tolerated than the AD169. After this positive initial test the efficacy of the Towne vaccine was extensively studied. These studies showed that the Towne vaccine is safe and well tolerated in humans and induces both humoral and cellular immunity specific to human CMV. Although the Towne vaccine appears to provide some protection against human CMV disease in certain settings, unfortunately, vaccination is less protective than natural immunity. Therefore, the Towne strain is most likely over-attenuated rendering it of suboptimal efficacy as a vaccine.

extensively passaged in cell culture and in vitro appeared to

be also phenotypically similar to AD169.

[0012] Consequently, new human CMV strains with intermediate attenuation have been produced. Chimeric viruses have been constructed by genetic recombination between Towne strain and Toledo strain, which is a wild type like clinical isolate of human CMV not attenuated by tissue culture passages.

[0013] Interestingly, an essential feature of the Towne strain and the vaccine based thereon is its incapability of efficiently infecting endothelial cells. Furthermore, vaccina-

tion with the Towne strain does not induce antibodies that are capable of neutralizing endotheliotropic CMV infection, more specifically Towne does not induce antibodies against endotheliotropic human CMV strains (Cui et al. 2008 Vaccine 26:5760-5766).

[0014] To differentiate between neutralization of endotheliotropic and non-endotheliotropic viruses, Gerna et al. (Gerna et al. 2008 J Gen Virol 89:853-865.) proposed the testing of human sera and quantification of the neutralizing potency against human CMV clinical isolates via propagation and testing in endothelial (or epithelial) cells and against the same virus infecting human fibroblasts (Gerna et al. supra).

[0015] It is important to note that in addition to the inability of the Towne strain to infect endothelial cells and the inability of the Towne strain to induce antibodies that are capable of neutralizing endotheliotropic human CMV infection, the Towne strain is lacking genes compared with clinical wild type human CMV isolates. More specifically, the Towne strain is lacking the genes UL133, UL134, UL135, UL136, UL137, UL138, UL139, UL140, UL141, UL142, UL143, UL144, and UL145 as also described by Cha et al. (Cha et al. 1996 J. Virol Vol. 70, No. 1 p. 78-83).

[0016] A further strategy for developing a HCMV vaccine is based on the deletion of an essential gene from a viral genome and was described for many viruses such as adenoviruses, alpha-herpesviruses, and retroviruses. Immunization trials using replication defective or single-cycle viruses as vaccines against herpesviruses were, to date, only described for alpha-herpesviruses (Dudek et al. 2006 Virology 344:230-239). The propagation of these viruses is facilitated by complementing cells that express the lacking genomes and support the growth of the defective viruses. Propagation of such viruses with the deletion of a gene on complementing cells results in vaccine-virus particles that possess a wild type virion surface and a tropism like wild type virus for the first target cells. These viruses are infectious upon vaccination for the first line target cells. In said first line target cells, the deleted or inactivated gene leads to either the abrogation of virus replication or the formation of virus particles with diminished infectivity or tropism.

[0017] The design of an alpha-herpesvirus vaccine by deletion of one gene essential for DNA replication or the abrogation of production of infectious particles by deletion of the targeting complex, namely glycoprotein gB is reviewed in Dudek et al. (Dudek et al. supra). Two types of these viruses were described: the so called "replication-defective" and the so called "single-cycle" viruses.

[0018] Replication-defective alpha-herpesviruses were generated by the deletion of genes essential for the DNA replication cycle. The deletion of genes essential for the viral DNA replication e.g. the major DNA binding protein ICP8, was used to generate respective deletion viruses. Said viruses can be propagated in vitro by using stably transformed cells that complement the product of the lacking gene (Forrester et al. 1992 J Virol 66:341-348). Several publications from Knipe and colleagues prove that such viruses can induce protective immune responses (see Morrison et al. 1998 Virology 243: 178-187; Morrison et al. 1994 J Virol 68:689-696; Morrison et al. 1996 Virology 220:402-413; Morrison et al. 1997 Virology 239:315-326).

[0019] Single-cycle viruses lack glycoproteins of targeting complexes e.g. glycoprotein gB or fusion complexes e.g. gH/gL (Dudek et al. supra). Such virus mutants are described in U.S. Pat. No. 7,374,768 by Inglis et al. Said complexes are

described to be important for the attachment to the cell and/or fusion of virus and cell, as initiation steps for infection of this cell. The deletion of said glycoproteins will generate single-cycle vaccine virus particles that infect first line target cells. It is important to note that said cells in the host form virus particles which do not possess a wild type-like virion surface since they lack the glycoprotein mentioned above. These particles lacking the glycoprotein, are not infectious or at least possess limited tropism or infectivity for the next cells to be infected. Further, the deletion of said glycoprotein leads to a lacking expression of said glycoprotein preferably being effective as an antigen in the infected cell.

[0020] Due to society costs caused by human CMV infection in both morbidity groups and the emerging epidemiological situation the development of an effective HCMV vaccine has been emphasize as a highest level priority by the National Vaccine Committee of the Institute of Medicine (US) (Stratton et al. supra).

[0021] Thus the problem underlying the present invention was to provide an effective HCMV vaccine and a beta-herp-esvirus contained in such vaccine, respectively.

[0022] This problem is solved by the attached independent claims. Preferred embodiments may be taken from the attached dependent claims.

[0023] The claims are recited in the following as embodiments. It will be acknowledged that further embodiments may result from the disclosure of the instant specification which is insofar not limited to the embodiments being a recitation of the claims.

EMBODIMENT 1

[0024] A beta-herpesvirus, preferably a recombinant beta-herpesvirus, wherein the beta-herpesvirus is spread-deficient.

EMBODIMENT 2

[0025] The beta-herpesvirus according to embodiment 1, wherein the beta-herpesvirus is endotheliotropic and/or has a wild type-like virion surface.

EMBODIMENT 3

[0026] The beta-herpesvirus according to any one of embodiments 1 to 2, wherein the beta-herpesvirus is endotheliotropic and has a wild type-like virion surface.

EMBODIMENT 4

[0027] The beta-herpesvirus according to any one of embodiments 1 to 3, wherein the beta-herpesvirus is suitable to or capable of inducing an immune response, wherein preferably the immune response comprises neutralizing antibodies against beta-herpesvirus and CD4⁺ and CD8⁺ T-cells directed against epitopes of beta-herpesvirus.

EMBODIMENT 5

[0028] The beta-herpesvirus according to embodiment 4, wherein the immune response comprises neutralizing antibodies, wherein beta-herpesvirus is prevented from infecting endothelial cells and/or epithelial cells by the neutralizing antibodies.

EMBODIMENT 6

[0029] The beta-herpesvirus according to embodiment 5, wherein beta-herpesvirus which is prevented from infecting

endothelial cells and/or epithelial cells by the neutralizing antibodies, is a pathogen, preferably a human pathogen.

EMBODIMENT 7

[0030] The beta-herpesvirus according to any one of embodiments 1 to 6, wherein the beta-herpesvirus is a human beta-herpesvirus.

EMBODIMENT 8

[0031] The beta-herpesvirus according to any one of embodiments 1 to 7, wherein the beta-herpesvirus is a cytomegalovirus.

EMBODIMENT 9

[0032] The beta-herpesvirus according to any one of embodiments 7 and 8, wherein the beta-herpesvirus is a human cytomegalovirus.

EMBODIMENT 10

[0033] The beta-herpesvirus according to any one of embodiment 1 to 9, preferable embodiment 9, wherein the beta-herpesvirus is deficient in at least one gene product involved in primary and/or secondary envelopment.

EMBODIMENT 11

[0034] The beta-herpesvirus according to embodiment 10, wherein the at least one gene product is involved in primary envelopment

EMBODIMENT 12

[0035] The beta-herpesvirus according to embodiment 11, wherein the at least one gene product is encoded by a gene selected from the group comprising UL50 and UL 53 and homologs of each thereof.

EMBODIMENT 13

[0036] The beta-herpesvirus according to embodiment 10, wherein the at least one gene product is involved in secondary envelopment.

EMBODIMENT 14

[0037] The beta-herpesvirus according to embodiment 13, wherein the at least one gene product is encoded by a gene selected from the group comprising UL94 and UL99 and homologs each thereof.

EMBODIMENT 15

[0038] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide sequence according to SEQ. ID.NO:20 and wherein nucleotide 181652 of the nucleotide

sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 16

[0039] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.NO:34.

EMBODIMENT 17

[0040] The beta-herpesvirus according to embodiment 16, wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 34, wherein nucleotide 252 of the nucleotide sequence according to SEQ.ID.No: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ. ID.NO:20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 18

[0041] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 131243 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20 and a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ.ID.NO:20, wherein the nucleotide 130670 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to the nucleotide 131243 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein the nucleotide 181652 of the nucleotide sequence according to SEQ. ID.NO:20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 19

[0042] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucle-

otide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 131243 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20, a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20, a fifth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 34 and a sixth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 35.

EMBODIMENT 20

[0043] The beta-herpesvirus according to embodiment 19, wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 34, wherein nucleotide 252 of the nucleotide sequence according to SEQ.ID.No: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ. ID.NO:20, wherein nucleotide 130670 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ. ID.No: 35, wherein nucleotide 67 of the nucleotide sequence according to SEQ.ID.NO:35 is covalently linked to nucleotide 131243 of the nucleotide sequence according to SEQ. ID.No: 20, and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 21

[0044] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO: 20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ. ID.NO:20.

EMBODIMENT 22

[0045] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 32.

EMBODIMENT 23

[0046] The beta-herpesvirus according to embodiment 22, wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 32, wherein nucleotide 179 of the nucleotide sequence according to SEQ.ID.No: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 24

[0047] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO: 20 and wherein the nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 25

[0048] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 33.

EMBODIMENT 26

[0049] The beta-herpesvirus according to embodiment 25, wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 33, wherein nucleotide 38 of the nucleotide sequence according to SEQ.ID.No: 33 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 27

[0050] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus com-

prises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 632161 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20 and a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20, wherein the nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to the nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein the nucleotide 181652 of the nucleotide sequence according to SEQ. ID.NO:20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 28

[0051] The beta-herpesvirus according to any one of embodiments 1 to 14, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ.ID.NO:20, a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20, a fifth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 32 and a sixth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 33.

EMBODIMENT 29

[0052] The beta-herpesvirus according to embodiment 28, wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 32, wherein nucleotide 179 of the nucleotide sequence according to SEQ.ID.No: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20, wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 33, wherein nucleotide 38 of the nucleotide sequence according to SEQ.ID.NO:33 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ.ID.No: 20, and wherein nucleotide 181652 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ. ID.NO:20.

EMBODIMENT 30

[0053] The beta-herpesvirus according to any one of embodiment 1 to 29, wherein the beta-herpesvirus comprises one or more genes selected from the group comprising

UL133, UL134, UL135, UL136, UL137, UL138, UL139, UL140, UL141, UL142, UL143, UL144 and UL145

EMBODIMENT 31

[0054] The beta-herpesvirus according to any one of embodiment 1 to 30, wherein the beta herpesvirus comprises the nucleotide sequence according to SEQ.ID.NO:23.

EMBODIMENT 32

[0055] The beta-herpesvirus according to any one of embodiments 1 to 31, wherein the beta-herpesvirus is deficient in at least one gene product encoded by an immune evasive gene.

EMBODIMENT 33

[0056] The beta-herpesvirus according to embodiment 32, wherein the at least one gene product encoded by an immune evasive gene is selected from the group comprising gene products regulating MHC class I presentation and gene products regulating NK cell response.

EMBODIMENT 34

[0057] The beta-herpesvirus according to embodiment 33, wherein the at least one gene product encoded by an immune evasive gene is a gene product regulating MHC class I presentation.

EMBODIMENT 35

[0058] The beta-herpesvirus according to embodiment 34, wherein the gene product regulating MHC class I presentation is selected from the group comprising US6, US3, US2, UL18, US11, UL83 and UL40.

EMBODIMENT 36

[0059] The beta-herpesvirus according to embodiment 33, wherein the at least one gene product encoded by an immune evasive gene is a gene product regulating NK cell response.

EMBODIMENT 37

[0060] The beta-herpesvirus according to embodiment 36, wherein the gene product regulating NK cell response is selected from the group comprising gene products encoded by the genes UL40, UL16 and UL18.

EMBODIMENT 38

[0061] The beta-herpesvirus according to any one of embodiments 1 to 37, wherein the beta-herpesvirus encodes a heterologous nucleic acid.

EMBODIMENT 39

[0062] The beta-herpesvirus according to embodiment 41, wherein the heterologous nucleic acid is a functional nucleic acid, preferably selected from the group comprising antisense molecules, ribozymes and RNA interference mediating nucleic acids.

EMBODIMENT 40

[0063] The beta-herpesvirus according to embodiment 38, wherein the nucleic acid is a nucleic acid coding for a peptide, oligopeptide, polypeptide or protein.

EMBODIMENT 41

[0064] The beta-herpesvirus according to embodiment 40, wherein the peptide, oligopeptide, polypeptide or protein comprises at least one antigen.

EMBODIMENT 42

[0065] The beta-herpesvirus according to embodiment 41, wherein the antigen is an antigen selected from the group comprising viral antigens, bacterial antigens and parasite antigens.

EMBODIMENT 43

[0066] The beta-herpesvirus according to any one of embodiments 1 to 42 for or suitable for use in a method for the treatment of a subject and/or for use in a method for the vaccination of a subject.

EMBODIMENT 44

[0067] The beta-herpesvirus according to embodiment 43, wherein the subject is a mammal, preferably a human.

EMBODIMENT 45

[0068] The beta-herpesvirus according to embodiment 43 or 44, wherein the beta-herpesvirus is human cytomegalovirus.

EMBODIMENT 46

[0069] The beta-herpesvirus according to any one of embodiments 43 to 45, wherein the subject is suffering from a disease or is at risk of suffering from a disease.

EMBODIMENT 47

[0070] The beta-herpesvirus according to any one of embodiments 43 to 46, wherein the vaccination is a vaccination against a disease.

EMBODIMENT 48

[0071] The beta-herpesvirus according to any one of embodiments 46 and 47, wherein the disease is a disease or condition which is associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.

EMBODIMENT 49

[0072] The beta-herpesvirus according to embodiment 48, wherein the disease or condition is selected from the group comprising congenital inclusion disease.

EMBODIMENT 50

[0073] The beta-herpesvirus according to any one of embodiment embodiments 43 to 49, wherein the subject is a pregnant female or female of reproductive age, preferably a pregnant woman or a woman of reproductive age.

EMBODIMENT 51

[0074] The beta-herpesvirus according to embodiment 50, wherein the treatment is or is suitable for or capable of preventing the transfer of a beta-herpesvirus, preferably human cytomegalovirus, from the female to a fetus and/or to an embryo carried or to be carried in the future by the female.

EMBODIMENT 52

[0075] The beta-herpesvirus according to embodiment 50, wherein the treatment is for or is suitable for the generation of or capable of generating an immune response in the female body or the immune response in the female body, whereby preferably such immune response confers protection to a fetus and/or to an embryo carried or to be carried in the future by the female against beta-herpesvirus, preferably human cytomegalovirus, and/or a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.

EMBODIMENT 53

[0076] Use of a beta-herpesvirus according to any of embodiments 1 to 47 for the manufacture of a medicament.

EMBODIMENT 54

[0077] Use according to embodiment 53, wherein the medicament is for the treatment and/or prevention of beta-herpesvirus infection.

EMBODIMENT 55

[0078] Use according to embodiment 53, wherein the medicament is for the treatment and/or prevention of a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.

EMBODIMENT 56

[0079] Use of a beta-herpesvirus according to any of embodiments 1 to 47 for the manufacture of a vaccine.

EMBODIMENT 57

[0080] Use according to embodiment 56, wherein the vaccine is for the treatment and/or prevention of beta-herpesvirus infection.

EMBODIMENT 58

[0081] Use according to embodiment 57, wherein the vaccine is for the treatment and/or prevention of a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.

EMBODIMENT 59

[0082] Use according to any one of embodiments 56 to 58, wherein the vaccine is or is suitable for the administration to a subject, whereby the subject is selected form the group comprising a pregnant female, a female of reproductive age, a donor of a transplant, a recipient of a transplant and a subject being infected with HIV or being at risk of being infected with HIV

EMBODIMENT 60

[0083] Use according to embodiment 59, wherein the donor is a potential donor and/or the recipient is a potential recipient.

EMBODIMENT 61

[0084] A nucleic acid coding for a beta-herpesvirus according to any of the preceding embodiments.

EMBODIMENT 62

[0085] A vector comprising the nucleic acid according to embodiment 61.

EMBODIMENT 63

[0086] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 123688 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 64

[0087] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 34.

EMBODIMENT 65

[0088] The vector according to embodiment 64, wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 34 and wherein nucleotide 252 of the nucleotide sequence according to SEQ.ID.No: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ.ID.NO: 20.

EMBODIMENT 66

[0089] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEO.ID.NO:20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 131243 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein the nucleotide 130670 of the nucleotide sequence according to SEQ. ID.NO:20 is covalently linked to the nucleotide 131243 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 67

[0090] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides

123668 to 130670 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence represented by nucleotides 131243 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20, a third nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 34 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 35

EMBODIMENT 68

[0091] The vector according to embodiment 67, wherein nucleotide 122630 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 34, wherein nucleotide 252 of the nucleotide sequence according to SEQ. ID.No: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ.ID.NO:20, wherein nucleotide 130670 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 35 and wherein nucleotide 67 of the nucleotide sequence according to SEQ.ID.No:35 is covalently linked to nucleotide 131243 of the nucleotide sequence according to SEQ.ID.No:20

EMBODIMENT 69

[0092] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 70

[0093] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 32.

EMBODIMENT 71

[0094] The vector according to embodiment 70, wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 32 and wherein nucleotide 179 of the nucleotide sequence according to SEQ.ID.No: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO: 20.

EMBODIMENT 72

[0095] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a

second nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO: 20.

EMBODIMENT 73

[0096] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 33

EMBODIMENT 74

[0097] The vector according to embodiment 73, wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 33 and wherein nucleotide 38 of the nucleotide sequence according to SEQ.ID.No: 33 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO: 20.

EMBODIMENT 75

[0098] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ. ID.NO:20, a third nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ.ID.NO: 20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20 and wherein the nucleotide 62129 of the nucleotide sequence according to SEQ.ID. NO:20 is covalently linked to the nucleotide 63261 of the nucleotide sequence according to SEQ.ID.NO:20.

EMBODIMENT 76

[0099] A vector comprising the nucleic acid according to embodiment 62, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ.ID.NO:20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ. ID.NO:20, a third nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ.ID.NO:20, a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 32 and a fifth nucleotide sequence comprising a nucleotide sequence according to SEQ.ID.No: 33.

EMBODIMENT 77

[0100] The vector according to embodiment 76, wherein nucleotide 58442 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 32, wherein nucleotide 179 of the nucleotide sequence according to SEQ. ID.No: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ.ID.NO:20, wherein nucleotide 62129 of the nucleotide sequence according to SEQ.ID.NO:30 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.No: 33 and wherein nucleotide 38 of the nucleotide sequence according to SEQ.ID.No:33 is covalently linked to nucleotide 632161 of the nucleotide sequence according to SEQ.ID.No: 20.

EMBODIMENT 78

[0101] A host cell comprising a nucleic acid according to embodiment 61 or a vector according to any one of embodiments 62 to 77.

EMBODIMENT 79

[0102] A pharmaceutical composition comprising a betaherpesvirus according to any one of the preceding embodiments, a nucleic acid according to embodiment 61 and/or a vector according to any one of the preceding embodiments, and a pharmaceutically acceptable carrier.

[0103] The present inventors have surprisingly found that the infection of endothelial cells of a host organism such as man by beta-herpesvirus and more specifically CMV of the invention will result in eliciting an immune response against CMV. More specifically, the immune response is an anti-CMV response which comprises neutralizing antibodies against beta-herpesvirus and CD4⁺ and CD8⁺ T-cells directed against epitopes of beta-herpesvirus. Furthermore, the present inventors have surprisingly found that such immune response can be elicited by the beta-herpesvirus and more specifically the human cytomegalovirus of the invention being spread-deficient. It has to be acknowledged that any characteristic feature, embodiment of and any statement made in relation to beta-herpesviruses such as murine CMV equally applies to human CMV. Furthermore, it will be acknowledged that the beta-herpesvirus according to the present invention will, in a preferred embodiment, exhibit the following characteristics as observed for human and murine, respectively, CMV: multiple infections occur with mouse and human CMV, in mouse and human, respectively, (Boppana, S. B. et al., 2001. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J Med 344:1366-1371; Cicin-Sain, L. et al., 2005. Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492-9502); an unusually high response of neutralizing antibodies against CMV is caused by infection with mouse and human CMV, in mouse and human, respectively (Farrell, H. E. and G. R. Shellam, 1990. Characterization of neutralizing monoclonal antibodies to murine cytomegalovirus. J. Gen. Virol. 71 (Pt 3):655-664; Farrell, H. E. and G. R. Shellam, 1991. Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J. Gen. Virol. 72 (Pt 1):149-156; Gerna, G., A. et al., 2008. Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during

primary infection. J. Gen. Virol. 89:853-865); memory inflation, which represents a very characteristic CD8+ T cell response, is caused by infection with mouse and human CMV, in mouse and human, respectively, and has almost identical kinetics (Karrer, U. et al., 2003. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170:2022-2029; Karrer, U. et al. 2004. Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J. Virol. 78:2255-2264; Klenerman, P. and P. R. Dunbar, 2008. CMV and the art of memory maintenance. Immunity. 29:520-522; Komatsu, H. et al., 2003. Population analysis of antiviral T cell responses using MHC class I-peptide tetramers. Clin. Exp. Immunol. 134:9-12). In connection with the present invention a person skilled in the art will also acknowledge that a murine CMV gene can replace a homolog of said murine CMV gene in a human CMV. (Schnee, M. et al., 2006. Common and specific properties of herpesvirus UL34/UL31 protein family members revealed by protein complementation assay. J Virol 80:11658-11666)

[0104] In a preferred embodiment the beta-herpesvirus according to the present invention is different from the Towne strain as described by Liu et al. in U.S. Pat. No. 7,407,744, i.e. a Towne strain where the genes UL133, UL134, UL135, UL136, UL137, UL138, UL139, UL140, UL141, UL142, UL143, UL144, and UL145 are deleted, preferably compared to wild type. A person skilled in the art will further acknowledge that the Towne strain is not endotheliotropic and has also a defective gH/gL complex.

[0105] In a further preferred embodiment the beta-herpesvirus according to the present invention comprises a nucleotide sequence according to SEQ.ID.No:23.

[0106] In still further preferred embodiment the beta-herpesvirus according to the present invention is different form the Toledo strain.

[0107] Spread-deficient as used herein, preferably means that the virus which is spread-deficient infects a cell and no viral particle is released from the infected cell, whereby the viral DNA is replicated, the viral proteins except those which are deleted in accordance with the present invention are expressed in the infected cell, preferably all viral glycoproteins are expressed, more preferably all viral glycoproteins are expressed, that mediate entry of the virus into a cell, whereby, preferably, the cell is an endothelial and/or an epithelial cell. The assay which is preferably used in accordance with the present invention so as to determine whether or not a virus is spread-deficient, is described herein as Example 1.

[0108] A wild type CMV strain as preferably used herein means that the virus is a beta-herpesvirus strain which has been isolated from its native host and which has maintained its ability to infect endothelial cells in tissue culture. More specifically the wild type human CMV strain as preferably used herein contains, among others, the genes UL133, UL134, UL135, UL136, UL137, UL138, UL139, UL140, UL141, UL142, UL143, UL144, and UL145 (Cha et al. supra) and more specifically the wild type CMV strain as preferably used herein is TB40/E and FIX-BAC (Sinzger et al. 1999 Journal of General Virology, 80, 2867-2877; Hahn et al. 2002 J Virol. 76(18): 9551-9555) and/or TB40E-BAC4-FRT (SEQ.ID.NO:20) (Scrivano, L. et al., 2011. HCMV spread and cell tropism are determined by distinct virus populations. PLoS. Pathog. 7:e1001256) for human CMV or Smith strain for MCMV (Rawlinson et al. 1996 J Virol 70:8833-8849). In a preferred embodiment of the present invention the wild type CMV strain as preferably used herein comprises a nucleotide sequence according to SEQ.ID.No: 23. The sequence of the pTB40E-BAC4-FRT, which is the molecular infectious BAC plasmid according to TB40E-BAC4-FRT has the nucleotide sequence according to SEQ. ID.NO:20.

[0109] Said pTB40E-BAC4-FRT is consisting of viral sequences encoded by nt 1-181652 and by nt 189192-233681, as well as BAC sequences represented by nt 181653-189191. A person skilled in the art will acknowledge that a BAC plasmid such as pTB40E-BAC4-FRT comprising a virus genome such as the virus genome of TB40E-BAC4-FRT is circular in E. coli therefore the nucleotide 233681 of the nucleotide sequence according to SEQ.ID.NO:20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ.ID.NO:20. A person skilled in the art will know methods for reconstitute a virus from a BAC plasmid comprising the viral genome of said virus, for example for reconstitute TB40E-BAC4-FRT from pTB40E-BAC4-FRT comprising the viral genome of TB40E-BAC4-FRT. Such methods comprise among others transfection of cells, comprising complementing cells.

[0110] As used herein, the term "deficient in at least one gene product" preferably means that the at least one gene product which is a biochemical material such as a nucleic acid, DNA, RNA or a peptide, polypeptide or protein, resulting from expression of the gene does not show at least one of the functions displayed by said gene product in the wild type strain. Preferably, said at least one of the functions not shown is the function which is responsible for spread of the betaherpesvirus. Also preferably, all of the functions of said gene product in the wild type strain are not shown. This may be the result of a complete or partial deletion or mutation of the gene coding for said gene product, of a complete or partial deletion of a mutation, of the nucleic acid controlling the expression of the gene coding of said gene product, of a truncation of said gene product, or of the inhibition of the otherwise compete gene product.

[0111] As used herein, the term "DNA is replicated" preferably means that the replication occurs like replication of a wild type virus.

[0112] As used herein, a wild type-like virion surface is preferably a surface displayed by a beta-herpesvirus of the wild type as defined herein, more specifically by a cytomegalovirus wild type strain as defined herein. The molecules which are used to define the surface displayed by a betaherpesvirus of the wild type are glycoproteins expressed by said wild type virus mediating the entry of said wild type virus into a cell, preferably an endothelial cell. In other words, a virus according to the present invention having a wild typelike virion surface has a virion surface which, after infection of primary fibroblasts, displays or expresses the same glycoproteins identical to, essentially identical to or at least not significantly different from the wild type virus based on which the deletions were or may be made to generate the virus of the present invention. The determination of the expression of glycoproteins is known to the ones skilled in the art and may be performed by a quantitative RT-PCR or mass spectrometry (Britt et al. 1990. J Virol 64:1079-1085) although other methods suitable for such purpose are knoen to the person skilled in the art.

[0113] So as to determine whether the beta-herpesvirus of the invention and particularly the human cytomegalovirus of the invention is endotheliotropic, preferably, the assay as described in Example 2 is used.

[0114] So as to determine whether the immune response elicited by the beta-herpesvirus of the invention and particularly the human cytomegalovirus of the invention comprises at least neutralizing antibody, and whereby the at least neutralizing antibody is preventing said viruses from infecting endothelial cells and/or epithelial cells, the assay described by Cui et al. (Cui et al. supra) may preferably be used.

[0115] It will be acknowledged that viral DNA replication is abrogated in replication-defective virus mutants and therefore gene expression does not exploit the total set of viral epitopes. Especially glycoproteins and structural virion components are not expressed.

[0116] In order to further illustrate the present invention the biology of human cytomegalovirus will be outlined in the following.

[0117] Human cytomegalovirus is one of eight human herpesviruses, which are clustered in three subfamilies (alpha (α) , beta (β) , gamma (γ)) based on biological properties and molecular phylogenetic relationships to other herpesviruses. Cytomegalovirus belongs to the beta-herpesvirus subfamily and possesses the largest genome in the herpesvirus families: its genome of 240 kbp is capable of encoding more than 200 potential gene products (Murphy et al. supra).

[0118] The viral particle of cytomegaloviruses consist of three major constituents, namely the internal icosahedral capsid, which packages the double stranded linear DNA genome; the tegument which is a less organized protein meshwork surrounding the capsid; and the outermost envelop which is a lipid bilayer embedded with viral glycoprotein complexes. The infection of a host cell by the virus particles is mediated by the contact of the viral glycoproteins with the molecular structures of the host cell surface. CMVs can infect many different cell types and the mechanism of virus entry is known to be dependent on the specific cell type and can occur via two major routes: (a) the free, i.e. non-cell associated virus particles can encounter the host cell directly, or (b) the virus is transferred from the infected cell to a non-infected one by a preformed, i.e. non-virus-induced cell-cell contact, or virus induced cell-cell contact, the so called cell to cell

[0119] After attachment with high affinity to a set of cellular receptors the viral glycoproteins induce fusion between the viral envelope and a host cell membrane. After entry of an CMV particle into the host cell the HCMV genome is targeted to the nucleus where it either establishes latency which is characterized by a symptomless maintenance of the more or less silent genome, or induces a lytic infection leading to propagation of new infectious CMV particles.

[0120] The lytic replication cycle of CMV is divided into three phases of regulated gene expression: immediate early, early, and late. The hallmarks of the replication stages are the specific gene clusters which are expressed with characteristic kinetics. Immediate early gene transcription occurs at first and leads to synthesis of viral master regulators that reprogram the host cell according to the needs of virus production. Following the synthesis of immediate early gene products, the early genes are transcribed. Early gene products include DNA replication proteins and regulators and enzymes which are important in nucleotide metabolism. Finally, the late genes are transcribed after the onset of DNA replication, and

the gene products of said late genes are mainly structural proteins that are involved in the assembly of and egress of new infectious virus particles.

[0121] The late gene products comprise many viral antigens including the viral glycoproteins such as the gB and the gH/gL complex, which are the major targets of neutralizing antibodies against CMV (Schleiss et al. 2008 supra) and the major tegument protein the phosphoprotein 65 (pp65) and the immediate early 1 protein which are the major targets of the cellular immune response to CMV.

[0122] A further step in the lytic replication cycle of CMV is the maturation of novel infectious virus particles which comprises steps of envelopment of the pre-mature virus particle with membrane structures. The steps of envelopment comprise a primary envelopment, de-envelopment and secondary envelopment.

[0123] The primary envelopment at the membranes of the nucleus is crucial for the egress of virus capsids out of the nucleus. Proteins as part of the protein complex which is also referred to as nuclear egress complex (NEC) playing an essential role in this primary envelopment, were recently identified as M50 and M53 of mouse CMV (Lotzerich et al. 2006 J Virol 80:73-84) or as UL50 and UL53 being their homologs in human CMV.

[0124] A homologues gene as used herein is preferably the gene of one herpesvirus referred to be a homolog of the gene of another herpesvirus according to Fossum et al. (Fossum et al. PLoS Pathog. 2009 September; 5(9): e1000570) or Davison et al. (Davison et al. (2010) Vet Microbiol. 2010 Feb. 11. Herpesvirus systematics; and Davison et al. 2004 Compendium of Human Herpesvirus gene names; Reno).

[0125] Further, homologs of UL50 are listed in Mocarski (Mocarski Jr. E S.: Comparative analysis of herpesvirus-common proteins. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007. Chapter 4 Editors: Arvin A, Campadelli-Fiume G, Mocarski E, Moore P S, Roizman B, Whitley R, Yamanishi K, editors.)

[0126] The secondary envelopment occurs at the membranes of the Golgi-apparatus and/or the endoplasmatic reticulum. In connection with said secondary envelopment a protein complex which is also referred to as secondary envelopment complex (SEC), was identified comprising at least the gene product of M94 of mouse CMV or its homolog in human CMV, i.e. UL94. The gene UL94 of HCMV is conserved in all herpesvirus sub-families (Chee et al. 1991 Transplant Proc 23:174-80; Chee et al. 1990 Curr Top Microbiol Immunol 154:125-169; Higgins et al. 1989 Comput. Appl. Biosci. 5:151-153) and was found only at a late stage of infection (Scott et al. 2002 Virus Genes 24:39-48; Wing et al. 1996 J Virol 70:3339-3345). It was recently shown that UL94 is part of the virion (Kalejta et al. 2008 Microbiol Mol Biol Rev 72:249-65; Kattenhorn et al. 2004 J Virol 78:11187-11197; Wing et al. op:eft). UL94 is essential in the infection of the Towne strain of HCMV shown by transposon-mediated mutagenesis (Dunn et al. 2003 Proc Natl Acad Sci USA 100:14223-14228. That M94 is essential in mouse CMV infection is disclosed herein in the example part.

[0127] Homologs of UL94 are listed in Mocarski (Mocarski Jr. E S.: Comparative analysis of herpesvirus-common proteins. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University

Press; 2007. Chapter 4 Editors: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K, editors.)

[0128] The high viral load of CMV in salivary glands indicates the transmission of CMV by direct contact via secretions. After initial replication in the first target cells at the entry site, CMV is disseminated through the body by blood and lymph. Most likely the virus is taken up by white blood cells which carry the virus from the primary infection site to almost every internal organ.

[0129] The interplay between the CMV and its host, i.e. humans or mice, is very complex. On the one hand, the immune response of the host is controlling the virus replication very efficiently. Therefore, most of the CMV infections are symptomless which means that virus replication is controlled before the tissue damage reaches an observable pathological level of local or systemic inflammation. On the other hand, the virus itself is controlling the immune response resulting in efficient clearance of the virus from the host. In almost all cases of immune competence natural CMV infection ends up with a situation where the virus is controlled by the immune system without being totally cleared from the host (Reddehase et al. 2002 J Clin Virol 25 Suppl 2:S23-S36). [0130] In recent years an impressive body of knowledge was generated by studying the molecular mechanisms of immune suppressive functions of CMV. It is acknowledged that more than half of the CMV genes encode gene products interfering with different immune mechanisms at all stages of the immune system, the so-called immune evasive genes. There is evidence that neither the humoral nor the cellular

[0131] Diseases and conditions of a subject which is infected by beta-herpesvirus and human CMV, respectively, are, among others, mononucleosis-like symptoms, splenomegaly, pneumonitis, blindness, hearing loss, congenital inclusion disease, and organ damage and organ failure, respectively, of the organ infected by HCMV. It is to be acknowledged that said diseases and conditions are diseases and conditions which can be treated and/or prevented by the beta-herpesvirus of the present invention.

immune response alone is sufficient to control CMV infec-

tion; a concerted action of both is needed to keep the balance with the viral immune evasion (Adler et al. 1995 J Infect Dis

171:26-32; Reddehase et al. 1987 J Virol 61:3102-3108).

[0132] Typically, human CMV infection becomes clinically apparent only if the host immune system is vulnerable or suppressed. There are several major risk groups of public health importance.

[0133] One situation where the host immune system is vulnerable, is where non-pregnant women of reproductive age or women being pregnant get infected by human CMV. If the human CMV infection is transmitted from the mother to the fetus and embryo, respectively, during pregnancy, due to the immature immune system of the fetus and embryo, respectively, direct cytotoxic pathology of the human CMV infection can develop which is called congenital inclusion disease (CID). The symptoms of CID are dominated by the cause that the human CMV infects the central nervous system comprising microcephaly, cerebral atrophy, chorioretinitis, and sensorineural hearing loss, which are typically combined with consequences of infection of other visceral organs including intrauterine growth retardation, hepatosplenomegaly, hematological abnormalities such as thrombocytopenia, and various cutaneous manifestations appearing as rushes, i.e. petechiae and purpura. CID is the most frequent infectious congenital disorder in developed countries. Furthermore, human CMV infection is the major cause of hearing loss acquired after viral infection.

[0134] A second scenario of clinically significant human CMV infection is formed by immunocompromised or immunosuppressed patients. This kind of patient is, e.g., a HIVpositive patient or a transplant recipient. In these patients the disease manifestations vary depending on the quality and the degree of immune dysfunction. Infection mostly occurs because of reactivation of latent viral infection, however, may be as well newly acquired via virus reactivation from organ or bone marrow transplant derived from an already infected donor in case of a transplant recipient.

[0135] In the absence of sufficient immune control CMV infection leads to inflammatory diseases of various organs. In connection therewith the most frequent clinical manifestations consist of pneumonitis, gastrointestinal diseases, hepatitis, and retinitis. In bone marrow transplant recipients HCMV pneumonitis occurs with mortality rates of 90%. It is to be acknowledged that said diseases and conditions are diseases and conditions which can be treated and/or prevented by the beta-herpesvirus of the present invention.

[0136] In AIDS patients opportunistic human CMV infection is common and occurs at a frequency of almost 100%, if anti-retroviral therapy fails or not applicable/available. This is still the case in non-industrialized countries were an effective therapy is not yet available. Before the availability of highly active anti-retroviral therapy for human immunodeficiency virus (HIV) infection, HCMV retinitis was the most common cause of blindness in adult patients with acquired immunodeficiency syndrome (AIDS), with an overall lifetime prevalence of more than 90%.

[0137] In an embodiment of the beta-herpesvirus of the invention the beta-herpesvirus is used as a vaccine and/or vector. In a further embodiment thereof such beta-herpesvirus encodes for a heterologous nucleic acid. Preferably such heterologous nucleic acid codes for an antigen, more preferably an antigen of a pathogen. Because of this such vaccine and vector, respectively, is suitable for the treatment and/or prevention of a disease caused by or associated with said pathogen. Such pathogens preferably comprise viruses and bacteria. In an embodiment the antigen is NP-NT60 of Influenza, whereby the vector then is useful in the treatment of influenza. In a further embodiment the antigen is ORF Rv3407 from Mycobacterium tuberculosis strain H37Rv, whereby the vector then is useful in the treatment of tuberculosis.

[0138] In an embodiment the beta-herpesvirus of the present invention is a recombinant beta-herpesvirus.

[0139] In a further embodiment the beta-herpesevirus of the present invention is a human beta-herpesvirus, preferably a recombinant human beta-herpesvirus.

[0140] In a preferred embodiment the individual nucleotides of the beta-herpesvirus of the invention are linked, preferably covalently linked, through phosphodiester bonds. Such phosphodiester bonds are those phosphodiester bonds which are contained in nucleic acid molecules contained or produced in biological material such as cells.

[0141] It will be acknowledged that the beta-herpesvirus of the present invention is part of a pharmaceutical composition. Preferably, such pharmaceutical composition contains, a part from the beta-herpesvirus of the present invention and/or a nucleic acid coding for the same, a pharmaceutically acceptable carrier. The ingredients of such pharmaceutical composition and their respective contents are known to a person

skilled in the art. It will be further acknowledged that such pharmaceutical composition is for or is for use in the treatment of the diseases and conditions as disclosed herein in connection with the beta-herpesvirus of the present invention.

[0142] It will be acknowledged by a person skilled in the art that the experimental evidence provided in the example part of the instant application is based on murine CMV, but that such evidence can be directly and immediately transferred to HCMV, so that the present invention is plausible to a person skilled in the art. The reason for this being that the genomes of

different herpesvirus strains including CMV are linearly correlated and the mode of action of human CMV in a human host and of mouse CMV in a murine host are essentially identical.

[0143] The various SEQ.ID. Nos., the chemical nature of the nucleic acid molecules, proteins and peptides according to the present invention, the actual sequence thereof and the internal reference number is summarized in the following table. To the extent that the particular sequences are not displayed in this table they are contained in the attached sequence listing which is part of the instant specification.

SEQ.ID.	Sequence	internal reference number
1	GTGGGATCCACCATGTACCCCTACGACGT GCCCGACTACGCCACGTCCAGACTATCC	HAM94for
2	ACTCTAGAGTCGACTTCACATGTGCTCGA GAACA	M94rev
3	AATTCATGATAACTTCGTATAGCATACAT TATACGAAGTTATCCGGAGATATCCACCG GTCTGGCGGCCGC	ATG1ox1
4	TCGAGCGGCCGCAGACCGGTGGATATCT CCGGATAACTTCGTATAATGTATGCTATA CGAAGTTATCATG	ATGlox2
5	CGT GGT CAA GCC GGT CGT GTT GTA CCA GAA CTC GAC TTC GGT CGC GTT GCT TAC AAT TTA CGC GCG GG	$5'-\Delta$ m157-pCR3-FRT-Kan ^r -FRT
6	CCC CGA TAT TTG AGA AAG TGT ACC CCG ATA TTC AGT ACC TCT TGA CTA AGA AGC CAT AGA GCC CAC CGC	$3'-\Delta m157-flox-egfp$
7	TGC TTC CCG GCG GCT TCT GCG CGA CCT TCC AGC TGC AGG TAG ACC ACG GCG ACG TCC AGA CTA TCC GTG AAA AGT TTG AGA AGC ATC AGT AGC CGA TTT CGG CCT ATT GGT T	5' ΔM94-p06-tTA
8	CAT GGA TGG GTT GGT TGA TTT GTA TGT CTG TTG GCT ACT CAC ATG TGC TCG AGA AGC CAG TGT GAT GGA TGA TCC TC	3'-ΔM94-p06-tTA
9	SIINFEKL	OVA-MHC-I Peptide
10	TVYGFCLL	m139 MHC-I Peptide
11	RALEYKNL	ie3 MHC-I Peptide
12	SCLEFWQRV	M57 MHC-I Peptide
13	HGIRNASFI	M45 MHC-I Peptide
14	FAM-AACGTACATCGCTCTCTGCTGGCCG-TAMRA	Taqman-Probe M54
15	Ttactgggtgctgccgggcggctttgccgtctcttcgcgcgt cactcttcacggcctggcccagcgagccttgcgggaccggtt ccataaacttcgaggccgtgctggccggggcctggggcggcggcggcggcggc	LIFde1UL94

-continued

SEQ.ID. No.	Sequence	internal reference number	
	ttcgtgatgcaagcggtccggcaatgaccgaaattggtgaac agccgtggggtcgtgaatttgcactgcgtgatccggcaggta attgtgttcattttgttgcagaagaacaggattaacctcgat taattaattgtaacattaccctgttatccctaccggtgtcct aggcggggtctgacagttcacggggagaagaaacaagaaaca acaaaaaaaaaa		
16	cgtgttagaccgttggagtcgcgacctgtcccgcaagacgaa cctaccgatctgggtcgccaacagcgccaacgagtacgtcgt cagctccgtgccccgcccgtcagtccgtagaagtaactcat aaactttcaggtctcgcgtacgattcgcgagtcgggaatgta gggataacagggtaatcgatgttgacaattaatcatcggcat agtatatcggcatagtataatacqacaaggtgaggaactaaa ccatggcaaaactgaccagcgcagttccggttctgaccgcac gtgatgttgccggtgccgttgaattttggaccgatcgtctgg gttttagccgtgattttgtggaagtgatttgccggtgtg ttcgtgatgatgttaccctgtttattagcgcagttcgggtgt gtctggatgatgttaccctgtttattagcgcagttcgggtcg gtctggatgaactgtatgcagaatggtctgggttcgg gtctggatgaactgtatgcagaatggtcagaagttgtgagca ccaattttcgtgatgcaagcggtccggcaatgaccgaaattg gtgaacagcgtggggtcgtgaatttgcactgcgtgatccgg caggtaattgtgtcattttgttgcagaagaacaggattaac ctcgattaattaattgtaacattaccctgttatccctaaagt aactcataaactttcaggtctcgcgtacgattcgcgagtcgg gaatg	LIFdelUL99	
17	as contained in the sequence listing	pCB-Ubic-UL94-IRES-mChe	
18	as contained in the sequence listing	pCB-Ubic-UL99-IRES-gfp	
19	as contained in the sequence listing	pLV-Ubiqc-BLAs-IRES-Puro	
20	as contained in the sequence listing	pTB40E-BAC4-FRT	
21	as contained in the sequence listing	pBSK-OVA	
22	as contained in the sequence listing	pTRE-HAM94	
23	as contained in the sequence listing	Unique\in\TB40\ (UL133-UL145)	
24	MGSGIGAASMEFCEDVEKELKVHHANENIFYCPIAIMSAL AMVYLGAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTSVN VHSSLRDILNQITKPNDVYSFSLASRLYAEERYPILPEYL QCVKELYRGGLEPINFQTAADQARELINSWVESQTNGIIR NVLQPSSVDSQTAMVLVNAIVFKGLWEKTFKDEDTQAMPF RVTEQESKPVQMMYQICLFRVASMASEKMKILELPFASGT MSMLVLLPDEVSGLEQLESIINFEKLTEWTSSNVMEERKI KVYLPRMKMEEKYNLTSVLMAMGITDVFSSSANLSGISSA ESLKISQAVHAAHAEINEAGREVVGSAEAGVDAASVSEEF RADHPFLFCIKHIATNAVLFFGRCVSP	OVA	
25	MSGQGTKRSYEQMETDGERQNATEIRASVGKMIGGIGRFY IQMCTELKLSDYEGRLIQNSLTIERMVLSAFDERRNKYLE EHPSAGKDPKKTGGPIYRRVNGKWMRELILYDKEEIRRIW RQTNNGDDATAGLTHMMIWHSNLNDATYQRTRALVRTGMD PRMCSLMQGSTLPRRSGAAGAAVKGVGTMVMELVRMIKRG INDRNFWRGENGRKTRIAYERMCNILKGKFQTAAQKAMMD QVRESRNPGNAEFEDLTFLARSALIRGSVAHKSCLPACV YGPAVASGYDFEREGYSLVGIDPFRLLQNSQVYSLIRPNE NPAHKSQLVWMACHSAAFEDLRVLSFIKGTKVLPRGKLST RGVQIASNENMDAMESSTLELRSRYWAIRTRSGGNTNQQR ASAGQISIQPTFSVQRNLPFDRTTIMAAFNGNTEGRTSDM RTEIIRMMESARPEDVSFQGRGVFELSDEKAASPIVPSFD MSNEGSYFFGDNAEEYDN	NP-NT60 of Influenza	
26	MRATVGLVEAIGIRELRQHASRYLARVEAGEELGVTNKGR LVARLIPVQAAERSREALIESGVLIPARRPQNLLDVTAEP ARGRKRTLSDVLNEMRDEQ	ORF Rv3407 from Mycobacterium tuberculosis strain H37Rv	
27	MAWRSGLCETDSRTLKQFLQEECMWKLVGKSRKHREYRAV ACRSTIFSPEDDGSCILCQLLLLYRDGEWILCLCCNGRYQ GHYGVGHVHRRRRRICHLPTLYQLSFGGPLGPASIDFLPS	UL94	

-continued

SEQ.ID.	Sequence	internal reference number
	FSQVTSSMTCDGITPDVIYEVCMLVPQDEAKRILVKGHGA MDLTCQKAVTLGGAGAWLLPRPEGYTLFFYILCYDLFTSC GNRCDIPSMTRLMAAATACGQAGCSFCTDHEGHVDPTGNY VGCTPDMGRCLCYVPCGPMTQSLIHNDEPATFFCESDDAK YLCAVGSKTAAQVTLGDGLDYHIGVKDSEGRWLPVKTDVW DLVKVEEPVSRMIVCSCPVLKNLVH	
28	VTLGGAGAWLLP	SSc cross-reactive UL94 peptide
29	MGGELCKRICCEFGTTSGEPLKDALGRQVSLRSYDNIPPT SSSDEGEDDDDGEDDDNEERQQKLRLCGSGCGGNDSSSGS HREATHDGPKKNAVRSTFREDKAPKPSKQSKKKKKPSKHH HHQQSSIMQETDDLDEEDTSIYLSPPPVPPVQVVAKRLPR PDTPRTPRQKKISQRPPTPGTKKPAAPLSF	UL99
30	MATSRLSVKSLRSISRFVQWECCWMLVNKSARYREFRAVT SQSPGLGKVSSTDDGRCLAASMMLFRRDGNEVLCLVVNKE PVGQFGCSGMRREKMVIDGLQEPVYVMRLLAPLIPVKLGF SPYMLPPKSIGGSGGLDPSVIYQNASVVTPEEAATVTMQG SGIVTVGLSGVGSWVQIKDGGNMKLFVFALCEDVETACCD RLAFPSLAKIYSETVSCEADKCGFCRDSGRHVDPTGRFVG CVPDSGVCLCYSPCRGTDAAVSVRSWLPYLELEDGANTHS LFVRRYDGRKGLPATISDYLGARNSEGDEIPLRTEPWQLL KIEPTLSAMIIMACPLLKKIVLEHM	M94
31	MYPYDVPDYATSRLSVKSLRSISRFVQWECCWMLVNKSAR YREFRAVTSQSPGLGKVSSTDDGRCLAASMMLFRRDGNEV LCLVVNKEPVGQFGCSGMRREKMVIDGLQEPVYVMRLLAP LIPVKLGFSPYMLPPKSIGGSGGLDPSVIYQNASVVTPEE AATVTMQGSGIVTVGLSGVGSWVQIKDGGNMKLFVFALCF DVFTACCDRLAFPSLAKIYSETVSCEADKCGFCRDSGRHV DPTGRFVGCVPDSGVCLCYSPCRGTDAAVSVRSWLPYLEL EDGANTHSLFVRRYDGRKGLPATISDYLGARNSEGDEIPL RTEPWQLLKIEPTLSAMIIMACPLLKKIVLEHM	HA-M94
32	gaccgcgccacagcagagccagcaccagcagaagagccag caccagcgggcccagagtcgcaaagcgcggggcagccac cggccagactgcggtcgcgatggcccggagcgcgctcgcc aaccacgtgacggtgcccaacgataaccagtccgctcccg caccgacgccaccgccgat	delUL50S
33	atgtctagcgttttctcaacagcattcgtgcgccttga	delUL53S
34	cacggcctggcccagcgagccctgcgggaccggttccaaa acttcgaggccgtgctggccggggcatgcacgtggaggccggcgggaccggcaggaggaccggcggcggcaggaccgacggccggcaggacctgtgatccggaggacgacggctcgtgtatcttgtgccaattgctgttgctctaccgcgacggcgaatggatcctctgtctttgctgcaacggccgttatcaaggccactatgg	delUL94S
35	ctgggtcgccaacagcgccaacgagtacgtcgtcagctcc gtgccccgcccgtcagtccgtagaag	delUL99S

[0144] It will be acknowledged by a person skilled in the art and is in so far also within the scope of the present invention that each and any of the above nucleic acid sequences can be replaced by nucleic acid sequences which, due to the degeneracy of the genetic code, code for the same or functionally homolog peptides and proteins, respectively, as the above indicated nucleic acid sequences.

[0145] The present invention is now further illustrated by the following figures and examples from which further features, embodiments and advantages may be taken.

[0146] More specifically,

[0147] FIG. 1 is a schematic illustration of the concept of inducible trans-complementation;

[0148] FIG. 2A is a diagram indicating $TCID_{50}$ as a function of time;

[0149] FIG. 2B is a series of microphotographs;

[0150] FIG. 2C is a survivorship curve indicating survival of mice as a function of time;

[0151] FIG. 3A is a diagram indicating virus neutralizing antibody response as luciferase activity as a function of dilution of serum;

[0152] FIG. 3B is a diagram indicating the percentage of adaptively transferred T cells at various time points;

[0153] FIG. 3C is a diagram indicating the percentage of specific lysis of transferred cells loaded with various viral peptides by CD8⁺ T-cells specific for the viral peptides;

[0154] FIG. 4 is a Whisker blot indicating the percentage of adaptively transferred T cells in different mouse strains being infected with different virus mutants;

[0155] FIGS. 5A and 5B are diagrams indicating the challenge virus load in different organs of vaccinated mice;

[0156] FIGS. 6A and 6B are survivorship curves indicating survival of vaccinated mice as a function of time;

[0157] FIG. 7A is an agarose gel showing the result of a PCR detecting viral gene M54 in lungs of infected mice with either wild type or MCMV-ΔM94;

[0158] FIG. 7B is a diagram indicating the result of a quantitative PCR detecting viral gene M54 in lungs of infected mice with either wild type or MCMV- Δ M94;

[0159] FIGS. 7C and D are diagrams indicating the challenge virus load in different organs of vaccinated mice;

[0160] FIG. **8** is a series of microphotographs of cells of different cell-lines infected with and MCMV- Δ m157-recegfp- Δ M94.

[0161] FIG. 9A is a schematic overview of a spread-assay

[0162] FIG. 9B is a series of microphotographs

[0163] FIG. 9C is a diagram showing the results of a spread-assay

EXAMPLE 1

Spread Assay

[0164] The spread assay described herein may be used in connection with the characterization of a beta-herpesvirus and a human cytomegalovirus so as to determine whether such virus is spread-deficient.

[0165] Primary fibroblast cell lines MRCS for human CMV and NIH/3T3 for mouse CMV and complementing cell lines TCL94/99-BP and NTM94-7, respectively, are plated and infected at an MOI of about 0.25 for 1 h and then washed twice with D-PBS. Cells are incubated for 6 h and afterwards washed four times with D-PBS. Equal numbers of non-infected cells were stained with 5 μ M CFSE for 8 min and blocked by 2% FCS/D-PBS, then washed twice with 2% FCS/D-PBS and subsequently seeded on top of the unstained but infected cells.

EXAMPLE 2

Assay for Determining Whether a Virus is Endotheliotropic

[0166] The assay described herein is used for determining whether a virus is endotheliotropic. As to determine whether a human CMV is endotheliotropic a primary human fibroblast cell line, a complementing cell line which complements the product of the gene in relation to which the HCMV of the invention is deficient, and a human endothelial cell line are plated and infected at an MOI of about 0.1 with HCMV wild type or the virus of the present invention. 24 hours after infection immediate early staining is performed by incubating fixed cells with a monoclonal antibody against immediate early gene product of the beta-herpesvirus of the invention, more specifically CMV IE 1/2 monoclonal Antibody CH160 (Plachter et al. supra), commercially available from Virusys Co. in 3% BSA/D-PBS. After three D-PBS washes, cells are incubated with an Alexa Fluor 555-coupled secondary antibody directed against the monoclonal antibody against human immediate early 1 of HCMV in 3% BSA/D-PBS. Finally cells are washed three times and imaged by UV microscopy. Cells infected with wild type HCMV are used as

positive control and counted immediate early 1- and CFSE-positive cells using the ImageJ Cell Counter plugin (Rasband supra).

[0167] As to determine whether a mouse CMV is endotheliotropic a primary mouse fibroblast cell line, a complementing cell line which complements the product of the gene in relation to which the MCMV of the invention is deficient, and a mouse endothelial cell line are plated and infected at an MOI of about 0.1 with MCMV wild type or the virus of the present invention. 24 hours after infection immediate early staining is performed by incubating fixed cells with a monoclonal antibody against immediate early gene product of the beta-herpesvirus of the invention, more specifically Croma 101 designated as antibody 6/20/1 in Keil et al. (Keil et al., supra) in 3% BSA/D-PBS. After three D-PBS washes, cells are incubated with an Alexa Fluor 555-coupled secondary antibody directed against the mouse monoclonal antibody against immediate early 1 of mouse CMV in 3% BSA/D-PBS. Finally cells are washed three times and imaged by UV microscopy. Cells infected with wild type mouse CMV are used as positive control and counted immediate early 1 positive cells using the ImageJ Cell Counter plugin (Rasband supra).

EXAMPLE 3

Materials and Methods

Cells and Mice

[0168] The fibroblast cell line NIH/3T3 and BALB/c derived murine embryonic fibroblasts (MEF) were cultured as described in Cicin-Sain et al., (Cicin-Sain et al. 2005 J Virol 79:9492-9502). C57BL/6 (B6) mice, B6.SJL-Ptpr^c (Ptpr^c) mice and 129.IFN $\alpha\beta R^{-/-}$ mice were purchased from Elevage Janvier (Le Genest Saint Isle, France), Jackson Laboratories (Bar Harbor, Me., USA) and B&K Universal Limited (Grimston, England), respectively. 129.IFNαβR^{-/-} mice (Muller et al. 1994 Science 264:1918-1921) were backcrossed on the B6 background (B6.IFNαβR^{-/-}). T cell receptor transgenic mice OT-I (Hogquist et al. 1994 Cell 76:17-27) and OT-II (Barnden et al. 1998 Immunol Cell Biol 76:34-40) were backcrossed to Ptpr^c (CD45.1) or Thy1.1 (CD90.1) congenic mice, respectively. Alb-cre (Postic et al. 1999 J Biol Chem 274:305-315) and Tie2-cre (Constien et al. 2001 Genesis 30:36-44) were maintained on the B6 background. Mice were kept under specified pathogen free conditions. Animal experiments were approved by the responsible office of the state of Bavaria (approval no. 55.2-1-54-2531-111-07) or by the Ethics Committee at the University of Rijeka.

Generation of the Trans-Complementing Cell Line NT/M94-7

[0169] The conditional trans-complementing cell line NT/M94-7 was generated according to (Lotzerich et al. supra). Briefly, the M94 ORF was amplified from pSM3fr (Sacher et al. 2008 Cell Host Microbe 3:263-272) using primers HAM94 for (SEQ.ID.No.1) and M94rev (SEQ.ID.No.2) thereby introducing an HA tag at the N-terminus. The PCR product was digested with BamHI and XbaI and inserted into the BamHI- and NheI-cleaved pTRE2Hyg vector (BD Biosciences Clontech, Heidelberg, Germany), resulting in pTRE-HAM94(SEQ.ID.NO:22) putting HAM94 expression, the HAM94 protein is depicted in SEQ.ID.NO:31, under the control of the tetracycline (tet) inducible promoter.

Stable NIH/3T3 transfectants harboring pTRE-HAM94 were selected with 50 $\mu g/ml$ Hygromycin B. The deletion virus MCMV- Δ M94 was reconstituted by transfecting different NT/M94 cell clones with the respective BAC. The most productively infected trans-complementing cell line NT/M94-7 was subcloned using limiting dilution. The trans-complementing cell line was deposited under the Budapest Treaty with the DSZM, Germany on May 5, 2010.

Generation of Recombinant Viruses

[0170] Recombinant mouse CMV (MCMV) mutants were derived from the MCMV bacterial artificial chromosome (BAC) clone pSM3fr, originated from Smith strain (Messerle et al. 1997 Proc Natl Acad Sci USA 94:14759-14763). Nucleotide positions are given according to Rawlinson et al. (Rawlinson et al. supra). The 1.4 kilo base pair (bp) Smal fragment of pCP15 carrying the FRT flanked kanamycin resistance gene (Kan') was introduced into the BssHII site of pCR3 (Invitrogen, Basel, Switzerland) resulting in pCR3-FRT-Kan'-FRT. A fragment containing an ATG start codon and a loxP site was generated by annealing the oligonucleotides ATGlox1 (SEQ.ID.No.3) and ATGlox2 (SEQ.ID. No.4). This fragment was inserted into the EcoRI and XhoI site positioned between the major immediate early promoter of HCMV (IEP) and the polyA signal of the bovine growth hormone of pCR3-FRT-Kan'-FRT to obtain pCR3-FRT-Kan^r-FRT-ATG-loxP. The ovalbumin gene (ova) was synthesized as contained in pBSK-OVA (SEQ.ID.NO: 21) introducing GGAA after nt position 9 resulting in a BspEI restriction site for further cloning. Ova was inserted in frame using BspEI and NotI of pCR3-FRT-Kan^r-FRT-ATG-loxP resulting in a full length ova with inserted loxP site after the initial ATG under control of IEP named pCR3-FRT-Kan^r-FRT-ATGloxP-ova. To obtain a construct with Cre inducible ovalbumin (OVA) expression (SEQ.ID.NO: 24) a floxstop cassette (Sacher et al. supra) was inserted into the EcoRI and BspEI sites of pCR3-ATG-loxP-ova resulting in pCR3-ATG-flox-stopova. Using these constructs as templates and oligonucleotides 5'-Δm157-pCR3-FRT-Kan^r-FRT (SEQ.ID.No.5)(nt position 216243 to 216290) and 3'-Δm157-flox-egfp (SEQ.ID.No.6) (nt position 216885 to 216930) as primers a linear DNA fragment containing the IEP-ova cassette, the FRT flanked Kan', and the viral homology sequences to the MCMV genome target site m157 was generated. In a similar procedure the firefly luciferase gene (luc) was cloned under control of the IEP into pCP15 carrying the FRT flanked Kan^r. These fragments were introduced into m157 of pSM3fr as described (Sacher et al. supra) resulting in pSM3fr-Δm157-ova, pSM3fr-Δm157-flox-ova and pSM3fr-Δm157-luc. For excision of the FRT flanked Kan' FLP recombinase was transiently expressed from plasmid pCP20.

Generation of Spread-Deficient Virus Mutants

[0171] As shown in FIG. 1 in *E. coli* the BAC pSM3fr-ΔM94 was generated by insertion of the tTA transactivator cassette into pSM3fr thereby deleting M94. The transcomplementing cell line NT/M94-7 expresses pM94 under control of the Tet inducible promoter. Upon transfection with pSM3fr-ΔM94 expression of tTA by the viral genome induces expression of pM94 by the cell leading to the production of trans-complemented MCMV-ΔM94. This virus is able to infect non complementing first target cells. Due to the lack of the essential gene M94 the release of infectious virus

particles is impossible although immediate early (IE), early (E) and late (L) viral gene expression as well as DNA replication (DNA rep) occur.

[0172] For generation of the recombinant MCMV lacking the M94 sequence the parental MCMV BACs pSM3fr (MCMV-wt), pSM3fr-Δm157-ova (MCMV-ova) and pSM3fr-\Deltam157-rec-egfp (MCMV-\Deltam157-rec-egfp) (Sacher et al. supra) were applied to a second mutagenesis step. Therefore, the plasmid pO6-tTA-mFRT-Kan'r-mFRT was obtained by insertion of the Kan', on both sides flanked by mutant 34 bp FRT sites from pO6ie-F5 into pO6-tTA (Lotzerich et al. supra) to express the tTA transactivation gene under control of the IEP necessary for trans-complementation of pM94 (SEQ.ID:NO: 30). A linear DNA fragment containing the tTA cassette, the Kan^r and viral homology sequences to the MCMV genome target site (MCMV upstream-homology: nt position 136189 to 136234 and MCMV downstream-homology: nt position 137256 to 137309) was generated using primer 5'ΔM94-pO6-tTA (SEQ.ID.No.7), primer 3'-ΔM94pO6-tTA (SEQ.ID.No.8) and plasmid pO6-tTA-mFRT-Kan^rmFRT as template. This PCR fragment was inserted into the different parental pSM3fr clones, hereby deleting the M94 gene. Since ORFs of M94 and M93 are overlapping 47 bp of homology had to be left at the 5'-end of M94 to keep the M93 ORF intact and 17 bp homology are still present at the former 3'-end of M94. Again FLP recombinase was expressed for excision of the Kan^r . Construction of pSM3fr- Δ M94, pSM3fr-ova-ΔM94, pSM3fr-flox-ova-ΔM94 and pSM3fr-Δm157-rec-egfp-ΔM194 was confirmed by restriction digest analysis and sequencing.

[0173] Viruses were reconstituted from BAC DNA, propagated on NT/M94-7 complementing cells and purified on a sucrose cushion as previously described (Sacher et al. supra). For analysis of virus replication supernatants from infected cells were taken every 24 h. Quantification of infectious virus was done using TCID50 (median tissue culture infectious dose) method on NIH/3T3 or complementing NT/M94-7 cells. For the determination of virus replication in vivo virus load was determined by standard plaque assay as plaque forming units (PFU) per gram organ as described (Sacher et al. supra). Spread-deficiency of each virus stock of M94 deficient mutants (MCMV- Δ M94, MCMV-ova- Δ M94, MCMV-flox-ova-ΔM94 and MCMV-Δm157-rec-egfp-ΔM94) was confirmed by the absence of plaque formation after infection of non-complementing MEF, although CPE of individually infected cells was detectable. The E. coli containing the pSM3fr-ΔM94 BAC of the spread-deficient MCMV- $\Delta M94$ was deposited under the Budapest Treaty with the DSZM on Apr. 28, 2010 as DSM 23561.

UV Inactivation of Virus

[0174] For in vivo application, a fraction of the MCMV-wt virus preparation used for immunization was inactivated by exposure to 1.5 kJ/cm² UV light at a distance of 5 cm in a UV-crosslinker (Stratagene, Amsterdam, Netherlands) at 4° C. Viral infectivity was decreased by factor 2.4×10⁷. The same treatment was sufficient to abolish viral gene expression when MCMV-Δm157-rec-egfp was subjected to different doses (0.5, 1.0 and 1.5 kJ/cm²) of UV light and subsequently titrated on MEF. After 4 days post infection (p.i.) EGFP expression was monitored in single infected cells if virus was irradiated with low dose (0.5 kJ/cm²) of UV and no EGFP expression was seen after strong irradiation (1.5 kJ/cm²). Untreated MCMV-Δm157-rec-egfp formed EGFP plaques.

Immunization and Challenge of Mice

[0175] 8 to 10 weeks old female B6 mice were immunized by intraperitoneal (i.p.) or subcutaneous (s.c.) injection of either MCMV-wt or mutant MCMV. Each mouse received 1000 of virus suspension s.c. or 300 μl i.p. C57BL/6 mice were immunized with 1×10^5 TCID $_{50}$ MCMV-wt or MCMV-deltaM94, 129.IFN $\alpha\beta R^{-/-}$ with 2.5×10^5 TCID $_{50}$ of MCMV-deltaM94 or UV irradiated MCMV-wt, and B6.IFN $\alpha\beta R^{-/-}$ with 3×10^5 TCID $_{50}$ of MCMV- Δ M94 or MCMV-wt. Mock treated mice received same volumes of PBS. To boost mice, this procedure was repeated 14 days p.i. Sera collected from mice 12 weeks p.i. were used to determine amounts of virus specific antibodies by virus neutralization assay, as described below

[0176] 28 days or 20 weeks post priming, mice were challenged by intravenous (i.v.) injection of 106 PFU of tissue culture derived MCMV-wt. Five days post challenge lungs, liver and spleen were collected under sterile conditions and stored at -80° C. Organ homogenates were analyzed for infectious virus load by standard plaque assay on MEF cells. Salivary glands derived MCMV (sgMCMV-wt) was generated as a homogenate of salivary glands from mice infected with tissue culture derived MCMV-wt as described in Trgovcich et al. (Trgovcich et al. 2000 Arch Virol 145:2601-2618). The isolated sgMCMV-wt is more virulent compared to tissue culture derived MCMV-wt (Pilgrim et al. 2007 Exp Mol Pathol. 82:269-279). Vaccinated B6.IFNαβR^{-/-} mice were challenged with 2×10⁵ PFU sgMCMV-wt and 129.IF- $N\alpha\beta R^{-/-}$ mice were challenged with 2.5×10⁵ TCID₅₀ tissue culture derived MCMV-wt.

Virus Neutralization Assay

[0177] Heat inactivated serum (56° C., 30 min) from 5 immunized mice 12 weeks p.i. were pooled and serially diluted 1:2 in DMEM containing a final concentration of 10% guinea-pig complement. Each dilution was mixed with 50 PFU of MCMV-luc and incubated for 90 min at 37° C. and subsequently added to NIH/3T3 cells in a 96 well format. After 1 h at 37° C. the virus inoculum was removed and NIH/3T3 medium added. The cultures were incubated for 24 h and luciferase activity was determined in cell extracts using the luciferase assay (Promega, Mannheim, Germany) in a luminometer (Berthold, Bad Wildbad, Germany) according to the supplier's and manufacturer's instructions, respectively.

In Vivo Cytotoxicity Assay

[0178] To evaluate CD8⁺ T cell effector function in vivo, splenocytes of congenic CD45.1⁺ Ptpr^c mice were incubated with 2 μ M of the indicated peptide and stained with 2 μ M, 0.7 μM , or 0.1 μM carboxyfluorescein succinimidyl ester (CFSE) and PKH26 Red Fluorescent Cell Linker Mini Kit according to the manufacturer's instructions (Sigma-Aldrich). At day 6 p.i., labeled CD45.1⁺ cells were transferred into B6 (CD45. 2⁺) recipients. After 16 h spleens of recipient mice were removed and flow cytometrical analysis of the target cells was performed. Specific cytotoxicity of target cells was calculated using the equation: % spec lysis=(1-ratio unprimed/ratio primed)*100; ratio=(% CFSE low/% CFSE high) (Lauterbach et al. 2005 J Gen Virol 86:2401-2410). The OVA derived class I peptide (SEQ.ID.NO.9) and MCMV specific peptides derived from m139 (SEQ.ID.No.10), ie3 (SEQ.ID.No.11), M57 (SEQ.ID.No.12) and M45 (SEQ.ID.No.13) (Snyder et al. 2008 supra) were purchased from Metabion, Germany and were dissolved and stored according to manufacturer's device.

Adoptive Transfer and Flow Cytometrical Analysis

[0179] OVA specific CD8+ T cells were isolated from spleen and cervical, axillary, brachial and inguinal lymph nodes of OT-I TCR transgenic mice backcrossed to congenic CD45.1+ mice. OT-I cells were purified by negative selection via the CD8a+T Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). 3×10⁵ transgenic T cells were injected i.v. into recipient B6 mice one day prior to i.p. infection with 10⁵ TCID₅₀ MCMV. To follow expansion of the transferred OT-I T cells 100 µl blood was taken 3, 6 and 8 days p.i., erythrocytes were lysed (PharmLyse, BD Biosciences, Heidelberg, Germany) and remaining cells were incubated with PE-TexasRed coupled α-CD8α (5H10; Caltag, Sacramento, Calif., USA) and PE coupled α-CD45.1 antibodies (A20; BD Biosciences Pharmingen). Flow cytometrical acquisition was performed using an Epics XL-MCL (Beckman-Coulter) and data were analyzed using FlowJo software (Tristar, Ashland, Oreg., USA).

[0180] OVA specific CD4+ T cells were isolated from spleen and cervical, axillary, brachial and inguinal lymph nodes of OT-II TCR transgenic mice backcrossed to congenic CD90.1+ mice. After lysis of erythrocytes 3×10^5 transgenic T cells were injected i.v. into recipient mice one day prior to infection with 10^5 TCID $_{50}$ MCMV. Spleens were removed and splenocytes were incubated with Fc block (2.4G2; BD Biosciences) and subsequently stained with PE conjugated α -CD90.1 (HIS51; eBioscience) and PE-Cy5.5 coupled α -CD4 (RM 4-5; eBioscience). Flow cytometrical acquisition was performed using a FACS Calibur (BD Biosciences) and data were analyzed using FlowJo software.

Quantification of Viral Genomes in Organ Homogenates

[0181] Lungs were removed from mice twelve month after infection. Organs were homogenized and DNA was extracted using the DNeasy Blood & Tissue Kit from Qiagen (Hilden, Germany). Elution was done with 100 µl of the supplied elution buffer and genomic DNA concentration of each sample was quantified in duplicates using a NanoDrop ND-1000 UV-Vis Spectrophotometer. To quantify the viral DNA a quantitative realtime PCR specific for the MCMV M54 gene (Cicin-Sain et al. 2005 supra) was performed using a specific Taqman-Probe (SEQ.ID.No.14) and the Taqman 1000 RXN PCR Core Reagents kit on an ABI PRISM 7700 Sequence Detector (Applied Biosystems, Carlsbad, Calif., USA). To calculate the viral genome copy number, a standard curve of the BAC plasmid pSM3fr containing the M54 gene was included.

EXAMPLE 4

MCMV-ΔM94 is Spread-Deficient

[0182] The HCMV virion protein pUL94 is essential for virus replication (Dunn et al. supra) and is expressed with late kinetics (Wing et al. supra). It has been found that pM94, the MCMV homolog, is also essential and plays a crucial role in a post nuclear step of virus maturation. In order to transcomplement the essential M94 gene product and reconstitute an M94 deletion mutant the NIH/3T3 derived complementing cell line NT/M94-7 harbouring the M94 gene under control of

the TRE promoter was generated. The TRE promoter is only active in the presence of the Tet trans-activator (tTA). To provide the tTA for trans-complementation of pM94 the tTA expression cassette was introduced into pSM3fr (Messerle et al. supra) disrupting M94 generating pSM3fr-ΔM94. MCMV-ΔM94 virus was reconstituted by transfecting NT/M94-7 cells (FIG. 1). Next, multistep growth analysis infecting NT/M94-7 cells as well as parental NIH/3T3 fibroblasts with MCMV-ΔM94 or MCMV-wt were performed.

[0183] The results of this Example are shown in FIG. 2. In FIG. 2A Parental NIH/3T3 (circles) and NT/M94-7 fibroblasts (boxes) were infected at 0.1 $\rm TCID_{50}$ /cell with MCMV-wt (wt; closed symbol) or MCMV- Δ M94 (Δ M94; open symbol). At indicated days, infectious virus in the supernatant was quantified on NT/M94-7 cells by $\rm TCID_{50}$ endpoint titration. Shown is the mean+/–SD of titrated duplicates. At day 5 p.i. supernatants were additionally titrated on MEF. No PFU was found within lml supernatant of MCMV- Δ M94 infected NT/M94-7. p.i.=post infection; DL=detection limit.

[0184] As shown in FIG. 2B Parental NIH/3T3 (lower panel) and NT/M94-7 (upper panel) fibroblasts were infected with MCMV- Δ m157-rec-egfp- Δ M94. At indicated time points EGFP expressing cells were monitored. hpi=hours post infection.

[0185] As shown in FIG. 2C 129.IFNαβR^{-/-} mice (n=15 for MCMV- Δ M94, open symbols; n=8 for MCMV-wt, closed symbols) were infected with 2.5×10⁵ TCID₅₀ i.p. and survival was followed for 30 days p.i.

[0186] While MCMV-ΔM94 replicated to MCMV-wt-like titers on NT/M94-7 cells, no infectious virus was detectable in the supernatant of NIH/3T3 cells (FIG. 2A). As the defect of MCMV-ΔM94 to release infectious virus particles into the supernatant does not exclude cell-associated virus spread, a ΔM94 mutant expressing the enhanced green fluorescent protein EGFP (MCMV-Δm157-rec-egfp-ΔM94) was constructed. While MCMV-Δm157-rec-egfp-ΔM94 spread with kinetics comparable to MCMV-wt on NT/M94-7 cells, MCMV-Δm157-rec-egfp-ΔM94 remained strictly confined to the first infected NIH/3T3 cells (FIG. 2B). This result was confirmed also in endothelial cells (FIG. 8). In summary, M94 is essential and deletion abrogates virus release and cell-to-cell spread. In addition, MCMV-ΔM94 can be efficiently produced by trans-complementation.

[0187] Complementing NT/M94-7, parental NIH/3T3 fibroblasts and myocardium-derived endothelial cells MHEC5-T were infected with 0.1 TCID50/cell MCMV- Δ M94- Δ m157-rec-egfp (MCMV- Δ M94) or MCMV- Δ m157-rec-egfp (wt). At indicated time points EGFP expressing cells were monitored. Scale bar represents 100 nm.

EXAMPLE 5

MCMV-ΔM94 does not Revert to Replication Competent Virus

[0188] A major safety concern is reversion of vaccine strains to replication competent viruses during preparation (Roizman et al. 1982 Dev Biol Stand. 52:287-304) or in the vaccinated patient (Iyer et al. 2009 Ann. Emerg. Med 53:792-795). To exclude acquisition of the M94 gene through recombination via homologous sequences between MCMV-ΔM94 and the complementing cell line homologies were carefully avoided during virus construction. Replication competent virus indicative of recombination between the deletion virus and the M94 gene expressed by NT/M94-7 was never

observed. In order to investigate the safety of MCMV- Δ M94 for vaccination studies in a highly susceptible mouse strain, 129.IFN α βR $^{-/-}$ mice were infected with MCMV-wt or MCMV- Δ M94. While all IFN α βR $^{-/-}$ mice died within 14 days upon infection with MCMV-wt, after infection with MCMV- Δ M94 all mice survived with no or only minimal weight loss (FIG. 2C). In conclusion, MCMV- Δ M94 could be safely produced and even immune deficient mice tolerated MCMV- Δ M94 infection.

EXAMPLE 6

MCMV-ΔM94 Induces Neutralizing Antibody and T Cell Responses

[0189] Poor induction of neutralizing antibodies that prevent viral entry is a problem in HCMV infection (Landini et al. 1991 Comp Immunol Microbiol Infect Dis 14:97-105). Therefore, the neutralizing antibody response to MCMV-wt and MCMV-ΔM94 was compared 12 weeks post immunization. Serial dilutions of sera were mixed with a luciferase expressing MCMV (MCMV-luc) prior to infection of NIH/3T3. The reduction of the luciferase signal reflected the neutralizing capacity of the antisera. Immunization with MCMV-ΔM94 induced a slightly lower amount of neutralizing antibodies than with MCMV-wt (FIG. 3A, p<0.05) whereas immunization with UV irradiated MCMV-wt abolished the induction of neutralizing antibodies confirming published observations (Gill et al. supra).

[0190] The results of this example are shown in FIG. 3. In FIG. 3A B6 mice were immunized i.p. with 10⁵ TCID₅₀ MCMV-wt (wt; closed circles), MCMV-ΔM94 (ΔM94; open circles) or mock infected (PBS; gray squares). Blood was collected 12 weeks p.i. and virus neutralizing capacity of the serum was determined using MCMV-luc. Neutralizing antibody levels of MCMV-ΔM94 immunized mice were significantly lower than antibody levels of MCMV-wt immunized mice using two-way ANOVA testing (P=0.04). Values represent the mean+SD of measured serum pools. RLU=Relative Luciferase Units, BG=background.

[0191] In FIG. 3B after adoptive transfer of 3×10^5 OT-I CD8⁺ T cells (upper panel), B6 mice (n=5) were infected i.p. with 10^5 TCID₅₀ MCMV-ova (wt-ova; closed bars), MCMV-ova- Δ M94 (Δ M94-ova; open bars) or PBS (gray bars). At day 3, 6 and 8 p.i. flow cytometrical analysis was performed on blood for the congenic marker CD45.1 and CD8. After adoptive transfer of 3×10^5 OT-II CD4⁺ T cells (lower panel), B6 mice (n=5) were infected i.p. as above. At day 3, 6 and 8 p.i. flow cytometrical analysis was done on splenocytes for CD90.1 and CD4. Each bar represents the mean+SD of the indicated group; (***, P<0.01).

[0192] In FIG. 3C B6 mice (n=5) were infected i.p. with 10^5 TCID₅₀ MCMV-wt (wt; closed symbols), MCMV- Δ M94 (Δ M94; open symbols) or UV irradiated MCMV-wt (wt UV; gray symbols). At day 6 p.i. in vivo cytotoxicity assay was performed using splenocytes labeled with carboxyfluorescein succinimidyl ester (CFSE) and the indicated viral peptides. Symbols represent the specific lysis activity against the indicated peptide in individual animals. The cross bar indicates the median of the analyzed group. The right panel shows an exemplary set of flow cytometric data.

[0193] Both CD4⁺ and CD8⁺ T cells play important roles in host defense against CMV. Antiviral CD8⁺ T cells are effective in controlling MCMV during acute infection and mediate protection after immunization (Reddehase et al. supra). In

19

addition, CD4⁺ T helper cells are required for virus clearance in salivary glands (Jonjic et al. 1989 J Exp Med 169:1199-1212). In order to compare the level of CD4⁺ and CD8⁺ T cell responses induced by MCMV-wt and MCMV-ΔM94, OVA as a model antigen was chosen to be expressed by the vaccine. B6 mice were infected with MCMV-ova and MCMV-ova-ΔM94 one day after adoptive transfer of OVA specific CD4⁺ or CD8⁺ T cells. For MCMV-ova the expansion of OVA specific CD4⁺ and CD8⁺ T cells peaked at day 6 p.i., concordant with published data (Karrer et al, 2004 J Virol 78:2255-2264). Remarkably, MCMV-ova-ΔM94 also stimulated the proliferative response of OVA specific CD8⁺ and CD4⁺ (FIG. 3B) T cells to a degree comparable to the spread competent MCMV-ova. The amount of CD8⁺ T cells was even slightly higher than with MCMV-wt (P<0.01).

[0194] This observation was to be confirmed for native MCMV antigens. B6 mice were infected with MCMV-ΔM94 or MCMV-wt. At six days p.i., target cells loaded with viral peptides derived from either m139, ie3, M57, or M45 (Snyder et al. 2008 supra) were injected and their cytolysis in vivo was analyzed (FIG. 3C). The cytolytic CD8+ T cell response induced by MCMV-ΔM94 turned out to be comparable to MCMV-wt. In contrast, B6 mice injected with UV irradiated MCMV generated no or only poor lysis of targets. UV inactivation of MCMV-ΔM94 or MCMV-wt also abolished OVA specific T cell expansion and the virus neutralizing capacity of sera. Thus, viral gene expression appeared to be crucial for the induction of the adaptive immune response. Altogether, spread-deficient MCMV induced an immune response comparable to MCMV-wt.

EXAMPLE 7

Role of Viral Target Cell Types in CD8⁺ T Cell Activation

[0195] The strong adaptive immune response against MCMV- Δ M94 was surprising, since MCMV- Δ M94 gene expression is limited to the first target cells. Induction of a specific T cell response is dependent on antigen presentation by infected cells and by professional antigen presenting cells (Villadangos et al. 2008 Immunity. 29:352-361). In order to assess the contribution of infection of different cell types in the generation of an efficient CD8⁺ T cell response the replication deficient MCMV was combined with conditional activation of a marker gene (Sacher et al. supra). MCMV-flox-ova- Δ M94 was constructed which expresses OVA only after Cre-mediated recombination.

[0196] One day prior to i.p. injection of 10⁵ TCID₅₀ of MCMV-flox-ova-ΔM94 (ΔM94-flox-ova), MCMV-ova-ΔM94 (ΔM94-ova), MCMV-wt (wt) or PBS 3×10⁵ congenic OT-I CD8⁺ T-cells were transferred i.v. into B6, Alb-ere and Tie2-cre mice. At day 6 p.i. a flow cytometrical analysis was performed on PBL for the congenic marker CD45.1 and CD8. Boxes represent the ratio of OT-I cells per CD8⁺ cells as a pool of 3 independent experiments and extend from the 25 to the 75 percentile. The lines indicate the median. Whiskers extend to show the extreme values. The P-values were obtained applying a two-tailed Wilcoxon rank sum test, (***, P<0.01; ****, P<0.001). The results are shown in FIG. 4

[0197] Endothelial cells (EC) and hepatocytes (He) are among the first target cells infected by MCMV in vivo (Sacher et al. supra). Whether these cell types contribute to CD8⁺ T cell activation was addressed by infecting mice that express Cre recombinase selectively in vascular EC (Tie2-cre) or Hc

(Alb-cre). One day after adoptive transfer of OVA specific CD8⁺ T cells mice were infected with 10⁵ TCID₅₀ of spreaddeficient MCMV-flox-ova-ΔM94. He are the main producers of infectious virus during the first few days of infection and are highly effective in activating a conditional marker gene by Cre recombinase (Sacher et al. supra). Yet, selective induction of OVA expression in MCMV infected He resulted in only weak proliferation of OVA specific CD8+T cells (FIG. 4). In contrast, a significantly (P<0.001) higher proliferative response of OVA specific CD8+ T cells was observed upon OVA expression in EC. Therefore, infection of EC make a stronger contribution to the induction of an antiviral CD8⁺ T cell response than infection of He. As infection of C57BL/6 mice with MCMV-ΔM94-ova that leads to expression of OVA in all infected cells induces a higher proportion of OVA specific CD8+T cells than expression selectively in EC (Tie2-cre mice infected with MCMV-ΔM94-flox-ova; P<0.01) additional cell types seem to be involved in antigen expression and T cell stimulation. In addition, the significant different T cell responses after cell type specific recombination in vivo prove that MCMV-ΔM94 is unable to spread from cell to cell.

[0198] The experimental details in connection with this example were, in addition to the ones outlined in Example 3, as follow and the results of this example are depicted in FIG. 5

[0199] B6 mice (n=5) were immunized (1 st) s.c. or. i.p. with 10^5 TCID₅₀ MCMV-wt (wt; closed symbols), MCMV-ΔM94 (ΔM94; open symbols), Δm01-17+m144-158-MCMV (AA; gray symbols) or PBS (light gray symbols). Virus preparations were UV irradiated before immunization (UV) as indicated. Optionally, mice were boosted (2 nd) two weeks later with the same dose, route and virus. Challenge infection was applied i.v. 20 (A) or four weeks (B) post prime with 10^6 PFU MCMV-wt. Five day post challenge plaque assay was performed. Horizontal bars show the median of each group. Each symbol represents one individual mouse. DL=detection limit.

EXAMPLE 8

MCMV-ΔM94 Protects Against Challenge with MCMV-Wt

[0200] In order to test protection of MCMV-ΔM94 against lethal challenge, B6 mice were infected with either spreaddeficient MCMV- Δ M94, the attenuated strain Δ m01-17+ m144-158-MCMV (Cicin-Sain et al. 2007 J Virol 81:13825-13834) or MCMV-wt. A boost infection was applied 4 weeks later with the same dose. 20 weeks after priming mice were challenged i.v. with $10^6\ \mathrm{TCID}_{50}$ tissue culture derived MCMV-wt. Most remarkably, already a singular immunization dose of MCMV-ΔM94 was already sufficient to strongly suppress MCMV-wt replication by 10,000 fold in lungs, 1,000 fold in liver and at least 100 fold in spleen, whereas non-immunized controls had high virus loads in all organs tested (all P<0.01; FIG. 5A). Overall, the protection mediated by MCMV-ΔM94 vaccination was comparable to MCMV-wt or Δm01-17+m144-158-MCMV vaccination (all P>0.05). Due to the strong protection achieved already after one administration, a boosting effect could not be detected. However, there was weak protective effect after a singular dose when UV inactivated MCMV-wt or UV inactivated MCMV-ΔM94 virus was administered. Only after a boost with UV inactivated viruses the effect was slightly improved but still remained lower than that of a singular dose of MCMV-ΔM94 (P<0.05).

[0201] It was asked, whether the strong protection after singular administration of MCMV-ΔM94 could also be realized in a short-term vaccination protocol. In addition, the influence of two different application routes was tested. B6 mice were injected either i.p. or s.c. followed by challenge infection with MCMV-wt only 4 weeks later. Here, vaccination with MCMV-ΔM94 resulted in about 100 fold reduction of challenge virus load in liver (P<0.05), lungs (P<0.01) and spleen (P<0.01; FIG. 5B) comparable to immunization with Δm01-17+m144-158-MCMV. MCMV-wt vaccination resulted in reduction of challenge virus load by 1,000 fold (P<0.01). Generally, there was no significant difference between the i.p. or s.c. vaccination route although s.c. injection appeared to induce slightly better protection in spleen (P>0.05) FIG. 5B) and hearts.

[0202] Summarized, vaccination with the spread-deficient MCMV- Δ M94 was able to efficiently protect immunocompetent mice against challenge with MCMV-wt after vaccination with a singular dose. Remarkably, vaccination with MCMV- Δ M94 was as efficient as vaccination with MCMV-wt concerning long-term vaccination, whereas the use of UV inactivated virus could not compete even after a second application.

EXAMPLE 9

Protection of Severely Immune Compromised Recipients

[0203] Type I interferons are key cytokines in the immune response against CMV and deletion of their receptor results in a mouse (IFN $\alpha\beta R^{-/-}$) that is severely immunocompromised and at least 1.000-fold more susceptible to MCMV infection than the parental mouse strain (Presti et al. 1998 J Exp Med 188:577-588). Since spread-deficient MCMV-ΔM94 was proven to be well tolerated by IFN $\alpha\beta$ R^{-/-} mice (FIG. 2C), it was tested whether MCMV-ΔM94 could even protect IFN $\alpha\beta$ R^{-/-} mice against lethal MCMV-wt challenge (see FIG. 6A). B6.IFNαβ3R^{-/-} mice were immunized with MCMV-ΔM94 or a sublethal dose of MCMV-wt. Both groups survived and mice immunized with MCMV-ΔM94 showed no significant weight loss, whereas MCMV-wt infected mice lost approximately 15% of their body weight. Four weeks later, mice were challenged by infection with a lethal dose of more virulent salivary glands derived MCMV (as described in Example 3). Most strikingly, the vaccination with both, MCMV-ΔM94 as well as MCMV-wt was protective and all animals survived (FIG. 6A).

[0204] The results of this Example are shown in FIG. 6.

[0205] In FIG. 6A B6.IFNαβR^{-/-} (n=6) mice were immunized i.p. with 3×10^5 TCID $_{50}$ MCMV-wt (wt; black circles) or MCMV-ΔM94 (ΔM94; open circles). Control groups of B6.IFFNαβR^{-/-} (gray circles) or B6 (gray triangles) were treated with PBS. Four weeks later challenge infection was performed by i.p. injection of 2×10^5 PFU salivary glands derived MCMV (sgMCMV-wt) mice and survival was monitored.

[0206] In FIG. 6B 129.IFNαβR^{-/-} mice 4 weeks previously immunized with 2.5×10^5 TCID₅₀ of MCMV-ΔM94 (ΔM94; open circles, n=8), or UV irradiated MCMV-wt (wt UV; closed triangles down, n=8) were challenged with a lethal dose of MCMV-wt (see FIG. 2C) and survival was monitored. A 10 fold higher dose of MCMV-wt was applied to mice immunized with MCMV-ΔM94 (n=7) (open triangles).

[0207] B6 mice profit from an Ly49H-dependent activation of natural killer cells resulting in a strong innate immune response stimulated by the MCMV protein encoded by m157 (Sun et al. 2008. J. Exp. Med. 205:1819-1828). 129.IF- $N\alpha\beta R^{-/-}$ mice do not express Ly49H and are even more susceptible to MCMV infection than B6.IFNαβR^{-/-} mice. 129.IFNαβR^{-/-} mice were vaccinated with MCMV-ΔM94 and challenged 4 weeks later with a dose of 2.5×10⁵ TCID⁵⁰ tissue culture derived MCMV-wt (FIG. 6B). In line with the earlier data (Cicin-Sain et al. 2007 supra), vaccination with UV inactivated virus mediated only partial protection and could delay death for a short period. MCMV-ΔM94 vaccinated mice survived the lethal challenge even with a dose of 2.5×10⁶ TCID⁵⁰. In summary, vaccination with MCMV-ΔM94 is able to protect even highly susceptible immune compromised mice against lethal MCMV challenge.

EXAMPLE 10

Maintenance of the MCMV-ΔM94 Genome In Vivo

[0208] One argument against the application of attenuated life vaccines is their ability to establish a latent infection that bears the risk of reactivation (Iyer et al. supra). On the other hand non-productive reactivation episodes might result in endogenous boosts of the antiviral immune response (Snyder et al. 2008 Immunity 29:650-659). Thus, it was intriguing to test whether MCMV-ΔM94 genome is maintained in vaccinated hosts. Quantitative PCR analysis on total DNA extracted from lungs, a key manifestation site of CMV disease (Balthesen et al. 1993 J Virol 67:5360-5366), was performed. Twelve months p.i. genomes of MCMV-ΔM94 could be detected in all mice tested (FIGS. 7A and B) proving that the genome of MCMV-ΔM94 is maintained. Interestingly, the genome numbers detected in lungs one year after infection with MCMV-ΔM94 and MCMV-wt were not significantly different (P>0.05). This finding proved that at least some of the first target cells are not lost after infection either due to virus-induced cell death or elimination by the immune response. In summary, these data also provide first evidence that virus spread is not necessary for long-term genome maintenance and that first target cells of MCMV-ΔM94 may be able to contribute to a more sustained immune response.

[0209] The results of this example are shown in FIG. 7. [0210] B6 mice were infected i.p. with 10⁵ TCID₅₀ MCMV-wt (wt) (n=5) or MCMV- Δ M94 (Δ M94) (n=6). Twelve months p.i. total DNA was extracted from lungs. (FIG. 7A) PCR analysis was performed obtaining a specific 246 bp fragment of the polymerase gene M54. As controls DNA from lungs five days after infection with 10⁵ TCID₅₀ MCMV-wt (wt acute) (n=5), PBS (1), no template (2) or the BAC plasmid pSM3fr (3) were used. (FIG. 7B) Quantitative realtime PCR analysis was performed and viral M54 gene copies were calculated per µg genomic DNA. Each symbol represents one individual mouse. Horizontal bars show the median of each group. Genome copy numbers of MCMV-wt (wt) and MCMV-ΔM94 (ΔM94) are not significantly different (P>0.05). Both groups are significantly different compared to acutely infected lungs (wt acute) (**, P<0.01). MW=molecular weight marker; DL=detection limit. (FIG. 7C and FIG. 7D) B6 mice (n=5) were immunized i.p. with 10⁵ TCID₅₀ MCMV-wt (wt; closed symbols), MCMV-ΔM94 (Δ M94; open symbols), Δ m01-17+m144-158-MCMV ($\Delta\Delta$; gray symbols) or PBS (light gray symbols). Virus preparations were UV-irradiated before immunization (UV) as indicated. Challenge infection was applied i.v. one year post prime with 10^6 PFU MCMV-wt. Plaque assay was performed (FIG. 7C) five days post challenge with lungs and (FIG. 7D) 14 days post challenge with salivary glands (SG). Horizontal bars show the median of each group. Each symbol represents one individual mouse. DL=detection limit.

EXAMPLE 11

Vaccination with MCMV-ΔM94 Prevents Replication of Virus in the Respiratory Tract

[0211] From epidemiological studies it was suggested that saliva is an important route of transmission of HCMV (Pass et al. 1986 N. Engl. J Med 314:1414-1418). To test whether the vaccine MCMV-ΔM94 is able to block virus replication in salivary glands and lungs C57BL/6 mice were immunized with MCMV-ΔM94 or control viruses and received twelve months later a challenge infection with 10⁶ PFU MCMV-wt i.v. (FIGS. 7C and D). A single application of MCMV-ΔM94 was sufficient to suppress challenge virus replication by more than factor 1,000 in lungs in 4 out of 6 animals (FIG. 7C). Further, no challenge virus could be isolated from salivary glands 14 days after challenge (FIG. 7D). This implies that shedding of virus from the respiratory tract via saliva and therefore horizontal transmission via this route is abrogated by vaccination with spread-deficient MCMV.

EXAMPLE 12

Discussion

[0212] It is reported herein on the vaccination against a beta-herpesvirus using a spread-deficient vaccine. The vaccine induced a strong adaptive immune response comparable to MCMV-wt conferring protection even in highly immune compromised mice. This means that infection of the first target cells is sufficient for successful vaccination.

[0213] An intact immune system usually protects against HCMV disease. Hence, the antigenic capacity of the wild type virus is sufficient for the induction of a protective immune response. The inability of UV inactivated virus to protect efficiently against challenge infection demonstrated the need for viral antigen expression including nonstructural antigens (Cicin-Sain et al. 2007 supra; Gill et al. 2000 J Med Virol 62:127-139). As a consequence an ideal vaccine should exploit the full immunogenic but avoid the pathogenic potential of the wild type virus.

[0214] The alpha-herpesvirus field has pioneered the use of replication defective viruses as vaccines (Dudek et al. supra). These vaccines were generated by the deletion of genes essential for virus replication and are thus apathogenic (Dudek et al. supra). Now, to construct a spread-deficient beta-herpesvirus vaccine deletion of M94 was chosen for the following reasons. First, M94 is essential for spread of MCMV and inferred from studies of HCMV it should be expressed with late kinetics during virus replication (Scott et al. supra; Wing et al. supra). Second, pM94 does not belong to the group of glycoproteins which comprise major targets for the neutralizing antibody response of HCMV. Third, M94 of MCMV is the homolog of UL94 in human CMV (Wing et al. supra) that in principle allows translation to the human pathogen. Finally, the deletion of UL94 of HCMV might even be of advantage because pUL94 induces autoreactive antibodies that are associated with systemic sclerosis (Lunardi et al. 2000 Nat Med 6:1183-1186). The SSc cross-reactive UL94

peptide is depicted in SEQ.ID:NO: 28. Interestingly, genomes of the spread-deficient MCMV-ΔM94 were detected in lungs after i.p. infection, showing that virus can disseminate either as free particles (Hsu et al. 2009 J Gen Virol 90:33-43) or associated to cells. Monocytes and macrophages were shown to be attracted to the peritoneal cavity after infection and transport the virus in blood (Stoddart et al. 1994 J Virol 68:6243-6253; van der Strate et al. 2003 J Virol 77:11274-11278). These cells could also release virus at distant sites to infect EC or other cell types, a process called trans infection (Halary et al. 2002 Immunity 17:653-664).

[0215] The spread-deficient betea-herpesvirus vaccine presented here, has a strong protective capacity similar to wild type CMV infection. The immune response of the vaccinee controls virus replication in all analysed organs preventing overt CMV-disease. The absence of detectable amounts of infectious virus in salivary glands of long-term vaccinated mice two weeks after challenge implies that also horizontal transmission to other individuals via saliva is abrogated. Because of this it is plausible that such an equivalent vaccine will protect against HCMV-disease, similar to the protective effect of a pre-existing infection. This is supported by the observation that women who were exposed to HCMV were at lower risk to give birth to children with symptomatic disease compared to non-infected women (Fowler et al. 2003 JAMA 289:1008-1011). The seropositivity of the mother could not prevent infection but pathogenesis of the children. In addition, frequent exposure to different CMV strains could further increase immunity against reinfection (Adler et al. supra). It is therefore again plausible that a spread-deficient human CMV vaccine induces an immune response equal to natural infection which will protect against symptomatic human CMV infection without the risk for reactivation and pathogenesis.

[0216] The immune response to MCMV- Δ M94 reached a level comparable to MCMV-wt. Protection was similar to the recently generated vaccine Δ m01-17+m144-158-MCMV (Cicin-Sain et al. 2007 supra) which lacks 32 viral genes but which is not spread-deficient in vitro. In Δ m01-17+m144-158-MCMV immune evasive genes were deleted to increase the antiviral immune response and thereby to attenuate the virus (Scalzo et al. 2007 Immunol Cell Biol 85:46-54).

[0217] It is within embodiments of the present invention that (a) at least one essential gene and (b) at least one immune evasive gene is deleted, whereby it is preferred that the deleted at least one immune evasive gene is selected from the group comprising genes encoding gene products affecting antigen presentation, interaction with cytokines, the complement system and humoral immunity. More preferably, the deleted at least one immune evasive gene is selected from the group comprising genes encoding gene products that downregulate MHC I to avoid CTL response, gene products that evade the NK cell response, gene products that interfere with MHC II presentation, down-regulate adhesion molecules, gene products that interact with IL-1, gene products that activate TGF- β .

[0218] Infection of susceptible IFNαβR^{-/-} mice with spread-deficient MCMV proved the safety of the vaccination concept. Furthermore, IFNαβR^{-/-} mice were protected against otherwise lethal challenge, similar to other infection models (Calvo-Pinilla et al. 2009 PLoS One. 4:e5171; Paran et al. 2009 J Infect Dis 199:39-48). Although recent work revealed the capacity of MCMV to efficiently induce type I interferon (Hokeness-Antonelli et al. 2007 J Immunol 179: 6176-6183), the efficacy of the spread-deficient MCMV vac-

cine in IFN $\alpha\beta R^{-/-}$ mice implies that type I interferon-dependent immunity is not essential in the protection conferred by short term vaccination.

[0219] Interestingly, the spread-deficient MCMV induced an adaptive immune response with similar efficiency as MCMV-wt. The CD4⁺ and CD8⁺ T cell response was on the same level as MCMV-wt and the neutralizing antibody response was only marginally reduced. This slightly lower neutralizing capacity might be caused by the smaller number of infected cells and by the therefore reduced amount of antigen that is released after infection with MCMV-ΔM94. A lower number of antigen-antibody complexes might lead to less efficient affinity maturation creating antibodies of lower neutralizing capacity. Nevertheless, the neutralization of virus appears sufficient to control virus replication.

[0220] Why did the adaptive immune response to the vaccine reach a level near to MCMV-wt infection despite the inability to spread? MCMV-ΔM94 was able to establish viral genome maintenance as efficient as MCMV-wt. The classical definition of herpesviral latency includes the potential for reactivated gene expression with subsequent release of infectious virus (Roizman et al. 1987 Annu Rev Microbiol 41:543-571). Although the term "latency" is formally not applicable to the situation with MCMV-ΔM94 in the absence of productive infection, there is no evidence that pM94 affects reactivation of gene expression. Because the protective effect of MCMV-ΔM94 rather increased than faded over time, the inventors believe that periodic restimulation of the immune response due to reactivation of gene expression contributed to the sustained protection induced by MCMV-ΔM94. Interestingly, virus infected cells are not eliminated by the activated immune response. This means that the first target cells that are infected by the spread-deficient vaccine are resistent to elimination. Similarly, cells infected with a spread-deficient mutant of the gamma herpesvirus MHV-68 were not attacked by the adaptive immune reponse (Tibbetts et al. 2006 Virology 353:210-219). For MCMV-wt it was shown that T cells are activated against a highly antigenic virus epitope of M45 presented by professional APC but the activated T cells did not eliminate infected target cells in organs of C57BL/6 mice (Holtappels et al. 2004 J Exp Med 199:131-136). This protection was caused by m152, that is known to downmodulate MHC class I. The target cells that are protected from CD8⁺ T cell elimination were not identified and it could be shown that at least some of these protected cells are first target cells of MCMV.

[0221] Endothelial cells (EC), hepatocytes (He) and macrophages are first target cells for HCMV and MCMV in vivo (Hsu et al. supra; Sacher et al. supra). In addition, EC have recently been identified as sites of virus latency (Seckert et al. 2009 J Virol 83:8869-8884), and at least liver EC are able to directly stimulate a cytotoxic T cell response (Kern et al. 2010 Gastroenterology 138(1):336-46). Using MCMV-ΔM94 constructs for conditional gene expression, substantial differences were noticed in the ability of EC and He to activate a CD8⁺ T cell response. In contrast to EC, He one of the most important first targets for MCMV during acute infection (Sacher et al. supra), induced only a poor CD8⁺ T cell response. This lack of stimulatory capacity is apparently not compensated by cross presentation through professional antigen presenting cells. Cross presentation was shown to be important for the induction of a T cell response against fibroblasts infected with a single-cycle MCMV (Snyder et al. 2010 PLoS One. 5:e9681). On the other hand, bone marrow derived APC,

that are thought to be important cross presenting cells, seem not to be necessary for the activation of a CD8+ T cell response via cross presentation against MCMV infection (Kern et al. supra). In addition to EC also other cell types seem to contribute to CD8⁺T cell stimulation as antigen expression in most infected cells led to a stronger T cell response than expression in infected EC only. Infected dendritic cells and macrophages were described to activate a T cell response against MCMV in vitro (Mathys et al. 2003 J Infect Dis 187:988-999) and are infected in vivo (Andrews et al. 2001 Nat Immunol 2:1077-1084). Therefore, it suggests itself that infected professional APC contribute to immune stimulation against MCMV in addition to EC. It appears noteworthy that the attenuated human CMV strains such as Towne and AD169 which are characterized by a 20-fold reduction of immunogenicity and the inability to confer immune protection (Adler et al. supra) accumulated mutations resulting in their inability to infect EC, epithelial cells, smooth muscle cells and macrophages (Hahn, G. et al. 2004 J Virol 78:10023-10033). Thus, it appears likely that the restricted cell tropism may in fact represent the cause for their failure as human CMV vaccines.

EXAMPLE 13

Spread-Assay of MCMV-ΔM94

[0222] The phenotype of MCMV-ΔM94 was analyzed in cell-to-cell spread. This was investigated by an in vitro spread assay as essentially described herein in Example 1 with the following mo modifications

[0223] The results of this Example are shown in FIG. 9. [0224] NIH/3T3 and NT/M94-7 cells were plated and with MCMV Δ 1-16-FRT infected (dell-16) MCMV Δ M94tTA (Δ) at an MOI of 0.25 for 1 h and then washed twice with D-PBS. Cells were incubated for 6 h and afterwards washed four times with D-PBS. Equal numbers of non-infected cells were stained with 5 µM Carboxyfluorescein succinimidyl ester (CFSE) for 8 min and blocked by 2% FCS/D-PBS, then washed twice with 2% FCS/D-PBS, and subsequently seeded on top of the unstained but infected cells. Cells were fixed 48 hours post infection with 4% PFA in D-PBS for 10 min at 37° C. and washed and permeablized with 0.1% Triton X-100 for 10 min. After triple washing cells were blocked with 3% BSA/D-PBS for 1 h. Staining of immediate early gene products was performed by incubating fixed cells with a monoclonal antibody to MCMV immediate-early 1 in 3% BSA/D-PBS. After three D-PBS washes, cells were incubated with an Alexa Fluor 555-coupled anti-mouse secondary antibody (Invitrogen) in 3% BSA/D-PBS. Finally, cells were washed three times and imaged by confocal microscopy using a LSM 510 Meta (Zeiss). Virus transmission was determined by counting immediate-early 1- and CFSE-positive cells using the ImageJ Cell Counter plugin. [0225] FIG. 9 shows that infection of NIH/3T3 and NT/M94-7 (NTM94) cells with MCMVΔ1-16-FRT (Mohr C A et al., Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines; Int J Med Microbiol. 2008 January; 298(1-2):115-25. Epub 2007 Aug. 16. Review) and MCMV-ΔM94, followed by removal of excess virus by extensive washes after infection. Next, CFSE stained NIH/ 3T3 were added and virus replication was permitted. After additional 48 h the culture was fixed and stained for immediate-early 1. This resulted in cells which were either immediate-early 1-positive, CFSE-positive or positive for both stains

(FIG. 9 A). Stained cells were counted and cell-to-cell spread was determined by calculating the ratio between immediate-early 1-positive/CFSE stained cells to immediate-early 1-positive/CFSE-negative cells (FIG. 9 C). The spread rate of the MCMVΔ1-16-FRT was set as 100%. MCMVΔ1-16-FRT infection spreads rapidly throughout the cell culture as indicated by the large number double stained nuclei (FIG. 9 B). In contrast, the M94 deletion mutant did not infect the newly added cells. Only one double stained nucleus was seen after counting 416 immediate-early 1+/CFSE negative cells. Its ability to infect fresh cells was, however, restored to a transmission rate of 97% when the mutant was grown on complementing NT/M94-7 cells. It is thus evident that the effect of the M94 deletion on secondary envelopment of mouse CMV also resulted in a deficiency of cell-to-cell spread.

EXAMPLE 14

Propagation of Spread-Deficient Human CMV

Generation of the Trans-Complementing Cell Line TCL94/99-BP

[0226] Recombinant lentiviruses expressing a) UL99 coupled with EGFP (encoded by pCB-Ubic-UL99-IRESgfp; SEQ.ID.No:18), b) UL99 coupled with UL94 mCherry (encoded by pCB-Ubic-UL94-IRES-mChe; SEQ.ID.No:17) and c) beta-lactamase coupled with puromycine resistance gene (encoded by pLV-Ubiqc-BLAs-IRES-Puro; SEQ.ID. No:19) were constructed and propagated by Sirion GmbH using ViraPower lentiviral packaging mix (Invitrogen) in 293FT cells (Invitrogen). 2×10⁶ MRCS fibroblasts (ATCC CCL-171) were transduced by 5 TDU/cell (transduction units/cell) of each lentivirus by spin infection according to the manufacturer's protocol. The transduced cells were plated out on a 10 cm dish and were selected for 5 days with 20 µg/ml puromycin in OPTI-MEM 5% FCS. The tranduced cells were passaged (1:2) one time in the presence of 20 µg/ml puromycin and the double positive (mCherry+EGFP) cells were purified by fluorescence associated cell sorting and re-plated at density of 2.5×10^4 cell/cm². 48 h after confluency the cells were passaged (1:5) two more times in the presence of 20 ug/ml puromycin and re-sorted as above. After one more passage in OPTI-MEM 5% FCS+20 µg/ml puromycin the cells were aliquoted to 0.7×10^7 cell/vial and were deep frozen in OPTI-MEM supplemented with 10% FCS and 10%

Construction of Spread-Deficient Human CMV

[0227] To generate a non-functional UL94 locus pTB40E-BAC4-FRT; SEQ.ID.No:20 (Scrivano L, et al., 2011. HCMV spread and cell tropism are determined by distinct virus populations. PLoS. Pathog. 7:e1001256; Sinzger, C. et al., 2008. Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J. Gen. Virol. 89:359-368) was introduced in GS1783 E. coli strain (Tischer, B. K. et al., 2010. En passant mutagenesis: a two step markerless red recombination system. Methods Mol. Biol. 634:421-430). (a) Red-recombination was induced by electro-transformation of the synthetic DNA fragment LIFdel94; SEQ.ID.No:15 according to the standard protocol (Tischer, B. K. et al., supra) resulting in pTB40E-BAC4-delUL94-SZeo. Recombinants selected by picking single clones after plating the transformants on LB agar plates in the presence of 25 µg/ml chloram-

phenicol and 30 µg/ml zeocin. The correct replacement of the BAC sequences from nt122630 to 123668 reffering to SEQ. ID.No:20 with LIFdelUL94, SEQ.ID.No:15 was confirmed by restrictions pattern analysis and sequencing. (b) To remove the zeocin cassette from the UL94 locus, a second round of Red recombination was induced in liquid culture of pTB40E-BAC4-delUL94-Szeo according to the standard protocol (Tischer, B. K. et al., supra) in presence of 25 µg/ml chloramphenichol and 2% of L-arabinose. Recombinants, which were coined pTB40E-BAC4-del94, were selected by picking single clones after plating of the recombinants on LB agar plates in the presence of 25 µg/ml chloramphenicol 1% of L-arabinose. The correct removal of the operational sequences were confirmed by restrictions pattern analysis and sequencing. (c) A next red-recombination was induced by electro-transformation of the synthetic mutagenesis fragment LIFdel99, SEQ.ID.No:16, as described above (see a) herein) resulting in pTB40E-BAC4-delUL94-del99-SZeo. Recombinants were selected by picking single clones after plating the transformants on LB agar plates in the presence of 25 μg/ml chloramphenicol and 30 μg/ml zeocin. The correct replacement of the sequences from nt 130670 to 131243 (according to the numbering of the BAC referred to herein as SEQ.ID.No:20) was confirmed by restrictions pattern analysis and sequencing. (d) To remove the zeocin cassette from the UL99 locus, a final round of red-recombination was induced in liquid culture of pTB40E-BAC4-delUL94-delUL99-Szeo as above (see b) herein). Recombinants, which were coined pTB40E-BAC4-del94-del99, were selected by picking single clones after plating of the recombinants on LB agar plates in the presence of 25 µg/ml chloramphenicol 1% of L-arabinose. The correct removal of the operational sequences from the UL99 locus were confirmed by restrictions pattern analysis and sequencing. 1. The description of the BAC modifications in the new way are the following:

[0228] M1) To generate a non-functional UL94 (or inactivate the UL94 gene) the nt sequence of pTB40E-BAC4-FRT (SEQ.ID.No:20) between nt 122630 and nt 123668 is replaced by the synthetic fragment delUL94S (SEQ.ID.No: 34)

[0229] M2) To generate a non-functional UL99 (or inactivate the UL99 gene) the nt sequence of pTB40E-BAC4-FRT (SEQ.ID.No:20) between nt 130670 and nt 131243 is replaced by the synthetic fragment delUL99S (SEQ.ID.No: 35). For the double mutant of UL94-UL99 this has to be done in addition to modification M1.

[0230] M3) To generate a non-functional UL50 (or inactivate the UL50 gene) the nt sequence of pTB40E-BAC4-FRT (SEQ.ID.No:20) between nt 58442 and nt 59622 is replaced by the synthetic fragment delUL50S (SEQ.ID.No:32).

[0231] M4) To generate a non-functional UL53 (or inactivate the UL53 gene) the nt sequence of pTB40E-BAC4-FRT (SEQ.ID.No:20) between nt 62129 and nt 63261 is replaced by the synthetic fragment delUL53S (SEQ.ID.No:33). For the double mutant of UL50-UL53 this has to be done in addition to modification M3.

Reconstitution of Spread-Deficient Human CMV.

[0232] 0.7×10^7 frozen TCL94/99-BP cells were plated on a 10 cm dish in OPTI-MEM 5% FCS containing 0.2 µg/ml puromycin and two days later the adherent cell were split and plated on 6 cm dishes at densities of 2×10^6 cells per dish. On the next day two 6 cm cultures were transfected with 2 µg of purified pTB40E-BAC4-FRT-del94-del99-DNA each by

Lipofectamin 2000 (Invitrogen) according to the manufacturer's protocol. 24 h later the two culture were combined and plated on a 10 cm dish in OPTI-MEM 5% FCS. After 10 days the reconstitution of the recombinant TB40E-BAC4-FRTdel94-del99 virus was evident by plaque formation. After 14-16 days the most of the cells in the transfected cultures showed CPE the entire culture was harvested. The amounts of the viable viruses was determined by limiting dilution on sub-confluent TCL94/99-BP cell in 96 well plates using TCID50 (median tissue culture infectious dose) method as described in Mohr et al (Mohr, C. A. et al., 2010. A spreaddeficient cytomegalovirus for assessment of first-target cells in vaccination. Virol. 2010 August; 84(15):7730-42. Epub 2010 May 12). The spread-deficient human CMV reconstituted from TB40E-BAC4-FRTdel94-99, can be propagated using TCL94/99-BP cells after infection with 0.1 MOI per cell using standard protocols for propagation of human CMV as described by Scrivano et al. (Scrivano et al., supra).

[0233] HCMV lacking secondary envelopment complex, i.e. UL99 and UL94, is spread-deficient. The phenotype of the UL94-UL99 double deletion CMV reconstituted from $TB40E\text{-}BAC4\text{-}FRT del 94\text{-}99 \ was \ tested \ in \ cell\text{-}to\text{-}cell \ spread.$ This was investigated by infection of MRCS and TCL94/99-BP cells as essentially described in Example 1 herein, with CMVs reconstituted from TB40E-BAC4-FRT-del94-del99 and TB40E-BAC4-FRT, respectively, followed by removal of excess virus by extensive washing after infection. Next, CFSE stained MRCS cells were added and virus replication was permitted. After additional 72 h the culture was fixed and stained for immediate-early 1 expression as described in Example 1 herein. This resulted in cells which were either "immediate-early 1"-positive, CFSE-positive or positive for both stains. These cells were counted in each preparation. The missing increase of double positive cells in MRCS after infection with TB40E-BAC4-FRT-del94-del99 is conclusive to a deficiency in cell-to-cell spread.

EXAMPLE 15

Immunization with Spread-Deficient Human CMV

[0234] After primary immunization with an additional boost with spread-deficient human CMV the human sera exhibit at least 64-fold higher neutralizing potency against endotheliotropic a human CMV strains such as TB40E or VR1814 assayed on endothelial- or epithelial cells (such as HUVEC [ATCC CRL 1730]- or ARPE-19 [ATCC CRL2302], respectively, than against the same virus assayed on human fibroblasts cell line (such as MRCS, ATCC CLL-171). In addition, specific antibody response is detectable against the gene products of UL130, UL128, or UL131A by Western blot (whereby it is sufficient that at least one specificity is seen).

[0235] The following deletions of the indicated genes result in recombinant human beta-herpesviruses which are spread-deficient:

Effector complex	UL50 gene	UL53 gene	UL94 gene	UL99 gene
NEC	+	Bene	Bene	Berne
NEC	r	+		
NEC SEC	+	+	+	
SEC			+	+

[0236] The features of the present invention disclosed in the specification, the claims, the sequence listing and/or the drawings may both separately and in any combination thereof be material for realizing the invention in various forms thereof. It has to be acknowledged that the sequence listing is part of the instant specification.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 35
<210> SEQ ID NO 1
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: DNA
<400> SEQUENCE: 1
qtqqqatcca ccatqtaccc ctacqacqtq cccqactacq ccacqtccaq actatcc
<210> SEO ID NO 2
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc feature
<223> OTHER INFORMATION: DNA
<400> SEQUENCE: 2
```

-continued

actctagagt cgacttcaca tgtgctcgag aaca	34
<210> SEQ ID NO 3	
<211> LENGTH: 71	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature</pre>	
<223> OTHER INFORMATION: DNA	
<400> SEQUENCE: 3	
aattcatgat aacttcgtat agcatacatt atacgaagtt atccggagat atccaccggt	60
	7.1
ctggcggccg c	71
<210> SEQ ID NO 4	
<210> SEQ 1D NO 4 <211> LENGTH: 71	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: Synthetic	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<223> OTHER INFORMATION: DNA	
<400> SEQUENCE: 4	
(400) BEGOENCE. 4	
togagoggco gocagacogg tggatatoto oggataactt ogtataatgt atgotataog	60
aagttatcat g	71
<210> SEQ ID NO 5	
<211> LENGTH: 68	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Synthetic <220> FEATURE:</pre>	
<pre><221> NAME/KEY: misc_feature</pre>	
<223> OTHER INFORMATION: DNA	
<400> SEQUENCE: 5	
cgtggtcaag ccggtcgtgt tgtaccagaa ctcgacttcg gtcgcgttgc ttacaattta	60
cgcgcggg	68
-2-2-232	
OLO ADO TO NO C	
<210> SEQ ID NO 6	
<211> LENGTH: 69	
<212> TYPE: DNA	
<213> ORGANISM: Artificial <220> FEATURE:	
<pre><220> FEATURE: <223> OTHER INFORMATION: Synthetic</pre>	
<pre><223> GIRER INFORMATION: Synthetic <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<223> OTHER INFORMATION: DNA	
400 07077707	
<400> SEQUENCE: 6	
ccccgatatt tgagaaagtg taccccgata ttcagtacct cttgactaag aagccataga	60
gcccaccgc	69
geeeucege	
<210> SEQ ID NO 7	
<211> LENGTH: 112	
<212> TYPE: DNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	

-continued

```
<223 > OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: DNA
<400> SEQUENCE: 7
tgetteegg eggettetge gegaeettee agetgeaggt agaceaegge gaegteeaga
ctatccgtga aaagtttgag aagcatcagt agccgatttc ggcctattgg tt
<210> SEQ ID NO 8
<211> LENGTH: 77
<212> TYPE: DNA
<213 > ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: DNA
<400> SEQUENCE: 8
catggatggg ttggttgatt tgtatgtctg ttggctactc acatgtgctc gagaagccag
                                                                       60
tgtgatggat gatcctc
<210> SEQ ID NO 9
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1) .. (8)
<400> SEQUENCE: 9
Ser Ile Ile Asn Phe Glu Lys Leu
               5
<210> SEQ ID NO 10
<211> LENGTH: 8
<212> TYPE: PRT
<213 > ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(8)
<400> SEQUENCE: 10
Thr Val Tyr Gly Phe Cys Leu Leu
<210> SEQ ID NO 11
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1) .. (8)
<400> SEQUENCE: 11
Arg Ala Leu Glu Tyr Lys Asn Leu
```

```
<210> SEQ ID NO 12
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<400> SEQUENCE: 12
Ser Cys Leu Glu Phe Trp Gln Arg Val
<210> SEQ ID NO 13
<211> LENGTH: 9
<212> TYPE: PRT
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: synthetic
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (1)..(9)
<400> SEQUENCE: 13
His Gly Ile Arg Asn Ala Ser Phe Ile
<210> SEQ ID NO 14
<211> LENGTH: 25
<212> TYPE: DNA
<213 > ORGANISM: Artificial
<220> FEATURE:
<223 > OTHER INFORMATION: Synthetic
<220> FEATURE:
<221> NAME/KEY: misc_feature
<223> OTHER INFORMATION: DNA
<400> SEQUENCE: 14
aacgtacatc gctctctgct ggccg
                                                                        25
<210> SEQ ID NO 15
<211> LENGTH: 940
<212> TYPE: DNA
<213 > ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: synthetic
<400> SEQUENCE: 15
ttactgggtg ctgccgggcg gctttgccgt ctcttcgcgc gtcactcttc acggcctggc
ccaqcqaqcc ctqcqqqacc qqttccaaaa cttcqaqqcc qtqctqqccc qqqqcatqca
                                                                       120
                                                                       180
cgtggaggcc ggccggcagg agcccgagac cccccgggtg agcggccggc ggctgccctt
cgacgacctg tgatccggag gacgacggct cgtgtatctt gtgccaattg ctgttgctct
                                                                       240
accgcgacgg cgaatggatc ctctgtcttt gctgcaacgg ccgttatcaa ggccactatg
gcggggtctg acagttcacg gggagaagaa acaagaaaca acaaaaaaaa aagaggagat
                                                                       360
ctgcggccgc tagggataac agggtaatcg atgttgacaa ttaatcatcg gcatagtata
togqcataqt ataatacqac aaqqtqaqqa actaaaccat qqcaaaactq accaqcqcaq
                                                                       480
ttccggttct gaccgcacgt gatgttgccg gtgccgttga attttggacc gatcgtctgg
                                                                       540
gttttagccg tgattttgtg gaagatgatt ttgccggtgt tgttcgtgat gatgttaccc
```

tgtttattag cgcagttcag gatcaggttg ttccggataa taccctggca tgggtttggg	660
ttcgtggtct ggatgaactg tatgcagaat ggtcagaagt tgtgagcacc aattttcgtg	720
atgcaagcgg teeggcaatg accgaaattg gtgaacagce gtggggtegt gaatttgcac	780
tgcgtgatcc ggcaggtaat tgtgttcatt ttgttgcaga agaacaggat taacctcgat	840
taattaattg taacattacc ctgttatccc taccggtgtc ctaggcgggg tctgacagtt	900
cacggggaga agaaacaaga aacaacaaaa aaaaaagagg	940
<210> SEQ ID NO 16 <211> LENGTH: 719 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 16	
cgtgttagac cgttggagtc gcgacctgtc ccgcaagacg aacctaccga tctgggtcgc	60
caacagcgcc aacgagtacg tcgtcagctc cgtgccccgc cccgtcagtc cgtagaagta	120
actcataaac tttcaggtct cgcgtacgat tcgcgagtcg ggaatgtagg gataacaggg	180
taatcgatgt tgacaattaa tcatcggcat agtatatcgg catagtataa tacgacaagg	240
tgaggaacta aaccatggca aaactgacca gcgcagttcc ggttctgacc gcacgtgatg	300
ttgccggtgc cgttgaattt tggaccgatc gtctgggttt tagccgtgat tttgtggaag	360
atgattttgc cggtgttgtt cgtgatgatg ttaccctgtt tattagcgca gttcaggatc	420
aggttgttcc ggataatacc ctggcatggg tttgggttcg tggtctggat gaactgtatg	480
cagaatggtc agaagttgtg agcaccaatt ttcgtgatgc aagcggtccg gcaatgaccg	540
aaattggtga acageegtgg ggtegtgaat ttgcaetgeg tgateeggea ggtaattgtg	600
ttcattttgt tgcagaagaa caggattaac ctcgattaat taattgtaac attaccctgt	660
tatecetaaa gtaaeteata aaettteagg tetegegtae gattegegag tegggaatg	719
<210> SEQ ID NO 17 <211> LENGTH: 9048 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 17	
actagteggg gtcattagtt catageceat atatggagtt cegegttaca taacttaegg	60
taaatggccc gcctggctga ccgcccaacg accccgccc attgacgtca ataatgacgt	120
atgttcccat agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac	180
ggtaaactgc ccacttggca gtacatcaag tgtatcatat gccaagtacg cccctattg	240
acgtcaatga cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact	300
ttcctacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt	360
ggcagtacat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc	420
ccattgacgt caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc	480
gtaacaactc cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata	540
taagcagagc tggtttagtg aaccgggtct ctctggttag accagatttg agcctgggag	600

ctctctggct	aactagggaa	cccactgctt	aagcctcaat	aaagcttgcc	ttgagtgctt	660
caagtagtgt	gtgcccgtct	gttgtgtgac	tctggtaact	agagatccct	cagacccttt	720
tagtcagtgt	ggaaaatctc	tagcagtggc	gcccgaacag	ggacctgaaa	gcgaaaggga	780
aaccagagga	gctctctcga	cgcaggactc	ggcttgctga	agcgcgcacg	gcaagaggcg	840
aggggcggcg	actgcagagt	acgccaaaaa	ttttgactag	cggaggctag	aaggagagag	900
atgggtgcga	gagcgtcagt	attaagcggg	ggaaaatagc	ggccgccaca	attttaaaag	960
aaaagggggg	attggggggt	acagtgcagg	ggaaagaata	gtagacataa	tagcaacaga	1020
catacaaact	aaagaattac	aaaaacaaat	tacaaaaatt	caaattttcg	ggggatccca	1080
tggtggccct	cctatagtga	gtcgtattat	actatgccga	tatactatgc	cgatgattaa	1140
ttgtcaacac	gtgctgcagg	tccgaggttc	tagcgcgtgg	cctccgcgcc	gggttttggc	1200
gcctcccgcg	ggcgccccc	tcctcacggc	gagcgctgcc	acgtcagacg	aagggcgcag	1260
cgagcgtcct	gateetteeg	cccggacgct	caggacagcg	gcccgctgct	cataagactc	1320
ggccttagaa	ccccagtatc	agcagaagga	cattttagga	cgggacttgg	gtgactctag	1380
ggcactggtt	ttctttccag	agagcggaac	aggcgaggaa	aagtagtccc	ttctcggcga	1440
ttctgcggag	ggatctccgt	ggggcggtga	acgccgatga	ttatataagg	acgcgccggg	1500
tgtggcacag	ctagttccgt	cgcagccggg	atttgggtcg	cggttcttgt	ttgtggatcg	1560
ctgtgatcgt	cacttggtga	gtagcgggct	gctgggctgg	ccggggcttt	cgtggccgcc	1620
gggccgctcg	gtgggacgga	agcgtgtgga	gagaccgcca	agggctgtag	tctgggtccg	1680
cgagcaaggt	tgccctgaac	tgggggttgg	ggggagcgca	gcaaaatggc	ggctgttccc	1740
gagtcttgaa	tggaagacgc	ttgtgaggcg	ggctgtgagg	tcgttgaaac	aaggtggggg	1800
gcatggtggg	cggcaagaac	ccaaggtctt	gaggccttcg	ctaatgcggg	aaagctctta	1860
ttcgggtgag	atgggctggg	gcaccatctg	gggaccctga	cgtgaagttt	gtcactgact	1920
ggagaactcg	gtttgtcgtc	tgttgcgggg	gcggcagtta	tggcggtgcc	gttgggcagt	1980
gcacccgtac	ctttgggagc	gcgcgccctc	gtcgtgtcgt	gacgtcaccc	gttctgttgg	2040
cttataatgc	agggtggggc	cacctgccgg	taggtgtgcg	gtaggctttt	ctccgtcgca	2100
ggacgcaggg	ttcgggccta	gggtaggctc	tcctgaatcg	acaggcgccg	gacctctggt	2160
gaggggaggg	ataagtgagg	cgtcagtttc	tttggtcggt	tttatgtacc	tatcttctta	2220
agtagctgaa	gctccggttt	tgaactatgc	gctcggggtt	ggcgagtgtg	ttttgtgaag	2280
ttttttaggc	accttttgaa	atgtaatcat	ttgggtcaat	atgtaatttt	cagtgttaga	2340
ctagtaaatt	gtccgctaaa	ttctggccgt	ttttggcttt	tttgttagac	gctagcctag	2400
cggatccgaa	ttctgcagat	atcaacaagt	ttgtacaaaa	aagcaggctt	aatggcttgg	2460
cgcagcgggc	tttgcgagac	cgattccaga	actttgaagc	agttettgea	agaggaatgc	2520
atgtggaagc	tggtcggcaa	gagccggaaa	caccgcgagt	atcgggccgt	cgcttgccgt	2580
tcgacgatct	ttagtccgga	ggacgacggc	tcgtgtatct	tgtgccaatt	gctgttgctc	2640
taccgcgacg	gcgaatggat	cctctgtctt	tgctgcaacg	gccgttatca	aggccactat	2700
ggcgtgggcc	acgtacatcg	gcgtcgtcga	cgcatctgtc	atttacctac	cttgtaccaa	2760
ctgagcttcg	gaggtccttt	gggtccagcc	agcattgatt	tcttgccaag	ctttagccag	2820
gtgaccagca	gtatgacgtg	cgatggtatt	acgcccgacg	tgatttacga	ggtctgcatg	2880
-		-		,		

ttggtgcccc	aggatgaagc	caagcgcatc	ctggtcaagg	gtcacggtgc	catggacctg	2940
acctgtcaga	aggcagtgac	gctaggcggc	gccggcgcct	ggttgctgcc	gcgtcccgaa	3000
ggctacacgc	ttttctttta	cattctgtgc	tacgacctgt	ttacctcatg	cggcaatcgg	3060
tgcgatatcc	cttccatgac	gcggctcatg	gcggcggcca	cggcctgcgg	gcaggcgggt	3120
tgcagctttt	gcacggatca	cgagggacat	gtagatccca	ctggcaatta	cgtgggttgc	3180
acccccgata	tgggccgctg	tctttgttac	gtgccctgtg	ggcccatgac	gcagtcgctc	3240
atccacaacg	atgaacccgc	gactttttc	tgtgagagcg	atgacgccaa	atacctatgc	3300
gccgtaggtt	ctaagaccgc	ggcgcaggtc	acactgggag	acggcctgga	ttatcacatc	3360
ggtgtcaagg	attctgaggg	ccgatggttg	cccgtcaaga	ccgatgtgtg	ggacctggtc	3420
aaggtagagg	aacctgtgtc	acgtatgata	gtgtgttcct	gtccggtgct	taagaaccta	3480
gtgcactaaa	cccagctttc	ttgtacaaag	tggttgatat	ccagcacagt	ggcggccgct	3540
cgagtctaga	gggcccgcgg	ttcgaaggta	agcctatccc	taaccctctc	ctcggtctcg	3600
attctacgcg	ccgcggccgc	tacgtaaatt	ccgcccctct	ccctaacgtt	actggccgaa	3660
gccgcttgga	ataaggccgg	tgtgcgtttg	tctatatgtt	attttccacc	atattgccgt	3720
cttttggcaa	tgtgagggcc	cggaaacctg	gccctgtctt	cttgacgagc	attectaggg	3780
gtctttcccc	tctcgccaaa	ggaatgcaag	gtctgttgaa	tgtcgtgaag	gaagcagttc	3840
ctctggaagc	ttcttgaaga	caaacaacgt	ctgtagcgac	cctttgcagg	cagcggaacc	3900
ccccacctgg	cgacaggtgc	ctctgcggcc	aaaagccacg	tgtataagat	acacctgcaa	3960
aggcggcaca	accccagtgc	cacgttgtga	gttggatagt	tgtggaaaga	gtcaaatggc	4020
tctcctcaag	cgtattcaac	aaggggctga	aggatgccca	gaaggtaccc	cattgtatgg	4080
gatctgatct	ggggcctcgg	tgcacatgct	ttacatgtgt	ttagtcgagg	ttaaaaaacg	4140
tctaggcccc	ccgaaccacg	gggacgtggt	tttcctttga	aaaacacgat	gataatatgg	4200
ccacaaccat	gaccgagtac	aagcccacgg	tgegeetege	cacccgcgac	gacgtccccc	4260
gggccgtacg	ggatecegee	accatggtga	gcaagggcga	ggaggataac	atggccatca	4320
tcaaggagtt	catgcgcttc	aaggtgcaca	tggagggete	cgtgaacggc	cacgagttcg	4380
agatcgaggg	cgagggcgag	ggccgcccct	acgagggcac	ccagaccgcc	aagctgaagg	4440
tgaccaaggg	tggccccctg	cccttcgcct	gggacatcct	gtcccctcag	ttcatgtacg	4500
gctccaaggc	ctacgtgaag	caccccgccg	acatccccga	ctacttgaag	ctgtccttcc	4560
ccgagggctt	caagtgggag	cgcgtgatga	acttcgagga	cggcggcgtg	gtgaccgtga	4620
cccaggactc	ctccctgcag	gacggcgagt	tcatctacaa	ggtgaagctg	cgcggcacca	4680
acttcccctc	cgacggcccc	gtaatgcaga	agaagaccat	gggctgggag	gcctcctccg	4740
agcggatgta	ccccgaggac	ggcgccctga	agggcgagat	caagcagagg	ctgaagctga	4800
aggacggcgg	ccactacgac	gctgaggtca	agaccaccta	caaggccaag	aagcccgtgc	4860
agctgcccgg	cgcctacaac	gtcaacatca	agttggacat	cacctcccac	aacgaggact	4920
acaccatcgt	ggaacagtac	gaacgcgccg	agggccgcca	ctccaccggc	ggcatggacg	4980
agctgtacaa	gtaagtcgac	ccggaccgcc	acategageg	ggtcaccgag	ctgcaagaac	5040
tcttcctcac	gegegteggg	ctcgacatcg	gcaaggtgtg	ggtcgcggac	gacggcgccg	5100
	ctggaccacg					5160
	3		- 5 555			

gctcgcgcat	ggccgagttg	agcggttccc	ggctggccgc	gcagcaacag	atggaaggcc	5220
teetggegee	gcaccggccc	aaggagcccg	egtggtteet	ggccaccgtc	ggcgtctcgc	5280
ccgaccacca	gggcaagggt	ctgggcagcg	ccgtcgtgct	ccccggagtg	gaggcggccg	5340
agcgcgctgg	ggtgcccgcc	ttcctggaga	cctccgcgcc	ccgcaacctc	cccttctacg	5400
agcggctcgg	cttcaccgtc	accgccgacg	tcgaggtgcc	cgaaggaccg	cgcacctggt	5460
gcatgacccg	caagcccggt	gcctgagttc	gcgtctggaa	caatcaacct	ctggactcga	5520
caatcaacct	ctggattaca	aaatttgtga	aagattgact	ggtattctta	actatgttgc	5580
tccttttacg	ctatgtggat	acgctgcttt	aatgcctttg	tatcatgcta	ttgcttcccg	5640
tatggettte	attttctcct	ccttgtataa	atcctggttg	ctgtctcttt	atgaggagtt	5700
gtggcccgtt	gtcaggcaac	gtggcgtggt	gtgcactgtg	tttgctgacg	caacccccac	5760
tggttggggc	attgccacca	cctgtcagct	cctttccggg	actttcgctt	tcccctccc	5820
tattgccacg	gcggaactca	tegeegeetg	ccttgcccgc	tgctggacag	gggctcggct	5880
gttgggcact	gacaattccg	tggtgttgtc	ggggaaatca	tcgtcctttc	cttggctgct	5940
cgcctgtgtt	gccacctgga	ttctgcgcgg	gacgtccttc	tgctacgtcc	cttcggccct	6000
caatccagcg	gaccttcctt	cccgcggcct	gctgccggct	ctgcggcctc	ttccgcgtct	6060
tcgccttcgc	cctcagacga	gtcggatctc	cctttgggcc	gcctccccgc	ttagtactgg	6120
tacctttaag	accaatgact	tacaaggcag	ctgtagatct	tagccacttt	ttaaaagaaa	6180
aggggggact	ggaagggcta	attcactccc	aacgaagaca	agattccgga	atttatttgt	6240
gaaatttgtg	atgctattgc	tttatttgta	aaccggtgca	gctgcttttt	gcctgtactg	6300
ggtctctctg	gttagaccag	atctgagcct	gggagctctc	tggctaacta	gggaacccac	6360
tgcttaagcc	tcaataaagc	ttgccttgag	tgcttcaagt	agtgtgtgcc	cgtctgttgt	6420
gtgactctgg	taactagaga	tccctcagac	ccttttagtc	agtgtggaaa	atctctagca	6480
tctagagtat	gcaaagcatg	catctcaatt	agtcagcaac	caggtgtgga	aagtccccag	6540
gctccccagc	aggcagaagt	atgcaaagca	tgcatctcaa	ttagtcagca	accatagtcc	6600
cgcccctaac	tccgcccatc	ccgcccctaa	ctccgcccag	ttccgcccat	teteegeece	6660
atggctgact	aattttttt	atttatgcag	aggccgaggc	cgcctcggcc	tctgagctat	6720
tccagaagta	gtgaggaggc	ttttttggag	gcctaggcta	gagatcataa	tcagccatac	6780
cacatttgta	gaggttttac	ttgctttaaa	aaacctccca	cacctcccc	tgaacctgaa	6840
acataaaatg	aatgcaattg	ttgttgttaa	cttgtttatt	gcagcttata	atggttacaa	6900
ataaagcaat	agcatcacaa	atttcacaaa	taaagcattt	ttttcactgc	attctagttg	6960
tggtttgtcc	aaactcatca	atgtatctta	tcatgtctgc	tagccgggct	tttttttctt	7020
aggccttctt	ccgcttcctc	gctcactgac	tegetgeget	cggtcgttcg	gctgcggcga	7080
gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	cagaatcagg	ggataacgca	7140
ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	accgtaaaaa	ggccgcgttg	7200
ctggcgtttt	tccataggct	ccgccccct	gacgagcatc	acaaaaatcg	acgctcaagt	7260
cagaggtggc	gaaacccgac	aggactataa	agataccagg	cgtttccccc	tggaagctcc	7320
ctcgtgcgct	ctcctgttcc	gaccetgeeg	cttaccggat	acctgtccgc	ctttctccct	7380
tegggaageg	tggcgctttc	tcatagctca	cgctgtaggt	atctcagttc	ggtgtaggtc	7440
		-		-		

gttegeteca agetg	ggctg tgtgcacgaa	cccccgttc	agcccgaccg	ctgcgcctta	7500
tccggtaact atcgt	cttga gtccaacccg	gtaagacacg	acttatcgcc	actggcagca	7560
gccactggta acagg	attag cagagcgagg	tatgtaggcg	gtgctacaga	gttcttgaag	7620
tggtggccta actac	ggcta cactagaaga	acagtatttg	gtatetgege	tctgctgaag	7680
ccagttacct tcgga	aaaag agttggtagc	tettgateeg	gcaaacaaac	caccgctggt	7740
ageggtggtt ttttt	gtttg caagcagcag	attacgcgca	gaaaaaaagg	atctcaagaa	7800
gatcctttga tcttt	tctac ggggtctgac	gctcagtgga	acgaaaactc	acgttaaggg	7860
attttggtca tgaga	ttatc aaaaaggatc	ttcacctaga	tccttttaaa	ttaaaaatga	7920
agttttaaat caatc	taaag tatatatgag	taaacttggt	ctgacagtta	ccaatgctta	7980
atcagtgagg caccta	atete agegatetgt	ctatttcgtt	catccatagt	tgcctgactc	8040
ctgcgcagtc caaaa	aaaaa ggctccaaaa	ggagccttta	attgtatcgg	tgggccctta	8100
gaaaaactca tcgag	catca aatgaaactg	caatttattc	atatcaggat	tatcaatacc	8160
atatttttga aaaag	ccgtt tctgtaatga	aggagaaaac	tcaccgaggc	agttccatag	8220
gatggcaaga teetg	gtatc ggtctgcgat	tccgactcgt	ccaacatcaa	tacaacctat	8280
taatttcccc tcgtc	aaaaa taaggttato	aagtgagaaa	tcaccatgag	tgacgactga	8340
atccggtgag aatgg	caaaa gcttatgcat	ttctttccag	acttgttcaa	caggccagcc	8400
attacgctcg tcatca	aaaat cactcgcatc	aaccaaaccg	ttattcattc	gtgattgcgc	8460
ctgagcgaga cgaaa	tacgc gatcgctgtt	aaaaggacaa	ttacaaacag	gaatcgaatg	8520
caaccggcgc aggaa	cactg ccagcgcato	aacaatattt	tcacctgaat	caggatattc	8580
ttctaatacc tggaa	tgctg ttttcccggg	gatcgcagtg	gtgagtaacc	atgcatcatc	8640
aggagtacgg ataaa	atgct tgatggtcgg	aagaggcata	aattccgtca	gccagtttag	8700
tetgaceate teater	tgtaa catcattggc	aacgctacct	ttgccatgtt	tcagaaacaa	8760
ctctggcgca tcggg	cttcc catacaatcg	atagattgtc	gcacctgatt	gcccgacatt	8820
atcgcgagcc cattt	atacc catataaatc	agcatccatg	ttggaattta	ategeggeet	8880
cgagcaagac gtttc	eegtt gaatatgget	cataacaccc	cttgtattac	tgtttatgta	8940
agcagacagt tttat	tgttc atgatgatat	atttttatct	tgtgcaatgt	aacatcagag	9000
attttgagac acaac	gtggt ttaaacaaat	agtcaaaagc	ctccggcg		9048
<210> SEQ ID NO : <211> LENGTH: 849 <212> TYPE: DNA					

<400> SEQUENCE: 18

actagtcggg	gtcattagtt	catagcccat	atatggagtt	ccgcgttaca	taacttacgg	60
taaatggccc	geetggetga	ccgcccaacg	acccccgccc	attgacgtca	ataatgacgt	120
atgttcccat	agtaacgcca	atagggactt	tccattgacg	tcaatgggtg	gagtatttac	180
ggtaaactgc	ccacttggca	gtacatcaag	tgtatcatat	gccaagtacg	ccccctattg	240
acgtcaatga	cggtaaatgg	cccgcctggc	attatgccca	gtacatgacc	ttatgggact	300
ttcctacttg	gcagtacatc	tacgtattag	tcatcgctat	taccatggtg	atgcggtttt	360

<212> IFF: DNA
<213> ORGANISM: artificial
<220> FEATURE:
<223> OTHER INFORMATION: synthetic

ggcagtacat	caatgggcgt	ggatagcggt	ttgactcacg	gggatttcca	agtctccacc	420
ccattgacgt	caatgggagt	ttgttttggc	accaaaatca	acgggacttt	ccaaaatgtc	480
gtaacaactc	cgccccattg	acgcaaatgg	gcggtaggcg	tgtacggtgg	gaggtctata	540
taagcagagc	tggtttagtg	aaccgggtct	ctctggttag	accagatttg	agcctgggag	600
ctctctggct	aactagggaa	cccactgctt	aagcctcaat	aaagcttgcc	ttgagtgctt	660
caagtagtgt	gtgcccgtct	gttgtgtgac	tctggtaact	agagatecet	cagacccttt	720
tagtcagtgt	ggaaaatctc	tagcagtggc	gcccgaacag	ggacctgaaa	gcgaaaggga	780
aaccagagga	gctctctcga	cgcaggactc	ggcttgctga	agcgcgcacg	gcaagaggcg	840
aggggeggeg	actgcagagt	acgccaaaaa	ttttgactag	cggaggctag	aaggagagag	900
atgggtgcga	gagcgtcagt	attaagcggg	ggaaaatagc	ggccgccaca	attttaaaag	960
aaaagggggg	attggggggt	acagtgcagg	ggaaagaata	gtagacataa	tagcaacaga	1020
catacaaact	aaagaattac	aaaaacaaat	tacaaaaatt	caaattttcg	ggggatccca	1080
tggtggccct	cctatagtga	gtcgtattat	actatgccga	tatactatgc	cgatgattaa	1140
ttgtcaacac	gtgctgcagg	tccgaggttc	tagcgcgtgg	cctccgcgcc	gggttttggc	1200
gcctcccgcg	ggcgccccc	tcctcacggc	gagcgctgcc	acgtcagacg	aagggcgcag	1260
cgagcgtcct	gatccttccg	cccggacgct	caggacagcg	gcccgctgct	cataagactc	1320
ggccttagaa	ccccagtatc	agcagaagga	cattttagga	cgggacttgg	gtgactctag	1380
ggcactggtt	ttctttccag	agagcggaac	aggcgaggaa	aagtagtccc	ttctcggcga	1440
ttctgcggag	ggatctccgt	ggggcggtga	acgccgatga	ttatataagg	acgcgccggg	1500
tgtggcacag	ctagttccgt	cgcagccggg	atttgggtcg	cggttcttgt	ttgtggatcg	1560
ctgtgatcgt	cacttggtga	gtageggget	getgggetgg	ccggggcttt	cgtggccgcc	1620
gggccgctcg	gtgggacgga	agcgtgtgga	gagaccgcca	agggctgtag	tctgggtccg	1680
cgagcaaggt	tgccctgaac	tgggggttgg	ggggagcgca	gcaaaatggc	ggctgttccc	1740
gagtcttgaa	tggaagacgc	ttgtgaggcg	ggctgtgagg	tcgttgaaac	aaggtggggg	1800
gcatggtggg	cggcaagaac	ccaaggtctt	gaggccttcg	ctaatgcggg	aaagctctta	1860
ttcgggtgag	atgggctggg	gcaccatctg	gggaccctga	cgtgaagttt	gtcactgact	1920
ggagaactcg	gtttgtcgtc	tgttgcgggg	gcggcagtta	tggcggtgcc	gttgggcagt	1980
gcacccgtac	ctttgggagc	gegegeeete	gtcgtgtcgt	gacgtcaccc	gttctgttgg	2040
cttataatgc	agggtggggc	cacctgccgg	taggtgtgcg	gtaggctttt	ctccgtcgca	2100
ggacgcaggg	ttcgggccta	gggtaggctc	tcctgaatcg	acaggcgccg	gacctctggt	2160
gaggggaggg	ataagtgagg	cgtcagtttc	tttggtcggt	tttatgtacc	tatcttctta	2220
agtagctgaa	gctccggttt	tgaactatgc	gctcggggtt	ggcgagtgtg	ttttgtgaag	2280
ttttttaggc	accttttgaa	atgtaatcat	ttgggtcaat	atgtaatttt	cagtgttaga	2340
ctagtaaatt	gtccgctaaa	ttctggccgt	ttttggcttt	tttgttagac	gctagcctag	2400
cggatccgaa	ttctcactat	agggagaccc	aagcttggta	ccgagctcgg	atccaccatg	2460
ggtggcgaac	tctgcaaacg	aatatgttgt	gagttcggta	ccacgtccgg	tgagcccctg	2520
aaagatgctc	tgggtcgcca	ggtgtctcta	cgctcctacg	acaacatccc	teegaettee	2580
		cgatgacgac				2640
		-				

cagaagctgc	ggctctgcgg	tagtggctgc	gggggaaacg	acagtagtag	cggcagccac	2700
cgcgaggcca	cccacgacgg	ccccaagaaa	aacgcggtgc	gctcgacgtt	tcgcgaggac	2760
aaggctccga	aaccgagcaa	gcagtcaaaa	aagaaaaaga	aaccctcaaa	acatcaccac	2820
catcagcaaa	gctccattat	gcaggagacg	gacgacttag	acgaagaaga	cacctcaatt	2880
tacctgtccc	cgcccccggt	ccccccgtc	caggtggtgg	ctaagcgact	gccgcggccc	2940
gacacaccca	ggactccgcg	ccaaaagaag	atttcacaac	gtccacccac	ccccgggaca	3000
aaaaagcccg	ccgccccctt	gtccttttaa	agtcgactct	agagggccct	attctatagt	3060
gtcacctaaa	tgctagagct	cgctgatcag	acgcgccgcg	gccgctacgt	aaattccgcc	3120
cctctcccta	acgttactgg	ccgaagccgc	ttggaataag	gccggtgtgc	gtttgtctat	3180
atgttatttt	ccaccatatt	gccgtctttt	ggcaatgtga	gggcccggaa	acctggccct	3240
gtcttcttga	cgagcattcc	taggggtctt	tcccctctcg	ccaaaggaat	gcaaggtctg	3300
ttgaatgtcg	tgaaggaagc	agttcctctg	gaagcttctt	gaagacaaac	aacgtctgta	3360
gcgacccttt	gcaggcagcg	gaacccccca	cctggcgaca	ggtgcctctg	cggccaaaag	3420
ccacgtgtat	aagatacacc	tgcaaaggcg	gcacaacccc	agtgccacgt	tgtgagttgg	3480
atagttgtgg	aaagagtcaa	atggctctcc	tcaagcgtat	tcaacaaggg	gctgaaggat	3540
gcccagaagg	taccccattg	tatgggatct	gatctggggc	ctcggtgcac	atgctttaca	3600
tgtgtttagt	cgaggttaaa	aaacgtctag	gccccccgaa	ccacggggac	gtggttttcc	3660
tttgaaaaac	acgatgataa	tatggtgagc	aagggcgagg	agctgttcac	cggggtggtg	3720
cccatcctgg	tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	gtccggcgag	3780
ggcgagggcg	atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	caccggcaag	3840
ctgcccgtgc	cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	gtgcttcagc	3900
cgctaccccg	accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	cgaaggctac	3960
gtccaggagc	gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	cgccgaggtg	4020
aagttcgagg	gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	cttcaaggag	4080
gacggcaaca	tcctggggca	caagctggag	tacaactaca	acagccacaa	cgtctatatc	4140
atggccgaca	agcagaagaa	cggcatcaag	gtgaacttca	agatccgcca	caacatcgag	4200
gacggcagcg	tgcagctcgc	cgaccactac	cagcagaaca	ccccatcgg	cgacggcccc	4260
gtgctgctgc	ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	agaccccaac	4320
gagaagcgcg	atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	cactctcggc	4380
atggacgagc	tgtacaagta	agtcgacccg	gaccgccaca	tcgagcgggt	caccgagctg	4440
caagaactct	tcctcacgcg	cgtcgggctc	gacatcggca	aggtgtgggt	cgcggacgac	4500
ggegeegegg	tggcggtctg	gaccacgccg	gagagegteg	aagcgggggc	ggtgttcgcc	4560
gagatcggct	cgcgcatggc	cgagttgagc	ggttcccggc	tggccgcgca	gcaacagatg	4620
gaaggcctcc	tggcgccgca	ccggcccaag	gagcccgcgt	ggttcctggc	caccgtcggc	4680
gtctcgcccg	accaccaggg	caagggtctg	ggcagcgccg	tegtgeteee	cggagtggag	4740
gcggccgagc	gcgctggggt	gcccgccttc	ctggagacct	ccgcgccccg	caacctcccc	4800
ttctacgagc	ggctcggctt	caccgtcacc	gccgacgtcg	aggtgcccga	aggaccgcgc	4860
acctggtgca	tgacccgcaa	gcccggtgcc	tgagttcgcg	tctggaacaa	tcaacctctg	4920
-	-	-			_	

gactcgacaa	tcaacctctg	gattacaaaa	tttgtgaaag	attgactggt	attcttaact	4980
atgttgctcc	ttttacgcta	tgtggatacg	ctgctttaat	gcctttgtat	catgctattg	5040
cttcccgtat	ggctttcatt	tteteeteet	tgtataaatc	ctggttgctg	tctctttatg	5100
aggagttgtg	gcccgttgtc	aggcaacgtg	gcgtggtgtg	cactgtgttt	gctgacgcaa	5160
cccccactgg	ttggggcatt	gccaccacct	gtcagctcct	ttccgggact	ttcgctttcc	5220
ccctccctat	tgccacggcg	gaactcatcg	ccgcctgcct	tgcccgctgc	tggacagggg	5280
ctcggctgtt	gggcactgac	aattccgtgg	tgttgtcggg	gaaatcatcg	tcctttcctt	5340
ggctgctcgc	ctgtgttgcc	acctggattc	tgcgcgggac	gtccttctgc	tacgtccctt	5400
cggccctcaa	tccagcggac	cttccttccc	gcggcctgct	gccggctctg	cggcctcttc	5460
cgcgtcttcg	ccttcgccct	cagacgagtc	ggatctccct	ttgggccgcc	tccccgctta	5520
gtactggtac	ctttaagacc	aatgacttac	aaggcagctg	tagatcttag	ccacttttta	5580
aaagaaaagg	ggggactgga	agggctaatt	cactcccaac	gaagacaaga	ttccggaatt	5640
tatttgtgaa	atttgtgatg	ctattgcttt	atttgtaaac	cggtgcagct	gctttttgcc	5700
tgtactgggt	ctctctggtt	agaccagatc	tgagcctggg	agctctctgg	ctaactaggg	5760
aacccactgc	ttaagcctca	ataaagcttg	ccttgagtgc	ttcaagtagt	gtgtgcccgt	5820
ctgttgtgtg	actctggtaa	ctagagatcc	ctcagaccct	tttagtcagt	gtggaaaatc	5880
tctagcatct	agagtatgca	aagcatgcat	ctcaattagt	cagcaaccag	gtgtggaaag	5940
tecceagget	ccccagcagg	cagaagtatg	caaagcatgc	atctcaatta	gtcagcaacc	6000
atagtcccgc	ccctaactcc	gcccatcccg	cccctaactc	cgcccagttc	cgcccattct	6060
ccgccccatg	gctgactaat	tttttttatt	tatgcagagg	ccgaggccgc	ctcggcctct	6120
gagctattcc	agaagtagtg	aggaggcttt	tttggaggcc	taggctagag	atcataatca	6180
gccataccac	atttgtagag	gttttacttg	ctttaaaaaa	cctcccacac	ctccccctga	6240
acctgaaaca	taaaatgaat	gcaattgttg	ttgttaactt	gtttattgca	gcttataatg	6300
gttacaaata	aagcaatagc	atcacaaatt	tcacaaataa	agcattttt	tcactgcatt	6360
ctagttgtgg	tttgtccaaa	ctcatcaatg	tatcttatca	tgtctgctag	ccgggctttt	6420
ttttcttagg	ccttcttccg	cttcctcgct	cactgactcg	ctgcgctcgg	tcgttcggct	6480
gcggcgagcg	gtatcagctc	actcaaaggc	ggtaatacgg	ttatccacag	aatcagggga	6540
taacgcagga	aagaacatgt	gagcaaaagg	ccagcaaaag	gccaggaacc	gtaaaaaggc	6600
cgcgttgctg	gcgtttttcc	ataggctccg	ccccctgac	gagcatcaca	aaaatcgacg	6660
ctcaagtcag	aggtggcgaa	acccgacagg	actataaaga	taccaggcgt	ttccccctgg	6720
aagctccctc	gtgcgctctc	ctgttccgac	cctgccgctt	accggatacc	tgtccgcctt	6780
tetecetteg	ggaagcgtgg	cgctttctca	tagctcacgc	tgtaggtatc	tcagttcggt	6840
gtaggtcgtt	cgctccaagc	tgggctgtgt	gcacgaaccc	cccgttcagc	ccgaccgctg	6900
cgccttatcc	ggtaactatc	gtcttgagtc	caacccggta	agacacgact	tatcgccact	6960
ggcagcagcc	actggtaaca	ggattagcag	agcgaggtat	gtaggcggtg	ctacagagtt	7020
cttgaagtgg	tggcctaact	acggctacac	tagaagaaca	gtatttggta	tctgcgctct	7080
gctgaagcca	gttaccttcg	gaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	7140
cgctggtagc	ggtggttttt	ttgtttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	7200

tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg	7260
ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta	7320
aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca	7380
atgettaate agtgaggeae etateteage gatetgteta titegticat ceatagtige	7440
ctgactectg egeagtecaa aaaaaaagge teeaaaagga geetttaatt gtateggtgg	7500
gcccttagaa aaactcatcg agcatcaaat gaaactgcaa tttattcata tcaggattat	7560
caataccata tttttgaaaa agccgtttct gtaatgaagg agaaaactca ccgaggcagt	7620
tccataggat ggcaagatcc tggtatcggt ctgcgattcc gactcgtcca acatcaatac	7680
aacctattaa tttcccctcg tcaaaaataa ggttatcaag tgagaaatca ccatgagtga	7740
cgactgaatc cggtgagaat ggcaaaagct tatgcatttc tttccagact tgttcaacag	7800
gccagccatt acgctcgtca tcaaaatcac tcgcatcaac caaaccgtta ttcattcgtg	7860
attgcgcctg agcgagacga aatacgcgat cgctgttaaa aggacaatta caaacaggaa	7920
togaatgcaa coggogoagg aacaotgcoa gogoatcaac aatattttoa cotgaatcag	7980
gatattette taataeetgg aatgetgttt teeeggggat egeagtggtg agtaaceatg	8040
catcatcagg agtacggata aaatgcttga tggtcggaag aggcataaat tccgtcagcc	8100
agtttagtct gaccatctca tctgtaacat cattggcaac gctacctttg ccatgtttca	8160
gaaacaactc tggcgcatcg ggcttcccat acaatcgata gattgtcgca cctgattgcc	8220
cgacattatc gcgagcccat ttatacccat ataaatcagc atccatgttg gaatttaatc	8280
geggeetega geaagaegtt teeegttgaa tatggeteat aacaeeeett gtattaetgt	8340
ttatgtaagc agacagtttt attgttcatg atgatatatt tttatcttgt gcaatgtaac	8400
atcagagatt ttgagacaca acgtggttta aacaaatagt caaaagcctc cggcg	8455
<210> SEQ ID NO 19 <211> LENGTH: 12088 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 19	
tggaagggct aattcactcc caaagaagac aagatatcct tgatctgtgg atctaccaca	60
cacaaggcta cttccctgat tagcagaact acacaccagg gccaggggtc agatatccac	120
tgacctttgg atggtgctac aagctagtac cagttgagcc agataaggta gaagaggcca	180
ataaaggaga gaacaccagc ttgttacacc ctgtgagcct gcatgggatg gatgacccgg	240
agagagaagt gttagagtgg aggtttgaca gccgcctagc atttcatcac gtggcccgag	300
agetgeatee ggagtactte aagaactget gatategage ttgetacaag ggaettteeg	360
ctggggactt tccagggagg cgtggcctgg gcgggactgg ggagtggcga gccctcagat	420
cctgcatata agcagctgct ttttgcctgt actgggtctc tctggttaga ccagatctga	480
gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aagcttgcct	540
tgagtgcttc aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta gagatccctc	600

660

720

agaccetttt agteagtgtg gaaaatetet ageagtggeg eeegaacagg gaettgaaag

cgaaagggaa accagaggag ctctctcgac gcaggactcg gcttgctgaa gcgcgcacgg

caagaggcga	ggggcggcga	ctggtgagta	cgccaaaaat	tttgactagc	ggaggctaga	780
aggagagaga	tgggtgcgag	agcgtcagta	ttaagcgggg	gagaattaga	tcgcgatggg	840
aaaaaattcg	gttaaggcca	gggggaaaga	aaaaatataa	attaaaacat	atagtatggg	900
caagcaggga	gctagaacga	ttcgcagtta	atcctggcct	gttagaaaca	tcagaaggct	960
gtagacaaat	actgggacag	ctacaaccat	cccttcagac	aggatcagaa	gaacttagat	1020
cattatataa	tacagtagca	accctctatt	gtgtgcatca	aaggatagag	ataaaagaca	1080
ccaaggaagc	tttagacaag	atagaggaag	agcaaaacaa	aagtaagacc	accgcacagc	1140
aagcggccgg	ccgctgatct	tcagacctgg	aggaggagat	atgagggaca	attggagaag	1200
tgaattatat	aaatataaag	tagtaaaaat	tgaaccatta	ggagtagcac	ccaccaaggc	1260
aaagagaaga	gtggtgcaga	gagaaaaaag	agcagtggga	ataggagctt	tgttccttgg	1320
gttcttggga	gcagcaggaa	gcactatggg	cgcagcgtca	atgacgctga	cggtacaggc	1380
cagacaatta	ttgtctggta	tagtgcagca	gcagaacaat	ttgctgaggg	ctattgaggc	1440
gcaacagcat	ctgttgcaac	tcacagtctg	gggcatcaag	cagetecagg	caagaatcct	1500
ggctgtggaa	agatacctaa	aggatcaaca	gctcctgggg	atttggggtt	gctctggaaa	1560
actcatttgc	accactgctg	tgccttggaa	tgctagttgg	agtaataaat	ctctggaaca	1620
gatttggaat	cacacgacct	ggatggagtg	ggacagagaa	attaacaatt	acacaagctt	1680
aatacactcc	ttaattgaag	aatcgcaaaa	ccagcaagaa	aagaatgaac	aagaattatt	1740
ggaattagat	aaatgggcaa	gtttgtggaa	ttggtttaac	ataacaaatt	ggctgtggta	1800
tataaaatta	ttcataatga	tagtaggagg	cttggtaggt	ttaagaatag	tttttgctgt	1860
actttctata	gtgaatagag	ttaggcaggg	atattcacca	ttatcgtttc	agacccacct	1920
cccaaccccg	aggggacccg	acaggcccga	aggaatagaa	gaagaaggtg	gagagaga	1980
cagagacaga	tccattcgat	tagtgaacgg	atcggcactg	cgtgcgccaa	ttctgcagac	2040
aaatggcagt	attcatccac	aattttaaaa	gaaaaggggg	gattgggggg	tacagtgcag	2100
gggaaagaat	agtagacata	atagcaacag	acatacaaac	taaagaatta	caaaaacaaa	2160
ttacaaaaat	tcaaaatttt	cgggtttatt	acagggacag	cagagatcca	gtttggttag	2220
taccgggccc	gctctagtcc	ggaatcagtc	ctgctcctcg	gccacgaagt	gcacgcagtt	2280
geeggeeggg	tegegeaggg	cgaactcccg	ccccacggc	tgctcgccga	tctcggtcat	2340
ggccggcccg	gaggegteee	ggaagttegt	ggacacgacc	tccgaccact	cggcgtacag	2400
ctcgtccagg	ccgcgcaccc	acacccaggc	cagggtgttg	tccggcacca	cctggtcctg	2460
gaccgcgctg	atgaacaggg	tcacgtcgtc	ccggaccaca	ccggcgaagt	cgtcctccac	2520
gaagtcccgg	gagaacccga	gccggtcggt	ccagaactcg	accgctccgg	cgacgtcgcg	2580
cgcggtgagc	accggaacgg	cactggtcaa	cttggccatg	gtggccctcc	tatagtgagt	2640
cgtattatac	tatgccgata	tactatgccg	atgattaatt	gtcaacacgt	gctgcaggtc	2700
cgaggttcta	gcgcgtggcc	teegegeegg	gttttggcgc	ctcccgcggg	cgccccctc	2760
ctcacggcga	gcgctgccac	gtcagacgaa	gggcgcagcg	agcgtcctga	tccttccgcc	2820
cggacgctca	ggacagcggc	ccgctgctca	taagactcgg	ccttagaacc	ccagtatcag	2880
cagaaggaca	ttttaggacg	ggacttgggt	gactctaggg	cactggtttt	ctttccagag	2940
	gcgaggaaaa					3000
5 55	5 5 55	5 5 20	55-5-90	2 22-235		

ggcggtgaac	gccgatgatt	atataaggac	gcgccgggtg	tggcacagct	agttccgtcg	3060
cagccgggat	ttgggtcgcg	gttcttgttt	gtggatcgct	gtgatcgtca	cttggtgagt	3120
agcgggctgc	tgggctggcc	ggggctttcg	tggccgccgg	gccgctcggt	gggacggaag	3180
cgtgtggaga	gaccgccaag	ggctgtagtc	tgggtccgcg	agcaaggttg	ccctgaactg	3240
ggggttgggg	ggagcgcagc	aaaatggcgg	ctgttcccga	gtcttgaatg	gaagacgctt	3300
gtgaggcggg	ctgtgaggtc	gttgaaacaa	ggtgggggc	atggtgggcg	gcaagaaccc	3360
aaggtcttga	ggccttcgct	aatgcgggaa	agctcttatt	cgggtgagat	gggctggggc	3420
accatctggg	gaccctgacg	tgaagtttgt	cactgactgg	agaactcggt	ttgtcgtctg	3480
ttgcgggggc	ggcagttatg	gcggtgccgt	tgggcagtgc	acccgtacct	ttgggagcgc	3540
gegeeetegt	cgtgtcgtga	cgtcacccgt	tctgttggct	tataatgcag	ggtggggcca	3600
cctgccggta	ggtgtgcggt	aggcttttct	ccgtcgcagg	acgcagggtt	cgggcctagg	3660
gtaggctctc	ctgaatcgac	aggegeegga	cctctggtga	ggggagggat	aagtgaggcg	3720
tcagtttctt	tggtcggttt	tatgtaccta	tcttcttaag	tagctgaagc	tccggttttg	3780
aactatgege	tcggggttgg	cgagtgtgtt	ttgtgaagtt	ttttaggcac	cttttgaaat	3840
gtaatcattt	gggtcaatat	gtaattttca	gtgttagact	agtaaattgt	ccgctaaatt	3900
ctggccgttt	ttggcttttt	tgttagacgc	tagcctagcg	gatccgaatt	ctcgaaactt	3960
aagatgcacc	cagaaacgct	ggtgaaagta	aaagatgctg	aagatcagtt	gggtgcacga	4020
gtgggttaca	tcgaactgga	tctcaacagc	ggtaagatcc	ttgagagttt	tcgccccgaa	4080
gaacgttttc	caatgatgag	cacttttaaa	gttctgctat	gtggcgcggt	attatcccgt	4140
attgacgccg	ggcaagagca	acteggtege	cgcatacact	attctcagaa	tgacttggtt	4200
gagtactcac	cagtcacaga	aaagcatctt	acggatggca	tgacagtaag	agaattatgc	4260
agtgctgcca	taaccatgag	tgataacact	gcggccaact	tacttctgac	aacgatcgga	4320
ggaccgaagg	agctaaccgc	ttttttgcac	aacatggggg	atcatgtaac	tegeettgat	4380
cgttgggaac	cggagctgaa	tgaagccata	ccaaacgacg	agcgtgacac	cacgacgcct	4440
gtagcaatgg	caacaacgtt	gcgcaaacta	ttaactggct	ccggaggcgg	cggctccggc	4500
ggcggcggct	cgagcggcgg	cggcggatcc	ctacttactc	tagetteeeg	gcaacaatta	4560
atagactgga	tggaggcgga	taaagttgca	ggaccacttc	tgegetegge	ccttccggct	4620
ggctggttta	ttgctgataa	atctggagcc	ggtgagcgtg	ggtetegegg	tatcattgca	4680
gcactggggc	cagatggtaa	gccctcccgt	atcgtagtta	tctacacgac	ggggagtcag	4740
gcaactatgg	atgaacgaaa	tagacagatc	gctgagatag	gtgcctcact	gattaagcat	4800
tggtgagcag	atctgcccac	tagtgagtcg	tattacatcc	atcacactgg	cggccgcaaa	4860
ttccgcccct	ctccctcccc	ccccctaac	gttactggcc	gaagccgctt	ggaataaggc	4920
cggtgtgcgt	ttgtctatat	gttattttcc	accatattgc	cgtcttttgg	caatgtgagg	4980
gcccggaaac	ctggccctgt	cttcttgacg	agcattccta	ggggtctttc	ccctctcgcc	5040
aaaggaatgc	aaggtctgtt	gaatgtcgtg	aaggaagcag	ttcctctgga	agcttcttga	5100
agacaaacaa	cgtctgtagc	gaccctttgc	aggcagcgga	acccccacc	tggcgacagg	5160
				caaaggcggc		5220
				ggeteteete		5280
5 -5-25	5 5 -55.40	5 5-55-44	5 5	55	J J	

aacaaggggc	tgaaggatgc	ccagaaggta	ccccattgta	tgggatctga	tctggggcct	5340
cggtgcacat	gctttacatg	tgtttagtcg	aggttaaaaa	aacgtctagg	cccccgaac	5400
cacggggacg	tggttttcct	ttgaaaaaca	cgataatacc	atggccaccg	agtacaagcc	5460
cacggtgcgc	ctcgccaccc	gcgacgacgt	cccccgggcc	gtacgcaccc	tegeegeege	5520
gttcgccgac	taccccgcca	cgcgccacac	cgtcgacccg	gaccgccaca	tcgagcgggt	5580
caccgagetg	caagaactct	tcctcacgcg	cgtcgggctc	gacatcggca	aggtgtgggt	5640
cgcggacgac	ggcgccgcgg	tggcggtctg	gaccacgccg	gagagcgtcg	aagcgggggc	5700
ggtgttcgcc	gagatcggct	cgcgcatggc	cgagttgagc	ggttcccggc	tggccgcgca	5760
gcaacagatg	gaaggcctcc	tggcgccgca	ccggcccaag	gagcccgcgt	ggttcctggc	5820
caccgtcggc	gtctcgcccg	accaccaggg	caagggtctg	ggcagcgccg	tcgtgctccc	5880
cggagtggag	gcggccgagc	gcgctggggt	gcccgccttc	ctggagacct	ccgcgccccg	5940
caacctcccc	ttctacgagc	ggctcggctt	caccgtcacc	gccgacgtcg	aggtgcccga	6000
aggaccgcgc	acctggtgca	tgacccgcaa	gcccggtgcc	tgagttcgcg	tctggaacaa	6060
tcaacctctg	gattacaaaa	tttgtgaaag	attgactggt	attcttaact	atgttgctcc	6120
ttttacgcta	tgtggatacg	ctgctttaat	gcctttgtat	catgctattg	cttcccgtat	6180
ggctttcatt	ttctcctcct	tgtataaatc	ctggttgctg	tctctttatg	aggagttgtg	6240
gcccgttgtc	aggcaacgtg	gcgtggtgtg	cactgtgttt	gctgacgcaa	ccccactgg	6300
ttggggcatt	gccaccacct	gtcagctcct	ttccgggact	ttcgctttcc	ccctccctat	6360
tgccacggcg	gaactcatcg	ccgcctgcct	tgcccgctgc	tggacagggg	ctcggctgtt	6420
gggcactgac	aattccgtgg	tgttgtcggg	gaagctgacg	tcctttccat	ggctgctcgc	6480
ctgtgttgcc	acctggattc	tgcgcgggac	gtccttctgc	tacgtccctt	cggccctcaa	6540
tccagcggac	cttccttccc	gcggcctgct	gccggctctg	cggcctcttc	cgcgtcttcg	6600
ccttcgccct	cagacgagtc	ggatctccct	ttgggccgcc	tccccgcctg	gaattaattc	6660
tgcagtcgag	acctagaaaa	acatggagca	atcacaagta	gcaatacagc	agctaccaat	6720
gctgattgtg	cctggctaga	agcacaagag	gaggaggagg	tgggttttcc	agtcacacct	6780
caggtacctt	taagaccaat	gacttacaag	gcagctgtag	atcttagcca	ctttttaaaa	6840
gaaaagaggg	gactggaagg	gctaattcac	tcccaacgaa	gacaagatct	gctttttgct	6900
tgtactgggt	ctctctggtt	agaccagatc	tgagcctggg	agctctctgg	ctaactaggg	6960
aacccactgc	ttaagcctca	ataaagcttg	ccttgagtgc	ttcaagtagt	gtgtgcccgt	7020
ctgttgtgtg	actctggtaa	ctagagatcc	ctcagaccct	tttagtcagt	gtggaaaatc	7080
tctagcagta	gtagttcatg	tcatcttatt	attcagtatt	tataacttgc	aaagaaatga	7140
atatcagaga	gtgagaggcc	ttgacattgt	ttaaacccgc	tgatcagcct	cgactgtgcc	7200
ttctagttgc	cagccatctg	ttgtttgccc	ctcccccgtg	ccttccttga	ccctggaagg	7260
tgccactccc	actgtccttt	cctaataaaa	tgaggaaatt	gcatcgcatt	gtctgagtag	7320
gtgtcattct	attctggggg	gtggggtggg	gcaggacagc	aagggggagg	attgggaaga	7380
caatagcagg	catgctgggg	atgcggtggg	ctctatggct	tctgaggcgg	aaagaaccag	7440
ctggggctct	agggggtatc	cccacgcgcc	ctgtagcggc	gcattaagcg	cggcgggtgt	7500
ggtggttacg	cgcagcgtga	ccgctacact	tgccagcgcc	ctagcgcccg	ctcctttcgc	7560
		-			-	

tttcttccct	teettteteg	ccacgttcgc	cggctttccc	cgtcaagctc	taaatcgggg	7620
gctcccttta	gggttccgat	ttagtgcttt	acggcacctc	gaccccaaaa	aacttgatta	7680
gggtgatggt	tcacgtagtg	ggccatcgcc	ctgatagacg	gtttttcgcc	ctttgacgtt	7740
ggagtccacg	ttctttaata	gtggactctt	gttccaaact	ggaacaacac	tcaaccctat	7800
ctcggtctat	tcttttgatt	tataagggat	tttgccgatt	teggeetatt	ggttaaaaaa	7860
tgagctgatt	taacaaaaat	ttaacgcgaa	ttaattctgt	ggaatgtgtg	tcagttaggg	7920
tgtggaaagt	ccccaggctc	cccagcaggc	agaagtatgc	aaagcatgca	tctcaattag	7980
tcagcaacca	ggtgtggaaa	gtccccaggc	tccccagcag	gcagaagtat	gcaaagcatg	8040
catctcaatt	agtcagcaac	catagtcccg	cccctaactc	cgcccatccc	gcccctaact	8100
ccgcccagtt	ccgcccattc	tccgccccat	ggctgactaa	tttttttat	ttatgcagag	8160
gccgaggccg	cctctgcctc	tgagctattc	cagaagtagt	gaggaggctt	ttttggaggc	8220
ctaggctttt	gcaaaaagct	cccgggagct	tgtatatcca	ttttcggatc	tgatcagcac	8280
gtgatgaaaa	agcctgaact	caccgcgacg	tctgtcgaga	agtttctgat	cgaaaagttc	8340
gacagcgtct	ccgacctgat	gcageteteg	gagggcgaag	aatctcgtgc	tttcagcttc	8400
gatgtaggag	ggcgtggata	tgtcctgcgg	gtaaatagct	gcgccgatgg	tttctacaaa	8460
gatcgttatg	tttatcggca	ctttgcatcg	geegegetee	cgattccgga	agtgcttgac	8520
attggggaat	taattcagcg	agageetgae	ctattgcatc	tecegeegtg	cacagggtgt	8580
cacgttgcaa	gacctgcctg	aaaccgaact	gcccgctgtt	ctgcagccgg	tcgcggaggc	8640
catggatgcg	ategetgegg	ccgatcttag	ccagacgagc	gggtteggee	catteggace	8700
gcaaggaatc	ggtcaataca	ctacatggcg	tgatttcata	tgcgcgattg	ctgatcccca	8760
tgtgtatcac	tggcaaactg	tgatggacga	caccgtcagt	gegteegteg	cgcaggetet	8820
cgatgagctg	atgctttggg	ccgaggactg	ccccgaagtc	cggcacctcg	tgcacgcgga	8880
tttcggctcc	aacaatgtcc	tgacggacaa	tggccgcata	acageggtea	ttgactggag	8940
cgaggcgatg	ttcggggatt	cccaatacga	ggtcgccaac	atcttcttct	ggaggccgtg	9000
gttggcttgt	atggagcagc	agacgcgcta	cttcgagcgg	aggcatccgg	agcttgcagg	9060
atcgccgcgg	ctccgggcgt	atatgctccg	cattggtctt	gaccaactct	atcagagett	9120
ggttgacggc	aatttcgatg	atgcagcttg	ggcgcagggt	cgatgcgacg	caatcgtccg	9180
atccggagcc	gggactgtcg	ggcgtacaca	aatcgcccgc	agaagcgcgg	ccgtctggac	9240
cgatggctgt	gtagaagtac	tegeegatag	tggaaaccga	cgccccagca	ctcgtccgag	9300
ggcaaaggaa	tagcacgtgc	tacgagattt	cgattccacc	geegeettet	atgaaaggtt	9360
gggcttcgga	atcgttttcc	gggacgccgg	ctggatgatc	ctccagcgcg	gggatctcat	9420
gctggagttc	ttcgcccacc	ccaacttgtt	tattgcagct	tataatggtt	acaaataaag	9480
caatagcatc	acaaatttca	caaataaagc	attttttca	ctgcattcta	gttgtggttt	9540
gtccaaactc	atcaatgtat	cttatcatgt	ctgtataccg	tcgacctcta	gctagagctt	9600
ggcgtaatca	tggtcatagc	tgtttcctgt	gtgaaattgt	tatccgctca	caattccaca	9660
caacatacga	gccggaagca	taaagtgtaa	agcctggggt	gcctaatgag	tgagctaact	9720
cacattaatt	gcgttgcgct	cactgcccgc	tttccagtcg	ggaaacctgt	cgtgccagct	9780
	atcggccaac					9840
_ 3				- 555		

ttcctcgctc	actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	9900
ctcaaaggcg	gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	9960
agcaaaaggc	cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	10020
taggctccgc	cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	10080
cccgacagga	ctataaagat	accaggcgtt	tccccctgga	agctccctcg	tgcgctctcc	10140
tgttccgacc	ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	gaagegtgge	10200
gctttctcat	agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	10260
gggctgtgtg	cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	10320
tcttgagtcc	aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	10380
gattagcaga	gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	10440
cggctacact	agaagaacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	10500
aaaaagagtt	ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	10560
tgtttgcaag	cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	10620
ttctacgggg	tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgag	10680
attatcaaaa	aggatcttca	cctagatcct	tttaaattaa	aaatgaagtt	ttaaatcaat	10740
ctaaagtata	tatgagtaaa	cttggtctga	cagttaccaa	tgcttaatca	gtgaggcacc	10800
tatctcagcg	atctgtctat	ttcgttcatc	catagttgcc	tgactccccg	tcgtgtagat	10860
aactacgata	cgggagggct	taccatctgg	ccccagtgct	gcaatgatac	cgcgagaccc	10920
acgctcaccg	gctccagatt	tatcagcaat	aaaccagcca	gccggaaggg	ccgagcgcag	10980
aagtggtcct	gcaactttat	ccgcctccat	ccagtctatt	aattgttgcc	gggaagctag	11040
agtaagtagt	tcgccagtta	atagtttgcg	caacgttgtt	gccattgcta	caggcatcgt	11100
ggtgtcacgc	tegtegtttg	gtatggcttc	attcagctcc	ggttcccaac	gatcaaggcg	11160
agttacatga	tececcatgt	tgtgcaaaaa	ageggttage	teetteggte	ctccgatcgt	11220
tgtcagaagt	aagttggccg	cagtgttatc	actcatggtt	atggcagcac	tgcataattc	11280
tcttactgtc	atgccatccg	taagatgctt	ttctgtgact	ggtgagtact	caaccaagtc	11340
attctgagaa	tagtgtatgc	ggcgaccgag	ttgctcttgc	ccggcgtcaa	tacgggataa	11400
taccgcgcca	catagcagaa	ctttaaaagt	gctcatcatt	ggaaaacgtt	cttcggggcg	11460
aaaactctca	aggatettae	cgctgttgag	atccagttcg	atgtaaccca	ctcgtgcacc	11520
caactgatct	tcagcatctt	ttactttcac	cagcgtttct	gggtgagcaa	aaacaggaag	11580
gcaaaatgcc	gcaaaaaagg	gaataagggc	gacacggaaa	tgttgaatac	tcatactctt	11640
cctttttcaa	tattattgaa	gcatttatca	gggttattgt	ctcatgagcg	gatacatatt	11700
tgaatgtatt	tagaaaaata	aacaaatagg	ggttccgcgc	acatttcccc	gaaaagtgcc	11760
acctgacgtc	gacggatcgg	gagatcaact	tgtttattgc	agcttataat	ggttacaaat	11820
aaagcaatag	catcacaaat	ttcacaaata	aagcattttt	ttcactgcat	tctagttgtg	11880
gtttgtccaa	actcatcaat	gtatcttatc	atgtctggat	caactggata	actcaagcta	11940
accaaaatca	tcccaaactt	cccaccccat	accctattac	cactgccaat	tacctgtggt	12000
ttcatttact	ctaaacctgt	gattcctctg	aattatttc	attttaaaga	aattgtattt	12060
gttaaatatq	tactacaaac	ttagtagt				12088

<210> SEQ ID NO 20 <211> LENGTH: 233681 <212> TYPE: DNA <213 > ORGANISM: artificial <220> FEATURE: <223 > OTHER INFORMATION: synthetic <400> SEQUENCE: 20 catgcacacc aataaacttt tgcttttctt tttagccaat aatatgtttc cgtgtggttt 60 ttataggtta accacttatg gtgtaaagta ggatattcat agttattgaa aacatgggta cacaatgtaa cactaaacta ctatccgcac taatagcaac tgcaatcatc ctaactgcca ttctagctcc ggtactttta catgaacaag aaaaggcatt ttaccgacaa ctttttgcgc aaaqtcaaca tqtaaaaaca cccatcacqq taqttcaqqq aqatacaqtt taccttaacq 300 ctagtaataa cccctgcaac tattccagct tctggaacta tggcgattgc gaactttgtg 360 gatggaacgg atacatacaa agacaatatc acgaaaacaa atcgtgctct ccacgattta 420 catgttttaa tgacaccaaa ggtcttagac tacataacgt tacgtttagc gattcaggaa 480 catacacaqa atacatqtac qactqtqatt ttccatqtaa cacqaqtqac tatqaatatq 540 acatactaaa ctattttqac aattqtacta ctaccataaa caqtaccaat tatattatca 600 ccgtattgtc tccacgtcat tctaaacaca ccgatttgca cgtatccgct cacgccggtt 660 tggcagctgc catggtgaca gtaattataa tttgcgtttt gatctacttt aacgttccgg 720 caacceggag acacagacta cgaactagaa ataacgttaa ccacatactg taattacaaa 780 gtatcgacgc tagtttattc aggataaatt tgtgctactt tgtgtagctc tcaaaaattg 840 taaggeecca etttteeact eegteatgaa agategtaat aagetaetea tatgtattat 900 cettatttte accatgtgee teatetgtet ttattttaaa egeegttgta tteetaetee 960 atctccagac aaggcagatc tgcgagtgga atttccttcg ttatctccgt gtgtcggcat 1020 acaatgcgct tcacgggaag atgcgtgata catagcgtac ccccagacgg tacggcttat 1080 gagaacacaa ttgaaggaaa gtacaggttc ctgttgatat gttattacag aaggtcacgg 1140 aacacaaacg ttttctgcgt gtgtttttat aaaagagcgt ctcgaagcag cttgagccac 1200 1260 actacggtcc agatgacgag cgtgatcaaa aatatgccgc gcagtagtcg aaagccgtac tgagcgtgcg aggcgggtag ggtgccgaac gacggatatg cgtcgtcatc atctttgact 1320 ataaggatcg cgaccgaatc ttcggacatg gtaaaagcca cccactgtgg ctggtatgta 1380 gcgtatccgg tttggaatcg ttcggctccg gctcggggga tagtgaggaa ttctcagggg acqatatggq acccaatqac tgqataaaaq aagggttttt cccaqtaaqa tgatcccgt 1500 atcacatqaq atctqqatat qtataaatqa qqaqtqaaat aqqcaaaqqq tatcaqacac 1560 eggeeeegte atgeageege tggttetete ageggaggaa etategtete tgetgatttg 1620 caaatacatc ccaccttaag cgacgagtcc ataaagcatc gttatccggg tacggtgaaa gtgacccgga ttgcaccacg tccctttttt gtttttgcat cgtttatcgt caccactagt 1740 gcaatatttt tatcgtaagg ctgaaagagt atcgttatga tgcttagaat gtggagatta 1800 ttacagatgg tactgcttgc cacgtactgt tattatgttt ttgcgaattg ttcaatcagc 1860 acgacgactg ctcctgtgga atggaagtct cccaaccgtc agattcccaa gaatattacc 1920

tgcgctaatt actcagggac cgtcggcggt aacgttactt ttcagggtct caagaataaa

acggaagact	ttttatcttg	gctactcggg	tctggctata	agtctatttg	ctcgttcttc	2040
ccacaactcc	ctggtgattc	taatgagcag	cattacagat	atgaagtaac	caacctcacg	2100
tacaattgta	cctatgaccg	cctaacgtta	ctgaatctaa	cgatggaaaa	cagcaggaat	2160
tactatttca	gaagagaaga	tgcgaattcc	accttctact	actcttgtta	caacctgacc	2220
gtgtcctaga	gaacgcacgt	gaagttccac	agageegegt	ggctgtagct	attgtttacg	2280
ttgcttttga	aatgttaagc	gtccctacga	cgctaactcg	ggggagtcca	gggttttccc	2340
agtcacgacg	ttgtaaaacg	acggccagtg	aattcgagct	cggtacccgg	ggatcttgaa	2400
gttcctattc	cgaagttcct	attctctaga	aagtatagga	acttcagagc	gcttttgaag	2460
cttggcgtaa	tcatggtcat	agetgtttee	tgtgtgaaat	tgttatccgc	tcacaattcc	2520
acacaacata	cgagccggaa	gacacaagac	tgccactcca	catacaacgt	ggatcatacc	2580
cctggttatc	attataacaa	tcatcatttt	aatttgtttc	aaatttcccc	agaaagcttg	2640
gaataaattc	acacaatacc	gatacagcga	tatgetegee	gctgcttaaa	gaatcaacgt	2700
cgaggaaacc	aaaacgcaaa	cataatggat	atgtacgtgt	atttttcagc	tcactgtttg	2760
aataccgtaa	gaaaaatgac	gtacatatac	gtaataatac	aacagttgct	catgttatgc	2820
ggcgcctgat	taactatatc	gtgagtcatg	gcctttttcc	atggtccgtc	atgaccgcaa	2880
tgatacttta	caggtattcc	gaaacctgta	tggaggtcac	cgttaaagta	ggtgatccgg	2940
tcaccctcgg	aagtggacac	ggttatcatc	ctggccaaag	agtacactgg	tataatcatt	3000
catgtgtcgg	catcggtaac	ggcgaaaatg	cgcatcctat	ctgtacctac	gaccctccta	3060
aacctggtaa	acataagacg	atgaaaacca	ctccgccgcc	attaccgccg	ttgtacgaat	3120
gtcataattc	tacattaagt	atccttcatg	taaacgtttc	agatcccaaa	aactactgca	3180
gacgaaaatg	tccatcaaat	ggtaataact	gtgagtttcc	cacgtgtttt	cagttatcgc	3240
ttatttatag	aacgacgacc	accaaaaaac	ccggacaaaa	aactacgtca	ccgagattaa	3300
gaaccacgcc	aaagaaacat	acacagcaca	aaagatccac	aggaagaacg	tcacctaaag	3360
attataatgt	tacaggtctg	ccaaaaggct	ttgcggactc	gtttaccggt	aacgcagagg	3420
cacatagagc	caaagatgcc	gcacacagcg	catggattat	cattgtcatc	atcattatca	3480
tagtcgtcat	tttatttctc	ttcaagattc	ctcaaagact	ccgagaaaaa	tgggacacca	3540
ggggatactt	ttacaaagga	accgacggcc	tgcccactac	ggactaattg	tcgtgagcgg	3600
atggatatct	ccggtttcaa	acccactgtt	tgaatatagg	gacagtccct	acggaacctg	3660
agaacatgtg	gaaattacct	gtggtagaat	gctgttcagg	tacatcacct	ttcatcgcga	3720
aaaggtactt	tacctaacgg	ctgcatgcat	ctttggtggc	tacatcagcc	tccacgatgc	3780
ctgcataccg	gtggttggca	aaataggtac	caacgtcacg	ttgaacgcgg	tagattttca	3840
teceggtgat	cacgttcgct	ggtcttacgg	teceggtggg	gcaggctaca	tgctatgtgt	3900
ttacactggt	agttggacag	aatacaaaaa	gccagacatc	atttttaagt	gtttatcaaa	3960
taacagtett	cttttaatta	acgtaactgt	aaattatacc	aacacttacc	gtaccttgac	4020
atcgttaaac	aattgggttc	acaatcaaca	tcaccataaa	tttcccggat	ggaacttgga	4080
cacatgttac	agtctcacag	tgaacgaaaa	cggtacattc	cccactacca	ccaccaaaaa	4140
acccactacg	accacgagaa	cgacaactac	caccacaaca	aagaaaacaa	ccaccacgag	4200
		agacgacgat				4260
	•	-			=	

caaaaaatcc	agcaccccta	acagtcacgt	agaacatcac	gttggttttg	aagccacagc	4320
agcggaaaca	ccgttacaac	caagcccaca	gcaccaacac	gtggctacac	acgccctctg	4380
ggttttagcg	gtcgtaatcg	ttattatcat	cattatcatt	ttctactttc	gaataccgca	4440
aaagctgtgg	ctgctctggc	agcatgacaa	gcacggcatc	gtgctcatcc	ctcaaaccga	4500
tctgtgagca	agtcgcgtag	gaaatgattg	catgaaatca	ctgtgaaacg	ccaactccgt	4560
gccagctggc	gcggcggaca	ggcctttgac	gtatttgaag	ccaggcgcgc	tctcgatacc	4620
gaaaggatcc	gagggggctt	tccaaagccg	acgtccctga	ttcccttcat	aaagctgttg	4680
accggcccta	gaaagaccaa	gagcatgctg	tgggcccact	geggtegett	cttgcgttat	4740
catctgctcc	egetgetget	gtgtagactg	ccattcttac	tccttttcca	geggeegeag	4800
tgggcccacg	gcttggacat	tgtcgaggag	gacgagtggc	tacgggagat	acaaggagcg	4860
acgtaccagc	tgtccatagt	gcgccaagcc	atgcagcacg	ccggattcca	agtcagagca	4920
gcgtcggtca	tgacgcggcg	aaacgccgtt	gacctggacc	gaccgccgct	ttggtcggga	4980
tegeteeege	atttgcccgt	ctacgatgtg	egtteeeege	ggccgttgag	accgccgtca	5040
tcacagcatc	acgccgtatc	acccgaactg	ccgtcgcgag	acgggatacg	ttggcagtac	5100
caagagctgc	agtatctggt	ggaagaacaa	cggcggcgaa	atcagtcgcg	caatgcgatt	5160
ccgagaccct	cgttcccccc	tccggatcca	ccatcgcagc	cggcagagga	tgcacgagac	5220
gcggacgcag	aacgtgccga	atcaccacat	agtgcagaaa	gcaccgtcag	gcacgacgcg	5280
agtgagaacg	cagtgcggcg	acggcacgaa	agacggcgct	ataacgctct	gacggtccgc	5340
agccgggact	egetgeteet	gacgcgaata	cgcttctcca	accaacggtg	tttcggacgc	5400
gggcgtctga	gacatecege	gggaagcggt	cccaacaccg	geggaeegeg	acccggcggt	5460
gegggaetee	gtcaactacg	ccaacaactg	acggtccgct	ggcagctgtt	ccgcctacgg	5520
tgccacggtt	ggacacagca	ggtctctagc	cagatcagaa	cccgctggga	ggaaagcaac	5580
gtcgtgagcc	agacggccac	gcgagtacgt	acgtggttcg	tgaaaagaac	cacgttttgg	5640
cgtcgcacgt	gggttccggg	acagaacccg	gcggccgaag	cgcaagaact	ggccgtcata	5700
ccgccggcac	ccacggtgct	ccggcagaac	gaggaaccac	gtcaacagct	tacgggagag	5760
gagacaagaa	attcaacgca	cactcaacgt	gaagaagtgg	aggacgtttc	gagagagggc	5820
gcgagagaag	ggaatgatgg	gagccgagca	agtggaaacg	acgagagaag	gaataatgcg	5880
ggaagatatg	atgatgatca	tgaggttcaa	gagccgcagg	tcacttatcc	agcgggacaa	5940
ggagaactga	ataggaggtc	acaggaggag	aacgaggaag	gtggaccgtg	tgaatcgccg	6000
ccaatgacga	caaatacgct	gaccgtggcc	tgtccgcccc	gagaaccccc	gcatcgtgcc	6060
ctgtttcgtc	tatgcttagg	actgtgggtc	tcgagctacc	tggttcgacg	gcccatgacg	6120
atttagaata	caccgagcca	ttcctttatt	tccccccatc	cccggtcgct	tatgcgtgtt	6180
aaacactacc	aataaagata	atctgccaat	cgcaccttat	atataatatg	tggtcgcgtg	6240
tggtcttttt	aaggagctct	gaaacacaga	caggtatggg	cggtggtcgg	ctgccgccgc	6300
tgtggctgcc	gctactgatc	gcctggagcg	agtggggcaa	ctgctgcctc	gatgcgcctc	6360
cggtggtgcg	ttcgccctgt	ctgcagccgg	tgcgcgaccg	caaccgcgag	cggaacccgg	6420
gctcaccgca	gttgctgcct	tacggcgacc	gtctggaggt	ggcctgcatc	ttccccgcgc	6480
		atccgagtcc				6540
		-	-			

cgctggtggt	ggacgcacgc	agcggtcagg	tgttacacaa	cgacgccagc	tgttacatcg	6600
ccggcgggcg	ctggcgcttc	gaggacggcg	gcgcggcgca	gcggctgagc	ctctcgtttc	6660
ggctcatcac	cgagaccgcg	ggcacctaca	cctgcgtgct	gggcaacgag	acccacagcc	6720
tggcgaccga	gaccacggcg	ctggtggccg	acatgcacga	cctgcgccac	tcggaccgct	6780
cctgcgacct	ggctttcgga	tegegeteae	agacgcggta	cctgtggacg	cccgatccct	6840
ccaggttgcg	cagtataaac	tgcggttggg	agggtgaacg	gcaccgcgta	gtccactaca	6900
teceeggeae	ctcgggtttg	ctgccctcgt	gcgaggagga	cgagcgcgaa	ctgtgcgtgc	6960
ccttcatcag	ccagagcatt	gcggacaaca	actgcagccg	ccggcatcga	gttgacggcg	7020
ctaggcggcg	ctatcatcta	cggagggatt	actggctgac	ggatccgaag	atcgggttgc	7080
tggccgcggg	ateggtggee	ctgacctccc	tetgecacet	gctgtgctac	tggtgttccg	7140
aatcgtaccg	gcgtctgaac	accgaggagg	aaagcgaggc	ggcggaggaa	actgccgcgg	7200
gagaagcctc	tgcggtagcg	geggeggeeg	tctctgagga	agagcagcgg	cgggagtaaa	7260
cgaggagagc	catgaagcgg	atgattcgca	gtcacggcag	gaaaacggaa	tgtcagatga	7320
cgggcgccgg	cgagcgacgc	ggctccgccg	teggtgegee	catctgcggc	agcggtaccc	7380
gacgcggcag	cggcgccaac	gaacgccgcg	actccgacgt	cggtcccatc	gcccacagta	7440
gcggtaccag	acgcggttcg	gcgaatgaaa	cgtccgcctg	tacgcggacc	gatcaccaga	7500
aggcggacat	tgggctgtgg	ttcatgtttc	tggtttttgg	actgtgttcg	tggttggcga	7560
tgcggtatcg	cgcacaataa	attttgaatc	gatgtcaagg	aacgcgtgtt	ttgtatttta	7620
ttgggaatat	tggcggggat	aaaccggttt	cggatgttta	cccttaatct	taccggggac	7680
ctcgttgtcc	tctcctcctt	cttcctcgga	caccgggctc	catgctgacg	taggtaccga	7740
ctggggtcaa	aagcctgggt	acttatgagg	agcgcgcaca	aaggaccgtt	aggcgccggc	7800
atggagcgtc	gccgaggtac	ggtaccgctg	ggatgggtgt	tttttgttct	ttgcttatct	7860
geetetteet	cgtgtgctgt	tgacctgggt	agcaagtcct	ccaactcgac	ctgccgcttg	7920
aatgtgacgg	agttggcctc	gatccatcct	ggggaaacgt	ggacgttaca	cgggatgtgt	7980
atttctatct	gctactacga	gaatgtgacc	gaggacgaga	tcatcggcgt	ggcttttact	8040
tggcagcata	acgagtctgt	ggttgacctg	tggttgtacc	agaacgacac	ggtgatccgc	8100
aatttcagcg	acatcaccac	taacatcttg	caagacggac	tgaaaatgcg	aaccgtccct	8160
gtgactaaac	tgtacaccag	ccgcatggtc	actaatctta	ccgtgggccg	ctatgactgt	8220
ttacgctgcg	agaacggtac	gacgaaaata	atcgagcgcc	tctacgtccg	attgggctcg	8280
ctatatccga	gaccgcccgg	atccgggctc	gccaaacacc	cctccgtaag	cgccgacgag	8340
gaactgtccg	cgaccttggc	gagagacatc	gtgttggtct	cagccatcac	tctgttcttc	8400
ttcttgttgg	ccctacggat	cccccagcga	ctgtgtcagc	ggctgcgcat	tcgcctgccg	8460
catcgatacc	agcggttacg	caccgaggac	tgaacggata	accgcaaagg	ccacgtgcaa	8520
cgttcacgct	gctataagaa	ggccatgtcc	cccgtggacg	ggtctctttg	acacgagcgc	8580
ggcacgccgt	tgccacgagc	atggatcacg	cgctcttcac	acacttcgtc	ggccgacccc	8640
gtcactgtcg	gttggaaatg	ttgattctgg	acgaacaggt	gtctaagaga	tcctgggaca	8700
ccacggttta	ccacaggcgc	cgcaaacatc	tacctcgacg	tegegeteeg	tgeggeeeee	8760
agaggcccgc	cgagattccc	aaaagaagaa	aaaaggcggc	cgtccttcta	ttttggcacg	8820
_		=			-	

atttgtgctg	gctgtttcga	cgacttttct	ttcctcggga	ggactcagag	ccactgatgt	8880
cggateegge	acggtctccc	gaagaggagg	agtaaacaac	acacggctaa	gaggatacat	8940
catcaaagaa	gataggaggg	gtcaaaacgc	ggactgaaag	tatataacgc	cgatcatgtc	9000
cgaggaactg	ttaataaaac	gccatgatga	caatgtggtg	tctgacgttg	tttgtgctgt	9060
ggatgttgag	agtggtggga	atgcacgtgt	tgcgttacgg	gtacacgggg	attttcgatg	9120
atacatcgca	tatgacgttg	accgttgtgg	ggatttttga	cgggcaacac	ttttttacct	9180
atcacgttaa	ttccagcgat	aaagcgtcaa	gtcgggccaa	cggtaccatt	tcttggatgg	9240
ctaacgtctc	ggcggcctac	cccacctacc	tggacgggga	aagagccaaa	ggtgacctta	9300
tttttaacca	aaccgagcaa	aacctgttag	agctggaaat	tgcgttgggt	taccggtcac	9360
agagcgtgct	gacgtggacg	cacgagtgta	ataccacgga	aaacggtagt	tttgtagccg	9420
gttacgaggg	atttgggtgg	gacggggaaa	ctttaatgga	gctcaaggat	aacctgacac	9480
tatggacggg	ccccaattac	gaaattagtt	ggttgaagca	aaacaaaacg	tacatcgacg	9540
gtaaaattaa	aaacatcagc	gagggggata	ctacaataca	aaggaactat	ctcaagggta	9600
attgcactca	atggtccgtc	atttatagcg	ggtttcaaac	ccccgtcacc	cacccagtgg	9660
taaagggcgg	tgtccgaaac	cagaatgaca	acagagctga	agcattctgt	acatcttacg	9720
ggttctttcc	aggggaaatt	aatattactt	ttatccatta	cggtaataag	gcgcccgatg	9780
atagcgagcc	tcaatgcaat	ccgctacttc	ccaccttgga	tgggactttc	catcagggat	9840
gttacgtagc	catcttttgc	aatcaaaact	acacctgccg	cgttacacac	ggtaattgga	9900
cggtggaaat	ccccatcagc	gttacctcac	ctgacgacag	ttcctcgggg	gaggtccccg	9960
atcacccgac	agctaacaaa	cgctataaca	ccatgaccat	cagcagtgtc	ctcctagccc	10020
tgcttttatg	cgctttgcta	ttcgcgttcc	tgcactactt	taccaccttg	aaacaatacc	10080
tacgtaacct	ggcctttgcg	tggcgctatc	gcaaggtccg	gtcgtcatga	ccagcaacgc	10140
cctgtatgag	ctgtttcgac	gtcggttacc	gcgtgccccc	gtcaacacgg	tcatgtttct	10200
cacgcgacgc	actcgtgatg	ggttctgcgg	tcggttgacg	tccatcgcca	cgaattccca	10260
ctacactatg	ttcgtgttgg	atcacgggtc	cgtgcgcatc	gagcgaccga	gtcagtcaga	10320
agtggattgc	gccagtttaa	tggaaacgct	gaagcggatt	cggttacgaa	attcgtgggt	10380
agcgtcagaa	gacgagctag	atgggagtcg	cagggacgcg	tgacacgaaa	cgcgttcagg	10440
attaacgtag	gttttcaaaa	taacctacgt	ccgtgagtga	cgcggtttcg	tgttgaaacc	10500
cgcgcccggt	teccaeggtg	gtttatgatg	aaaccggcgt	tggggatcta	cgcgggttcc	10560
tcattcaacc	tgcgaaaaga	ggaagttgcg	gtaaaaccac	gtcaataaag	acgtcaatga	10620
cacctcaatg	ttgcgttgga	acggtcttta	tatatacaaa	cgccgttatg	ctcagtgtcc	10680
ggcaagatgc	tcgggataca	tgctatgctg	gtgatgctga	attaccactg	ggcacaggtg	10740
acaacgaaca	atgacgcccg	aaataataat	acagatacca	tctttgtatc	tctccttacc	10800
gggcccaacg	gaattacccg	cacagccgtt	ggaggtttgt	attcaaacta	caccgaccta	10860
accgggacat	tcaatttcat	ccaaggcaac	atatcagcta	atgcgtccag	tggagataat	10920
tggagcgtag	ctaacctgac	aaaaaactgc	atcaaccgcg	gtgagtctta	cctgactacc	10980
ctctggcttt	tgaactgtac	tcaaaacgat	acttattggt	actctggaaa	tgcttacaac	11040
tatacaaata	acacctgtgg	aagtacagtc	tcgggatatc	ttttgggcat	gtgcgaacta	11100

tggaaaaagt	gggtcggtaa	tgatacttct	cataacacca	ccagaatcga	gttgttaaaa	11160
aatgaaacac	gctgcacgct	gcccgctaaa	cagtatatcc	tcaacgccac	ggtggaatgg	11220
tacaacaaat	ctgaaggtga	cataccaaag	gaattcatga	gttatgctat	cctgagttcc	11280
gtggcggtgc	ttacatgcgg	acttcaggaa	gcttatatac	tcgacatgac	tcgcagaatc	11340
acgtacttgt	tctccatgtc	ctgcatagga	atcacaagta	taatatccat	catactcgcc	11400
tccttatcgc	tgcttatcct	catctgttac	tategetgtg	gccgacttct	gatatgccca	11460
cgcggctttg	aacgcttgcc	agaattcacc	gaggaagagg	aggaaaaaga	aaacttgtta	11520
acgcacaagg	acattgaagt	ccaggtgcct	atccgcacgc	ggcgactgct	cgtcccttgg	11580
atccgggaaa	gcaaaatgtg	gacattacca	cctccacttc	ctccacgacc	tcctcactta	11640
atagaattcc	caccgtctcc	teegtegteg	cctgagccca	cgcacatggt	aatctgcata	11700
ccatcatgac	ggactttgga	ctgagcccca	ageggtaegg	actatatatt	ttccacaagt	11760
ctacactgaa	cttgagcaca	caaatactga	caatagactg	gatatataga	cttttatatg	11820
atccctgtac	agatgtaaat	aaaatgtttt	tatttaaaac	tggtcccaat	gttcttcggg	11880
aatcatgggg	tggggacggg	ggacgcggta	gggagcaaaa	ccgggtacat	gggggggaac	11940
atcgtccagc	aatagcacca	gcggattggg	taggggttgc	tgcggaggtc	ggtcgatgac	12000
gatgtcgatc	tccatcggca	gateeggeaa	catctcttcg	tctccctcac	cgaccagcac	12060
teggegetgt	tctggatgta	tatgattctg	gaaaagcctc	cgacgagete	gcggcgcgta	12120
gaaagccaag	cggcgcaagg	gccggcgagc	ccgaaagtcc	atgcgcacag	atggcatgag	12180
tccttgagtg	acggtggtga	gctggggaac	agggctacct	cccatcgcga	cggtgacagt	12240
ggatccatga	gagaggcgcc	gcacgctgca	tgactaaata	ccgtgaatcc	cctgacgtcg	12300
tctttcgtcc	agaacgcgtc	atgttggggg	cgaggcgtaa	accgtcgagg	ttgaaaaacc	12360
gcgtatctgc	gacccgtccg	gactacgttg	tttttcagaa	gcggccacat	gacctcgaga	12420
tgtcgtcacc	caaggtattt	aacggcacac	agccagacgc	gttcgtcagc	agcgacgccg	12480
acaagacctc	agcatggctc	ggaggctatg	gatcttgagc	ttactagccg	tgaccttgac	12540
ggtggctttg	geggeacett	ctcagaaatc	gaagcgcagg	taaacggaat	ctggggaatt	12600
caacacaggt	aagaaataca	aaaaaataac	gtgattgtga	acgcggttat	cgtgtttttg	12660
cagcgtgacg	gtggaacaac	ccagtaccag	cgctgatggt	agtaatacca	ccccagcaa	12720
gaacgtaact	ctcagtcagg	gggggtccac	caccgacgga	gacgaagatt	actccgggga	12780
gtatgacgtt	ttgattacag	acggagatgg	cagcgaacat	cagcaaccac	aaaagactga	12840
tgaacacaaa	gaaaatcaag	ccaaagaaaa	tgaaaagaag	attcagtaac	agcagacccc	12900
aagggttaac	gattatgttg	actaccttgt	tttttattaa	aaagctgtaa	ggttttgctc	12960
taaaaacacc	cegeeteegg	tctttttct	tttgtattcg	gcacgcgaaa	cacggtttct	13020
tcccatagcc	tgtctaacta	gccttcccgt	gagagtttat	gaacatgtat	ctcaccagaa	13080
tgctagtttg	tagaggctat	gcgggatgct	geggeggege	gaccttccct	ctccacccag	13140
ccccgtcaaa	acacacgcga	ctcgagcggt	tcgtatgaaa	aataaaaaac	agctttttat	13200
ttacaggaac	ggggaaaaaa	aaaggcacac	ggtccgtggg	agacgcgggt	tcacgcgtcg	13260
tcaaaaagtt	ggtggtccac	tccgtaagga	caggtaggct	tatttagctt	ccgcatgctc	13320
ctggttccgt	aataaatgcc	gttttcgtgg	cagcgtgtca	tgccgcgagt	cacaaactcc	13380
·				•		

atcaaactgt	cggccacgat	gcaaacgtgc	tgattgttgg	cagcaaagac	gcgcatacag	13440
tcgtccacga	agaggttgat	cacgtcgtag	gggctcacca	accagcctaa	aggttccacg	13500
tggttactgc	cgaccatgac	cctccagtcg	ttaatctcgc	tccagtcgta	cagccgaatc	13560
gtggagacgc	gaatgacgct	gtaatcaccc	atgaccatga	gtcggccgcg	atacgtagca	13620
cgccactgcg	cgaacgcgtg	gatgtgcatg	cagccggcca	gcgctctaag	cgaggcggtg	13680
tgcggcagct	cctctgggac	ggtgatgaag	ttgcagcgtc	gcaaaccgat	gttgagaaat	13740
tcagtgatgc	teteggeeac	aaaggtcaac	gagtcagagt	agatgtggtc	ggtccacagg	13800
tacatggcgc	ccgaggcgcc	caggtacagt	tcagacggca	cgttgtgatc	gcccttgtgt	13860
ttaagaaagt	tgtaggtgca	gatgctgccg	acgaaacgca	gcggctcggg	gcagcagagg	13920
tagctggcca	gacgctgtgc	atcccgtcct	tcgtcgcgca	ccaagcgcca	gcgacgccgg	13980
ataacgaggc	agcggtcttt	gggccagacc	agggccacgc	gttgcccggg	tttccacggt	14040
cgcgacgtct	taggaggcct	ccagcggtcg	agcagattga	gaaaacagtc	cttgattacc	14100
gacatcgcgg	tegegegteg	gtggacaaaa	agaaatcggg	ccgatccgga	aaaaaaaaa	14160
aaacgacggc	aaaacaccgc	cgtgctcgag	cgaagggtgg	cggagggcca	gaagaggcgg	14220
ccttgacggc	gttggcagcg	aaaaaattgg	cacgcgagtc	aaacgggaag	tagcgtcggt	14280
gttttatgcc	ccaagcagcg	tegtegteae	tegtggegte	acagtcaacg	gtgctgacgt	14340
cctttggggc	agtcgggcac	gcgatcgtag	atgccgttgt	ggccgctgaa	acgtcggttt	14400
tcaaacagca	ggttaagtcc	cagacacatg	aacgtgttga	gattatctcc	cacccggatg	14460
tagcggtcgt	cgcgcacgtc	gcaggcgtag	acggccccgg	tataggcgac	gacgatgggg	14520
ataaggtcga	cgggccagcg	caagtgagga	aagggcgcgt	tetegeeett	gaggetgaeg	14580
gttcccaggc	cgagaacgcg	cattccgaaa	gcggttttga	tgttgcgcag	caagtgaccg	14640
ccttccacgc	tgttttcgaa	acacctgagg	ttgcatagac	gcagttccgt	tcccggcggg	14700
tacgtcaacg	gcatgaactg	cccgtggtgg	cggatgatga	atcgcgccat	ggtatccaaa	14760
ccgaggctcc	aggcgcgcaa	cagcgggcga	aagtagcgct	taaccaacga	cgaggtcagg	14820
tagcgcatgc	agtgcagggt	ctcgacggcg	cgcagcccga	cgcgcgcaaa	ctccatgagg	14880
ttgcgggcca	ggtagtagac	ggeggtgtee	tegegtacat	agcaaaagac	atageceteg	14940
tccgagatga	ggcacacggc	ggtcttcttc	tgctgatccg	gcgacaacac	ggcctcgttc	15000
acgaagcgac	ccacgaaggc	caggcgcgtc	tcgcagcaca	ggtagtgact	ccaagctttc	15060
acgtcctccg	gtttgaagtc	ctcgtccgtc	tcgatctcct	gcagcactag	gttccagccc	15120
ggcggccaga	ccacgggcaa	cacctggcct	gcgttgatgc	gcacgtaagc	ttccagacag	15180
cccaggccga	acteggeegt	gagcgccagg	ctagccagat	cgctcatgtg	acgcgccgag	15240
tcagtgggcg	agcccggggg	cccgtcgcac	accacgetee	gtcttcttgt	cctcaccgcg	15300
gccagcgtgg	cgaggacact	ttccgcgccc	gaggctgtat	cttcggtttg	cccgccggag	15360
ccggccctca	ctatataacg	tecegecegg	gtctcctcca	tgtatgcagg	taagcaactg	15420
agccgaacgc	acctcagcag	acgagaggat	gtcgtcgcgg	cgtcgcagct	cgtcacgtcg	15480
ctctggcgaa	ccctcgacgg	tgatttatat	cccctcgagc	aacgaggaca	cgccggcgga	15540
tgaggaggcg	gaggacagcg	ttttcacgag	cacgcgggcg	cgcagcgcca	cggaagatct	15600
	gaggccggtt					15660

cgagctcgtg	cgcgagaccg	gcggcaccgg	cgccgccaag	aaaccgagcg	aaaagaaacg	15720
atcgtcgtcg	cgtcggcaac	cgcagatcgc	agegggegeg	cctcggggct	cgccggcgac	15780
acccaaggcc	ggcaagtcgc	ctaaagtctc	gcgaccgcct	agtgtgccct	cgctgcccga	15840
gaacggcgcc	ggeggeggtg	gcgacgataa	cagcagcagc	ggcggtagca	gcagtcgcac	15900
caccagtaac	agtagcagaa	gtaccagtcc	cgtggcgcca	ggtgagccgt	ccgctgccga	15960
gggcgatgag	ttttccttct	gcgacagcga	catcgaagac	tttgagcgcg	aatgttaccg	16020
ggtcagcgtg	gccgacaatc	tgggcttcga	gcccagcgtg	gtegegeege	agcacgtcga	16080
gtatctcaaa	ttegtgetge	aagactttga	cgtgcagcac	ctccgccgcc	tcaacgaatg	16140
catacccatg	ceggeetteg	cgctcaccag	cctcgtcgac	cccgtcttaa	acaacgtagc	16200
gcctggcgag	cgcgatctca	cgcgtcggat	aatcacgcac	gcggtgatca	tcaactatta	16260
ctacgtggcg	caaaagaaag	cgcgccacat	ggtggaggcc	atacggacca	ccgtgcgggg	16320
cgacacggta	cgccgggtag	ccgcgcaggt	caacaaccag	agccgttcgg	ggcgtgcggc	16380
cgcgctagcg	cttcactttc	tcacgtcacg	aaaaggagtg	acggacggcc	agtacgccac	16440
gtctctgcgg	cggctggacg	aagagetgeg	gcatcgcggc	acgcccgaat	cgccgcggct	16500
caccgaggtc	taccagacgc	tacgcgatta	caacgtgctc	ttctataccg	cccactacac	16560
ctcgcgcggc	gegetetate	tctatcggca	aaacctgcag	cggctcaacg	agaaccaccg	16620
gggcatgctc	cggctgcttt	cggtcgaaga	gatatgtgaa	gagcacacgc	tcaacgatct	16680
ggcgttccta	gtaggcgtcg	agcttatgat	cacgcacttt	caacgcacca	ttcgcgtgct	16740
gcgctgctat	ctccagcacc	agctgcagag	catctcggag	ctgtgttacc	tcatctatgt	16800
acaactgccg	tegttgegeg	aagactacgc	gcagcttagt	gacgtgatct	actgggccgt	16860
cagtcaaaac	tacgactacg	cgctctacgc	gagcacgccg	gcgttgtttg	actttttacg	16920
cgtcgtgcgt	cagcaggacg	ccttcatttg	caccgactac	gtgtactgcg	ccctgcgtct	16980
gctggcctgt	cccgacagac	ctattatcgg	tgacaccggc	ggcagcagta	gctcccaacg	17040
cctcgtaggc	gagtttatgg	tgcgcgatcc	getgttgege	gacccgcgcg	ccacccacct	17100
gcgccagaaa	ctcatcaccc	gcgacatatg	cgtggcgcgg	ttgcaagcgc	agccctcgag	17160
tcgacacatt	ccggtcgaac	acacgggtgt	ctcctccgtc	accctgctca	aaatctttag	17220
ccaggtcccc	cccgacgaac	gcgaagaaga	cacgttacgc	gagatggctc	ttaaagcgtt	17280
tatggaagcg	aacggtaatc	accccgaaca	aatctgccga	tccccaccac	ccccgctgcc	17340
accgcgcgac	tatcctcaac	gcgacgagcg	ggaccgtcac	cgtcgcgacc	gccgcgacag	17400
cggggaatac	tgttgctgat	ggtgggacga	aacagcaggg	cggaacagtt	tatgatagaa	17460
agtcacagga	aagtatgtgt	tgttttttt	ttaatgtacc	aagaataaaa	agtgcgtcta	17520
cgaccaaagc	ggtgtgtgga	egetegteet	ctgtcttctc	cggtttttt	ttatgtgtgt	17580
gtttttcttt	tccttcctat	tttgttacgg	caacagcgct	gatggcacgt	tgccggcttc	17640
gaacatcgcg	tcggtgattt	cttgcttgcc	cggcgtcaca	cggtgacgca	gcagcgcgcg	17700
gctcacgtag	caggccgact	cgcggatgac	ctggccgtcg	gcgtcgcgtc	gcaggcccga	17760
geggttgeeg	tgacgcagtc	ggccctgcgc	ggcgcgctcc	acgtcttcaa	agtagctgtg	17820
tagcaggccg	cgctccagca	gctgcggcag	cgagtcggcg	gcgcgcacca	caaagttctc	17880
acggctgatc	tcgtagcaca	gcacgctgcc	gteggetgee	acgccggcca	cgctgcggtc	17940

ccaactgaag	aggttggcga	gtccgatggt	gccgatgacg	cgcaactgac	cctgggtcac	18000
caccagcagc	ttccagtatt	ctacgtcgcg	cggggtgagg	atggtctcct	ccacgtcgca	18060
gacaaacaac	gtgtagccgc	gcggataggg	cagatccagg	tggcgaccgc	gctggcggcg	18120
cataaaatcg	tctaaattca	aaccgccgtc	gggtgcgcgc	ctgctcgtca	tegeegegee	18180
tcgtcggtcg	atgaccccac	ggtgcttata	acgcgccgcc	gcggcttcat	gtggcgtgac	18240
ctccgacctc	gtgaggccga	aaacggcgta	catgaagacg	ctcaaacttt	tgaatgtggg	18300
cccggtagcg	caccgagggc	cccggggcgg	cgacgacggc	gggtccgagt	tccagcgggg	18360
ccttgcggcg	gcagcggttg	gcgtggttgc	tcagctcggc	gtccgagagc	gccgagctga	18420
actgcggcag	ccgcgtgcga	tcctgcggcg	cgtccccgtg	tcgcagcgag	tgccagagca	18480
ggcgctggac	gcgcgccgtc	tcgggcgtcg	gcggcgcgcg	acagccccgg	cgcagcttga	18540
aaacgtgcag	gcacagcagc	tcgcgcttga	tgcgcagcga	cacgctgcgg	tagtcgggaa	18600
teegetgeae	cagetegaga	aagtcgcaga	aggtctccac	gaacgtgtcc	tcggtgaagc	18660
gaatgcgctt	cagatcgtgg	acgtgtttgc	gaaaccgcga	cagttctcga	cgttgcacgg	18720
ggttctgagc	gagtcccttg	cgcagcagcg	cageetegee	tttaaacagc	ctgatgagcc	18780
gctgcacgtc	cccgctcaac	atacgtatac	acgccgtgta	ctcgtgacgt	atactggcgc	18840
gcagcagccg	aatgatacgc	agggccagca	cggcgttgga	ggccaggtac	atggcgtagc	18900
cgcgacgcgg	gttggcacag	gcccagcccg	cggggagcag	aaagtagtcg	tcgaccagcg	18960
tctgcgacca	gtcggcgaag	cccaggtcac	gtgatacgct	gtcctggacg	cgggccacgt	19020
cgccggctgt	gaggtggcgg	atcgccggca	ggtgaaacgc	gcccaggtgt	cgattgcgct	19080
ccagcctcag	ctcggcgtgc	tccaaacggg	aatggtggga	cgccaccgcg	gagggcgaca	19140
aagaggagtg	gtegeegeeg	ccgtagttac	cgttgtgatt	accgccgtcg	tegegeeegt	19200
cgccgcactc	gcaaaaggcc	gcgtagaggt	ccttcaacgc	cgcttcggct	cgcgccataa	19260
acgtggcgtg	gaaaaaaacg	geggegeggt	gcgtccggta	cttgacgggc	aacccgcggc	19320
acagggccgc	cggcaggcag	cggccgatga	gttegegete	ctcgggctcc	agaaacaggc	19380
acagggtgcc	gtccaggcgc	aggtacagct	cctcggtcat	cgagcatagc	tgccgcaagt	19440
aatgggtgcg	cgtcccaaag	gtcttgtaat	cgagcaacgt	gcacaccacg	tattgccccg	19500
tggccacggc	cagagcgatg	cgtttggcgg	cgcgactgat	ctctggcaag	tactgcgcct	19560
cgtgcaccag	acggcggaaa	gegeeggegt	tgagccagcg	aaaatgctgc	ggategggeg	19620
gcaagggcac	gcctcgaagc	gcggcccaga	cagegaggte	cgactcgagc	gtcagaccgc	19680
ggatgtcgta	cttgccgtgc	gccgtagcgc	aggctgaatg	gacaagacag	ctgcggcgaa	19740
tgtacaccat	ggcgtgcttg	ggatgtttgg	gegeeggegt	tttcttttc	tgaccgccgg	19800
cggccgccag	atcctcgggc	gtgcgacaca	acaggccggc	gcgcacagcc	tcctgtcgat	19860
tacgaatcgg	cgtcaggtag	gcgcgcagga	actggtgaca	aaactcctca	tcatcacgac	19920
agtcgtcgag	atactcgtac	gtggtgagcg	gatcgcgaaa	taggcgctcg	tcaccgtcgt	19980
catggtcttc	tttagcctgc	tecteegget	gctgggttgg	cggtggaggc	ggcggctgat	20040
ccacggggtt	catgactgag	aggaagaaga	aggtggcggc	gaagcgacgc	ggagcgacgg	20100
			gtcatcacag			20160
			ggcccgaaaa			20220
5 559	3	5 5	55 5	5	5 55-	

acgcgggcga	tgtatggctg	ctcaccggtt	tegeggegae	ggttgcgctc	gagtccaacg	20280
gcgagaagca	aaaacgccgt	gggcaacgaa	accagaagga	gccctgacgg	ataaaaccgc	20340
gcagcgtctc	ggccaactta	accagcatcg	taccgtacag	cagtacgtga	atgccgccat	20400
gcgcgtccat	aaatacggct	ttgttcacgg	gttccatcca	tccgatgact	acaaaatggg	20460
cctgttctag	cacgccgatc	acgaaattgt	tggcctcgtc	ggcctcggcc	acgttccacg	20520
agccgaaagt	gaaagtacaa	gcgggcgagc	cgcccaggcg	gatcttgcta	ccggcgtgga	20580
gctgacatac	gcgcagcaga	ttggcgcggt	cgtgcagtat	ctgggagagt	tcgtacatgc	20640
ccgcaaaggt	gtgcttaaac	cacgegeeet	ctacgatctc	atccacgtag	tcgcgctcaa	20700
agaagctgta	cacggcaaag	aggeegttet	caaaaaactc	gccgaacgag	agccccagca	20760
cgtacacctt	gteetegeeg	ggcaggtacg	caaaggcgtg	cccgtgcccg	gagacccaga	20820
tctcgggcgc	cgtgtttgcg	tccggcacgc	attcgtacac	actgacgagg	ccgataaagt	20880
acaagcggcc	agcctggcgc	aggcacgaga	agcgccggta	ggtcttgtga	tcgcgcacca	20940
ccccaaagta	ctgagtgtcg	cccagcatga	tgccgtgcag	cggcggccag	cacageggga	21000
gccaacgacc	egeegtggeg	cgcacgtagc	gctgcaggtg	aaccccgctc	gcacgctcgc	21060
gcggcttcgg	gegettgtgg	gtccaggcat	cacgcaggcc	gcgccagatg	ctgctgaact	21120
tgggctgccc	gcgcagatag	agcgacgaga	gcgagtcaaa	gtagcccacg	acgagcctgt	21180
cgggagacac	aagagcgcga	aaatcaaacc	tagaacgaca	acggtgaaaa	aaccgaccag	21240
aagcgcgtgt	ctcaaacacg	ctactttcgg	ttataaaaac	accgtcgccc	tatttctggg	21300
cgtgtgtaca	ctgatgactc	acctacgctt	tttgaacggc	agteteaget	cgggattggc	21360
ctcgtacagc	gagetgeggt	ccacggggcc	gatgeteteg	taacgaaagt	cgtcgatgag	21420
cagcgccagc	cccacgcgca	cgaagcccct	gaggtegege	gccagccgca	ccaacttatc	21480
ctgccccacc	agegeegegt	acacggtgcc	cgtatcaccg	cagagaatcc	gcacgcggtg	21540
aaagaaggtc	ttgtcctcgg	cgccctcgat	ttcgcccagc	ggcatgacgg	gctcgcgcgt	21600
gtacaacgaa	cgttgaaagc	ggcgcagcat	cgaggccgag	agccccagat	cgcgcgccgt	21660
gcgcagcacc	agggaatgct	tctcgggcca	gatgaggatc	agttgcgcct	cgcggtgcgc	21720
ctctacgtag	gcgcaacgag	cggcggtgtc	ctcgcaggcc	agcaactcgc	ggaaagccag	21780
cagcgaacgt	aggtagegge	cgcgagcgga	ggcgcgcgag	cggcggcaca	gctcagcccg	21840
atggtcggga	tgcaccaagg	gcacgttggg	ttgcagacgc	gcgcagatgg	attcgtgcac	21900
cgggtcgcag	cgaatcatgc	ccttggcaaa	aaatccggcc	agatccgagg	ccaactcgta	21960
caggcagtcc	tcttgcgcgt	cgtaggcgaa	cacggagccg	tacgcgtcca	cgaacacctg	22020
gtaccggcag	gtggcgtgcg	agaccgtgcc	aatgagatgc	agagetegga	attcgccgaa	22080
aaagtcgttc	tggcagtgct	ccagatcgat	ctcggtcagc	gagtgcggcg	aatgctcacc	22140
cccgaccacg	tagatgcact	gcgagggcca	gcccagcgat	acgcacgaac	cctcgaagcg	22200
ccgcaagtaa	cgccgcaggc	cctcatagtc	gcgtcgcacg	cacaggtcgg	ccaagtcgcg	22260
cgtgcaaaag	acctcgggta	ccaagcagcg	tttgcgacgc	ggccgacgcg	cgtgcccggg	22320
cagaggagga	aggcgcgacg	gcggcgacga	cgaggaggaa	gacgccgtgg	ccgccgagca	22380
gcccttgcga	cggccagaca	tgccggcagt	ccgcgacgat	ccacaggaga	caaaaaagca	22440
gaagcagcag	tagtctcgac	gacccgctcc	accccgtcct	ccacacgctc	agccgcgact	22500

gagegeeggg	gegegeeget	acttgggttt	ttatagccat	ctgccccccg	tctcgggcac	22560
ccgggagcga	tctacggaga	cctgacagca	cttgggcaac	acaagacagg	gaaatacaaa	22620
gacactttta	ataaaaaacg	agactacttt	gtgtgtgtgc	tccgtaaact	gtttattctc	22680
cccctccgtc	tegetetgga	tgggctccgg	gtccgtcaac	acgcgacccg	cgtggcaaaa	22740
ggcacgctgt	tgacggcgcg	agagecegte	atgatagtcc	atcatgcccc	ggagatcgtg	22800
cacaaagcag	ctgtcgccgc	gcagaaaccg	acgcagcgtc	tccacgtgct	gcagctgtcg	22860
gcgcgtatca	ggagccgtca	tcgctgatgt	cgtcatcgcc	ctgacaggcg	cgtagatggc	22920
teegegagat	catgcgcgtt	ttcaaccgcc	gtgacacatc	aggtccatct	tgagctggcg	22980
cegggeeteg	cgcaggtctc	gcacgcgttg	tgagcgggag	gcgagttcgg	cttcttgctc	23040
gaactcctgc	tgctcactgt	ccgagagggt	gcgataaaag	gcggcaaagt	cctccaagtc	23100
ggctacatgc	gccctgggtc	tgacgctcca	aagcgtacgc	agtctgatga	agcggaccca	23160
tegagegtea	cggcacgccg	tcttgaacgc	agggcccggg	aagagattct	tctccccggc	23220
gegeteggge	cggcgaggcc	gacgcggttt	atatacaccg	teteggaegg	cgggacgccg	23280
agcccgcgcc	geggeegete	atccggagac	ggcggaaacc	geggegeegg	aggaaacggg	23340
gaccggcaac	gacggcggtg	gcggcgacca	gattatgggg	gacaagccca	cgcttgtgac	23400
cctgttgacc	gtcgccgtgt	cgtcgccgcc	accgtcgtcg	ccgctgccgc	tcgtcagctt	23460
cacggagetg	ctgttaccgc	cgccgtccgt	egeegeeget	gcggtggcgg	caacagegae	23520
gagcgaggtg	ggcgagaaaa	ccgcggagca	agaggtagcg	gctgcgggtc	cggagaccgg	23580
gaatgagaga	agagaaaaca	gggaggacga	aggagggag	acgaggacga	cgggcaccac	23640
cgcggtcaaa	aggtcgcacg	acggtatccc	tegecaactg	gcagagcgcc	tgcggctgtg	23700
ccgccacatg	gaccccgagc	aggactatcg	tetgeeggeg	caggacgtgg	tgacctcgtg	23760
gatcgaagcg	ctacgcgacg	cggaccgcga	caactacggt	cgctgcgtgc	gccacgccaa	23820
gattcaccgt	teggeetege	acctgacggc	ctacgagtcg	tacttggtgt	ccatcaccga	23880
gcagtacaac	acggcctcga	acgtgacgga	gaaagetteg	tacgtgcagg	gctgcatctt	23940
tctctcgttt	cccgtcattt	acaacaacac	gcagggctgc	ggctacaagt	acgactggtc	24000
caacgtggtg	acgcccaagg	cggcgtacgc	cgagctcttc	tttctgctct	gctccaccag	24060
cgagagctcc	gtggtgctgc	aaccgctcat	caccaagggc	gggctctgct	cgtccatggc	24120
ggtttacgac	gaggaaacca	tgcggcagtc	gcaggcggtg	cagatcggtt	ttctgcacac	24180
acaactggtc	atggtgccct	tcgtgccgca	cgcctgcccg	cattacgccg	tgcctttcac	24240
gacgccggga	aagccgggct	gcggcggtgc	teegagegge	gttgcggggt	tggaggaggc	24300
ggcgcccttt	ggacgggtca	gcgtcacgcg	gcatggcgcg	acgctgctgt	gtcgcgtgga	24360
ccatctgacc	tggatcagta	agcgcgtaac	cacgtacgga	cacaaaaaaa	ttacgcgcta	24420
cctcgcgcag	ttccgcggca	cgatggacga	cgacgaggcg	gcgctacccg	gcgaggacga	24480
ggcgtggatc	gcgtccaaaa	acgtgcagta	cgaattcatg	ggtctcattt	tcaccgtcaa	24540
cgtggattca	ctatgcgtgg	acgcggaaca	gcgccaactg	ctgggcaccg	tggccacctc	24600
cttctgtcac	cgcgtctcgg	acaagatcac	agcgcgcaac	atgeegegeg	ccttttcctt	24660
ctacttgcta	acgagcgcgc	agcgcgggta	cgacctgcga	tttagccgca	accegteact	24720
ctttttcagc	ggcgacgcgc	tcaactgtcc	gcttctcaac	gagcccaacq	tgtttteget	24780
,		-		-	-	

cacggtgcac	gegeettaeg	atatccactt	cggggtgcaa	ccgcggcaga	cggtggagtt	24840
ggacttgcgc	tacgtgcaga	tcacagaccg	gtgtttcttg	gtggccaact	tgccacacga	24900
ggacgccttt	tacacggggc	tcagcgtgtg	gegeggeggt	gageegetea	aagtcacgct	24960
gtggacgcgc	acgcgttcca	tcgtgatccc	gcagggcacc	cccatcgcca	cgttgtatca	25020
aatcaccgag	ggcgacggta	acgtgtactc	gtacaatcac	cacacggtgt	ttcggcagat	25080
gcacgccgcc	ggagcaacca	cgttctttct	gggcgacatg	caattgcccg	cggacaactt	25140
tctcacgtct	ccccatccct	gaccctccgt	cegteeteet	ttcccgacac	gtcactatcc	25200
gatgatttca	ttaaaaagta	cgtctgcgtg	tgtgtttctt	aactattcct	ccgttttctt	25260
aatcttctcg	atcttttgga	ggatgttctg	cacggcgtcc	gacggcgttt	tggcgccccc	25320
catgccggca	gaacccggtt	geggeeeegt	accgctcttc	tggggcgacg	ataggtcgaa	25380
agccaccgtt	ttcatgcccg	tegtgetett	gacgggggaa	cctacggcgg	cggtccccgt	25440
cgagcggcgt	gattgcaaag	ccgcgctcgc	ccccggtttc	aggatggagg	gggaggccac	25500
aggcggcgca	ttcgatacgc	tgcttttggc	cgtagacgac	ggtgggtaaa	cggtagttac	25560
tgcgggatac	gtcggcgtgg	tcgaggcggc	ccggctggtg	ccggacaggc	gacccggcgc	25620
gctaccgctc	acggggaccg	agggeggteg	acctaccacc	gccttgccgc	ccaaagtagg	25680
tttcaaggaa	ggaacaacac	cgacgcggct	geeeeggeet	ttcaccggag	acgggggggc	25740
actcttggcc	ggggacggag	aggetgaega	aagcatggac	agcggcgatg	tggcggggga	25800
cacgatatca	teeteegtgg	gcgataaaac	ggacgccgaa	gctgacggct	gtcgagccga	25860
agaagcggaa	gaggttcccg	cgccagaagt	cacgttcctt	gatgacgtcg	ttttagacga	25920
agccggttga	ggttgcaaca	gcgtggcggg	taccgtcgac	ggcgtgcccg	acacctgttt	25980
ctctagcctt	ccctgaaccg	gtgtcgacgt	caccgtctgc	getegggegg	acgcgtgcgg	26040
cgtcgcgact	cgcttgccca	gcaccggttt	ctggctcgtg	gatgtcgtcg	tcattggaga	26100
cgataactta	gctttacgta	ttctggacgg	cgtcgactgc	tegggegtet	gactgggagg	26160
cgaaatgacg	tcgttgtaat	cggacgacgg	tgttgtgtgt	cccaggctga	cgacggagcc	26220
ggtgtccgag	gagtcgtcgt	cttcctcctc	getgtetteg	accggtgact	ctgcagtttg	26280
gtcccttaaa	gcccaaacct	catcagcggt	gttctgagac	gctgtttgtg	tcaccgcggc	26340
gcgtggagtc	gacggcctcc	gaggggtggt	ggacacggtg	ttttgagaag	ccgtggaagt	26400
cgtaggcatc	ctgaagggat	tgtgagccag	gtgaggattc	ctgagggccc	acgcgcgttc	26460
gcgcggccag	ttggcggggt	tcatatcccc	gggcaacggc	gccgtcggag	cccagggcga	26520
gttaccgttg	accggggttt	gggtacccgc	gaaggtaggt	gtcggggccg	gagcgggggc	26580
cgtagaagga	ttgacaggcg	tcggcgtgag	gatggcagcg	ccggcgccag	cagggacgtt	26640
aactccggcg	ccgaacgtca	acgtcggttg	ctcgaacttg	tacgcggtgg	tgacgggcgg	26700
tttggcgctc	gtctcggtat	ccgtgatgtc	caccagcgtg	tcggtgaaac	gcggatcttg	26760
acggttgggg	ggatagccat	ccgagctgtc	ggaatcctcg	tegeeegaga	aaagatcccc	26820
tctggtctcc	gtgagcggcc	tcacgtccca	cgcgctgtcc	cgacggaccc	ttcccgggct	26880
ggccttggtc	acctgcgggg	agacgagact	gaaagccgcg	tgacgctgtt	gttgctgcgg	26940
gatgttcaag	ggaccactgg	teggtttetg	actgcccgag	gataacaggc	cgctgaaaat	27000
gctggaaaca	ccgccaccac	tageggegee	cttgccgcta	gttcccggtt	tcttgatggg	27060
			-		-	

cgtaaagatg	tttttctcgt	catcatcatc	gtcgtcgtcg	tcctcatcgg	cactggagcc	27120
aaagagcctc	cgggaggcgc	tcggtttacg	tgccgggggc	ggtggttgct	gctgacgttg	27180
ctgcaggttc	tgctgcctct	cctcccaagc	cttcagctgc	tgtttctcac	gctgcaccac	27240
ctcgtcgtcc	acccgtttct	gccgctcgcg	acgcttttcc	tcttcgtcgt	aatagccgac	27300
ggccgccgaa	cgggcagcgt	gggcgtcggc	ggccggtgcc	agagaaccat	gggcctcgaa	27360
gcggaacggt	ttgtgtccct	tccagggact	agcgatccag	ctccagccgt	ccagcggctg	27420
cgtggggaca	tgtttcttgg	gtaccgacga	gaaggctgaa	ccgccgccga	gcgagaggag	27480
attggcgtca	tcatcaaact	ccaacgacgg	cgagcgcgcg	cccaaaaagg	tgtgcgccga	27540
ctgcgggaag	ctgtccacgt	agatatcaaa	gtcctcgatg	agcagctcca	gcagcgtgtc	27600
ggccgagtcg	ccgttttcca	cggcgtgctt	gaggatattg	cgacagtagt	tggaatcaaa	27660
ggaaaggcac	atgcgcagct	ccttgaccag	cagcttgcag	cgctcttgaa	tgcgcgccag	27720
acatttgcgc	tccagctcct	cccaagacct	tcgcacgttc	atgatgagac	ggcccgtgta	27780
cacgagettg	ttgacggcgt	tgaccagcgc	cgtgttggcg	tgccggtcca	ggttaaggtc	27840
gagcggtttc	acacagaaca	tgttacggcg	cacaccctcc	aggttttctt	caatgcgctg	27900
cacctccgta	tctttgaggt	gcacaaaggc	gatgggttcc	gtctggccga	tggctgtgac	27960
cagcgtctcg	cgcaccgaca	tcttggccag	aatgaccgcg	cttacgagcg	cgcgctccac	28020
gatctcggca	tcgtggcgca	cgtccgtatc	gaattcggta	cggtctagca	cagccaggtg	28080
gtcacgcgcc	ttaccacgat	caccgaacgg	gtaagtgtag	ccgcgacgcg	ccacggccgc	28140
gcaacgcacc	tcgaactcct	cgagcaccga	ggagaggtcg	ggattgtgga	aacgcagctc	28200
gcggtagtat	cccaaccaaa	gcatgagctc	gttgaacagc	accgtacgcc	ggtgcaggcg	28260
tttttcgcca	cattttttca	ggatcttggg	gtgtgcctcg	agatccacgt	cgggcttttg	28320
cgtgagatgg	cgcagaaagt	tgaccagggc	caccacatcg	cgccgctgta	gaccgataaa	28380
ctgcaaactc	atgctggctt	ttctccagaa	cccggaagcg	tegtegeece	ggactgcgcc	28440
cgcggtctgc	tattcgccca	cgatggacac	catcatccac	aactcggtga	gcgccccacc	28500
tagagggagg	gggggtagtt	taatagcgga	ggcggatacg	cggttttctt	ttaagcgccg	28560
ctgacttgtt	tcttctgttt	tttcgccccg	tgtgctgttc	cgcccagacc	cgcaacaaca	28620
ctcctccgca	catcaatgac	acttgcaaca	tgacagggcc	gctattcgcc	attcgaacca	28680
ccgaagccgt	actcaacaca	ttcatcatct	tcgtgggcgg	tccacttaac	gccatagtgt	28740
tgatcacgca	gctgctcacg	aatcgcgtgc	ttggctattc	gacgcccacc	atttacatga	28800
ccaacctcta	ctctactaat	tttctcacgc	ttactgtgct	accctttatc	gtactcagca	28860
accagtggct	gttgccggcc	ggcgtggcct	cgtgtaaatt	tctatcggtg	atctactact	28920
caagctgcac	agtgggcttt	gccaccgtag	ctctgatcgc	cgccgatcgt	tatcgcgtcc	28980
ttcataaacg	aacatacgca	cgccaatcat	accgttcaac	ctatatgatt	ttgctattga	29040
catggctcgc	tggactaatt	ttttccgtgc	ccgcagctgt	ttacaccacg	gtggtgatgc	29100
atcacgatgc	caacgatacc	aataatacta	atgggcacgc	cacctgtgta	ctgtacttcg	29160
tagctgaaga	agtgcacaca	gtgctgcttt	cgtggaaagt	gctgctgacg	ctggtatggg	29220
gtgccgcacc	cgtgataatg	atgacgtggt	tctacgcatt	cttctactca	accgtacagc	29280
gcacgtcaca	gaaacaaagg	agtcgtacct	taacctttgt	tagcgtgcta	ctcatctcct	29340
			•	-		

tegtggeget	acagactccc	tacgtctctc	tcatgatctt	caacagttat	gccacaaccg	29400
cctggcccat	gcagtgtgaa	cacctcacac	tgcgacgcac	cattggcacg	ctggcgcgtg	29460
tggtgcccca	tctacactgc	ctcattaatc	ccatcctgta	cgcgctgctg	ggtcatgatt	29520
ttctgcaacg	catgcggcag	tgtttccgcg	gtcagttgct	ggaccgccgc	gctttcctga	29580
gatcgcagca	gaatcagcga	gctacagcgg	agacaaatct	agcggctggc	aacaattcac	29640
aatcagtggc	tacgtcatta	gacaccaata	gcaaaaactg	caatcagcac	gccaaacgca	29700
gegtgtettt	caattttccc	agcggtacgt	ggaaaggcgg	ccagaaaacc	gcgtccaacg	29760
acacatccac	aaaaatcccc	catcgactct	cacaatcgca	tcataacctc	agcggggtat	29820
gagettteet	gttactttat	tcagaaagca	ccagaacccg	tegecattte	ccctcatata	29880
cggtacacgt	ccccctgatc	tgtcatcacg	gtacacagat	ttcgcccgac	tgcggacgcc	29940
gacggccaat	cgcgtggcgt	aggagtggcg	ccccggcttc	attataacgc	cacgtcggag	30000
cccctgcgcg	ccacaacgcc	gtccggcgca	acttctgtct	cggcacggta	cgataaaaac	30060
aacgtccccc	ctcgacgttg	ttttctccga	gcggtgatcg	ttcccgtccc	tctcctccct	30120
ccgcggcccc	cacggcggcg	gcctgctcgc	acggacctat	actattaccg	ccccaccgcc	30180
gtcgtcgtca	tgaacttcat	catcaccacc	cgagacttct	ccaacgacga	ttcagtcctg	30240
cgagccgccg	agatgcgtga	caacgtggca	ggctcgattt	ccaaagcgta	caagggcacg	30300
gtacgcgccg	aaggcaagaa	gaagetgetg	ctgaagcact	tgcccgtgcc	gcccggcggc	30360
tgctcgcgcc	gcaacagcaa	cctcttcgtt	ttctgcaccg	agcgcgacta	ccgcaagttc	30420
caccagggca	tegeacaget	caagegegeg	ccggccgaac	tggaccccca	cgagatccag	30480
caagtcacgg	ccagtatccg	ctgccgcctg	cageceagte	teegegagee	gcccacgccg	30540
geegaegage	tgcagacggc	tgtgtcgcgc	gtgtgcgcgc	tcttcaacca	gctggttttc	30600
acggcccagc	tgcgccacta	ctgcgagcac	caggacaagg	tggtgagcta	cgcgcgcgac	30660
gagttgacca	aacgctgcgg	cgaaaaatcg	gcgctgggcg	tggaggtgca	tcaactggta	30720
geettgetge	cacacgagcg	ccaccgcgaa	ctgtgccacg	tecteategg	cttgttgcac	30780
cagacgccgc	acatgtgggc	gcgctccatc	cgtctcatcg	gacacctgcg	ccactacctg	30840
cagaacagct	tcctacacct	gttgatgaac	tcaggtttgg	atatcgcaca	agttttcgac	30900
ggctgttacc	acagcgaggc	ctaccgcatg	ctcttccaga	tcggtcatac	ggactcggtg	30960
teggeggeee	tggaactctc	acacagcgca	gcggccgggc	cgcccgaggc	cgatgagaac	31020
aacgacgagg	gagaggagga	cgacgacgag	ctccgtcaca	gcgacccggc	gccgcttcac	31080
gagtccaaga	agccccgcaa	cgcccgccgt	ccccgcacac	gcatgccgcc	tcacgagcaa	31140
aagcccgaag	aaaacgagga	ggaagaagag	gagctgtttc	cctcctgcaa	ggcaaccgca	31200
gcattcctgc	gggcagaacc	ctccgtctcc	aacgacgacg	gcaacggcgg	cgaacgctgc	31260
gacacgctag	cgaccgccct	gcggcattgc	gccgacgaag	aagacggacc	tctagccagc	31320
cagaccgctg	tgcgggtcgc	cgcgaccccc	tcaccttcag	tcaccccagc	ccttaccccc	31380
gtcacgtccc	ccataacccc	gttgtgtatt	taacgtcact	ggagaacaat	aaagcgttga	31440
tttctcaagt	teegetetgg	ttttggtttc	gttttcaaag	ggagccccat	catggcccaa	31500
ggategegag	ccccatcggg	cccgccactg	cccgttctcc	ccgtggacga	ctggctcaac	31560
tttcgggttg	acctgtttgg	ggacgagcac	cggcgcctgc	tgctcgaaat	gttgacccag	31620

ggctgctcca	actttgtggg	gctgctcaac	tttggcgtgc	ccagccccgt	atacgcgctg	31680
gaggccctgg	tggacttcca	ggtgcgcaac	gcttttatga	aggtaaagcc	cgtggcccag	31740
gagattatcc	gtatctgcat	cctcgctaac	cactaccgca	acagccgcga	cgtgttgcgg	31800
gacctgcgca	cgcagctcga	cgtgctgtac	teggageege	ttaagacacg	gctgcttaga	31860
gggctcatcc	ggctctgccg	cgctgcgcaa	accggcgtca	agcccgagga	catcagcgtg	31920
cacctgggcg	ccgacgatgt	gacattcggc	gtgctaaaac	gagcgctggt	ccggctgcac	31980
cgggtacgcg	acgcgctggg	gctgcgcgcg	tctcccgagg	ccgaggcgcg	ctatccgcgc	32040
ctcaccacct	acaacctgct	gttccaccca	ccgcccttca	ccacggtcga	ggcggtggat	32100
ctgtgcgccg	agaacctgtc	cgacgtaaca	caacgtcgca	accgaccgtt	acgctgcctc	32160
acctccatca	aacgcccggg	ctcacgcacc	ttggaggacg	cgctaaacga	tatgtatctg	32220
ttgttgacgc	tgcgacactt	gcagctgcga	cacgcgctgg	agctacaaat	gatgcaggac	32280
tgggtggtgg	aacgctgcaa	ccggctttgc	gacgcgcttt	acttttgtta	cacgcaagcc	32340
cccgagacgc	ggcagacttt	cgtcacgctg	gtgcgtgggc	tggaacttgc	gcggcaacac	32400
agcagtccgg	ccttccagcc	gatgctgtac	aatctgttgc	agctactgac	gcaactgcac	32460
gaggccaacg	tgtacctctg	cccgggatat	ttacatttca	gcgcgtacaa	gctgctgaaa	32520
aagatccaat	cggtctcgga	cgcccgcgag	cgcggcgagt	tcggggacga	ggacgaagag	32580
caggagaacg	acggcgagcc	gcgcgaggcc	cagctcgatc	tcgaagccga	tcccacggcg	32640
cgcgagggcg	agctctttt	cttctccaag	aacctgtacg	gcaacggtga	ggttttccgc	32700
gtgccagaac	agcccagccg	ctacctgcgc	cgacgtatgt	tcgtggaacg	gcccgaaacc	32760
ctgcagatct	tctataactt	ccacgaaggc	aagatcacca	ccgagacgta	tcacctccag	32820
cgcatctata	gcatgatgat	cgagggcgcc	tctcggcaga	cgggcctgac	acccaagcgc	32880
ttcatggaac	tcctcgacag	agcgcctctg	ggccaggagt	cggaacccga	gatcacagaa	32940
catcgcgatt	tatttgccga	tgtttttcgc	cgtcctgtga	ccgacgcggc	ttcttcgtcg	33000
tccgcgtctt	cgtcgtcgtc	ctcagcatct	ccgaattctg	tttcgctgcc	gtctgccagg	33060
tcgtcatcca	cacgaaccac	cacgcccgcg	tccacgtaca	cctcggccgg	gacttcttct	33120
accacgggtc	tcttgctctc	ctcttcttcc	ttgtcggggt	cacacggcat	tagctccgcg	33180
gacctggagc	agccgccccg	gcaacgacgc	cgcatggtca	gcgtgaccct	cttttcgccc	33240
tactcggtag	cctacagcca	ccaccgacgt	caccgaaggc	gacgcagccc	accacccgca	33300
ccccgagggc	cagcccacac	acgcttccag	ggacccgaca	gcatgccgag	cattagctac	33360
ggcagcgacg	tcgaagaccc	gcgggacgat	ctggccgaaa	acctacggaa	tctctgaacg	33420
cggtttttcc	tctttttcta	cgtgtctgtc	tcaggacgag	atgtcgatat	caataaaaat	33480
accgtcgacg	tggttttcta	acagtgtggt	tttctttatt	gaccagcgga	gtacacagtt	33540
tacgagtaaa	aaagacaggg	aaaggttata	taaaatgctg	tattatatac	aaaaacatgc	33600
acatagacaa	acgggaccac	cgtgctcgtc	atcccctcct	taatcagtta	ttcatgtagg	33660
cgtgtggcgg	ggtgaggggc	ggcatgccgt	tggcggcgcc	aggaataatg	tgccgtcgac	33720
cgacgtcgca	caccttgaaa	cgccgtcggc	gcacgcagcg	gtcgcaggac	gggatatccc	33780
agaggaagcc	catgtaagtt	teggggteet	cgtcgtgaaa	gcggtaggag	agttcaaagt	33840
ggtgcaacga	gcccgtccga	gctcgcagct	tctggcgaac	accctccacg	tcatcggtgc	33900
	•	-	-	-		

acagcgacag	tgctgggctg	tcacacaggg	cctgaagctc	ctgcggccac	aggtgcgtgg	33960
ccaggggcga	gtccgtcgtc	accagtttga	cgcagtgcat	caggttctcg	gtgatggcgt	34020
cgtacaggcg	actctcggcc	tcctcgtgcg	tcatcacgtt	tcgaggcagc	gacagctcgt	34080
cgtcgtcatc	ctcgtcaaac	atgatcatgg	ggtcaggggt	ttttttggga	tgttgacagg	34140
tgggtgtctt	ttccagacgc	acgatggcct	cacgccggcc	gctgaaacgg	tggtttcggt	34200
gtcccttctt	tcccatgacg	caggtgaaca	taaccacgtc	ctcggccaaa	cggtagacgg	34260
cgtccatggc	ggggtcgtag	ccgtagacga	cgccgaaagt	gtccaccaag	acgtactggc	34320
gtacgaggaa	ctctttgcgt	tctggcacct	cgtggcccag	cgcgcccaac	aactggtggt	34380
aacaggtgat	gcgcggcacg	gtacggatca	tgagctccat	ggtctggatg	ctgccgcccg	34440
cgcggacgac	gctgaaggat	gtttccttga	acttcataac	ctctgtgttg	tgggtccaga	34500
aggcgaaatg	ggtgtcggga	cactcatcga	aagggtcgtc	gatgctgtag	gaagegtage	34560
cccgcttggt	cacctcggcc	gacaggctct	ccacgtcacc	gcggtagagc	atgacggcgt	34620
tccagtagtc	gtcgtactgc	accatgggcc	gctggtagtc	gcgcatagtg	tggaagtggt	34680
cgcagtgacg	aaagccatgc	cgcagaaagt	ccttcatggt	ggccgccagc	tcgtagacgc	34740
agtcgcgcag	gtcatcgtag	cagtagatgc	caccgcgctg	cccgatgagc	acgatgagtt	34800
ggtaacgcat	aaagcccgga	ccctcgacga	aaccaaaggg	gtgcaggtac	tcctgacagc	34860
agacgtaagc	acctggtgga	gaaatgagaa	aaatccacgc	acgttgaaaa	cacctggaaa	34920
gaacgtgccc	gagcgaacgt	cctctttcca	ggtgtcttca	acgacgtggg	gcttaccttg	34980
cgaacagacg	gtgcccatct	tgcccacgaa	gggccccagg	gcgctgcgcg	aacggagctg	35040
gatgaagcag	cgttcgggcc	aggccacgtg	cagccgggtg	ccgcattcct	gctccagaaa	35100
gtcgttgaga	ccgttaaagt	ccccggctcg	gatggcgatg	cagccgtagg	ccatcagcgt	35160
gtcccgtagg	tcgtccatga	cggactcctc	taccttcgct	cgccgacgct	gcgcttctcc	35220
agccaccgct	gcggtcgaca	gactccttcg	tccgccttcg	gagaactacg	gcgcggcggc	35280
acggccttta	tagacactat	cagcgttgac	gtcagacgat	ccgatgaacg	tcgttttttg	35340
tgctggaact	tccctcgtcc	cgacaaatgt	agcggaaatc	ttcaagcaaa	tcgcgacgaa	35400
gtccgatgag	gaggatgcaa	aagaggctga	gcaacgcgat	gctgcccgcc	gccacagtac	35460
atatgctcaa	caacgcccag	tgtcccaacg	cgcgactttt	ggctcggagc	agageegaae	35520
ggcggtttct	ccacatcgtg	gatagcgtga	tccaatactt	ccatccttca	cattccggtg	35580
tccacatggg	aagcgacgtc	acgttagttc	ccgtaaacgt	tgagtttctt	tttttgtttt	35640
tcgtaagctt	aagggttctc	ctaagaaacc	gcgggcacat	gtcttgtaga	aagatgtaat	35700
cactttccgc	gtattttgtc	agtattaaca	tcacagtggt	agtgttttcc	aaagaagtga	35760
cgttactagt	aacgttggtt	tcctcccaat	gtacgtatga	ttcaaacgga	ctcgtatgtg	35820
ctaccgcttg	caacacgtaa	ctgtggccgg	tgaagttgag	catcaattgt	cccacggtaa	35880
cattggtgtc	atttgtaaaa	cacgcgattt	ctccgcgaac	ttccgtgacg	ttggtctcac	35940
gactctcgtt	caacacacgc	aggggaaacc	agccttccag	gtgatactga	aaaccaaatt	36000
taagcatgac	gctgtgccat	tgccgtcgtg	attggttaaa	cgttacattc	aagggtagtc	36060
tggcttcggt	cccgacacag	gggccgttgt	agatttgcgt	attattgcac	gtgcagttta	36120
actgacagtt	catactcgta	gtgttggaag	tgacgttaat	gtccgtgccg	tggtacgtac	36180

agcggaccga	aacaccgtgt	cccgtgctcc	aaaacagcgt	caacaacagc	cacacagaca	36240
cctacgtggg	gacgatacgg	gactttttat	tgacggagac	tcacgtttct	accctcccct	36300
ttcccgtagg	taaaaaccca	cgtttatcac	acacgttgtt	tttacctgaa	acccgcgcag	36360
cccgtggacg	cgacaaaaaa	ccgcggcact	agaaagaaaa	tgaaacaagt	atgtttatta	36420
agcagcatgt	ggggctaata	ggggggataa	ctgaggtata	gcaactatga	aaaaatacta	36480
caaaaaaaaa	agctgaacat	ggtcatctag	cagcaaagtt	ctccttctag	accacgacca	36540
ccatctgtac	cacgtcgccc	tccccggccg	tgtacacgac	atccttcacc	acgaccggcg	36600
gcagcggcgg	cgacgaggac	aactcgctct	cgatggaggc	cgggacgaca	gaggacgggg	36660
gggtggtggc	ggcggaggac	gaaggggtgg	cggcggcagc	ggggtcttct	tccgacacgg	36720
gcgacggcag	gctcggcggc	gcggacagca	cccgttgcgc	cggggcgtga	gaaggctgag	36780
ccccggtggc	ctggatgtgg	gccaacgaat	tggctcgcag	cgagtcgcga	tccacgaagg	36840
tcataggaat	cttcccttcg	cggatccgcc	gctcagattc	caggatggcg	cgcacgtagc	36900
tgttcaccga	tttggcaaaa	gtgcgcggcc	cctccgtatt	cttgtcgcga	cgcgcttcca	36960
gcacttgctt	ttcgtagtcc	agctggtgga	agaccatcac	cagategtee	atagtgtgcg	37020
cgtgctgacg	gacgtgggaa	cgcacctcca	ccgggaacaa	agcgttccaa	tactccagca	37080
cgatggcacc	gtgccagaac	tgcgccatgc	tgggcgccag	gaaaaacagg	ataccggagt	37140
cgtaggcgaa	cacgtcccac	ttgggcgtca	tgaacaacac	cagetgaege	gtgggccgca	37200
ccgaagcttc	ctcccaggcc	tcgatgaccc	cgaacatgat	gageteetgg	tccaacgggg	37260
ggcagtgtcg	ctccagccaa	ctgatcttgc	tcaggttcat	ctgcaaaaac	tcgtaagagg	37320
ggtcgcagat	gcacacgtag	agacccgagt	cgtgccgcag	cctggctccg	cgcttcatca	37380
gtttcctcac	cgcgtagcga	agegeeacet	tgcccaacgc	cgacgcctgg	atcagtcccc	37440
ccacgtccat	ctgcgtctgt	cgccactcgg	cctcgtccag	caggeteatg	atageggegg	37500
tgctatgcgt	ggtcgtagtc	atcctttcta	tccttctcta	tgaatagcag	caatageggt	37560
aaagtccctt	cttatactat	cccggagtct	gtggttttt	tgtttacccc	tgcttactgg	37620
tgagactgct	gggggccgtt	gtgctgcagc	agccgagctc	gtegeegeeg	ttgccacagg	37680
aaccggtgcc	teegeaggge	ctttttgagg	geetegeagg	cttctcgcgc	aagteetgag	37740
aggccctcgg	cgtcgatggg	gttcacctcg	ggcgtccgag	cctcgttttc	ttcttcttca	37800
tcctcccttt	cctcctccgt	gteeteeege	tetgtgteet	ccgttacgct	ctcctccccg	37860
gcctcggcca	agagegegge	caccaagtcc	acggaccgct	cggtctccga	gttctcaccg	37920
tcaattacgc	catgttggcg	gcgtaaccgg	tgccgagaac	gccgggtgag	cgcacatgct	37980
tttttctttc	ttaaccaagg	cgggagagga	tcttcaaggc	gttttcgctg	gatccagcgg	38040
tagctaaagt	accaaaaggc	cagcaggccc	acgctaccta	acagattcac	gtagactgga	38100
gacataatta	aagaaagaag	tgaaacccgc	gtgtgggtct	cacgtcgtct	tgaaacaccg	38160
tcttatatac	atgaagatgc	cggacatgac	gcgcccaaga	cacgtggggt	tttcccctta	38220
ggcgacccgg	tttcttaaga	tgtttttcat	cttcgcacgc	gatgtactac	atcaaagggt	38280
cggctgaccg	accgcattga	cgcagtttcc	gagtacgcgc	gtctcggagc	acctgacggt	38340
gagccaccca	gctcacgcgg	ataggggaca	acactgacgt	gaggggcgat	tcccgtcact	38400
	aggaataaga					38460
	555**	333 3.33.		3	5 5	-

cttacggtaa	atcgcacctg	tgacctctta	acccctcctc	cctggtaccc	aataacagtg	38520
aaaaacacac	accacacgtc	acgacaccga	tcgattttct	ttattcttag	tgtgatgata	38580
ggtaagggca	ctcgtgagga	tgtgcaatta	tcattatcaa	gcctttttca	aggcgtagtg	38640
atgategttg	ggcagaaccc	ccaggctcct	agcgatctgg	gaatagaagg	aggagaacga	38700
ccccagggcc	agaatgccca	cagtgtacat	ggcccaggtc	tccagaccga	acgtggcggg	38760
tegeagette	agatggtagg	ccacccgctc	cgagagttgt	gaatgctcgt	tcaggcaaca	38820
ggactgcaga	tgggtgagtc	caaaagcgct	ttcgtttacg	ccgcgcacgt	gcaccgtctg	38880
ggccgggcaa	teetggtgtt	gcgcgcgaaa	atggtccagg	caggagactc	cgtctgcacg	38940
geggegagtg	ttgttaccca	cttcgatcaa	cagcgtgtta	acggcaagat	gacgcgagaa	39000
cgcgacggcg	gtgttgttgg	aggtetggeg	gcagcagtac	acgtcgagtg	tcatgagggc	39060
catgtegeet	tggtggtaca	cggcgtacgc	ccaaccctgg	aacacgagcg	gacataacgg	39120
accgtgagcg	gacgtcacgc	cggcggttgt	taccgtcgtc	teggeaggag	aagataataa	39180
actcctgatc	ctcatacaca	ggagtccaag	cgtcagaatt	aaagtccgcg	gagccacaac	39240
cgcgcaagtg	aagccgatac	gagtgttgct	gaatttgttc	attctgccga	ctgttgccca	39300
cgagcgttcg	gaggcggtgc	cacaggctgt	tggccattaa	aaagtcctgg	cccgaatgac	39360
gacgagacag	agcccgaggc	gaagaaaaag	acgcccgtca	tgaagacgta	ggcaggggaa	39420
ttcccatatt	tttatggctt	cttttaaaag	tctgtatccg	actccatccg	gcgcttttcc	39480
caaaccgtgg	tctcctcgtc	gtccgactcg	gtacccagga	ggtggtaagt	cttttgccgc	39540
acgtagaaag	ctttcaacgt	ggagcaaaag	atgagaataa	agaccccaaa	aacgaaacaa	39600
accacgccga	tcatgccgat	gcagacgttc	atgtcgacgt	agccggcggt	gctgttggca	39660
gtgcggcaaa	agagtgtcat	gtcgtacgtg	cacaaaaaac	aacacacacc	acaggccagg	39720
tcgtagcgta	gttattattc	cgtagcagca	atgatagtac	agtcaagcac	atgctctatc	39780
cccgttaccc	cgatgatgag	gaaacccccg	ttgttgtatt	ggcactgtcc	cggttaatca	39840
ccacggtgaa	caccacggcc	aagaaaatga	tccctaatat	agcgaccact	aagagagcaa	39900
aagtccattt	ccagccgttg	tcaaagtacg	ccccgtggt	gggatgcatg	gtggcgggca	39960
tttccatcat	atccatgtcg	aacgtgtgtc	gcggcgacgg	cgaactaacc	aggcagtacg	40020
ggggtcgata	gggcggtggg	ctgcagtcgg	gtggtggcgg	cggtggcgtg	gaaaccgtcg	40080
tegggeaeag	acccatggcc	tgctcgtagg	tggggggcgc	gtcgtcgtga	tcccggtcgc	40140
ggagcatcgg	cgtgggctcc	atgtcggtgg	cagtgacggc	gacggtggta	actgtggtgg	40200
agacggtacc	gacggcgtcc	gcggttcacc	ttcgagcaaa	gagccccttc	tttttgcgca	40260
aacgacggca	aaacagttct	ctgggacagc	cggtggcgcg	gtaagcgggt	gccacgcttt	40320
cagggtgggt	aaaacagtcg	cgggcaaagc	agtaattgtt	gcagaaccgc	aagaacccga	40380
cgcgaaagaa	gcccaggagt	ccgcgcgcca	gaaagtgcgc	ctgccgcgtc	tcgggatgca	40440
cgccgaagac	ggcgccgctc	tcgttcacca	gtatggagat	gtccaggcgc	tgctgcgact	40500
ccaccggcac	ggcccgcacc	acaaatacct	gcagcacgtt	cagcgagcac	gtctctttta	40560
accagttgcc	gtgggccgga	tcctcgtaag	tctggctccc	gttcaagacg	accgtcgtca	40620
gcgcctcatt	accgtctcgc	cagctgaaga	tggaaccctc	gcgcttcatg	cacaggcgcc	40680
acagggccag	caggtcgcgc	gccaacatga	actcgcgacc	cacgtcgccg	ccggtctcga	40740

agcggacata	gcccagttct	tcgcgcagcg	gcgcgtagtt	gcgcaggccc	tcctgcacga	40800
agccgcggaa	accggaccgc	gacaccaggt	acagcgattc	caccacgggc	gagtagacgt	40860
agacgcgacc	gccttcgccg	atgagtacgg	gtagcggtgg	gcggccgatg	gcttcgcaac	40920
gactcacagt	gcccaccggc	agcaggaact	tgtcgcagca	caggaaggtc	ttctccaaac	40980
ctttaatatt	gagatgtcca	aagtaaccaa	cgcgtaacag	gtcgcagtag	gtgaagaacc	41040
aaccgtttgg	ccagctgaga	cgcagcaccg	tgccgctgac	gcgacgaacc	agcttctgca	41100
ggtccttgcg	agcgtcggag	gtgacagaac	agcggaaggt	ctcgttgacc	agctcgacag	41160
ccagcgcgtc	ctccagcgtg	cgttccttca	tctcgtcgtt	gatgctctgg	cggcgccgcc	41220
ggatttcgtc	gaaacgggcc	gcggaggcgg	cgaccgacgc	ggaggtcgtc	cgaacgccct	41280
ctgtgacgct	accgtccggc	cagtcaagaa	agctaaggct	ggcgctgcgc	cgcctaaagt	41340
gtccgatccg	cgcgggacgt	cgctgaggga	cggtggctgg	tctgctgggg	cgggtacggc	41400
cgcgggtgtc	cgcggacacg	ttagttatac	acggaattga	gtcacgtggc	acgttgccag	41460
ctgaaaccgc	cgtcgtctcc	gccggcgttt	tctccatcac	gggaccgcgc	cgtgcgcgcg	41520
ttcccaggca	cgcggcccgc	gctctagccg	cacttttgct	tcttggtgtt	agggacgaac	41580
tcgaacgtta	cagaatcctc	gctgtcgctc	tcctctttcg	cgtcgttgaa	gtaattgccg	41640
gagttgcgat	ccaaaccgcc	gcctcctcct	cctccgccgc	cgcccgatcc	acctttggac	41700
gtcaggtagc	tggtgatctt	gtgctgctcg	tatttttcct	tggaggaaag	accgtggtcg	41760
tgatcaccgc	cgccgccacc	gctgctcatt	ttccgcgtac	cggaaccacc	gccgccaccg	41820
cggtcgtgct	tettgeegee	accgccgcca	cctcctccca	gaccgccgag	acccatgggc	41880
tcgttcatga	gatcgttatc	cagacccggg	ccgtcgtcat	gcagaccgcc	ggcattggcc	41940
agcgaagaga	ggetgeegee	accaccgccg	ccgccacgcg	acttgccgct	gttcccgacg	42000
taatttttat	cgaagggatc	gccacgctgg	aaaggtteet	cggtgagaaa	attctccacg	42060
gcgaacagac	cgttgcggct	ggccacgtac	aacagcgtgt	cgtgctccgt	aactatacgc	42120
aacgtgcacg	gcagtttggt	gacggcgcaa	ttgagcagcg	tctggtagaa	gttcttcagc	42180
tgcacgttga	tacgcatgtt	tttcacgccg	tggaaactga	cgcggttatt	ggccgtgaat	42240
tecagetege	tgccgtttgt	caggatgaac	ttgatggccg	geggaeegge	gtgcaccaga	42300
atctgcacgg	tgcccgtagg	gcagggcgct	tttttaacgt	tacgcttgac	gcgagtatgc	42360
ggcccgatcc	acttaagcag	gtcggccacc	acgccgaaat	ctagatccac	gtgcacggcc	42420
gaattetege	tttcgcgcac	aatgtcttgg	ccgtgcacac	aggccgagct	gaactccata	42480
ttgaaatcgg	gcgcgcacat	ggagatettg	gccgaaaggt	ccgaaatgtc	ctgcacgtag	42540
aacttggtca	ggtccttgct	ggaagtcagg	tacatgaaat	taccgagcag	cggcgtggaa	42600
ttgttaatgg	tcttgggctg	aaacgacttg	tcagtgatgt	agaggcatga	gctgttaaaa	42660
gtgatttttg	acacgcagtg	actgcgtacc	gtttgcaaga	taagcgacgg	cgtgggcaag	42720
aaggtaaccg	tggtgttctc	cttgagcgca	cggatcacag	atcgcagctg	ctggatagcc	42780
gtcttgtacg	gcttcagccg	cagcgccagc	gtcggtggct	ccgagagacg	cgtcttgcga	42840
tecatecegg	acagegtgea	agtetegaet	aaggagcggg	cgcgagcgag	cgaaagtttt	42900
atagagagca	cacacgacga	ccgggaacgc	tgcgaagacg	cccggcgtct	aataatacag	42960
				cttatatact		43020
	3 333 -	, ,	5		-	

agcgccagtg	gtaccacttg	agcatcctgg	ccagaagcac	gtcgggcgtc	atcccagagt	43080
catagtagaa	aaccagggcc	acgcactggt	ccacaaacac	gctcaggttc	acggccgcca	43140
tttccacgtc	gttttggatc	gccggcgccg	cctggaacag	acactgcgtc	gccttgccct	43200
cctcctggtg	ctgctccaac	cacgcgtaat	tcaccacggg	cacgcgcaac	ggcctccgca	43260
ccacggtggg	gaagtaacac	tcacggttgg	gcgggcacaa	tgaccacacc	gtctcctcct	43320
cgaacacggt	gccgcgcgaa	gcccatactg	acggcgtcac	gccccacaga	tgcgccacct	43380
cgtcgtcggg	acccaccgcc	agaaactgac	agttgcgcaa	tccgaactcg	agcatgtcgg	43440
cgcgcagcgc	ttcccagcgc	gcgctggcga	tggagagccg	cggcaaccga	tacaattcga	43500
aaatgaattt	gccctcttga	tagatggtgc	gttcgaacca	ttcgcagcgt	ggcaaacccg	43560
acttgcacaa	atcgacgcta	gcgcgcaccg	cggcaaagta	catgtgctca	aagatgcgct	43620
cgatcaagtc	ccaagaggca	aagtacgtaa	accctaaccg	cataagcgcc	gtgtgcaggc	43680
cagccacgcc	gatgtgcagc	ggacgcagtt	tttccagcgc	gctctctacc	caccattcgg	43740
acgccgacat	tagegegtee	aagcgcgcgt	tgccccaaac	caccgcctcg	gtcaccaact	43800
cacgcagcac	gctcaaatca	aagtaacgtc	gcgtgttccc	caaaaccacg	tcgggtagat	43860
gcagcttctg	ctcgtcgcta	cgcgcaaaca	cgcagcgagc	cacgttcacc	gtcagccgct	43920
gcaccggcat	gtcacactcg	ccaaagtggc	acgacgccat	atcgggactc	aagcacggcg	43980
gcaggcacac	getgteggee	ataatcgagt	acttgactac	gtgatggaca	aagaccaccg	44040
aggcacggcc	cttgagcgcg	cacagcaaca	tctttttcag	aaaatcgtcc	gtgttcacga	44100
ccaccttggg	gcacgattgc	tegeagegeg	aatactcttt	ctcgaaagcc	gactcctgac	44160
ccaggtccga	gagccgccgg	gagacaggcc	gcccgaacag	cgagtagcgc	tgctcacgcg	44220
cacggtagcg	cttcattaac	acgctaggca	cgttgaaagc	gtagcaaacc	cccgtcaact	44280
ccgacgtgct	ttctttgaga	ataaagttga	tcacgcggat	agcagccacg	tcccacatgt	44340
ccacaaacac	acgtaccacg	ggtcgatgca	cctccttctc	gcgtatcaaa	tcgcagtatc	44400
ccccagaca	acgaatcacg	ctgttcacat	cggcgttaag	tcgcgttacg	ttcaccgaca	44460
cagaaacgcc	gcaactcaag	gtgctcatcc	atttgcacat	agccgcccaa	ctggcgtcac	44520
gcgaaaaagg	gtcggccgag	atcagaaagt	cgtactgcgg	cacgcgatcg	aaacccacgg	44580
tagacatggt	gaaggtggac	agcgacagct	gcccatcgcg	acagegette	aacaccgatt	44640
ccaacacctc	gccctcgaaa	cgcgcatcca	gatggaaacg	atagatgcgc	gagtgcctac	44700
tgttctcgat	agccgccgtc	aacgccacgg	cgatgcgcaa	aaacacgccg	cccggactct	44760
cgtcctgtcc	gtgcagttgg	cgacacacct	tatccaaaca	caaaatggcc	gcgtacaagc	44820
cccagcaacc	ggccaattcc	acaaaacgcg	ccgtctcttc	ggccagcttg	ggtagatcct	44880
ccatgtgacg	cagcacaaaa	cggcgcaccg	actcatcgca	cagctccgaa	gcgtaacaca	44940
gtggcgtgcg	getttegege	gcccagttgg	ctttgaaata	aaagcgaccc	aacagcagat	45000
cgcaacgcgg	cgagtgacga	atcagacagg	gaccgtggcg	catgatgagc	tgaaacagcc	45060
tgaaactgcc	caaaccggca	ctgtgtcgcg	acacggtgtc	catctcgcgc	cacaacgcgt	45120
tcctgtcaga	cggcagctcc	cgcgccggct	cctgtacgcc	acaaaagcga	aacttgcccc	45180
				cgtagcctgt		45240
				gacactgtcc		45300
3	5 5 5 5 5 5 5 5	5		5 -5-90	3	

tggtcgcgcc	ggtcggattg	aaggtgctca	gaccgctact	cacgcgtcca	ccacgactgg	45360
gcacggcggg	accgctatca	cgcgtcaacg	acagcacaga	cggcgtgccg	tcgggagacg	45420
gcgactcggg	acgccaactg	acgacgccgc	caccactcgt	aaaacccgct	acacacgcta	45480
cgccgctcga	cacgttggta	ttttcagcgg	acgcttcctt	gtcacccccg	ggcagcggcc	45540
cttcctcgag	ctcgctgtca	tctcccccgg	tagtatcagc	gacggcctct	gccgacgatt	45600
cctccgtctc	gatttccgcg	ccgcggctcg	gaatcctacc	tggccggcac	cgatacacgg	45660
gcaccgagga	cacccgctgt	tcctcgtccg	cgtcagccgg	agtcataagt	ttacgaggaa	45720
aagaacaaag	aaatcaggta	gatttcaata	aagtgtgtct	atatggcacc	gataactacg	45780
gtttataaag	tctgtgtgcg	ctgtgtttat	ttttcttct	gtgtctcctc	ctcgtatgct	45840
gtcagcgccg	ctcagacgaa	ttctcgaaag	tctcccaatt	cgacgctaaa	gttgtccaaa	45900
cggacgacgg	acagtttgag	ttctttgtgt	accaggaacg	aggtgtgaat	gtcgtcagcc	45960
aggcaccagc	ccagcttttg	tataaccccg	gtacacagag	ggatctggcg	tgggcgcgtg	46020
atgcgacggt	tgacaaagct	acagegeteg	cgggcgaact	ttccgcgtgc	aacgtcgacc	46080
agggtctgcc	aatgtgcgat	gctggaggtg	agcacgtaga	tgccgggacg	tgtttcgggc	46140
ccgtcatagt	catagacgat	gattaaatac	acgtattgca	gccgtccccg	ggtctcttcc	46200
cacgtcaggt	acatgtcttt	cggtatcatc	aacgcgaaca	cctccgtttt	gagcgtgttg	46260
taaaggtagc	cgcgcatgac	gcaggtgagc	aacgaggtga	tgcccagcga	gacggtcttg	46320
acgcagccca	gegtetegag	geggeggtge	agcagatgcg	ggcccaggtc	cagccactgc	46380
agcgcggcgc	gegeggeega	ggccgtgtac	acgetttega	gcaggcagcg	cgtgctggcc	46440
gagacgttgg	aggcgcgaat	gcctaacagg	tagaggctaa	tgtagaggtg	tcgcggcgag	46500
tegeaaceeg	tctccatgcg	gatgagcagc	gegeeegget	gcgcctcgaa	ctctaccagg	46560
ccctcgggca	cgaagaaacg	cgccgtgagc	gcctggtgat	cggcgtggta	gaggtagcgc	46620
accgatatag	tatttacctc	gegtttgget	ttgagcgccg	tcactagttc	attgtcctcg	46680
teggeegggt	egegeggeeg	tttggccacc	gegegegegt	ccatgatggc	aaggcgcacg	46740
gtagatttca	aaaagttgat	agagcagctg	cgggcacggg	ccacggacaa	agcggaggcg	46800
ttaaataccg	tgagccaatt	ggagategge	gcggtggatg	cccaggacgt	gaccgcgagc	46860
gccgtgcgcg	ccttcgtggg	tgcgttgccg	agctcgggtt	accactttgg	cttcgtgcgt	46920
cagaacgtgg	tcttttacct	cctaagccac	gccacggtac	agacggcgcg	cgacccgctg	46980
tacgccgccg	agcagttgca	cgaacagctg	gaccgcttcc	tgcgacacca	gcacgacggc	47040
ggcggagacg	aggaccggtt	gccgttctac	cacaacgggg	ccacgctgac	ggctttccag	47100
aagctgttgc	agaccctgcg	cgagatccag	accgtaatag	ccgaacagag	cggcggcacc	47160
gcggcggcgg	cggacttgat	cgccagtaac	aacgcgtcga	ccgagcgccg	cggcaagaag	47220
ggcggttcga	gttccggggg	ccagcagccg	ctggttcgcc	gggtgatcac	gcagctggaa	47280
acggctgcca	cggaggcgcg	gccctacatc	aattgtcgcg	ccgtggccga	actectggae	47340
ctgacctacc	agcggctcat	ctactgggcc	tgcacgctca	tgccctacgt	gttgtttcgg	47400
cgcgacaccg	acaccgaact	ggacacggtg	cttctgatgc	attttttta	cacacactac	47460
cgttcggtta	acggcgattt	ggccgtggag	tttcaaaact	acgtcaagaa	cagegtgegg	47520
	ctttcgtcag					47580
5 -5 - 0	33	5	_ 55 5 0	5 5 55	5 5	

atgcgtgacg	tcagctacaa	gctgttcgtg	ggtaatctgc	aggegegtga	cgccagcggc	47640
ctcatgtttc	ccattattag	cacgcgcatc	tccaccgtga	acctttacct	gtcgcccgaa	47700
cgtatgtttt	tccacccggg	tctgatctcg	cgtctgttga	gtgaggaagt	ttcgccgcgc	47760
gccaacctag	acgcttacgc	gcgcgtgtgc	gatcgcgtgc	tggaagacca	cttgcatacg	47820
ccgcgacgcg	tgcagcggct	actggatctg	acgcagatgg	taacgctact	ggtggaactg	47880
ggtttcaatc	acgatacctg	cgcggcctac	gcacaaatgg	cgctgatcca	gccggccagt	47940
cagaagagct	cgctctttgt	cagcgagatt	cgcgagaaac	tcatacagat	tatctacaat	48000
ttttacacgt	ttttcatgtg	cctctatgtg	tacagcccca	cgttcctgtt	cgaccaccgg	48060
cggcggttga	ttttggagca	gcatcgatcc	acgttgatcg	gctccaagga	ggaactacag	48120
cacgtctgga	gcaacgtgac	gctgaacgtc	aatacgcact	ttgcggttca	gtacacggaa	48180
gaagactttg	aggcacatac	gaagggtgcc	acggaggcag	agcgcgagta	cctgtatcgg	48240
gacctgcaca	gcaagtgggg	cgtgcacctg	tttaccttgc	gteegteteg	cggcgcggcc	48300
ggcgcggcct	cgcctttgcc	teegettgae	ggcgtcacac	gctccgacat	cttacgcgaa	48360
tgegegeteg	ttaatctgaa	cgaaggccgc	gtcaactacg	cctccctgct	agccttcagc	48420
catcatcccg	agttccccag	catcttcgcg	cagttggtgg	tggtaactga	attttcggag	48480
atctttggta	tecegeaggg	cctgtttcaa	gccgtgggtt	egeegegtet	tttcgcgctc	48540
attcagctgt	gtcgtgtatt	gttgcccgag	caggtgacgc	tgtaccagaa	cctggtctcc	48600
atttacaacc	tgaccacctt	tgtcaagcac	atcgacgccg	cggtttttaa	gacggtacgc	48660
gattgcgtct	tcgacatcgc	cacgaccctc	gagcacctca	gcggtgtacc	cgtcacgccc	48720
aatgtggacc	tgctggccga	gctcatggcg	cgctccgtag	cgcataacct	gtacaccacc	48780
gtcaacccgc	tgatagagga	cgtgatgcgc	agcagcgccg	gcagtctgag	aaactatctg	48840
cgacacacgc	gactctgttt	eggtetggeg	cgcggccggg	egegeetete	ggaggacggc	48900
gtgacggtgt	acgtggaggt	acagggtcag	tacggactgc	gcgtacctac	cacgcgtttc	48960
gtagaacagt	tgcgcgaact	ggttcgccgc	gatcggctgt	tggccgagaa	tctgcgcggc	49020
ttaaacgagc	gcctgctgag	tgttcgcgtg	cgcgtacgtc	agatcagcag	cgacacagag	49080
gaagtaagcc	gacacgccaa	gggtcaccgc	acggtggccc	agatgagcaa	ggcgctcaaa	49140
aagacggcct	ccaaaatcaa	agtgttggaa	acacgcgtga	cattggcgct	cgagcaggcg	49200
caacgttcca	atggcgccgt	cgttaccgcg	gtgcaacgcg	cgctagccgt	ctttgacgta	49260
ctaagtcgcg	agaacttgga	acgccgcggc	gcacagctct	gtctgacgga	agcgacgagc	49320
ctactgcacc	gacatcgcgc	gctagcgccg	atgacctggc	ccgcgggcac	gggcgttgcg	49380
gcggcggccg	aagcggatcg	cgccttacgc	gagttcttgg	aggcgccctg	ggaatcggcg	49440
ccccaaccgc	cgcgactccg	catgacgccc	gacaccgatc	acgaagaatc	gacggcaggc	49500
gcgacgtccg	taccggaggt	cctgggtgcg	cgctacgaac	ccgcacacct	ggccgcgagc	49560
gacctattaa	actggtacat	cgtccccgta	agccaggcgc	agcaggacat	cttgtcttcg	49620
atcgacccgc	ccgccggctc	gacatcggtg	tccctgccgc	cggcctcgcc	atgaaagtca	49680
cgcaggccag	ctgccaccag	ggcgacatcg	ctcgctttgg	agcgcgagcg	ggcaatcaat	49740
gcgtctgcaa	cggcatcatg	ttcctacacg	ccttgcacct	gggtggaacg	agcgccgtcc	49800
				gcgtctggac		49860
3 3 3	-5 5 55 1-		3 333 3-	2 3 33 11	_ 5 55 5	

agcgcgagtt	gcaaaagaag	ctgcccgccg	gcgggcggct	gccggtctac	cgactgggcg	49920
acgaagtgcc	gcgccgcctg	gagtcgcggt	tcggccggac	cgtgcacgcg	ctctcgcggc	49980
ccttcaacgg	caccaccgag	acgtgcgacc	tggacggcta	catgtgtccg	ggcatctttg	50040
actttctgcg	gtacgcgcac	gccaaaccgc	gtcccaccta	cgtactcgtc	accgtcaact	50100
cgttggcgcg	cgccgtggtc	ttcaccgagg	accacatgtt	ggtctttgat	ccgcacagct	50160
ccgcggaatg	tcacaacgcc	gccgtgtatc	actgcgaggg	tctccatcag	gtgctgatgg	50220
tgctcacggg	cttcggcgtg	cagctatcgc	ccgctttcta	ctatgaggcc	ctttttctct	50280
acatgctgga	tgtggcgacc	gtgtcagagg	ctgagatcgc	cgcacgtttg	gtctccacct	50340
atcgcgaccg	cgatatcgac	ctcaccggcg	tcgttcgaga	aagcgcggac	acggcggcga	50400
caacgaccac	cgccgcacct	teettaeete	cgctgcccga	ccccatcgtc	gacccgggct	50460
geceteetgg	cgtggcgccc	agcattcccg	tctacgatcc	ctcgtcctca	cccaaaaaaa	50520
cacccgagaa	acgccgcaag	gacctcagcg	gtagcaaaca	cggaggcaaa	aagaaacccc	50580
cgtccacgac	gtccaaaaca	ctggccaccg	cctcctcctc	ctcagcgata	gcggcggcct	50640
cttcttcgtc	cgcggtacca	ccgtcctaca	gctgcggcga	aggggccctg	ccggccctgg	50700
gccgctacca	acagetggte	gacgaggtag	agcaggagtt	gaaggetetg	acgctgccgc	50760
egttgeetge	caacaccagc	gcctggacgt	tgcacgcggc	gggtaccgaa	agcggcgcta	50820
acgcggcaac	ggccacggcg	ccgtccttcg	acgaagcttt	cctcaccgat	cgtctccagc	50880
agctcatcat	ccatgccgtc	aatcagcgct	cgtgtctgcg	tegeceetge	ggtccgcaat	50940
cggcggcgca	gcaggcggta	cgcgcctatc	tgggcctatc	caagaaattg	gatgcctttc	51000
tgctcaactg	gctgcaccac	ggcctggatc	tgcggcgcat	gcacgactac	ctgagccaca	51060
agaccaccaa	aggcacgtac	tegaegetgg	atcgcgcact	gctggagaag	atgcaagtcg	51120
tettegatee	ctacggacgt	cagcacggcc	cggcgctcat	cgcctgggtg	gaggagatgc	51180
tacgctacgt	ggaaagcaag	cccactaacg	aactgtctca	acgactgcaa	cgtttcgtaa	51240
ccaagcgacc	gatgcccgtt	agtgacagct	tegtetgeet	gcgacccgta	gactttcagc	51300
gtctgacgca	ggtcatcgaa	cagcgacgtc	gggtgttgca	acgtcaacgc	gaggagtacc	51360
acggcgttta	cgagcacttg	geeggeetea	tcaccagcat	cgacattcac	gacctagacg	51420
ccagcgatct	gaaccgacgc	gaaattctga	aagcgctgca	gccgttggac	gacaacgcca	51480
agcaggaact	ctttcgcctg	ggcaacgcca	aaatgctaga	gttgcagatg	gacctggacc	51540
gtctgagcac	gcagctgcta	acgcgcgtgc	acaatcacat	cctcaacggc	tttttgccgg	51600
tagaggacct	gaagcagatg	gaacgcgtcg	tcgagcaggt	actgagactc	ttttacgacc	51660
tgcgcgacct	gaaactgtgt	gacggcagct	acgaagaggg	atttgtcgtc	atacgcgaac	51720
aactgagcta	cctcatgacg	ggcactgtgc	gcgacaacgt	accgctactg	caagagatcc	51780
tgcagctgcg	acacgcgtac	cagcaagcca	cgcagcaaaa	cgagggtcgc	ctcacgcaga	51840
ttcacgacct	gcttcatgtc	atcgagacgc	tggtgcgcga	cccgggcagc	cgcggctcgg	51900
cgctgacact	ggccttggta	caggagcagc	tagctcagct	ggaagcgcta	ggcggcctgc	51960
agctacccga	agtgcagcag	cgcctacaga	acgegeaact	cgcgctaagc	cgcctctacg	52020
aagaggaaga	ggaaacgcag	cgtttcctcg	acggactctc	gtacgacgat	ccgcccaccg	52080
aacagaccat	caagcgacac	ccacaattac	gcgagatgtt	acgtcgcgac	gaacagacgc	52140
	-		-			

gtctgcgact	catcaacgcc	gtactgagca	tgttccacac	attagtgatg	cgactggcgc	52200
gcgacgagtc	gccgcgaccg	acgttttttg	acgccgtcag	tttgttgttg	cagcaactgc	52260
cacccgactc	gcacgaacgt	gaggatetge	gtgccgccaa	cgccacgtac	gcgcagatgg	52320
tcaagaaact	ggagcagatc	gagaaagccg	gtaccggcgc	atccgaaaaa	cgtttccaag	52380
cgttacggga	gttggtttac	tttttccgta	atcatgaata	tttctttcaa	catatggtcg	52440
gacgactggg	cgtcggacct	caggtaacgg	aactctacga	gcgatatcaa	cacgagatgg	52500
aagaacagca	cctggaacgg	ctagaacgtg	aatggcaaga	agaggccggc	aagctcacgg	52560
taacttctgt	ggaggacgtg	cagcgtgtct	tggcccgggc	accgagccat	cgtgtcatgc	52620
atcaaatgca	acaaacgtta	accaccaaga	tgcaagactt	tttagacaag	gagaaacgta	52680
aacaggaaga	acagcaacgg	cagctactgg	acggctacca	aaaaaaggtg	cagcaggatt	52740
tgcaacgcgt	ggtggacgcc	gttaagggcg	agatgctctc	caccatcccg	caccaaccac	52800
tggaggccac	actcgagctg	ctcttgggcc	tagatcaacg	cgcccaaccg	ctactagaca	52860
agttcaacca	ggacttgctg	teggegetge	agcagctgag	caaaaaacta	gacgggcgaa	52920
tcaacgagtg	tctgcacggc	gtgctgacgg	gtgatgtaga	gcggcgctgt	cacccgcacc	52980
gagaagcggc	tatgcaaacc	caagcctcgc	taaaccactt	ggaccaaatt	ttgggtccgc	53040
aacttctgat	ccatgagacg	cagcaggccc	tgcaacacgc	cgtccatcaa	gcgcagttca	53100
tcgagaagtg	tcaacagggc	gatccaacta	cagccatcac	gggcagcgag	ttcgagggcg	53160
actttgcacg	ctaccgcagc	agtcaacaga	agatggagga	acaattacaa	gagactagac	53220
aacagatgac	cgagactagc	gagcggctag	atcgctcgct	gcgccaggat	cccgggagca	53280
gctccgtcac	gegtgtacec	gagaaaccct	tcaagggtca	ggagetggeg	ggtcggatca	53340
cgcccccgcc	cgccgacttc	cagcagcccg	ttttcaaaac	gctgctagat	cagcaggccg	53400
acgcggcccg	gaaagcgctc	agcgacgagg	ccgatctgct	gaatcagaaa	gtacagacgc	53460
agttgcgaca	acgcgacgag	cagctgagca	cggcgcagaa	cctgtggact	gatctggtca	53520
cgcgccacaa	aatgagcggc	ggactggacg	tgaccacccc	cgacgccaag	gcgctgatgg	53580
aaaagccgct	ggagacactt	cgcgagctgt	tgggcaaagc	cacgcaacaa	ctgccgtacc	53640
tgtcggcgga	gcgcacggtg	cgctggatgc	tggcttttct	ggaggaagcc	cttgcgcaaa	53700
tcaccacgga	ccctacgcac	ccgcatcacg	gaagcaggac	ccactaccgg	aacctgcaac	53760
agcaagccgt	cgagagcgcc	gtgacgctag	cgcatcaaat	cgaacaaaac	gcggcctgtg	53820
aaaattttat	tgcacagcat	caagaggcga	ctgccaacgg	cgcgtccacg	ccgcgggtcg	53880
acatggtcca	ggcggtggaa	gcgatctggc	agcgactgga	acccggacgc	gtagccggcg	53940
gcgccgcgcg	tcatcaaaaa	gtgcaggaac	tgttgcagcg	cttgggtcag	acgctaggcg	54000
acctagaact	gcaggaaacg	ttggcgacgg	aatactttgc	gctgttacac	ggcatccaga	54060
ccttcagcta	cgggctggac	tttcggtcgc	agttggaaaa	gatccgcgat	ctgcggactc	54120
gttttgcgga	actggccaag	cgacgcggta	cacgtctctc	caacgaggga	gccctgccca	54180
acccacggaa	accgcaggcg	acgacttcgc	tgggcgcctt	tacacgcggg	ttgaacgcac	54240
tggaacgaca	cgtccagctg	ggtcaccagt	atctgctcaa	caagctcaac	ggctcatcgc	54300
tagtctatag	gctggaagac	atteetageg	tgcttccgcc	aacacacgag	accgaccccg	54360
cgctgatcat	gcgcgaccgc	ctgcgtcgtc	tatgcttcgc	gcgtcaccac	gacacctttc	54420

ttgaagtggt	agacgtcttc	ggcatgcggc	aaatcgtcac	gcaggccggc	gagcccattc	54480
acctggtcac	cgattacggc	aacgtagcct	ttaagtactt	ggcgctgcga	gacgatggcc	54540
gacccctggc	atggeggege	cgctgtagcg	gcggaggact	caagaacgtc	gtcaccacac	54600
gttataaagc	catcacggta	geegtggeeg	tctgtcagac	attgcgcact	ttctggccgc	54660
agatetegea	gtacgaccta	cggccctacc	tcacgcagca	tcagagccac	acgcaccccg	54720
cggagactca	cacgttacat	aaccttaagc	tcttttgtta	tctggtgagc	accgcctggc	54780
accagegeat	cgacacgcag	caggagctga	cggccgccga	tegegtagge	agcggcgaag	54840
gtggtgacgt	aggggaacag	agaccgggcc	gcggcaccgt	gctgcgtctg	agtctccaag	54900
agttttgtgt	actcatagca	gctctgtacc	ccgagtacat	ctacaccgtc	ctcaagtacc	54960
cggtgcagat	gtcgctaccc	teceteacag	ctcacctaca	tcaggatgta	atacacgcgg	55020
tagtcaataa	cacacacaaa	atgeeeeeg	accacctccc	cgaacaggtc	aaggetttet	55080
gtatcacccc	cacccaatgg	cccgccatgc	agctcaataa	actgttttgg	gaaaataaac	55140
tggtgcagca	actgtgccag	gtaggcccgc	aaaaaagcac	accatcccta	ggcaagctat	55200
ggctctacgc	catggccacg	ctggtctttc	cacaagacat	gctgcagtgt	ctgtggctag	55260
aactgaaacc	ccagtacgcc	gagacctacg	cctcggtgtc	cgaattggta	cagacgctgt	55320
ttcagatttt	cacgcaacaa	tgcgagatgg	tgaccgaggg	gtacacgcaa	ccgcagctcc	55380
ccaccggaga	geeggtgett	cagatgatcc	gcgtgcgacg	ccaagacaca	accaccacag	55440
acacaaacac	gaccacagag	ccaggacttt	tagatgtttt	tattcaaaca	gaaaccgccc	55500
tagactacgc	getgggetee	tggetttteg	gcatacccgt	gtgtctcggc	gtgcacgtag	55560
ccgacctgct	gaaaggccaa	cgtgtattag	tagegegeea	cctcgaatac	acgtcgcgag	55620
accgcgactt	cctccgcatc	caacgctccc	gggacctcaa	tctcagtcaa	ctgctccagg	55680
acacgtggac	cgaaacgccg	ctggagcact	gctggctaca	agcccaaatc	agacggctac	55740
gcgattacct	gegttteece	acccgcttag	agtttattcc	cctagtcatt	tacaacgcac	55800
aggaccacac	cgttgtacgc	gtgctgcgac	cgccctccac	gttcgaacag	gaccacagtc	55860
ggctggtgtt	ggacgaggcc	ttccccacct	tcccgctgta	tgaccaagat	gataacacat	55920
ccgcggacaa	cgtcactgcg	tctggcgccg	ctccaacacc	gccggtacct	ttcaaccgcg	55980
taccagtcaa	tattcagttt	ctgcgtgaaa	acccgccacc	catcgcacga	gttcagcaac	56040
cgccgcgccg	acatcgtcat	cgagcggccg	cggccgcaga	cgacgacgga	cagatacatc	56100
acgtacaaga	cgatacatca	aggacagccg	actctgcatt	agtctccacc	gcctttggcg	56160
ggtccgtctt	tcaagaaaac	cggctgggag	aaacaccact	atgtcgagat	gaacttgtgg	56220
ccgtggcacc	cggcgccgcc	agcaccagtt	tegeetegee	gcctatcacg	gtgctcacgc	56280
agaacgtcct	cagtgctcta	gaaatattgc	gactagtgcg	attggacctg	cgacaactgg	56340
cgcaatccgt	acaggacact	attcaacaca	tgcggtttct	ctatcttttg	taaccgacac	56400
tgacagtagc	gggcaataaa	aacaagagga	ttgttatggt	tttttgatat	aaaacaacgt	56460
gtcactttca	cggtgattta	ttcttgctat	tacttttccc	catgggctgt	cagcgtcggg	56520
tgcgcgacac	ggctaccatg	cgcaacaggt	ccagcttaaa	ggcgcacttg	tcgttaaaca	56580
gactggacat	gcgcgtatac	ttgctcagca	tggtggccag	taccgggtgg	gtggcctctg	56640
agatctcggt	cggcaactcc	aaaacgacgt	tgacgacgtg	acggtgtttt	tegteceget	56700
		-			-	

tgttggccac	cgtgggtccc	ggcgcggtgt	tagacatggg	gcaggccgtg	gggggaggac	56760
gaggaggaaa	tcgctgctaa	accgccgcgc	gcctgctgca	caatgtggcc	gccgacgtgg	56820
caggcggtct	gtttaaccag	cgcgcagccc	cgacacagcg	gggcgccgtc	ttcgctttcc	56880
aaacagctgt	cgcggtactc	gcccgtctga	cagegegege	acagcaggcc	gtgcccgtgc	56940
gaagtgaggc	gcaggagacg	cgggaccgtc	acgccgcgta	ccaccacagt	ggagtcgcag	57000
gtgcgtgccg	cgcagggcag	aatgacgtcg	aaagccagcc	ggtgatcgta	cacggcacaa	57060
gccgcgttga	ggcccagcac	ggctttccag	cccacgcgta	cgcagcgctg	tccaaagagc	57120
gtctcggaga	cgagctcgta	gacgcgctgc	cgcaccaccc	gctgactgcc	gcagagcgag	57180
cagtgtacga	gctcggcgtg	cgtgttgaag	atgacgctct	tttcttgacg	gtcccgataa	57240
tagaacatcg	agttgagcgg	aaaattttgc	tggcagtgta	getttteett	acccaggttg	57300
aggcagtgtc	cgcactgccg	acagaccacg	gccaccagcg	agegegegte	cagatggcgc	57360
tegeaettga	gtcgacacag	acaccagagc	ggcaggtcga	tgacgctgcc	gatgaggccg	57420
ccgcgcagcg	cggcgctgag	tgcaaagagg	acgatcttgg	tgggctctac	gtgacgcgcc	57480
tgctgtccgg	cgcccgcgtg	tectacegee	gcagctgccg	ccgtcgagcc	tecteegege	57540
gtctcgtcgt	gcagacccag	tgcccgcaac	ggcaccaggt	atcgcggaca	cgtgtcgcaa	57600
aacgtctgca	ccgcttgtcg	ggccagtacg	tagagcgggt	ttccgcaggg	taccttcccg	57660
gegtgeegge	gcaaggctgc	gatgaggccc	cgcagctgcg	gcgaccgcgg	ctgccgttgg	57720
tgacaccact	ggttacggtg	gtatacggcc	aaatcagcgc	gggcgtcgaa	gcgcttggcg	57780
cgtagtagtg	ctaggcacgg	cgagctggtg	gggtgaagca	cgggcagccg	aaggtccacc	57840
ccgaaaagga	aacggtgaag	gtcacctagc	agcgaggcgg	tgacaccgtc	caacaacgcg	57900
tgcagccgct	cgggcgggta	gagccgcaga	cggcgcagca	ggtagtcggt	gttgtagcgt	57960
tcgaaacgca	gaaaagccat	cgtgcggacg	gccacggtgt	gcagacagtc	catgctgtag	58020
acgtaagcga	gaaacacaaa	gtagggcttg	gtcataacca	tacgctgaaa	gagcgccgtc	58080
accgcctccc	gctcggcctg	ccgacacacc	agccattcgc	gcaggaagcg	ttggtagaga	58140
cggtcgccca	gctcgcgatt	caaaaagcgc	ttatccgtca	cgaagagatg	aaggacgcaa	58200
gaacgtggca	cgtgatgcac	cagctgctgc	tggaggaccg	ccgacgtctg	cgccgcaaac	58260
tgcgccggtg	gctgcgacgt	ttctaccgcc	gcttcctccg	gctgcagcgc	accgcggccg	58320
atcaccagct	gcacatggaa	atggtcctcg	tgaacgcaga	ggggcgcgaa	gagacggcac	58380
agagcctggt	ggaactcatc	agtcgcggtg	tgcggagcgt	gtcggagacg	acgattggcc	58440
atgaccgcgc	cacagcagag	ccagcaccag	cagaagagcc	agcaccagcg	ggcccagagt	58500
cgcaaagcgc	gcgggcagcc	acggcccaga	ctgcggtcgc	gatggcccgg	agcgcgctcg	58560
ccaccacgat	gacggtgccc	aacgataacc	agtccgctcc	aaggacggcg	cgcacggcgg	58620
agacggcgga	tgacggtgat	gggtcgacac	ccctcgccga	cgactcacgt	gctcctccag	58680
aggccgacgc	geggaeeete	cgacgtcctg	gcccgccgct	gccgctgccg	ccttcccttc	58740
tcccgccaga	gccagcaact	cctcctcctc	ttcatcagcg	tctccctcgc	ttgcgcatcc	58800
gcatcgtccc	atacaggcct	cacaacgaca	caaccgccac	gaccccgccg	ccatgggtgg	58860
cggcggcggc	cgaggcccgg	cageggegee	gccagcggcg	accatggtgg	gagagcaact	58920
cggatgacga	ggaggaggag	gaggaggagg	gggagatgcg	ctccgagagg	accgctttcc	58980

cgccgttcgc	gtgagcgcgg	ccgacatgcg	ggcgcgccac	agggacggac	cgctgccgct	59040
gtgactgctt	acggtgacgt	ggttccggac	cgccaacgac	gtcgacgcgg	ctttcttggc	59100
gtacageteg	cgcagcagat	tetegtaete	gecetegttt	tegggteega	aggcgataag	59160
ctcgatgttg	aagaccgacg	ctgaattgga	tttgcgcacc	acgcacttcg	tcagcactcc	59220
gtaggccgag	ggcttgatct	cctcgatgtc	cttgagcgtg	acgatgagcg	actcgttcac	59280
cttaagcaca	ttgaactcac	ctacgtggcg	cgccggcgaa	acgagcttga	cgggcgctcg	59340
cacaaaacag	cagagggaga	cggcgcagcc	agtgtttta	aagataaaac	aaggcacgtg	59400
gtctgtgcgg	ctctcccagt	agctgagcag	atactcgaca	caatagaccg	tgtctgtctt	59460
gagcatggcg	tegeacaceg	agtaattggg	gtttttacag	atgaggccgg	catcggtgac	59520
gcgcagctcg	ctgggaccca	acttgaggat	acgccgcgtg	gcctgcacca	gatcctgatg	59580
gagaaccttg	ttcatctcca	tcgcaccgac	gccaccgccg	atttatttac	ccggcgccgg	59640
ctcgtctttt	ccctccagga	ttccgttaat	gtccataagc	ttgctgacga	tcgccgttaa	59700
tagttgcgtc	ttctcacgga	ggatctctcc	gtgactgcag	gtcgcgcagt	cgccgtgcac	59760
gtacttgagg	aaggeggegt	acttctgacc	cgcgttcacg	aaatttaagc	gcgcgtccag	59820
agagggcagc	aacagatcgt	agacgcgcgg	cagcatcggc	tcgaactgta	atagcagatc	59880
gtcgtcaaga	tcgggtagcg	cgtgtccgtc	ttcaccgtcc	tcgtcgtcac	cacctccccc	59940
ctcgagccca	ccgctcgtac	cagccgcggg	ctccgcgtcc	tcgtcgatca	ccagcggtcg	60000
cgtcggcacc	ggagaatcca	cgtcatcctg	cacgtcgttt	tcctcctctc	cgtcgtcatc	60060
gtccagaaac	ggcacccgct	gcttagtcca	ggacattctt	tctccgcgtc	ctcaatcagc	60120
ggcgccgatc	gccatgaatc	cgagtaccca	cgtgagcagt	aacggcccaa	cgactccccc	60180
tcacgggccc	cacaccacgt	ttcttccccc	gaccagcccg	gccccgtcca	ccagctccgt	60240
cgccgccgct	accttgtgca	gtccgcaacg	acaggccgtt	tcgcgttaca	gcggctggag	60300
caccgagtac	acccagtggc	actcggactt	gacaactgag	ctgctatggc	acgcgcaccc	60360
gcgtcaagta	cctatggacg	aagcgctggc	cgccgcggcg	gccgcctcat	accaggtgaa	60420
tcctcaacac	cccgccaacc	gttaccgtca	ttacgaattc	cagacgctca	gcctcggcac	60480
ctcggaggta	gacgaactgc	tcaactgctg	tgcggaagaa	accacgtgcg	gcggcacgca	60540
atccaccgta	ctcaccaatg	cgaccaacac	cactagctgc	ggcggagccg	tcgccggcag	60600
tagtaacgca	ggacccgccg	gcgcttcggc	cgcctgcgac	ctagatgcag	aactggccgg	60660
cctcgaaacc	teggeggeeg	actttgaaca	actgcggcga	ctgtgcgcgc	cgctggccat	60720
cgacacgcgc	tgtaacctat	gcgccatcat	cagcatctgc	ctcaaacagg	actgcgacca	60780
gagctggctc	ctcgagtaca	gcttgctgtg	cttcaaatgc	agttacgcgc	cccgtgcggc	60840
gctcagcacg	ctcatcatca	tgtccgagtt	tacgcatctg	ctgcagcagc	acttttccga	60900
tctgcgcatc	gacgacctgt	tccgacacca	cgttctcacg	gtcttcgatt	tccacctgca	60960
ctttttcata	aatcgttgct	ttgaaaaaca	agtgggcgac	gcggttgata	acgagaatgt	61020
caccctaaac	catctagccg	tggtgcgggc	catggtcatg	ggcgaagaca	cggtgcctta	61080
caacaagcct	cggcgccacc	cgcaacagaa	gcaaaaaaac	aacccttatc	acgtcgaagt	61140
gccacaagaa	ctgatcgaca	actttctaga	acacagctca	cctagccgcg	accgctttgt	61200
gcagctgctt	ttctatatgt	gggccggcac	cggcgtcatg	agcaccacgc	cactcacgga	61260

acttacgcac	actaagttcg	cgcgactaga	cgcgttatcc	acggcctcgg	aaagagaaga	61320
cgcaaggatg	atgatggaag	aagaggagga	tgaagaagga	gaaaaaagag	gtgacgatcc	61380
gggccgtcac	aacggcggtg	gcaccagcgg	ggggttcagc	gagagcacgc	taaaaaagaa	61440
cgtgggtccc	atttacctat	gtcccgtacc	cgcctttttt	accaagaacc	aaaccagtac	61500
cgtgtgtctg	ctgtgcgaac	tcatggcctg	ctcctattac	gataacgtcg	tcctgcgcga	61560
gctgtaccgc	cgcgtcgtct	cgtactgtca	gaacaatgtg	aagatggtgg	accgcattca	61620
gctggtattg	gccgacctgt	tgcgcgaatg	cacgtcgccg	ctcggcgcgg	cgcacgagga	61680
cgtggcgcgc	tgtggactcg	aagcgcccac	ctcgcccgga	ggcgactcgg	actatcacgg	61740
cctgagcggc	gtcgacggcg	cactggcgcg	accegaceeg	gtattttgcc	acgtcctgcg	61800
tcaggcgggc	gtcacgggca	tctacaagca	ctttttctgt	gacccgcagt	gcgccggcaa	61860
catccgcgtc	accaacgagg	ccgtgctctt	cggacgcctg	cacccccacc	acgtccagga	61920
ggtgaaactg	gccatctgtc	acgacaatta	ctatataagt	cgacttccgc	gacgtgtgtg	61980
gctctgcatc	acactcttca	aggcctttca	gattacaaaa	cgcacctaca	aaggcaaagt	62040
gcacctggcg	gactttatgc	gcgatttcac	gcagctgttg	gagagttgcg	acatcaagct	62100
ggtggacccc	acgtacgtga	tagacaagta	tgtctagcgt	gageggegtg	cgcacgccgc	62160
gcgaacgacg	tteggeettg	egeteeetge	tccgcaagcg	ccgccaacgc	gagctggcca	62220
gcaaagtggc	gtcaacggtg	aacggcgcta	cgtcggccaa	caaccacggc	gaaccgccgt	62280
cgccggccga	egegegeeeg	cgcctcacgc	tgcacgacct	gcacgacatc	ttccgcgagc	62340
accccgaact	agagctcaag	tacctcaaca	tgatgaagat	ggccatcacg	ggcaaagagt	62400
ccatctgctt	acccttcaat	ttccactcgc	accggcagca	cacctgcctc	gacatetege	62460
cgtacggcaa	cgagcaggtc	tegegeateg	cctgcacctc	gtgcgaggac	aaccgcatcc	62520
tgcccaccgc	ctccgacgcc	atggtggcct	tcatcaatca	gacgtccaac	atcatgaaaa	62580
atagaaactt	ttattacggg	ttctgtaaga	gcagcgagct	actcaagctc	tccaccaacc	62640
agccgcccat	cttccaaatt	tattacctgc	tgcacgccgc	taaccacgac	atcgtgccct	62700
ttatgcacgc	cgaggacggc	cggttgcaca	tgcacgtcat	cttcgaaaac	cccgacgtgc	62760
acatcccctg	cgactgcatc	acgcagatgc	tcacggcggc	gcgcgaagac	tacagegtea	62820
cgctcaacat	cgtgcgcgac	cacgtcgtta	tcagcgtgct	gtgtcacgcc	gtctcggcca	62880
gcagcgtcaa	gatcgacgtg	actattttgc	aacgcaagat	tgacgagatg	gacattecca	62940
acgacgtgag	cgagtccttt	gagegetaca	aagagctcat	tcaggagctg	tgtcagtcca	63000
gcggcaacaa	cctatacgag	gaggccacgt	cgtcctacgc	gatacggtct	cccttaaccg	63060
cgtcgccgtt	gcacgtagtt	tccaccaacg	gctgcggccc	ctcctcctcg	tcccagtcca	63120
cgccgcctca	tctccacccg	ccgtcgcagg	cgacgcagcc	ccaccactac	tctcaccacc	63180
agtctcagtc	tcagcagcat	catcaccgtc	cccagtcacc	accgccgccg	ctgtttctca	63240
acagcattcg	tgcgccttga	cactgtacgg	cagaaaagcc	ggctccaagt	gcaagcgccg	63300
cggcagcacc	atgtgcaaaa	acttgtcctt	gcgcgcagtt	tegeegeegg	gaaagacggg	63360
cgacagcacg	ttggttacag	ccttgagaac	ctgctcaaag	tacttgtcgg	cgtgaatggg	63420
cacgccgtgc	tegegeaegt	agctcggatc	ttcggctacc	tcgtagttgc	acacgaccga	63480
	cgcgccctct					63540
		5 55		5 5		

cccgccgccg	tcagcgtcgt	egteegtgee	atcaatcgcg	teegaeeggg	aaaccacgcc	63600
ggtggttaca	gaatcaccgt	tgtcggagga	accctgcggc	gccgtccgga	caccgggcgc	63660
cgtcaggacg	taaaagaccc	gatccccgac	cgagggtagc	tcctcagaac	gggccgccag	63720
tcgcttaatg	acggcaatgt	gcggcaagtt	agattgacgg	tacaacgaga	tgtccttaga	63780
aagcaccgac	gaaagcacca	ggtcctcgac	acgcacacgg	tgcaggtaca	gatcgtcgcg	63840
agcctgcacc	agacggcgca	agatacgcca	gaaaccgcgt	ggcacgccgt	atttcttgac	63900
ttcatcgagt	gagaggcgcg	acaggcgcac	ggetgettee	gagacctcgc	gatcctcaaa	63960
gagcagcgag	aggacgtcac	gcgtgacgcc	cttgacgaac	tegeaageeg	tcttgcgcac	64020
caaatccacg	cccttcatgc	tcaggcccga	ggegeeetee	actttgccga	tgtaacgttt	64080
cttgcagatc	atcataagag	agacgaagac	cttttcaaac	tccagcttga	cgggctccac	64140
aaaaagacag	gccgtcacgt	agtgcgccag	gctgggccca	cgcgccacca	gagcctgcgg	64200
cgtcaggcca	cgaaagcgga	caaacacgct	gtccgtgtcc	ccgtagatga	cccgcgcctc	64260
cacccgccgt	tegteegage	cccctgacga	tgtttcgagc	ccctccggta	acgtgctgct	64320
ctcctccgaa	tececetece	gcgttcccac	tacatagtct	tcctgattaa	aaaaattgtg	64380
caaaaaacac	ggctctgaaa	agttgtcttt	gatgaaccgc	gccgtgcgct	ctagcatgtc	64440
gcgaccgatg	cgcgtgatgc	tggcggcgat	gggcagacac	ggcatcatgc	cgttgaccac	64500
gcctgtaaaa	ccgtagaaag	cgttacacgt	tactttgagt	gccatctgtt	ccttgtcgag	64560
cagcatacgg	cgcacggggt	cttgacactc	gcgcatgcat	tegegeaegg	cacggcgctg	64620
cgaaacccac	ttgttgagca	gttccgaaag	caccgagacg	cgcaccgaag	cacgcacaaa	64680
gcggtgagtc	acgccgttct	ctagcgtgac	gctgtataca	teggeggggt	ccacggggta	64740
ctcgccaccc	ggcaccagca	gggtggagta	gcaaaggttg	tgagccatga	tgatggaagg	64800
atagaggctg	gcaaagtcaa	acacggccac	ggggtcgttg	taataaccca	cctcgggctc	64860
aaacaccgtg	gcaccctggt	acgaaaccgc	cgcagtaccg	ccggcgccgt	gactgtcgtt	64920
ggaaacgccg	acgccgccac	tactgccgga	gccgacgctg	aaaacgccga	cgctgctact	64980
actgttactg	ccagagccgg	gtaaaacgcc	gtcctgactc	gacggcgcag	attgcaaggg	65040
cggcgacatc	tgaaacatag	ccgccacaga	accegegteg	ccgggcacgg	cggcggtaga	65100
gatgatagcg	gcgttaggtg	acacggcaac	actattcgtt	tegggeaceg	tcgtaccttt	65160
gctgtagtgg	ttgggcagga	taaaatcgcg	gcaggcgcac	tegtecagea	gcgaggtgta	65220
gatacggatc	tgctgtccgt	caaagatgac	acgccgcaac	ggaattttag	ccagccgcgc	65280
gatggccccg	gcctcgtagt	gaaaattaat	ggtgttgaac	agatcgcgca	ccaatacggc	65340
gtcctgcaga	cagtaacggc	ctacctgggc	gcggccctcg	gcattagcca	cgaaacaacg	65400
cgggatgtcc	ttgtaggaca	ggtcatcctt	gegttgeege	aggtaaagct	cggccatagt	65460
gttgagctta	tagttgggcg	agttagtctt	ggccatgcat	acggggtaca	tgtcgataac	65520
caccgaaccc	gcaatataca	ccttggtggc	ggccgtgctg	gccggattgt	tgtgagaagc	65580
cgagggaaag	gcggcggcgt	actgccgctt	aaaacccacg	gcggggctgt	gtaaaaagaa	65640
acggccgccc	tgcgccgtag	gcaacttgca	gaagcgctgc	gagtccacct	tatacaggta	65700
ctcgaggcgc	gtgaggatgt	acttcaagtc	aaaagagttg	atgttgtaac	cggtcacaaa	65760
ggccggcgcg	taccgttgaa	agaaaagcat	aaagcccagc	agcagctcgt	attcggaagg	65820
	-	-	,	,		

gaactcgtag	acgtccacgt	ctgggcccac	ctgcccgcag	gtgccgatcg	tgaagagatg	65880
aagacccgag	tgcccaaaga	tcacaccctc	cgaagtgcag	ccccggccat	cgttcccgtt	65940
tgggatcccc	tgatccacgg	cggtgtttcc	ccccgtctcg	tagcacacgc	acgagatctg	66000
aatgacaatg	tcatcggact	tctcggcgca	gggaaaacca	ccctcgccgc	tcatgcactc	66060
gatatcgaag	gacaggcatc	gatagcgcgg	ccacgagetg	tcgtcgggca	cggccaccag	66120
gtcagagaca	tcgcagtcga	cctcgatatc	acaagtcgac	gcgcgaccct	gctgccgcca	66180
gtcgtaacga	ttcacggagc	accagccgaa	cgtggtgatc	cgccgatcga	tgaccaaacg	66240
cgtcagcgga	tccacacgga	cctcgtacac	gggaaaaccc	tgctccagca	gatactcgcc	66300
gatttttctg	gccatggtcc	agttgctgat	agacacacac	tgcaaatcgg	gcacgggtcg	66360
cgtcccgtac	ccgtagatcg	aggttttggt	ggccggcgtg	acagacacgg	cgtatggcgt	66420
ccgcggttcg	ggcactagtt	cgcccacgct	ggcaatgacc	tcacgcagcc	tatcggtgtc	66480
gctgtactca	cagtaaaagt	agctgcgctg	cccgaaaacg	ttgacgcaga	tactgtagcc	66540
gtgttctgtg	gccccgaaga	aacgcaacac	gttccccgaa	ggcaccagat	gctgacgata	66600
gcgcggcgac	acgttttcgg	gcgagtcgaa	gaagagcacg	gcgtccgtct	gatcgtaggt	66660
gtgaaaacga	ataggtccca	ccacgcgacc	caccagggtc	tcgcgccaag	gacacggcca	66720
aaccatgtca	tgactcaaca	aatgtttaat	ctctcgatag	aacatgagag	gcagccgtcc	66780
cgtcttatgc	ttgatcaacc	ccgtctgacc	gtcgaacatg	acgcctcgcg	gcacgatctg	66840
caaaaactgt	ttctgtggcg	gccgcttgcc	cgagccctgc	gcggagccgg	gctgcgaacg	66900
ctgacgccgg	ccacccgcga	ccgcaccgcc	ggtcacgccg	ccgctcagat	acgggttgaa	66960
aaacatagcg	gaccgtgaga	ggctgacagc	ttacgaagca	aaatcacaaa	gaaaatacac	67020
atgcagcacc	tagatatcca	gtttaacccc	gtatatcaca	agtctctgtg	tcacttttt	67080
tgtctgtttt	ttttttcttc	tcctggttca	gacgttctct	tcttcgtcag	agtctttcaa	67140
gtgtcggtag	ccgtttttgc	gatgtcgcag	tcggtctagt	aggttgggct	tctgtccctt	67200
gtcctgcgtg	ccagtctgtc	cgtccaaaga	atctgtaccg	ttctgctgcg	ctcgctgctc	67260
tgcgtccaga	cgggccaggg	ccagaagcat	ctggtaagcc	tgctcgttgg	tgtaaggcgg	67320
agccgccgtg	gatgcatcag	acgacggtgg	tcccggtcct	ttgcgaccag	aattataaac	67380
actttcctcg	taggaaggcg	gagcctgtaa	cgacgtgtct	ttggtgctgc	ccgacgtcac	67440
ggtggtcccg	tcggcggaca	ccagataggg	aaagaggttc	tgcagcggct	gcgtgcacaa	67500
acgccgctgt	cgagtataga	tcaaataagt	gataatgact	acggctatgg	ccacgaggat	67560
gatggtgaac	gctccgaagg	ggtttttgag	gaaggtggca	acgccttcga	ccacggaggc	67620
caccgcgcca	cccacggccc	caatggctac	gccaacggcc	tttcccgcgg	cgcccaggcc	67680
gctcatgagg	tegtecagae	ccttgaggta	gggcggtagc	gggtcgacta	ccttgtcctc	67740
cacgtacttt	acccgctgct	tgtacgagtt	gaattcgcgc	atgatctctt	cgaggtcaaa	67800
aacgttgctg	gaacgcagct	ctttctgcga	gtaaagttcc	agtaccctga	agtcggtatt	67860
ttccagcggg	tcgatatcca	gggcgatcat	gctgtcgacg	gtggagatac	tgctgaggtc	67920
aatcatgcgt	ttgaagaggt	agtccacgta	ctcgtaggcc	gagttcccgg	cgatgaagat	67980
cttgaggctg	ggaagetgae	attcctcagt	gcggtggttg	cccaacagga	tttcgttgtc	68040
ctcgcccagt	tgaccgtact	gcacgtacga	gctgttggcg	aaattaaaga	tgaccacggg	68100

tcgtgagtag	cagcgtcctg	gcgactcctt	cacgttcata	tcacgcagca	ccttgacgct	68160
ggtttggttg	atggtcacgc	agctggccag	gcccaagaca	tcacccatga	aacgcgcggc	68220
aatcggtttg	ttgtaaatgg	ccgagagaat	ggctgacggg	ttgatcttgc	tgagttcctt	68280
gaagacctct	agggtgcgcc	gttgatccac	acaccaggct	tctgcgattt	gcgccagcgc	68340
ccggttgatg	taaccgcgca	acgtgtcata	ggtgaactgc	agctgggcgt	agaccagatt	68400
gtgcaccgat	tccatgttgg	ataaatgagt	tgcattgttg	ccatctgtac	ttcttttggt	68460
tctattatga	gtaagattca	gactggagcg	gttggccaaa	cgttcgagtt	ctaccagaga	68520
tttttgcttg	ataccttgcc	agaacactac	caaaccacca	gtggtttcaa	agacggacac	68580
gtttccatat	ttttcatatg	tttgattgta	tgaagtattg	aaaatctgct	gtaacttatt	68640
tatagcctca	tcacgtacgc	agtccagcgc	agagtcggac	atgttcacct	cttgcttctt	68700
agataagaaa	gtggcggtca	ttttggcaga	agaaaagtga	tacgagtcct	cggcttcgga	68760
acgaatggtg	cgttccgagg	cttcccagaa	agtgagttga	caagtgacat	tcttttcgtc	68820
ctgtatatcc	caggagatca	ccgagtccgc	acgttcaaga	aaagccacca	acctgtgggt	68880
ctctaacgca	gaatteggte	ttccaaagtc	ggagacgata	gtgtagttcg	gaaaaatgaa	68940
aaacttgtcg	gcgttttctc	caaagtagct	ggcattgcga	ttggttccgt	tgtagaaagg	69000
agaaatgtca	accacgttac	ccgtggaagt	ggcgaaaaaa	tgataaggat	atttggagcg	69060
cgcagtagtg	atggtcacca	tacaattcag	attacaggtc	tcacgataga	gccaggtgct	69120
gccgcggctg	tgccattgat	ccttgaccgt	cacgtaacgg	gtactgtggg	tgttggaata	69180
atcgtcgggc	attaattgca	tggttttgtt	ttcatagctg	tccctatgat	aagccacgaa	69240
aaccgtgcct	gctataacgc	ggctgtagga	actgtagcac	tgactgtggc	tgttgatatg	69300
atgaatctcc	cacataggag	gcgccacgta	ttccgtgttg	ctgcccagca	gataagtggt	69360
gtggatgtaa	gegtagetae	gacgaaacgt	caaaaccttc	tggtagactc	gtaccttaaa	69420
ggtgtgcgcg	acgatgttgc	gtttgtagac	caccatgatg	ccctcgtcca	ggtcttcatt	69480
gatgggcttc	atcgaggtgc	agacgatatt	acgttcaaag	cgaataagat	ccgtaccctg	69540
ggccatagaa	cacacgcgat	aggggtactt	ggtggtattg	acccccacca	catctccgta	69600
cttgagggta	gtgttgtaga	tggtctcgtt	aacaccatgg	ctgaccgttt	gggaagaagt	69660
tacgcgttga	gagactgaac	cggatcgaga	gtgagcagca	gacgtcgtac	gagaggaatg	69720
gtgactgtga	gtagcagaag	ttccacgagt	agaagatgag	gaaaccgcag	cacccagacg	69780
gacgatacac	aagttaacgc	agactaccag	gcaccagatc	ctggattcca	tgttcgtcgc	69840
gggccaaatc	cagcagcgat	gaggcgcgtc	gtggtctctt	gcgtgttgcg	cggaccctcc	69900
gggaaacgcc	cgcggtcgag	gaggaggggt	acggacttgg	cagccaaagt	cggtccggct	69960
ccctgaaggc	acccgagacg	gccgcggcgg	ccgtcagggt	ggagggcttg	gccacgggag	70020
ctgttggcac	gtcgccactc	tcatccggtc	tggacagatg	cctgtagagg	aggagatata	70080
gatetttgga	cttataaaga	cttccttcgt	gacgaagcag	cageggeeae	tctttgttat	70140
acgtgagaat	cacatctctg	tccgggtgca	gttcgtcgcg	caggcacgcg	atcgagagtt	70200
gtttcccgaa	agtttcatta	tatagtgcga	cggagagcac	gageteeege	acgtgcatcc	70260
acatctcctt	ctgcagcacg	tttaggtcct	gacagtccga	aaaattgaaa	aaacccatgt	70320
	catccactca					70380
					-	

ccttgacgtg	gggtagtacg	cccgcgttgt	cgcaggcata	ggccatgtcc	acattgtgag	70440
agaggggata	gcgatcggta	cagtgtgtga	agaggggccc	gttacacaac	tcgtagatct	70500
gctgacccag	tagcgggagg	gattccacag	gcagactctt	gtggatcagg	ttattgacca	70560
catacaggtg	ctcatcgtac	gtgaactgat	cccccacgtc	caccacgtct	tgatcctggt	70620
ggtattggct	gcggtataga	aacccattca	tgagcttaga	gataaagtcc	agacacaagg	70680
gccccactag	gttgacatcg	atgagtttgc	tagtcagacg	ctcctgcgtt	ttgatgcaac	70740
ggatcacctt	gccatagccc	acctctgaga	ccttctgcag	gtaggcgcgt	ttgcgcacgt	70800
tcacctcgcg	ggtgacgttg	tggatgcggg	aacgcgcgtc	caccaagtcg	agageetegt	70860
gttcgtcgca	gttgcgcacc	cgtaagccgt	tctcgctgcc	gtcgccgtcc	tgcccattcg	70920
cccctccccc	tacagctttc	ttgcctcctc	cacgggcccg	gccgccgcca	ccgttattcc	70980
tctgactgtg	agtactgctg	ttgctgctgt	tgctggccgt	catcaaagtc	gtacccgtcc	71040
ccgacatcgc	ctcccgtcca	cgcaggtgaa	tagcctcgcc	ctcggggccg	tcgccccccg	71100
tgccatcggg	cagcggacgt	cgaatctcct	cgagaatatg	cttgattttg	gtgtacatct	71160
cgttgctttc	gtggagcttg	ttgaacaccg	gattgtcctc	gaaagcttga	atgctgaggg	71220
atgtgatgag	gtcgatgatc	ctgttggggg	cggcaaagac	cgaccccacg	aacatgcgct	71280
cctccccgtc	caacgccttt	tccccgagca	cgaagatgtc	ctccacgtcc	tccccgtaca	71340
gatggcgact	gatgccgttc	atgagcgccc	ggcacagctg	gtgatacaca	tttagctgct	71400
ggatggtgat	gcccacccgc	ttgacgataa	cctccgaggt	acgggaccag	taggtaaaat	71460
ccgacaagga	atatattcgt	tccggtatat	ccgtaaacag	gttgtactcc	ctcagcgcct	71520
cctccgcctc	ctggatgtag	ctgtggtagg	ccgatgaaga	agagaatagg	cttttgaggg	71580
ccgaaaggac	tccagccaag	tgggggatgc	gcgttgtcag	gtccagcagg	tcctgctcca	71640
ccgtctggat	attcacatcg	gactggcttg	acggacggtg	gaccgctata	tggttgcaca	71700
gcaagccctg	cagccgcttg	ttcagcgagc	ggccctgatt	cgggatgatg	gtcaactcct	71760
cgtagcattg	ggcgcatgtc	gtcccttcga	cgtacacttc	ctgacgcgcc	accggcgaga	71820
tgccgcatag	gcgacggagg	agctccagca	gctgcgcgca	gacctccagg	ccggcctccg	71880
gcgccaggat	cccgtacacg	tagttcattt	tgcacaggaa	gcgctcgatg	tcgttgagtg	71940
tggccagact	gacgctgaaa	cggacgttgt	ccgtaaactg	gagetecaeg	gtgtgatggc	72000
gatcgcagcg	atccaaacgg	aggacggtac	ggtagaaggc	cgcccggtcc	ggctggcgcg	72060
agtaggccat	cagegeeega	tccagcaaag	ccgtatcctc	gtgcagcgcc	ttcagcagca	72120
tctccagata	gagcgtcagc	agcgaactct	gcgtacgatt	ctgcgccacc	acctccgggt	72180
agatetteeg	gtacagatac	actatagccg	ccgcgtttct	cttgaacggc	gtggactccg	72240
ccagtaacac	gttcggatcg	cagtacttta	gacactccag	ctccatggcg	tattcgttgc	72300
atttcgaaca	cactacgcat	agtttctgta	acaaattcat	ctccatgact	cgactcgctc	72360
acgtacgaga	cgctgtcgtc	eggtetggeg	ccggccagag	acatggagtc	ggtgcacaaa	72420
taactcgcgg	gccgctcgct	atgccgactg	acgttgacgt	taatatataa	cgacgtcgtc	72480
gacgagggtt	ctgctcccga	agctgttgcc	gccgcttgcg	gcgcaacctc	ctccaccacc	72540
geegeegeeg	gctcctccgc	ctcgggcgac	gggggctcgg	agatgaccgg	ctgtgtctga	72600
				atgtcggagt		72660
	33	555		- 55 5	- 55	

ggcggcggtc	tetgtetetg	gtgccgcggc	gctaatcttc	ggggctgttg	ctgctgttga	72720
tgatgcgacg	ccgtctgtcg	ccgctgttgc	ggcggtagct	gatacggtgt	cgcctggtgc	72780
tgctgtgtcg	gtggctgctg	ttgctgctgt	tgttgcggtc	tgaaaagcgg	ccacgggggc	72840
tgcgactgtt	gctgctgttg	ttgcgatgct	cgtgactgcg	gcggccgttg	tcgcggcgtt	72900
tgctggcggt	tacaaccggc	tgcgtttggc	cggcaataac	ccgctgcccc	cgccgccccc	72960
gctgctcccg	ccgacgccgc	cagcctcgtc	ttcgccggcg	ttcacgagaa	agcagccacc	73020
tcccgtctcg	ccgggcacgc	cgaagcaaat	ggagttgccc	gcgacggact	cgccgagaag	73080
aagaccgcca	cccccgacgc	cggacgccgc	gccgacgcca	ctgggcgcga	agagcgccga	73140
caggtcgtgc	acctccccc	cggcggcgtc	cgttaatcgc	tgggcgtcgg	cgtccagcac	73200
gcgtcgcaag	ttctccagcg	aaaagtcctc	cacgccctgc	tcctgcaacg	cggcaaactt	73260
gtccatcagc	gacgcggcca	gcgcctcgca	gccatccacg	aagaagagca	catcgtcgga	73320
cgcggggatc	tectegegea	cgctcagaat	ctcgtacacg	gccatcactt	cggggtcgca	73380
atccaagttc	teggegteca	gcgccagcat	gacgcggttt	tttataagat	ccgcgtcaaa	73440
aagcacgttc	tegeggegeg	agcgtttgat	gagcacgtcg	gccagacgcg	tagccaagag	73500
gtaacgctgg	cgcatgaaac	gataatcttg	accgctcata	gageteaegt	taaggctgcg	73560
ttccacaccg	ttgcccgaaa	agtagccgat	ctgcccaaac	tgatagatct	ccttgctgtt	73620
gttgataccg	gcatatttt	ccacgctcac	gggcacggtc	accaaggaac	gatgctcaaa	73680
aacgctccgt	accaacgatt	cacgcgccac	agtageggee	atgggcgccg	gcacgcctgc	73740
ggtcttcaag	cccttgacat	gcaacgcaaa	tteggeggge	gacgagaaac	gcggactagc	73800
acctaacacg	tgaggaaact	gcgcgtggtt	ctgcgtcgtt	aagegegteg	ttaacccgtg	73860
cagcgagcca	atgtagtctt	tgaagccgta	gtagcagagg	aatttgttat	ggaaacggct	73920
ttccacgtaa	ctcagcacac	agtetggege	cacatccagc	agategtget	cctgatagtc	73980
agccgtcaca	gccaccagaa	atttgacgaa	agcattgaac	tegeceatgt	cacctatggg	74040
cacattettg	ggcaacgcgt	tggaacagac	cttctgccaa	aactgtaagc	aggggagacc	74100
acattcagga	aagagtcgct	cgtgatgtcg	atacagcaga	aatcccaagc	agcccttagc	74160
cggattacga	cgcggaacgt	gategeggeg	aaaaaacacg	ctacccgcgt	tgcccttgcc	74220
cgcgcggtag	atgggtcggt	ttttcacccg	caccatgatc	aacgtgggta	ccgacagccg	74280
cgagagcttg	atctccatgg	gcaccacggc	gtacgtaccc	tgcgcgtaca	gcctaaagtc	74340
cagcaggcgg	tcgtgatccg	aattcttgga	cgacttgatc	tgcttggtga	agagaaagcc	74400
cttgcgcgac	gacgtggtgg	agaacgcgcc	gtgaatggat	tgaaaatgct	gcgtcatcca	74460
tttggatacc	aagttggtgg	tcaacggatt	gtccacaatg	tatgaggtag	cggtaataag	74520
cgccacgttc	tggatcacgt	aaaagacgga	tctgaaatag	gcgtaggcca	gcagcggctg	74580
gaaagccacg	gcgtagggat	tcagatccag	gttgaaggcc	tgcgtggcgc	ccgccacctc	74640
gtcgcggctg	ctcttgaggc	gcacctccga	aacgaaaccc	agggcctcgt	cgtccacaaa	74700
cttgttgagc	gccgaaaaga	cggccacaaa	gtcgcttttg	ccgtgcgcgc	taaaggtatc	74760
ctcgcccgtc	acggggtcga	tgagccgcat	cttgcggcag	taatccaaga	tgcgattgag	74820
ccgataggta	cggtccacac	tagcgcccag	catgcgaccg	ccgcgcccca	tcattccccc	74880
	ccacccccac					74940
		-				

cacgtctcgt	ccaccacccc	cgccagcacc	gccgcccgga	accccgtcgt	cacctttgcc	75000
gtccaaaccc	ccgtccttgg	cgtcgacgtt	gtaacgccga	ccgaagctgc	ccaaaatatc	75060
cacgtcgttg	agaaaacgcg	actgcacggt	gatcacgcag	ggctccttct	tgggctgctt	75120
gggcaccacg	ggcaagcggg	tgcgcacccg	cacgaaggcc	gtctgataac	acgtgtggca	75180
acaagtaccc	ccacaggcct	cgcacagccc	cgcggcgcag	cccaccaggt	gattcgtgag	75240
cgtcgacgaa	cccgacaagc	ccgtgttata	caccgagaca	cgatttagat	accagacgaa	75300
gcccgaaact	agctgcggac	acgtgccaca	caccaacgcc	aaatgctgcg	gcccatagcg	75360
ttcgtccttg	agcggcgcgc	cttgaaactt	gagcaccttg	cgcgcgtcgt	tgtagacgtc	75420
ttcgcaggcc	gccgacaacc	cgttggtgaa	ctgaatagcc	ttgagcaacg	tctcctgact	75480
ggccgtaccg	ccggcgctgg	gatgccgcgc	agacgactga	agatacacca	gcctgtgctg	75540
gtagagcacc	gaattagcgc	tgaagaccaa	ggcggccacg	tgcgtcgaga	gatgcaactt	75600
gageteggte	agegegegga	tcagatcgcg	gtgatcggtt	gcgttggtca	ctaaaggcca	75660
ctcggaaaag	agcatagact	cggcaggttg	gtaggccgaa	tcgaaaaata	ccgaggcaaa	75720
actgaaggcc	aactcacaaa	ccaccgcgtc	actcagcatc	agatgatcct	tttccagact	75780
gctgagtcgc	tggctcatgt	accccaagta	gcgcttatgt	ggcgccagct	tcaccgactg	75840
ctgactgtcg	tgcacaaact	gccgcaacgc	cgcctcgatc	agcacacgcg	gctccgagaa	75900
gcgcagcgat	tgacaccatg	acgtgtacac	gtagtagaaa	agegtetege	ttacggccgg	75960
cacgtagagc	cctcgcgcct	ccacaaaagc	gctgcgcgca	tccagcgaga	cctcgtcggc	76020
ttcggcgtca	agctgcagcg	aattaaagag	cgtaggcggg	tacaacggca	cgcgcaccgc	76080
ctcgccgccg	tgcagtcgca	ccgtggtcgc	ctcctccacg	catggaatca	gctgaccggc	76140
aaagagaaac	tccttcaagc	cgttgcccac	caccacgtgc	acagtcgtct	cggacgcctg	76200
acagcccact	geegegeaca	acgccgccag	atcggtaggc	acgcgatccg	cctcgggcgt	76260
gtaggcctcc	aacgcgtact	tetggeggge	gtcctcgcac	agccgatgca	cgtctccgtg	76320
atcctcggta	aaagccacga	tgccttgcgt	atgatgaaag	tagagcgcaa	aaggacaaaa	76380
ggacgtgact	ttcgtgagca	ccccgccgtc	gtaacaaagc	acaggcgtgc	gcacagagac	76440
gccgaaatcc	geetecaceg	tgageceege	caacagagga	gcgatcacca	cgctcgagga	76500
acggtcgcat	agcgagagag	tggccagaat	ctcctgcgtt	tctgcgttca	acctgctgaa	76560
gtagagaaaa	geegegggee	ccaccggcgc	tagegeggtt	agttcctcgt	ggctcatggt	76620
ggatgaacgg	aagacaatgg	ctacgccgcc	actgagtgaa	ttttatacca	aggaaaagtt	76680
cagcacgtca	tgtttgacgc	acgacgtctg	atacaccacc	gtggccacca	ctgcggtctg	76740
gctgcggttg	cggaccacca	aaggcgacaa	ccgcaacgat	cccagcaatt	cgtaagaaaa	76800
gctaaccgtt	acggtcgggc	agcctctcgc	agccagaccg	ctagccgacg	cacccgcccg	76860
cgaaaatagc	gtgatgttcg	ggacggcttc	gcgtcaccgc	aaactaacgt	cggtagtcgc	76920
gcacgtcgtt	tatcatcagc	acaccgtccg	atcacaaccc	gttttcccac	tcagtcgcac	76980
aagcagcaca	taaaaacccc	acacagggca	catgaaaaca	acgtccctag	aaaacggtgt	77040
tttctgtcct	accgtcaccg	ggccacacag	gcaaatcccg	agcccgatcc	ccgaaaacac	77100
cgtacggtgt	ttgtggcctc	caaaatcaca	tcagctaaca	aaccgtgaaa	agtcacgttt	77160
	gtgtttctaa					77220
		3	- 5		-	

gcaccacggt	ggtacaagcg	cggtggatct	ggtctcgcaa	cctcaatcgc	cgctatcacc	77280
accgactttc	gctgcgctcc	gccgacaaaa	cgccgtacaa	gttacacacc	ccaaaaacct	77340
gcgcgcctat	gggcgccaaa	cgtgtgtatt	atctcaacgt	cacaacacga	cacaaaccgc	77400
gtaacgtggt	ttcccgaaca	cgtacgcggc	acagaccccc	gacacgtact	cgaagacctt	77460
acagtttacg	agtcaataaa	acaggaaaag	atccgaactt	taaaattgtg	tatttttatt	77520
ttcccatccc	cctcttttta	ccaaaaaaca	catttttcgt	cttgtaaaaa	gtaactttcg	77580
cccattgcca	tgaaacaccg	tgatggggaa	cggtgttgtg	tgtcgactga	cgtcactacg	77640
gcgatcagta	tcgacgtcgt	gtatacataa	cggtgcccgg	tgtttttatt	cggggcgttg	77700
tcgcgtcttg	atgtaatgta	acctgaaacc	gccgtgccta	agaatgcgga	agccagcgtg	77760
taatcataac	ggggttttgg	gtacaatctg	acgacatctg	gcggcgagcg	tacaccatcg	77820
aatgtggcga	tcgccggctc	tacgtcacaa	tgacgcaaaa	acacactgta	aaacccgcgt	77880
agacagcttt	cctggtcaat	gagcgccatc	tggtgtcggc	ataagaacag	gcatcaaccc	77940
cgtggccggc	gaggcggtga	gcacttttgt	tggtcacgtg	accatccgcg	caggaagcga	78000
ggcccgtaga	accgcccaag	aggcggtgcc	agatgccaac	gtcataatca	caaggtgatt	78060
tgttacgtca	cgcgcacacg	cacgcgcgcg	cgcggtagaa	tacagcgatc	catagtgaag	78120
ccacacccat	tacgtgtagc	catatccgct	tacgtataca	gacacacccc	taggtacgcc	78180
accttatcta	ccaatcacag	aaacggatat	aaaatgaccc	ctccctagac	tccacccctt	78240
gtacggaaat	ttcagatagg	tggaacccgt	tagggttcca	ccgtcctcgg	tgtacgtaca	78300
ggcttctccg	tctaccggaa	atatacacat	gctgacgtag	acgctactcc	cggatacgcg	78360
tcataagcta	ctggacccta	gggggggagt	gtctacaggg	ctacgtgcac	gcccccttac	78420
ttagggtatc	cgcccctttc	ctctgttttg	gcctagtaaa	cttaacgccg	ccgcttctca	78480
cgtgacccct	gacaagccta	cgtcacactc	gcgtgaccac	acccactccg	gatatacgtc	78540
atcccgtgga	ttccggacat	acggtgacgt	agcgagcgta	gcgagctacg	tcacgtatgc	78600
atgcgtcatc	tccggcggaa	atcatctctg	atgacgtagc	gagcgaagcg	agctacgtca	78660
tcagtccgtt	ttacgtatac	cggatgctag	gcgacgcccc	gtaggggcgg	agcctagctt	78720
ccacccctag	gatgcatacc	ctatatagca	taattcttct	aacgaaacgt	tctacgaaaa	78780
cggactggcg	gaacgggaac	caccgtaacc	ccccccctc	acccccccc	ttctcctccg	78840
gaaccggggg	gggcaaattt	ttaccaaatt	tgggcaacca	tgatttccaa	tgggacggcg	78900
tttccgtgcg	catgcgcagt	cggggcgagt	ttttggttgt	cagggcgttg	ccacgcggat	78960
tatgggatgg	tgactcgagt	gegeatgege	cggggatgcc	gcatggaaaa	cctatatata	79020
aggaggggtg	aaccaggggc	cccggtgcgc	atgegeggge	cagggcccgc	gggagggtcg	79080
ccctgcgcat	gcgccggtaa	aattccagtg	tgtgtgtcgt	gcgcatgcgc	cagtatttt	79140
ccactagagg	cagtcagtgc	gcatgcgtcg	gtaaaattcc	actagatgtg	cgccgtgcgc	79200
atgegeeggt	atttttccac	tgggcggccg	cacctaggga	gcgcgagccc	cgtgccgggc	79260
atgggccgcg	gcggtggaaa	attaccgctc	cgcccaccta	ggcggggcat	ctgaaaacct	79320
ataaaacccg	gegtgeeege	cgcccccgg	cgcagtccgc	ggcagggttc	cggccgtgct	79380
gcggtccgca	cgctgcgccc	gctcccgcct	gcctcccgcc	ctacccccca	ccctccccgg	79440
ccgaggcccg	gcgccggtcc	gtccgcgggc	ccgtcccacc	gccctggagc	accatccggg	79500

gccgtgggcc	gggcaccggg	cgcggcccgc	tccggacctc	ggccgggggt	ccctcccctc	79560
ccccgctcg	accccccatc	cgacggcccg	gccgggctgg	gacccccgca	ccggggtccc	79620
ggttcccgtc	cgcggcccgg	ggggacccga	gcgggggctt	cccaccccca	ccccgctcct	79680
ccccgggctc	cggcccggga	tecetegetg	ctcccggcga	cctccgccgg	cttcccggtc	79740
cacccgccgc	ggaacggacg	ggacccgggg	tccgcgccct	tcccctcccc	ccacgggggg	79800
ctgggtcgcg	gaccccggtt	cctaggctcg	ttccgcggtg	ggcgaccggg	gatececcae	79860
ccagctcccc	ttcccggccc	gccccgctgg	cttttgggcc	cctccgggct	tttttttcc	79920
ggctgggtgt	cgcggcggtc	ggccgacgac	gacggtaggt	gggccgggtg	gacggtggtg	79980
gggacgggcg	acgccccggc	tcgacggcag	teggteeegg	aaggttgggg	gctgggggcc	80040
cggtcaggag	cttcgggagc	ggggtcgacc	gcgacggctt	ccgggtctcg	cggcggctcc	80100
ctctcggcgg	ctccggttgg	gctcccctcc	cccctctcga	gggtccggcc	gccagtcgtg	80160
accgggggtc	cctcggccta	gccgccggct	ctcggtccgc	cttatcctgg	gcgttggccg	80220
gtcccgtgac	gctcccctcc	cccactgctc	cccaaaaaaa	ctccgcccga	accgtcgcgg	80280
cttgctggcc	ctgggcgtgg	tcccccactc	ccctccccc	atcggccgcc	cagccggggt	80340
cggcgcctcg	gaccccacca	ggctgtggcg	tgtgtgctgg	ccgatgcggc	ggcgaggttg	80400
ggtgtggccg	gaagcgctcg	gggtcgacgg	tgggccgcca	tgacacctca	attgccgtca	80460
gtacgccctt	ccacaatcac	cgtccccaca	cgatgggccc	ggcaggtcac	ccaacgttgg	80520
ttcaggccca	gtcgagtttt	tccccggcac	gaacgcacgt	ccccgtgggc	tccacgcgtt	80580
ttccaccctt	tcctggaggg	gtccggaaca	ccgtgaatcc	acggggaggg	tcccggcacg	80640
ggccgaggag	accacgaccg	tcccacccgg	cgtgtcgact	cgtccgagac	ccgggaaggg	80700
aacaggcccc	accattttt	ttttcccttc	tccgatttgc	cgtggaaaac	ccgtgaaccg	80760
atacgggtac	agacggccga	aaaaaaaatt	cgagacaata	cgacggcagg	gcgtgatttt	80820
ctcccccatc	cgacaaaacc	gtgtccctca	aaattcccca	cctttctctg	ctcaaatggc	80880
cccgaaactg	taaaacaccg	tttgaccgca	ccccaaccgg	cgccatcttg	gtgaccttct	80940
cgacggttct	ctcgctcgtc	atgccgttct	gagctccgac	atggcggacg	agagaaaatg	81000
gcgtcgagag	cctaggagcg	ttttcgctcc	aggcgggtaa	aaaaatagca	cgataacttt	81060
tctgtgcttt	ttttgagacg	ttttagaaga	gctttttct	gctcagcgaa	aaaatgatag	81120
ccctgaaaat	ctcgacgagt	ctggccgagc	ggcgccatct	tggaggaggg	gcgagtcgcg	81180
ggcaccgcct	cggtaccccc	tggccgaggc	gagtccgcgg	tcgccgcctg	ttccgtgatg	81240
ctacctagag	ggcgctgtcg	aggcgactct	tcctgttttc	gccctgaggg	ctaacggtcg	81300
ctgacgtcaa	accatctcgt	gctcgctgag	tcacatccgg	ttgttgacaa	gcgatggagg	81360
accgcaccca	aagtgegeee	tctagtcatc	gcgcctgacc	ccttttataa	actgctcgaa	81420
gaaaagaaca	ccttatgtga	aaaaatacag	aatgatgaca	agttcatcca	acacaaccgc	81480
tcaacaacgc	catatctatc	agtgtccaaa	aactatcttc	tatcctttga	aactataaat	81540
gctgcctata	tacatattta	gtatccaaga	ctcttaccac	gtagacgaaa	agaagtgata	81600
caatgatctt	gacgtgtatc	gtctatatcg	tgctagatat	attcagataa	gacgcgcaaa	81660
ccatagattt	ctcatcagta	tcatgaaaga	cctatagctc	tatatacgaa	cctagtcatt	81720
ttaggacagc	cgccggagaa	gccgacgagg	gatcgggcgg	gtgcagccag	aacctcacgc	81780
·				_		

ccgatcccgc	ctccggtagg	cgatttgcat	ctgtttggta	aaaagctcat	aagtctgtat	81840
gtgacctata	tatatattat	acgctatgta	caccgaactg	tcgctgttgt	ataagaagaa	81900
aaaactctcc	atatttatat	cgtctgaatt	tttgcttgat	agacacgtgt	ttggaactct	81960
gtccccccac	gttttcactg	tgtataacaa	aaatatgtgt	ttctcaaaag	atcttgaggt	82020
gtttgaaaac	gggggaaacc	tgcgtttggg	tgcgctaagc	cccggactgg	gacgtagccg	82080
gcgtccggca	cctatatttt	tctattttt	tacaaaatat	atgatgaacc	aagaataaaa	82140
ctctagctct	cgtctatttt	taatatgctc	tacttagaac	ctttttaatg	acagaatgaa	82200
ctccatgtta	tacgctcttt	atatagtttc	tctgcactaa	cctttaaaac	cgtatccttc	82260
cctgttgtac	aaatcatctt	ttgatacaca	atgatgacct	gatatccctc	catatatatg	82320
atcggatatt	attccgttag	acttgtcctc	cttttttc	ctcatctcct	atatctggag	82380
atatatgttg	accaccaccg	ccatgaccac	caaaaagcta	gccgtcacga	ctagaaatgt	82440
gtaggattcg	gactttccgt	tcgagaagaa	agagaccgcg	tctctggacg	ctctttttgt	82500
cggtctgaat	cgacccggga	tacgtaagag	agcggcccta	catcgggggg	cgctcgagac	82560
cgacgacgtt	ccatctgacc	agaaaaaaaa	aaggcacccc	tcggtagcga	cctctcacca	82620
tegtttgeee	gtccgcccgt	ccttcgtagc	catcatcatc	atctcaggct	ctatcggtac	82680
catcgttgtc	atctgaaaaa	aaaaactgcc	tcacccacct	gcgtaaaaac	accatctttc	82740
cggaggtgcg	gtaagacggg	caaatacggt	cgtgccgagg	caaaaaaaaa	cgcaccatcg	82800
acaccacacc	ctcatgagca	ccacctgtcg	gtgttggtcg	tcctccatcg	ttctctacga	82860
acatctcgac	gcccgggtga	cggacgacgg	caagacgtcc	cggagaagac	ggtgttctct	82920
cgggcggtac	gctctctgga	tctataatat	ctatagtagc	taaacgagac	tgtgagtacg	82980
acgaaccaca	tcatctttt	tttatgttgc	ttctttagaa	aatgacttat	gtcgacgaca	83040
ctcggcatca	gccatctcgt	gaaacacgct	cgcttttcgt	ctctccaagg	aacactgggt	83100
ccgctgaaag	ggaccgtgta	ccgaccaaag	caaaaaacac	acacgtagta	acatgatcaa	83160
ccacgtctga	atgacacgaa	aacacaatcg	tataacgctc	tattcatgga	acgaacttgg	83220
aataaaaaaa	accatcgcag	gccagaggct	aagccgaaac	cgtccgggga	agcgggcgcg	83280
agttttccga	cttagccttt	ggtgctcgtt	gagcctcttt	tttttttct	gattctctga	83340
agaatcaccg	tcacagccct	atgacgcgaa	atcaattgct	agaacataaa	cgttctcaac	83400
aggtatgaaa	tgaacaaact	agatgatgct	ataaccttat	attgtgtgta	tatagatagg	83460
tgtgaaattt	gtaggataaa	aagtgtcgtt	gtatgatgca	caacgatcgt	gaaactggag	83520
actgtagctc	tctaccgaat	gcaaatacac	aaatgacatc	gattcccgtc	cccacataaa	83580
gaaatgtgct	ttactgtgaa	agaatgaaga	agattcttgt	tcctcgtacg	acggggccct	83640
cgctcgtcgt	gcctcttccc	ccctccggga	gaggggacgt	cggggccctc	cgtcgcaccg	83700
ggccgaagcc	agtgaaatgt	ttactacact	gtcatcagaa	tatatgatgt	atattatttc	83760
ctccaaactc	ctcaccatag	ccaccaattc	gcatcactta	agaaagtagt	agcaaccgcg	83820
gcggcggcga	ccggccggtc	gtcgtctcct	cgtcctcaaa	tgttgtacat	gtgcagaaaa	83880
atgtgtaaat	acgtgttatt	tatcccatgc	gtcttgtaca	tagatatatg	tttttatata	83940
cgctatttat	actttatata	tccttttgca	taaccataga	cagtcaagga	ttttaatgat	84000
ttgctcatcc	gcctttgagc	catcgcttag	gagttagttc	ctctatgttc	teggeeeace	84060
		-	-	-		

ttttcgacta	cagtagcaaa	cccttgtact	accaccccga	taaaaaccac	atcatcatcg	84120
tcaccacgac	ctggaaacga	cacacgttcc	ccccaatct	tgggcatgtg	tatatataaa	84180
gaatgggagg	gagaggacgt	ggggctcgag	aagaaataaa	cgccaagctc	gattcgaacc	84240
aaaaaaccac	atgtgtattg	tgctttgttt	tttttttac	ggtggggaa	aaggaggggg	84300
ccgtcattaa	cggaaaccgt	gtatggggtc	cggacacgaa	cagtacacag	cttatgggga	84360
aaaaagctca	cagagagaaa	aaaaacacca	agctcaggca	cgcgtacatc	attatcatca	84420
tcggatatct	caccacgggt	catagtagta	ccaaggagtg	tgtgtaacac	cattttttct	84480
tttctttgta	acgggataag	ggacagcaat	catcacgcac	aacacccttc	acttttttt	84540
ttagtcatcc	atatcatcgc	tgtaacacag	catgtcctcg	taatcgggcg	tctggcaacg	84600
cattaccacc	gagtcgtctt	cttgcggtac	cggtggtggt	ggcggcggcg	gctgctgctg	84660
ggttgccgtc	gtactgtgat	taccgttggc	ggactgcacc	gggatgatgg	gctgcttgtg	84720
gggaacctgg	ggtggactgc	cgccgtgaga	aggcgacggc	gtcatcaagt	taagctcacc	84780
acggtgactc	cggacaccgg	cgaggggcgc	cgggggactg	ggagggaccg	cggtcgtctt	84840
gtagacgacg	gtgtccccgt	gccgatccgt	ggctcgtacc	agatettgae	tgctagcgtc	84900
gtcactgtct	tegteetett	ccagctcgcc	ctcagagtag	tgctgctgtg	gttgcgacgg	84960
tggctgggcg	ggaggagcgg	cggcgatcat	tggagaggga	tgtcgatgac	tcccttctct	85020
gtccttttta	tegtaggetg	tcagcgttgc	tgggtccgtc	ctgctttcca	tatttgcgca	85080
ttgctcatcg	gtgggatgaa	tttggtctcc	teceegetgt	tgtccgccgg	cagtggcgtg	85140
gttgctggcg	gttgtcgttg	tcgtaccggc	aaagacggtg	agatccaata	gcgactgctc	85200
gtcgaaggga	cagtacgcta	tcatgaaacg	atagggtgcc	aacgcgcgtt	ggatgcgcag	85260
ttcgcacatc	tegttetgae	actcgtggca	ctgcagggcg	cctaggatca	ggtccgagac	85320
agcgccgcag	cggtaggtac	ccatggcgtt	gttagtatcg	aactggtcaa	aaaattgggg	85380
cgtaccggtg	acttgcaacg	cgcgacggcg	tagcgagacg	gccacgcgcg	agaaagagca	85440
cacgtaggcc	atggcgcggt	gcatgggttg	cgagaaggtc	tcgggcggac	gcttctgcag	85500
atcgcagacg	tegtegegta	gccaggcgct	catttgaccg	ggcttcttga	ctaaccgttt	85560
gagcgtgctg	caatggtcgc	cccagccgtc	ctggtggtcc	aggatgcagc	ccaggtccag	85620
gttgttgagt	ttgttgaaga	gcagctgacg	catgccgccc	accgtctcca	gatagggatc	85680
gtgcgggttg	acgggtagcc	cgtgcaagtg	gtggtacttc	atgtagctga	gcgtttcgtc	85740
gatgatggcc	agcaacgtgt	gcaagttggg	agcgttgtac	acggcgaaga	tcttttccac	85800
caccagcttg	cgcagcaacg	gttcctccag	ccaatcgaac	tgttgacgga	tgtgcaacag	85860
gtagtcggtg	tgcatgagct	cgtcgtgtga	cagcaggatg	cgaccgcgcg	gctgatgatc	85920
ttgcgggaag	geggtgggga	ccttgagatc	ggcggggtag	ggtgccagac	gtagactctc	85980
ggccgtgtag	cgctgaaggt	cgtagacggg	cgaggtagaa	ctcggtgagg	tacccgacga	86040
ggcggcgccg	cgctgcagac	gegetetttt	tttcttttcg	atcaaacggc	tgagttgctg	86100
tagttcgtcc	tcgtccatgg	cgtccagttc	gtcgtcaata	agcgccagca	tctgttgttg	86160
ttgcggtccg	geggaegate	cgtgatgatt	attggctgag	gaggggtgag	aagaaccgaa	86220
agtcgtagga	caactgggaa	ctcggcgacg	aagatgcgtc	gaategeege	cgtgatggtg	86280
cggttcgccg	tcatcgttgt	cgtaagactt	accgtagtgg	gggtgaaggg	gcaccgaggc	86340

ggacgcggcc	acgcgtcgct	tgaaagagga	ggacgcccta	tgtccgccac	ggaagcccgc	86400
ggtgcccatg	atgatgtgtc	egeeggtgee	cccgagtgcg	tggcgggagg	agggtggaag	86460
gggaggagga	tagtggtccg	gatcgccttc	ggtatcatcg	tctttgctgt	ageggggteg	86520
tegtgegggg	acgcagggtc	ggtgatgatg	cgaggcggcg	ccgacggtat	cttccgcgag	86580
atggtattcg	ctggcggctg	ctccgttccg	tgtcgacggc	gaggttggac	ttegetegeg	86640
tcggaacttc	cgtggcacgg	gttcgtaatc	cagacagaag	cgccgtgcgc	gacgggcgcg	86700
gcgttcgcgc	tegeteaggg	aagataacga	cggagcgtcg	tgacggccgc	gtgagtgcag	86760
ctccatggcc	geegtegeta	ggaaggtcac	gttcgggcac	gctgatgtat	atatagatga	86820
gaccgctgcc	ggggggcggg	tcaccggcgc	cgtggaaagt	gaggeteaga	cggcggtcgc	86880
cggcggcacg	ggcgcgtcgg	gcggtctgat	tttgatggaa	atgtggacgt	ttttggcgtt	86940
ggagtgacac	tttttggtga	aacagcggct	ccagaggctg	gcccagagcg	cgtagctgtg	87000
ctcggtgcgc	aggtcgatga	acacttgcac	ggtetettge	gggttgcggt	gcgtgtagtt	87060
gagacagcga	aaatcccgcg	tgegegegee	gtegegeege	ttgacggcca	cgcagcaggc	87120
gccgtggggc	tgaaagagga	ggacgtgggg	cgcagtaaac	tgctcgctga	cgtgcggctc	87180
gtagtgttgc	gtgaggtgct	cgagcagtgg	cggccacacg	cgggtgacga	cgagccgctg	87240
caagtccgtg	teggaaateg	cageggeagt	ggegeegteg	ccaccgtaca	ggtgataggc	87300
gagcacctcg	gtgagaccgc	ggcgtcgata	acgcgtcacg	ttaagcgagc	gcgtctcgat	87360
aaagttggct	teggtegagg	ggcagatttt	gtcatgtacg	ctgagaatga	cgcgtggcgg	87420
cggcgacagg	ggcaacgcgg	gcaggtcgtg	cggcgggtgg	tggtgaagca	ggttacgcag	87480
atccagttgg	gegegeacaa	agcctagcgg	gtgttcgcgg	taggcgtcgg	gcacgatgaa	87540
cagcggcaac	agacggcgat	gcatgaaata	geegtegtet	tggtccattt	tatacatgta	87600
gggcagacgt	acagagcgtc	catggtggta	gatgcctgtg	tctaggctgc	tctcgggatg	87660
cgagatgggg	tecageageg	tgtgcagttc	ggcgtcgaga	cagacggcgt	gattgagcac	87720
ctgcgccacg	gcgcgtaaaa	cgctgggatg	tacggcgacg	gtgcaggcgg	ggaacggcgt	87780
gatgatgcgc	agccccagtt	tgcccttgca	gcggcagtaa	gggggtgacg	tgtcaacgga	87840
agacgttgtt	ttttgaaaaa	cgccgttatc	tgggacgtta	tttttgtcct	ctttcccgtc	87900
ttcgtcttcc	tetgtgtege	gctcgtcccg	gtaatcgaga	tagtcgtcgt	catcgaaagg	87960
cgcgccggcc	gegtecaegg	gcacgctgtt	gggtgggcac	gcgcttttga	agaaatagac	88020
cgggtgccgg	teggggtgeg	tgtagccaaa	gaggctcgcc	catacggtca	tccagacgcg	88080
tcgtagtccg	cgacataact	caaagacggt	gtgtcgcgcc	agaccggaga	cgccgtcgcg	88140
cagccgtaaa	tcaaagtcgg	ccacaaaatt	gaagacgggc	agacgttcgt	tgaagacttc	88200
gtgtcgcgtg	tagtagaact	gtgtctcggg	gctggtgctg	gccacgtcgt	cgtcgtgtag	88260
ccacacggtc	teggteaggg	cctcgtccga	gaaacggctg	tcgggtacgt	gacggagcag	88320
gtcgcgcgga	aagaggctgc	gatgccaggt	ttcggaggcc	acggcgcaga	agacgtgctg	88380
gtcattgggc	aggtgtacgc	ggtagacggg	cagcggtcgc	tccagcagcg	gtgccagcgc	88440
gggctcgggt	agcaggtagc	gacgttgcga	gtaacgcgtt	agegtgeegg	tggtgtaggt	88500
ctgggctgtg	cgcagcgagg	cgcagagacg	taataagccg	gacagggagc	gttccagcgg	88560
ggagaagaca	gactcggaaa	gcgtgttgat	gcgttcgagc	tggcgcgcca	gctgcgtgga	88620

ggtgccgaag	aagcccgcca	ggtgcgtgcc	gtcgatgcgg	ccgccgtagc	cggccagccc	88680
caggccgtgc	gggctggtcg	ccgagtgggg	ggattcgtcg	agacgcagta	ggtgcgtctc	88740
cacgtagtcg	tgtagaaagt	tgtcgagcga	gaagtatttt	tgcatgacgt	ccagcagctc	88800
ggtggaaagc	cggcggccca	gaaaacccgg	ttcgcgcgtg	cactgcgctt	cgggcgccgc	88860
gtcagcgtcg	taagccacca	cgcgccggta	ctcgagcaac	cgcgcgcgtg	ccagcgccgt	88920
gcggtaggcc	aggtagacgt	agtgcacgca	gaccgtgtcg	ggcagacgcg	cacgttcgcg	88980
gaacgcgttg	atctgcgtgt	ccacctgctc	tagctcggtg	tagtcgcggc	ggttgcgcgc	89040
tacggcgtac	gccacgaaag	cggacacgcg	ctgacggaag	ggcgagccaa	gtagcagacg	89100
cgcgaactcg	cccatggagg	cgtgcgtggg	gatgatggtg	ccaaggtcgc	gcgtgcagaa	89160
gctgcgcacg	tactcctcca	cggtggagat	ggtgctgtac	tggccctcga	ataggtagta	89220
ggccatggtc	agcagcacct	ggccctcggt	gtgcccgaag	acgctgatga	accacgaggg	89280
cgaggtgggg	cagaggaaga	cctggttgag	atgacgtagc	acggccgcgt	ggtgaaagta	89340
caccaggtgc	ttgaattcgc	gcacctcgcc	gccgtgttcg	ggcgagagca	cgggcgtgcg	89400
gaagagatgc	cggtagagcg	gttgcgtctc	ggcctcgtcc	agactggcga	tgagcgccga	89460
gaggggatg	ggctggcgcg	cggccaggta	gcgcgagagc	tgcagcgttt	cgttgttcac	89520
ggcgaagacg	ggcgccaccc	gccgcgagtc	cgagcacttt	tgcgtctgta	ggcagaaata	89580
aacacgtcgc	gagacctggt	gtttgaccag	cagggggaag	acgcagtggt	ccgtcggtgt	89640
ctgcgagagt	acgttggcga	ctatatgagc	agaatcatac	tctgttgcga	acagaacgag	89700
cgtcatcgtc	gcgccggcac	gatgcagctg	gcccagcgcc	tgtgcgagct	gctgatgtgc	89760
cgtcgcaaag	ccgcgcctgt	ggccgattac	gtgctgctgc	agcctagcga	ggacgtggag	89820
ctgcgcgagc	tgcaggcgtt	tctggacgag	aactttaagc	agctggagat	caccccggcc	89880
gatctgcgaa	ccttttctcg	cgacacggac	gtggtgaacc	acttgctgaa	gctgctgccg	89940
ctctataggc	aatgccagag	caagtgcgcg	tttctcaagg	gctatctctc	ggagggctgt	90000
ttgcctcaca	cgcggccggc	ggccgaggtg	gagtgcaaga	aatcgcagcg	tatcctggag	90060
gecetggaca	ttcttatcct	caaactggtg	gtgggcgagt	ttgccatgtc	cgaggccgac	90120
agcctggaga	tgttgctgga	caagttctcc	acggatcagg	cctcgctggt	ggaggtgcag	90180
cgcgttatgg	gcctggtgga	catggattgc	gagaaaagcg	cgtacatgct	cgaggccggc	90240
geggetgega	cggttgcacc	accgacgcca	ccggcggtcg	ttcaggggga	aageggegte	90300
cgcgaggacg	gggaaacggt	egeegeegtg	teggeetttg	cctgtccctc	ggtttcggac	90360
tegetgatee	ccgaggaaac	gggggtcacg	cgtcctatga	tgagtttggc	tcacattaac	90420
accgtctcct	gtcccaccgt	tatgaggttc	gatcagcggc	tgctggaaga	gggcgacgag	90480
gaggatgaag	tgaccgtgat	gtcgccgtca	cccgagcccg	tgcaacagca	gccgccggtc	90540
gagcccgtgc	agcagcagcc	ccagggacgc	gggtctcacc	gtcggcgcta	caaggagtcg	90600
gcgccgcagg	agacgctgcc	tacgaatcac	gaacgcgaga	ttttggatct	catgcgacac	90660
agccccgacg	tgcctcggga	ggcggtgatg	tcaccgacca	tggtcaccat	acctcctccc	90720
cagataccct	ttgtgggttc	cgcgcgtgaa	ctcaggggcg	tgaagaaaaa	gaaacccacg	90780
			gcctggcacg			90840
			agacgtactt			90900
3333	5 5	55	5 5	33-34	333 333	

ggaggtttcg	ggccgacgtc	aaaaataacg	tcattcgtgt	tgacagggct	ttctgcgtcg	90960
gagctctttt	catcttcttc	tgtctcgtcg	acgtcatcgt	ctaccggcga	gggtgtccgt	91020
tgcagcaacg	cgtgctcggg	cgtgtgggtg	aaaccgatgt	cgggggtggg	cggcacgatc	91080
atctgtccta	gggggtgact	gcccaccggc	agataggtaa	agcggtgggt	ggtaaaaacc	91140
gctttggcta	cggtggtgtg	tggggagatg	cagacggtgg	tgtgcgaagt	gttgaccacc	91200
gtcacgccgg	ccgcggtacc	cgggagccag	atggtgggtc	ggatgatgag	atccgattga	91260
ctaaactggc	gcacgcccac	tatgagggcg	cagataccgg	gcgcgtgcac	gtaggccgcg	91320
tcaaaataga	cggtttgcgt	gtgacccgga	ccgatcacca	gcgtctgacg	ggtacgtaat	91380
gaaaagaaac	ggtgttcgtt	gggcggcggc	aagttcatga	gctgccaggg	ttctggcaca	91440
aaacagggga	aaacgccgat	atcgccttcg	atggtgcccg	gaaagatgga	ctgaaaagtg	91500
tcgttgaggt	tgacgacatc	caactgcggg	acttgcagcc	cggattccag	cagctcgggc	91560
atgcaaacga	attgcgcgtc	caggcatttg	taaaaggtaa	tgccgaaaaa	accttcgggg	91620
atatagaggc	tgacgcccag	cgaggtgggc	actttgcgct	cgcgtgatag	ccaaatgatg	91680
tgtttattgt	aaaaggccag	ctgcgtgtgg	cattgtttga	cgatgaaact	ggaaggcatc	91740
cacttgtagg	gaactttgag	cggcgacggt	aatggcgacg	atgetteate	ttctcccgga	91800
tgctgctctt	tgtcgtattt	ctcctcgatc	gattggggca	gcgtaaatgt	ggtttgaaaa	91860
tegetatege	tagcgaaacg	cacgcagtaa	cgcatgttga	cggatttctc	ggctaggatg	91920
atggagcctg	atgacggtgc	ggactcttcc	ttcattatta	acgtaggggt	ctcccagaat	91980
cgctgaaaac	gggagegegg	cagccgcgac	agtaccagtt	gagagtcgat	teggteggte	92040
aacatcgtaa	gcatcgtggc	ggtggtgcga	tggagtggaa	cacactagta	ctaggtcttt	92100
tggttttatc	ggtagcggca	agttccaaca	atacgtcgac	tgctagcaca	ccgagtcctt	92160
ctagctctac	tegeacetea	acaaccgtga	agtcaacggc	tgttgcgaca	actagtacaa	92220
ctacggcgac	aagtacttca	tcgacgacta	gtaccaaacc	cggttccacc	actcacgacc	92280
ccaacgtgat	gagaccacat	gctcacaatg	atttttacaa	tgcgcattgt	acategeata	92340
tgtatgagct	ttcactgtcc	agctttgcag	cctggtggac	tatgcttaac	gctctcattc	92400
tgatgggagc	cttttgtatc	gtactacgac	attgctgctt	tcagaacttt	actgcaacca	92460
ccaccaaagg	ctattgaggg	tggatagatt	tacagcccgg	eggtgtteeg	gcggggtaag	92520
atttccatac	gcgggtaatt	ggaggctaaa	gttacggatt	ttatctagaa	acagcagcga	92580
gtctagatag	teccataggg	gatctataaa	cgttttctga	aacctcgtcg	atggtgacgt	92640
aggtgtagtt	tcgttattat	cggaagccgt	ttcgttttcc	acggacatgg	tttcgttgta	92700
atataaggag	ctcatgtcaa	gagtgccgta	aatagtgtac	ggtgtttcgt	tacgaatcag	92760
tacgtgcgtg	tttttcataa	attctgacac	ggcggtacgg	ttacggtctg	gtttacaaaa	92820
gggttcattc	cgataccgca	gagtagtata	cacccatgtc	gctagatccc	ttaactgcgt	92880
ggccataatg	gacttcataa	agctgctatc	aggacgataa	gcaatcgtag	atgtgggaat	92940
ccgctttgcg	ctggtggtaa	ccctataagt	cgcgttagta	gtgacgttga	gagcggtaga	93000
cgttgtatag	gaaaaatatg	gcgtagtagt	actctgagat	tttttagtct	ttttttctaa	93060
ttgttctttg	actggcgctt	gtttacgttt	tagttttcgc	atagtgtttt	tcaacttggt	93120
	tacttgggga					93180
5 5	33334	5 55	33-70	55 5	555	

actgtgtgtg	cagttgcgtt	gtgcgtaacg	tagaagtagg	gcggttaaac	ccaaaaaata	93240
aatcgtttga	ctatctacgt	taactttagt	cggacccacg	tacaatttgg	tattccaacg	93300
tggtacattg	aaaaacatgg	ggttgaacgt	ggtaaaatta	ccgcagcctt	gttcgccagt	93360
atcattacgt	ttggaaacgt	ttaacatttc	ggaaagacaa	gtcattgaag	gcactgtacc	93420
acaagatggg	ggtctgaatg	ttatcgtttt	agccgtatga	ttgtactgtg	agtagacgta	93480
tttggcgggt	tttctaagct	gggtactata	aaaatcgaac	cacagatagg	ttatactatc	93540
gtttcgaatg	ggacccgcta	gaatgtagta	ttgtggaaac	tgggtcatat	tcatagtaag	93600
atttttaacg	tgttgcctag	tcatattgaa	gtattttgta	taaggttccc	tttctaattg	93660
ttttaaaatc	tctaacttga	atttatctag	tttttgcttg	cctatcgtag	aaagtactgt	93720
acctaaccag	taacgtcccg	gtggtctaac	gaccttacag	tttattatag	aaaataacag	93780
gacagtcagt	gatataataa	agaataattt	agaaatgctt	ctcatgtctt	cttttctccc	93840
catgacagag	gaggaaaccc	cgcaccgtcc	gtctgccttg	tggtttggct	tgcctgcgtg	93900
tactcactgc	tgattctggt	cgttttgctg	ctcatctacc	gttgttgcat	cggcttccaa	93960
gacgacctag	tctcccgcac	cttggctgtg	taccgagctt	gtatccaggg	cccgatatgt	94020
aaccagaccc	acaacagtac	ctcgtaaata	aagacgcaca	gacctcacgc	acatagtacc	94080
atcacaccgt	gtggcgtgta	ctttattaca	acgagcaaga	gtgcccctaa	gtgttggggc	94140
ccgtaccgtt	ttagaaggtt	ttgtgtgaat	gtctttaact	tctctgtcct	ttttctcgta	94200
aactgtcagg	tcctagagtc	agcatgtctt	gagcatgcgg	tagagcagat	agatgccgat	94260
gatggccgac	aacgcgtaga	cggacatcat	gaggagacgg	ctgtcggtgg	cgtccacgac	94320
gacgtcagtt	acttccagga	ccgtaccgtt	tttcaacagc	atgaggtagt	gagttcgtgg	94380
agatgagacc	accacttcgt	tgtagggatc	cagggcaaaa	aggacgtcgt	ccgagtcgtg	94440
catgtacatg	atattaatga	cgccttgcgt	gtcgtcgtat	tctagtaagg	cgctttggca	94500
gaaggcgcag	ttttctagcg	aaatgttgag	cgccgctgtg	atgctgtgtg	tggtgtgcat	94560
gttgcgcgtc	agttcgcatt	tactttgact	gtccgtctgg	gtgatgatga	ggctctggcc	94620
tacgacggtg	gtggagacag	ggtaggagat	acctttgatc	aggtattggt	ttgttacgac	94680
gtagctgacg	tgttcggaga	cggtgagcgc	ggagaaggat	tcgcctagtg	gcagacaaaa	94740
caggtcgggg	aaggtttcca	gcgtgcttgg	ttgcatggta	gataggatgg	agagggggg	94800
gggaacggta	geggggaegg	tggcatcggg	gaagagacgc	gtaaggcgtt	cgagcgagtg	94860
atcgcgtcgc	ccgctactgg	aacagggtgt	gtacaggtcg	ctgaggtatt	cgtggtgcgg	94920
atgagctagc	aactgcgtaa	agtgtgatag	ctcggccaat	gaacagaggc	ccgtttctac	94980
gatgaagatt	tegegtetet	ccgtcgtatg	caccagcatg	gagtggacga	ggctgcccat	95040
gaggtagagt	tcttggcgcg	cgaaggctga	aagaaaagag	gccaggtgcg	ttttgtgtaa	95100
ttgtagggca	aagteggega	tctgtcgtag	tgcccactgg	ggaatgagat	gttgctgatt	95160
ctgtttagaa	agtatgtaga	ccaggcgtac	gaggctggtg	atgtcggtga	tctggtccgg	95220
cgtccagagg	gctcgtttgg	ccaggtccac	ggccgtggga	tatagcagca	atgtggtgcg	95280
tggtggtgtt	tgtgagaggc	aggtgatcat	aaattcttgt	atttgtaaga	gtgeggeetg	95340
gcggtctagg	gcccgtggga	tggagatttc	ggtgccggcc	tcttcttgtc	gggctgccgc	95400
gaacagtgct	aatgcgtagg	caaaggccat	ttctaccgtg	cggcggtcca	gcatttgaca	95460

tegacegett	ttgagtacgt	ctacagcgta	acggtgaaag	ctgttacgta	gcagtgcgct	95520
gaggtccagg	tagttgaagt	cgagtgcggc	gtcgagaaag	tccgagtctt	tgagatagga	95580
gtgacggttc	agttgagttt	tcttaactag	taccaggagc	tcgtgttttt	cagtttgtcg	95640
tagtataaag	ttgtcgcgtt	gatagggcgc	tttgaagagt	acgcgtggaa	gatgaccgaa	95700
gataagcagc	atgggtgtgt	cgtcgtctat	ggataccgta	actacgaaga	agtcctcggt	95760
cagtgtgatt	ttaacgtaac	gtagttcgtc	catgaggtaa	aagccctggt	gcagacaggg	95820
cgtaacggtg	ctgaaaagca	gatcgtgtcc	atcaaagagg	atacaggtct	ggttaaagtg	95880
tggccgatgt	agtcccgagg	tggtgtgcga	tecettecag	tcgtgtggag	tggtttgggg	95940
tggcatccag	acgtgaggta	ttgacagatc	aatgggcggt	ggcacggtgg	tgggctgctg	96000
acccaggctg	tcttgtgcct	tcagctgctg	cgaaaaagat	cggtagctag	ccaggtcttt	96060
ggataccaat	gcgtaggtgt	taagtctctg	ttggtatctt	tctagggttt	cggtcagatc	96120
tacctggttc	agaaactgct	ccgccagagg	acccgcaaaa	agacatcgag	gcatatggaa	96180
tacatagtat	tgattatagc	tttggaaaaa	gttgaaactg	atggcgtttt	ccctgacgac	96240
cgtgctgtta	cggaggctgc	tgttgtaggt	gcactgggtg	gtgttttcac	gcaggaaacg	96300
gatgggtctc	ccataggtgt	tgagtagtag	gtgaaacgcg	tgagggtcca	gcgcttcgga	96360
tgcggcgtct	gcgccatatc	gttgcgaagg	taggtgacta	aggaggtaga	cggcgaagac	96420
ggtgaggtag	aaggggaggc	cgggccgcat	agcgcggccg	cgccgctggg	ttcagcggcg	96480
tgatccaggt	ggtggttggc	gttacacccg	agagaaggag	aaaaaggatc	ccaggaagga	96540
gcacccgggt	gcggcgctac	gggttacaaa	agtcgcgtct	tcgtctattt	aatacgatgt	96600
cattggccgc	tgcgaaggga	gaagaggga	cacgcgaata	agccatgccg	tccgggcgtg	96660
gggacgacgc	tgatttgacg	gggaacgctc	tgcggagatt	gcctcacgtg	cgtaagcgga	96720
tcggtaagcg	caagcacctg	gatatctacc	gtegeetget	gegggtettt	ccctcgtttg	96780
tggcgcttaa	ccgcctgttg	ggaggtcttt	teccaceega	gttgcaaaag	taccgtcgcc	96840
gtctttttat	cgaagtacga	ttaagtcggc	ggattcccga	ctgcgtgttg	gtgtttttac	96900
cgccggactc	tgggtcgcgc	ggcatcgtgt	attgctacgt	gattgagttc	aaaaccacgt	96960
actcagacgc	cgacgatcag	tccgtgcggt	ggcacgccac	ccacagtctg	cagtacgccg	97020
agggcctgcg	ccagctcaag	ggcgcactgg	tggactttga	ttttctgcgt	ctgccacgcg	97080
gtggcggtca	ggtttggagc	gtggtgccca	gtctggtttt	ttttcagcaa	aaggccgatc	97140
gcccatcctt	ttatcgggct	ttccgctcag	gccgttttaa	cctgtgtacc	gattctgtcc	97200
tggactatct	agggaggcgt	caggatgagt	ctgttgcaca	ccttttggcg	gctacccgtc	97260
gccgtcttct	tcgagccgca	cgaggaaaac	gtgctgcgct	gccccgagcg	cgtgcttcgg	97320
cggttgctgg	aggacgcggc	ggtggcaatg	cgcggcgggg	gctggcgcga	ggacgtgctc	97380
atggaccggg	tgcgcaaacg	gtatctgcgt	caggagctga	gggatctggg	tcacagggta	97440
cagacttact	gcgaggatct	cgaagggcgc	gtgtccgagg	cggaggcgct	gttgaaccag	97500
cagtgcgagc	tcgacgaagg	accgtcgccg	cggacgctgc	tacaaccacc	gtgtcgtccg	97560
cgttcgtcgt	ccccagggac	cggcgtggca	ggagetteeg	ccgtcccaca	cggtctttat	97620
agtcggcacg	atgccatcac	gggacccgtc	gccgccgcgt	cageggeege	cggtgcttct	97680
	tggcgcagtg					97740

ggaatcacgc	agaacgatcc	ctttatccgc	tttcacaccg	attttcgcgg	cgaggtggtc	97800
aacaccatgt	tegagaaege	ctccacttgg	actttctcct	ttggtatctg	gtactatcgg	97860
ctcaagcggg	ggttgtacac	gcaaccacgg	tggaaacgag	tgtaccatct	ggcgcagatg	97920
gacaactttt	ccatttcgca	ggagetgetg	ctcggcgtgg	tcaacgcttt	ggaaaacgtg	97980
acggtgtatc	cgacgtacga	ctgtgtactc	tccgatttgg	aageegeege	ctgtctgcta	98040
gtcgcctacg	gacacgcgct	ttgggagggc	cgcgatccgc	cggactccgt	gacggcggtg	98100
ttgagtgagc	tgcctcagct	gttaccgcgt	ctggccgacg	acgtgagtcg	tgagattgcc	98160
gcttgggaag	geeeegtege	cgcgggtaac	aactattacg	cgtatcgcga	ctcgcccgat	98220
ctacgctact	acatgcccct	aagcggtggt	cgccactatc	accegggeae	ttttgatcgt	98280
cacgtgctgg	tgcggctttt	ccacaaacgc	ggcgttcttc	agcatttgcc	gggctacggg	98340
acgataacgg	aggagetggt	gcaagagcgt	ctgtcgggcc	aggtgcgcga	cgacgtgctt	98400
tctctctgga	gtcgacgtct	gctggtcggc	aagctgggtc	gcgacgtgcc	cgtctttgtg	98460
cacgaacagc	aatatctgcg	ttegggeetg	acctgcctgg	ctggcctgct	gttgttgtgg	98520
aaggtgacca	acgcggatag	egtetteget	ccgcgcacgg	gcaaatttac	gttggccgac	98580
ctgctgggtt	cggatgccgt	agccggcggc	gggttgcccg	gggggcgcgc	gggcggcgaa	98640
gaggagggct	acgggggacg	gcacgggcgg	gtacgtaact	ttgagtttct	ggtacagtac	98700
tacatcgggc	cgtggtacgc	gegegaeeee	geggteaege	tgtcgcagct	ctttcccggc	98760
ctggctctgt	tggccgtgac	cgagagcgtg	cgcagcggct	gggatccctc	acgtcgcgag	98820
gacagcgccg	gaggtggcga	cggcggcggc	geegtgetea	tgcagctcag	caagagcaac	98880
cccgtggccg	actacatgtt	cgcgcagagc	tccaaacagt	acggcgattt	acgtcgctta	98940
gaggtacacg	atgecetget	ctttcactac	gaacacgggc	tagggegget	gttgtcagtg	99000
accctgccgc	gtcaccgtgt	gtccactctg	ggetegteee	tctttaacgt	caacgatatt	99060
tacgaactgt	tgtacttttt	agtgttgggg	tttcttccga	gcgtggcggt	gttgtaattt	99120
ccaccacgtg	tegetegetg	cataaagggc	gaacgtcctc	ggagagggta	tattcgttcg	99180
gcgagagcgg	geggeggtgg	tgggtatgtc	cccttctgtg	gaggagacta	cctcagtcac	99240
cgagtccatc	atgttcgcta	ttgtgagttt	caaacacatg	ggcccgttcg	aaggctactc	99300
tatgtcggcc	gategegeeg	cctcggatct	actcatcggc	atgttcggct	ccgttagcct	99360
ggtcaacctg	ctgactatca	teggttgeet	ctgggtgttg	cgtgttacgc	ggccgcccgt	99420
gtccgtgatg	atttttactt	ggaatctggt	acttagtcag	ttttttcca	tcctggccac	99480
catgttgtcc	aagggtatca	tgctgcgtgg	cgctctaaat	ctcagcctct	gtcgcttagt	99540
gctctttgtc	gacgacgtgg	gcctatattc	gacggcgttg	tttttcctct	ttctgatact	99600
ggatcgtctg	tcggccatat	cttacggccg	tgatctctgg	catcatgaga	cgcgcgaaaa	99660
cgccggcgtg	gegetetaeg	cggtcgcctt	tgcctgggtt	ctttccatcg	tagccgctgt	99720
geccacegee	gctacgggtt	cactggacta	ccgttggcta	ggctgtcaga	tccctataca	99780
gtatgccgcg	gtggacctca	ccatcaagat	gtggtttttg	ctgggggcgc	ccatgatcgc	99840
cgtactggct	aacgtggtag	agttggccta	cagegategg	cgcgaccacg	tctggtccta	99900
cgtgggtcgt	gtctgcacct	tctacgtgac	gtgtctcatg	ctgtttgtgc	cctactactg	99960
					gtttcggcat	100020
		-		-		

tatggattac gtggaattgg ctacgcgtac ccttctcacc atgcgtcttg gcattctgcc 100080 getetttate attgegttet tetecegega geceaceaag gatetggatg aeteetttga 100140 ttatctggtc gagagatgtc agcaaagctg ccacggtcat ttcgtacgtc ggttggtgca 100200 ggcgttgaag cgggctatgt atagcgtgga gctggccgtg tgttactttt ctacgtccgt 100260 ccgagacgtc gccgaggcgg tgaaaaagtc ctccagccgt tgttacgccg acgcgacgtc 100320 ggcggccgtt gtggtaacga caaccacgtc ggagaaagcc acgttggtgg agcacgcgga 100380 aggeatgget teegaaatgt gteetgggae taegateaat gttteggeeg aaagtteete 100440 cgtcctctgc accgacggcg aaaacaccgt cgcgtccgac gcaacggtga cggcattatg 100500 ageggeggeg etgtaeggea geggggagaa aagtggeaga taaateaegt eaggtteaea 100560 cgtcgttagc cagcgtcggc atatgaaggg cgcgggcggc cagtacggcc tctgggctga 100620 gacaggacga ggcagggtga gaaagaggag gatggggggg accggggtgg tggtgctgct 100680 getgttgtgg gtgeggaegg tgegggtgee gggaeagegt geeggegaae gttetgtaat 100740 cttccataat aaaagtaaaa atgcccgtct cgtgtcgact ccgctggatc tcgaaggcgt 100800 cgggggtaat gcgcatcttg ccggtgccga tgagataaaa gtaccacatt ttttgacaga 100860 tgatgcgaat caagggttcg tacgcttcgg caccccagtg gcgcgtgaag aaggccgcca 100920 gacgaaacaa gcggtgtccg tagagcgtgc ctagggagaa gaggatgttg ccgttgcgcg 100980 ccaggtcttc ggggaaaacg accggcaggc cggtgtggcg ctgcacaaag cgcgtcagca 101040 gtccgccgct caagcgcggg tgacacaggc gctggctgag acgggcggcg cgcgtttcat 101100 cgaacacggc cgcctcaaag tccagccccg ggaaggcctg gcgcagttcg cggtacagat 101160 gaggccagta gggttgcggc gtcttgcgac taagcacggc gtggtccgag acacccaggt 101220 tgttcatggt ttcgcgcagt agcagcgttt cgagaccgcg gtgaaagagg aggacgcaga 101280 tgaggegtac gattttgagt tettecaaac geagegaget eageggetgt eegegegaca 101340 tetteteget aatetgtaat attagatgat tggegeaagt aaaggagaat ttgeeegtge 101400 ggacccgcgg gacggcgggg ttctcttcgt cgcgggccat catcgttcgc tcggtgagcg 101460 ggtagcgacg gtgaggacaa tgacgatgga cgagcagcag ccgcaggctg tagcgccggt 101520 ctacgtgggc ggctttctcg cccgctacga ccagtctccg gacgaggccg aattgctgtt 101580 geogegggae gtagtggage actggttgca egegeaggge eagggaeage ettegttgte 101640 ggtcgcgctc ccgctcaaca tcaaccacga cgacacggcc gttgtaggac acgttgcggc 101700 gatgcagage gtccgcgacg gtcttttttg cctgggctgc gtcacttcgc ccaggtttct 101760 ggaqattgta cgccgcgctt cggaaaagtc cgagctggtt tcgcgcgggc ccgtcagtcc 101820 gctqcaqcca qacaaqqtqq tqqaqtttct caqcqqcaqc tacqccqqcc tctcqctctc 101880 cagceggege tgegacgaeg tggaggeege gaegtegett tegggetegg aaaccaegee 101940 gttcaaacac gtggctttgt gcagcgtggg tcggcgtcgc ggtacgttgg ccgtgtacgg 102000 gegegatece gagtgggtea cacaaeggtt tecagacete aeggeggeeg aeegtgaegg 102060 gctacgtgca cagtggcagc gctgcggcag cactgctgtc gacgcgtcgg gcgatccctt 102120 tegeteagae agetaeggee tgttgggeaa cagegtggae gegetetaea teegtgageg 102180 actgcccaag ctgcgctacg acaagcaact agtcggcgtg acggagcgcg agtcgtacgt 102240 caaggegage gtttegeetg aggeggegtg egatattaaa geggegteeg eegagegtte 102300

gggcgacagc cgcagtcagg ccgccacgcc ggcggctggg gcgcgcgttc cctcttcgtc 102360 cccgtcgcct ccagtcgaac cgccatctcc tgtccagccg cctgcgcttc cagcgtcgcc 102420 gteegttett eeegeggaat eaeegeegte gettteteee teggageegg eagaggegge 102480 gtccatgtcg caccetetga gtgctgeggt tecegeeget aeggeteete eaggtgetae 102540 cgtggcaggt gcgtcgccgg ctgtgccgtc tctagcgtgg cctcacgacg gagtttattt 102600 acceaaagac gettttttet egetaettgg ggecagtege teggeagege eegteatgta 102660 teceggtgcc gtageggete etecttetge ttegecagea eegttgeett tgeegtetta 102720 tecegegeee taeggegeee eegtegtggg ttaegaceag ttggegaeae gteaetttge 102780 ggaatacgtg gatccccatt atcccgggtg gggtcggcgt tacgagcccg cgccgccttt 102840 gcattegget tgtecegtge egeegeeace atcaccagee tattacegte ggegegatte 102900 tccgggcggt atggatgaac caccgtccgg atgggagcgt tacgacggtg gtcaccgtgg 102960 tcagtcgcag aagcagcacc gtcacggggg cagcggtgga cacaacaaac gccgtaagga 103020 agetgeggeg gegtegtegt egteetegga egaagaettg agttteeeeg gegaggeega 103080 gcacggccgg gcgcgaaagc gtctaaaaag tcacgtcaat agcgacggtg gaagtggcgg 103140 qcacqcqqqt tccaatcaqc aqcaqcaaca acqttacqat qaactqcqqq atqccattca 103200 cgagctgaaa cgcgatctgt ttgccgcgcg gcagagttct acgttacttt cggcggctct 103260 coccepted quetetteet coccaactae tactaceqte tetactecca coeqeeqaet 103320 gacgagtggc ggaggagaaa cacccacggc acttctatcc ggaggtgcca aggtagctga 103380 gegegeteag geeggegtgg tgaaegeeag ttgeegeete getaeegegt egggttetga 103440 ggcggcaacg gccgggccct cgacggcagg ttcttcttcc tgcccggcta gtgtcgtgtt 103500 agccgccgct gctgcccaag ccgccgcagc ttcccagagc ccgcccaaag acatggtaga 103560 tetgaategg eggatttttg tggetgeget caataagete gagtaagaga gaegetatat 103620 ttagggette cetetettt ttttttetae acegtgatae cetaataaag tacacegegg 103680 ttattatcaa cgtctctgtg tttttattat ttagaaataa atacagggaa tggggaaaac 103740 acgcggggga aaaacaaaga agtctctctc tagatgcggg gtcgactgcg tggggtgctg 103800 gaagtggaag cggtgctgat gggtgagggt cgtggcgcgg gcacggaccg caacgtgctg 103860 ctgatgtctg ccgcggtacg cacgtcgccg tccatgtcgc tgcgcagata agaggtaggt 103920 cgtaatgcgg cgtgttgcac gctcaccgtt aatggtacca agtcgtcaag gctcgcaaag 103980 acgtgccacg aggggatgac gagcgtgaga gccccgttgt taccgcttcg acgtctttgt 104040 coggtcagga tcagtgcccg ggacagtccg gcttgggtgt ccgagtcctc gtcgccgctg 104100 gcctcctcqa aqccqqcaaa catqqcttcq qacaqqqqqq tcqqcqtcqq tqtqqatqaq 104160 aggteatett egtegteete tteetettet teeteetett eeteggtggg tggtaateeg 104220 ggggactgcg ggagaaactc ggagacggcg ccgcgcatga cgttgctccg tggaaagaga 104280 ccggcgcgca gctgcacctg gggacgcttg attttgtccg gtttaccggg tgtgagagtc 104340 caaaacccac ggcggaaaaa gtggatgcgg cctagcggct gtcggtgttc caaatgaacg 104400 qcctqatcqc cqqtcaqcqt qacqcqqaqq qtqattcqca cacqatcqqq taqcqqqccq 104460 gettetatgg agaegeeegg gatgttttee gggaaaaaga tggtgtegtg agtetgattg 104520 gtctcgaaag cattctggat ctgcacgatg tactcgggat gtatgcgcgt cagcgtaaaa 104580

cttttgggaa tcaacagctg gaagccgttg tccggcaagc gtcgtaggtg cgggtacgga 104640 ttgtgtcgcg ccaccacctc ggcgcgatgc gtgtaaaccg aaaagtgcag aaacacgctg 104700 gteggegggt geggtgagte gtgatgeaga aacageatga teeattggee tegetegtee 104760 gtctccgttt tgtggatgta cgtattaggg tccgaacagg ccagctgctc cagggcgtct 104820 accaacgtca gcgggatagc gccggcgcga aaggcgaact ggctgacaaa gatctggccg 104880 geeteeaage tgetgteggt tetgeggege cagtteggeg ttacagteag tegeaeggee 104940 cagtagtgag ccgtgcggcg gatgatggcg cgcgcctcca ctcgcggccg attttcttcg 105000 ccgccgcgcc gctggctctg aaagaggtgc agtccgctga cgggtacgcg atccagcggc 105060 agcgcaaagg ccagcaccga gaccgtgttg ttttctgagc ctggcgtcag gcgtcgtggg 105120 ccaaaqttqt tqaqqtccac caqtaqtcqq tcctqttcqc ccaccacqca qcqqccttq 105180 atgtttagat eggteaggte taeggtgteg tgeggagatt tgtteteetg aaaacagcag 105240 agaaccgagg gccggctcac ctctatgttg gtacgcaggt ccaggagtcg tagacgaccg 105300 gettecageg ageegeette cacqttqqtq atgageegaa geacetqqea qtqeaqqeqa 105360 ccaaagctgc cgctggcggc ttcggcctcg ctgatcgcgg ccgcttccga cgagggtccc 105420 tcaccgggcg aggacgatgc ctgagacatc gcgaaggcgg gatgggggga gggtcagggg 105480 atgcgcaaag gtgaacgggt cttcgtggga ggtcgggaag ggttccggca actgtcgcaa 105540 atatagcagc ggcgacaggt gtggcgccca aaagtcgcga gtctgagtgg acgtgggttt 105600 ttatagagtc gtcttaagcg cgtgcgcggc gggtggctca acctcgatgc tttttgggcg 105660 tegaggegat geatggeeeg ggeaggett ettgeeggtg geggegaegt ttgggttgeg 105720 cagegggetg ceatacgeet tecaattegg egaagatgeg gtagatgteg ttggegteec 105780 agaagaactc ctggtacttc agattctgac cctgaaccgt agccaccatg ggcaccaggt 105840 tgcgggccag gatgccggcc tgccagggcg gccaggtgaa cacggccgga ttgtggattt 105900 cgttgtcgga atcctcgtcg gtgtcctctt cgggcgcgac ggtggactcg gccttaaggc 105960 ggccgcgtgt cataacgccc gacgtgcacg ccgttgccga ggatgctgat ttgcgtttgc 106020 ggcccgcgga agtggaggcg cccgccatgg cgccgccgcc ggtgacgcgg ggcgtcttgc 106080 geteggtggt tacgagttet tegteggagt cegateeget ggtecagaeg tegtegtege 106140 cetgggegge accetegteg tgeeggteee aggtgtgteg gtactcaage ttgeeetgga 106200 tgcgatactg gctggtgaag gtggggtgct cgctgtactg aggcccgcgc tgcagcagca 106260 agtogatato gaaaaagaag agogoagooa ogggatogta otgaogoagt tocaoggtot 106320 cgcgtatcgc ttgtacctcc aggaagatct gctgcccgtt catcaacagg ttacctgaga 106380 tgctcaggcc cgggatgctc ttgggacaca gcagcccaaa atgctcgtgt gaggtaaaag 106440 ccacatccag catgatgtgc gagatcttgc ccggtttgat tatcatattt ttgggacaca 106500 acaccgtaaa gccgttgcgt tcgtgggggc gcatgaaggg ttgcgggttg cgggtcatcg 106560 traggtrett ttreargtra gagerrageg tgargtgeat aaagagettg reggagggea 106620 cgtcctcgca gaaggactcc aggtacacct tgacgtactg gtcacctatc acctgcatct 106680 tqqttqcqcq cqtqttctcc atqqaqcaaa ccaqctcqtq cqcqcacacc acqtqccqca 106740 gtgccacgtc cttggtggga aacacgaacg ctgacgtgta gtagacgtcg ggctctttcc 106800 actggttctg ctgacgcgtc caggccagtc ccgagaccgt gagacgcgc tgccacatct 106860

gettgeeega egegtgaate acagegtegg etaegggeag gtgteggtgt ttgegetegg 106920 ccgccgacgg gtagtggtgc acgttgatgc tggggatgtt cagcatcttg agcggcagcg 106980 cgtacacata gatcgacatg ggctcctggc tggggcagat gcttcggccc gtggggttgt 107040 gcacgttgac cgacacgttc tccacctcgc tgcccgtaaa gtacgtgtgc tgcacctgca 107100 getgattgte geegeggtgg eatggegteg agtegggegt gtaetgegae accaggatea 107160 gegagggetg geteaeggt aegtggatae eegtetgeag gagtegegte tegtgeggea 107220 gcaccggcgt atcgccgcga ctaaacacgg ctttcagcac gtgccccgaa atgggaccca 107280 gtacggatat cattteggga caacggegac cgegegacte catgetgeet gegegtacgg 107340 gtgtaggega etgageggeg egeeetetge ggeegeegee ttacatagge aggegaeeaa 107400 acqcqqaacc cqaaataaaa acqttataca caqaqacaac cqcqqattat tqaqtqtctt 107460 tttttattac aaaaaaaaq aqqcaaaqcc ccaccqtcac cacaccccat cacaccacc 107520 caccgatttt ttttgtttta atcccgtatt gcgcggacgc ctagtgtccg ttttccatca 107580 ccaqqqtcct ctqtttaqaq atcqccqcaq accatqqcta qaqtqacaqq actcqttttc 107640 tetgtegtat tttccgtaag ettacagtet tgeggtteeg teteegggga egeeagtege 107700 atgggcagca ggtcctccag cgcgatggaa gcgcccagca ccgagagctg ctgttgcgac 107760 ggcgaatggg acgtggaccg cgagtgtagc gtggatttga cttggtgcgt cattgctgac 107820 aggcaaccgc gattcagcgt atgctttgac gagataaaat agaggcgtcc caggagcgcg 107880 tecegtggga acgtggegee gttetegteg ettaceagta eggttaatte caaceaggag 107940 cgcggtagcc agaccgtaac gggcattttg agtccctgac ggttgtgtgg tacaaaaaaca 108000 cccagataag gcccgtaaaa gcggcggtag atacgtaacg tgtgcgagtt tttcagcgtc 108060 aattegtaag ggaegegeac etecagteee tegteegeeg egeeggageg tggeggtaca 108120 aagtaaggca gtggcgcgtc cgaaaagaag ggtcgtcgca ccgtttcgcg tcgcagccgc 108180 aggogaaacg ccactgggtc ggctggcgcc tcggtgcggt cgcaggtcac gttgaaacgt 108240 aacatgccgt cttggtatag cgtgagtgac gacagcgtca ggtccggcgg tgattcgttc 108300 gggtctagct ccaatcgtcc aaagacggag ggtcccaatg tcttggctgt ggtttccgag 108360 aggegegeeg agataegget ggtgagteea egeggeeeeg agatgeegee tteeaetega 108420 tgccagcaca gcgcgtgtcg tacgcgcacc gtcagcgtgg gcgtcagatc cgtgtccgtt 108480 gattccgcgg aaatcgcgtt ctccgttacg ttgtttatat ccagcgtcgg ctcgaacgtg 108540 agttetggca gatgcagege cagacagteg tgtaacgeeg tgtgatgege ggetttacgt 108600 cqtaqcqqta qccqtttcaq caqcqqcqtq atqatacqqa qcqcqaaqaq attqaqtqat 108660 aaqcqcacqa tqqccatqcq cqtcaqttqt tqqtcaatta ccqaqcqcaq qatatqqcaq 108720 cctgggcgtg cgggaaagag agagaaggcc gggcgcacgt cagaatcctc gttagagacc 108780 acgcatagaa tgccgcgttc acgatcgtcg ttgcggtcat cctcgtcctc ttcttctttc 108840 ttetettett ttteettttt ttteteggge tegtgggaag eegeegttte ttettettge 108900 gacgtcgcgg gggcggtttg agactcgccg ttcgcttccc ccaattgcag cggcgtagag 108960 agcagaatct ggaagggatc ccgcaattct tcgggtcgga ggtcgaggtg caactggatc 109020 agatggtagg tgccgcggtg cacccgaggc tgacggatgt cgtgtttatc cgtcagtgtg 109080 aggatggtct gcggtgagcc gctgtgcttg tccagctcgt ccggcgtttt caggagaaga 109140

ctgtcgtcgt cggtactggc gacgcccatc atggtcgtgg tggtagtggt ggagaggaaa 109200 gtgagegge gegtegaeag ageteggegt tggeggegge atttgeeget gtgteggetg 109260 ctattgctgc caacgccacc geogeogect cgtctggctc gtggccggcg ggcccgattc 109320 cgaaggttgg ggtcgacgcg tggcatgctt ggtgtctgcg ggcgcgagag ggccggctca 109380 gcctttaaat atgcaggtcg cggatttgtt atcgggtgaa acgtcacaca ccgtgaagac 109440 gacctgttcg cggatgaggt catccagctg tcgcagcatg acgaaaagcg ccgacagccg 109500 cgcgatctcg tcgtcgggcg acacgtgctg tggccgcgg ggcgtgcgcg gctcgccgac 109560 gctgcgctcg cggtccagcc gcatcagcag ctcctggcac ttgacgagca gcatggagct 109620 gtcctctagc gccaacttgc gcacgtaggt catggtcagc tccgaggcta ggttagccac 109680 catqqacatq qaqaqqcaqq cqqtcttcat qtcqatcaqc aqqtqctqqt cqatqaccqq 109740 atcggggatg gtgaaggtgg cgtcgcgaaa agtaatggtc tgcagctgct gcacggcagc 109800 ctttacctcc tcgtacgaac ggtcgagcga gaagaggccc atgatgagta gtcgctggtt 109860 gatttccagc gccagtggca tgggtacgat ccagggcagc accagctccc actggcccag 109920 cgtcagcagg ttctcgcgcg ccagcggtcc gtggaagagc ggcggcagca cgcatagcgc 109980 gtegeeette teesaagtea egggteeegt gttgaggaeg gtgtagagea gteegtgegt 110040 cggtacgtgt aggaggatct ggttgccttc tacgcgccgc atcaacgtca gcgtcatatt 110100 gegeageagg cegegeagte gtaegtagee gegggtgtga tetaegaact ggtgtaggee 110160 cagetggtag tgettgatga gatgtagaeg etgeggaatg ggeacaaegg eegetaetag 110220 tttggtcagt ttgcctacgt cggcgatgct gagcttgtgg tcgaaagtgc agaagatgtt 110280 ggcctccatg gccgccatag cggcggtgaa atcctggccg cgacggagga gaagcggaga 110340 cgaacaacgt ctgcaccggg cgcggcgtca gagcgagcgt ggcgcgtccg ggcccgcgtt 110400 tgcgtctagg tgacccgccg ctaacctgcg gtcgtcgccg tcctcctcac cggacggcct 110460 cacgagttaa ataacatgga ttgctgcagc gggatgattt cgcctacgac gtagttacca 110520 aagtgcgttt cggacgtagc aaaagccccg gcgccaccct tgagtttggt ctccatcagc 110580 gccagcgtgg tggtgctgag gatcggtagc gcttcctgcg tcagacggca cgggttttcg 110640 atgagttgtt ccgtgccttc gacgcagacg tactgcgtgt ccgtgtcgcc gcggatgcag 110700 teettggege gtageaggta etegtegatg gttttgaaga gegttttgtt ggeegegata 110760 atctcttctg tgttaaagta ctgcgcgcag gggctgtaga atttggagtt gtagcctaga 110820 cgttcgcgat gtcgggtgtt gtagagtacg tcgctcagac agccggcttg cgaggcccag 110880 gggttgtgtg tggccgcgaa agtctgtgcg tccgcttcgc gatggtcgta gatggccttg 110940 qtqqcqqcct ccqtqtcqta cqqatcqacq qccaqcatqc aqqaqqcacq cccqcqqqq 111000 ttgttgggga tcttaaagta attaacgtcc atcgtcaccg gcgtaaggat tagttcgcac 111060 geggeetttt gteegtgeac egtggeggeg geattgeget eggacatget geegaaegte 111120 agcatggaga tggtctccgt atctaacagt tgcggtcgtt ctacgccggc cgcgtgccgg 111180 atccagcggt ccacctcgtc gtgccggtac acgttcatag ggaagacgcg aaagaggtcc 111240 tgcacgcgga cgcccatgtc ggttcgcacg cggtttacgt aggctacaca ggtatttgac 111300 gtgtaaccca gacccatgtc tacggtgtta atgttctgcg tgacgtggta cgtggtgctg 111360 atgtcgcgtt cctccttggt cacgataggg ttgttgatga taactgacgt gcacgacttg 111420

ccgctgtaga gcagcatgtc cacctcgaag gtgtcggtgc gtacggccgt gagtgcgaat 111480 cccgggtgga tgtgcgcctt ggtctgcagc accagtgaaa ctggtgagat tttgtataac 111540 atggeggeea gegteatgae tgagtgeaac aegttgggae aggtggeega gtaaeggegaa 111600 aagggcgagc gcagccagtt gtggtactcg tgtgcgaagg ctgtgggtag cgggaaacca 111660 ccgtcgtgac ggtgatagtg cgggaactcg gtcacgtagc gtttaatgtc gtcgctcaac 111720 gctgcgcaga tggtggggtt tgagtagaaa cggtggaaag gtacgggtag gctgtactcg 111780 atcaacgtct taggcgccgt cacgacgcag cagccgttgt aaagcacgtg ctgacgtgag 111840 ataaagtccg gcaggccctg acgctgcgcg tggtccagag gcgcgcgtac ttcgagcacc 111900 ttgacgtgct cgccacgaa ttgcacggcc aaaaacagtt cacgacaggc ctgcagcagc 111960 ggcgtatgcg cgtcggtggc gacgtcctcc accagctcgg tcagcatctc gcctacggct 112020 tgacgttgcg ccgctatcga gtcttcgggg gtgacgccgc ttgtgctctc tttcgacgtc 112080 gtacctgacg tggagaccgc ggtggcggcc ggcatcagga gaaacgccgg tcggtaaaag 112140 aggtctacta gcagcgtctt gaggttgagt cccaggccgc aggcccggtt gttggtcatg 112200 gcgggcatga ggcagagata aaagaccttt tgtaacgtcc attcgtcgtc ggtggcacgg 112260 taategteea caaacagegg etegteggea tecatggege ecaaacgegg taegteegaa 112320 acgccgtggt gtcgcgctc gatgttggcc gggttcaacg gttgccggtc ggctactacc 112380 tgtacgcctt ccatgttacg cggcaggtgc gtaacgaagg ggggccacag ccggtggtcg 112440 tgcagcgcgt tcacgtaagc cgatagcggt tcctcagcca gttgaccgtt gttaagtccc 112500 ggcagcgctg agatgcgcgt caccagacgc agcacggcga tcagattgcg gtagtgaaag 112560 agcaactgcg gtggtagagc gccatcagcc aggtgttcgg cgatcaacgt caccagcgca 112620 tagctgtgcg caaaaaccag cagctgacgt gtgtgaaaca tgttgacgat acaacgtgct 112680 acgaaagtgc ggattagcaa aaaagcgtcg acgttgccgt gtaccagcac gtcaaccagg 112740 tagcagaget cagggtaatt ggggettgte acggtggttt taaaaagteg caacgtgtet 112800 tegtagtegg gtggtggeeg eagtegeatg tgtteeatga teteceaggt gegeagtteg 112860 tggaaggggc ccggtgccag tccatctggc aaattaccga tgacgatacg cggtgtacac 112920 agegecaceg tttegetgtt tteetggeag tgegtaaagt egaagaaggg gtgeageteg 112980 gtgtagagcg tgatgttgcc caccttgtag aagtcggtga ccacaaagtc ctgcttcatt 113040 tegtteaceg tgegegggac etegegtegt acgeggtaaa aatgeggtat geggegegec 113100 gcaccgccca tgggttcctg ctgaaaacga cactcgagca gtcgttgcat ggcgggttcc 113160 gagggggtc cgcgttccgt gaaggtctgt agacagggcg cgggctcgtg cagcaccggg 113220 tggcacagcg tcttgagcgc gtccacaaag tctatctttt gtacggcacg gtcccggttt 113280 agcaggtagg ccgtggtggg caacgcgttg cgaacggtgt cgttaagctt aactttgctt 113340 tctaccgtgg tgtaaccgcg atcctcgggc agatacagcc ctacggggaa gaaaaacgtc 113400 aggtccacgt tacgttctag cggatctttg gtatcggtgt ttttgtagac gcgccgcaag 113460 ttttccataa tcaccgtttt ttcgcccagt cggatcacgt ccatgctcag cggcgttaag 113520 ctgtgcgccc cggcctgcga aagcgagtcg ttgggcaaat gcggttggcc cgaagtcaga 113580 tgagccttgt acgagttgaa atcggccagg atcgagtgat aggatatggc agtgacggca 113640 ttttcgggac tgagtacaaa attgccgtag gtggccggcg ccgagaccgt ttctttggtg 113700

atgtggcttg agagcagcga catgatgatc tgcataacgt tggctgtgct taccatcacg 113760 ccgctgatct tggcccccga gctcgtggtg tacgtggtgg ggttgtctag gatgctatcg 113820 gtggccgctt cggccagacg cgtgaggaac ttgagcacat agtcgcgatc gcgcgtgcga 113880 ttcagcaaaa agagcgtggc cagcattttg gccttgaagc tctgcaagat gttgcttcgc 113940 tggatgcggt tcagcgcctg tcgcgccagc gtggcgttct ctaccagcgt ctgcaccaca 114000 aagtacggcg gcgccttgcg tagcagtgtc tgtaaaaagc tgtgaatcaa gccgcgttcc 114060 atggcgtcgg ccgtgttttt cagcgcgcgc agcaccgtgt gcatagcttc cacgttgagg 114120 atettgteca ggatggtgee ttegaaegte tegegeagat aegtgaggea ggetgegetg 114180 agctcaaagg ggatggtgat gggggatttt tcactgtatt tggtgaccat aatggtggtc 114240 tgacqactqq tqqqcaaacc qqcqccqctq qccacacqcq qcacctqcac qtqqaacaqc 114300 atttttcccq taqtcaqttt attqaqqtcq tqqaacttqa tqqcqtqcqc cqccqcqqcc 114360 aagccgctgg tcaaaaaata aacccattcc aggcgattgc agaaggtgcc gaagatggct 114420 tegaagtgaa tattgtaaeg eteggggteg tegeegtagt agatgegtaa ggeetegaae 114480 attectede eggegetggt ettgaegtge gteagaaagt eagtgggaat geetaettta 114540 ggcaggagct cgagcgccga ccagttetec atcgcggcgg cggcgtgagc gcgaggcgtc 114600 ggageteggg gaaageageg egaceeggat aatggeegge getgegeege geegeetegg 114660 ctgtgacget ctaatagteg teggeggete egetaegeeg egeegggttt tacaegteee 114720 cgtgcacgtt cgcgcctgca acctcaccca agagctatca acgggcgagg acgcccgctt 114780 ctgtcgtccg cgacccgtta acgtcgaacg ggtgcgcgct gtttttgcgg ctctctaccg 114840 tgcctgtccg atacacgtga ggaccgagcc cgagcgtgtc aagctggtac tgggtcgtct 114900 gttactggga cccgtggccg taccctgttt ttgcgacggt gaagtggagg gccacggtga 114960 acatetggta cetacgaege agttttgteg egggeegetg etetaegtge acegaegttg 115020 ttgttgcgga tccgtgaccg ccgggcgcgc gctgtcctac cacgttctcg aaaaccacgt 115080 ggccacgcat gtgctacgcg gattgctctc gctgacggaa tggaatcgag aattgccgag 115140 cctcttttgc gactgtcctg gcggcggtgg cgcctcggga accgaggaac gctacgctat 115200 ggcctgcctg ccgcgcgacc tcagcctgca cctggacgac tatccttacc tgatggtgga 115260 aateggaege gtaeteagtg teagegaggt agaegaetae gtaaeegeeg teteeggeta 115320 cctgggcgag gccgcggcgc cgcgcatcca ggttcactac aagctgctct ttggactcaa 115380 cgtgcgtccg caagcgccgt gcgcgttgga cgctacacgc gacttttttc tactggagct 115440 gcaaaagctt tggctgggcg ttgaatatca ccacgaagtg acgtcggagt ttttcggtcg 115500 cqtqctqqct caqctqcatc qcqaccqcqc ccqcqtcatq atqqcqcttc qcttqcccqa 115560 gcagacggtg tgccacctga gcaccttcgt tctcagtcgc ttcaagcgac aggtactgta 115620 cttcaagtta caggtgagct acggcaagtg ccggactggc cacgctgaca gaagtggggg 115680 agggggaaac ggtggaaatc agggacacca caacctactg tgttatcgac gccttagcgt 115740 cacgtttgcc gacacggaca cggtgtggag aaaccttttc tacgtttatt atgaactagc 115800 tegggatetg gggteecatg ggaeggggaa eegaeeegta aacegeggtt aeggtgttte 115860 ttgcgctccg aggacgtcgc ggctatcacc gtcagaatcg acggtggttt cggcgaacgg 115920 acacgegetg tettecaceg egetecegae gaegagegeg ggteacaage tgteactgee 115980

gegegaceeg geegeegate gegttegaeg ttaegtgtge atcatetege gteteatgta 116040 cgctcggtac ggggagagat ggcgtaaaca ccgtcaacgg cggtcggaga cgggagaaga 116100 ggaggaggaa gagacgctgg aatcggggga gactgacgcc acgccgccat ttgactttac 116160 ggggcagcag ctgcgccggg cctatcagga acaccgacgt cgtaaacatc tagccgtgca 116220 gcgttacgcg ccgtgccgtc gtaagctcat cggcgggatg gagtttgccg aggtgacggg 116280 cgtgagtctg gaccgcatcg ccgtcaacgc tttcaacacc aaccgcgtta tcaatatgaa 116340 ggeegegete tegtecateg eegegteggg teteggegtg egegegeege ggetteecaa 116400 gaacatgacc cacagttttg tgatgtacaa gcacaccttt aaggagcccg cttgcaccgt 116460 cagcaccttt gtttccaacg acgccgtcta cattaactcg ctcaacgtca atattcgcgg 116520 ttcctacccc gagtttctgt actcgctggg cgtgtaccgg ctgcacgtta atatcgatca 116580 cttttttctq ccqqcqtqq tqtqcaacaq caactcctcq ctqqacqtqc atqqqctqqa 116640 ggaccaggcg gtgatccgct cggagcgcag caaggtgtac tggaccacca actttccgtg 116700 catgateteg catactaaca acgteaacgt gggetggtte aaageggeta eggeeattgt 116760 geogegete tegggegetg acetggaage cattetgete aaagaactet egtgtateaa 116820 gaacatgege gaegtgtgea tegattaegg tetgeaeege gtttteaege aactagaget 116880 gegeaatteg taccagatee cetteetgge caageagtta gtgetgttte tgegtgettg 116940 cctgctcaag ctgcacggtc gagagaagcg gctgcagttg gaccgcctag tatttgaggc 117000 ggcacagegg ggtetetttg actacageaa gaaceteaeg gegcacacea agateaagea 117060 caettgtgeg ctcatcggca gtegtctagc caacaacgtg cccaagatcc tggcccggaa 117120 caaaaaagtc aaattggatc acctgggccg gaacgccaac gtgctgacgg tgtgtcggca 117180 cgtggaagee cacaagatee etegcaegeg ceteaaagtg ttagtegagg tgetgggegt 117240 gttgcagagt atcagcggta cgccgcacac gcgcgaagtg atccaccaga cgttgtttcg 117300 gteeteatet teeteegtee ettetgteee aaceteegte agegttgaeg geagttetga 117420 acceaegteg eegegagege ggtttgeate acgatgatgg aageegegge egetgeegee 117480 geggegttte gteeggagga gegteegaeg eegggttgge aegaegegge gttgttaatg 117540 gacgacggta cggtgcgcga gcacgcgttt cgcaacggac cgctgtcgca actgattcgc 117600 cgtgtgttac cgccgccgcc cgacgccgaa gacgacgtgg tttttgcttc cgagctgtgt 117660 ttttattgca geggtegttt taacegeagg tegteegtet tetecateta ttggcagaag 117720 catagogate tggtgtacge gettacggge attacceatt gegecaagtt ggtggtggaa 117780 tgcggtcagt tggggagtag taggctacgg tggcgcgacg gtgatgcgag tggtgaggag 117840 cgccggggag acgacgacag cagggacgag ctgtacgacg tgccgggcat ttatatgatt 117900 cgcgtcaacg acggcggcag caccggccc agacacgtta tttggccggg taccagcgtg 117960 ctttgggege eggaegttgt gateactaeg gtgeagegae gaatetegge ggegegege 118020 ctggtgaaca cgttccgcca atatttttt ttgctggaac ggcgctcgca cgaggagctg 118080 gttetttgte egecegagat ggaggagegt etagegeeat tgttgeagag tgeeaegege 118140 ggtgattcgg acatgtttga cggtgtggtg gccagcgctt atcaccgttt gcgaatgagt 118200 aatatteege gtteateege eegtetgetg gageaetgeg tggggetgge gggtgetaag 118260

aagetgetet tgetegaegt geegegtetg gagaactatt ttetttgtea agtetgtett 118320 tacgagctgg acgaggacga gatgggcgag gagatgctgg gcatgttggc cggaaagccc 118380 gaggatgccg ccgtctcggg cgcaagcggc ggttttctgc tacatcgcaa gacgatgaag 118440 ctggccgcct gtctgtgttt gttgctcaat tcgctgcatt tgcaccagga ggcgctggag 118500 geettggate etcegeegee gegegtegag gagaacgace ttgtcaaegt ggtgetgege 118560 cgttattatc gcagtcacgg cggcgtgcag gcgcggacgc tggcggcggc ccgggctttg 118620 ttagccgact acgctgaaac gttttcgcct ttggggagtt ttacgcgcct gggttacgat 118680 cgtctcgttt ctgccgatgc cggcgtcagt cgtcggcacc tggtggctct gctgcgtgcc 118740 tagctgaccc tgaaacggat ggcgtgtata tcgtcacaca ggtaggtggc catgatgacg 118800 qcqatqataa qatcqtccqa qatacqattc tqqcqcttqq ccqaqtaqcq tqccqtcqtq 118860 cetteggeea gegtgaegeg gtgeaggtte tgaatetget ceagaagata etegatgggg 118920 tegtggetea gettgatggt gtaggagaeg agetettgeg aggetttgat gtageeegag 118980 ttgaaacgcg agatgaactg ttctacggcc agcgccttgt cgcggcccat gaggtagaag 119040 ggctgttcga tgtggttctg gtcgggcgtg tggtagaaga gcacgcggat gagcgtgctg 119100 ctctgcacgc tctgtcggat gaggcaggcg atgcgcacgg ccgccgcctg gttggtgttg 119160 ccctccacgg cgatacgcag ttcgtccagg taagggtgca ggctcagcac cgagatgatc 119220 atatgcgccg cgcactcggc gatggctacc tcagaactct cggagaggtc gcgcaaaaaag 119280 aaatgeteta ggeegtaaat gagaaactgg tgteggtagg egeetaegge egeeaegeee 119340 gtgcccgagg ccttgcggtt ggtggtgaag gccgggtcca gatacacgta aagcgtcttg 119400 ccgaaataat cgtaggcgtt ggtgttgagc gtgctgtaac gcaaaatgtc gaactcttcg 119460 cggctctgat ccgtgatgag cacggtgttc tgcgagattt tattggtacc gccgatgatc 119520 tegtecatga aagegeeegg cataaacatg ttggeegtet tgegeacetg egagttgagg 119580 ctgatgaagg tgggcttgtg cagtcggtag caaggacacg ccgtggcgtc gcccttctcc 119640 gtgaagctgt gcaggtgctc ttcgcacacg taagagacca cattgagcat gtcaaagggc 119700 gcattgttga ggcgcgtcaa gaaacacgtg gcgtcactgg tagtgttggt ggacgatatg 119760 aagatgatet tggtggtatt etgggeeagg aaceeeagaa tggtgttgaa ggeetettte 119820 ttgatgaagt gegeetegte caccageage aagtggaagt tttgteeteg gatgetetgt 119880 gtagagagga gacagaaaag ggactettat gattacgcac geteggetgg aageetacag 119940 agtegggttg gggceggaca ggtgagecag gtgageegee aggtgaggeg ggategeegt 120000 gtgccaaccg ggctgcgacc tgaaaaccgg aaccaatccg ccgacaccgg cgccgcgtga 120060 cgcqcqccca taaaaacqaa aqtqtcqtcq tcqcqacccq ccacaqccqc catqaactcq 120120 ttgctggcgg aactcaaccg actgggggtc gcgcacgcca ctacggagga tgtttttatc 120180 tttgtcgacc gcctctttca acacttttcc ttccttttcc aggccgagga gtcaggccg 120240 cgccgcttgg aactggtcgc gtccgtgttc gagcacctga cggtggagtg cgtcaacgac 120300 atcctggacg cctgcagcca cccggacgtg aacgtcgtgg agacaagcaa cacctgtcgt 120360 ccctgccctt ctcctgttcc ctccgccccc aaaactgtca gcgacgctca gacgtcatgt 120420 gegaegeete gggegeetgt gaeatgagge aegteeagaa egegtttace gaggagatee 120480 agttacactc gctctacgcg tgcacgcgct gctttcgcac gcacctgtgt gatctgggca 120540

geggetgege getegtetee aegetegagg geteegtetg egteaagaeg ggeetggtat 120600 acgaagetet etateeggtg gegegtagee acctgttgga acceategag gaggeegeae 120660 tggacgacgt caacatcatc agegeegtge teageggegt gtacagetae eteatgacge 120720 acgccggccg ttacgccgac gtgatccaag aggtggtcga gcgcgaccgc ctcaaaaaagc 120780 aggtggagga cagtatttac ttcaccttta ataaggtttt ccgttctatg cataacgtca 120840 atogtatttc ggtgcccgtc atcagccaac tttttattca gcttatcatc ggtatctact 120900 caaagcagac caagtacgac gcgtgtgtca tcaaggttag tcgtaagaag cgtgaggacg 120960 cgcttctgaa acagatgcgt tccgaatatg gaaacgcacc tgtattcgga tctggcgttt 121020 gaggegeggt tegetgaega tgageaattg cetetaeace tggtgetega ceaggaggtg 121080 ctgagtaacg aggaggccga gacgctgcgc tacgtctact atcgtaatgt agacagcgct 121140 ggccgatccg cgggccgcgt tccgggcgga gatgaggacg acgcaccggc ctccgacgac 121200 geogaggaeg cegtgggegg egategeget tttgacegeg ageggeggae ttggeagegg 121260 gcctgttttc gtgtactacc gcgcccactg gagttgctcg attacctacg tcaaagcggt 121320 ctcactgtga cgttagagaa agagcagcgc gtgcgcatgt tctatgccgt cttcactacg 121380 ttgggtctgc gctgccccga taatcggctc tcaggcgcgc agacgctaca cctgagactg 121440 gtctggcccg acggcagcta tcgtgactgg gagtttttag cgcgtgacct gttacgagaa 121500 gaaatggaag cgaataagcg cgaccggcag caccagttgg ctacgatcac gaatcaccgt 121560 cggcggggcg gactgcgtaa taacttagac aatgggtcgg atcgccgttt gcccgaagcg 121620 getgtggett etetggagae ggeegteagt acteeatttt ttgaaattee gaaeggagea 121680 ggaacctcct ccgcgaacgg cggcggcaga ttcagtaacc tggagcagcg ggtagcgcgt 121740 ttgttgegeg gegaegagga atteatetat eaegegggte eattggagee geetteeaag 121800 atacgcggtc atgagttggt gcagctgcgc ctggacgtaa atccagacct catgtacgcc 121860 accgatecge acgacegega egaggtegeg egtaceggaeg agtggaaggg tgeeggtgte 121920 tegegtette gegaggtetg ggatgtgeag categegtge geeteegtgt getgtggtae 121980 gtcaattcct tttggcgcag tcgcgagctg agctacgatg accacgaagt cgaactatac 122040 cgggcgttgg acgcttatcg ggcgcgcatc gccgtcgagt acgtgctgat tcgcgccgtg 122100 cgcgacgaga tctacgctgt actacgacgg gacagcggcg cgttgccaca gcgtttcgcc 122160 tgccacgtgc cacggaacat gtcctggcgc gttgtttggg aactttgccg tcatgccttg 122220 gcgctctgga tggatcgggc ggacgtgcgt agctgtatta ttaaggcgct aacgcctcgt 122280 ctgageeggg gtgeegeege tgeegeteag egagetegte geeagegega gegeteggeg 122340 cccaaaccqc aqqaqctqct tttcqqaccq cqqaacqaqa qcqqtccqcc cqccqaacqq 122400 acttggtacg ctgacgtggt gcgctgcgtt cgcgcgcaag tggatttggg cgtggaagtg 122460 cgcgcggcgc gttgtcctcg caccgggctt tggatcgtcc gtgatcgccg cggacgcctg 122520 cgacgttggc tctcgcagcc cgaggtgtgc gtgctctacg tcacgccaga cttggacttt 122580 tactgggtgc tgccgggcgg ctttgccgtc tcttcgcgcg tcactcttca tggcttggcg 122640 cagegggett tgegagaeeg attecagaae tttgaageag ttettgeaag aggaatgeat 122700 gtggaagctg gtcggcaaga gccggaaaca ccgcgagtat cgggccgtcg cttgccgttc 122760 gacgatettt agteeggagg acgacggete gtgtatettg tgccaattge tgttgeteta 122820

ccgcgacggc gaatggatcc tctgtctttg ctgcaacggc cgttatcaag gccactatgg 122880 cgtgggccac gtacatcggc gtcgtcgacg catctgtcat ttacctacct tgtaccaact 122940 gagettegga ggteetttgg gteeageeag cattgattte ttgeeaaget ttageeaggt 123000 gaccagcagt atgacgtgcg atggtattac gcccgacgtg atttacgagg tctgcatgtt 123060 ggtgccccag gatgaagcca agegcatect ggtcaagggt caeggtgcca tggacetgae 123120 ctgtcagaag gcagtgacgc taggcggcgc cggcgcctgg ttgctgccgc gtcccgaagg 123180 ctacacgctt ttcttttaca ttctgtgcta cgacctgttt acctcatgcg gcaatcggtg 123240 cgatatecet tecatgaege ggeteatgge ggeggeeaeg geetgeggge aggegggttg 123300 cagettttge acggateacg agggacatgt agateceact ggcaattacg tgggttgcac 123360 coorgataty gacagatyta titiqtiacyt gacatytygg cocatyacya agtagatat 123420 ccacaacqat qaacccqcqa cttttttctq tqaqaqcqat qacqccaaat acctatqcqc 123480 cgtaggttct aagaccgcgg cgcaggtcac actgggagac ggcctggatt atcacatcgg 123540 tgtcaaggat tctgagggcc gatggttgcc cgtcaagacc gatgtgtggg acctggtcaa 123600 ggtagaggaa cctgtgtcac gtatgatagt gtgttcctgt ccggtgctta agaacctagt 123660 gcactaacgg ggtctgacag ttcacgggga gaagaaacaa gaaacaacaa aaaaaaaaga 123720 ggacatggac tcgccacggt ttgtggcaag gcgtatatta tcatcatgga gctactcacg 123780 ttqqtqttqt aqcaactqqc aaaaaqcqcc qtqctcttqq cqccqcqqtq qtcqatqctq 123840 atcacgttgt ccttgttctc gaccacgtag tcgcgcgcga aggtgtggcg gcagcggaac 123900 tegacetett tgageacaaa etgegacaeg tgettttggt gegeeaegta geegatgetg 123960 atgccgatca tgtgcttaag cagaaacgag ataatgggga tgatgaacca agtcttgccg 124020 tgacgtcgcg gcaccaggaa cacggtggct ttctgcttaa agatgtcgat ggaggtctgc 124080 gagaggaagt cgatctggaa ggcgtggatg aggtactgca gcacgcgatt ggccagcacg 124140 gggatcttgg tcacggctat aaaaaagatg acgtgtatca ataaattctt ttgaaacggt 124200 tegagtegga tggettttge gtegeceteg aeggeggtae tgaageegee gtegageeae 124260 tttttaaagt cggtcatgaa gttgttgatc tgctgaaact gcggatcgcg gtagagctcg 124320 gtcaacgcgt ccagcttctg gtaggaggcg cgctgctcct cggagcacgg gcgaaacgtc 124380 agttcatcga gcgcactctt gaggcgctcg tgaaacagca gctcgcgctg gctttcctcg 124440 ggcgagttgt agtcgcggtg gcggccgcag aaggccatga gcggcaggaa ggcctcgttg 124500 cacgagtggg ccagcccgag ttcggggtgc atcatctggt agcgcttgcg gcacagcgcc 124560 gccacattgg tgaaggccgt ggagatgcag gaggtggggt ggctcttgcg cttctgcagc 124620 tecqcqtage qetectqqat ettqqcqqce qaatetecqc qeaacatqat qqcqqcqqcq 124680 gtggtgcgag cggaggttag gcggcagcgg cgagaggaga ggaaaaagat ggcgtccgcg 124740 aggacgacgg aggatccacc cgaaaaccac gttgtcgcgg acgtggcttg tgggacgggc 124800 geogteacte gttegtette gtegteecta gtggtgtegt etteetegge gteaggetea 124860 gacgaatctt cctccgcctc tcctctcagt ttccccgtct cctctccctc aactgccgtc 124920 aggteteegg ggteegeegg ggtttegaeg teeetgtget eggtggaaeg gatggtegag 124980 ctgtcggcgc agtctccggc cgccgatttc tcggtctccg aggcttggcg tttcgaggag 125040 gccgtaaata tggcgctggt ggcctgcgag gccgtgtcac cttacgatcg ctttcgccta 125100

attgaaacgc ccgacgagaa tttcttgttg gtcaccaacg taattccgcg cgagtcggcc 125160 gaggtgccgg tgttggatag cagtagcagc ggtggcgata gcgggccgga ggacaaaaaag 125220 aaaaacgtcg ggaataaaac cgcgggggaa aagaacggcg gtgggtctcg ggccaaacgc 125280 cgtcgtagac gacgcgctcc gaaaaacgac gccgccacgc cgtcttttct acgtcgacac 125340 gacgtgctgg agcgtttcgc ggccgcggct gagcctttgc cgtcgctttg tgtgcatgat 125400 tatgcgttac gcaatgctga ccgtgttacc tacgacggcg aattaatcta cggcagttac 125460 ctgttgtatc gcaaggctca cgtggagctg tcactctcca gcaacaaggt gcaacacgtg 125520 gaagetgtge tgegacaggt gtacaegeeg ggettgttag ateateacaa egtgtgegae 125580 gtggaggcc tgctgtggct gctgtactgt ggaccgcgca gcttttgcgc gcgtgacacc 125640 tgtttcggtc gcgaaaagaa cggttgtcct ttccccqcgt tgttgcccaa actcttttac 125700 gaaccogtgc gggactatat gacctacatg aatctggctg agctgtacgt ctttgtttgg 125760 tategegget acgaatteet tgegecaacg cegeaggega egaeggeggg tggtggtggt 125820 ggtagtggtg gcggcggcg ggccggcgct tgtacggtcg agacgagcgc gtcagcaggc 125880 cgggtcgatg acgccggcga cgaggtgcat ttgcctttaa agcccgtctc gctggaccgt 125940 ctcagagagg tgttacagge ggtgegegge egettetegg ggegegaggt geeegeetgg 126000 ceggeetegt egegeacetg tittgttgtge gegetetaea gteagaaceg tetetgttta 126060 gatctcgcgc gtgacgaggc gcggaccgtg agttatagcc ccatcgttat ccaagactgc 126120 geogeggetg ttacegaegt caetttgage caeatettge eeggeeagag caeegteteg 126180 cttttccccg tctaccacgt cggcaagttg ctggacgctc tctcgctgaa cgacgcgggt 126240 ctcatcacgt tgaatctatg acgtcggtca acaaacagct cttaaaggac gtgatgcgcg 126300 tegacettga gegacageag cateagttte tgeggegtae etaeggaceg cageacegge 126360 tcaccacgca gcaggctttg acggtgatgc gtgtggccgc tcgggaacag acccgataca 126420 gtcagcgaac gacgcagtgc gtggccgcac acctgttgga gcaacgggcg gccgtgcagc 126480 aagagttgca acgcgcccga cagctgcaat ccggtaacgt ggacgacgcg ctggactctt 126540 taaccgagct gaaggacacg gtagacgacg tgagagccac cttggtggac tcggtttcgg 126600 cgacgtgcga tttggacctg gaggttgacg acgccgtcta acaggtatag caatccccgt 126660 cacgcctctg ttcagatttt attaaaaaaa aaacacacca taacgacagt gtcggtgtgg 126720 tagctagtgc agccctagga acagggaaga ctgtcgccac tatgtcctcc gcacttcggt 126780 ctcgggctcg ctcggcctcg ctcggaacga cgactcaggg ctgggatccg ccgccattgc 126840 gtcgtcccag cagggcgcgc cggcgccagt ggatgcgcga agctgcgcag gccgccgctc 126900 aaqccqcqqt acaqqccqcq caqqccqccq ccqctcaaqt tqcccaqqct cacqtcqatq 126960 aagacgaggt cgtggatctg atggccgacg aggccggcgg cggcgtcacc actttgacca 127020 ccctgagttc cgtcagcaca accaccgtgc ttggacacgc gactttttcc gcatgcgttc 127080 gaagtgacgt gatgcgtgac ggagaaaaag aggacgcggc ttcggacaag gagaaccagc 127140 gteggeeegt ggtgeegtee acgtegtete geggeagege egeeagegge gaeggttace 127200 acggettgeg etgeegegaa aceteggeea tgtggtegtt egagtaegat egegaeggeg 127260 acgtgaccag cgtacgccgc gctctcttca ccggcggcag cgacccctcg gacagcgtga 127320 geggegteeg eggtggaege aaacgeeegt tgegteegee gttagtgteg etggeeegea 127380

ccccgctgtg ccgacgtcgt gtgggcggcg tggacgcggt gctcgaagaa aacgacgtgg 127440 agetgegege ggaaagteag gacagegeeg tggcateggg ceegggeege gtteegeage 127500 cgctcagcgg tagttccggg gaggaatccg ccacggcggt ggaggccgac tccacgtcac 127560 acgacgatgt gcattgcacc tgttccaacg accagatcat caccacgtcc atccgcggcc 127620 ttacgtgcga cccgcgtatg ttcttgcgcc ttacgcatcc cgagctctgc gagctctcta 127680 tetectacet getggtetae gtgcccaaag aggacgattt ttgccacaag atetgttatg 127740 ccgtggacat gagcgacgag agctaccgcc tgggccaggg ctccttcggc gaggtctggc 127800 cgctcgatcg ctatcgcgtg gtcaaggtgg cgcgtaagca cagcgagacg gtgctcacgg 127860 tetggatgte gggeetgate egeaegegeg eegetggega geaacageag eegeegtege 127920 tggtgggcac gggcgtgcac cgcggtctgc tcacggccac gggctgctgt ctgctgcaca 127980 acqtcacqqt acatcqacqt ttccacacaq acatqtttca tcacqaccaq tqqaaqctqq 128040 cgtgcatcga cagctaccga cgtgcctttt gcacgttggc cgacgctatc aaatttctca 128100 atcaccagtg tcgtgtatgc cactttgata ttacacccat gaacgtgctc atcgacgtga 128160 accegeacaa ceceagegag ategtgegeg eegegetgtg egattacage eteagegage 128220 cctatccgga ttacaacgag cgctgtgtgg ccgtctttca ggagacgggc acggcgccc 128280 gcatececaa etgetegeae egtetgegeg aatgttacea eeetgettte egaeeeatge 128340 cgctgcagaa gctgctcatc tgcgacccgc acgcgcgttt ccccgtagcc ggcctacggc 128400 gttattgcat gtcggagttg tcggcgctgg gtaacgtgct gggcttttgc ctcatgcggc 128460 tgttggaccg gcgcggtctg gacgaggtgc gcatgggtac ggaggcgttg ctctttaagc 128520 acgccggcgc ggcctgccgc gcgttggaga acggcaagct cacgcactgc tccgacgcct 128580 gtctgctcat tctggcggcg caaatgagct acggcgcctg tctcctgggc gagcatggcg 128640 cegegetggt gtegeacaeg etaegetttg tggaggeeaa gatgteeteg tgtegegtae 128700 gegeettteg cegettetae caegaatget egeagaecat getgeaegaa taegteagaa 128760 agaacgtgga gcgtctgttg gccacgagcg acgggctgta tttatataac gcctttcggc 128820 gcaccaccag cataatctgc gaggaggacc ttgacggtga ctgccgtcaa ctgttccccg 128880 agtaaccggg acgcggaacg tgacggttgc cgaggggaaa ggcgacagag aaggtacaaa 128940 cccaccggcg ggaaaaatac tgaggcgccg ccatcatcat gtggggcgtc tcgagtttgg 129000 actacgacga cgatgaggag ctcacccggc tgctggcggt ttgggacgat gagccctca 129060 gtctctttct catgaacacc tttttgctgc accaggaggg cttccgtaat ctgcccttta 129120 cggtgctgcg tctgtcttac gcctaccgca tcttcgccaa gatgctgcgg gcccacggta 129180 cqccaqtaqc cqaqqacttt atqacqcqcq tqqccqcqct qqctcqcqac qaqqqtctqc 129240 gcgacatttt gggtcagcgg cacgccgccg aagcctcgcg cgccgagatc gccgaggccc 129300 tggaggggt ggccgagggg tgcgacgacc ggcacggcgg ctcggacgac tacgtgtggc 129360 tcagccggtt gctggatttg gcgcccaact atcggcaggt cgaactcttc cagttgctgg 129420 aaaaggaatc gcgcggacag tcgcgcaact cggtgtggca tctgttgcgt atggacacgg 129480 teteggeeac caagttetac gaggeetteg teageggetg tetgeeegge geegggegg 129540 cggacggttc gggttggcggc ggctcgcact acacgggctc gcgcgccggc gtctcgccgg 129600 gcatccagtt cggtatcaaa cacgagggct tagtcaaaac gctggtggaa tgttacgtga 129660

tgcacggacg cgagccggtg cgcgacggcc tcggtctgct catcgacccc acgtcggggc 129720 tgctgggcgc ttccatggac ctgtgcttcg gcgtgctcaa gcagggcagc ggtcgcacct 129780 tgctggtgga accgtgcgcg cgcgtctacg agatcaagtg ccgctacaaa tatttgcgca 129840 aaaaggagga cccctttgtg cagaacgtgc tgcggaggca cgacgcggcg gccgtggcct 129900 cgctgttgca gtcacacccg gtgccgggcg tggagtttcg cggtgaacgc gaaaccccgt 129960 cggcacgcga gtttctgctt tcgcacgacg cggcgctctt cagggccacg ctcaagcgcg 130020 cgcgcccgct caagccgccc gaaccgctgc gcgagtacct ggccgatctg ctgtatctca 130080 ataaggccga gtgttcggaa gtgatcgtgt ttgacgccaa gcacctgaat gacgacaaca 130140 gcgacgggga cgccacgatc actattaacg cgagtctcgg cctagccgcg ggcgacgccg 130200 ctgqcqqcqq cqctqatcac cacctqcqqq qcaqcccqqq cqattcqccq ccqccqatac 130260 ctttcqaqqa cqaaaacacq cccqaqctqc tqqqccqqct caacqtqtac qaqqtaqcqc 130320 getttteact geeggetttt gteaateege gteaecagta ttaettteag atgeteatte 130380 agcagtacgt gctcagccaa tactatataa agaagcatcc ggacccggag cggatcgatt 130440 teegegacet geetaeegte taeetggtet eggeeatett eegegagege gaggaaageg 130500 aactgggctg cgagttgctg geeggeggte gegtttteca etgegaecae atecegetee 130560 tgctcatcgt cacgcccgtg gtctttgacc ctcagtttac gcgccatgcc gtctctaccg 130620 tqttaqaccq ttqqaqtcqc qacctqtccc qcaaqacqaa cctaccqata tqqqtqqcqa 130680 actetgeaaa egaatatgtt gtgagttegg taccaegtee ggtgageeee tgaaagatge 130740 tetgggtege caggtgtete taegeteeta egacaacate eeteegaett eeteetegga 130800 cgaaggggag gacgatgacg acggggagga tgacgataac gaggagcggc aacagaagct 130860 geggetetge ggtagtgget gegggggaaa egacagtagt ageggeagee acegegagge 130920 cacccacgac ggccccaaga aaaacgcggt gcgctcgacg tttcgcgagg acaaggctcc 130980 gaaaccgagc aagcagtcaa aaaagaaaaa gaaacctta aaacatcacc accatcagca 131040 aagctccatt atgcaggaga cggacgactt agacgaagaa gacacctcaa tttacctgtc 131100 cccgcccccg gtcccccccg tccaggtggt ggctaagcga ctgccgcggc ccgacacacc 131160 caggacteeg egecaaaaga agattteaca aegteeacee aeeeeeggga caaaaaagee 131220 cgccgccccc ttgtcctttt aactcataaa ctttcaggtc tcgcgtacga ttcgcgagtc 131280 gggaatggga caccegtggg tgtttctccg tgtgtatatt atttttttt gtgtgtgttt 131340 gcgcccccgt gtgtctaatg tgctgtttga aacacgtaaa gtagctggtg gaagaacaga 131400 taaaccttta ataaaaaaaa agtatgtgct cccgacccac ggtctgcgtg tctctttttt 131460 atqtccatqt ctccaaqtct qqtqcqqqtq qcqqcqqqqt caaqcqtcct cqaaqtcttc 131520 atcategteg tegteetett ettegeggag gegaeggett tecaagetgt egtggtgaet 131580 gagegeageg aettettege eggaggetgt ggeeagegee tggtaettga eactgeeget 131640 accgcgtccg cgaaagtagc ggacggcgcg acacgtcgta aacatggccc atatgaaaaa 131700 gagcatgccg aacgaccagc tgatgccggt acggtaatcg tcgccgatgg taaaggcgcc 131760 qtactqcacq atqqqqtaqa tqaqqccqca qaqtccqaaq aaqqcqccca qqtqqtaqcc 131820 gaattgcact ttgacgtatt gaaaaaagac ggcttcgatc agtaaaaagt agattatgga 131880 gatgatagcg tagaccacga agacggccaa caccatgtgg cctgtacgca cgaaaaagtt 131940

gtttccgaag ccgtagcaca gggccatggc taccacggtg gtgttgaaac caagtgccat 132000 ctccaccagg ttgacgatga gcgtgcgaaa ctgcaccgta cctttgagct tggggtgaag 132060 acgcgagaaa aaaaagagcg agcgtttgaa gctgcggtac tgcgtgacca tgctcacgtt 132120 gaaaatggtc aagcagaaaa agtgcacggc ggccatgaag gcgatcatgc tgggcagccg 132180 aaatgacatg gtcagtgtga atagttggaa cgtgtccatg ctgaggatga agaggaaggc 132240 tgtgaggctg tcgcccatgt acgaaatgtc acgtgtcgac tggtttaggc tcatgccttt 132300 gtccttgcgc atgctgatct tgatccagca taccaggtag tagatggtca cggctaaaaa 132360 gacgagetge atgaacaegg egtageacae cagetgeace gagtetaaga aaageatagg 132420 cgtgtgcagg tgcattacgt tgtaggccga catgttgagc ctttcaaagt ccacgacgtg 132480 ataqtaqacq caqqqqtaqc ccaqqtqcqq aaaattqctc aqcaccaqat qcacqctqac 132540 qttqacaaaa qtcaqcacca tqaaaatqat aqaaqcqctc catqtccqtq tattcacctt 132600 atccaegtge gaggggeea tggegatage ggeggeeege tegeteggga ggegatgggg 132660 gegegeegat gaegaeagge tegegggteg ttaaatacta egatgggage egeegegget 132720 cacgacgcgg tttgagcacg tccggggggt cggcgaaaaa agaccccgcg ggccttcgcg 132780 actetettet gteegaggat gaeegeteag eegeegttge accaeegeea eeaeegtae 132840 accetytteg ggaccagety teateteage tygtaeggee ttetggagge eteggtgeet 132900 atogtacaat gtctgttttt ggatctgggt ggcggccgtg ccgagccgcg gcttcacacg 132960 ttegtggtge geggtgaeeg tetgeegeeg getgaggtge gtgetgtgea tegegeeage 133020 tacgccgcgc tggcctcggc cgtgactacg gacgccgacg agcgccggcg cggcctagag 133080 cagegtageg cegtgttggc gegegtgttg ctagaaggca gegegttaat cegegtgttg 133140 gegegeacet teaegeeggt geagatteag aeggaegeta geggegtgga gattttggag 133200 gccgcaccgg cactgggcgt ggaaaccgca gcgctgtcga acgcgcttag tcttttccac 133260 gtagccaagc tagtggtcat cggctcgtat cccgaagtgc acgagccgcg tgtggttacg 133320 catgoogogg aacgogtoto ogaagagtat ggcacccacg ogcacaaaaa attgogtogo 133380 ggttactacg cctacgattt ggccatgtcg tttcgcgtcg gcactcacaa gtacgtgctg 133440 gagegegaeg aegaggeegt eetggeaege etetttgagg tgegegaggt gtgttttttg 133500 cgcacctgtc tgcgtctggt cacgcccgtc ggtttcgtgg ccgtggcagt gaccgacgag 133560 cagtgttgtt tattgctgca gtcggcctgg actcaccttt acgacgtgct tttccgtggt 133620 ttegetggge ageegeeget aegegaetae etggggeegg acetttttga gaegggegee 133680 georgeticat tettettee eggetteeeg eeegtgeeeg tetaegeggt eeaeggtetg 133740 cacacgttaa tgcgcgagac ggcgttggac gcggcggctg aggtgctctc gtggtgcggc 133800 ctgcctgaca tcgtgggctc ggccggcaag ctggaggtgg aaccctgcgc gctctcgctc 133860 ggcgtgcccg aggatgagtg gcaggtcttc ggcaccgagg ccggcggcgg cgccgtgcgt 133920 ctcaatgcca cggcttttcg cgagcgaccg gccggcggcg atcgtcgctg gctgttgccg 133980 ccgctgccgc gtgacgacgg cgacggtgaa aacaacgtcg tggaagtcag cagcagcacc 134040 ggcggtgcgc acccgccgag cgacgacgct actttcaccg tgcacgttcg cgacgccacg 134100 ctacatcgag tgctcatcgt ggatttggtt gagcgcgtgc tggccaagtg tgtacgcgcg 134160 cgcgacttca atccctacgt gcgttatagt catcgactcc acacttatgc ggtttgtgaa 134220

aagtttattg aaaatctgcg ttttcgctcg cgacgcgcct tctggcagat ccagagtcta 134280 ctgggctaca tctccgagca cgttacgtca gcctgcgctt cggccggcct tttgtgggtt 134340 ctgtcgcgtg gccaccgcga gttttatgtc tacgacggct attcgggtca cggacccgtc 134400 tcggccgaag tgtgcgtgcg gactgtggtc gactgttatt ggcgcaaact ttttggcggc 134460 gacgateegg gteecacetg tegtgtteaa gagagegege eeggegtget gttggtetgg 134520 ggcgacgagc ggttggtggg tcccttcaac ttcttctacg gcaacggcgg cgccggtggt 134580 agtecgetec acggggtggt gggtggttte gcggcgggac attgcggtgg cgcttgttgc 134640 gegggetgeg tegteactea eegecattet ageggeggeg geggtggtag tggegtggge 134700 gacgcggacc acgcgagtgg cggcggtcta gatgccgctg ccgggagtgg tcataacggc 134760 ggtagtgatc gggtttctcc ctccacgccg cccgcggcgt taggtggttg ttgctgcgcg 134820 gccggtggcg actggctctc ggccgtgggt catgtcctgg gccggctgcc ggcgctgtta 134880 cgggagcgcg tgagcgtgtc cgagctggaa gccgtgtacc gcgagatcct ctttcgcttc 134940 gtggctcgcc gcaacgacgt ggacttttgg ttactgcgct tccagcccgg tgaaaacgaa 135000 gtaaggeege aegetggggt gattgaetge gegeeettee aeggegtgtg ggeegageag 135060 ggccagatca tcgtacagtc acgcgatacg gcgttggcgg ccgatatcgg ctacggcgtc 135120 tatgtggaca aggcctttgc catgctcacg gcttgcgtgg aggtctgggc gcgagagtta 135180 ttgtegteet ecacegette caccaceget tgttettett etteegttet eteeteegee 135240 ttgccgtccg tcacttcgtc ctcttcgggc acggcgacgg tgtctcctcc gtcttgttct 135300 tettegtegg egaettgget egaggagege gaegagtggg tgegeteget ggeggttgae 135360 gegeaacaeg etgetaageg ggtggettee gagggeetge ggttttteeg geteaaeget 135420 taacgagtca cgtaggggaa ctacgtgggt aagtgacgtg gatactagta aaaaaaagtg 135480 cgtcaaagtt ctcagcgtgt gacgtggata ctagtaaaag ggacgtcaaa gctcactacg 135540 tgttgcgtgt tttttttct atgatatgcg tgtctagttc gcttctcact cttcctctcc 135600 ccgttcccag cgcggtggca gcttgggggg tgagggcaaa ttggggtagt tggcgttgag 135660 cacgtctagc aggcccaggc ccacgggcca accgtccacg gtcttacgct cggtcagctt 135720 gaggetaaac gagtgtgeet egtettgace ggtaaggegg aaaaagaage gtgetaceag 135780 ctgcaggcag gtatgccgcg tctgctggaa gagcacgaag gtagcgggca cgtactgcac 135840 aatgtgeggt tettttteet caaagagtag gtagagegeg etgeagatea geegeeggge 135900 gctgtggtgc agcagccggc cgaagctttc gcgcacgttc accgcgtcca ggtactggag 135960 cagginging aggrantige gegitaagit geaattitee acgeatgaaa taacggiaca 136020 qaqqqqaaq tqcaqcaqqt tqtcqqcctt qacqatqccq caqcqqtqtt tqaqccqcaq 136080 atccgagage etcacetgeg tgaeggegte tteggteteg ageaaaaaca eggeggagta 136140 gcccagaaag gccgaggtgc acagcaactc gctgcggtac tcggccatgg aaaccagcag 136200 cccgtgctcc gtatgcagcc acagcttgtc gccgcgcacc gtaaagtcga gcacttgcgg 136260 ctccatgatc atcacattct gtctagtgaa atccgtatgg acctccagca cgccgcggat 136320 ccgtgatcaa gcggcgcgc gcggaccttt caagcgttcc tgggccgccg ctcgaggcag 136440 tteecettte tggcacteeg coegeegett egeggeteat ttggcgcegg egegeettet 136500

cgcggctgca aatcagctcc acgtatcggc aaaacttgct gtcgtcgtag gcggcggcta 136560 cgatctcgcc gaaggagagc tgcaggtagg cctcgggtac ggggtccagc gtgcccagcg 136620 ccaggatgtg acacagatag ggcagggtca cgcgctctac cgtgtaattg gagtagacga 136680 tggcctcttc ggccccctga tgcgtgacca gacgccgcag gcgaaaggtg cggaaatact 136740 cgttttccca cagctgcgtg aggaagcgtt ccagcgactc ggtgccgggc acgaactgcg 136800 agaagaagct gttggccacc aggeggttgt cctccaccgc cageggaegg aagggegeeg 136860 cgtcgcgcgc cttgcgcacg gcctccaaca cgggcaggtg gtacagttcg gcgtcgcgcg 136920 cgcccaggct catggagtcc tcgcgccgcg aggcgtagcg cgtgagcagg tcgcgcagct 136980 cgcgcacgcg attctcccag gtctggttga gcgtgcgcag gtcctggatc tcgtccacct 137040 gcqactqqat ctqctcctcc aqqcacttqa tqacctqctt cttaaacaqq tcqcqqatqt 137100 cccgctcggg cgccgcggg ccgggtggcg gcggcagcag cccgacgtgg cccgcgggtc 137160 cteccaecae ggegeegeeg ggteccaeca egeegggtee acetggaeca egegegggta 137220 gtagacggtt ttggtccacc agcgagggg tcaggtcctg tagaaaggac tcgacgctgt 137280 cctcgatgcc gatgcgcgat ttgctgtccg agacgttaag caaaaacttc ataatggact 137340 ttttggcgtc gctgccccgg tcgtgctgct ccatcatctc caccagcttc ttgcagttga 137400 getegtggeg getggeggte accaetttea caggaaaggt attgageaac tggeagatet 137460 tttggtggcg gcagagcccg tcgtagcgca gaatctcctc gtgcaggtgt gccaccggcg 137520 tggtgaacag cagettgteg egeteataag eeageggtte ggeegeeaeg tacaagegga 137580 tgtgcttgcc gcgcagctgc gcctccagcc gctccgagcg caccttcttg aagacgcgta 137640 cetegggege gttggetaeg egeaeggege ceaggegete ggecaeetge ageageageg 137700 ccaggttage etgeageagg teetgegeea gegggtgtgt eteggtggee egetgeaegg 137760 ccgcgcgtac aaattgcgcc cgctcggccg cctcgctcgg cttggtcttc acgtccagca 137820 geggtaceag teccacegtt aegeaceaat eeaegtagag aecatagteg tegttategg 137880 cgtactgata taaaatgtcg cggagcgcgc ccagcacgcc cgtttgcacg ctctggcgca 137940 acgaagcgct ccacaccaac agatactgct ccaggtcctc ttcgtccagc gcgcggtagg 138000 gaaacagege egegtgeaac ttecaeteet eggeeaegeg eegeaeegtg atggtgteaa 138060 agagcgtctt gcacactccg tagagcagct gcttgcgcag cacgcacggg tcgcgcagca 138120 cetggtgcat getetggeeg egacaegtee ecagaaagee gtgcagcaac egcaggaage 138180 tcatcgtctg gcccgtgggg aaaatgtcga tgacggcctc gtcatccacg ccgcggccca 138240 cgcccaagta cgacgacgcc ttgatcctca acctctcgtc ggccgccaag atcgaacgga 138300 teqteqacaa qqteaaqtee eteteqeqee aqeqetttqe qeeeqaqqat tttteqttee 138360 agtggtttcg ctccatcagt cgcgttgaac gaacgacaga taacaacccc tctgccgcaa 138420 ctaccgccgc ggcaacgacg accgttcact cctccgcctc ctcttctgcc gccgctgccg 138480 cttegteega ggeeggegge aegeggtge eetgegtega eegttggeee ttettteeet 138540 tccgcgcgct gctcgtcacc ggcacggcgg gcgccggcaa gacttccagc atccaggtgc 138600 tggcggccaa tctagattgc gtgatcaccg gtaccacggt gatcgccgcg cagaacctca 138660 gegegateet caacegeact egtteggege aggteaagae catetacege gtettegget 138720 tegteageaa geaegtgeeg etggetgaca gegeegttag eeaegagaeg etggaaeget 138780

accgcgtgtg cgagccgcac gaggagacca ccatccagcg cctgcagatc aacgatctgc 138840 tegectactg geoggteate geogacateg tggacaaatg ettaaatatg tgggagegea 138900 aggregette ggeeteegee geggetgeag eegeegeetg egaggaeete teggagetgt 138960 gcgagagcaa tatcatcgtc atcgacgagt gcggccttat gctgcgctac atgctgcagg 139020 tggtggtgtt tttttactac ttttacaacg ccctgggcga cacgcgactt taccgcgaac 139080 geogegtgee etgeateate tgegteggtt egeceaegea gaeegaggeg etggagagee 139140 gctacgacca ctacacgcaa aacaagagcg tgcgcaaggg cgttgacgtg ctctcggcgc 139200 tgattcagaa cgaggtgctc atcaactact gcgacatcgc cgacaactgg gtcatgttta 139260 ttcacaacaa gcgttgcacc gacctggact ttggcgacct gctcaagtac atggagttcg 139320 gtatcccgct caaggaggag cacgtggcct acgtggaccg cttcgtgcgg ccgcccagct 139380 ccatccgcaa cccctcgtac gccgccgaga tgacgcggct ttttctctcg cacgtcgagg 139440 tgcaggetta ettcaagegg etgcaegage agateegeet gagegagege caeegtetet 139500 ttgatctgcc cgtctactgc gtggtcaaca accgcgcgta ccaggagctc tgcgagctgg 139560 cegaceeget gggegacteg cegeageeeg tegagttetg gtteegeeag aacttggege 139620 gcatcattaa ctactcgcag tttgtcgacc acaacctctc cagcgagatc accaaggagg 139680 cgctgcgccc cgcggccgac gtcgttgcca ccaacaactc ctccgtccag gctcacggag 139740 ggggaggatc tgtaatcggg agcaccggcg gcaacgacga gacggcgttt ttccaggacg 139800 atgataccac caccgcgccc gatagccgtg agacgctgct caccttgcgc attacctaca 139860 tcaagggcag ttcggtggga gtcaactcta aggtgcgggc ctgtgttatc ggataccagg 139920 gcacggttga acgtttcgtg gacatcttgc aaaaggacac gtttattgaa cgcacgccct 139980 gegageagge ggeetaegee tactegttag tttegggeet getetteteg geeatgtaet 140040 acttctacgt gtcgccctac acgaccgagg agatgttgcg tgagctggcg cgcgttgagc 140100 tgcccgacgt gagttcgctc tgcgccgctg ccgccgccac ggccgccgct cccgcttgga 140160 gcgggggaga gaatccgata aataatcacg tcgacgcgga ttcttctcag ggcggccaga 140220 gcgtgccggt atctcaacgg atggaacatg gccaagagga gacccacgac atcccctgcc 140280 tgtccaacca ccatgacgac tcggacgcca tcacggacgc cgaactcatg gatcacacca 140340 gtetgtaege ggateeettt ttteteaaat aegteaagee aeetageetg gegetgettt 140400 ctttcgagga aacggtgcac atgtacacta ccttccgcga catttttctc aagcgctacc 140460 ageteatgea gegteteacg ggeggteget tegecaegtt geegetegtt acctacaate 140520 gccqtaacqt qqtqttcaaq qccaactqtc aqatcaqctc qcaqaccqqc tccttcqtqq 140580 quatquette quatqueque coqquequaqa eqtacacque cqaqqquetac accaquqaca 140640 acgtgetcag tetgeccagt gacegecace geatecace egaggtggtg cagegeggee 140700 tttegegget ggtgetaege gatgegeteg ggtteetett tgtgetegae gttaaegttt 140760 cgcgcttcgt cgagtcggcg cagggcaaga gtctgcacgt gtgcaccacc gtggactacg 140820 gccttacttc gcgcacggcc atgaccatcg ccaagagtca gggcctgtcg ctcgagaagg 140880 tggccgtgga ctttggggac catcccaaga acctcaagat gagccacatc tacgtggcca 140940 tgtcgcgagt cacggacccc gagcacctca tgatgaacgt taacccgttg cgactgccct 141000 atgagaagaa caccgctatc accccctata tctgtcgcgc gctcaaagac aaacgcacca 141060

cgcttatttt ttgacacaac accgtgtaag gaaaacgtga ctttattgag cagggtaaaa 141120 accacgtaca agaaccacgt tgtctatccc caaaaaaaaca cacacgtca gggaacacat 141180 cgcctataga tagcggcact ttacataaaa ccaccgtacc tgcatcacgg tggctcgata 141240 cactggaaat tcaataaaaa ccaccgtgtc tccgtgacgg tacttatcgg gtcagcgtct 141300 ttetettgag atttetgtte gtaaacttat eegttteeee ggteegeggt gteteetege 141360 gaggctgaca gtctacgagt ggtatctaca agagaaagaa acccgggtgg gagcgacgcc 141420 gtcgctgggt atcaaccccg cggctgaccg tcgtccggta aaggaacaac ccgtcgtcgc 141480 aagccgggtt cgaccaagag aaaaaacccg ggtgcggggg gagacgggtc gtcctttggt 141540 tgttcgcgga cggcgtacat gccgcgtggg tcagtcgacg gcgtcgctcc gtgcggtcgg 141600 tcatcattct qcttcacata tatqqqttqt ttqtqttttt tttataatqa atacqcactq 141660 atcctatccg tgactgcgcg tgtggcagag aggatgcctt ataacatgta ttttgaaaaa 141720 ttgccaacag ctataatttc tctcatgtag cagaatagag accttttgtc gtctttttgt 141780 ttqtcattac ttqttttcca qqqaattaqa qaqaqqqaac cqcqcctccq qcqqcqqtqc 141840 ccgcggaccc cggccccttc tcgcgtgcgc ggtgtgactg gttgagcgaa tgagcagcta 141900 ggcttggtgg tgctccgcgt gcgggggaga agacgattaa caacaaaaaa taagtggaag 141960 tggccggtgg gtctttgtcc gcgtgcgcgc ccatccgtcg ccgggaccga gcagaaagtg 142020 atgtggtggt acattgattt tttccttgac aggaaagaaa aaaaagagtt ttgttttcct 142080 atgtgagagg agaaaggtat gtgaggagat gttcgatgat cgtatgttac agttatgctg 142140 taaggaaget tttategtge gteetgtttt teatttgatg tatatgacac aattgaaace 142200 tatcgatagg cgtatatcga ggattcatca attcttagaa tcgtcgtctt tttggctaat 142260 tggactttgc ccatgttggt tgtcattcgt ggcctgaggt catcgtcgtc cacgacgacg 142320 tgtctatagc gtgcggtgtg atcattgtgt cgagccagag aaagcgcgcc tcgcacgacg 142380 tttgcggatc ggctcgcggg tgtgtggaat tcctaagaac ataatcagct ggtcgtcttt 142440 ctttgatgtg ttgttgtcgt cgaggtcttg cttcgttttc ttttttcttt ttagtcgatg 142500 gaacttttct tcggtacggg ttcttgttat ggaagcttgt gttttcgaac atgaattcga 142560 aaaaataaaa aggcctatct tcgtttcaaa aaaaggacag atatcaatct tcttaactta 142620 tatcatggta aattcagaat cctatggtgt cttattatct ctaaagtagt caacattatg 142680 gtctaacttg tatttccctg acgagatata tatgatcctt ataacctggc tactatcatg 142740 aacaacaata teettaetta cagteatett egtgagttaa tgaagtataa tateggteat 142800 ctatcaactt atctgctatg taacgtaccc ttttaggtat tttgcgtttc ttaacgagtg 142860 tacccqcctq tqtqaqqcqa aactctqaqa aqtctaccqa qtcqaqttac aaqtcactaa 142920 aacacttaca cgagttatct atactaaaat cactatctat gttgtttgct tacctaatta 142980 ttatcctaca tgacgaagct acctcccaac gtaaggtagg gggagaggag acagaacaat 143040 aaaaagtaac taatgtttct tagaacttac ccgctaagga cttaccaaac tatattcacc 143100 aaaaaacaac agctacgtgt ttcatttgtt ttaatctacc gaagtaaaaa aaaaagatga 143160 ttagctatcc agaacctact tacttcttaa tgttttaact aaggatgcct atgggattgg 143220 aaaaaaaatc acagcaactt gctactaatc agttgacagc gaagagactc ataacaaaga 143280 tttctgggta atacggttat aataatgctt atggactaaa ggatacttgg aaaaaaagaa 143340

cgggctatga ctatagagat tcatcgagat atcaaacttc aaataggcgg ctatcattca 143400 tggttgtggt gactatatcg tggagaaaaa atgtgatcgt tagttagcta ggtgagactt 143460 acagetatee atceptetag titttegttg taatgatgat agtacgteta tggtggtgat 143520 cgattttggt tagcaatttg ttcgtttaaa ggcttaatgt acttatgcta catgatgtat 143580 tattetttga tteategtte eteetaaggg ggtgtatgta tgtatgtaet agtegtatag 143640 tgttcctaac atcatgacta ttcagactat ggcttcatct atcgtgtcta aagttcactt 143700 attctactat tactatatat atgcactact atgtaactag gatatggtcc tataaggtgt 143760 cttctatcac ggtggcttgt ttatcgcttg gcggttacga gcaagagttc atcacggacc 143820 agccgtgagg cagggcacac gcgggtcggc ggcgatgatg tcccccgcga aggggacaac 143880 aaaaacaaqa caaqaqqccq ccqqccqcqq ccacqqacqc qtaqcqqtta cacaatqttt 143940 ggttgagcgt tttgtttcat cgtcgtggtg gtggttttgt tgttctctgt atatatcgtg 144000 tggtggcttt atcgtcatca ttattatcat cattcttgtt tccatcatca cgatgagttt 144060 teteegtttt ceteteetee agtggtagte gtgtateate ateaateate gtagtgaegt 144120 cgttgctgct gctgctcttg ccttcatggc ggtatttctc ttcctccccc ctaaccccat 144180 attaactcgt gagtgtgatg gttagagtgg ctgcttgttt ttttttcttt tctctttgga 144240 acaacaaaag aggataaaga tggtcggtga atgtattatt attatcatca tcattatgat 144300 acggtcgcgg tcttcttctc cgatgacgaa acctgcgcac atcgaagaaa agacgagcgc 144360 gcgaaccgat agccgtccgt ctgggacgaa ggagaagatg atggggagag gaggagagcc 144420 ccagaagcca gagcgagaag ggagacgaca gacatacgtc gtcaccgtcc tctggaggag 144480 gcacggcggc gctgtttgtt gtttggatgc ttgattatat cctgttctat ggggtagatt 144540 attatcaata ggcttggttt tcaaaggtca gcctgtgtat tgtcgtgtct tttttttcgt 144600 teteatgate geggagacea cacagaegtg egegteteee aatggetagg egttetttt 144660 aggtagtaat tttttgatct ttttttttc ttaacaagtc tggcttgatt tcttttatct 144720 atgatcgatt cttcttttc tcgggggttg catcttccgt gaaagtaaag tgacactact 144780 ctaaatggta accatattat ctgttgatta ggagaaaaaa taatttttc gcacgaaatc 144840 gatoctaagt gaggtgattt acttgctatc acacgaaatg attcttttgc tgctaacgta 144900 ctgaattttt taacagaatt gcttctccgt aactatttcc gcagattcag acagattgtc 144960 aaaaaaaaa tacggcacag aaatagtggg tctgtggctt ttggttcgtg tacattcgcg 145020 tttgcgtgtc gagatttcta cggtatgttt attcttcctg cgatgatgta gggtccttgg 145080 tgtaagtagg atttcgagta tctctcttag agcgaacaaa ataatcaaaa aacaacagct 145140 aggaaatcga gggttactct acgataaagt gtctctacaa agtgaagaat gttacgttgt 145200 ggtggaataa taagactcgc gtgatcgatg agtgatcgag agcggctcga accttcttta 145260 agagetttgt ttagtgeaac tttaaattae aaggagtaga aagetgaaat gaatetatga 145320 aggtgctatt ctttgaatat cttactttgt acgcttcaca ttcgttattt ggatagagag 145380 ttgtctagag aaaatctgtg attctctatg agtgttattt ttattatcct tttggggact 145440 acgatttttc ttcttctaca taccactact actcgtaatc acatacatgg acgaaaaaaa 145500 aattegteag geagtagata eeagattete egaegttaeg gegtettttt ttettttgag 145560 agagtatotg otgagattgt ocgtggtgta totagtogot atttttgttg ttactagtag 145620

ttttgcacac agtttattca gtatagtttt tcttcttgcc atgatcaatt gagcccacca 145680 ccttttttt aagagaggag gaatttegte ttgateteea geeggagata aeggeggtgg 145740 tggtggtggc gggagagact tcaaggcaat gaaaaaaaa atttcgtttt gccatcaagt 145800 ggtgacgata accegtcaga ttgataattg gttcctacag aaactattct aaccgcggaa 145860 gaaagaaatt gaaaaaaaa attgacaaaa acatcataac ataaaggacc acctacctgg 145920 gacgcgcagt tgggtggcgg actggggcgg catgctgcgg cgatgctgtc ggtgatggtc 145980 tetteetete tggteetgat egtetttttt etaggegett eegaggagge gaageeggeg 146040 acgacgacga cgataaagaa tacaaagccg cagtgtcgtc cagaggatta cgcgaccaga 146100 ttgcaagatc tccgcgtcac ctttcatcga gtaaaaccta cgttggtagg tcacgtaggt 146160 acggtttatt gcgacggtct ttcttttccg cgtgtcgggt gacgtagttt tcctcttgta 146220 gcaacgtgag gacgactact ccgtgtggct cgacggtacg atggtcaaag gctgttgggg 146280 atgcagcgtt atggactggt tgttgaggcg gtatctggag atcgtgttcc ccgcaggcga 146340 ccacgtctat cccggactta agacggaatt gcatagtatg cgctcgacgc tagaatccat 146400 ctacaaagac atgcggcaat gcgtaagtgt ctctgtggcg gcgctgtccg cgcagaggta 146460 acaacqtqtt cataqcacqc tqttttactt ttqtcqqqct cccaqcctct qttaqqttqc 146520 ggagataagt ccgtgattag tcggctgtct caggaggcgg aaaggaaatc ggataacggc 146580 acgcggaaag gtctcagcga gttggacacg ttgtttagcc gtctcgaaga gtatctgcac 146640 tegagaaagt agegttgega tttgeagtee geteeggtgt egtteaceca gttaetttaa 146700 taaacgtact gtttaaccac gttgcgtcgt gacgttgttt gtgggtgttg ctaggcgggc 146760 tggaaagatg atgtataaat agagtctgcg acggggttcg gcgctctgcc ggctgcggcg 146820 geactegete caeggeetee gaegagegtt gegetegege tttgegeege egegteatgg 146880 atotocotac tacogtogtg cgaaaatatt ggacttttgc gaatcctaac cgcatcctgc 146940 atcagagcgt caatcagact ttcgacgtgc gccagttcgt ctttgatacc gcgcgtctgg 147000 tcaactgcgt ggacggcgat ggcaaggtgt tgcacctcaa caagggctgg ctctgcgcta 147060 ccattatgca gcacggcgag gcttcggccg gtgctaagac gcagcagggc ttcatgtcca 147120 ttgacattac gggcgacggg gagctgcagg agcacctgtt tgtacgcggc ggtatcgtct 147180 tcaacaaatc cgtctcctcg gtggtgggct ccagcggacc caatgagagc gcgctgctca 147240 ccatgatttc cgagaacggt aatttgcaag tgacttacgt gcgccattac ctgaaaaacc 147300 acggcgaatc ctccggtgga ggcggtggtt gcggcgccgc gtctaccgcc tccgccgttt 147360 gegtgteete gttgggegge ageggeggga etegegaegg teettetgeg gaggaacage 147420 aacqqcqaaq qcaqqaacaq cqtcacqaaq aacqqcqcaa aaaqtcqtcc tcqtcqqccq 147480 gtggtggtgg aggcggcggc gctggtggtg gcggtggcgg cggcgggagc ggcggtcagc 147540 actectegga eteegeeaac ggaetgetge gggateeeeg gttgatgaac eggeagaagg 147600 ageggeggee geeteeetee teegggaaeg aeggtgagte eeggeeetee tegegteaeg 147660 gtgctttccg agtggactcg tgagccccc gtagcgcacg agcgagcagg cgagcggtgt 147720 tggtgcgctg gtggttgtgt ggatgataac catgtgcttt ttcgtgcgct atgtgtcgtc 147780 ccgtctgtag gctctcctcc cctccgggag gcgaagagac aaaagaccac cgcacagcac 147840 gaaggccatg gcggcggc caagaacgag acggagcagc agtccggtgg tgctggcggt 147900

ggtggtggcg gcggcagcgg ccgcatgtcg ctgccgctgg acacgtctga agcggtggcc 147960 tttctcaatt actcgtcctc atcctccgcg gtctcttctt cctccaataa ccaccaccac 148020 catcatcacc accataacgc cgtgacggac gtggccgccg gcaccgacgg tgcgttactt 148080 ctacccattg agegeggage ggtggttteg tegeegtegt egaegtegee gtegteactt 148140 ctttegetee etegaceeag eagegeeeac agegegggeg agaeggtgea ggagteegag 148200 gcggcggcga cggcggcgc tgcggggtta atgatgatga ggaggatgag gagggctccg 148260 gctgaggcgg cggaggcacc accgcagtcg gaggaggaga atgattccac cactccagtc 148320 tetaactgee gtgtteetee gaattegeag gaateegegg egeeteagee teetegeagt 148380 ccgcgttttg atgacattat acagtcattg accaaaatgc tcaatgattg taaggagaaa 148440 agattqtqqq atctcccct qqtttccaqc aqactcttqc caqaqacqtc qqqcqqqact 148500 gtcgtcgtca accacagcag cgtcgcgagg accgccgcag ctgtctccac agccggcgtt 148560 ggccccccag cagccgcatg tccgccactc gtcaccaccg gtgttgtacc ctcaggttcc 148620 gtcgccgqtg tcgcgccgt tgccgccgca gtcgaaacac cagctgctcc tccccggccc 148680 gtgtgtgaaa tcaagcccta cgtggtaaac cccgttgtcg ccaccgccgc ggctgccagt 148740 aactetteet egtettette ggeteeactg eegeegeeac eaceacegee gggeggaegt 148800 cggggtcggg cccggaacaa tacccgagga ggcggcggtg gtggcggtgg tagaaacagc 148860 cggcggcagg ccgcatcgtc gtcgtcctcc tcctctcgga gatcgcgacg gagaaacaac 148920 cgccatgagg acgaggacaa cgatcctctg ctccggttgt cgcaagtcgc cggcagcggc 148980 cgccggcgag ggccctcgtt cctcgaggac ggactcgaaa ttatcgatcc cagcgaggag 149040 gctgcgatcg ccgccgcctc gatcgcggcg tttttcgacg attaaaaaac agagccgaga 149100 ccggaaaaat tatgaaacag gacgcgcttg gacatttggg tttccacccc tttcggtgtg 149160 tgtctatata tattgtggtc actgattttt ttttacaata aagagataga catcacagtt 149220 caccaccttg tctccccggt gtgtctatta tcatcaatca cccacagagt cgccagtcca 149280 tggtctctcg gtaatgcgtg tccagatacg cgttggccag tataaagtgg tcgttgccca 149340 cgaaggcgcg ggtggtgttg cgcggcgacg ggtggcagga cttgagtacc aagtgccgcc 149400 gteggtegat caggtacteg caggtgtgeg cgteggegee ceacageatg aacaccagat 149460 geteceggeg etetgacage eteeggatea catggttaet eagegtetge eageetaagt 149520 gacggtgaga tccaggctgt ccgtgcacca cggtgaacac ggtgttgagc agcagcacgc 149580 cgcgtcgcgc ccaggcgtcc aggcaacccg aggccggacg ctgaaacccg tccaccgtac 149640 gegecagtte gegaaacaeg ttgttgaggg agggeggegg tggteggeet gecagegtge 149700 cqaaqqccaq qccqctqqcq ctqccqtcqc aqtacqqqtc ctqqcccacq atcaccacqc 149760 gcacctgctc gggcggacac agatagctcc agcggtgtac gtgctcgggt gccgggtaca 149820 ccatctcgag ttgccgcgcg ccctccaccg ccgccaccgt gtcgcgcagc agcaccgtgt 149880 cgtggtcggg caagctgagg aagcggatcc agtcggcgct cagacaaaac acgcgagcct 149940 gctcgtcggg ggttaacaga gagcctttat tatcagcaat gttagcgagc atccactgct 150000 tgagggccat agcgcgagtg agccggcagg ttgacgcgcg tctgcttcag ctcgggcggc 150060 agteeggegt agtatttate taggtggegt ageageggeg ggteeagetg gtgaegeagg 150120 caaaatteet teactgegtt gtacaggeeg taaaagageg tgatgeeete gggegeggea 150180

geggtgetea egggeagaeg eaeggegegg ttggtaegeg tggettegtt gegtatggee 150240 accaccacgt taaagagaga eggtggcacc agetegaage etaacacgtg tteegtgaag 150300 atgctgcgcc cgtatgacag tcgcgtgagg tcgtagccgc ggcacaggtc gtccacgcac 150360 gtgtacacgg ccggcgagcc atcgccgcac tcgctgtagc cgcgcatcac cgtcatccag 150420 cgcggcgctg tgtccgagct caacagtgtc agcagggccc gcaattgatc cggattgttg 150480 tacagcaggg ccagagtgtc caggaaagca tcgtccaaca gcacggagtt ggcggcctcc 150540 ggcgtaacgg gacggtaacg gataagttgc gatagcgggc cattgcgccc ggtaacattc 150600 accaacggac gcagccaact ttcatacttg tcaccctgaa acacctcacc caacaggcat 150660 cggcgcgtta gttcgggaca ctccgcgggg actttctcgg cggcggtagg agcgacgctg 150720 acggcgactg aggaaacaat gggcagcaga aggcaacacc acagcagtac caccggtcca 150780 ggtgagaaag agaagccgca atccgggcgg cggcacatca agtctgcggc acgatgagag 150840 tgtgacggta aggagccagt tggcgccgaa agttggcgct caggtcttcg atccctaaaa 150900 cgttatatat tgcatccagc aggtgagcca ggctaaacgg attcacgtac caggtttggt 150960 taccegegac gatgaeggee agacegtggg egetaeagtt ggagaggtte etgggtaega 151020 aggtaactga gtcgatgtcg cgccacgggg ggaatgagac agacgactgg cgcacgctgt 151080 aatcacaact gtgattgacg tattgtagcg tgtaatttag gttgcactca gcctcgaagt 151140 agagggggaa ccacagttcg tcgtactcgt cgtcgtcctc cagttctggc tcttcttcat 151200 ccaccgcaat gtctacgctg ctctgagatt cctcttcgta caggatgatt gacaggttat 151260 ggctacaaag gtcctgggcg ggaggacgcg tgggagcgcg ggtggtggta atgttttcca 151320 ggtcaaaagt tggagtgtag tcggatgtta catccccgtt gttggaggtg gtagaagtcg 151380 cggccggtgt cacggtggta agtatggata cagaagggga gggggaagta acgttcgtac 151440 cgatggttgt ggtattatta tteettgtgt ttettgttee agaaacegtt gaegttgaga 151500 tgggaatcga cgtggcgctg gatgtcagat tgctgaccga ggaaaccgtg gtgggagtga 151560 tgacggtgtt actcgtggtt gaagtgacgt taggggaggt agtagtggta ccggtggtgg 151620 cgacggtagt gtttgtcgtg gcggcggcag cggtggtact ggtaacggtg gtcgcgttgg 151680 tttccaccgc ttcacacagt aagcaaaagc acagggccag gaaaagcaac cagccccgcc 151740 ategeogeeg cegetteatg aggtgggeag gegaaagetg gtgaattegt tgtacagegg 151800 caagtggggc gccgcgatcg aagggtacgt caacaagctg acgttgatat taaatacgtc 151860 tggctgcttt tctacgatgg aagcgcacag ggttacggcg tcgaacaggt ctttcttggt 151920 ggcgcccgag acccacatct ggtatacacc cgtctcgtgg tacgaagtag agcgcggcac 151980 caccqqacqq atqcaqtcca qaacqcqqtt qqqatcctqq tqaaaqaatt tqaacqtqqc 152040 tacggeetgt ggegtgtgeg geategtetg egtgatgage tgetggeeeg etaacaeggt 152100 gacgttgtgc aacttgagca gggcactctt gagggcctgg aaagcgttgc cgcacgaggc 152160 getgatttge agetgeaegg eegtggagte gtgeageege atgagaegtg acacetette 152220 gaagacgtac ttatacttac tggcaaagag tggcgcgtac cgacagtcgg ccggcaaaat 152280 gtaggtggeg ttgccgccgt tggtggccac ggcgggcgca gcggccgcgg aggccggcgt 152340 aaacagcgtc agcggccggt ggtggctggt aaggtcgatc atgggcggcg tggtgaccgt 152400 ggcggtggcg ggcatgacgg ggtttgcggc gacgggcact ccggccacag cggcggcagc 152460

ggcggccacg gcggcgctgg ccgagcccac acctgccggc agtcctccgc cacccatgac 152520 geogeoggc agagegtege ecagacagae ttecacagtg gegggegeg teteggeggt 152580 cagtacggtt tgccgatcga cctcgcgacg aaagctggtg aggaactcac tatgatccat 152640 ggccgcaggg cccgagatcc cgggattctg cgggtgctga ccgagtgcgg gccgagttat 152700 atggaagacg attagcttgg ageggagttt tgcgtcccta gctgacctgc ggatcagcga 152760 cgtgccatag ggatagactg tgagcggcgg ccgcaacggc ggggtcggcc gccgttcgtc 152820 gtcacggggc ggcgcgaggg aggaggaggt ggtggtgggt acgatettga cgtggttaac 152880 gtcctgcccg tccgggggaa tacgcaaaaa accccgccgc ggcgctacca cgatggtgcg 152940 atgggtcttt ctcttgttgg ccggggccag ggacttgcag atgcgtgtgg agccgtagac 153000 gatctqqacq tqqtcctqqq aqaacatqac catcqccqcc aacqctcaqc qqqqqqacqq 153060 qttqqqaaca caqaqqctqa qqqqaaaccc cqtaqaaqtc aqcqaaataa aqacaacaca 153120 gcagccgctc ctctcgtttc gggccctacc actgcttgaa gtagggcacc gggtgtttct 153180 tttcttcaac gggctcctcc agtctcttat aggaccagtc ccgccggcgc gccagcatgt 153240 aggtcacqta caaaaqaata attaccatqa acaccaggaa agccagcacg ccgtaggcca 153300 gcagccggtc ctcgaacagc gggtcgctct tgataaacac gtaggtggtg gtaaaacttc 153360 ggcccgcgat ctggacgtgg agacgcacga cagtatacgt gccgttgagg tagaagacaa 153420 actogogtaa cogttgtcog ttatacgtca cgttactaat attocacggc ggaatgagct 153480 ggtcgccctg atgcagatgc acggtgctgt tggggtgata gaggctgcta ccgttgagca 153540 agcagtgttc gtgttcctga agcagcacgc ggacccgcat cgtggtagcg ttcaagcgag 153600 tecegtacae ggegtaaatg ggataggtga aaaggteeea agtggegttg tgatggegge 153660 cccaactgaa gaaagagcac gtgtactcag tggtctcctg cggcctgagt cccgagataa 153720 gcagctcttg agcagtagcg ttgtaggaga gatgtagttt tcctgtggaa aaaattaatg 153780 agttgtttat tttgttagca ggttggcgag ggaggaaggg gaacaaaaca gaaaggtacg 153840 tgttacttac ctttatcgtt ggagggaaaa gcgctaagat atcccacctg agtgaaggga 153900 cccttgcagt ctgtccgtgc ataacaagta actgataaaa tgtctggatt tttggtatta 153960 ttcaacagga taactttgca ggtggcgttt agagacactt ggtcgtagct gtagctggct 154020 tegeaattea eagtataeag gtgeeeetet ttetgegteg tggetateae ggaggtggag 154080 gcggacgagg tagaggtttg taccgtggtg gtgacagcag aactgacgtt gttagaggta 154140 cttattgacg tagtagacgt gacggtggta ttactagggg aagtgacggc gcttgtgggtg 154200 ctacttttca ctcccqqqtq catqtcqccc aaqaqcqcaa ctacqaqcqc gatcqccaqc 154260 acqqaacaca tqttqccqtq tqacqaqacq qcqtqtqqac qaqctatatq tqqcaqqaqq 154320 tegegteace tettgtgaeg cetaaaegte eageteeaga taaaagagge gttaataatg 154380 aagactacaa aaaccacttg cgtcagtatg acaatcataa aggctcggtg attgctacgc 154440 ctaaagtacg cgggattatc caccagttca tccttctgaa caaagtggat gattgacgta 154500 ttggtgttac tatccgtatt gttgatcatg gatttgacta agaaagtctt ggcaccaaaa 154560 gtcccgttag agccccagca ggtgacgctg ctatttacat aagttccagg tgcccccgct 154620 agcatgtatt tcagttggtg ggtataattt tttctgtcgt tatccatgtc attgctgtag 154680 ttgaccttgc tggtgagaaa gcgtgttttc aacggggtac ttatcatcat ccctgaggcc 154740

Oct. 29, 2015

aaaaaagggcg aattgcaagc tgtagtgtta caaaaaatag tcaagttagt gtcattgtgt 154800 tgatacatgt aagccatget caetteagge teataceaee egateeeaat egeggeegee 154860 accgtcacca cgtcccatct ccccaaactt accaccgcca ccactaatag cgtcaccccc 154920 gcacggtaca tagttaccct ctcgacgtcg ccggctgtca atgacgtgcc tgcgtcagtg 154980 gctatgattt atagcttttg gacacaaccg caacggatct gtcgtaatct accttccaca 155040 gggccgccgc gacgatgctg aacgacagga tcagacagac ggcgtatagg agtcctaggt 155100 cggcgtcgac gcggcaggtg cggatgtctc gcagggtggg tagatgggcg atgcacaact 155160 cettetecee eegecegtae ateteateee gtateageag eegtagegtg geattgatgg 155220 tcaqcqqqqt aaccaaaqaa atcacataqq qatqtqtaca qqaaqtqcaq tqacqqqtat 155280 ccqtqaqatq taaqtcatca ccctcctcac cqtcatcatq aaaqaccaqq actcqqqtqa 155340 gacgacccga tgaatactgg atctcccacc acagtctttg atccaacacc gagagggcgc 155400 aagagattet aagteteeet gggttgggtg ageagatgta ageeeegtat gtgeeteteg 155460 ccatcagggc tatacacatg agggggagaa ggacaagtat ccgggaccac ccgcaccccc 155520 acatcacqaq accaqaqaca qaqatqtata aaaaaaqcta cttttattaa acaqcattct 155580 caccacacgt taatactgtc acggggaatc actatgtaca agagtccatg tctctttcca 155640 gtttttcact tactgagact tgttcctcag gtcctggatg gctgcctcga tggccaggct 155700 cagggtgtcc aggtcttcgg gaggggtctc ggtgggctgc tcaaactgcc ccacggcgta 155760 ggccttcgcg gccgtctcgt agataggcag catgaaccca ccctggttgg tggagaagat 155820 gcgcaccatg acctgtttgg gaaacttttg catcaggggt aggcacaggt tgagagcgcc 155880 caacaggtcc acgggggtgg cagcgtggat gatcatgttg cggtaatcgg aagaacgggg 155940 gcataattgg tgggtgtgca attetttgag gctccacgcg gctttgacgc cttcgttaca 156000 agcateggee gtgegetgeg eeactteggg tgggtgtgte acaggeatgg tgtgeteeat 156060 gaggaaggga gtggagaggg ccaggttgca catggtgccc aggcgacacc gcaccgcatc 156120 cacctcactc ttcacctcat gattgcgggt gtagatgatc tggatgccct tgttgttcac 156180 ctgcatggtt ttgcaagctt tgatggcctc atctaacacc tggtccatac tgggaatcgt 156240 gaagggcagg ttcttgtact caagagagcg attggtgttg cggaacatgc ggctcacctc 156300 gtcaatcttg acgcgacccc gccgagtctg cacgttgggt gtgcagaagg gggtgttctt 156360 atettteatg atattgegta cettetegtt gtecaacteg gagatgegtt tgetettett 156420 cttgeggggt eeggtgeteg eeeegeeget getetgatgg eegeagetea geagagagga 156480 ggaggccgcg ccaccaaaac cgccgcgccc atggtggctc gaggtcacgg atgctcctcc 156540 qccactqctq catttcatct cctcqqactc actctccqaq tccqaaqccq aactqcaqqa 156600 ggaggaagac gaagaggaac tatetteate gggeeggeee aagggategg gaagaggagg 156660 gtggttcatc tgggagagcg ggtgcgtggg agaggtcact cgcggcgtgc cgctgccggt 156720 ggaaggggaa gacgcggtag caccgcgggt ttcgacttct tcaccctgtt cttcctcgct 156780 atcagagatc acgatacagc cggcggtatc gataatcttg ttgcggtact ggatggtaaa 156840 gtcgggctcg ggcttgatgt cttcctgttt gatgaggggc agcatgatag gcgcgggagg 156900 cacgggcggt ttaataatca ccttgaaagg acgcgtggtt ttgcgcggtt tcttacgcgg 156960 gctgagctcg ggagtagcgg atgccccggg gagaggagtg ttagtaaccg cgacgctggt 157020

gggggtcggc ttgttaagag gggcgctgct aacgctgcaa gagtgggttg tcagcgtggg 157080 gccggtgcta ctggaatcga taccggcatg attgacagcc tgggcgagga tgtcacctga 157140 tggtgataag aagacacggg agacttagta cggtttcaca ggcgtgacac gtttattgag 157200 taggattaca gagtataaca tagagtataa tatagagtat acaatagtga cgtgggatcc 157260 ataacagtaa ctgatatata cacacaatag tttactggtc agccttgctt ctagtcacca 157320 tagggtgggt gctcttgcct ccagaggtgg tgggttcctc agcaccatcc tcctcttcct 157380 ctgaggcaac ttcctctatc tcagacactg gctcagactt gacagacaca gtgtcctcct 157440 getectectg ageaccetec teetgtteet cateactetg eteaetttet teetgateae 157500 tgttctcagc cacaatcact gaggacagag ggatagtcgc gggtacaggg gactctgggg 157560 gtgacaccag agaatcagag gagctagcac cagcggtggc caaagtgtag gctgcaatag 157620 catetteete atetgaetee teagegatgg eeegtaggte atecacaeta ggagageaga 157680 ctctcagagg atcggccccc agaatgtact gggcaaagac cttcatgcag atctcctcaa 157740 tgcggcgctt catgacattg ataacctcag gcttggttat cagaggccgc ttggccagca 157800 tcacactagt ctcctctaag atatagcagc acagcacccg acaaaactca cttaagagag 157860 agatggaccc gtacatggtc atcatacaag cgtcactggt gaccttgtac tcattacaca 157920 tggtttccac acatgtagtg aggatatcca taaatatgtg atcaatgtgc gtgagcacct 157980 tgtctctctc ctcatccaaa atcttaaaga ttttctgggc ataagccata atctcatcag 158040 gggagcactg aggcaagttc tgcaatgccg ccatggcctg actgcagcca ttggtggtct 158100 tagggaaggc tgagttcttg gtaaagaact ctatattcct gtagcacata taaatcatct 158160 ttctcttaag ttcatccttc ttagcacggg ccttagcctt cagtgcaccc cctaacttgt 158220 tageggegee ettggteaca teatgeaget eettaataca agecateeac ateteeeget 158280 tatecteggg tacaatgtag tteteataca tgetetgeat agttageeca atacaettea 158340 teteetegaa aggeteatga acettateta agatatetaa ggeattetge aaacateece 158400 ccatcatatt aaaggegeea gtgaatttet etteegtetg ggtatatttt tteageatgt 158460 geteettgat tetatgeege accatgteea etegaacett aatetgtttg aetgtggagg 158520 aggataacaa cacatataag tatccgtcct cctgactcat ttatcgctac ctcgatgccc 158580 cgctcacatg caagagttaa tcttcactct atctgacata cacaagtaaa tccacgtccc 158640 atgcaggtta gtatatatca catacatgtc aacagactta ccgagttctg ccaggacatc 158700 tttttcgggg ttctcgttgc aatcctcggt cacttgttca aaggttttga gagattcttc 158760 ggccaattct gggaacagcg ggtctcccag gctcagctga ctgttaacct ccttccttaa 158820 cataqtctqc aqqaacqtcq tqqccttqqt cacqqqtqtc tcqqqcctaa acacatqata 158880 aacaaagtca taagcacatg ggtcacatac agaaaatatg tatataacat taaagatata 158940 actttttatt aaaaaaaggg gaacacaagt cccgacacgt accgtggcac cttggaggaa 159000 gggccctcgt cagggttgtc agggtccatc tttctcttgg cagaggactc catcgtgtca 159060 aggacggtga ctgcagaaaa gacccatgga aaggaacagt ctgttagtct gtcagctatt 159120 atgtctggtg gcgcgcgcg cagcaacgag tactgctcag actacactgc cctccaccgt 159180 taacagcacc gcaacgggag ttacctctga ctcttatcag aacacaacaa ctcagctgcc 159240 tgcatcttct tctgccgctg ccttaagtct tccaaatgcg tcagcggtgc aagcccgctc 159300

cccgagctca ttttcagaca cataccctac cgccacggcc ttgtgcggca cactggtggt 159360 ggtgggcatc gtgctgtgcc taagtctggc ctccactgtt aggagcaagg agctgccaag 159420 cgaccatgag ccgctggagg catgggagca gggctcggat gtagaagctc cgccgctacc 159480 ggagaagagc ccatgtccgg aacacgtacc cgagattcgc gtggagatcc cacgctatgt 159540 ttaataaaaa ctgcgggtac tggggacggt gttgttgtat atgtgaattt gtaaataata 159600 aatgggaccc catcctgtaa aaatacagag tccgtgtcag tctctgaagg acagagtatt 159660 ggcatatagc caataaagag agttgtggca aagagccatg ttatggatta gtaatggaaa 159720 gtatcgtcac caatagggga gtggtcaata atggtcaata acccacacct ataggctaag 159780 ctataccatc acctatagca taaggaagcg ggggtgtata gaccccaagc caaaaacagt 159840 atagcatgca taagaagcca agggggtggg cctatagagt ctataggcgg tacttacgtc 159900 actettggca eggggaatee gegtteeaat geacegttee eggeegegga ggetggateg 159960 gtcccggtgt cttctatgga ggtcaaaaca gcgtggatgg cgtctccagg cgatctgacg 160020 gttcactaaa cgagctctgc ttatatagac ctcccatagt acacgcctac cgcccatttg 160080 cgtcaatggg gcggagttat tacgacattt tggaaagtcc cgttgaattt ggtgccaaaa 160140 caaactccca ttgacgtcaa tggggtggag acttggaaat ccccgtgagt caaaccgcta 160200 tccacgccca ttgatgtact gccaaaaccg catcaccatg gtaatagcga tgactaatac 160260 gtagatgtac tgccaagtag gaaagtcccg taaggtcatg tactgggcat aatgccaggc 160320 gggccattta ccgtcattga cgtcaatagg gggcgtactt ggcatatgat acacttgatg 160380 tactgccaag tgggcagttt accgtaaata ctcctcccat tgacgtcaat ggaaagtccc 160440 tattggcgtt actatgggaa cccacgtcat tattgacgtc aatgggcggg ggtcgttggg 160500 cggtcagcca ggcgggccat ttaccgtaag ttatgtaacg cggaactcca tatatgggct 160560 atgaactaat gaccccgtaa ttgattacta ttaataacta gtcaataatc aatgtcaaca 160620 tggcggtcat attggacatg agccaatata aatgtacaca ttatgatata gatgcaacgt 160680 atgcaatggc cattagccaa tattgattta cgctatataa ccaatgacta atatggctaa 160740 tggccaatat tgatgcaatg tatatatcga tatccattgg ccatgtgcca actcgatgtc 160800 gcctctatcg gcgatatggc ctcatatcgt ctgtcaccta tatcgaaact gcgatatttg 160860 cgacacaccg aatcgcccaa gtcgccaaag tcgtctatcg ccatcccccg taaacgatat 160920 aagcgctatc gccagatatc gcgtatgccc aaaaatcact tttggaaaaa tggcgatatc 160980 agttacacag aaactcacat cggcgacatt ttcaatatgc catattttca aatattgatt 161040 tttccaatat cgccatctct atcggcgata aacaccacta tcgcgcgaca tgaatttagt 161100 cggcgacaga aatctcaaaa cgcgtatttc ggacaaacac acattttatt attcactgca 161160 gcatatagcc cattttagcg cggcacacat ccagccgttt gtgtttctta acgctctcca 161220 ggtactgatc caggcccacg atccgggtta tcttgtcgta ttccaggttg atccatcgat 161280 agggaacgct gccagcggcg cccagcaggt actgcgcctt gtcgttcact ttgccgcagc 161340 gtattcgccc gtcagcttcg aggtataacc tacaacacgg aaggggggta caaaacgtga 161400 aattagactt tttttttaa tgatgttttg tccctctctg tcttactctc ccataggctg 161460 taaggccctc gaggaagaga cttacggatt gtagttgcag ctcgtcagtt tgttgtgtac 161520 gacctggcgt gtcaatgaat gggtcatggt ggtgacgatc ccgcgaatct cagccgtttt 161580

ctcgggactg tagcagactt cgccgtccgg acaccgcagc ctgtgtattc atgaaaatct 161640 actetggeat tecegaggat egtegatgga acatggetat cagaaacgte gagagacaga 161700 tccagacgca ccacagaacg cagacaatca tgaaaatacg tacgcgacgg tgaagcgatt 161760 gcacattttg aaatcgtaac agcgttccgg cgggtggttg acgtttatga attcgcaaca 161820 ttcttctgcg cgtacccgcg gcacgcggct gtgatccaat aacagccaca acgccgtcaa 161880 gaacggcgtc aggtttttgg gactcatgac gcgcggtttt caaaattccc tgcgcgcgcg 161940 acgggctcaa acgatgagat tgggatgggt gcagaaggtg taagtctggt tattggcctc 162000 ggtgaacgtc aatcgcacct gaaaagacac gctgtagtcc cggaagacgt gagcccagct 162060 ctccaqcttc atcacacaca tctgataacg tgtgccatcg ttgacgacga agcgtagcag 162120 cttqqtctqc ttqqqcacca tqtqcqctcc aaaaatcttq qcqtcttcca cqctqatctq 162180 cacqtttccq tcqctcqqtt ttqaaqccqt tcqqqqcatc cqttqqaqqa tqqtctqqtt 162240 gegacegete aggtaceaga teacettttt caeceaggtg gagettetet ceaceaaggt 162300 ctggccttcc cggttgtaca gcagatacag ggtctcgttg cgacactcgg gacccgttaa 162360 tacccgctgg aaccccgaga attgcaaggg ggaccgtggg ggcgagggat agataaaagg 162420 acagtaaaac gtcgccgcgt catgcggttt ggaatacgtc agtttagacc atagcgggga 162480 cggattctgg ttcgccgtta gcgttgacca cggagacgcc agacagggcg ttgcccaaac 162540 cgcgcacaga agcaggcagt gaaagtggtg acgaagcaga agccgtagca tattatttcc 162600 cgtgacgcag gctagttggc aaagagccgc acgctgaact cgaggctccg ggcgtgcggc 162660 gccagcgaac cggcggcgtt gaacgtggtc cttttgttgg tgccgccgcg acggttctga 162720 cgtctaaagt cgctgatgag caacgacacc tcggtcacgt tgattctgca agcacaggtt 162780 ccgaacgtca tttcacaccc catgcggtta cctgcccgtt acccgttcgc ccttaccttc 162840 ccgttgtcat acacctttag cgcgtatcct cacctcttga gcacgtcaaa gttgtccaag 162900 ccgtggctcg catcgtagtg gtagttcaac gtgaggtcca cgagctgttc cacatacttg 162960 taacgggttt ggtcgggcag cgcgcgagag cacgcgtccc agtaatgcgg tactcggtaa 163020 taatcgtttt tttctgcggt ctcccgctgg cactgaccca gcaccacggc gcacagacaa 163080 acagacagcc acacccgaca cagccgcatg ttgcagactg agaaagaaag ctttattatg 163140 agacatcata cacatagtat aggcgaggtg atggggcggg gaaagagttg gaaccgaaag 163200 ataaaaaaaa aaaagcctag tcgtactcgg gatctctgag cgagacgggt tgcatggcaa 163260 ctttcattag tttgggaatc tgccagctgg tgctgttcga aggttcttcc atttccgagg 163320 cggtcagttc atcgtacacc gagacgtagt acctgatggg gtcttcctca ttgtccgaga 163380 qqtqaqattc qatqqtcaaa qqcqaqcctc tcccataatt qqqattcacq aacqacqtqt 163440 ccaagttgcc atcetttctg aaatagatga egtteteagg atcatgttte atgegetege 163500 gggccgcgga cgcctcctcc tcctcgtccc agtcccgagt ttccaaccgc tgataagggc 163560 tegaggaaca aaateeggeg gggatetgag aacetegteg ggaacegetg ceaaaeggge 163620 tgccaccgcc actgtcgtcc gtgtcgtcca acaggttgac ggcttcttcg tcggcgaaac 163680 gaaagcggcc cgggtgcttg caacacgagg agtaaactac cgcgatcagt accgctatga 163740 agctgaaaat ggaggtgcct gtcacgatgt agaagaggat agccagcact ttcatgattt 163800 cgtcattgcg cacgctgtga acggaagact cgtgggtggt ggtcatgttg atcccggtcg 163860

tgggtccgct actcgtggca ttgtcgacgc tatttctgct gctggtgcta gtagggactt 163920 ttgtgctgct ggtcacattc gtagcgtcgc tgaggtctat ctgaagcagc aacccgaacg 163980 cgaccagggc caggaatgtt gcgcgaaggg gaccccgcgg ggccggcatt ctcgagacgt 164040 ggcgacgtgg atttcttgct atgtccgcga acgacgtgtg acgaggacgt ggtttccgca 164100 agectetace gaegeegea caecaggtag gttateaaaa egegageeca tategeegee 164160 atcattgtaa tcagcaatgt gttgaggtac tgcacgatga atctgtctag tgacaccagc 164220 caaccetetg ettttgeggg caagegeget tteggtgaca gggtgtateg taegtageeg 164280 cgggtcaggc gcgcgttgta gcggtacacg cagaaatcta tccacaggcc aacgcccggc 164340 tgtagetteg gatggtggat aatagegegg tgaegtaege egeggggett tagaatetee 164400 acctqtaaqq ccatctcctc caqqtaqtqq qtctqactqc qacqcaqcqt ccaqttcatq 164460 taaaagtcgg tctcgccgtg tccggccacg aagaggctgc ttactaaatc gggcgccaga 164520 gctaggtcag gcgtatcaaa ttccactgcc aggcgacctg attctaacgg ttccacgatc 164580 cgggagagcg tctctagata tagagcaaag cgtaccacgt ctacctgcgg tgtaaaaaaac 164640 tgctgtgggc gttcaccgtc gttgaccacg taggccacgt agaggccaac attttccacc 164700 acgggttcta gctgcaggcg gcacgtaaag cttagaaacg acggctgtac ggtttggttc 164760 ccgtgaagct gaagcgtcac ttccttgccg gggctcactg tgctgtaacg ccgcaccgag 164820 teggteatet geteeggate ggtagaceag aagggegtge aatgeataet gteeeagteg 164880 cgacacgcag cccagcctag ctcggtgaag ggtcgacgca cacccgaaaa agtgtgcttg 164940 aagaccaggg ggtcgcctcg gtagctcaat agccgaacat gcacatagtc gcggctagca 165000 ttgacagacg gcccgtggag ggccagcagg acgagcgtga acagcaagcg caacatgctg 165060 cgcgggttag gaaatgcggc gtgccggcca ccgcccgact cataaacact accagcatga 165120 cgtctcagat cacacaagtg acgaggagcg taccgcaaat cactagggaa aaggccagca 165180 gagecegata gtettgetet tegegaaega tetegteegg tteeteaeae tettegtggt 165240 ccacagaaga tgaggagcag gaattttcgt taatctctgc gaggatacta gtgctgtacc 165300 acaccagage gettagtgtg eccagageta eegcaeggta aaatagggae atgateacca 165360 gcgcagtctg aagtggtggt agttcaattt cttggcgtat ttccagagaa aggctttgta 165420 ggccgtaggg gctggccagg caccaaactc aatattggta gacactacgt cgtaaatgcg 165480 ttgttcttcg tctaagatta accgaaaaaa tagccggttg atgtgacgac gcacagcttg 165540 cgcgttagga ttgagacact tggtgccctt gtcctttaaa atagccagca cttcctgacg 165600 attgcagctt tcgctcgctg cgattggctt aagcagttga gttccgactg gcagggtatt 165660 caacaqaatt tqqttqttqc aacqacaqcq cttqtcqtaa tcttccaatt ctaaqaqata 165720 gacgaatagg ggacacgtgg aaaataacac atatgcggtc aaatacaggt atcgtaccga 165780 taagactttg atgtgcgaat ttggaatcgg atggtgtaac catgtcaaaa ccatgtcgaa 165840 aacacattgt attacctttt tegetatata egtgatattg ceaactegtt ttacaattta 165900 taaaaaatta tagtcgccaa ggcgggtgtc tattggtgtc acttttgtct tctatatgtg 165960 gtccattatc agagtttttc tttataaaca ctttatgcca ccagttactt cgtttgccat 166020 caacccattt cgatagataa tgatcaggag acaaacatac aggtgtttgt cggggaggta 166080 ataaaaagtg ttgcgttttg tcgcatgtag gatctggagg tttatagccg acccaaaaaa 166140

cgccgaatac gggatgattt gaaccattgc tacaccgaca acgtagttcc acactttcca 166200 ccttatagca caacgcgatc aaaagaccaa acagactaaa aataaatcgc attataattt 166260 tattatctac gtcactatca gtaattcgta atatccggta ttcccggaaa atcactcaaa 166320 actacgtcca tgacacatca actoccgata actacctccc tttgaaatcg gatcccccca 166380 cgtaccaatc aatcacacaa cacacaggtt taaaaatcga tcactcgtca attaggtttc 166440 aaaatcgata ccgtttatta tcaggaatct agactaattc tacaatgaca gctctgaatt 166500 tetetetegt etteettgte aggiteteat cateagitat caetteeace categaggag 166560 tcatcgtcgc tccaaaatcc tttggggtcg ctagttggaa aagtctctga cacgatccag 166620 gcaccocgca cocagtocga otgatotago ttgcggagca totcaacagg catgagctgc 166680 agggccatgg ctgtcacggc actgtatcga tgtaacacta gggactttct ttgcgatgta 166740 gccatcaaca cggcgtatgc cccatagttc gcgtgatacg acgcatgatg ggttaaacgt 166800 teccateegg cagtgeegte tegggteegt geacacaaca getgeaegge attatgatge 166860 ttaaaattaa ccataacgct ggggctactg atgaaggagt agtaatgagc caggacgccg 166920 tacatcgaag gcagcaagaa agagtgacag cacaatagca ccgggctctt atgtaggcga 166980 cagettattt tteetgaegt eggeaaaaag taeetaaatt eeccaeagat atteagaeac 167040 ggttccgcaa agtgcttctt tttttagtgc aggaattgga aaaaataata aaaaatatga 167100 acageteate tgtaattate tgtgtgaett categtaeeg tgatgtaaaa acaacaacag 167160 gaagettaca gggtgeggta gaaaattttg eegattgage aacaetgttg geatetetea 167220 ctccgatagg cggctataag atagaaaatt aaaagtatga tacccacgag aaagatgaag 167280 agggacaacc aggctagagt atgacgacca cttttccctt gtttgacggt tacatgtgcg 167340 gtatgatttt gtcgttgctt gtgatgttgg acgcctggaa cggacaacga cgtataattc 167400 ttagatgcgc atacggtgtt attagtggaa gtgcagttac gaattgtaac ctcagtgtca 167460 ctacactcag tgcaattggt acaattgtaa agccctgata catacgtacc gttagggcaa 167520 agtgtacatg ttgtactcgt atattgcgta cattgtcctg taacacgata tccttgttta 167580 catgggggac aacactgact tcctaattgc acttcttcgg gtttgcatat ttcagttttc 167640 cctatgcatg ccaatagcat actcagcaaa ataagcatca ccagaggctt catgcctcct 167700 accggaagaa taaaaataac tcatggggcc gaacggtatc atcctctccg cggtttgtaa 167760 tacgagatcg taaacgtaaa taaatgacat aacttcacta acccgcatac tgcaaagtcc 167820 acctacgacg ctgaaagctt ttccaggaca caacaggata gtcagccatc ttcacaggta 167880 accagtttct agtcacagta tagcgagcct aagagaccgc acacggtccc tgctggaaac 167940 acataccact acatcgattt gtcgtgtcgt acaaccgtca agttttccga acttttatac 168000 acgccaatgg cgttaggact atgtgtgctg ctgtgattgg aggcttcgag agttatgtga 168060 cagetgtgat tacacetgte gecaaggetg acagegatta eecaggtaga geacaateae 168120 atagctgatg gacgttggtt gatccgttga ttcccatgga cattttaacg gcgacagtac 168180 ageteeegtt aaacattaga ttaatagaeg etagtggatg acageatgtt attegeecaa 168240 ttgtgatggt ggttatactt tcttgttttt tgctcatatg ctgtaaggtg ttcgaggatc 168300 gtggggagta tatgtgttaa atcggaatca tatttactga ccgcgccata cttcgtatac 168360 gaacctaacc ggcgtaaagt gttttccgat atataaactg gcgcctattg tggctgtagc 168420

gcccataggt atggcatata cccacggtga tgttgtgtta ttcgtttttt gtgataaaac 168480 gtagtttatg tttaacgtgt gttccgtcac gttatgtgtg tcgttaaaag acggcgtctg 168540 tacagtatgg ctttgagttg tatcttgaat tgttattgca tttggaggtg tgtacagagt 168600 ggttgttgtg tgctgaggtg ttgttacgtt ttgaggcaca gttgtggtgt atacggactt 168660 caaggtgtag ttacggagtc tttctatgca ggtagtgttg agatatttgt gaatgctggt 168720 tatgttcgat tctgtgaggt taaagtgtgt actatttatg gcggtataat ttagacggtc 168780 ttgccatccc gaggatgtta gtgttaggta attcgtgttg tttacgtttg cttgatatgt 168840 ataggtaggt gtactgtttg tgaggtcgca agtgtgattt tcttgcagag attttatcca 168900 tettgtgtga aaatattgag atacgegatg aatgtttteg etatetatat tgtaaagegt 168960 ttcqqtqqta cttaqqqqtt qtttqctqta actcttattt tqqacccaqq atqtqaacca 169020 tgactccaat gtttgtatag taaggtgtcc tattaataaa gacgaactga ttcctaccgt 169080 aatgttatat cgcacaccta gggtgccgtt tacaaacacg gaaatgtttc cgttacaaac 169140 cacgttggca gatgaattag attccaggtg gtaacgatag gataatgacc gttcgctccc 169200 aacqqatqac acaaaqtatc cqaataacca acacqcccat tcaatccqca tattttaatc 169260 acactattca catttcacac actgcatttt ttaacatgtt atttttttat tttatgcgtg 169320 ttctcacctc ttcatctttt taacaccggg gtaactatcg taagtcggta ggcgtcgata 169380 geoeteacea ectegtegte ecetteeegg egtggggeac eagegteeac ageactgeag 169440 gtaacacagg tagcatagga aacatacggt gaaaatactc caaaatccca aaaatgccgc 169500 gattccccga gtggcccagg gagacatccc ggtgtctatg tcggccggcg gtgctggcgt 169560 caccggtaaa aatttcggcg ggtgtggctg cgaacggtag cagtcgccgg ggagccggta 169620 acgctgtatc actgtccaac agcggtcggg ttcctcgtcc ggacatgcgg gtttccagca 169680 atcctcggcg tcggcgcgc cgatatagaa gtagttgcgt tgaaaaccgc ggtacatccc 169740 gcagtcgtga ttccgtagac gccagggcgt cggcgaccag atctggtctc ccagcgagta 169800 acgacctaac gccggcgtgc agcaaggttc gtcgggccgg ctgagcgtct ccagttgcgt 169860 gagaattacg aagcgttgca tgatgaggcc gtggctgtag ttgcgcagca cgcattcgta 169920 catgccggcc gtgtccgtcg atacgttgaa agtcagcgag aatatttggc cgagatgcaa 169980 ttgcgagaaa ttccaagtgg cgtacggcag gcggtactgg agtccgttca tcagccgatg 170040 geetttgaeg gegteeagga tgagetegte getgeegteg tgggaaegae agaaaegtge 170100 gcgaatggag accatgggcc aggagtgtgt catgaccgtg caggggatgg tataacttgc 170160 tetecetegg egaceaacae eggegegge gaegtggtet cataattete ggeecacate 170220 ttttcqqcaa tqtcaqcqqt qqcqaaqqqq aacqaaqaqq aaqaatattc qaqqaqtcqc 170280 gggcagetea acageaceca gaacagecae ggcagagtte ggagegaete teggeggeae 170340 atgatgattc tttctttccc tttttcgcag agacgctgcg cgcctgctcc tgctccgtgt 170400 gteggeeget caaacgtegg geeggegtgg tggtgaceae egtgegaege agettetege 170460 ccgggatgcc cgcgactgag cgtccggttt ttttgcaggt cttttttgct gcctcctcct 170520 cgccgtcgcc gtcgcggccg acgtggtgga ccagcaccgc gcaggaactc tcgcgtcgcc 170580 ggcggtacgc gacctgtctc attgctacct cggatgttta agaaggaacg ttcatctgcg 170640 tcacagggtc tgatgaagct gccaagagtc gtggctgtgg cgcagcgcgt tctgtacggc 170700

gegttteacc getttetgea tggeegetac caegtegggt gggagegget ceggeggaag 170760 ctcgatgagc agttgctgcg agtctcggcg ctcggtgtcc gccgtttcgt cggacgtggc 170820 gtaaaaaacc gaggtggttg cccagtcgtc cacgctgtcg acggcctctg tcagtgccgg 170880 gttgtcaaaa ccgccatcgg acgcgggtga taaaagaacg tacgatgaca cgctgttagt 170940 acgaeteteg tegtegetet gggaacgaeg tgatggaega eggtagatga cetegtettg 171000 ccacgcgtcg aagcggtcgc agcagcgctg gatccaagcg cagcgaagca gcttacggaa 171060 cacgtcgttg ttccaaaagt agagcataaa gagaaagaaa agtagcgtaa taatgaagcc 171120 gaaaacgacg agggtcggca gggcactacc gccgctgccg ttttttgtgt cgtgcgggtg 171180 cacqqtqqta qtqqcqttaq tctqaqctqq qqtcatqaca aqtctqaaqa qatqaqaqcq 171240 tgggtgctca tcaggaacag ttgaggtctc tccctaccga agccttagcc tccacggtgt 171300 tttatgatca acgtgtctac gaacgtcatt gtgaaagtga cgtctcaggc tttccgaaac 171360 cgcgtcagat tcaacgtggg tttcggttta gcctgcgtca ccgaggcgga ggtggaaatg 171420 agccgtcctg tgggggagtg tacgaccctg tagtgcccat gggtaacgtc gcgtcggaag 171480 aagtgaatgc ggcattggtg tacgcgtggg ttgttttgct ctctgactcg gaggaattgc 171540 cgcagcagct gcagatttta cgtactaacc aaaagcagca aaagcagcag gtaaataaga 171600 gaaggagtcc agataatgtc cagccgctag cggcaagcag cgcgagctgt ggtactgtcc 171660 agetactgcc gttagaggca ttaatacatg tcgatacggt cgtgttggcg gtagcactag 171720 tagattgact ggaattagag etggtacetg tagtggttte aetegeegat geggegagtg 171780 caaataaaat taatatccac agcatgttta ttactatata attgatatac gaacccgtct 171840 gtcgtaacaa tcagcgttat acacgctgta tcggcatcgt tttaccggaa agtttatcgt 171900 aatgtaaccc gcgttgtgta cattcgtact gacagggaac ccccggtgat gtgcacatta 171960 tactetttea ttetggggtt teecaatgae gtaaaaattt eeactacaca ataaaattae 172020 tgactcatgt gaaaagtgtg ctttttatta acagagcaga gggtttacag tagatatatg 172080 tttgccaggg ccaccgtttt ctaacaccga tcaccgccac cattaccacc cgttgaactc 172140 cacacceggg ageogectga tegecaggga etecteaceg tecategtee gaacaagete 172200 ccgccaccga tgctgccacc atcaccgaga gaaagaaccg cttgctgcag atacgcttgg 172260 getegeetee gtgeggaege egtttegtge agaegetgag tagategage agagaatgte 172320 aaaacgacat taccgcgatc cgctcccctc ttttttcttt ttctcattca cgtgtattct 172380 tgatgataat gtaccatggc tacggtggtg aactgcgtcg cggatcccgt cacgggtttc 172440 aacaqatcga cgtcggtcag cgccgtc accgccatgt ccggcggagg cacgctgttt 172500 ctctqqttaq cqacqtqqac cqacqacqaa qacqatqaac ccqcqcqqcq qtctqttatc 172560 cgcgacgacg cgtagctgca ctgggaagac acttcctccc aacggaccaa gatctcatcg 172620 ggccgttcgg agaaacggta tcgtctgtcc gactcccgcc gtacggcgcc gaggcccagc 172680 gacgacaggt ccgcgaaccg gcgctcgtat tccccgtaca gctcgcaaca gcggatcagc 172740 cagoggtago toaaaaacat gogcaccagt ttgaaggtgt ogtgocaatg gtaagotaga 172800 tagcagagaa tggccacgat cagcacgagc atcacgccga tgatgggtaa cccgacgttc 172860 ageggeagat egtecatggt gaeegteete tgteeggate taegteeeag tetetetett 172920 ttgtacagca ctcgcgcggg aacggcccc tcaaccctct tacgtagcgg gagatacggc 172980

gtteteeege gggeeactta ettgeaeggt egettgaaeg geggettgga eegeeacatg 173040 taccgcatcc atccattctg gcagcagogc gttcgacgac gtcgtacgag tcgcggatga 173100 tgttaccccg ccagcacctc cgccggcaac cgcgtcgtcg ttgctatcgt cgccggtttc 173160 gggcgatgac agcgccggcg gcgcgggtct cgtctcgtcc accatttcca ccgtgtcgaa 173220 gegacageeg etgeegtagt acatggeece gtteaaegge eggegggeeg ggtegeegag 173280 ttccgggtcg ggcacatcca tggctcgccg tctgcttctc tgccgctcgt ggtgccgacg 173340 gcacttetea ggataatgae ageegcaaaa tagategtgg ageatgtete geeaactgte 173400 ctggtggtaa tatcttaagt acgcgatgag cgcgccgatg gccataatca taagcgtaag 173460 caaaacggca cagataacgt gaaacaccgc ggtcatccaa gtcgggcggc gtcggggacg 173520 cggtgggtcg gtttctctta cgccggcgtc actcagccac cacacccgta gtcgacattc 173580 ccagaaccgg tgaatgcgac tcagggcctt tcgacgccgc catttatttc caacgtccaa 173640 gteccaegte atttetggea teteccaegee ettgaetgae ataetetett tetetetett 173700 agetgeggtg aaaaagaggg aaggegtgtg etgetataca aetgtacaac ggaegegete 173760 getgtttegg teteaggtea tetgeattga eteggegtee tteatgaege tetgeaeege 173820 cttttccaag agttcctcga tgtccgacca tcgaggaggc ggggctaact cggaaaccga 173880 cacgataggc agcgtggtcg gctccgtcgg cgtgcggggt cggggacagg gacacgagag 173940 teccaectte gagagattet ecagecegae ggtgegegge agteteggat teegeggtgg 174000 cttttgtggc gtcggcgttt tcgggaaggg cctgggcgtc accggcggtg tccagccgac 174060 cggcttgggt ttcgtgggcg gcggtgtttt cttggtgggc ggcgtgctca ggttcttacg 174120 cggcgcgggt atcggcgtcg ggggcctgtg cgacgacagc cgcgtggtgg gggcccggac 174180 cggcggcgta ggcggccgct tcttgcgccc gggcggcgga ggtggcttcc aggatggcgg 174240 cggctgatgc agtaccgtgt cgacgctggc cgaggacgac aaagagctcg acgaggagca 174300 atgcgacgga gatcggccga tgctggtcgg cgttcccggc gtggatacgt cggggatctc 174360 gaatcgcgcc ggaggaaact cgggtttatc tatcggcaga ccatcctctc ctatgtagag 174420 cgacgtacac cgcggcacct geggcgtcgg cgggtgggtg gccacccgca tgagccccag 174480 ttccagatcc agcggctcga cgacgtcttc tttcggaatt cgatagcagc acgcgcaggc 174540 accaegetta teagaageag eaccegggag eeggeetege gaegaagtet egteggateg 174600 cttgcggcct cggcgctggg taaataagga aatggccagg accagggaag ccagtccggt 174660 accgccgagg agcccgacgc cgagccacag ccacaccatg atcttctctc ctgcttggaa 174720 teteaaaete egtgteggga agggeeggtg taeggaeatt tatgeettgg atttetggaa 174780 acqtcatttt ttqqcaaqqa atqtqtttat tqtccaaaca ctqaqqaaqq aqatqtqaqc 174840 caagteggaa aatteettat cacacegggg gegggttaeg tteeggtetg atgetgetge 174900 tgttgttgta gagccgcggc catggccgcc tgcacggcag cttgtaccgc ctcggccacg 174960 ccgggtggca tctgcggcat ggcggggga gacgctcgg gcggaccgcc gggcatcgcc 175020 gteggetgeg aeggtggttg tgaacteace gteggetege aeggaggttt gteetteggt 175080 ttgctcttcg gtttatcttt cgccctacct ttcttcggtt tgggttccga tgtcggtgtt 175140 ggcggctgcg gtgggatgac gggctggtgg gactcctccg acggcggggg gacgaatact 175200 gteggegeg aaaceggggg actetegact atetegeaga teaceetgte gggategteg 175260

cogtgtcogg gacgcogtcg atgaccatat tgaaccatgt cgtaaatcat cgtctccttg 175320 taacacgctg aacagcagcg gctacaagga cccgaaatgc atttgcagct gcacttacag 175380 ctgcagctgc agtagcgcac ccatcggcag gtgaagacgt cgattacgga gtccttgaag 175440 aattoooggt aacggatgag atacgcgcag aggaaaatca tgaaaacaga acagccgact 175500 acggctgcga tgccgggtcc cgaaaacgta ttcggtgatc ctaccaaaca ccaaattccc 175560 agggccgcgc atgttatcca ggccacaata atcgtgggaa cgccccattg gcattgccac 175620 gaaggategt geaegtegea acceateget actgegttet eccaeaaaeg ceategeact 175680 atttateeet acageggetg cegagteacg teegeeggeg cecateggee geggegatet 175740 cctagtaaca ctcgtccgac acttccacca tctccagctc cgccggcggt tcggcatcct 175800 ccactagogg cgtcgtctca tcttttccgc agcagcgaac gcacaccttc tccaggcaga 175860 acqccaccaq ctqccqccqa acqtaccaca aqtacacqtq caqacctqcq aacaqqacta 175920 cggaggtcat gaccaccacg acgcacacgg gaatccaagg atcgagattg tcgctggaac 175980 teatggetat egecacegge gtgeeegegt etgteteace geegetegee egatgtegeg 176040 eggettgtta taegetagee egtegeegee ttggggeaeg gtgeeeteet aeceaegtaa 176100 cttcctccgt gacttaaagt cgcgtgtggt agatctcctg ttccgtggac gaaccgtccg 176160 gcaggatagc ggttaaggat tcggtgctaa ggccgtgtcg ccaacgtcga atgctacgtt 176220 gcaacagctt cgacggacgg ccatcctccc tctcatcgca ataataaaac accagcagcg 176280 cgcacgacgc gatcacggtg acacccatga ccagacccac gcagatagcc agccccgcta 176340 gegtatecag egecateceg ttegeteceg tegtegtete etgaacaaag caacteegca 176400 gtccccgttt tcaaccgttt ttgtttcctt cttcgcgact agatgttaac gcccgcggtc 176460 tttccggccg tgctctacct cctggcgctt gtcgtctggg ttgagatgtt ctgcctcgtc 176520 geogtageeg tegtegageg egagategee tgggegetge tgetgeggat getggtegtt 176580 ggcttgatgg tggaagtcgg cgccgccgcc gcttggacct tcgtgcgttg tctcgcctat 176640 cagegetect teccegtget tacageette eeetgaaace caegttaace gaeegteeeg 176700 aaaacaccgg tgttaacaca ggaaaaaaag gaaccgcgca ggaaccacgc ggaacatggg 176760 acactatctg gaaatcctgt tcaacgtcat cgtcttcact ctgctgctcg gcgtcatggt 176820 cagtategte gettggtaet teaegtgaae caeegtegte eeggtttaaa aaceateate 176880 gacggccgtt ataaagccac ccggacacgc gccgcggcac ttgcctacgg cgctgctcca 176940 gggaaactcc tetteettet getetteete etteacegea gggategttt eeetegacea 177000 qqqacccacc qaaqcaacta ccqqaacaac ctqqaqqaqt cqcqqcatqa cqqcqcccaa 177060 qtqttqacc accactacct atctqqtqaa qaccaaqqaq cqqcctqqt qqccqacaa 177120 cgccatcagg agatggtgga tcagcgttgc catcgtcatc ttcatcggag tatgtctggt 177180 ggccctgatg tactttacgc agcggcaagc gcagagcagc aacggcggca gcagcggcta 177240 gacgagtete tggeggetae agetecagge geegtageeg geeggetge egategegae 177300 gtcgtggacc atcgaacaga gactcacgcg tacgagaccc cgaggtacgc cacgcggtgc 177360 ctaacgcggt ataccacatc cgtacggtct gcagtgcggc gtacaacgtg tggaaaacgc 177420 gtegegtege agagteegee aegteeetgt ettgtegete eecaategte teeegeacae 177480 ccccgcggc acccaggggg cgggtgagcc aagcattgtt aaggccgttc tctgttccat 177540

agcccataaa ttgttgattc cggagctcgt tggcgcggaa atagccggat aaggggagca 177600 acaaccgtcg gcgaaagccg tcccgctcat tcagtccggg tttcgcgtcc agtcggacgt 177660 gtgaccgttg ggcaacggaa cggcgtttca ctaccaaaat cgtatcgggt agtgtacgag 177720 acgtcggcgg tgcagaatgc gactcgcggc gtagctcgcc gtcgctatgc ggctcgtcgc 177780 cgtgtggcgc ggcctggccg gctgtctgcg cccagatctg ttggcctttt ggttcctctg 177840 getgetgetg egtgtgtget ttggcagaeg eggtggcagt ttgeggtetg eggtaagtga 177900 ggatgttgcc gagcaagege acttgeggeg egtgategge aegegtgtta ttgtaggttc 177960 gttgccagat ggcaagtgct gtcaacagca gacgttgtgg gcggtcggtg tatttttgtg 178020 ggttgeggtg agagteggea eteggtgttt tgtgagtgat eteaacegtt tgtgttgett 178080 ttaqcaqcqt ccaaaacaqc qacqcqactt tqqqqatqqc ctcqtqctca ccqccqcqqa 178140 gagtgtcgcc ggacctgctc gtcagcagcg agctacgcag acggaatatc tggaggagag 178200 ttacgtgtgt cacaggagag cgcgggtctc cggcggtaac gacggcggtg tcgtcgacac 178260 qtqtqcqqcc tqctqtqctc tqcqqaaaaq cqccqqtctc qqaqaccqtq qacqaaaaaq 178320 agaacggagc agctaccgct ggcggcggcg gcgttaatgc tgccgttgat gttagacgtt 178380 gtgagtactc ggaaacagcg gtgaggcaga agctcgatcc ttcagggaac gacagtcgat 178440 gtgtggtagc cgcagcaggt gaggttgggg cggataacgt gttgcggatc gtggcgagaa 178500 cgtcgtcctc cccttcttca ccgccccacc caccctcggt tggtgtttct tttttcttgt 178560 gtcctgcaga tagttccacg gacagcgacg gcaagtccat aatcaccggt gtgcaagtgg 178620 tggaccacga cgaagatatc atcgcgccgc agagtttgtg gtgcacggcg ttcaaggaag 178680 ccctttggga tgtggctctg ttggaagtgc cgcgttgggc gtggcagggc tggaagaggt 178740 ggcgcaacag cgagtctggg cgtcgatgga gtgctgggtc tgcgtcggct tccagcttgt 178800 ctgacttggc gggcgaggcc gttggagaat tggtgggatc ggtcgtcgcg tacgtgatcc 178860 ttgaacgtct gtggttggca gccagaggct gggtgtgcga aaccggtgtg gaagccgagg 178920 aggetatgge geggeggega eagegeatge tgtggegtat gttetetegt ggaggegaeg 178980 gcgaatgcag cagacggtgt tcgatggaga tggcgtgcga ggaagaaagc gccgtgttgt 179040 gagcagacga cgttggatgc gggacgtcgg agcacatggg ccatgtgtgg tggcagatgg 179100 cggtgtccac ttgtgcttgt cgcggcagtg cacagacgaa gcaacatgtc gctgtgaaga 179160 gatagagtgt gagcatagct gtatgcagcg ttgcgtgtag aagcggggg attaagacgt 179220 taataaagag tagcggcggt tgtgataggg cgaccgctga ggcgagctgc gtgtgcgtgc 179280 cgtctgtgtt ccccgtccc gccgcaaqaq tcccccgtcc ccgccacgca acagcccgcc 179340 atecequaac teceeqteec egeeqeqaaa qqceeceqte eceqteetea ecaeeqteec 179400 cactecegte eeegteteeg caaegeeeeg teeeegeege aaaaggeeee eggeeeegea 179460 acgcatcgtc cccgccgcaa aaggcccccg tggccgtacc cgcacacccc ccgtccccgc 179520 cqcaacccc qtcccqtcc ccaqcqtaac tcccqttact aqcqccqqcq cccaqcacqc 179580 ccgaaaacac cgccgtcgcc gccccgaaaa gcgaagcgcc gcgcaaaagc tgcctagaaa 179640 cgccgcgcaa acaccgtaga aacacccgcc gccaaccccc gagcgcgcg aacaccccgt 179700 ccccggcgcc ggtccgcgaa acaaaaaaca ccgcgggacg acacgcaccg gcagtgcgca 179760 caaagcgccg gacacagcac gccgcaaacg cgctgaggac accgctgcgc ttacttatgt 179820

ccagagacac acgcaccgcc agegcgcaga aagctccgtg gacaaaactc ccgcagccct 179880 gtccagccct cagtcctatt ccgcgaatcg gcgcgctgac ggtggcaaaa cctccctcag 179940 ccccgtcccc agcgtaactc ccgttactag cgccggcgcc cagcacgccc gaaaacaccg 180000 ccgtcgccgc cccgaaaagc gaagcgccgc gcaaaagctg cctagaaacg ccgcgcaaac 180060 accgtagaaa cacccgccgc caacccccga gcgcgcgcaa caccccgtcc ccggcgccgg 180120 tccgcgaaac aaaaaacacc gcgggacgac acgcaccggc agtgcgcaca aagcgccgga 180180 cacageaege egeaaaegeg etgaggaeae egetgegett aettatgtee agagaeaeae 180240 gcaccgccag cgcgcagaaa gctccgtgga caaaactccc gcagccctgt ccagccctca 180300 gtectattee gegaategge gegetgaegg tggeaaaace teeeteagee eegteeceag 180360 cqtaactccc qttactaqcq ccqqcqcca qcacqcccqa aaacaccqcc qtcqccqccc 180420 cgaaaagcga agcgccgcgc aaaagctgcc tagaaacgcc gcgcaaacac cgtagaaaca 180480 cccgccgcca acccccgage gegegcaaca ccccgtcccc ggegceggte egegaaacaa 180540 aaaacaccgc gggacgacac gcaccggcag tgcgcacaaa gcgccggaca cagcacgccg 180600 caaacgcgct gaggacaccg ctgcgcttac ttatgtccag agacacacgc accgccagcg 180660 cgcagaaagc tccgtggaca aaactcccgc agccctgtcc agccctcagt cctattccgc 180720 gaateggege gettaeggtg geaaaacete eeteageeee gteeegeace ggeggeggte 180780 ggggtgtgtc gggggcgcgg ctgggtggat gcgtgcgtgg ggtgggtgtc gggtgtgtca 180840 gggcgtgtgg cgggtgtgtc tgggtgtgtc gcgggcgtgt ggcgggtgtg ttggcggggt 180900 gtgtcagggg tgtgtcgggg tgtgtttggcg ggccgtgtct gcgtgtgtgc cccggggtcc 180960 gegacecece eceteceetg ggegateget tetgegtgtg teetegaege gggttgtgee 181020 gtacttegte tgtegtttee eeegeggtee eetagggaet teetetttte egegtettge 181080 cocccetece ttgegeeece gagetteete tggeegttgt tttgegtgtg tetgttettt 181140 cetettttee gegtettgte tetggeegtt gttttgegtg tgteeceagg gaeeegget 181200 gccgtcccct gggaacttcc tcttttcccc ggggaatcaa acagacacag acgcgcgtct 181260 gettttegee gtgegeggeg eacgtegett ttattegeeg tegeeggeet eegegaeege 181320 cgtccccacc gcaccacacc gcaccacacg caactetteg ccgtcgccgt ccacacacge 181380 aacctcaaat ttcaccccc cgctaaaaac accccccgc ccctcgggga cccagcacac 181440 ggcccggaat ggagggtaat gtttatggag taaaacacta ttgtccaggc cacatgcgtg 181500 tatgacttcc gcaccatccc gtactgcatg ttccacatgt acgcgctaga cgtgtaatcc 181560 actogoagtt oggggacgca acgcagccag atcacatoco ottgoagtac cagacgcagg 181620 qctaqttcta qaqcqqcqc cacqqcqata tcqqatccaq acatqataaq atacattqat 181680 gagtttggac aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt 181740 gatgctattg ctttatttgt aaccattata agctgcaata aacaagttaa agcggggttt 181800 gaacagggtt tcgctcaggt ttgcctgtgt catggatgca gcctccagaa tacttactgg 181860 aaactattgt aacccgcctg aagttaaaaa gaacaacgcc cggcagtgcc aggcgttgaa 181920 aagattagcg accggagatt ggcgggacga atacgacgcc catatcccac ggctgttcaa 181980 tccaggtatc ttgcgggata tcaacaacat agtcatcaac cagcggacga ccagccggtt 182040 ttgcgaagat ggtgacaaag tgcgcttttg gatacatttc acgaatcgca accgcagtac 182100

Oct. 29, 2015

caccggtate caccaggtea teaataacga tgaageette gecategeet tetgegegtt 182160 tcagcacttt aagctcgcgc tggttgtcgt gatcgtagct ggaaatacaa acggtatcga 182220 catgacgaat acccagttca cgcgccagta acgcacccgg taccagaccg ccacggctta 182280 cggcaataat gcctttccat tgttcagaag gcatcagtcg gcttgcgagt ttacgtgcat 182340 ggatctgcaa catgtcccag gtgacgatgt atttttcgct catgtgaagt gtcccagcct 182400 gtttatctac ggcttaaaaa gtgttcgagg ggaaaatagg ttgcgcgaga ttatagagat 182460 cegegteace ttaatatgeg aagtggacet gggacegege egeeeegact geatetgegt 182520 gttcgaattc gccaatgaca agacgctggg cggggtttgt gtcatcatag aactaaagac 182580 atgcaaatat atttetteeg gggacacege cagcaaacge gagcaacggg ccaeggggat 182640 quaqcaqctq cqccactccc tqaaqctcct qcaqaaqctt cqaattcqaq ctcccqqqta 182700 ccatggcatg catcgataga tcgcagcctt aattaaggat gcatgtttaa actcgacagc 182760 gacacacttg catcggatgc agcccggtta acgtgccggc acggcctggg taaccaggta 182820 ttttgtccac ataaccgtgc gcaaaatgtt gtggataagc aggacacagc agcaatccac 182880 agcaggcata caaccgcaca ccgaggttac tccgttctac aggttacgac gacatgtcaa 182940 tacttgccct tgacaggcat tgatggaatc gtagtctcac gctgatagtc tgatcgacaa 183000 tacaagtggg accgtggtcc cagaccgata atcagaccga caacacgagt gggatcgtgg 183060 tcccagacta ataatcagac cgacgatacg agtgggaccg tggtcccaga ctaataatca 183120 gaccgacgat acgagtggga ccgtggttcc agactaataa tcagaccgac gatacgagtg 183180 ggaccgtggt cccagactaa taatcagacc gacgatacga gtgggaccat ggtcccagac 183240 taataatcag accgacgata cgagtgggac cgtggtccca gtctgattat cagaccgacg 183300 atacgagtgg gaccgtggtc ccagactaat aatcagaccg acgatacgag tgggaccgtg 183360 gtcccagact aataatcaga ccgacgatac gagtgggacc gtggtcccag tctgattatc 183420 agaccgacga tacaagtgga acagtgggcc cagagagaat attcaggcca gttatgcttt 183480 ctggcctgta acaaaggaca ttaagtaaag acagataaac gtagactaaa acgtggtcgc 183540 atcagggtgc tggcttttca agttccttaa gaatggcctc aattttctct atacactcag 183600 ttggaacacg agacctgtcc aggttaagca ccattttatc gcccttatac aatactgtcg 183660 ctccaggagc aaactgatgt cgtgagctta aactagttct tgatgcagat gacgttttaa 183720 gcacagaagt taaaagagtg ataacttctt cagcttcaaa tatcacccca gcttttttct 183780 gctcatgaag gttagatgcc tgctgcttaa gtaattcctc tttatctgta aaggcttttt 183840 gaagtgcatc acctgaccgg gcagatagtt caccggggtg agaaaaaaga gcaacaactg 183900 atttaggcaa tttggcggtg ttgatacagc gggtaataat cttacgtgaa atattttccg 183960 catcagccag cgcagaaata tttccagcaa attcattctg caatcagctt gcataacgct 184020 gaccacgttc ataagcactt gttgggcgat aatcgttacc caatctggat aatgcagcca 184080 tetgeteate atceageteg ecaaceagaa caegataate aettteggta agtgeageag 184140 ctttacgacg gcgactccca tcggcaattt ctatgacacc agatactctt cgaccgaacg 184200 ccggtgtctg ttgaccagtc agtagaaaag aagggatgag atcatccagt gcgtcctcag 184260 taagcagete etggteacgt teattacetg accataceeg agaggtette teaacactat 184320 caccccggag cacttcaaga gtaaacttca catcccgacc acatacaggc aaagtaatgg 184380

cattaccgcg agccattact cctacgcgcg caattaacga atccaccatc ggggcagctg 184440 gtgtcgataa cgaagtatct tcaaccggtt gagtattgag cgtatgtttt ggaataacag 184500 gcgcacgctt cattatctaa tctcccagcg tggtttaatc agacgatcga aaatttcatt 184560 gcagacaggt tcccaaatag aaagagcatt tctccaggca ccagttgaag agcgttgatc 184620 aatggcctgt tcaaaaacag ttctcatccg gatctgacct ttaccaactt catccgtttc 184680 acgtacaaca ttttttagaa ccatgettee ecaggeatee egaatttget eetecateea 184740 cggggactga gagccattac tattgctgta tttggtaagc aaaatacgta catcaggctc 184800 gaaccettta agatcaacgt tettgageag atcaegaage atategaaaa actgeagtge 184860 ggaggtgtag tcaaacaact cagcaggcgt gggaacaatc agcacatcag cagcacatac 184920 qacattaatc qtqccqatac ccaqqttaqq cqcqctqtca ataactatqa catcataqtc 184980 atgagcaaca gtttcaatgg ccagtcggag catcaggtgt ggatcggtgg gcagtttacc 185040 ttcatcaaat ttgcccatta actcagtttc aatacggtgc agagccagac aggaaggaat 185100 aatgtcaagc cccggccagc aagtgggctt tattgcataa gtgacatcgt ccttttcccc 185160 aagatagaaa ggcaggagag tgtcttctgc atgaatatga agatctggta cccatccgtg 185220 atacattgag gctgttccct gggggtcgtt accttccacg agcaaaacac gtagcccctt 185280 cagagecaga teetgageaa gatgaacaga aactgaggtt ttgtaaaege caeetttatg 185340 ggcagcaacc ccgatcaccg gtggaaatac gtcttcagca cgtcgcaatc gcgtaccaaa 185400 cacatcacgc atatgattaa tttgttcaat tgtataacca acacgttgct caacccgtcc 185460 tegaatttee atateegggt geggtagteg ecetgettte teggeatete tgatageetg 185520 agaagaaacc ccaactaaat ccgctgcttc acctattctc cagcgccggg ttattttcct 185580 cgcttccggg ctgtcatcat taaactgtgc aatggcgata gccttcgtca tttcatgacc 185640 agggtttatg cactggttaa gtgtttccat gagtttcatt ctgaacatcc tttaatcatt 185700 gctttgcgtt tttttattaa atcttgcaat ttactgcaaa gcaacaacaa aatcgcaaag 185760 tcatcaaaaaa accgcaaagt tgtttaaaat aagagcaaca ctacaaaagg agataagaag 185820 agcacatacc tcagtcactt attatcacta gcgctcgccg cagccgtgta accgagcata 185880 gcgagcgaac tggcgaggaa gcaaagaaga actgttctgt cagatagctc ttacgctcag 185940 cgcaagaaga aatatccacc gtgggaaaaa ctccaggtag aggtacacac gcggatagcc 186000 aattcagagt aataaactgt gataatcaac cctcatcaat gatgacgaac taacccccga 186060 tatcaggtca catgacgaag ggaaagagaa ggaaatcaac tgtgacaaac tgccctcaaa 186120 tttggcttcc ttaaaaatta cagttcaaaa agtatgagaa aatccatgca ggctgaagga 186180 aacaqcaaaa ctqtqacaaa ttaccctcaq taqqtcaqaa caaatqtqac qaaccaccct 186240 caaatctgtg acagataacc ctcagactat cctgtcgtca tggaagtgat atcgcggaag 186300 gaaaatacga tatgagtcgt ctggcggcct ttctttttct caatgtatga gaggcgcatt 186360 ggagttctgc tgttgatctc attaacacag acctgcagga agcggcggcg gaagtcaggc 186420 atacgctggt aactttgagg cagctggtaa cgctctatga tccagtcgat tttcagagag 186480 acgatgcctg agccatccgg cttacgatac tgacacaggg attcgtataa acgcatggca 186540 tacggattgg tgatttcttt tgtttcacta agccgaaact gcgtaaaccg gttctgtaac 186600 ccgataaaga agggaatgag atatgggttg atatgtacac tgtaaagccc tctggatgga 186660

Oct. 29, 2015

ctgtgcgcac gtttgataaa ccaaggaaaa gattcatagc ctttttcatc gccggcatcc 186720 tetteaggge gataaaaaa caetteette eeegggaaae tetteaatge etgeegtata 186780 tccttactgg cttccgcaga ggtcaatccg aatatttcag catatttagc aacatggatc 186840 tcgcagatac cgtcatgttc ctgtagggtg ccatcagatt ttctgatctg gtcaacgaac 186900 agatacagca tacgtttttg atcccgggag agactatatg ccgcctcagt gaggtcgttt 186960 gactggacga ttcgcgggct atttttacgt ttcttgtgat tgataaccgc tgtttccgcc 187020 atgacagatc catgtgaagt gtgacaagtt tttagattgt cacactaaat aaaaaagagt 187080 caataagcag ggataacttt gtgaaaaaac agcttcttct gagggcaatt tgtcacaggg 187140 ttaagggcaa tttgtcacag acaggactgt catttgaggg tgatttgtca cactgaaagg 187200 qcaatttqtc acaacacctt ctctaqaacc aqcatqqata aaqqcctaca aqqcqtcta 187260 aaaaagaaga totaaaaaact ataaaaaaaa taattataaa aatatooog tggataagtg 187320 gataacccca agggaagttt tttcaggcat cgtgtgtaag cagaatatat aagtgctgtt 187380 ccctggtgct tcctcgctca ctcgagggct tcgccgtcgc tcgactgcgg cgagcctact 187440 ggctgtaaaa ggacagacca catcatggtt ctgtgttcat taggttgttc tgtccattgc 187500 tgacataatc cgctccactt caacgtaaca ccgcacgaag atttctattg ttcctgaagg 187560 catattcaaa togttttogt tacogottgo aggoatcatg acagaacact acttoctata 187620 aacgctacac aggctcctga gattaataat gcggatctct acgataatgg gagattttcc 187680 cgactgtttc gttcgcttct cagtggataa cagccagctt ctctgtttaa cagacaaaaa 187740 cagcatatec actagttee acattteeat ataaaggeea aggeatttat teteaggata 187800 attgtttcag catcgcaacc gcatcagact ccggcatcgc aaactgcacc cggtgccggg 187860 cagccacate cagegcaaaa acettegtgt agaetteegt tgaactgatg gaettatgte 187920 ccatcaggct ttgcagaact ttcagcggta taccggcata cagcatgtgc atcgcatagg 187980 aatggcggaa cgtatgtggt gtgaccggaa cagagaacgt cacaccgtca gcagcagcgg 188040 cggcaaccgc ctccccaatc caggtcctga ccgttctgtc cgtcacttcc cagatccgcg 188100 ctttctctgt ccttcctgtg cgacggttac gccgctccat gagcttatcg cgaataaata 188160 cctgtgacgg aagatcactt cgcagaataa ataaatcctg gtgtccctgt tgataccggg 188220 aagccctggg ccaacttttg gcgaaaatga gacgttgatc ggcacgtaag aggttccaac 188280 tttcaccata atgaaataag atcactaccg ggcgtatttt ttgagttatc gagattttca 188340 ggagctaagg aagctaaaat ggagaaaaaa atcactggat ataccaccgt tgatatatcc 188400 caatggcatc gtaaagaaca ttttgaggca tttcagtcag ttgctcaatg tacctataac 188460 caqaccqttc aqctqqatat tacqqccttt ttaaaqaccq taaaqaaaaa taaqcacaaq 188520 ttttatccgg cctttattca cattcttgcc cgcctgatga atgctcatcc ggaattccgt 188580 atggcaatga aagacggtga gctggtgata tgggatagtg ttcacccttg ttacaccgtt 188640 ttccatgagc aaactgaaac gttttcatcg ctctggagtg aataccacga cgatttccgg 188700 cagtttctac acatatattc gcaagatgtg gcgtgttacg gtgaaaacct ggcctatttc 188760 cctaaagggt ttattgagaa tatgtttttc gtctcagcca atccctgggt gagtttcacc 188820 agttttgatt taaacgtggc caatatggac aacttcttcg cccccgtttt caccatgggc 188880 aaatattata cgcaaggcga caaggtgctg atgccgctgg cgattcaggt tcatcatgcc 188940

gtctgtgatg gcttccatgt cggcagaatg cttaatgaat tacaacagta ctgcgatgag 189000 tggcagggcg gggcgtaatt tttttaaggc agttattggt gcccttaaac gcctggttgc 189060 tacgcctgaa taagtgataa taagcggatg aatggcagaa attctgatga taagctgtca 189120 aacatgagaa ttggtcgaga agctaggcgc gcctgtttaa acatggatcc ggccgccctt 189180 aattaacgtg ggagtctgat ccaacactga acgctttcgt cgtgtttttc atgcagcttt 189240 tacagaccat gacaagcctg acgagagcgt tcatcggggc atgaagtacg cattacacaa 189300 actecatata tttgttacga tagaatacgg aacggaggag getttegeca cacetateet 189360 gaaagegttg cattetttat gataggtgtg acgatgtett taccatteec acggetgett 189420 tgcgtgatga tgacattcat catgtatttc cattcacaca taccttttgt gcatacggtt 189480 tatatatqac catccacqct tataacqaac ctaacaqttt attaqccctt qacaqqataq 189540 gtcaaaagat tatatgtagg ttttccggta aaccgaattg tgatatttct ctgcaggaaa 189600 tagaacagcc tggtacctat aaaacggaca atgcagtact gtagcagcgt aaccaagtag 189660 gtccacatga acacgtacaa aattatggta agccatcgtt tttcatacca cagcctgtag 189720 ctgtcgtaca tgaatgagga cggtcgagga acccagggta gttgtaattg ggggcgacat 189780 tcgtactgtc cagaagacaa ttgcacgggt ttcagtgaga tgagtacttt agcgatgtcg 189840 gcgggggcgc tacgtttcac cgtgacggtg agaacttgac cgtcgttttg tatttcatga 189900 ggcacgttat acaagccact ggtatcatga aggatgacct ctgatgcgat gtgaggatta 189960 aattgtccct caaaccgcca aacgctggtc atgtttccac cgtcaattac gcagctgacg 190020 gtgtgagata ccacgatgtt ggacttaggt ttgggggcta attgcctttt tacaaattcc 190080 cttctgtatt gcaggtcctg ctgccactgc ttttccgtgc ggaaagtcgc catgtcttcc 190140 acacgtgtgg cgacgataga cgccaccaag gtagctacca gaagcagctg gatccgcatg 190200 gcattaccgt atgtcaatta gaaagttgag cggacacggt tatcgttcct ggcggatata 190260 agtatataaa cgcgagttag cctttcccgt ccgttttgta cacccgttcc ccacacaaat 190320 gacgaatacg acctttttt ttataaaaat aaaccacgtg tattatataa aaacatttac 190380 atagaaaaga gacacacgga tcaacataag gacttttcac acttttgggg tacacaggcg 190440 tgccaccgca gatagtaagc gctggataca cggtacacag tcctggccag cacgtatccc 190500 aacagcagca ccatcgccat ctgtatggcg atcacgaccc cgagctctaa gtgtctgtat 190560 tcatagtgta gtcgtcgcag gttatccact gaattcccgt aactgaaata acgtatatgg 190620 taccgaggct ggcaccacat gggtttgcat ttggtgcacg gcaccaaatg cagagtgaga 190680 tggtccaagt ccgtgggcac ccactggcgc aaacggaata cggcttcggt ggtctccacg 190740 aggracted qqqcqtqcaq acqqcccac tttcqtccqt qacqqcccqa ccaqccqacc 190800 cgagccacta tecetttete gggatagaac gtaccetgta caegecacae agegtecaae 190860 acgccgtcct tgacgacgca gctggcctga tagctggaca cgttgttaag cggcggaaag 190920 cgaaactgac gtgccggcgg agccacatag ttcggttcac cgtgttgtcg cggttcgtcc 190980 tccctatagt aatagtagtc gtcctcatag gggttgccgg cgtgagccag cgttacccaa 191040 cagcagccca ggccgacgag gaggcgcagc caccgcctca tggcggcttc gccagtcaat 191100 cgtctttagc ctcttcttcc cgtgaggtcc ttccggtggc gcggtgccga cctcggaccc 191160 agggacgtat ccacctcagg tacacacagc aggctacctg gacaccgaag ctgaacaagg 191220

ctacgtgttt cacaaactgc accagtacca catagaggaa tgtcaggtag cgtctctccg 191280 caaacagccg ttccaagtct gagggcgtta cccgcagcgg caaccagggc agcctggacg 191340 ccggccggca atggagcacg ctccggttac aggcactgca ggggtaaacg gttaacatca 191400 cgtaagagag tcgtgcgtcc acctgtggga gctcagtttc gtaacgtaga gccccgtcat 191460 tttccagctg gggtgcgccg accttgaaat gggtcgcgct ccgctcgtta ccccaggtgc 191520 cgtaggctct cggggccgta tcggagaagt tgccacgcac aagccaggcg gccacgagta 191580 ccccgtgctg gacgtaacat tcggacacgg aactggagac acggtagccg gacacgtccc 191640 caaacccgcg agggtactgg ggcagacgga cggacttgct atttgacaac ggacagatac 191700 gagacgacga ggacgcagac gactcgtcgc tggaccacga caaccggagc gactccttgg 191760 aggqqctcqa qaqtacactt actqcqatca qacaccaqtq ccaqaaqaaq qaacaqqtqq 191820 acggggacca caggatcata gccgccggca ccgcggccgg ccgcaggaag ccgcccggcg 191880 cgtcgtctgt gtgcgggagc cgaaacaccg tgcctcttta tatcgtcccg acgtgacgcg 191940 agtattacqt qtcaqqqqaa accccqtca cqacqaacqt qatttqtaaq tqacqcqqqq 192000 tgctgacggg gttcggcccg agaggtgacg gagcgcctca cgtcagtatg atgtccgatc 192060 cgcgtcagcc ccgacgtggt tgtggtcacc gaaacccacg tttatatgga cgttgagagc 192120 agggcctgac cacatgattc atcataccat ttctcggaat cgggcccatg ccgggaaagc 192180 acatteettt teagtaaaca acaatgacat cataacaaat cattttatte gegaggtgga 192240 taataaccgc atatcaggag gagggatcgg gtgatgacgc aggccccgca gaacagtccg 192300 aaataaattt ttagtattge cecatagteg ectagatace agaggtaegt caagtteate 192360 aaaacgccca tcggcgtccc ggaatcgtat accgggcaca cgaagcgttc ataacaatcc 192420 cgggaggcga gtgttagggt agcagagtag tttcggggtc ggtttccttc cggcgacgac 192480 agtteegtgg geageagaat gtaeagegee teggtagetg tegeggtgee tteeaegagg 192540 atgggctgcc ggtgcctttc gtgattttcc ccgtcgtgta gccaagccga ggcccgcaaa 192600 gtcttaggcg aggggaattg tccatagagt ttcaccgcac ccttcagtac atggttctga 192660 ataacacagc cgcacgtgaa gtaggtaggt tctctcgtct cctccgtggc tgccgccacc 192720 actoccagoo accacaacag goagatogoo agagggttoo ggaggottoo coggogtago 192780 atggttttgg gttaaagcaa aaagtctggt gagtcgtttc cgagcgactc gagatgcact 192840 ccgcttcagt ctatatatca ccactggtcc gaaaacatcc agggaaaatg tcggtgcagc 192900 caacctttca catacagccc ccaaaacact tgaatcactg ccaccatcat cagcgtatac 192960 tgcgccgact taatcgtgag cgcgtagtac gccattagac ggcgatcttc gaacaatagt 193020 cqttcqatqt cctctaacqa qctccacaqq qqaacccaaq qcacqaqqca ccqqqqttcq 193080 cactctacat aataagtttg gcattggtgg cagggggaaa agtagaacaa cacgagtttt 193140 gtgcgttggg gaacacgata gtcccggagc cagtaacgtt ttgcgacgag gctttcggag 193200 acgtecteca ceggegtegg cactegatec gegtageeet ceagegtetg gtagtacace 193260 cggggtgtcg gcgtgggcac ggacaggttc ccgcgcaggg tccacagagc ctccaatcga 193320 cegecegate ggageaegea gegegeeteg gaataeteta eteggtaete egaaacateg 193380 ggcagaggcg gtaacggctc cgtctccacc aagggcggag gttcatcgaa aagagtcaag 193440 gataattcag gcatactacc cgcgaccggg gcccagaggg ctagaataag cattacaaga 193500

ttcattctgt cttacaaggg aaggctgttc ccctgtctag actcaaaagc tgtaaggctg 193560 tettatagea tgtagtettg caegteatgg ggaacagggt ggtgatetag tgaegteggg 193620 agaacacggt gttttagggt gcgggggaca aaggacagta cgacagatta ggtgatagaa 193680 acgttttttt tttatttatg aaaaagccag tgtgccgtgc ggcctagggc cccggcgtag 193740 tttggatacc agatgggggc cgtcaggggt actaccacga gcagaaacat aatgacttgg 193800 tccatgtata gcagcatagc ggtgcgcagc aggtcgccgt ccgtgtagca atttgacggt 193860 gagcgataaa gcaccgttaa tgtgtcgcgg ataagcacga tcttgaggcc gtagatgaag 193920 ctcacagtca gtgctaaaat gatgcgctgg tatggttccc aggactgcac ggcgatgaag 193980 agccagagta tgggaagcat gaagcttagc aaacagagga tggctaaccg tcgttgcatg 194040 ttccaqqcca taaqccaqqc taqqcccqta caccaqacqc aqaqcatqqa tqacaqqaca 194100 taqqcctqqa ttaccacqqt qcqatcqaaa cacaqcccqa tqqtqqacac qqatatcqta 194160 gtgagggtgg tatataccat gaccagcatc agggtcccgg gtcggcgccg acgttccagc 194220 caqtacqcqt qqcaacqcaq aqcqcaqqqt aqcaqtqtqc tccaqaaqqq caqtqtatcq 194280 cgcaggtagg gggttgtcac gcgccacggt atgagcatga aaaggatggt agtggctatg 194340 gtggcgctgg tctggaacac gacggtgccg tagagacgta ccatccagag aaagtgttga 194400 acgctccgca gggtgtcttc atctttggtg attacggtga ctcgacggat cggcggtggt 194460 gacggcggcg acacgggtgg gggtttctct ttcttatggc cgagtggctc gccttggtga 194520 aactggatet gtaccatgae gggtgetega egaacagteg teggggette aggtaceegg 194580 caagttttat agagaaaggg ggacgatggg tggtggctac gagccaccgc caccttcgca 194640 atacgaggat ctgaaggegg caaagacggt cgtccagggc aggcgccaga ggttgggact 194700 gagcacgatc agcgtgattt taaacatggt caccagtcct acgtagatta gcagcgagcc 194760 gcgtaacgtc tgagcagccg gcagttcgtc gcggatgtaa cgcgtgccgt agaaagtcac 194820 ggtcatcata aggaagacga tggcgccgta gccgtagagt agaatacgct gatgatggaa 194880 cacggtctgg tcgccgataa cccaaagcgt gatgaaaaaa acgctggtga gcacccgtga 194940 gcatatgagc tcccaacgct taacgcgaaa gctgtcccca accatgacag cgccggtgca 195000 agctatccac agcgtgagga ccagtgtgta gtcgatgagg atggcgggca ggtcggagca 195060 ccaggtgtag aaaatcgtgg taacggagag gaggcctacg tagcccatgg tcaataccac 195120 gtcgtcgggg tgcctttcgc cctgtatcaa gaccaaacac cagagaaggg agggggcaaa 195180 aaccagcagc agaggggaag attcatgttg acatatgttg tgggaatcgg ggatacccag 195240 ccaaatcatt ccgcaqaaag ccgtactgat ggcgatgtga aagaccacta gggcgtagac 195300 ccqqacqaqq acaqcaaaac qqcqcaqcca cataaqqccq tqqtqcaqct qcaqqaqqqa 195360 agcccattgc ggcgaatgta gcgacggcag cggcgggtcc atgaggcggg tgatgcgccc 195420 gagtgaacgg gtgagcgtct cggtggagtc ttcttataaa ccagcgggtc tcaagcaacc 195480 ctgctctgga acgtcgcggt ggtgctgttg aggatgacgc tgagcgtgcc gttgtcgatc 195540 agataatgat gataggtgcc gagcttggcc aggtagctga acatttggtc ccagcgtgcc 195600 gaccacacca cgggcgtgag catcaggagt gtggtgtgat agattagtgt ttcggtggcg 195660 taaagtatca gcgagctgcg gatgacgtgg ttcacgggca ttttggtggc gatgtagcgc 195720 acgtettgga aaaggaegge caggatgeag eecacgaaca eggtgtagag acacagcaaa 195780

gtcttatgta accaggtgta agtagaagcc aggacgctga ccatcaccgt caaaagtgtg 195840 gaggtaaaaa gcgcgtcacg ccacacggag ctgagacggt gctcccaagc cacgccgttg 195900 caggccacga acaacgtcca cgttaggatg aggctagaaa tgccgatggg cgctgtggcg 195960 cacaggttga gcccggcggt ggtgaacgag agaagcgcca catacagcgc aaacaccagg 196020 ccgttgctgg ggtgtctgtg atcggtgagc tccagcgcgc ccagaaccaa tactggtgtg 196080 cagctaagca atagcggcga gggatcgtcg ctgcactcgt agcccagcga ggggtaaccc 196140 agccaaacca gcgcgctaat gagtacgctg aaagcggttt ccagcgtcag caatccgtag 196200 acacgcatga cgatcgcggt ccgccgtagc caacacacgg cattttcgga aactgtggac 196260 gctgtttccg aataccggga ggagatcgtg cttccctctt ccaaggatcg gaaagtagcg 196320 tecqteqttt ecqeqqaeqe qqettecetq qtacqetecq tttecqaeqa eqeqqtttee 196380 cgctgcgtgg aaactgtctt catgtcggga ccgcagcgcc cggcggcgta tccgcaaggt 196440 ctcgaagcta cagcttgtca gaggaaaagt aggtttgcaa aaaggtgcgc agggtcatga 196500 ttctcagcac catcagcaga gtgaaaacca gactgagaaa caccttgacg gccgccaaaa 196560 gcgcgcgttc cagcggcgtc tcgtagcgta cagccagggc cgcttcgtgg aaatgcgaga 196620 cggctagaca ggtaatgagc acgctgaagg acaagacgat cttaaagcac caggaccaac 196680 cacgcctcaa gatgaccacc acgattgccg tgaaggtcaa cgtgatcaaa gcatggacga 196740 ccacgatctg acggcggacg gtacgttcgg gagccaacaa cgctacgccg gtgcagctga 196800 gaaaggccag taaggtgaac aacgcggccg agatgaccaa cgtaccgtcc aggcagagac 196860 atatcacgat caacggcggc acgtgaagca gcgtgtaaaa gagcagaacg ccgatattgc 196920 tgggatgcga tgtttcgtaa cagtgaatga agatcactga cgtgacgggt atgacaaaga 196980 cgaggctggg cgaggactcc gtgagacaca gacgagaatg gtgaaaccac gtcgcgggcg 197040 ccgcgtagca gaaggcgctc aacaacgcgg tcaagccggc cagctgccaa cccacggcgc 197100 cataggtgtg cagcgccacg cggcaacagt cgacccaagc cagactgcgg gtcgccagcc 197160 gggtctcttg gatcccgggg ggcacgtaga tgaccgtgcc atcggtgggt acttgaaacc 197220 ctttttctct tctcatggtg cgctgcgttc tctggaaacg gctgctctgt ccgaaaacca 197280 gttccgaacg aaaatctagg gcgagagggt ggacaacggc gtcgacgacg aagcatggga 197340 caggtegtte ggegttaaeg teategegte ggaegaeggt agttetaaga gaegtagate 197400 gctcagcagg tcctgacagt tgcggattcg caagatcaga aaaaaaaggg aaatgaacgt 197460 aataaagagc tgtagcgacg tatgcgccac atcgcgtggc ataagaacgt gacggacgaa 197520 aaggacctgc tgcgaaaagt gaccggcgaa gataaggccc accgtgctgt agaagcccaa 197580 aaqcaqccqc aqqqqccaaq tccaqqqccq cqtqaaqacq atqaqaacqt tqaccaqaaa 197640 gaccaegace cagaegeegt tgatgagggt aaattgateg gacagggtge agttgtegeg 197700 acagatgaag actacttccg cgcagagcaa ggtgatgacc aacgtgagca caaacgacgt 197760 caacaceteg egggeteet ggeaggeaca egtgacacet agegeeggga tgtgegeeag 197820 gaggccggcg agtaatagca ccagctgtcg gaacggacga cggcagcgcg ggtgccggtt 197880 tegetqaqeq aqaaceqqte qeteataqeq qaaatacacq aaqaqeqeqq aqqecacaqq 197940 caccaggagg agcacctcgg gegeccagac aacgtgacaa ggaaagcccg gacgcgactt 198000 gagagteget gtagggaaga ccagagagaa getacecaag aeggeeaceg eegeggagat 198060

ttggaagagg agcaagcegg cgatteggae gacaaceteg aagegatgea eecageecag 198120 caeggeeacc aeggeegett catcatagte gtegttgttg eegetgtega aeageegeeg 198180 aaacacgatc tgtcgctggg tcgcggtggg aaagcgcaga cccatgacag ccggaggcta 198240 tatgaccgcg cgtctaagac gcgagatccg tggggggact tttagatgtt tgggcggccc 198300 gcagttctaa caggcttgat tggtggagac ggccggcgcg gcgggtgggg gaaacgacga 198360 gtttttccgt tacgccatgg ttcgcgtgag gtttctctgt acctcccgca aaaggtcaca 198420 gcccgaaatg gaggccgcgt tggtggcccc ggtggcgcgt gacgataacc aggtcatcca 198480 agcgatgagt ttgtctaatg agtcctcggt ggtgaagagg atgagaatga gcaggtacag 198540 gtacaccagg ttctcataga gacacaaggt gagcaggtcg gcctcggacc acgcgatctc 198600 aaacaqqcqc qtqqtqtcaa aqaccqtqac qaccaqcatq aaqctqaqcq ccatqqcqta 198660 atagcccaaa aaaagtttgt gccccaacgg tacgggctgc aggtaaagtg cgatcaagaa 198720 cgcgataacg ccgatcacaa acagcgtgac gatgacctgc catcgacggt gattatggcc 198780 gqctaqaccc qtqacqcaqc tqcaqaqqct aaaaaqcacq caaqccaaqa qqcccqaqaa 198840 ggtcaccagc gtagaggagg agcaggcgct ggccacgatc accgaaagcg tcgtgagcac 198900 gctataaatg gtgagcagge cegggctegg eggegaegtg aacgateett categegttt 198960 gccgtgcagc agggccaaac agatggtggg caccatcaaa ctcaagggcg gcataaagcc 199020 ggtgcaacag agaaagacgg tgcctttaag atgcggaaaa gccagcacca ggcccagaca 199080 gagcaagaag gtgcaggtgc cctgcacggc cacggtgctg tagacccgca tacaaagtaa 199140 aaagcgacgt acgtcgttcg tcgagacgga ggaaatcata atgactccgc gcgagggtcg 199200 cgggggtggg ggcgccagg ccgtcccggt ggcctctgag ttcggagaca tgacggcggt 199260 ggctatcaaa aggcgcgtat gagaaaccgt ttatagagtg taatagaatc accgtcattc 199320 ccacacggcg ttcccccata aagtcacgtc acactcgagt aagcgtgaaa aagctttatt 199380 gttgaataaa aaacacgagt acaacaccga gttgcggtgt cctgtctgtc tactgggtgg 199440 ggggggttca tcgtctgtct ctagagggaa ggtggggaac gtctaagcga gcgggagcgt 199500 gtcatctccc ccatctttt acaacaagct gaggagactc acgccgtcga tgcgtccgcc 199560 gtgttteteg gegtaetget geacceagae gtggeegeta aagatggega egeteatgtt 199620 taggagactc atgacgatgg tgtacaacac gacgctgaca catacgctgt ttttagacaa 199680 cgttccacgc tggtagatga gatccagggt ctcgtaaata agcacggccg aagcggcggt 199740 caccaccagg acgtagagtc cgctgtagat cttgctgacc cacagcacgg gcgaaaagta 199800 aagcaatagg taaaagacga tgacggacca gccgtagcca atcccgatga ctttccagcg 199860 cqtqqqattq ttqccqqcca qqtaqqtqaq accqctqcaq aqaacqaaaa aqaccatcac 199920 cagggcaaac gacagaccga tgacgcgcct ttctccgcaa aagcccgtgc acacggtgat 199980 gccggtgttg atcagcaagc acgccaccgt gagatgagca aaattggtgg tgtgtgggcg 200040 aaacteggeg aaacegegta geatageeag egtggacaeg ggtaegatgg aggataggge 200100 tggcactatg ccgttggcgc actgtccctg cacatcgggg aaggcgagcc aagccagcaa 200160 qcaqaccqtq aqqqtacaaq ccaqctqcca cacqaqcccq tqataqacct ccatqaqcaq 200220 cttaaagcgt ttcaaccatt ggaagagctg ctgttcggcc accagcgcgt ggctgcgatg 200280 gagcggcacg atggtgaccg tcggcgactc atggtgttcg gaaaccgagg cggtgtcgcc 200340

catgetgeeg ettacgaeeg etgteggtet aaggtaggeg tegatgaaac agteegtett 200400 atcagcaccc ggttaccgcg gatttgattg acgtcacgag tgtggtcaaa ccgtggcggc 200460 accetgtate egaceegteg teatgggete cacaaccaga geeteagaag atggtacatg 200520 ccgatgaata aagccacatt ttcgacatag aggcgtagcg agggctgaaa actctccggg 200580 aaagaactct gacaggtgat cagggacaga tcgtgaatta gcatcagcgt caccgtcaac 200640 agegtegteg egtgtaaace gagaaagaac ggggeegegg eeegcagcag ecaaagteee 200700 agegeegtag egeagageag agacaggace gaeggtagee acageegeeg gagagaegeg 200760 ccaggatcgc aacccaaaag cgaggcccc aggcagctga gatctaccgc cagggcgaga 200820 agagccgcgc cgacaaaggc ctgcggcgac ggctggcaca tcagcaaggt cagaaaggct 200880 agcgcgtgcg gcaggcagta agccaacagg agtgggagtt tgcggggaca acggtcgatc 200940 gacggaccgc gtagcagcag gaacaggcag ccgacgggca cgacgaggct gagatgagaa 201000 ageggeggtg ggtegtegte eegteeeege tegeataget eggeeaeegg tggeggeatg 201060 agccaccage tgagcacget gagggcgacg gtggcggtaa getggaagge gacgaggacg 201120 gaggegegea gecatacege eagestetet aggtaggga etaceteete gaeggteeat 201180 tctagcggga cgacatgaag catggcgaca agcgcggctg ctgtgaaaac gggcgcggtt 201240 ttataggcat taggacttcc ccgtcgtact ggcggctgtc aaagtcccgt tgtccaaagg 201300 cgcgccgtcc gaaagactaa tccaacgggg acccgagagc atgagcaaca acgtgagaaa 201360 gatggccatg ctgtccaggt agagacagac ggcgtgacgg atgcattggt taggtgggca 201420 gaaaaagatg accatgagac tgtcgtaggc cagaataccc aaaaagaagc tgatagagaa 201480 ggcgcacaac gtcaccacta tcttctgcag ccaatcggcg tcgcttagca gagcgagcgt 201540 gaggaacgaa agcagcatca ccacgtagac gcagctgatg catttccagc gacgtcggtc 201600 acggccacct agaaacgcca gccccgtaaa ggagataaac aacgccaggg tcatcacgta 201660 ggaacctact agtacgcggc tttcagagca catttggaag atggccgccg tcaggctgtt 201720 ggccaacaga tagatgaaaa gcaccgtggc gttactaggg tgttcgttgc ccaacgtgta 201780 cgtgatgaac atgcagacga tgggcacgag cacggtgaga aagaagctgt agttctcgac 201840 gcaaaagttg cggttttgtg ggaaccccaa ccaaaaaaacg cttcccaagc cgaagctgaa 201900 agccagctga aagatgaaga tggcgtacac gcgcagccat acggtgaact ttttgaacca 201960 ctcgagagcc tccatgcggg agagcagcag cgcgttagcc tcctgcgcct gcatggtggc 202020 gacggtctcg gcacaaagcc gctgcggcgc acctaccctt ctcttataca caagcgagcg 202080 agtggggcac ggtgacgtgg tcacgccgcg gacacgtcga ttaggagacg aactggggcg 202140 acquequetque tqtqqcaqcq accqtcqtct qaqcaqtqtq qqcqtqccq qqctcqqaqq 202200 gcatgaagta gagcacggag acaaagaggt acatgaggtc catgtacaag cagagcgcgc 202260 cogggatata actotoatac togatgtogt goaggatgto otgogtatog cacaccacog 202320 aggtcacgat gacggccaaa ccggctatca tcaccaggat ctcacttacc gcctcgggaa 202380 aaagagaaaa tacggcgaac agtaagagaa tcagcgtgga tgcgcccgtc aatagggaac 202440 gctgtaattc cacgtcgcgg gcaaacagat acgtagcgag cgtgaggaaa caaaatagcg 202500 tcactgtggc caccatggca taaatgactg aacgatgact aaagtggaag cctgacgccg 202560 tgacagccac gctggtaagc aacgtgtacg tcagtaagat ccatacgttt ttgggaaagt 202620

Oct. 29, 2015

tgggctcggc ccaacgcaac agacctaggc acacgatgga gatcattaag caagacagcg 202680 tcagacgcac gctggaaaag agctgctcca gccggtgcgg caacaccagc cagcaaaaagg 202740 cgcagacgct cataaggatg aggcattgca cccagataag gatgtagatg cgcagcagga 202800 agaccgaccg ggctatctgg acctgaccgc ggagcgacat ggcggcaacg ccggcggtta 202860 tegeegagat tegtetaaat acaegaageg aactagaaaa egeacacaeg tgatttgcaa 202920 aaagaaagca gctgccggct tattatttta ttaaaaaattt atctgtgcag aatcataagt 202980 ttatgatgaa taaaaacggg gaaagggaat ctgcttttag ggacccgggt ctggtccgtc 203040 gtctcccatc tggtcgggtt cggggatggg gacctgtttc agcgtgtgtc cgcgggcgtg 203100 catggetttt getegeegge egegetgtaa eeaggeetet ttetetgtgg teggegagte 203160 ttccgacggg tagggaacct gggagtccat cgcttcaggc ccaccgctcg ttccctcgac 203220 cgtcgtgtcg tcctcgtttt cgctattaca cggggtttct ggagtatcgc ctatacggtt 203280 ggcgattctc cgggggcggc cgctctcgtc ctcgtcgctg ctatcgccgc ccggtaattc 203340 gacgccgcat tcgttgtacg gagcgcggca catgggcggc ggaaagagct tgggcatgcg 203400 aaagcagcgt tgtccatcca cggtctgcgt ggtttcatcg ttatcctccc ataatccccc 203460 ctgtagcgcc ggcagcgttt cgacgctgtg agaggggaag gcccagttct ggttgtcttg 203520 cagogogoco gtgggcagta ggtccgtgcg gccccatgcg ctgctgttgt tgggtacctt 203580 gtcagtgccg cgagtaggtc gcagaaacca gtccagagcg ctctctagct gcgagcgtgt 203640 gatggtgccc agtgcgccgt gccagcgcag cacgtctctt ttcagcgtgt ggtgacagac 203700 gggcagetee tecaacegae actegeegeg caateegegg tegaagegge agagaceaeg 203760 cagtttaagc agaccgcact tgagaaacat gtgaaaatta tcggcaatgc gatacaggtc 203820 tgagtcctcg atcttgtgta ggtagaccac gccaaacttg tcgagcagca ccaggccgct 203880 gggcacaaaa ggcccgtagg ccaggtaata gcccacgagg ccgacgacgt accactcgca 203940 gcacaagcgt tgacgaataa agttcagaag atcgcgaaag tccgcggccg gcatgtggtc 204000 aaaaggtctg caggegegea ggeeetegat ggagecaage atgageaacg geteeacete 204060 ggtgcgaccc ggcgtgcgga tgaccaggtt gagaccgctc atttcgcggg ccgtcttggc 204120 caeggeegea gegteagtgg ggteggtgca gaggaatttt tgeacatgat agegeggtte 204180 ggtggtggcg aacggcgttt gtgggtgccg atacacatat tcgcaccaga gtaagccgtt 204240 cttggaaaag gctttgatat cactggccac ctcgtagage cegteggtet cecagtegta 204300 gacgtagacg gtgccgtaat gacttagcat gagcacacag ggcagttcct gcgcctgctt 204360 ggtgtttcgt gttagatcgc tgtcgggtgg acgtacggct aatacaccga cggcttccag 204420 qqtqtcatcq caqcaqaqat aqtcqqcqqc caqaqaacqt qcqtaaatct qcqqqataqc 204480 ggcctgttcg cgcatcacta ggaaccagtt ggcggggttg cgcagtgcta cggtggttcc 204540 ctggtgacgc tgcacgtagg ttctcagcgc cggaggatcg tactggcgca gatagaggcc 204600 ttgcagcatc gataacgtct tttgaaagac ggtgtttcta aattggaaaa cgccgtagtc 204660 gcagcggata gcatcttcgc agcgctcgtc gcgctgtcgg agataggtgc cccaggcttc 204720 ggcggcgct ttggtgagta gggacatgcc ggcaaagccg tctcgacagc gaatcggata 204780 aagegegetg egegaaaget taatatagga geagegteag aegaategeg getggtggee 204840 cggggggtgg gacgcccgc ctacacaaag tgctcccgaa aatcgaaact cttgacccac 204900

tccggagaca aatccgtatt cagattgatg cgtcgcgctt ccacttcggc ttccgaaacc 204960 teggeeteeg teeggtagge gttaacgata egetgaeeca ggtgeeaaeg etetttetet 205020 gccaaacgcc gttgctcaaa ccattcgtct acgtccttga ggtcaaagac agtgtcctcc 205080 tcaaggtcaa agcctaggtc ttcccactcg tcgtcatcgc tctcgtggcc ggcggccata 205140 cgcgcggcaa ccgcgtcttc ccctcctctt ctttcaacgt ttggtaccac gttgttttct 205200 tegggtteca taggttetge gecaetgteg teategteet eteeetgete eteategtee 205260 gccaaggcgt cgtggattac ctccaggttc tgattgtcgg gtacgacgtg gttatcttcg 205320 tegtegtege gtggcatggg tggeggeega eggeggaega eeggeatgge geggeegteg 205380 tttccttcgt cttcctcttc accgtctccc agggaacgcg gtcgacggcg ttccgcgaag 205440 tegeegegga ccaegegege etgeeagatg gtaaatgegt eccaacegte ccagttattg 205500 agcatttcqq cqcqqaaacq qtcqcctcqa caqaqccaqc qaaactqccq cqcqtaqtcq 205560 cggtctacgc cgctgtcgaa catggtaaag tgcagacgcg ccgcttcgcc catgtgtacg 205620 cagecteegt tgegtteeag cetggeegeg egeegeagae egtgttegta geggegaege 205680 acgtacacct tcatgaggcc ggcgcgaaaa agttcctcta ggctgtcagc cagacggtag 205740 atttcaccgg caagacgctg caggggcggc gagcggtcca ggtgcgactt gacgatcacc 205800 acgtaaaaac gacagaaacg gtcgaagatg atgaggaagg acgtgtcaaa aaaaccacca 205860 gegeggtagg agcccaegge geccageagg taccagegge aacgeagttg cagegtgaeg 205920 tacatttege acteggecaa gegggegget ggegetacet egaagggeca geagteegte 205980 aagcagccga aactggtcag gagtttcaac gttttggcat gacgcccagg tgtgtgaaag 206040 ttcacgtcgc gtccgtggtg ttcaccaacg caggcggcca acgcgtcggc gtcacgagcg 206100 tgacgcagca gcatcgctac cacgtcgtgc ggtacccgcg tagcaaacgg cgtctgtggc 206160 tgacggtaca cggcttcggt gtacatcata ccgtaacgcg ccagctcgtc cagatgacgc 206220 gegeacaaca geagaatete ttgegagggt tegtagatgt agaggegegt acegeeacee 206280 atgcagagca ccagctccgt ttcttcgtag tgatcttcca ccatgatcac gcacttgcct 206340 agcacgataa ggcgttcggg gcaacaaatc acgtcgtcca gcaactggtc gcgtagctcc 206400 ggcatggtgc tgccgggccg cacctgcagg aaccagttgt gcggaatgcc gagcgacagc 206460 acctggtcga cgtggttacg gacccagtcg cgaagcacgt cggcgctgta ctggcactca 206520 aagatgccct gaaagtcgcc catgacccgc agaaaagttt cgtagcgcgt gtggcaatag 206580 aggaattcat cgtttcgcgt aaacgtggga gctccgtctt cccaacgtgt acgccacatg 206640 tcaaaagagg ccgccagcta gacaccccag aaaagaagca gagaaggaga cttctttgtg 206700 cgacacqttt tattccqcqt cctccqctcq acqttcaaat ctqqatqtac tcqcqcacac 206760 ccgtcaggct ctttaaggga aaagggtccg agtacgtcac taaccgcgac tgatgcacca 206820 gggcggtaat caccegetee gegeeetege gegtegaega aegegtegte accaggeagt 206880 gcagccgcgg gcccgtatcg tcctgatgac cagcggcctc gcgctcggct gcttccacac 206940 cgacaatgtc gggatccaac acgtagctct gcgagttggt gtcgtagcgg tgtagcacca 207000 acgtgttggg gtccagacgc tcccacgcgc cctcgtgcgg gtcaaaacgc tccgttaaac 207060 agagecagte atactgetge tgeagaatac geegetegeg etegegtege teategggea 207120 acgcggcgtc ttcgttgaag agaatgtccc gcttgtggtc tacggcacgc tcgtggtggt 207180

gegggeacag atgaeggtgt tecataegeg tetgaegttg aegetegege teaaaaegee 207240 ggtgtcgaaa gaccattttc agcaacccca tgcggaaaaa ctccgtgatg gtgttggcaa 207300 cgcgccgcac atagtggttg gggtcgtcca tctggatggc gtacacggca ccgaaccagt 207360 ccagcagtac cagcacttcg gccacaaagc tgcgtcccgg tcgcggacgt cccgtcacgc 207420 ctagcacata ccacggcgtg gccagattag cacggacagc ccaccaccaa cgacggctct 207480 ccacctcggt gagcgcacaa aagggccaaa tgcggtgtaa ttgctgcacc gttttcatca 207540 geografiaat caeegtgeeg taaceeggtg tatgeaactt caegtegeaa cecaggatte 207600 gttcggccgt ggcgtacgag ccctcaggcg tggtgtcatt gagaaacaaa acatgcatgg 207660 tacgcgcgcc cttagggtat cgtcgcggaa caggtaccgt cattctccgc aaagtggtgt 207720 quatcacqtc qcqatacqca atctccqaac qtqacacacc qtaacqtqcc aqttcqtcca 207780 ggttgtgcga taccaacacc atgtactttt cacgagtgtc gtaggcgtag acgcgagaaa 207840 agggacccat aaaaaccacg tacggggtag ccaccatgcc atcatggtga tcgcgacgtg 207900 gctcgggcaa caaaataaca gcgtatccca acggcqtcag cggctcgcgg caacagatga 207960 getttgaege egeetgtttg geggeggtaa tgateeegte eteegtaegt aacateacat 208020 gccagccctt ggggggaccc aaggacagac agcgtccctc gttacgatga acgtaacgcg 208080 tgatttccat tggctccagg caaaagaaca gttccttaaa atcccgcaac acttgtcggt 208140 ataacgccat gggatcctcg gccgccacag gcagcgcggg gagctccggc ggcataactg 208200 cagegeegte agggeeagaa eeegeageeg gateeateat tgegegaeae teteageegg 208260 acaaccggcg tcactgacag aagccgagcc aaatacagag aaagcaacgc tacaccgtca 208320 ccccgctccc aagcgccgcg aaaagtgctc cgatttttca ccgtcgttcg cgacgttgat 208380 ttgcctcggt ctgagaaccg acctagcgtt cggaccggtg cgcagaaaca gccggcggtc 208440 cgagccactg agcggttcac agccccggcc gccgatagtt accggagaga cgttcgagct 208500 gcaggtacat cggcgctccc cgcttcgcca ccccgcgccc gccccagttt atactctccg 208560 acgccccgtc caacgcgcct gtggagggcc aatcggaccg cgggagctct ccaagtggat 208620 gacaggcaca gccgggtgcc cgaccgtaaa gagccctcat ccacctgaac agaccgctaa 208680 ccgaaggacc ccgagtcgcg tccgtcggtc ccgacgtccg tcgtcatctg gctccctgct 208740 gttggctacc tctcggattt caaaaaagag cacgtgccga tgacggtgca caggaaagag 208800 ccaaagtgtc acagcgtcct tttttatttg tattcctttc ctgttttgta ctcgtaaact 208860 gttgatgttg tttttacatc caaaagggca agtaagaaac aggatgaggc atggtaggtt 208920 tgggcgcggg gcggccctcc agcacggcgg cccgggccgc ccggcgggtg agcacccggc 208980 gttgcgccgt atctatcttg tgtttcttct gtgtcttttt cctatcttgt tccgcgacgg 209040 cetettteat caegtteage atgegtteet egaegeeete caggggteet ggggaggagg 209100 gagtectagt gaggetteca atgttgtttt gtggatttte ggttteetet tettggtegt 209160 categtegga egtgtegtet teetettgat eetettette gteegaatag tagaegeata 209220 gtccttggtt catcaggctg ggattcatca ggttctgacg gggaatccgc tgttgtagac 209280 gtttaaccgc ccgttccagg cgagagctca tgccgcacca gacgctgtaa cgccgcacgg 209340 gcccgtagcg ggctgtttgt tcgcgtacat gatcgttgag ctcttgccaa tattgtttgg 209400 cacactccag atcggaggtt tgtggatagt cgggtcggat ccgcggatcc caactgacat 209460

cggcggtgcc agagacttcg tccagactgt tacgcataga gcaccagtcg ggtcggacga 209520 taaacctgtc cttgcggatt aaccatttat aacgtagttc gtgatggcgt gtagaggccc 209580 gtacacgctc cacggtccca aagcggtccc agaagggaaa gttttcgtga gggcagcgac 209640 ccggcacttc cagacgttcg gcgtcgtcca cggcgtagtg aaaacgccgg ccggcctggt 209700 aaattttgag cagacccacg gttaacaaca tgtccacgct gtcagccaac cgccagatct 209760 cgcgccgaga cacgtcaaaa tagaaaaatt cgcaggctcg gtcgaccagg atcacgaaat 209820 cggcgtgaaa gacgccggag ggtagcgact cgcccaccac acccattatc atggtttcac 209880 agcataagcg gtccacaaag aacttcaaca ggtcgttgaa ttgctcagtc tccatacaga 209940 tgaaqqqcca qacqcctttq aqqttctcqq cctqqccqca qaqcaqcaac qqacqcqtca 210000 tetegeetgg agtgegeaga ggeaegeatt egeegegata aegaeaggte acaegetgea 210060 gttcgctgat gctgttgtcg tgcaggcgaa ggtcgcagat aatatgatcc ggttgcgtgg 210120 ttagcagcgg cgtgcgcatt tgctcgccgt agatggcctc gcagtgcaac agcccgtgtc 210180 gtgcaaaatc gtccagactg tgcgccaggt agtaaagcac cccgcgatcg cggtctagac 210240 accacacagt ttcgtaacgt cctagcagga gcaccagacg ggcctggcta ggcggctcta 210300 tetectetae gtagacaaaa aagtegtegt egtetgagte etegteeteg gaagaggate 210360 teggeecatg tactetggge aacaeggtgg tegaaaactg caggaegeec agggaetega 210420 gcgactcttc gcagcagatg agctgacccc agggcgtttc gggcccatcg gtgacggccg 210480 cgctgccaaa gatgtcctca aactctacaa aatctagacg ccatccgggt ggcgctgaga 210540 cgggaaggct aatgttcatg tcagcgtagc tacggactaa gtggcggatg tcctgacgcg 210600 agtettgaca gagaatgagt tttegtagae cettgagggt tegeegaaca aeggeeceag 210660 acgcgtagcg ataggactgg cgcatggtgc cgcggcgtgg agaggcactt ggcagcctat 210720 tttatggagt ttcttcaatg acgtggcttg ttcacgtcgt tcgtgggctg cggtcggcag 210780 ctccggtctg taaaccaccc gaaaagactg acatcgacgt caaagactca cgtaatttgg 210840 aacatgtgca actgcaaagt gcgtcagaat agcacgtgac tttgggacat aaaaagtacc 210900 gtgagttata gacgtggttt ttgtgattga cacttacagc aggtaagaca agggacgata 210960 aaactgtatg tgaggaacct gggtgcttag acaactaacg tgttatgctt tttacaggac 211020 cgttcagcag gtaacactac ctgtaaggtg atgaccacct ctacaaacca aaccttaaca 211080 caggtgagca acatgacaaa tcacaccttg aacaacaccg aaatctatca gctgttcgag 211140 tacacteggt tgggggtatg gttgatgtgc ategtgggca egtttetgaa egtgetggtg 211200 atcaccacca tcatgtacta ccgtcgtaag aagaaatctc cgagcgatac ttacatctgc 211260 aacctqqcta taqccqatct qctqattqtc qtcqqcctqc cqttttttct aqaatatqcc 211320 aagcatcacc ctaaactcag ccgagaggtg gtttgttcgg gactcaacgc ttgtttctac 211380 atetgtettt ttgeeggegt ttgttttete ateaacetgt egatggateg etaetgegte 211440 attgtttggg gtgtagaatt gaaccgcgtg cgaaataaca agcgggccac ctgttgggtg 211500 gtgatttttt ggatactagc cgtgcttatg gggatgccac attacctgat gtacagccat 211560 accaacaacg agtgtgttgg tgaattcgct aacgagactt cgggttggtt ccccgtgttt 211620 ttgaacacca aagttaacat ttgeggetac ctggegeeca ttgegetgat ggegtacacg 211680 tacaaccgta tggtgcggtt tatcattaac tacgttggta aatggcacat gcagacgctc 211740

cacgttettt tggttgtggt tgtgtetttt gecagetttt ggttteettt caacetggeg 211800 ctatttttag aatccatccg tcttctggcg ggagtgtaca atgacacact tcaaaacgtt 211860 attatettet gtetataegt eggteagttt ttggeetaeg ttegegettg tetgaateet 211920 gggatctaca tcctagtagg cactcaaatg aggaaggaca tgtggacaac cctaagggta 211980 ttcgcctgtt gctgcgtgaa gcaggagata ccttaccagg acattgatat tgagctacaa 212040 aaggacatac aaagaagggc caaacacacc aaacgtaccc attatgacag aaaaaatgca 212100 cctatggagt ccggggagga ggaatttcta ttgtaattcg atcctctttc acgcgtccgc 212160 cgcacatcta tttttgctca ttgcacgttt cttcgtggtc acgtcggctc gaagaggttg 212220 gtgtgaaaac gtcatctcgc cgacgtggtg aaccgctcat atagaccaaa ccggacgctg 212280 ceteaqtete teggtgegtg gaccaggegg tgtecatgea cegagggeag aactggtget 212340 accatgacgc cgacgacgac gaccacggaa ctcacgacgg agtttgaata cgaccttgga 212400 gcaacccctt gtaccttcac cgacgtgctt aatcagtcaa agccggtcac gttgtttctg 212460 tacggcgttg tctttctctt cggttccgtc ggcaacttct tggtgatttt caccatcacc 212520 tggcgacgtc ggattcaatg ctccggcgat gtttacttta tcaatctcgc ggccgccgat 212580 ttgcttttcg tttgtacact acctctgtgg atgcaatacc tcctagatca caactcccta 212640 gccagcgtgc cgtgtacgtt actcactgcc tgtttctacg tggctatgtt tgccagtttg 212700 tgttttatca cggagattgc actcgatcgc tactacgcta ttgtttacat gagatatcgg 212760 cctgtaaaac aggcctgcct tttcagtatt ttttggtgga tctttgccgt gatcatcgcc 212820 attccacatt ttatggtggt gaccaaaaaa gacaatcaat gtatgaccga ctacgactac 212880 ttagaggtca gctacccgat catcctcaac gtagaactca tgctcggtgc tttcgtgatc 212940 ccgctcagtg tcatcagcta ctgctactac cgcatttcca gaatcgttgc ggtgtctcag 213000 tegegecaca aaggtegeat tgtaegggta ettatagegg tegtgettgt etttateate 213060 ttttggctgc cgtaccacct gacgctgttt gtggacacgt taaaactcct caaatggatc 213120 tccagcagct gcgagttcga aagatcgctc aaacgtgcgc tcatcttgac cgagtcgctc 213180 gccttttgtc actgttgtct caatccgctg ctgtacgtct tcgtgggcac caagtttcgg 213240 caagaactgc actgtctgct ggccgagttt cgccagcgac tcttttcccg cgatgtatcc 213300 tggtaccaca gcatgagctt ttcgcgtcgg agctcgccga gccgaagaga gacatcttcc 213360 gacacgctgt ccgacgaggt gtgtcgcgtc tcacaaatta taccgtaata aaaaagcgct 213420 accteggeet titeatacaa acceegtgte egeceetett titeeeegtge eegatataca 213480 cgatattaaa cccacqacca tttccqtqcq attaqcqaac cqqaaaaqtt tatqqqqaaa 213540 aaqacqtaqq aaaqqatcat qtaqaaaaac atqcqqtqtt tccqatqqtq qctctacaqt 213600 gggtggtggt ggctcacgtt tggatgtgct cggaccgtga cggtgggttt cgtcgcgccc 213660 acggtccggg cacaatcaac cgtggtccgc tctgagccgg ctccgccgtc ggaaacccga 213720 cgagacaaca atgacacgtc ttacttcagc agcacctctt tccattcttc cgtgtcccct 213780 gccacctcag tggaccgtca atttcgacgg accacgtacg accgttggga cggtcgacgt 213840 tggctgcgca cccgctacgg gaacgccagc gcctgcgtga cgggcaccca atggagcacc 213900 aactttttt teteteagtg tgageactae eetagttteg tgaaacteaa eggggtgeag 213960 cgctggacac ctgttcggag acctatgggc gaggttgcct actacggggg ttgttgtatg 214020

gtgggcgggg gtaatcgtgc gtacgtgata ctcgtgagcg gttacgggac cgccagctac 214080 ggcaacgctt tacgcgtgga tttttgggcgc ggcaactgca cggcgccgaa acgcacctac 214140 ceteggeget tggaactgca egatggeege acagacecta geegttgega teeetaccaa 214200 gtatatttct acggtctgca gtgtcctgag caactggtta tcaccgccca cggcggcgtg 214260 ggtatgcgcc gctgtcctac cggctctcgt cccaccccgt cccggcccca ccggcatgac 214320 ttggagaacg agctacatgg tctgtgtgtg gatcttctgg tgtgcgtcct tttattagct 214380 ctgctgctgt tggagctcgt tcccatggaa gccgtgcgtc acccgctgct tttctggcga 214440 cgcgtggcgt tatcgccgtc cacttccaag gtggatcgcg ccgtcaagct gtgtcttcgg 214500 cgcatgctgg gtctgccgcc gccaccgtca gtcgcaccac ctggggaaaa gaaggagcta 214560 coggetcagg eggecttqte geogecactq accaectqqt cactaecqce qtttetqtee 214620 acgcggatac ctgacagtcc gccgccaccg taccagcttc gtcacgccac gtcactagtg 214680 acggtaccca cgctgctgtt atatacgtca tccgacatcg gtgacacagc ttcagaaaca 214740 acgtgtgtgg cgcacgctac ttatggggaa cccccggagc ccgctcgatc gacggctacg 214800 gttcaggaat gtacggttct taccgccccg aattgcggca tcgtcaacaa cgacggcgcg 214860 gtctctgaag gccaagacca tggagatgeg gttcaccata gcctggatgt ggtttcccag 214920 tgtgctgctg atactggggt tgttgacacc tccgagtaac gggtgcaccg tcgatgttgg 214980 acgaaacgta tccattcgag aacagtgccg ccttcgaaac ggtgcgacgt tctccaaggg 215040 agacategaa ggtaacttea gtgggcccgt cgtcgtggag ttggactacg aagacatega 215100 tattactggc gaacggcagc gactteggtt ccatctcagc ggactegggt gtcctacaaa 215160 ggaaaatata agaaaagaca atgaaagcga cgtcaacggt ggaattcgct gggctctata 215220 tatacaaacc ggcgacgcca agtacggtat tcgtaaccag catttgagta tacggttaat 215280 gtatcctggg gaaaaaata cacaacagct gttgggttct gatttcagtt gcgaacgtca 215340 ccggagaccg tccacgccgt tgggaaagaa cgccgaagtg cctcccgcga cccgcacgtc 215400 ttctacatac ggcgtcctca gcgcttttgt agtgtggatt ggatccggcc tcaatatcat 215460 ctggtggacc ggcatcgtgc ttctggcggc ggacgctctc ggacttggcg agcgttggct 215520 gaggttggca ctgtcccacc gggataaaca tcacgcatcg agaaccgcgg cgctccagtg 215580 tcaacgcgac atgttacttc ggcaacgtcg acggctcgg cggctgcacg ccgtttctga 215640 aggcaaactg caggaagaga agaaacgaca gtctgctctg gtctggaacg ttgaggcgcg 215700 accettteeg tecacacate agetgattgt getgeeeeet eetgtagegt eageteetee 215760 tgcqqttccc tcqcaqcccc ccqaqtattc qtctqtqttt ccqcctqtat aaaaataaaq 215820 agacgggagg ctgatcgcgg ccttcagcgt ctcatttgtc tttactctcg agtgcggtcg 215880 gtgtctcatc ggtgagacga ggccgccgc cgacaagttc gatctcatgt cgctcttgga 215940 gcgcgaagag agttggcgtc gcgtagtcga ctactcgcac aacctgtggt gtacgtgcgg 216000 taactggcaa agccacgttg agattcagga ccaggagccc aactgcgagc agccggagcc 216060 cgcacactgg ctagaatacg tggcggtcca gtggcaggcc cgggttcgcg attctcacga 216120 tegetggtgt etetgeaacg cetggegtga teaegeettg egeggeegtt ggggtaegge 216180 gtatteeteg ggtteetegg eetetteete eggtttegte geggagagea agtteacetg 216240 gtggaaacga ctgcgccaca gtacccggcg ctggttgttt cgccgccggc gagctcgata 216300

cactccgtct aactgtgggg aaagtagcac tagcagcggc cagagtagcg gtgacgagag 216360 taactgcagt ctacgcaccc acggcgtgta cacacggggt gaacaacact aatcgataag 216420 tcgcgtgtag gcgactggct acatcaaccg gatatctgcg gggatttaaa aagacgaccc 216480 gttgtcatcc ggcttagagc aaaccgtcct tttatcatct tccgtcgcca tggctatgta 216540 cacateegaa teegaaegeg aetggegteg tgtaateeae gaetegeaeg geetgtggtg 216600 cgattgcggc gactggcgag agcacctcta ttgtgtgtac gacagccatt ttcagcgacg 216660 acceacgace egageegaac ggagggeege caattggegg egacagatge ggeggttaca 216720 ccgtctgtgg tgtttttgtc aggactggaa gtgtcacgcg ttatacgccg agtgggacgg 216780 caaagaatcc gacgacgagt cgtcggcgtc ttcctcgggc gaagcgccag agcaacaggt 216840 ccccgcttgg aagaccgtgc gagccttctc gcgggcctac caccaccgca ttaaccgggg 216900 tctgcggggc acgccccac cgcgcaactt gccgggatac gagcacgcct ccgagggctg 216960 geggttttgc aategaeggg aaeggegaga ggaegatett egeaegeggg etgageegga 217020 ccgcgtggtg ttccagttag ggggagtacc tcctcgccgt caccgggaaa cttacgtgta 217080 agaacacggc gtgacaataa acaacatagc gtaaatcccc gtgtgatgtg tgtgattgac 217140 gttcgggaaa catgtcccca tcatcagcgt cacaactgac gtgggttggt cactgacgtg 217200 caggatgtta cgcgagtcag agaatcgcat aagaacgggg tggtgagcgg gttcccacag 217260 gagtetetgg egeaaaagea eeatgageet eaggtteeee gagagggegg gttacgagaa 217320 actgggatac cgcccgcatg ccaaacgcgt gtgggtgcat gacccgttgg gattgacgcg 217380 gtttatcatg aggcaactca tgatgtaccc gctggtgttg ccgttcactt ttccgtttta 217440 cgtgccgcgg tcctagcacg tcagtggtga cgctgataat tgcaacatgg cccatgacga 217500 accegettgg gacgaacgte aataccaegt caaaccaecg tgacttgget gaacgttgaa 217560 acataaagcc aaagcgccgt cggcacttgg cttcagagca gcgcctcggg gcgatgcgac 217620 ggcgatgaac ttagagcaac tcatcaacgt ccttggtctg ctcgtctgga ttgccgctcg 217680 tgctgtcagc cgcgttggtc cgcatggctc cggactcgtt tatcgtgagc ttcatgattt 217740 ctacgggtat ctgcagctgg accttctggg accagtggtg gcgggggaatc gctcagtccg 217800 gacctggaga gagcaggcgg accgagccag agggaccttc gttcggcgtt caggccttaa 217860 tactagccac atcttacctg tcggcggcct gtctgggggc tccggtacct tacccgccgg 217920 cctgtatcgt cccgaagaag aggtgttcct cctcttgaac cgctgccatg ggccactgtc 217980 aacgccgaaa agcgcttttc tggctgaggt tggtgtcgct aatgccagtt ttttatctcg 218040 cttcaatgtc ggtgattttc acggagcgtc atgggaaaac ggtaccgctc ccgatggaga 218100 qcccqqqqta tqctqaaatt cttcttaaaa ttacqtaaac qacqtcqtcc aqtcqttqtq 218160 cegegatteg taeggtteat egtetaegte gttttgttea cegtegetgt geaacgegtg 218220 aaacaagagc gtgatgcgca ccttcggcgg tatgaagaac gattgcagaa aaaccgtgca 218280 cggcgtcggc agagttttcc gtgacttggg gcggtgggtc cgagctgcgg tatgggtcac 218340 ggcggcgtgc gtcttattga caaagatgcc gatgtgtgac taaaaaacgt cccagcccca 218400 gagcgatgtg tttcaataaa aattatgtag tatcatatta tgcgtgtcct ggtttttcat 218460 tttttggatg tatttgtcgc ataaaaggcg gtgggatgtg gggatgaaat atatccagat 218520 acgcagtttt gttatcctaa caaaacccgt gtcatgctaa aaacggtaat gcaggatgaa 218580

agtcccgtgg ggggggggg gaggcagaca gtagtcgttt ttgccgctgg gcgtacgcta 218640 tgcttgtatt tatgactata atatgtgcac tcgtgtgtcg atgttcctat tgggaagggt 218700 gtgaatgtag gaggtataaa gaatggtggg atgcggagag gcatcgctag acacaggttg 218760 atcgttgtgc tagccccacc tgagcagcgt catgaataaa gcggtgatta agcgtgaaaa 218820 caccgtgagg ggggggggc aggacgcttg gtggcagtgg ccgttggata ccttacgtgt 218880 ctgtattggt acatttgcaa atcgtcgggt gcgacggtat agtttaacga taattatatt 218940 atgtatgcgc agtatacaat gccgtaaacc attgtaacac gaaacgttac aatgatggga 219000 aagatgccga taaaaaacac ataaaacaca taaaaggcat atacacgaat tactagttac 219060 acgtttgtct atgtgcgagt tcaaggacac ttgtataatg catatcccta taatcggatg 219120 tgtgttactc attcgtggcg ttgttatagt attgtgaaaa agaattctcg taagcatgtt 219180 gacaactgca aaataaaagc attttattga gcattgtaat ggtagtgtgt ggctacatta 219240 gaaaacgtga cgcgtcgcat gtcgcggcac aatctggcag cggggtcggg gtagggtacg 219300 gtgggaggca tgtacacaga tggaacaaaa gcagaagtaa cgtgagacgg agcatatagt 219360 ccaqtatccq qcqqttcctq aqtaqcacca cccatcaact qaatqccctc atqaqtaaaa 219420 gtctgcggc gacagccctt ggggaccgtt ggcatgggac gatcaatctc caaaccacag 219480 cgtaacacgg ttttcttcca acgtcgttga tagacgtcgt ttttacggtt actccccaga 219540 acccagaaag totogtocaa gtogtaccag gagtottocc cagggagacg tggcggtttc 219600 caatceteat egteeegteg caaagcaegt eecaaactgg ettggggagt caaeggtggt 219660 tetgtgggte gggtgtageg egagtgtttt ecetteatga gegattegte eteettgeet 219720 ttaggetttt tggtettttt gtgtateate tggeegeegg cetecataac cacegtggee 219780 aagtccagtc ccagagcttg agcgtcggcg cggcgtcggg cgtcttgcag atagtcttcc 219840 acatttgcac agatggccgg gtgtttggtg gctagggtga gcacctcagc ctcgccgcgg 219900 cccggacgta gcaaaaaagc taactgcccg tgcggctcgc gcgcccacag cgcggcgcgc 219960 gggtgcaggt gcagcgcgtc ccagcgcggc cgctcccact gctcgcggtc cagctcgggc 220020 agcagccgcc gegeggeete ggeggegge geegactege geeceagege cagegegeee 220080 agcacgcccg cgcgcagaaa gtgcgacagc tccgccgcca gtgggtacac gtgcccgtcc 220140 agegggeagt accegaacac ggegeceage tegtecagea ceaceaceag catggegege 220200 ggtacggtcc ccgacgccgc cggacccacc atcgccgccg gacccaccat caccgtcggc 220260 geogeogetg etgeogetge egeogegtee geocegacea eegegtgege gteogegett 220320 ggcacqcaaa tcqcqctccc qccqqcqqcq ccqtacqqct qcqqaqqtaa aqtcacaqca 220380 qaccccacqq eteccqctat eqeqcacqqc qeqtecceqc eqqeqqeete eqtetecqtq 220440 cegetegece eeggeggega egtegteece geegeegtee etgtegeegg eecegeegeg 220500 cageceagee acegegaegg cageaeegeg cecagegeea gecageegea geacagaege 220560 tggttcaggt gccgacgcac ggccgtcagc agcgacgcgg ggtgcggcgc cgacgcgaac 220620 ggetegtact gegecagete etgecaegeg eccageagea ceateggetg eagtegeetg 220680 ceeggegtet geagtgeeac egtegtgeeg geceacegge ggegeagete eegteegage 220740 geogtegeet ceteggegeg cagcaacgte tggcgaageg ceggetgagg cagcagegte 220800 gegegeggg tgeccaegec cageeggttg cageggtaca geegeaceae etegeeegeg 220860

ccgtgccgaa accactcgtc cgcgtcgcgc gccgccagga tcagcgtgtt gttcgccagg 220920 tegtacaega acaegeggaa eeeggegeee agegeeaggt acagteegte etgegegeae 220980 agaccetegg gatggcegge ettgtegece acegtegggt eggeegeggg gtecaceteg 221040 tgcaccacgg tcgccaccag cacgatccac gcgtcccgcg gcgacagctg acgcaggtcc 221100 gtegegeeca egeegtteat etggetgege ggegteacee gegegtagaa teegtaegge 221160 cgtccgagcg gcagcagcgt gcccgcgtcg cgctgcgacc acttgcgcat ggcgcggccc 221220 gtgctgttgg ccaaaaacgc cgcgcgccac acggcgccca tggcctggta ttccagctcc 221280 gtcagcgcct ggcgctccac cggaatctga gacagcagca agcgctccgg gccgtgccaa 221340 aagttgctgt tgttgccgct acceggaggg gegeeeggeg geeegegggg ttctaccegg 221400 tggacggcgt gggccggtgt cgccgtaccc gcagcactcg tactagtccc cgctgttgac 221460 gtcgcttcca aagaagaaga acgagaggaa ccaacccccg aaggccctcc ggcttcgcgg 221520 ccgcgaccga ggggcgggg gcgcggcgac atgccgttgc gctgggccat ggccgccgga 221580 caccteegae gteeactata taccaageaa accegegtea gegaceaege egtttacaca 221640 tgcggacgcc gcagtcgccc gtgtgccccg gccgacacgc atctggcttt tataggcagc 221700 gacgtgcacg gcgcttgctg gcgccgcctc gccgcgcagt cgggaagccc gtggaaatgc 221760 acceggeage egaeggegea etggaetgge aaaggeagee egagegagaa eccatetagg 221820 tggacgcccg acatccattc cgggccgtgt gctgggtccc cgaggggcgg gggggtgttt 221880 ttagcggggg ggtgaaattt gaggttgcgt gtgtggacgg cgacggcgaa gagttgcgtg 221940 tggtgcggtg tggtgcggtg gggacggcgg tcgcggaggc cggcgacggc gaataaaagc 222000 gacgtgegee gegeaeggeg aaaageagae gegegtetgt gtetgtttga tteeeegggg 222060 aaaagaggaa gttcccaggg gacggcagcg cgggtccctg gggacacacg caaaacaacg 222120 gccagagaca agacgcggaa aagaggaaag aacagacaca cgcaaaacaa cggccagagg 222180 aagctcgggg gcgcaaggga gggggggcaa gacgcggaaa agaggaagtc cctaggggac 222240 cgcgggggaa acgacagacg aagtacggca caacccgcgt cgaggacaca cgcagaagcg 222300 ategeecagg ggagggggg ggtegeggac eceggggeac acaegeagac acggeecgcc 222360 aacacacccc gacacacccc tgacacaccc cgccaacaca cccgccacac gcccgcgaca 222420 acceageege geeceegaca cacceegace geegeeggtg egggaegggg etgagggagg 222540 ttttgccacc gtaagcgcgc cgattcgcgg aataggactg agggctggac agggctgcgg 222600 gaqttttqtc cacqqaqctt tctqcqcqct qqcqqtqcqt qtqtctctqq acataaqtaa 222660 gegeageget gteeteageg egtttgegge gtgetgtgte eggegetttg tgegeactge 222720 eggtgegtgt egteeegegg tgttttttgt ttegeggaee ggegeegggg aeggggtgtt 222780 gegegegete gggggttgge ggegggtgtt tetaeggtgt ttgegeggeg tttetaggea 222840 gettttgege ggegettege ttttegggge ggegaeggeg gtgttttegg gegtgetggg 222900 cgccggcgct agtaacggga gttacgctgg ggacggggac ggggtttgcg gcggggacgg 222960 gggggtgtgc ggggacgggg ggtgtgcggg gacggggggt gtgcggggac ggccacgggg 223020 gcettttgeg gegggaega tgegttgegg ggeeggggge ettttgegge ggggaegggg 223080 cgttgcggag acggggacgg gagtggggac ggtggtgagg acggggacgg gggcctttcg 223140

cggcggggac ggggagttgc gggatggcgg gctgttgcgt ggcggggacg ggggactctt 223200 geggeggga eggggaacac agaeggeaeg cacaegeage tegeetattt aacetecaee 223260 cactacaaca cacacatgcc gcacaatcat gccagccaca gacacaaaca gcacccacac 223320 cacgoogctt caccoagage accaacacge gttaccetta caccacagea ccacacaace 223380 gcatgtccaa acttcggaca aacacgccga caaacaacac cgcacgcaga tggagctcga 223440 cgccgcggac tacgctgctt gcgcacaggc ccgccaacac ctctacggtc aaacacaacc 223500 ccaactacac gcatacccca acgccaaccc acaggaaagc gctcattttt gcacagagaa 223560 tcaacatcaa ctcacgaatc tacttcacaa cataggcgag ggcgcagcgc tcggctaccc 223620 cgtcccccgc gcggaaatcc gccgcggcgg tggcgactgg gccgacagcg caagcgactt 223680 cgacgccgac tgctggtgca tgtggggacg cttcggaacc atgggccgcc aacctgtcgt 223740 aaccttactg ttggcgcgcc aacgcgacgg cctcgctgac tggaacgtcg tacgctgccg 223800 cggaacaggc tttcgcgcac acgattccga ggacggcgtc tctgtctggc gtcagcacct 223860 ggttttttta ctcggaggcc acggccgccg tgtacagtta gaacgaccat ccgcgggaga 223920 agcccaagct cgaggcctat tgccacgcat ccggatcacc cccatctcca catctccacg 223980 cccaaaacca ccccagccca ccacatccac cgcatcgcac ccacatgcta cggctcggcc 224040 agateacaeg eteteteetg teeettetae acceteagee aeggtteaca ateeeegaaa 224100 ctacgccgtc caacttcacg cagaaacgac ccgcacatgg cgctgggcac gacgcggtga 224160 acgtggcgcg tggatgccgg ccgagacatt tacgtgtccc aaggataaac gtccctggta 224220 gacggggtag ggggatetae cageccagga ategegtett tegeegeeae getgetteae 224280 cgatatccaa taaacccatc ccctcgccac gacgtctccg cgtatctttg tagcctcagg 224340 aatacgtccc cacgtccacc catcccaagc actccacacg ctatcacaga ccacggacac 224400 ggcaaaaaat gcatgcaaac ttctcattta ttgtgtctac tactctgtgt tgctacaggg 224460 agtgaagggg gtgaaggcaa agaaaaaaa aagaacaaaa taatagatta gcagaaggaa 224520 taatccgtgc gaccgagctt gtgcttcttt tcttataagg aggcaaatat actagggaaa 224580 acataacaat aggaagaaac cgaggtttgg gagaaaagct gagataaaat agcgcatttt 224640 ccatacagag gttgttgttt ttgtggatcc taagaggttt caagtgcgaa tctcaaagtt 224700 ctcacgagaa tattgtcttc aagaatcgac aactgtggtc caagattttt ttttggtctt 224760 tttaggttct gcgagggaca tcacgatgga tcgttgcgat gaagtcacgc gtacgcctct 224820 ggtgtggggg ggtgtcgtga caggagagtg tgttttcagt gcagagctgt cttgattcct 224880 atatccqaqt atctqttttc tcqtaaqqac qqtaatcttc tttqqtqtaa qtacatctaa 224940 aaqctqcaaa ctatatttta aqqqctqtct ctaqqtqtac tttqatqctq qaqtttttcq 225000 ctgtgttgat gtgaataaat ctactactac tattatatgc agaaagagtg attatgccga 225060 gacaagattg cattggctga actgtttcaa aaacgcctac actctactta tccgtaaacc 225120 taaggtaata ctatgtgtaa gttgttttt tttctttttg tagtaaaatg gtgatacgtg 225180 agcgaagaag tgcgaggata aaaatggatg actccttcgt gtccagggag tcgactactg 225300 caacgctgat tgattaaaag atggtctccg atgatgttgt tattgatcga atcatggtgc 225360 agaacggcga cggagaggag cgtgtccgcc gccgggaagg tggtctcttt ctctttctt 225420

ttttcaagaa atcttccatg tgtttatcgt agtgatcgaa atcgactgat ctcgggttct 225480 ttttgttggt ttcttttcgg ttaatcatgt attgttttct ttttttacag aaagatactt 225540 ttttcatgag caattcctcg cccggcgccg gcatgccgag gtggggccac tgcgatcagc 225600 ggcatgccga cgccgacccg gggatcttgg attcaccgtt ttctctcttc tctctctaca 225660 tacagaccgg gtggcaggag cggtaaggaa tcatcgtcgt ctttcattct tcgatgatta 225720 tggtaatact aaatcttatc taggagcata tacatctaag attggagtac tagtagtcgt 225780 ttgtggtttc tatttttttt tatatttatc tatgacagtt tttctgtttt tcgttttgat 225840 aataatataa taaaaactca tggacgtgaa atctggcttg gttgtggtga tttcattctc 225900 attattgttg ttttctttcc gtcttgcgga tgaagatgtt gcgatgcggt tgttgttggt 225960 gttgctatac accgagagag atgatctttt tgttcttctg gttcatttcc tatgattgtt 226020 tggctgctga ccgacgcgtc aggatgtgca gggcatgcgg ggaatcagga ccggacacgg 226080 gataatttca tctacctata cggagatcgc ggtcctcgcc atgaggatcg cgacaggcgc 226140 gtcgaggggg gcaggaacac ccttgcggat tgacattctt ggtggtgttt cgttgttgtc 226200 ggtagttgtt gttgacgatg aggataaata aaaatgacct tgtttttgtt ctgttttctc 226260 ttgttgggaa tcgtcgactt tgaattcttc gagttatcgg aaagctgagg tacccaaatg 226320 tetgtagett ttttettttt accetettgt ttateatetg egattegtgg taggtaggag 226380 agggaaatga taatccgaga ttaaggaaag gagaagataa aaaaaaaaa aataataaaa 226440 cagaagccga ccggccgccg acccgttccc caggaccagc ctacgaggaa cggataacgc 226500 ggtggcgacg gcagcggtgg tggcgctggg ggtggcggta gtggtgctgc tgatggtagt 226560 cgggacggag gagagacgat gcatacatac acacgtgcat gctgcatggg tggatggacc 226620 gaccgggaga cgcggaagag aaactcacat aaaaaggtga caaaaagagc ggttgaaaag 226680 agaaaacgag attcgaccag acagaagaga aggaccgggg cttggcgacc cttccacgac 226740 tgctgttgtc atctcggctc ctccgtcttc tcccggccac gggcggctaa gtcaccgccg 226800 ttetececat cegteegage geegacegae cageeggeeg attegeeege eggggettet 226860 ggagaacgcc ggagcagcag cgatctgggg aagccgctaa acccctgcgt ttttatatgg 226920 tagctctgcc gagcgcgggc tgacgcgttg agtaagcgga aagacgtgtg tgacgaaaag 226980 gggtcccatg gtatttcacg tgacgatgag gagatgcggt ttggagcaca tacggtttaa 227040 aaaaagggag ttgtcgtgac aagggctgag ggacctctgt ctccatgtgt gtataaaaag 227100 caaggcacgt tcataatgta aaaaagaaca cgttgtaaac aagctattgc tgtatcattc 227160 ggctgactat gcttcattcg gactgatttt cttttcctaa cggcgtaact taaagtgatt 227220 aacqtatqat atttqttccc caqaqttata ctataqtcat catcctaaaa ttcaqatata 227280 aggtgctaaa acaaatctat acgttgatcc tacacgttct acgattaacc aacagagacc 227340 aaccatgtct ctttaacctc gcttgggccg ctaccgtctt tccaaaccag atcgtaacct 227400 ccttcattta cagacgtaac gttacacagc gttaaatgca catggctgca attacatatg 227460 ccaccgaccg atcccaacgt aaaattgttt acgcctgtca cggtacaaac cgtggtctca 227520 ttatgtttag ttccatccgt aagcttccaa gttgacgtaa gatcgtgttt tagatttgta 227580 ttttcaccaa cctttatact agaactttta aaactttcaa cttcaaggca taatgccaaa 227640 attaagcacg ttattagtcc cccccccc accgaggaat gtgactggac cggttcttag 227700

cagettttggg agecatette aaggtggace geagetacag egaaacegag teeagtgace 227760 gataaccacg tgcaaccctg cgtatgtacc agtccaagta cgtccggtca ttgttccaca 227820 caggaaatct aactaggtca acggacaaaa ccaaattgtc aatccaccat atgcacaaca 227880 caaaagcact gacgtttatt tgttgaatta tcaacgttac ttagttacaa taaggaacca 227940 tgtatccact tgaatgttgc ccaactgggt cttccccgtt atagtcatag cgttcccagg 228000 caaaagctaa cgccgaacct aatgcagtaa accgcgcttg cacccagaac cagcttatgt 228060 atcagecaca ataacateeg gttattgttt ccacaggaaa teetaccagg caaageeeeg 228120 cttgttttgt ttctaaccat cttgtttagc aactcgtaaa ctgtcagccc agcgacgtcc 228180 gtttggatca aaagccacgt atactgagac gctgtttcta cccgtttccc catcccgcca 228240 ttcccqqqca acccaccaa qtcccqacaa ccaaccacca acaqaaaaca tacacaqacc 228300 accgggagtt cagttaaaga tttcatcagg tttattttgg ctgctgctag tcttttgctt 228360 cttagaaaaa aaatacccat atagagaaat aatgatagtt tgacaacaca tatggcaggg 228420 atttcttctt catcaataag atatgcaatt cccccaggga gagactttca acaattgaat 228480 ttacaaaaac aaaattacat caqqaqaaaq aqaqqataca ttaataaata tattatatct 228540 ggtgtatata ctgaatgctg ctggttcata aggtaacgat gctacttttt ttaattccaa 228600 gatgattttt ctttgttagt cttttgttga cttgctggtt cctaaaagtt cgcaaaaacg 228660 attgtgtgaa gattttatga cgttggttga ctagttcatg agattctgct gtacgtgtga 228720 tggttattcg ctggttcgtt ctaagatgag tatcgtactg tgtctgcgat ggtcgtctct 228780 tactggcatt ctctcggctg cctcttgctt tcatgattga aaaggaaaaa aggactccga 228840 gggcgcggtc atcttttact tttcggtttt ctcgttggcg ggtcagaggt agtcagatca 228900 tgagactgtc gtggtcgatg aaactgtgtc tgctcaagtg acgtccattt cttgtacgga 228960 gaaaaaagtc atcgggataa ataaggctat acaaggcgtt gtcaagcgtg cggctctaaa 229020 caaattaagc gatacaaaat tacagtaata cgaataataa attaccccc tccccctgtg 229080 gtcccccgag gcgagagcca cccatcgtgt actctcgcac cacccacgac cacagaggga 229140 gacgggacga agagacgacg cagagcgcca tctcctcctg gaggccggcg gcgttaactg 229200 ctacagctgc ggcggcgacg acagctgcga tttgtcggcc gacatgccga tggtatgggc 229260 gaaggegagg atggcatgat etegeeggag egeeeggett ttatgggata etegegteeg 229380 gtcgggcagc gcccacagga agatgagtca aaacttttaa accatcctga gacccgagta 229440 gcggtttaca ggccgcacgc cagtcttagc taaaaacagc ggacagtccc acgctgtttc 229500 tgttgtggct ctctccagtt tcctcatcgc cgtcccgatc tccgtcgtca tcggaaqaat 229560 accateoget eteatgegge agtegatega eetegaegga egaaggegg egaegeetet 229620 ctacggccga ctggttgtgg tggtgaaaga agagcaccag caatcccagg aggagcaaca 229680 agccctcaca tgtccaggag gtcggggaga gggcctgtcg gagatggccg tgaggcatca 229740 cgtacggcag ctgaggagaa acggagaata aaggaaaatt accgtcaggg gccggggttc 229800 ttattagaga aacagcacgt aggtcaggat ccagatacta atggcgatca tgatgacgat 229860 gatcatgcag gccaagacgc ggcgcaccaa tgccgaatcc aagagccgcc gtgccgccgg 229920 ttggtggctg gcggcatcta gagacatggt ttggggggac cggcggcgcg aaaagacagg 229980

gagatggaca gtgtcacggt gttttgttat gattaggaca tggggaccgg aagccgagac 230040 agagtactac agagtgttga agggtaacgt gagggagatc atgtcatggg cgggctgaag 230100 accgtgcggg gaggatcgac gtgtgcggtg cttgtggaac acggtgtttt aatatgtatc 230160 cgcgtgtaat gcacgcggtg tgctttttag cattcggctt ggtaagctac gtggccttct 230220 gegeegaaac caeggtegee accaactgte ttgtgaaaac agaaaatace caeetgacat 230280 gtaagtgcag tccgaataac acatctaata ccggcaatgg cagcaagtgc cacgcggtgt 230340 gcaaatgccg ggtcacagaa cccattacca tgctaggcgc atactcggcc tggggcgcgg 230400 getegttegt ggecaegetg atagteetge tggtggtett ettegtaatt taegegegeg 230460 aggaggagaa aaacaacag ggcaccgagg tagatcaatg tctggcctat cggagcctga 230520 cacqcaaaaa qttqqaacaa cacqcqqcta aaaaqcaqaa catctacqaa cqqattccat 230580 accgaccctc cagacagaaa gataactccc cgttgatcga accgacgggc acagacgacg 230640 aagaggacga ggacgacgac gtctgacaaa gaaggcgaga acgtgttttg caccatgcag 230700 acctacagca coccectcae gettgecata gteaegtege tgtttttgtt cacaacteaa 230760 qqaqqttcat cqaacqccqt cqaaccaacc aaaaaacccc taaaqctcqc caactaccqc 230820 gccacctgcg aggaccgtac acgtactctg gttaccaggc ttaacactag ccatcacagc 230880 gtagtctggc aacgttatga tatctacagc agatacatgc gtcgtatgcc gccactttgc 230940 atcattacag acgcctataa agaaaccacg catcagggtg gcgcaacttt cacgtgcacg 231000 cgccaaaatc tcacgctgta caatcttacg gttaaagata cgggagtcta cctcctgcag 231060 gatcagtata ccggcgatgt cgaggctttc tacctcatca tccacccacg cagcttctgc 231120 cgagctttgg aaacgcgtcg atgcttttat ccgggaccag ggagagttgt ggttacggat 231180 teccaagagg cagacegage aattateteg gatttaaaac gecagtggte eggeetetea 231240 cttcattgcg cctgggtttc gggactgatg atctttgttg gcgcactggt catctgcttt 231300 ctgcggtcgc aacgaatcgg ggaacaggac gctgaacagc tgcggacgga cctggatacg 231360 gaacctctat tgttgacggt ggacggggat ttggagtaaa agatgcgtac acaacatcga 231420 cggcgaaaca agtcatcgta cacgcaaata acatgcatgt ttatcatttt ttggattctg 231480 cagaaaagca agtgtaacaa caccactatc gctaatactt ccacgtcaat tacactcaca 231540 agettgatat etaetgeaca actaacatet aetttacaaa eeaceggaat gtetaceaet 231600 acattcacat cctccgatgt caacgccaac acatccacag gattcactgc aagctctgca 231660 aaaagcacag acgtgatctc aactatttcc accataccca ctcaaacatc tacaattaac 231720 gcgactgtaa tgacaacctc accaaacgga ggcatgaatt tatcgacaca acatataatc 231780 agcaqtaccq cqacttcqca aqcaactaca tcattaccaa tcaatactaq tacaatqqta 231840 acaaatacaa ctcaaaacat cagtacacca ctcccaactt gctcatcatc taatagcaca 231900 ttcaatgata catcaaacaa ccgtacttgt catgaaaaca gtacaatatc acaagaatct 231960 gaaacattgt tgaaggcaat acaaggagac aatatcacta taatacacaa cctaaccacc 232020 acatcgtgct acaagacagc ttggcttaga cattttaata tatccacaca cagaaaatac 232080 acccatccca acataaagag tggaaaattt agtaaccatt cattaaagat cctccattcg 232140 cgtgtactgt gtgagtggca gacacattac ctaaaacatc actacgattt atgttttaca 232200 tgcgatcaga atttatcttt gtctctgtac ggtcttaatt ttactcactc tggtaaatat 232260

agetttegat gttacaaaag tggccatece tetgaacaaa atcaaaattt taatetacaa 232320 gtacatecta gaaacaacae gaaegagaca catgtgaaee eetggatatg egaagaaeca 232380 aagcacgaat gggatacttt ggctgctaca tctgataaac cgaccagtca taaagacgat 232440 acaaccacat catctacaga tcatctatac cgctataata atcattccaa cacatcacac 232500 ggcagacaca ctacgtggac tttagtgtta atttgtatag cctgcattct cctatttttc 232560 gtccgacgag ctctaaacaa aaaataccat ccattaaggg acgatatcag tgaatcagaa 232620 ttcatagttc gatacaatcc tgagcatgag gattaagcaa cgtttccgga taaacatctt 232680 atgagaccac accacaaagt aaatgactat gaaagatcaa caacatccga agaaacatca 232740 atgcccatta accgaaatcc aacaacgtta tggactggca gtttacggtt aagtggaggt 232800 tactgatcat cacgttatct gaaggttgta atgatacatg cccttgttcg tgcaactgcc 232860 teacetecae egecteaace ateaaaaatt egtetgattt tgteactaae getaceaaca 232920 tttcaactac tgcaaataaa accacgcaca aaccetetac egeetegtea gatacateaa 232980 caattactcc aacgctgttg gaatcaccgt caagcgttac gcgaatatta acaacgttct 233040 ctaccqttca taqtaccatt ccctqqttqa ataccaqcaa cqtaacttqc aacqqtaqtt 233100 tqtacaccat ctataaacaa tctaatttaa attacqaqqt aattaacqta acaqcqtatq 233160 teggtggata egteactetg caaaattgca etagaaegga tacatggtat gatgtagaat 233220 ggataaaata tggaactcgt acacaccaac tgtgcagaat tggaagttat cattcaacgt 233280 ctccactaaa cggcatgtgt ctagactgta acagaacctc tctcaccatc tacaacgtaa 233340 ccgtcgaaca cgctggaaaa tacgttttac atcgctacat tgacggtaaa aaggaaaact 233400 actatotaac tgtattatgg ggaaccacaa catcgtotoo tatacctgac aaatgcaaaa 233460 caaaagagga gtcagatcag cacaggcgcg gagcgtggga cgacgtaata acaactgtaa 233520 aaaacactaa cattcccctg ggaattcatg ctgtatgggc gggtgtagtc gtatctgtgg 233580 cacttgtagc cttatacatg ggtagccgtc gcgcttccag gaaaccgcgt tataaaaaac 233640 ttcccaaata tgatccagat gagttttgga ctaaaacctg a 233681

<210> SEQ ID NO 21

<211> LENGTH: 4159

<212> TYPE: DNA

<213 > ORGANISM: artificial

<220> FEATURE:

<223> OTHER INFORMATION: synthetic

<400> SEQUENCE: 21

ctaaattgta agegttaata ttttgttaaa attegegtta aatttttgtt aaateagete 60
attttttaac caataggeeg aaateggeaa aatecettat aaateaaaag aatagacega 120
gatagggttg agtgttgtte cagtttggaa caagagteea etattaaaga aegtggaete 180
caaegteaaa gggegaaaaa cegtetatea gggegatgge eeactaegtg aaceateace 240
ctaateaagt tttttggggt egaggtgeeg taaageacta aateggaace etaaagggag 300
ceeegattt agagettgae ggggaaagee ggegaaegtg gegagaaagg aagggaagaa 360
agegaaagga gegggegeta gggegetge aagtgtagee gteaegetge gegtaaeeae 420
cacaceegee gegettaatg egeegetaea gggegegtee eattegeeat teaggetgeg 480
caaetgttgg gaaggegat eggtgegge etettegeta ttaegeeage tggegaaagg 540

gggatgtgct	gcaaggcgat	taagttgggt	aacgccaggg	ttttcccagt	cacgacgttg	600
taaaacgacg	gccagtgagc	gcgcgtaata	cgactcacta	tagggcgaat	tgggtaccgg	660
geeceecete	gaggtcgacg	gtatcgataa	gcttgatccc	aagcttgata	tcgaattcgg	720
atgggctccg	gaatcggcgc	agcaagcatg	gaattttgtt	ttgatgtatt	caaggagctc	780
aaagtccacc	atgccaatga	gaacatcttc	tactgcccca	ttgccatcat	gtcagctcta	840
gccatggtat	acctgggtgc	aaaagacagc	accaggacac	agataaataa	ggttgttcgc	900
tttgataaac	ttccaggatt	cggagacagt	attgaagctc	agtgtggcac	atctgtaaac	960
gttcactctt	cacttagaga	catcctcaac	caaatcacca	aaccaaatga	tgtttattcg	1020
ttcagccttg	ccagtagact	ttatgctgaa	gagagatacc	caatcctgcc	agaatacttg	1080
cagtgtgtga	aggaactgta	tagaggaggc	ttggaaccta	tcaactttca	aacagctgca	1140
gatcaagcca	gagageteat	caattcctgg	gtagaaagtc	agacaaatgg	aattatcaga	1200
aatgtccttc	agccaagctc	cgtggattct	caaactgcaa	tggttctggt	taatgccatt	1260
gtcttcaaag	gactgtggga	gaaaacattt	aaggatgaag	acacacaagc	aatgcctttc	1320
agagtgactg	agcaagaaag	caaacctgtg	cagatgatgt	accagattgg	tttatttaga	1380
gtggcatcaa	tggcttctga	gaaaatgaag	atcctggagc	ttccatttgc	cagtgggaca	1440
atgagcatgt	tggtgctgtt	gcctgatgaa	gtctcaggcc	ttgagcagct	tgagagtata	1500
atcaactttg	aaaaactgac	tgaatggacc	agttctaatg	ttatggaaga	gaggaagatc	1560
aaagtgtact	tacctcgcat	gaagatggag	gaaaaataca	acctcacatc	tgtcttaatg	1620
gctatgggca	ttactgacgt	gtttagctct	tcagccaatc	tgtctggcat	ctcctcagca	1680
gagagcctga	agatatctca	agctgtccat	gcagcacatg	cagaaatcaa	tgaagcaggc	1740
agagaggtgg	tagggtcagc	agaggctgga	gtggatgctg	caagcgtctc	tgaagaattt	1800
agggctgacc	atccattcct	cttctgtatc	aagcacatcg	caaccaacgc	cgttctcttc	1860
tttggcagat	gtgtttcccc	ttaagcggcc	gccgcatcga	attcctgcag	cccgggggat	1920
ccactagttc	tagagcggcc	gccaccgcgg	tggagctcca	gcttttgttc	cctttagtga	1980
gggttaattg	cgcgcttggc	gtaatcatgg	tcatagctgt	ttcctgtgtg	aaattgttat	2040
ccgctcacaa	ttccacacaa	catacgagcc	ggaagcataa	agtgtaaagc	ctggggtgcc	2100
taatgagtga	gctaactcac	attaattgcg	ttgcgctcac	tgcccgcttt	ccagtcggga	2160
aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	cggggagagg	cggtttgcgt	2220
attgggcgct	cttccgcttc	ctcgctcact	gactcgctgc	gctcggtcgt	tcggctgcgg	2280
cgagcggtat	cageteacte	aaaggcggta	atacggttat	ccacagaatc	aggggataac	2340
gcaggaaaga	acatgtgagc	aaaaggccag	caaaaggcca	ggaaccgtaa	aaaggccgcg	2400
ttgctggcgt	ttttccatag	geteegeeee	cctgacgagc	atcacaaaaa	tcgacgctca	2460
agtcagaggt	ggcgaaaccc	gacaggacta	taaagatacc	aggcgtttcc	ccctggaagc	2520
tecetegtge	geteteetgt	teegaeeetg	ccgcttaccg	gatacctgtc	cgcctttctc	2580
ccttcgggaa	gcgtggcgct	ttctcatagc	tcacgctgta	ggtatctcag	ttcggtgtag	2640
gtcgttcgct	ccaagctggg	ctgtgtgcac	gaaccccccg	ttcagcccga	ccgctgcgcc	2700
ttatccggta	actatcgtct	tgagtccaac	ccggtaagac	acgacttatc	gccactggca	2760
gcagccactg	gtaacaggat	tagcagagcg	aggtatgtag	gcggtgctac	agagttettg	2820
J					-	

aagtggtggc	ctaactacgg	ctacactaga	aggacagtat	ttggtatctg	cgctctgctg	2880
aagccagtta	ccttcggaaa	aagagttggt	agctcttgat	ccggcaaaca	aaccaccgct	2940
ggtagcggtg	gtttttttgt	ttgcaagcag	cagattacgc	gcagaaaaaa	aggatctcaa	3000
gaagatcctt	tgatcttttc	tacggggtct	gacgctcagt	ggaacgaaaa	ctcacgttaa	3060
gggattttgg	tcatgagatt	atcaaaaagg	atcttcacct	agatcctttt	aaattaaaaa	3120
tgaagtttta	aatcaatcta	aagtatatat	gagtaaactt	ggtctgacag	ttaccaatgc	3180
ttaatcagtg	aggcacctat	ctcagcgatc	tgtctatttc	gttcatccat	agttgcctga	3240
ctccccgtcg	tgtagataac	tacgatacgg	gagggcttac	catctggccc	cagtgctgca	3300
atgataccgc	gagacccacg	ctcaccggct	ccagatttat	cagcaataaa	ccagccagcc	3360
ggaagggccg	agcgcagaag	tggtcctgca	actttatccg	cctccatcca	gtctattaat	3420
tgttgccggg	aagctagagt	aagtagttcg	ccagttaata	gtttgcgcaa	cgttgttgcc	3480
attgctacag	gcatcgtggt	gtcacgctcg	tcgtttggta	tggcttcatt	cageteeggt	3540
tcccaacgat	caaggcgagt	tacatgatcc	cccatgttgt	gcaaaaaagc	ggttagctcc	3600
ttcggtcctc	cgatcgttgt	cagaagtaag	ttggccgcag	tgttatcact	catggttatg	3660
gcagcactgc	ataattctct	tactgtcatg	ccatccgtaa	gatgcttttc	tgtgactggt	3720
gagtactcaa	ccaagtcatt	ctgagaatag	tgtatgcggc	gaccgagttg	ctcttgcccg	3780
gcgtcaatac	gggataatac	cgcgccacat	agcagaactt	taaaagtgct	catcattgga	3840
aaacgttctt	cggggcgaaa	actctcaagg	atcttaccgc	tgttgagatc	cagttcgatg	3900
taacccactc	gtgcacccaa	ctgatcttca	gcatctttta	ctttcaccag	cgtttctggg	3960
tgagcaaaaa	caggaaggca	aaatgccgca	aaaaagggaa	taagggcgac	acggaaatgt	4020
tgaatactca	tactcttcct	ttttcaatat	tattgaagca	tttatcaggg	ttattgtctc	4080
atgagcggat	acatatttga	atgtatttag	aaaaataaac	aaataggggt	teegegeaca	4140
tttccccgaa	aagtgccac					4159
<220> FEATU	TH: 6379 : DNA NISM: artif: JRE:	icial DN: synthet:	ic			
<400> SEQUI	ENCE: 22					
ctcgagttta	ccactcccta	tcagtgatag	agaaaagtga	aagtcgagtt	taccactccc	60
tatcagtgat	agagaaaagt	gaaagtcgag	tttaccactc	cctatcagtg	atagagaaaa	120
gtgaaagtcg	agtttaccac	tccctatcag	tgatagagaa	aagtgaaagt	cgagtttacc	180
actccctatc	agtgatagag	aaaagtgaaa	gtcgagttta	ccactcccta	tcagtgatag	240
agaaaagtga	aagtcgagtt	taccactccc	tatcagtgat	agagaaaagt	gaaagtcgag	300
ctcggtaccc	gggtcgaggt	aggegtgtae	ggtgggaggc	ctatataagc	agagetegtt	360
tagtgaaccg	tcagatcgcc	tggagacgcc	atccacgctg	ttttgacctc	catagaagac	420

accgggaccg atccagcete egeggeeceg aattegaget eggtaceegg ggatecacca

tgtaccccta cgacgtgccc gactacgcca cgtccagact atccgtgaaa agtttgagaa

gcatcagtag gttcgtccag tgggagtgtt gttggatgct cgtcaacaag agcgcgcgct

480

540

accgagagtt	ccgcgccgtc	accagccagt	cgccggggct	ggggaaggtc	tcctccaccg	660
acgacgggag	atgtctcgcc	gcctccatga	tgcttttcag	acgtgacggt	aattttgtcc	720
tctgtctggt	cgtcaataag	gagccggtgg	gtcagttcgg	ctgcagtggc	atgcggcgcg	780
agaagatggt	catcgatgga	ctccaggagc	ccgtctacgt	gatgcgtctc	ctggccccc	840
tcatccccgt	caagctagga	ttctcgccct	acatgttgcc	gcctaagagc	atcggcggct	900
ccggcggtct	ggaccccagc	gtcatctacc	agaacgcgag	tgtggtcacg	cccgaagagg	960
ccgccaccgt	cactatgcag	ggttccggca	tcgtgaccgt	ggggctcagt	ggcgttggct	1020
cctgggtgca	gatcaaggat	ggtgggaaca	tgaagctctt	cgtcttcgcc	ctctgcttcg	1080
acgtctttac	cgcctgctgc	gatcggctcg	ccttcccgtc	cctggccaag	atctacagcg	1140
aaactgtgtc	ctgcgaggcc	gacaagtgcg	gattctgtcg	agattccggt	cggcacgtcg	1200
atcccaccgg	ccgcttcgtc	ggctgcgtcc	ccgacagtgg	cgtgtgtctc	tgttactcgc	1260
egtgtegegg	gacggatgcc	geggteageg	tcagaagctg	gttaccttac	ctggaactgg	1320
aagacggtgc	gaacacgcac	agcctcttcg	tgcggcgcta	cgacggcagg	aaaggactgc	1380
cggccacgat	atctgactac	ctcggcgcca	ggaacagcga	gggcgacgag	atcccgctga	1440
ggaccgagcc	ctggcagctc	ttgaagatag	aaccgacgct	gtccgccatg	atcatcatgg	1500
cctgtccctt	actcaaaaag	atcgttctcg	agcacatgtg	aagtcgactc	tagcgcggcc	1560
gcatcgataa	gcttgtcgac	gatatctcta	gagctgagaa	cttcagggtg	agtttgggga	1620
cccttgattg	ttctttcttt	ttcgctattg	taaaattcat	gttatatgga	gggggcaaag	1680
ttttcagggt	gttgtttaga	atgggaagat	gtcccttgta	tcaccatgga	ccctcatgat	1740
aattttgttt	ctttcacttt	ctactctgtt	gacaaccatt	gteteetett	attttctttt	1800
cattttctgt	aactttttc	gttaaacttt	agcttgcatt	tgtaacgaat	ttttaaattc	1860
actttcgttt	atttgtcaga	ttgtaagtac	tttctctaat	cactttttt	tcaaggcaat	1920
cagggtaatt	atattgtact	tcagcacagt	tttagagaac	aattgttata	attaaatgat	1980
aaggtagaat	atttctgcat	ataaattctg	gctggcgtgg	aaatattctt	attggtagaa	2040
acaactacat	cctggtaatc	atcctgcctt	tctctttatg	gttacaatga	tatacactgt	2100
ttgagatgag	gataaaatac	tctgagtcca	aaccgggccc	ctctgctaac	catgttcatg	2160
ccttcttctt	tttcctacag	ctcctgggca	acgtgctggt	tgttgtgctg	tctcatcatt	2220
ttggcaaaga	attcactcct	caggtgcagg	ctgcctatca	gaaggtggtg	gctggtgtgg	2280
ccaatgccct	ggctcacaaa	taccactgag	atcttttcc	ctctgccaaa	aattatgggg	2340
acatcatgaa	gccccttgag	catctgactt	ctgggtaata	aaggaaattt	attttcattg	2400
caatagtgtg	tgggaatttt	ttgtgtctct	cactcggaag	gacatatggg	agggcaaatc	2460
atttaaaaca	tcagaatgag	tatttggttt	agagtttggc	aacatatgcc	atatgctggc	2520
tgccatgaac	aaaggtggct	ataaagaggt	catcagtata	tgaaacagcc	ccctgctgtc	2580
cattccttat	tccatagaaa	agccttgact	tgaggttaga	tttttttat	attttgtttt	2640
gtgttatttt	tttctttaac	atccctaaaa	ttttccttac	atgttttact	agccagattt	2700
tteeteetet	cctgactact	cccagtcata	gctgtccctc	ttctcttatg	aactcgactg	2760
cattaatgaa	teggeeaaeg	cgcggggaga	ggcggtttgc	gtattgggcg	ctcttccgct	2820
		gcgctcggtc				2880
334	5 5 - 9	5 5 -5579	5 5559	55 5 5-55	3	

tcaaaggcgg	taatacggtt	atccacagaa	tcaggggata	acgcaggaaa	gaacatgtga	2940
gcaaaaggcc	agcaaaaggc	caggaaccgt	aaaaaggccg	cgttgctggc	gtttttccat	3000
aggeteegee	cccctgacga	gcatcacaaa	aatcgacgct	caagtcagag	gtggcgaaac	3060
ccgacaggac	tataaagata	ccaggcgttt	ccccctggaa	geteeetegt	gcgctctcct	3120
gttccgaccc	tgccgcttac	cggatacctg	teegeettte	tecetteggg	aagcgtggcg	3180
ctttctcaat	gctcacgctg	taggtatctc	agttcggtgt	aggtcgttcg	ctccaagctg	3240
ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	ccttatccgg	taactatcgt	3300
cttgagtcca	acccggtaag	acacgactta	tcgccactgg	cagcagccac	tggtaacagg	3360
attagcagag	cgaggtatgt	aggcggtgct	acagagttct	tgaagtggtg	gcctaactac	3420
ggctacacta	gaaggacagt	atttggtatc	tgcgctctgc	tgaagccagt	taccttcgga	3480
aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	ctggtagcgg	tggtttttt	3540
gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatctc	aagaagatcc	tttgatcttt	3600
tctacggggt	ctgacgctca	gtggaacgaa	aactcacgtt	aagggatttt	ggtcatgaga	3660
ttatcaaaaa	ggatcttcac	ctagatcctt	ttaaattaaa	aatgaagttt	taaatcaatc	3720
taaagtatat	atgagtaaac	ttggtctgac	agttaccaat	gcttaatcag	tgaggcacct	3780
atctcagcga	tctgtctatt	tcgttcatcc	atagttgcct	gactccccgt	cgtgtagata	3840
actacgatac	gggagggctt	accatctggc	cccagtgctg	caatgatacc	gcgagaccca	3900
cgctcaccgg	ctccagattt	atcagcaata	aaccagccag	ccggaagggc	cgagcgcaga	3960
agtggtcctg	caactttatc	cgcctccatc	cagtctatta	attgttgccg	ggaagctaga	4020
gtaagtagtt	cgccagttaa	tagtttgcgc	aacgttgttg	ccattgctac	aggcatcgtg	4080
gtgtcacgct	cgtcgtttgg	tatggcttca	ttcagctccg	gttcccaacg	atcaaggcga	4140
gttacatgat	cccccatgtt	gtgcaaaaaa	gcggttagct	ccttcggtcc	tccgatcgtt	4200
gtcagaagta	agttggccgc	agtgttatca	ctcatggtta	tggcagcact	gcataattct	4260
cttactgtca	tgccatccgt	aagatgcttt	tctgtgactg	gtgagtactc	aaccaagtca	4320
ttctgagaat	agtgtatgcg	gcgaccgagt	tgctcttgcc	cggcgtcaat	acgggataat	4380
accgcgccac	atagcagaac	tttaaaagtg	ctcatcattg	gaaaacgttc	ttcggggcga	4440
aaactctcaa	ggatcttacc	gctgttgaga	tccagttcga	tgtaacccac	tcgtgcaccc	4500
aactgatctt	cagcatcttt	tactttcacc	agcgtttctg	ggtgagcaaa	aacaggaagg	4560
caaaatgccg	caaaaaaggg	aataagggcg	acacggaaat	gttgaatact	catactcttc	4620
ctttttcaat	attattgaag	catttatcag	ggttattgtc	tcatgagcgg	atacatattt	4680
gaatgtattt	agaaaaataa	acaaataggg	gttccgcgca	catttccccg	aaaagtgcca	4740
cctgacgtct	aagaaaccat	tattatcatg	acattaacct	ataaaaatag	gcgtatcacg	4800
aggccctttc	gtctcgaggc	agtgaaaaaa	atgctttatt	tgtgaaattt	gtgatgctat	4860
tgctttattt	gtaaccatta	taagctgcaa	taaacaagtt	aacaacaaca	attgcattca	4920
ttttatgttt	caggttcagg	gggaggtgtg	ggaggttttt	taaagcaagt	aaaacctcta	4980
caaatgtggt	atggctgatt	atgatcctct	agaactctat	tcctttgccc	tcggacgagt	5040
gctggggcgt	cggtttccac	tatcggcgag	tacttctaca	cagecategg	tccagacggc	5100
cgcgcttctg	cgggcgattt	gtgtacgccc	gacagtcccg	gctccggatc	ggacgattgc	5160
_		=	_	=	-	

-continued	
gtogoatoga cootgogood aagotgoato atogaaattg cogtoaacoa agototgata	5220
gagttggtca agaccaatgc ggagcatata cgcccggagc cgcggcgatc ctgcaagctc	5280
cggatgcctc cgctcgaagt agcgcgtctg ctgctccata caagccaacc acggcctcca	5340
gaagaagatg ttggcgacct cgtattggga atccccgaac atcgcctcgc tccagtcaat	5400
gaccgctgtt atgcggccat tgtccgtcag gacattgttg gagccgaaat ccgcgtgcac	5460
gaggtgccgg acttcgggc agtcctcggc ccaaagcatc agctcatcga gagcctgcgc	5520
gacggacgca ctgacggtgt cgtccatcac agtttgccag tgatacacat ggggatcagc	5580
aatogogoat atgaaatoac gocatgtagt gtattgacog attoottgog gtoogaatgg	5640
geogaacceg etegtetgge taagategge egeagegate geatecatgg eeteegegae	5700
cggctgcaga acagcgggca gttcggtttc aggcaggtct tgcaacgtga caccctgtgc	5760
acggcgggag atgcaatagg tcaggctctc gctgaattcc ccaatgtcaa gcacttccgg	5820
aatcgggagc gcggccgatg caaagtgccg ataaacataa cgatctttgt agaaaccatc	5880
ggcgcagcta tttacccgca ggacatatcc acgccctcct acatcgaagc tgaaagcacg	5940
agattetteg eccteegaga getgeateag gteggagaeg etgtegaaet tttegateag	6000
aaacttctcg acagacgtcg cggtgagttc aggctttttc atggaagctt tttgcaaaag	6060
cctaggcctc caaaaaagcc tcctcactac ttctggaata gctcagaggc cgaggcggcc	6120
tcggcctctg cataaataaa aaaaattagt cagccatggg gcggagaatg ggcggaactg	6180
ggcggagtta ggggcgggat gggcggagtt aggggcggga ctatggttgc tgactaattg	6240
agatgcatgc tttgcatact tctgcctgct ggggagcctg gggactttcc acacctggtt	6300
gctgactaat tgagatgcat gctttgcata cttctgcctg ctggggagcc tggggacttt	6360
ccacacccta actgacaca	6379
<210> SEQ ID NO 23 <211> LENGTH: 9400 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<400> SEQUENCE: 23	
ttcccggaaa atcactcaaa actacgtcca tgacacatca actcccgata actacctccc	60
tttgaaatcg gatcccccca cgtaccaatc aatcacacaa cacacaggtt taaaaatcga	120
teactegica attaggitte aaaategata eegittatta teaggaatet agaetaatte	180
tacaatgaca getetgaatt tetetetegt etteettgte aggiteteat eateagitat	240
cacttccacc catcgaggag tcatcgtcgc tccaaaatcc tttggggtcg ctagttggaa	300
aagtetetga caegateeag geaceeegea eecagteega etgatetage ttgeggagea	360
teteaacagg catgagetge agggeeatgg etgteaegge aetgtatega tgtaacaeta	420
gggactttct ttgcgatgta gccatcaaca cggcgtatgc cccatagttc gcgtgatacg	480
acgcatgatg ggttaaacgt tcccatccgg cagtgccgtc tcgggtccgt gcacacaaca	540
gctgcacggc attatgatgc ttaaaattaa ccataacgct ggggctactg atgaaggagt	600

660

agtaatgagc caggacgccg tacatcgaag gcagcaagaa agagtgacag cacaatagca

ccgggctctt atgtaggcga cagcttattt ttcctgacgt cggcaaaaag tacctaaatt

ccccacagat	attcagacac	ggttccgcaa	agtgcttctt	tttttagtgc	aggaattgga	780
aaaaataata	aaaaatatga	acagctcatc	tgtaattatc	tgtgtgactt	catcgtaccg	840
tgatgtaaaa	acaacaacag	gaagcttaca	gggtgcggta	gaaaattttg	ccgattgagc	900
aacactgttg	gcatctctca	ctccgatagg	cggctataag	atagaaaatt	aaaagtatga	960
tacccacgag	aaagatgaag	agggacaacc	aggctagagt	atgacgacca	cttttccctt	1020
gtttgacggt	tacatgtgcg	gtatgatttt	gtcgttgctt	gtgatgttgg	acgcctggaa	1080
cggacaacga	cgtataattc	ttagatgcgc	atacggtgtt	attagtggaa	gtgcagttac	1140
gaattgtaac	ctcagtgtca	ctacactcag	tgcaattggt	acaattgtaa	agccctgata	1200
catacgtacc	gttagggcaa	agtgtacatg	ttgtactcgt	atattgcgta	cattgtcctg	1260
taacacgata	tccttgttta	catgggggac	aacactgact	tcctaattgc	acttcttcgg	1320
gtttgcatat	ttcagttttc	cctatgcatg	ccaatagcat	actcagcaaa	ataagcatca	1380
ccagaggctt	catgcctcct	accggaagaa	taaaaataac	tcatggggcc	gaacggtatc	1440
atcctctccg	cggtttgtaa	tacgagatcg	taaacgtaaa	taaatgacat	aacttcacta	1500
acccgcatac	tgcaaagtcc	acctacgacg	ctgaaagctt	ttccaggaca	caacaggata	1560
gtcagccatc	ttcacaggta	accagtttct	agtcacagta	tagcgagcct	aagagaccgc	1620
acacggtccc	tgctggaaac	acataccact	acatcgattt	gtcgtgtcgt	acaaccgtca	1680
agttttccga	acttttatac	acgccaatgg	cgttaggact	atgtgtgctg	ctgtgattgg	1740
aggettegag	agttatgtga	cagctgtgat	tacacctgtc	gccaaggctg	acagcgatta	1800
cccaggtaga	gcacaatcac	atagctgatg	gacgttggtt	gatccgttga	ttcccatgga	1860
cattttaacg	gcgacagtac	agctcccgtt	aaacattaga	ttaatagacg	ctagtggatg	1920
acagcatgtt	attegeceaa	ttgtgatggt	ggttatactt	tcttgttttt	tgctcatatg	1980
ctgtaaggtg	ttcgaggatc	gtggggagta	tatgtgttaa	atcggaatca	tatttactga	2040
ccgcgccata	cttcgtatac	gaacctaacc	ggcgtaaagt	gttttccgat	atataaactg	2100
gcgcctattg	tggctgtagc	gcccataggt	atggcatata	cccacggtga	tgttgtgtta	2160
ttcgtttttt	gtgataaaac	gtagtttatg	tttaacgtgt	gttccgtcac	gttatgtgtg	2220
tcgttaaaag	acggcgtctg	tacagtatgg	ctttgagttg	tatcttgaat	tgttattgca	2280
tttggaggtg	tgtacagagt	ggttgttgtg	tgctgaggtg	ttgttacgtt	ttgaggcaca	2340
gttgtggtgt	atacggactt	caaggtgtag	ttacggagtc	tttctatgca	ggtagtgttg	2400
agatatttgt	gaatgctggt	tatgttcgat	tctgtgaggt	taaagtgtgt	actatttatg	2460
gcggtataat	ttagacggtc	ttgccatccc	gaggatgtta	gtgttaggta	attcgtgttg	2520
tttacgtttg	cttgatatgt	ataggtaggt	gtactgtttg	tgaggtcgca	agtgtgattt	2580
tettgeagag	attttatcca	tcttgtgtga	aaatattgag	atacgcgatg	aatgttttcg	2640
ctatctatat	tgtaaagcgt	ttcggtggta	cttaggggtt	gtttgctgta	actcttattt	2700
tggacccagg	atgtgaacca	tgactccaat	gtttgtatag	taaggtgtcc	tattaataaa	2760
gacgaactga	ttcctaccgt	aatgttatat	cgcacaccta	gggtgccgtt	tacaaacacg	2820
gaaatgtttc	cgttacaaac	cacgttggca	gatgaattag	attccaggtg	gtaacgatag	2880
gataatgacc	gttcgctccc	aacggatgac	acaaagtatc	cgaataacca	acacgcccat	2940
tcaatccgca	tattttaatc	acactattca	catttcacac	actgcatttt	ttaacatgtt	3000

Oct. 29, 2015

attittitat titatgcgt	•		333		3060
taagteggta ggegtegat					3120
cagogtocac agcactgos					3180
caaaatccca aaaatgccg					3240
teggeeggeg gtgetggee					3300
cagtcgccgg ggagccggt					3360
ggacatgegg gttteeage					3420
tgaaaaccgc ggtacatcc					3480
atctggtctc ccagcgagt	a acgacctaac	gccggcgtgc	agcaaggttc	gtcgggccgg	3540
ctgagcgtct ccagttgcg	t gagaattacg	aagcgttgca	tgatgaggcc	gtggctgtag	3600
ttgcgcagca cgcattcgt	a catgeeggee	gtgtccgtcg	atacgttgaa	agtcagcgag	3660
aatatttggc cgagatgca	a ttgcgagaaa	ttccaagtgg	cgtacggcag	gcggtactgg	3720
agtccgttca tcagccgat	g gcctttgacg	gcgtccagga	tgagctcgtc	gctgccgtcg	3780
tgggaacgac agaaacgtg	c gcgaatggag	accatgggcc	aggagtgtgt	catgaccgtg	3840
caggggatgg tataacttg	c tetecetegg	cgaccaacac	cggcgccggc	gacgtggtct	3900
cataattctc ggcccacat	c ttttcggcaa	tgtcagcggt	ggcgaagggg	aacgaagagg	3960
aagaatattc gaggagtcg	c gggcagctca	acagcaccca	gaacagccac	ggcagagttc	4020
ggagcgactc tcggcggca	c atgatgattc	tttctttccc	tttttcgcag	agacgctgcg	4080
egeetgetee tgeteegte	t gteggeeget	caaacgtcgg	gccggcgtgg	tggtgaccac	4140
cgtgcgacgc agcttctcc	c ccgggatgcc	cgcgactgag	cgtccggttt	ttttgcaggt	4200
cttttttgct gcctcctcc	t cgccgtcgcc	gtcgcggccg	acgtggtgga	ccagcaccgc	4260
gcaggaactc tegegtege	c ggcggtacgc	gacctgtctc	attgctacct	cggatgttta	4320
agaaggaacg ttcatctgo	g tcacagggtc	tgatgaagct	gccaagagtc	gtggctgtgg	4380
cgcagcgcgt tctgtacgg	c gegttteace	gctttctgca	tggccgctac	cacgtcgggt	4440
gggagegget eeggeggaa	g ctcgatgagc	agttgctgcg	agtctcggcg	ctcggtgtcc	4500
geegtttegt eggaegtge	c gtaaaaaacc	gaggtggttg	cccagtcgtc	cacgctgtcg	4560
acggcctctg tcagtgccc	g gttgtcaaaa	ccgccatcgg	acgcgggtga	taaaagaacg	4620
tacgatgaca cgctgttag	t acgactctcg	tcgtcgctct	gggaacgacg	tgatggacga	4680
cggtagatga cctcgtctt	g ccacgcgtcg	aagcggtcgc	agcagcgctg	gatccaagcg	4740
cagcgaagca gcttacgga	a cacgtcgttg	ttccaaaagt	agagcataaa	gagaaagaaa	4800
agtagcgtaa taatgaagc	c gaaaacgacg	agggtcggca	gggcactacc	gccgctgccg	4860
ttttttgtgt cgtgcgggt	g cacggtggta	gtggcgttag	tctgagctgg	ggtcatgaca	4920
agtetgaaga gatgagage	g tgggtgctca	tcaggaacag	ttgaggtctc	tccctaccga	4980
agcettagee teeaeggte	t tttatgatca	acgtgtctac	gaacgtcatt	gtgaaagtga	5040
cgtctcaggc tttccgaaa	c cgcgtcagat	tcaacgtggg	tttcggttta	gcctgcgtca	5100
ccgaggcgga ggtggaaat	g agccgtcctg	tgggggagtg	tacgaccctg	tagtgcccat	5160
gggtaacgtc gcgtcggaa	g aagtgaatgc	ggcattggtg	tacgcgtggg	ttgttttgct	5220
ctctgactcg gaggaattg					5280
5 5 5 5 5 5	. 5 55-	5 5	5	5 5 44	

Oct. 29, 2015

aaagcagcag	gtaaataaga	gaaggagtcc	agataatgtc	cagccgctag	cggcaagcag	5340
cgcgagctgt	ggtactgtcc	agctactgcc	gttagaggca	ttaatacatg	tcgatacggt	5400
cgtgttggcg	gtagcactag	tagattgact	ggaattagag	ctggtacctg	tagtggtttc	5460
actcgccgat	gcggcgagtg	caaataaaat	taatatccac	agcatgttta	ttactatata	5520
attgatatac	gaacccgtct	gtcgtaacaa	tcagcgttat	acacgctgta	teggeategt	5580
tttaccggaa	agtttatcgt	aatgtaaccc	gcgttgtgta	cattcgtact	gacagggaac	5640
ccccggtgat	gtgcacatta	tactctttca	ttctggggtt	tcccaatgac	gtaaaaattt	5700
ccactacaca	ataaaattac	tgactcatgt	gaaaagtgtg	ctttttatta	acagagcaga	5760
gggtttacag	tagatatatg	tttgccaggg	ccaccgtttt	ctaacaccga	tcaccgccac	5820
cattaccacc	cgttgaactc	cacacccggg	agccgcctga	tcgccaggga	ctcctcaccg	5880
tccatcgtcc	gaacaagctc	ccgccaccga	tgctgccacc	atcaccgaga	gaaagaaccg	5940
cttgctgcag	atacgcttgg	gctcgcctcc	gtgcggacgc	cgtttcgtgc	agacgctgag	6000
tagatcgagc	agagaatgtc	aaaacgacat	taccgcgatc	cgctcccctc	ttttttcttt	6060
ttctcattca	cgtgtattct	tgatgataat	gtaccatggc	tacggtggtg	aactgcgtcg	6120
cggatcccgt	cacgggtttc	aacagatcga	cgtcggtcag	eggegeegte	accgccatgt	6180
ccggcggagg	cacgctgttt	ctctggttag	cgacgtggac	cgacgacgaa	gacgatgaac	6240
ccgcgcggcg	gtctgttatc	cgcgacgacg	cgtagctgca	ctgggaagac	acttcctccc	6300
aacggaccaa	gateteateg	ggccgttcgg	agaaacggta	tegtetgtee	gactcccgcc	6360
gtacggcgcc	gaggcccagc	gacgacaggt	ccgcgaaccg	gcgctcgtat	teccegtaca	6420
gctcgcaaca	gcggatcagc	cagcggtagc	tcaaaaacat	gcgcaccagt	ttgaaggtgt	6480
cgtgccaatg	gtaagctaga	tagcagagaa	tggccacgat	cagcacgagc	atcacgccga	6540
tgatgggtaa	cccgacgttc	agcggcagat	cgtccatggt	gaccgtcctc	tgtccggatc	6600
tacgtcccag	tetetetett	ttgtacagca	ctcgcgcggg	aacggccccc	tcaaccctct	6660
tacgtagcgg	gagatacggc	gtteteeege	gggccactta	cttgcacggt	cgcttgaacg	6720
geggettgga	ccgccacatg	taccgcatcc	atccattctg	gcagcagcgc	gttcgacgac	6780
gtcgtacgag	tegeggatga	tgttaccccg	ccagcacctc	cgccggcaac	cgcgtcgtcg	6840
ttgctatcgt	cgccggtttc	gggcgatgac	agegeeggeg	gegegggtet	cgtctcgtcc	6900
accatttcca	ccgtgtcgaa	gcgacagccg	ctgccgtagt	acatggcccc	gttcaacggc	6960
cggcgggccg	ggtcgccgag	ttccgggtcg	ggcacatcca	tggctcgccg	tetgettete	7020
tgccgctcgt	ggtgccgacg	gcacttctca	ggataatgac	agccgcaaaa	tagatcgtgg	7080
agcatgtctc	gccaactgtc	ctggtggtaa	tatcttaagt	acgcgatgag	cgcgccgatg	7140
gccataatca	taagcgtaag	caaaacggca	cagataacgt	gaaacaccgc	ggtcatccaa	7200
gtcgggcggc	gtcggggacg	cggtgggtcg	gtttctctta	cgccggcgtc	actcagccac	7260
cacacccgta	gtcgacattc	ccagaaccgg	tgaatgcgac	tcagggcctt	tegaegeege	7320
catttatttc	caacgtccaa	gtcccacgtc	atttctggca	tctccacgcc	cttgactgac	7380
atactctctt	tctctctct	agctgcggtg	aaaaagaggg	aaggcgtgtg	ctgctataca	7440
actgtacaac	ggacgcgctc	gctgtttcgg	tctcaggtca	tctgcattga	ctcggcgtcc	7500
	tetgeacege					7560
3 3 -	5 30		JJ**	5 5	3 33-33-	

ggggctaact cggaaaccga cacgataggc agcgtggtcg gctccgtcgg cgtgcggggt 7620 cggggacagg gacacgagag tcccaccttc gagagattct ccagcccgac ggtgcgcggc 7680 agtotoggat toogoggtgg ottttgtggc gtoggcgttt togggaaggg cotgggcgtc 7740 7800 accggcggtg tccagccgac cggcttgggt ttcgtgggcg gcggtgtttt cttggtgggc ggcgtgctca ggttcttacg cggcgcgggt atcggcgtcg ggggcctgtg cgacgacagc 7860 cgcgtggtgg gggcccggac cggcggcgta ggcggccgct tcttgcgccc gggcggcgga 7920 ggtggcttcc aggatggcgg cggctgatgc agtaccgtgt cgacgctggc cgaggacgac aaagageteg acgaggagea atgegaegga gateggeega tgetggtegg egtteeegge gtggatacgt cggggatete gaategegee ggaggaaact cgggtttate tateggeaga 8100 8160 ccatectete ctatgtagag egacgtacae egeggeacet geggegtegg egggtgggtg gecaceegea tgageeceag ttecagatee ageggetega egaegtette ttteggaatt 8220 8280 cgatagcagc acgegcaggc accaegetta teagaagcag caeeegggag ceggeetege qacqaaqtct cqtcqqatcq cttqcqqcct cqqcqctqqq taaataaqqa aatqqccaqq 8340 accagggaag ccagtccggt accgccgagg agcccgacgc cgagccacag ccacaccatg 8400 atettetete etgettggaa teteaaacte egtgteggga agggeeggtg taeggacatt 8460 tatgccttgg atttctggaa acgtcatttt ttggcaagga atgtgtttat tgtccaaaca 8520 ctgaggaagg agatgtgagc caagtcggaa aattccttat cacaccgggg gcgggttacg 8580 ttccggtctg atgctgctgc tgttgttgta gagccgcggc catggccgcc tgcacggcag 8640 cttgtaccgc ctcggccacg ccgggtggca tctgcggcat ggcgggggga gacgcgtcgg 8700 geggacegee gggcategee gteggetgeg aeggtggttg tgaacteace gteggetege 8760 acggaggttt gteetteggt ttgetetteg gtttatettt egecetaeet ttetteggtt 8820 tgggttccga tgtcggtgtt ggcggctgcg gtgggatgac gggctggtgg gactcctccg 8880 acggcggggg gacgaatact gtcggcgccg aaaccggggg actctcgact atctcgcaga 8940 9000 teaccetgte gggategteg cegtgteegg gaegeegteg atgaceatat tgaaccatgt 9060 cgtaaatcat cgtctccttg taacacgctg aacagcagcg gctacaagga cccgaaatgc atttgcagct gcacttacag ctgcagctgc agtagcgcac ccatcggcag gtgaagacgt 9120 cgattacgga gtccttgaag aattcccggt aacggatgag atacgcgcag aggaaaatca 9180 tgaaaacaga acagccgact acggctgcga tgccgggtcc cgaaaacgta ttcggtgatc ctaccaaaca ccaaattccc agggccgcgc atgttatcca ggccacaata atcgtgggaa egececattg geattgecae gaaggategt geacgtegea acceateget actgegttet 9360 cccacaaacg ccatcgcact atttatccct acagcggctg 9400

```
<210> SEQ ID NO 24
<211> LENGTH: 387
```

<212> TYPE: PRT

<213> ORGANISM: artificial

<220> FEATURE:

<223> OTHER INFORMATION: synthetic

<400> SEQUENCE: 24

Met Gly Ser Gly Ile Gly Ala Ala Ser Met Glu Phe Cys Phe Asp Val 1 5 10 15

Phe	Lys	Glu	Leu 20	Lys	Val	His	His	Ala 25	Asn	Glu	Asn	Ile	Phe 30	Tyr	Cys
Pro	Ile	Ala 35	Ile	Met	Ser	Ala	Leu 40	Ala	Met	Val	Tyr	Leu 45	Gly	Ala	Lys
Asp	Ser 50	Thr	Arg	Thr	Gln	Ile 55	Asn	Lys	Val	Val	Arg 60	Phe	Asp	ГЛЗ	Leu
Pro 65	Gly	Phe	Gly	Asp	Ser 70	Ile	Glu	Ala	Gln	Сув 75	Gly	Thr	Ser	Val	Asn 80
Val	His	Ser	Ser	Leu 85	Arg	Asp	Ile	Leu	Asn 90	Gln	Ile	Thr	Lys	Pro 95	Asn
Asp	Val	Tyr	Ser 100	Phe	Ser	Leu	Ala	Ser 105	Arg	Leu	Tyr	Ala	Glu 110	Glu	Arg
Tyr	Pro	Ile 115	Leu	Pro	Glu	Tyr	Leu 120	Gln	Cys	Val	Lys	Glu 125	Leu	Tyr	Arg
Gly	Gly 130	Leu	Glu	Pro	Ile	Asn 135	Phe	Gln	Thr	Ala	Ala 140	Asp	Gln	Ala	Arg
Glu 145	Leu	Ile	Asn	Ser	Trp 150	Val	Glu	Ser	Gln	Thr 155	Asn	Gly	Ile	Ile	Arg 160
Asn	Val	Leu	Gln	Pro 165	Ser	Ser	Val	Asp	Ser 170	Gln	Thr	Ala	Met	Val 175	Leu
Val	Asn	Ala	Ile 180	Val	Phe	ГÀв	Gly	Leu 185	Trp	Glu	Lys	Thr	Phe 190	Lys	Asp
Glu	Asp	Thr 195	Gln	Ala	Met	Pro	Phe 200	Arg	Val	Thr	Glu	Gln 205	Glu	Ser	Lys
Pro	Val 210	Gln	Met	Met	Tyr	Gln 215	Ile	Gly	Leu	Phe	Arg 220	Val	Ala	Ser	Met
Ala 225	Ser	Glu	Lys	Met	Lys 230	Ile	Leu	Glu	Leu	Pro 235	Phe	Ala	Ser	Gly	Thr 240
Met	Ser	Met	Leu	Val 245	Leu	Leu	Pro	Asp	Glu 250	Val	Ser	Gly	Leu	Glu 255	Gln
Leu	Glu	Ser	Ile 260	Ile	Asn	Phe	Glu	Lys 265	Leu	Thr	Glu	Trp	Thr 270	Ser	Ser
Asn	Val	Met 275	Glu	Glu	Arg	Lys	Ile 280	Lys	Val	Tyr	Leu	Pro 285	Arg	Met	Lys
Met	Glu 290	Glu	Lys	Tyr	Asn	Leu 295	Thr	Ser	Val	Leu	Met 300	Ala	Met	Gly	Ile
Thr 305	Asp	Val	Phe	Ser	Ser 310	Ser	Ala	Asn	Leu	Ser 315	Gly	Ile	Ser	Ser	Ala 320
Glu	Ser	Leu	Lys	Ile 325	Ser	Gln	Ala	Val	His 330	Ala	Ala	His	Ala	Glu 335	Ile
Asn	Glu	Ala	Gly 340	Arg	Glu	Val	Val	Gly 345	Ser	Ala	Glu	Ala	Gly 350	Val	Asp
Ala	Ala	Ser 355	Val	Ser	Glu	Glu	Phe 360	Arg	Ala	Asp	His	Pro 365	Phe	Leu	Phe
Cya	Ile 370	Lys	His	Ile	Ala	Thr 375	Asn	Ala	Val	Leu	Phe 380	Phe	Gly	Arg	Сув
Val 385	Ser	Pro													

385

<210> SEQ ID NO 25 <211> LENGTH: 498 <212> TYPE: PRT

<220)> FI	RGANI EATUF THER	RE:				nthet	ic							
< 400)> SI	EQUE	ICE :	25											
Met 1	Ser	Gly	Gln	Gly 5	Thr	Lys	Arg	Ser	Tyr 10	Glu	Gln	Met	Glu	Thr 15	Asp
Gly	Glu	Arg	Gln 20	Asn	Ala	Thr	Glu	Ile 25	Arg	Ala	Ser	Val	Gly 30	Lys	Met
Ile	Gly	Gly 35	Ile	Gly	Arg	Phe	Tyr 40	Ile	Gln	Met	Сув	Thr 45	Glu	Leu	Lys
Leu	Ser 50	Asp	Tyr	Glu	Gly	Arg 55	Leu	Ile	Gln	Asn	Ser 60	Leu	Thr	Ile	Glu
Arg 65	Met	Val	Leu	Ser	Ala 70	Phe	Asp	Glu	Arg	Arg 75	Asn	Lys	Tyr	Leu	Glu 80
Glu	His	Pro	Ser	Ala 85	Gly	ГÀа	Asp	Pro	90 Lys	ГЛа	Thr	Gly	Gly	Pro 95	Ile
Tyr	Arg	Arg	Val 100	Asn	Gly	Lys	Trp	Met 105	Arg	Glu	Leu	Ile	Leu 110	Tyr	Asp
Lys	Glu	Glu 115	Ile	Arg	Arg	Ile	Trp 120	Arg	Gln	Thr	Asn	Asn 125	Gly	Asp	Asp
Ala	Thr 130	Ala	Gly	Leu	Thr	His 135	Met	Met	Ile	Trp	His 140	Ser	Asn	Leu	Asn
Asp 145	Ala	Thr	Tyr	Gln	Arg 150	Thr	Arg	Ala	Leu	Val 155	Arg	Thr	Gly	Met	Asp 160
Pro	Arg	Met	CÀa	Ser 165	Leu	Met	Gln	Gly	Ser 170	Thr	Leu	Pro	Arg	Arg 175	Ser
Gly	Ala	Ala	Gly 180	Ala	Ala	Val	ГЛа	Gly 185	Val	Gly	Thr	Met	Val 190	Met	Glu
Leu	Val	Arg 195	Met	Ile	Lys	Arg	Gly 200	Ile	Asn	Asp	Arg	Asn 205	Phe	Trp	Arg
Gly	Glu 210	Asn	Gly	Arg	ГÀа	Thr 215	Arg	Ile	Ala	Tyr	Glu 220	Arg	Met	Cys	Asn
Ile 225	Leu	rys	Gly	ГÀа	Phe 230	Gln	Thr	Ala	Ala	Gln 235	ràa	Ala	Met	Met	Asp 240
				245			Pro		250					255	
Thr	Phe	Leu	Ala 260	Arg	Ser	Ala	Leu	Ile 265	Leu	Arg	Gly	Ser	Val 270	Ala	His
Lys	Ser	Cys 275	Leu	Pro	Ala	CÀa	Val 280	Tyr	Gly	Pro	Ala	Val 285	Ala	Ser	Gly
Tyr	Asp 290	Phe	Glu	Arg	Glu	Gly 295	Tyr	Ser	Leu	Val	Gly 300	Ile	Asp	Pro	Phe
Arg 305	Leu	Leu	Gln	Asn	Ser 310	Gln	Val	Tyr	Ser	Leu 315	Ile	Arg	Pro	Asn	Glu 320
Asn	Pro	Ala	His	Lys 325	Ser	Gln	Leu	Val	Trp 330	Met	Ala	CÀa	His	Ser 335	Ala
Ala	Phe	Glu	Asp 340	Leu	Arg	Val	Leu	Ser 345	Phe	Ile	Lys	Gly	Thr 350	Lys	Val
Leu	Pro	Arg 355	Gly	Lys	Leu	Ser	Thr 360	Arg	Gly	Val	Gln	Ile 365	Ala	Ser	Asn
Glu	Asn	Met	Asp	Ala	Met	Glu	Ser	Ser	Thr	Leu	Glu	Leu	Arg	Ser	Arg

									COII			
370			375					380				
Tyr Trp Ala Ile 385	e Arg	Thr 390	Arg	Ser	Gly	Gly	Asn 395	Thr	Asn	Gln	Gln	Arg 400
Ala Ser Ala Gly	Gln 405		Ser	Ile	Gln	Pro 410	Thr	Phe	Ser	Val	Gln 415	Arg
Asn Leu Pro Phe		Arg	Thr	Thr	Ile 425	Met	Ala	Ala	Phe	Asn 430	Gly	Asn
Thr Glu Gly Arg	g Thr	Ser	Asp	Met 440	Arg	Thr	Glu	Ile	Ile 445	Arg	Met	Met
Glu Ser Ala Arg 450	g Pro	Glu	Asp 455		Ser	Phe	Gln	Gly 460	Arg	Gly	Val	Phe
Glu Leu Ser Asp 465	o Glu	Lys 470	Ala	Ala	Ser	Pro	Ile 475	Val	Pro	Ser	Phe	Asp 480
Met Ser Asn Glu	ı Gly 485		Tyr	Phe	Phe	Gly 490	Asp	Asn	Ala	Glu	Glu 495	Tyr
Asp Asn												
<210> SEQ ID NO <211> LENGTH: S <212> TYPE: PR <213> ORGANISM <220> FEATURE: <223> OTHER INI	99 F : art			nthe	tic							
<400> SEQUENCE	: 26											
Met Arg Ala Thi 1	r Val 5	Gly	Leu	Val	Glu	Ala 10	Ile	Gly	Ile	Arg	Glu 15	Leu
Arg Gln His Ala 20	a Ser	Arg	Tyr	Leu	Ala 25	Arg	Val	Glu	Ala	Gly 30	Glu	Glu
Leu Gly Val Thi 35	r Asn	Lys	Gly	Arg 40	Leu	Val	Ala	Arg	Leu 45	Ile	Pro	Val
Gln Ala Ala Gli 50	ı Arg	Ser	Arg 55	Glu	Ala	Leu	Ile	Glu 60	Ser	Gly	Val	Leu
Ile Pro Ala Arg 65	g Arg	Pro 70	Gln	Asn	Leu	Leu	Asp 75	Val	Thr	Ala	Glu	Pro 80
Ala Arg Gly Arg	85 85	Arg	Thr	Leu	Ser	Asp 90	Val	Leu	Asn	Glu	Met 95	Arg
Asp Glu Gln												
<pre><210> SEQ ID NO <211> LENGTH: 3 <212> TYPE: PR <213> ORGANISM <220> FEATURE: <223> OTHER INI</pre>	345 F : art			nthe	tic							
<400> SEQUENCE	: 27											
Met Ala Trp Aro	g Ser 5	Gly	Leu	CAa	Glu	Thr	Asp	Ser	Arg	Thr	Leu 15	Lys
Gln Phe Leu Glr 20	n Glu	Glu	Cys	Met	Trp 25	Lys	Leu	Val	Gly	Lys	Ser	Arg
Lys His Arg Glu 35	ı Tyr	Arg	Ala	Val 40	Ala	Сув	Arg	Ser	Thr 45	Ile	Phe	Ser
Pro Glu Asp Asp 50	o Gly	Ser	Сув 55	Ile	Leu	Сув	Gln	Leu 60	Leu	Leu	Leu	Tyr

Arg Asp Gly Glu Trp Ile Leu Cys Leu Cys Cys Asn Gly Arg Tyr Gln 65 70 75 80 Gly His Tyr Gly Val Gly His Val His Arg Arg Arg Arg Ile Cys His Leu Pro Thr Leu Tyr Gln Leu Ser Phe Gly Gly Pro Leu Gly Pro 105 Ala Ser Ile Asp Phe Leu Pro Ser Phe Ser Gln Val Thr Ser Ser Met Thr Cys Asp Gly Ile Thr Pro Asp Val Ile Tyr Glu Val Cys Met Leu Val Pro Gln Asp Glu Ala Lys Arg Ile Leu Val Lys Gly His Gly Ala Met Asp Leu Thr Cys Gln Lys Ala Val Thr Leu Gly Gly Ala Gly Ala 165 170 Trp Leu Leu Pro Arg Pro Glu Gly Tyr Thr Leu Phe Phe Tyr Ile Leu 185 Cys Tyr Asp Leu Phe Thr Ser Cys Gly Asn Arg Cys Asp Ile Pro Ser 200 Met Thr Arg Leu Met Ala Ala Ala Thr Ala Cys Gly Gln Ala Gly Cys 215 Ser Phe Cys Thr Asp His Glu Gly His Val Asp Pro Thr Gly Asn Tyr 230 Val Gly Cys Thr Pro Asp Met Gly Arg Cys Leu Cys Tyr Val Pro Cys 245 Gly Pro Met Thr Gln Ser Leu Ile His Asn Asp Glu Pro Ala Thr Phe Phe Cys Glu Ser Asp Asp Ala Lys Tyr Leu Cys Ala Val Gly Ser Lys 280 Thr Ala Ala Gln Val Thr Leu Gly Asp Gly Leu Asp Tyr His Ile Gly 295 Val Lys Asp Ser Glu Gly Arg Trp Leu Pro Val Lys Thr Asp Val Trp 310 Asp Leu Val Lys Val Glu Glu Pro Val Ser Arg Met Ile Val Cys Ser Cys Pro Val Leu Lys Asn Leu Val His 340 <210> SEQ ID NO 28 <211> LENGTH: 12 <212> TYPE: PRT <213 > ORGANISM: artificial <220> FEATURE: <223 > OTHER INFORMATION: synthetic <400> SEQUENCE: 28 Val Thr Leu Gly Gly Ala Gly Ala Trp Leu Leu Pro 1 5 <210> SEQ ID NO 29 <211> LENGTH: 190 <212> TYPE: PRT <213> ORGANISM: artificial <220> FEATURE: <223 > OTHER INFORMATION: synthetic

<400> SEQUENCE: 29

```
Met Gly Glu Leu Cys Lys Arg Ile Cys Cys Glu Phe Gly Thr Thr
Ser Gly Glu Pro Leu Lys Asp Ala Leu Gly Arg Gln Val Ser Leu Arg
Ser Tyr Asp Asn Ile Pro Pro Thr Ser Ser Ser Asp Glu Gly Glu Asp
Asp Asp Asp Gly Glu Asp Asp Asp Asn Glu Glu Arg Gln Gln Lys Leu
Arg Leu Cys Gly Ser Gly Cys Gly Gly Asn Asp Ser Ser Ser Gly Ser
His Arg Glu Ala Thr His Asp Gly Pro Lys Lys Asn Ala Val Arg Ser
Thr Phe Arg Glu Asp Lys Ala Pro Lys Pro Ser Lys Gln Ser Lys Lys
Lys Lys Lys Pro Ser Lys His His His Gln Gln Ser Ser Ile Met
                 120
Gln Glu Thr Asp Asp Leu Asp Glu Glu Asp Thr Ser Ile Tyr Leu Ser
                     135
Pro Pro Pro Val Pro Pro Val Gln Val Val Ala Lys Arg Leu Pro Arg
                   150
Pro Asp Thr Pro Arg Thr Pro Arg Gln Lys Lys Ile Ser Gln Arg Pro
                        170
Pro Thr Pro Gly Thr Lys Lys Pro Ala Ala Pro Leu Ser Phe
                             185
          180
<210> SEQ ID NO 30
<211> LENGTH: 345
<212> TYPE: PRT
<213> ORGANISM: artificial
<220> FEATURE:
<223 > OTHER INFORMATION: syntehtic
<400> SEQUENCE: 30
Met Ala Thr Ser Arg Leu Ser Val Lys Ser Leu Arg Ser Ile Ser Arg
Phe Val Gln Trp Glu Cys Cys Trp Met Leu Val Asn Lys Ser Ala Arg
Tyr Arg Glu Phe Arg Ala Val Thr Ser Gln Ser Pro Gly Leu Gly Lys
Val Ser Ser Thr Asp Asp Gly Arg Cys Leu Ala Ala Ser Met Met Leu
Phe Arg Arg Asp Gly Asn Phe Val Leu Cys Leu Val Val Asn Lys Glu 65 70 75 75 80
Pro Val Gly Gln Phe Gly Cys Ser Gly Met Arg Arg Glu Lys Met Val
Ile Asp Gly Leu Gln Glu Pro Val Tyr Val Met Arg Leu Leu Ala Pro
                             105
Leu Ile Pro Val Lys Leu Gly Phe Ser Pro Tyr Met Leu Pro Pro Lys
Ser Ile Gly Gly Ser Gly Gly Leu Asp Pro Ser Val Ile Tyr Gln Asn
Ala Ser Val Val Thr Pro Glu Glu Ala Ala Thr Val Thr Met Gln Gly
```

145												
		150					155					160
Ser Gly Ile		hr Val	Gly	Leu	Ser	Gly 170	Val	Gly	Ser	Trp	Val 175	Gln
Ile Lys Asp	Gly G 180	Sly Asn	Met	Lys	Leu 185	Phe	Val	Phe	Ala	Leu 190	Cys	Phe
Asp Val Phe	Thr A	Ala Cys	Cys	Asp 200	Arg	Leu	Ala	Phe	Pro 205	Ser	Leu	Ala
Lys Ile Tyr 210	Ser G	lu Thr	Val 215	Ser	Cys	Glu	Ala	Asp 220	Lys	Cys	Gly	Phe
Cys Arg Asp 225	Ser G	Sly Arg 230	His	Val	Asp	Pro	Thr 235	Gly	Arg	Phe	Val	Gly 240
Cys Val Pro	_	Ser Gly 245	Val	Cys	Leu	Cys 250	Tyr	Ser	Pro	Cys	Arg 255	Gly
Thr Asp Ala	Ala V 260	al Ser	Val	Arg	Ser 265	Trp	Leu	Pro	Tyr	Leu 270	Glu	Leu
Glu Asp Gly 275	Ala A	Asn Thr	His	Ser 280	Leu	Phe	Val	Arg	Arg 285	Tyr	Asp	Gly
Arg Lys Gly 290	Leu P	ro Ala	Thr 295	Ile	Ser	Asp	Tyr	Leu 300	Gly	Ala	Arg	Asn
Ser Glu Gly 305	Asp G	lu Ile 310	Pro	Leu	Arg	Thr	Glu 315	Pro	Trp	Gln	Leu	Leu 320
Lys Ile Glu		hr Leu 25	Ser	Ala	Met	Ile 330	Ile	Met	Ala	Cys	Pro 335	Leu
Leu Lys Lys	Ile V 340	al Leu	Glu	His	Met 345							
<210> SEQ I		:1										
<pre><211> LENGT: <212> TYPE: <213> ORGAN <220> FEATU: <223> OTHER</pre>	PRT ISM: a RE:	rtific		nthet	:ic							
<212> TYPE: <213> ORGAN <220> FEATU	PRT ISM: a RE: INFOR	artific		nthet	ic							
<212> TYPE: <213> ORGAN <220> FEATU <223> OTHER	PRT ISM: a RE: INFOR NCE: 3	artific RMATION 31 Asp Val	: syr			Ala 10	Thr	Ser	Arg	Leu	Ser 15	Val
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro</pre>	PRT ISM: a RE: INFOR NCE: 3 Tyr A	artific RMATION 31 Asp Val	: syr Pro	Asp	Tyr	10			J		15	
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1</pre>	PRT ISM: a RE: INFOR NCE: 3 Tyr A 5 Arg S	ARMATION Asp Val Ger Ile	: syr Pro Ser	Asp Arg	Tyr Phe 25	10 Val	Gln	Trp	Glu	Сув 30	15 Суз	Trp
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val</pre>	PRT ISM: a RE: INFOR NCE: 3 Tyr A 5 Arg S 20 Asn L	ARTION ASP Val Ger Ile	: syr Pro Ser Ala	Asp Arg Arg 40	Tyr Phe 25 Tyr	10 Val Arg	Gln Glu	Trp Phe	Glu Arg 45	Cys 30 Ala	15 Cys Val	Trp
<pre><212> TYPE: <213> ORGAN <220> FEATU. <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val</pre>	PRT ISM: a RE: INFOR NCE: 3 Tyr A 5 Arg S 20 Asn L Pro G	ARTION ASP Val Ger Ile Lys Ser	Pro Ser Ala Gly 55	Asp Arg Arg 40 Lys	Tyr Phe 25 Tyr Val	10 Val Arg Ser	Gln Glu Ser	Trp Phe Thr 60	Glu Arg 45 Asp	Cys 30 Ala Asp	15 Cys Val Gly	Trp Thr Arg
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val</pre>	PRT ISM: a RE: INFOR TYP A A TYP A A Arg S 20 Asn L Pro G Ala S Val V	entific MATION 11 Asp Val Ser Ile Lys Ser Sly Leu Ser Met 70	Pro Ser Ala Gly 55 Met	Asp Arg Arg 40 Lys Leu	Tyr Phe 25 Tyr Val	10 Val Arg Ser Arg	Gln Glu Ser Arg 75	Trp Phe Thr 60 Asp	Glu Arg 45 Asp	Cys 30 Ala Asp	15 Cys Val Gly Phe	Trp Thr Arg Val 80
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val</pre>	PRT ISM: aRE: INFOR TYP A TYP	ARTION ASP Val Ger Ile Gys Ser Gly Leu Ger Met 70 7al Asn	Pro Ser Ala Gly 55 Met Lys	Asp Arg Arg 40 Lys Leu Glu	Tyr Phe 25 Tyr Val Phe	10 Val Arg Ser Arg Val 90	Gln Glu Ser Arg 75 Gly	Trp Phe Thr 60 Asp Gln	Glu Arg 45 Asp Gly Phe	Cys 30 Ala Asp Asn	Cys Val Gly Phe Cys 95	Trp Thr Arg Val 80 Ser
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val 35 Ser Gln Ser 50 Cys Leu Ala 65 Leu Cys Leu</pre>	PRT ISM: a RE: INFOR NCE: 3 Tyr A 5 20 Asn L Pro G Ala S Val V 8 Arg G 100	artific MATION In sp Val Ser Ile Lys Ser Ser Met To	Pro Ser Ala Gly 55 Met Lys	Arg Arg 40 Lys Leu Glu Val	Tyr Phe 25 Tyr Val Phe Ile 105	10 Val Arg Ser Arg Val 90 Asp	Gln Glu Ser Arg 75 Gly	Trp Phe Thr 60 Asp Gln Leu	Glu Arg 45 Asp Gly Phe	Cys 30 Ala Asp Asn Gly Glu 110	15 Cys Val Gly Phe Cys 95	Trp Thr Arg Val 80 Ser Val
<pre><212> TYPE: <213> ORGAN <220> FEATU <223> OTHER <400> SEQUE Met Tyr Pro 1 Lys Ser Leu Met Leu Val</pre>	PRT ISM: aRE: INFOR TYP A TYP	ARTION ASP Val Ser Ile Ser Met 70 7al Asn 5ilu Lys Leu Leu	Pro Ser Ala Gly 55 Met Lys Met Ala	Asp Arg 40 Lys Leu Glu Val	Tyr Phe 25 Tyr Val Phe 105 Leu	10 Val Arg Ser Arg Val 90 Asp	Gln Glu Ser Arg 75 Gly Gly Pro	Trp Phe Thr 60 Asp Gln Leu Val	Glu Arg 45 Asp Gly Phe Gln Lys 125	Cys 30 Ala Asp Asn Gly Glu 110	15 Cys Val Gly Phe Cys 95 Pro	Trp Thr Arg Val 80 Ser Val

145	150	155	160	
Ala Ala Thr Val Thr 165	Met Gln Gly Ser Gly	Ile Val Thr Val Gly 175	Leu	
Ser Gly Val Gly Ser 180	Trp Val Gln Ile Lys 185	Asp Gly Gly Asn Met	Lys	
Leu Phe Val Phe Ala 195	Leu Cys Phe Asp Val	Phe Thr Ala Cys Cys 205	Asp	
Arg Leu Ala Phe Pro 210	Ser Leu Ala Lys Ile 215	Tyr Ser Glu Thr Val 220	Ser	
Cys Glu Ala Asp Lys 225	Cys Gly Phe Cys Arg 230	Asp Ser Gly Arg His 235	Val 240	
Asp Pro Thr Gly Arg 245	Phe Val Gly Cys Val 250	Pro Asp Ser Gly Val 255	Сув	
Leu Cys Tyr Ser Pro 260	Cys Arg Gly Thr Asp 265	Ala Ala Val Ser Val 270	Arg	
Ser Trp Leu Pro Tyr 275	Leu Glu Leu Glu Asp 280	Gly Ala Asn Thr His 285	Ser	
Leu Phe Val Arg Arg 290	Tyr Asp Gly Arg Lys 295	Gly Leu Pro Ala Thr 300	Ile	
Ser Asp Tyr Leu Gly 305	Ala Arg Asn Ser Glu 310	Gly Asp Glu Ile Pro 315	Leu 320	
Arg Thr Glu Pro Trp 325	Gln Leu Leu Lys Ile 330	Glu Pro Thr Leu Ser 335	Ala	
Met Ile Ile Met Ala 340	Cys Pro Leu Leu Lys 345	Lys Ile Val Leu Glu 350	His	
Met				
<210> SEQ ID NO 32 <211> LENGTH: 179 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic				
<400> SEQUENCE: 32				
gaccgcgcca cagcagagcc agcaccagca gaagagccag caccagcggg cccagagtcg 60				
caaagegege gggeageeae ggeecagaet geggtegega tggeeceggag egegetegee 120				
accacgatga eggtgeecaa egataaccag teegeteeeg eacegaegee acegeegat 179				
<pre><210> SEQ ID NO 33 <211> LENGTH: 38 <212> TYPE: DNA <213> ORGANISM: art <220> FEATURE: <223> OTHER INFORMA</pre>				
<400> SEQUENCE: 33				
atgtctagcg ttttctcaac agcattcgtg cgccttga 38				
<210> SEQ ID NO 34 <211> LENGTH: 252 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic				

<400> SEQUENCE: 34					
cacggeetgg eccagegage eetgegggae eggtteeaaa aettegagge egtgetggee	60				
eggggeatge aegtggagge eggeeggeag gageeegaga eeceeegggt gageggeegg	120				
eggetgeeet tegaegaeet gtgateegga ggaegaegge tegtgtatet tgtgeeaatt	180				
getgttgete tacegegaeg gegaatggat cetetgtett tgetgeaaeg geegttatea	240				
aggccactat gg	252				
<210> SEQ ID NO 35 <211> LENGTH: 67 <212> TYPE: DNA <213> ORGANISM: artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic <400> SEQUENCE: 35					
ctgggtcgcc aacagcgcca acgagtacgt cgtcagctcc gtgccccgcc ccgtcagtcc	60				
gtagaag	67				

We claim:

- 1. A recombinant beta-herpesvirus, wherein the beta-herpesvirus is spread-deficient.
- 2. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus is endotheliotropic and/or has a wild type-like virion surface.
- 3. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus is endotheliotropic and has a wild type-like virion surface.
- **4**. The beta-herpesvirus according to claim **1**, wherein the beta-herpesvirus is suitable to or capable of inducing an immune response, wherein the immune response comprises neutralizing antibodies against beta-herpesvirus and CD4⁺ and CD8⁺ T-cells directed against epitopes of beta-herpesvirus
- 5. The beta-herpesvirus according to claim 4, wherein the immune response comprises induction of neutralizing antibodies against a wild type beta-herpesvirus, wherein said antibodies are capable of inhibiting said wild type beta-herpesvirus from infecting endothelial cells and/or epithelial cells.
- **6**. The beta-herpesvirus according to claim **5**, wherein beta-herpesvirus which is prevented from infecting endothelial cells and/or epithelial cells by the neutralizing antibodies, is preferably a human pathogen.
- 7. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus is a human beta-herpesvirus.
- **8**. The beta-herpesvirus according to claim **1**, wherein the beta-herpesvirus is a cytomegalovirus.
- 9. The beta-herpesvirus according to claim 7, wherein the beta-herpesvirus is a human cytomegalovirus.
- 10. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus is deficient in at least one gene product involved in primary and/or secondary envelopment.
- 11. The beta-herpesvirus according to claim 10, wherein the at least one gene product is involved in primary envelopment.

- 12. The beta-herpesvirus according to claim 11, wherein the at least one gene product is encoded by a gene selected from the group comprising UL50 and UL 53 and homologs of each thereof.
- 13. The beta-herpesvirus according to claim 10, wherein the at least one gene product is involved in secondary envelopment.
- 14. The beta-herpesvirus according to claim 13, wherein the at least one gene product is encoded by a gene selected from the group comprising UL94 and UL99 and homologs each thereof.
- 15. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 181652 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ ID NO: 20.
- 16. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 181652 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 34.
- 17. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein

the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 131243 to 181652 of the nucleotide sequence according to SEQ ID NO: 20 and a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ ID NO: 20, wherein the nucleotide 130670 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 131243 of the nucleotide sequence according to SEQ ID NO: 20 and wherein the nucleotide 181652 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ ID NO: 20.

- 18. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 181652 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ ID NO: 20.
- 19. The beta-herpesvirus according to claim 1, wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 32, wherein nucleotide 179 of the nucleotide sequence according to SEQ ID NO: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 181652 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 189192 of the nucleotide sequence according to SEQ ID NO: 20.
- 20. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 62129 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ ID NO: 20 and wherein the nucleotide 181652 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 189192 of the nucleotide sequence according to SEQ ID NO: 20.

- 21. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 33.
- 22. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 63261 to 181652 of the nucleotide sequence according to SEQ ID NO: 20, a fourth nucleotide sequence represented by nucleotides 189192 to 233681 of the nucleotide sequence according to SEQ ID NO: 20, a fifth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 32 and a sixth nucleotide sequence comprising a nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 32 and a sixth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 33.
- 23. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus comprises human cytomegalovirus.
- 24. The beta-herpesvirus according to claim 1, wherein the beta herpesvirus comprises the nucleotide sequence according to SEQ ID NO: 23.
- 25. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus is deficient in at least one gene product encoded by an immune evasive gene.
- 26. The beta-herpesvirus according to claim 25, wherein the at least one gene product encoded by an immune evasive gene is selected from the group comprising gene products regulating MHC class I presentation and gene products regulating NK cell response.
- 27. The beta-herpesvirus according to claim 26, wherein the at least one gene product encoded by an immune evasive gene is a gene product regulating MHC class I presentation.
- **28**. The beta-herpesvirus according to claim **27**, wherein the gene product regulating MHC class I presentation comprises human cytomegalovirus.
- **29**. The beta-herpesvirus according to claim **26**, wherein the at least one gene product encoded by an immune evasive gene is a gene product regulating NK cell response.
- **30**. The beta-herpesvirus according to claim **29**, wherein the gene product regulating NK cell response is selected from the group comprising gene products encoded by the genes UL40, UL16 and UL18.
- 31. The beta-herpesvirus according to claim 1, wherein the beta-herpesvirus encodes a heterologous nucleic acid.
- **32**. The beta-herpesvirus according to claim **34**, wherein the heterologous nucleic acid is a functional nucleic acid, preferably selected from the group comprising antisense molecules, ribozymes and RNA interference mediating nucleic acids.
- **33**. The beta-herpesvirus according to claim **31**, wherein the nucleic acid is a nucleic acid coding for a peptide, oligopeptide, polypeptide or protein.

- **34**. The beta-herpesvirus according to claim **33**, wherein the peptide, oligopeptide, polypeptide or protein comprises at least one antigen.
- **35**. The beta-herpesvirus according to claim **34**, wherein the antigen is an antigen selected from the group comprising viral antigens, bacterial antigens and parasite antigens.
- **36.** The beta-herpesvirus according to claim 1, for use in a method for the treatment of a human subject and/or for use in a method for the vaccination of a human subject.
- 37. The beta-herpesvirus according to claim 36, wherein the subject is a mammal.
- **38**. The beta-herpesvirus according to claim **36**, wherein the beta-herpesvirus is human cytomegalovirus.
- **39**. The beta-herpesvirus according to claim **36**, wherein the subject is suffering from a disease or is at risk of suffering from a disease.
- **40**. The beta-herpesvirus according to claim **36**, wherein the vaccination is a vaccination against a disease.
- **41**. The beta-herpesvirus according to claim **39**, wherein the disease is a disease or condition which is associated with human cytomegalovirus infection.
- **42**. The beta-herpesvirus according to claim **41**, wherein the disease or condition comprises congenital inclusion disease
- **43**. The beta-herpesvirus according to claim **36**, wherein the subject is defined as a female with the ability to reproduce.
- **44**. The beta-herpesvirus according to claim **43**, wherein the treatment is or is suitable for or capable of preventing the transfer of a beta-herpesvirus, preferably human cytomegalovirus, from the female to a fetus and/or to an embryo carried or to be carried in the future by the female.
- **45**. The beta-herpesvirus according to claim **43**, wherein the treatment is for or is suitable for the generation of or capable of generating an immune response in the female body or the immune response in the female body, whereby preferably such immune response confers protection to a fetus and/or to an embryo carried or to be carried in the future by the female against beta-herpesvirus, preferably human cytomegalovirus, and/or a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.
- **46**. Use of a beta-herpesvirus according to claim **1**, for the manufacture of a medicament.
- **47**. Use according to claim **46**, wherein the medicament is for the treatment and/or prevention of beta-herpesvirus infection.
- **48**. Use according to claim **46**, wherein the medicament is for the treatment and/or prevention of a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.
- 49. Use of a beta-herpesvirus according to claim 1, for the manufacture of a vaccine.
- **50.** Use according to claim **49**, wherein the vaccine is for the treatment and/or prevention of beta-herpesvirus infection.
- **51**. Use according to claim **50**, wherein the vaccine is for the treatment and/or prevention of a disease or condition associated with beta-herpesvirus infection, preferably human cytomegalovirus infection.
- **52**. Use according to claim **49**, wherein the vaccine is or is suitable for the administration to a subject, whereby the subject is selected form the group comprising a pregnant female, a female of reproductive age, a donor of a transplant, a recipient of a transplant and a subject being infected with HIV or being at risk of being infected with HIV.

- **53**. Use according to claim **52**, wherein the donor is a potential donor and/or the recipient is a potential recipient.
- **54**. A nucleic acid coding for a beta-herpesvirus according to claim **1**.
- **55**. A vector comprising the nucleic acid according to claim **54**.
- **56**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 123688 of the nucleotide sequence according to SEQ ID NO: 20.
- 57. A vector comprising the nucleic acid according to claim 55, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 34.
- **58**. The vector according to claim **57**, wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 34 and wherein nucleotide 252 of the nucleotide sequence according to SEQ ID NO: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ ID NO: 20.
- 59. A vector comprising the nucleic acid according to claim 55, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 131243 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ ID NO: 20 and wherein the nucleotide 130670 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 131243 of the nucleotide sequence according to SEQ ID NO: 20.
- **60**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 122630 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 123668 to 130670 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 131243 to 233681 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 34 and a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 35.
- **61**. The vector according to claim **60**, wherein nucleotide 122630 of the nucleotide sequence according to SEQ ID NO:

20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 34, wherein nucleotide 252 of the nucleotide sequence according to SEQ ID NO: 34 is covalently linked to nucleotide 123668 of the nucleotide sequence according to SEQ ID NO: 20, wherein nucleotide 130670 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 35 and wherein nucleotide 67 of the nucleotide sequence according to SEQ ID NO: 35 is covalently linked to nucleotide 131243 of the nucleotide sequence according to SEQ ID NO: 20.

- **62**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20.
- **63**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 32.
- **64**. The vector according to claim **63**, wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 32 and wherein nucleotide 179 of the nucleotide sequence according to SEQ ID NO: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20.
- **65**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 62129 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ ID NO: 20.
- **66.** A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a second

nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and a third nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 33.

- 67. The vector according to claim 66, wherein nucleotide 62129 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 33 and wherein nucleotide 38 of the nucleotide sequence according to SEQ ID NO: 33 is covalently linked to nucleotide 63261 of the nucleotide sequence according to SEQ ID NO: 20.
- 68. A vector comprising the nucleic acid according to claim 55, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ ID NO: 20 and wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20 and wherein the nucleotide 62129 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to the nucleotide 63261 of the nucleotide sequence according to SEQ ID NO: 20.
- **69**. A vector comprising the nucleic acid according to claim **55**, wherein the vector comprises a nucleotide sequence, wherein the nucleotide sequence comprises a first nucleic acid sequence represented by nucleotides 1 to 58442 of the nucleotide sequence according to SEQ ID NO: 20, a second nucleotide sequence represented by nucleotides 59623 to 62129 of the nucleotide sequence according to SEQ ID NO: 20, a third nucleotide sequence represented by nucleotides 63261 to 233681 of the nucleotide sequence according to SEQ ID NO: 20, a fourth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 32 and a fifth nucleotide sequence comprising a nucleotide sequence according to SEQ ID NO: 33.
- 70. The vector according to claim 69, wherein nucleotide 58442 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 32, wherein nucleotide 179 of the nucleotide sequence according to SEQ ID NO: 32 is covalently linked to nucleotide 59623 of the nucleotide sequence according to SEQ ID NO: 20, wherein nucleotide 62129 of the nucleotide sequence according to SEQ ID NO: 20 is covalently linked to nucleotide 1 of the nucleotide sequence according to SEQ ID NO: 33 and wherein nucleotide 38 of the nucleotide sequence according to SEQ ID NO: 33 is covalently linked to nucleotide 632161 of the nucleotide sequence according to SEQ ID NO: 30 is covalently linked to nucleotide 632161 of the nucleotide sequence according to SEQ ID NO: 20.

* * * * *